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Summary 

Integrating computer vision systems into modern manufacturing for quality control offers substantial 

benefits. These systems, particularly those powered by deep learning, surpass human capabilities in 

both speed and accuracy for visual inspections. Nevertheless, significant challenges remain, 

particularly the need for task-specific data and the labor-intensive process of precisely annotating 

datasets for methods like segmentation or object detection. Explainability maps of neural networks 

can help address this issue by visually highlighting the regions that the network deems essential for 

predictions. This approach allows classifier networks to output class labels and an associated 

explainability map, functioning as a preliminary form of object detection. This technique only 

requires class labels, which are easier to obtain. This study conducts a comparative analysis of 

explainability methods across various neural network architectures, focusing on Convolutional 

Neural Networks (CNNs) and Vision Transformers (ViTs). For CNNs, a Class Activation Mapping 

(CAM)-based technique generates an attention map for defect localization, while ViTs employ an 

Attention Rollout calculation for the same purpose. Both architectures are adapted to efficiently 

identify defects in images during a single iteration, eliminating the need for detailed pixel-wise 

annotations and substantial model complexity increase. This research evaluates and compares these 

methods using segmentation metrics of generated explainability maps with two datasets: Printed 

Circuit Boards (PCB) and Gear Defect Inspection (GID). When considering different architectures, 

CNNs explainability output is more precise, enhancing the F1 score by up to 19%, the Jaccard index 

by up to 22%, recall by up to 48%, and the pointing game metric by up to 13%.



 

Zabulis Lukas. Defektų lokalizavimo nuotraukose tyrimas taikant giliojo mokymo modelių 

paaiškinamumo metodus. Magistro baigiamasis projektas / vadovas / doc. dr. Arūnas Lipnickas; 

Kauno technologijos universitetas, Elektros ir elektronikos fakultetas. 

Studijų kryptis ir sritis (studijų krypčių grupė): elektronikos inžinerija (inžinerijos mokslai). 

Reikšminiai žodžiai: gilusis mokymas, konvoliucinis neuroninis tinkas, vaizdų transformeris, 

paaiškinamumo metodai, defektų aptikimas. 

Kaunas, 2024. 54 p. 

Santrauka 

Kompiuterinės regos sistemų integravimas į modernią gamybą turi daug privalumų. Sistemos 

paremtos giliuoju mokymu pranoksta žmogaus galimybes tiek greičiu, tiek tikslumu atliekant 

vizualinius patikrinimus. Nepaisant to, susiduriama su iššūkiais, kurie apima dideles specifinių 

duomenų apimtis ir daug darbo reikalaujantį procesą, skirtą tiksliai anotuoti duomenų rinkinius 

tokiems uždaviniams kaip segmentavimas ar objektų aptikimas. Neuroninių tinklų paaiškinamumo 

metodai gali padėti išspręsti šią problemą, vizualiai išskiriant regionus, kuriais remiantis atliekamas 

spėjimas. Šis metodas leidžia klasifikatorių tinklams išvesti klasę bei susijusį paaiškinamumo 

žemėlapį, naudojamą objekto lokalizavimui. Šis metodas reikalauja tik klasės anotacijų, kurias 

lengviau sudaryti, lyginant su segmentavimo ar objektų aptikimo anotacijomis. Šiame tyrime 

atliekama lyginamoji paaiškinamumo metodų analizė dvejose neuroninių tinklų architektūrose, 

dėmesį skiriant konvoliuciniams neuroniniams tinklams (CNN) ir vaizdų transformeriams (ViT). 

CNN atveju klasės aktyvacijos žemėlapio pagrįsta technika sukuria paaiškinamumo žemėlapį 

defektams nustatyti, o ViT tam pačiam tikslui naudoja dėmesio nukreipimo mechanizmą. Abi 

architektūros pritaikytos efektyviai identifikuoti defektus paveiksluose vienos iteracijos metu, be 

detalių anotacijų ir modelio kompleksiškumo padidėjimo. Šiame tyrime paaiškinamumo metodai 

vertinami lyginant paaiškinamumo išėjimo segmentavimo metrikas su dvejais duomenų rinkiniais: 

spausdintų montažinių plokščių (PCB) ir krumpliaračių defektų (GID). Atsižvelgiant į skirtingas 

architektūras, CNN paaiškinamumo išvestis yra tikslesnė, padidinant F1 balą iki 19%, „Jaccard“ 

indeksą iki 22%, „recall“ iki 48%, o „pointing game“ metriką iki 13%. 
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Introduction 

The advent of computer vision in modern manufacturing has become a pivotal element in ensuring 

quality control. These systems surpass human capabilities in conducting defect inspections, both in 

terms of speed and accuracy. The increasing adoption of deep learning solutions for visual inspection 

tasks marks a significant advancement in this field. Nevertheless, the need for new, specific data for 

each problem, coupled with the time-intensive nature of precise dataset annotation, especially for 

accuracy-dependent methods like segmentation or object detection, presents notable challenges. 

Explainability maps of neural networks provide a promising solution by visually highlighting regions 

deemed essential for predictions. This approach enables classifier networks to output both class labels 

and associated explainability maps, functioning as a preliminary form of object detection that requires 

only class labels. This makes it easier to obtain relevant data without demanding precise, pixel-wise 

annotations. 

This work delves into the comparative analysis of explainability approaches across different neural 

network architectures, focusing on Convolutional Neural Networks (CNNs) and Vision Transformers 

(ViTs). For CNNs, a Class Activation Mapping (CAM)-influenced technique generates an attention 

map to highlight defective areas in image classification algorithms. ViTs employ an Attention Rollout 

calculation for the same purpose. Both architectures incorporate lightweight operations, enabling 

them to localize defects efficiently in a single iteration, eliminating the need for subsequent 

calculations. 

The effectiveness and efficiency of these methods are rigorously tested using explainability output 

segmentation metrics on two datasets: Printed Circuit Boards (PCB) and Gear Defect Inspection 

(GID). By comprehensively understanding how these neural network architectures interpret 

classifications, this research seeks to advance quality control by providing explainable, efficient 

defect localization without the need for intensive data annotation. 

The Aim 

Design and implement a comparative study analyzing the explainability of Convolutional Neural 

Networks (CNN) and Vision Transformers (ViT) in the context of defect localization in images, to 

quantify the effectiveness of each model's explainability features, facilitating a deeper understanding 

of how model design influences interpretability. 

The Objectives 

1. Conduct a comprehensive review of the existing literature focused on Convolutional Neural 

Networks (CNNs) and Vision Transformers (ViTs), with an emphasis on understanding the 

methodologies for explainability within these models. Additionally, explore their applications in 

defect detection scenarios. 

2. Develop a versatile experimental framework and train neural network models (CNN and ViT) on 

PCB and GID datasets with hyperparameter searching optimization strategies and select the best-

performing ones for subsequent experimental evaluation. 

3. Enhance the capability of neural network models by integrating a mechanism to generate 

explainability maps concurrently with class predictions during the forward pass. 

4. Evaluate and compare the explainability aspects of the developed models by employing 

segmentation metrics. 
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1. Literature review 

The following chapters investigate methods for detecting surface defects employing a machine-

learning approach. The primary focus is on Convolutional Neural Network (CNN) and Vision 

Transformer (ViT) architectures as key image processing tools. The literature review also addresses 

explainability approaches for these networks. Finally, the application of these technologies is 

examined across various industries to enhance quality control. 

1.1. Surface analysis and defect detection from images 

There are several approaches to analyzing surface defects [1]: 

 

Fig. 1.1. Different approaches for surface defect analysis from images 

The classification method is the simplest, aiming to distinguish between defective and non-defective 

samples or classify multiple defect categories if necessary. Localization identifies the precise location 

of the defect while simultaneously enabling classification. Segmentation isolates defects down to the 

pixel level. The selection of these methods depends on the specific requirements of the problem being 

solved. 

The mentioned surface defect analysis methods are solved by distinguishing two directions of image 

analysis (Fig. 1.2). The first direction relies on expert knowledge-based features of visual data, while 

the second relies on features learned by artificial neural networks [1], [2]. 

 

Fig. 1.2. The visual representation of defect recognition using vision-based technology [1] 
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The authors highlight the pros and cons of both approaches. While deep learning-based neural 

networks demand significant computational resources, this challenge is mitigated by rapid 

advancements in the accelerated computing field [3]. As a result, deep learning and neural networks 

are emerging as primary tools and research subjects in image analysis. 

1.2. Convolutional neural networks 

This section reviews the architectures of convolutional neural networks and their modifications, 

which aim to enhance accuracy, improve training efficiency, and reduce model complexity. Since the 

area of research is defect detection, which usually needs to be done in real-time [4], the focus is on 

convolutional neural networks with fewer parameters or floating-point operations (FLOPs). Such 

networks are more efficient and can operate faster. Typically, all emerging architectural solutions are 

trained using the ImageNet database [5] and their achievable classification accuracy is also reported. 

1.2.1. EfficientNet 

Convolutional Neural Networks (ConvNets), traditionally developed with fixed resource constraints, 

are often scaled up to enhance performance as more computational resources become available. In 

their study [6], the authors systematically examine the scaling of ConvNets and highlight the 

importance of achieving an optimal balance between the network's depth, width, and resolution (Fig. 

1.3) to improve performance. From this analysis, they propose an innovative scaling technique that 

leverages a compound coefficient to uniformly adjust the network dimensions of depth, width, and 

resolution. This method is noted for its simplicity and effectiveness. 

Extending their research, the authors employed a neural architecture search to design an optimized 

baseline network. This baseline was then scaled, resulting in the creation of a new suite of models 

termed EfficientNets. These models distinguish themselves by setting new benchmarks for accuracy 

and efficiency beyond previous ConvNets. Remarkably, the EfficientNet-B7 model not only achieves 

state-of-the-art accuracy rates of 84.4% top-1 and 97.1% top-5 on the ImageNet dataset but also 

presents a significant improvement in efficiency, being 8.4 times smaller and 6.1 times faster at 

inference compared to leading existing ConvNets. 

 

 

Fig. 1.3 Model scaling techniques [6] 
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In another paper, the same authors introduce EfficientNetV2 [7], further enhancing the architecture. 

The author's method for creating these models incorporates an innovative blend of training-aware 

neural architecture search [8] and scaling techniques, designed to simultaneously enhance training 

speed and parameter efficiency. This optimization process benefited from an enriched search space 

that included innovative operations like Fused-MBConv (Fig. 1.4). 

 

Fig. 1.4. MBConv block (EfficientNet) and Fused-MBConv block (EfficientNetV2) [7] 

Through their comparative experiments, the authors demonstrate that EfficientNetV2 models not only 

train substantially faster than existing state-of-the-art models but also manage to be up to 6.8 times 

smaller in terms of parameter size. The introduction of progressively increasing image size during 

training, a method that typically risks a reduction in accuracy, is counterbalanced by an improved 

progressive learning technique. This technique adaptively adjusts regularization measures, such as 

data augmentation, alongside the image size increase, effectively preserving accuracy. 

1.2.2. MobileNet 

MobileNet [9] is a family of CNN architectures specially designed for devices with limited computing 

resources (Resource-constrained environments). The main goal of MobileNet is to find a balance 

between model accuracy and model size. The authors implement these features by using a 

combination of two different layers (depthwise separable convolutions, and pointwise convolutions). 

These layers help to extract information very similar to standard convolution layers, but the number 

of multiplication operations is reduced during the convolution operation. The first version of 

MobileNet was followed by MobileNetV2 [10] and MobileNetV3 [11], each of which introduced 

improvements and optimizations. The convolutional block of MobileNet is referenced below (Fig. 

1.5). 
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Fig. 1.5. On the left – standard convolutional block, on the right – MobileNet convolutional block [9] 

1.3. Vision transformers 

Traditional convolutional neural networks (CNNs) have been foundational in computer vision, 

excelling in tasks by extracting hierarchical features from images through localized filters. In contrast, 

the more recent Vision Transformers (ViT) leverage the transformer architecture [12], originally 

developed for natural language processing [13], to handle vision tasks. ViTs differentiate themselves 

by processing images in sequences of patches, like how transformers process words in sentences. 

This approach allows ViTs to consider global interactions between patches, offering a broader 

contextual understanding than the inherently local perspective of CNNs [14]. This shift from local to 

global processing marks a significant advancement in the field, enabling ViTs to achieve remarkable 

performance on various vision tasks, especially when trained on large-scale datasets. 

1.3.1. ViT 

Unlike traditional convolutional neural networks (CNNs) that process images through convolutional 

layers, a ViT [15] first divides an image into a sequence of fixed-size patches. These patches are then 

flattened and linearly embedded (transformed into a series of numbers that can be processed by the 

model). Since the transformer architecture does not inherently consider the order of the input, 

positional encodings are added to the patch embeddings to retain information about the position of 

each patch in the original image. This is crucial for understanding the spatial relationships between 

different parts of the image. 

The embedded patches, along with their positional encodings, are then fed into a series of transformer 

encoder layers. Each layer consists of multi-head self-attention mechanisms and feed-forward neural 

networks. The self-attention mechanism allows the model to weigh the importance of different 

patches relative to each other, capturing the global context of the image. For tasks like image 

classification, the output of the transformer encoder is typically passed through additional layers 

(often a simple neural network) to produce the final classification. ViTs are trained using large 

datasets and powerful computational resources [16]. They have demonstrated impressive 

performance on various image recognition tasks, sometimes even surpassing traditional CNNs. A key 

advantage of Vision Transformers is their ability to capture global dependencies within an image, as 

opposed to CNNs which primarily focus on local features. Vision transformer architecture is 

referenced below (Fig. 1.6). 
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Fig. 1.6. ViT architecture diagram [15] 

Authors in their paper “How do vision transformers work?” [17] compare CNN and ViT architectures. 

The main difference highlighted between architectures is that multi-head self-attention improves 

generalization by flattening the loss landscapes. 

 

 

Fig. 1.7. Loss landscape visualizations of ResNet and ViT [17] 

1.3.2. DeiT 

Researchers in their paper [18] introduced another kind of transformer called DeiT (data-efficient 

transformer). The core concept behind the architecture is very similar to ViT. DeiT operates by 

treating images as sequences of patches. DeiT introduced a novel training methodology involving a 

distillation token, which is an additional learnable vector that aids in distilling knowledge [19] from 
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a teacher model (typically a pre-trained CNN or Transformer) to the Transformer model. This 

approach helps improve the training efficiency and effectiveness of the DeiT model, especially when 

labeled data is limited. The key advantages of the model are highlighted: 

 

1. Efficiency: DeiT is designed to be more data efficient than traditional CNNs, achieving 

comparable results on benchmarks like ImageNet with less data. 

2. Scalability: the transformer architecture scales well with the amount of data and the size of the 

model, allowing DeiT to effectively leverage larger datasets and model capacities. 

 

Fig. 1.8. DeiT model architecture diagram with a distillation process [18] 

1.4. Overview of neural network models 

In this literature review, the advancements, and characteristics of both CNNs and ViTs were explored. 

Through comparative analysis, it is evident that while CNNs such as EfficientNet and MobileNet are 

renowned for their efficiency and adaptability in handling diverse image recognition tasks with 

constrained computational resources, vision transformers like ViT and DeiT demonstrate comparable 

performance on tasks requiring understanding of complex patterns and large-scale training datasets. 

The Table 1.1 highlights the distinctions in accuracy, and floating-point operations among different 

model architectures. 
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Table 1.1. Comparison of models. 

Model Release year 
Accuracy (ImageNet1K 

Top-1), % 

Floating point operations 

(GFLOPs) 

EfficientNet_B4 2019 83.38 4.39 

EfficientNetV2_S 2021 84.23 8.37 

MobileNetV2 2018 71.88 0.30 

MobileNetV3_large 2019 74.04 0.22 

ViT_tiny 2021 79.10 1.30 

DeiT_tiny 2021 74.50 1.08 

EfficientNetV2_S has the highest accuracy at 84.23% but also has the highest GFLOPs at 8.37, 

indicating higher computational complexity. MobileNetV3_large has the lowest GFLOPs at 0.22 but 

a relatively lower accuracy of 74.04%. Models like ViT_tiny and DeiT_tiny show a balance between 

accuracy and computational cost with 79.1% and 74.5% accuracy, and 1.3 and 1.08 GFLOPs 

respectively. 

1.5. Neural networks explainability 

As the application of advanced machine learning models like CNNs and ViTs expands across critical 

sectors such as healthcare [20], finance [21], and autonomous driving [22], the imperative for 

explainability in these models grows [23], [24]. CNNs, known for their deep hierarchical structure 

for feature extraction, and ViTs, which utilize self-attention mechanisms to process images, both 

achieve high levels of performance yet often operate as "black boxes" with decision-making processes 

that are opaque and complex [25]. This chapter explores the methods of making such models 

interpretable and transparent, discussing the internal mechanisms. 

1.5.1. Class activation mapping (CAM) for CNN’s 

Class Activation Mapping (CAM) is a technique that enables the visualization of the regions within 

an image that are significant for predicting a class label in CNNs. This method is particularly useful 

for understanding which features in an image contribute to the classification decision made by the 

network. Introduced by Zhou et al. (2016), CAM [26] works by using the global average pooling 

layer in CNNs to directly relate the spatial activations to the output class probabilities. This not only 

helps in interpreting the decision-making process of CNNs but also aids in the diagnosis of whether 

the network is focusing on the relevant objects in the image. Further, CAM has been effectively used 

in various applications, including image classification, object detection, and segmentation, providing 

a tool for improving model transparency and reliability by highlighting potential biases and errors in 

the training process. This method's ability to produce visual explanations without requiring 

architectural modifications or additional parameter training makes it an asset in the toolbox of 

techniques for enhancing the interpretability of CNNs. Fig. 1.9 demonstrates that the global average 

pooling layer produces the spatial average of each unit's feature map in the final convolutional layer. 

The final output is generated by applying a weighted sum to these values. In a similar manner, class 

activation maps are derived by computing a weighted sum of the feature maps from the last 

convolutional layer. 
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Fig. 1.9. Visual representation of class activation map calculation. The CAM highlights the class-specific 

discriminative regions [26] 

Fig. 1.10 highlights the differences in the CAMs for a single image when using different classes to 

generate the maps. It is observed that the discriminative regions for different categories are different 

for a given image. For the highest probability class (palace), the attention map area (red) is the biggest 

and the most precise. 

 

 

Fig. 1.10. Examples of CAMs generated from the top 5 predicted categories for the given image with 

ground-truth as dome [26] 

1.5.2. Attention Rollout for transformer models 

Authors in their paper [27] present explainability methods for transformer models. They are called 

“attention rollout” and “attention flow” and their main goal is to compute attention scores to input 

tokens at each layer, by taking the raw attentions of the layer as well as those from the precedent 

layers. In the transformer model, each layer's self-attention mechanism integrates information from 

the attended embeddings of the preceding layer to generate new embeddings for each token. 

Consequently, as the information from various tokens becomes progressively intermingled across the 

transformer's layers, the attention weights in the i-th self-attention layer cannot be directly interpreted 

as attention to the input tokens or embeddings from the input layer. This intermingling renders 
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attention weights unreliable for explaining which parts of the input are most crucial in generating the 

output. To answer this question the authors, propose the computation of the information flow graph 

of a transformer model: 

Given transformer model attention module with residual connections, the values in layer l+1 are 

computed as 

 

 𝑉𝑙+1 = 𝑉𝑙 ∗  𝑊𝑎𝑡𝑡𝑉𝑙,  (1.1) 

where, 𝑊𝑎𝑡𝑡 – attention matrix, 𝑉𝑙 – input values of l layer. 

Simplified: 

 𝑉𝑙+1 = (𝑊𝑎𝑡𝑡 + 𝐼)𝑉𝑙,  (1.2) 

where, 𝐼 – identity matrix. 

Keeping in mind residual connections this results in the following: 

 𝐴 = 0.5𝑊𝑎𝑡𝑡 + 0.5𝐼,  (1.3) 

where, 𝐴 – raw attention updated by residual connections. 

 

The last equation approximates how information propagates through the self-attention layers. Using 

this graph, attention weights across all layers can be analyzed, and each layer's attention weights can 

be mapped back to the input tokens. In Fig. 1.11, example (a), the model predicts the word 'his'. Thus, 

the model should focus on the word 'author' rather than 'Sara'. Both Attention Rollout and Attention 

Flow align with this expectation, while the final layer of Raw Attention does not align with the 

model's prediction and shows significant variation across different layers. 

 

Fig. 1.11. Bert attention maps. Looking at attention weights from the mask embedding to the two potential 

references for it, e.g. “author” and “Sara” in (a) and “Mary” and “John” in (b). The bars, at the left, show the 

relative predicted probability for the two possible pronouns, “his” and “her” [27]. 
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1.5.3. Evaluating the quality of explainable methods 

When working with neural network explainability, assessing the quality of explanation heatmaps can 

be challenging. Several methods have been developed to address this issue. The Pointing Game metric 

[28] evaluates the accuracy of an explainability map by determining whether its highest-magnitude 

pixel is located within the correct class's segmentation map, recording individual instances as either 

hits or misses. Similarly, the authors in [29] introduced the Weighting Game metric, which measures 

the proportion of an explainability map's mass or magnitude that lies within the correct class's 

segmentation map. This approach provides greater flexibility in evaluating individual explanations, 

as it is not binary like the Pointing Game. Fig. 1.12. illustrates the differences between the Weighting 

Game and the Pointing Game. 

 

 

Fig. 1.12. Differences of the weighting game and pointing game [29] 

1.6. Applications of defect detection using explainability of neural networks 

The integration of deep neural networks in defect detection has revolutionized quality assurance 

across industries by enhancing detection accuracy and reducing operational costs [30]. However, the 

opacity of these systems often limits their trustworthiness and scalability. Network explainability 

addresses this challenge by making the decision-making processes of neural networks transparent and 

interpretable. This chapter focuses on the applications of network explainability in defect detection, 

emphasizing how making model decisions understandable can improve both the performance and 

reliability of automated systems. The subsequent chapters explore the methodologies, case studies, 

and impacts of explainable AI in industrial defect detection. 

1.6.1. Mini/micro-LED-chip defect recognition 

Paper [31] presents a small-scale ViT network using Convmixer [32] and interpreting local and global 

information. First, the image is split into individual windows, then each window is encoded into the 

multichannel space, thus creating a display map. This is fed to a convolutional neural network that 

works similarly to ViT, so the information is interpreted both globally and locally. Fig. 1.13 presented 

Grad-CAM [33] visualizations of the last layers of the various tested networks. From the visual 

material in the last column, the network of the presented architecture focuses more precisely on the 

defective locations. Also, the network achieves over 3% higher accuracy than MobileNetV3 or 

MobileViT [34] considering that it is the smallest network (0.138 GFLOPs) compared to the latter 

(0.4 and 0.7 GFLOPs). In this situation, explainability facilitates a more effective comparison 

between models. 
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Fig. 1.13. The visualization of the Grad-CAM of different models [31] 

1.6.2. An explainable laser welding defect recognition 

Paper [35] explores advancements in vision-based online defect recognition for laser welding, 

emphasizing the enhancement of quality control systems through more sophisticated imaging 

techniques. While visual signals offer richer quality information compared to one-dimensional 

signals, the abstract nature of the information they contain poses challenges in interpretation and 

application. To address these challenges, the paper introduces a novel approach to improve the 

explainability of convolutional neural networks (CNNs) used in laser welding defect recognition 

(LWDR). 

The proposed method, termed Class Activation Mapping with Multi-Scale Fusion Features (CAM-

MSFF), leverages a multi-scale features adaptive fusion technique that encompasses three key 

processes: feature squeeze, feature mapping, and feature recalibrating (Fig. 1.14). This approach is 

designed to enhance the model's ability to interpret multi-scale features. 

Explainability tests reveal that CAM-MSFF provides more precise and human-comprehensible 

explanations of the model’s decision-making processes. 

 

 

Fig. 1.14. The overall framework of CAM-MSFF [35] 
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1.6.3. Automated surface defect detection based on a bilinear model 

The paper [36] introduces a new approach using a bilinear model, specifically adapted from the 

VGG16 [37] architecture, named Double-Visual Geometry Group16 (D-VGG16). This model 

effectively extracts both global and local features critical for detecting complex surface textures. 

The paper also introduces the use of Gradient-weighted Class Activation Mapping (Grad-CAM) [33] 

to localize defects. Grad-CAM generates heat maps from D-VGG16's output, which are then 

processed using a threshold segmentation method for defect identification. This method improves 

interpretability and reduces the likelihood of false positives. 

Tested on two open-source and two industrial datasets, the proposed method demonstrated great 

performance, achieving an average precision above 99%. Fig. 1.15 presents the overall network 

structure. There are two feature extraction networks. Features from both networks are concatenated 

and used for class prediction. Localization of the defective location is made through the Grad-CAM 

algorithm backpropagating through one of the feature extractors. 

 

Fig. 1.15. Neural Network Structure [36] 

1.6.4. A post hoc analysis of deep learning for defect classification of TFT-LCD panels 

Authors in their paper [38] use XAI techniques to analyze the predicted results of defective TFT-

LCD panels. VGG16 architecture model was trained and the defects were visualized using a layer-

wise relevance propagation-based method [39]. Each neuron has a specific level of contribution 

(certain relevance), which is redistributed from the output of each neuron to the input in a top-down 

manner, preserving the overall contribution. As shown in Fig. 1.16 (a , the heatmap highlights the 

defect area, whereas Fig. 1.16 (b) demonstrates that the heatmap is dispersed in the background 

pattern. The visualization technique faces limitations in analysis due to the unstable display of 

prediction results. Consequently, researchers have supplemented this approach by defining 

classification rules for the learned model using a decision tree. 
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Fig. 1.16. Examples of visualization results [38] 

1.7. Conclusions 

For further research, lightweight models that perform well on the ImageNet1K database were selected 

for analysis. EfficientNetV2_s [7] and MobileNetV3_large [11]  were chosen as convolutional neural 

networks (CNNs), while ViT_tiny [15] and DeiT_tiny [18] were selected as vision transformers 

(ViTs). The Class Activation Mapping (CAM) [26] method will be utilized for CNN explainability, 

and the attention rollout technique [27] will be used for ViT explainability. The quality of the 

explainability outputs will be evaluated using the pointing game metric [28] alongside traditional 

segmentation metrics. From an applications perspective [31], [35], [36], [38], examples demonstrate 

the interest of explainability methods for defect localization and model decision interpretation, 

validating the relevance of this research. 
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2. Methods and concepts used in the research 

2.1. Development environment setup 

In this section, the specifics of the development environment used for this research project are 

described. The setup is designed to streamline experimentation, foster modularity, and simplify 

tracking and reproducibility. The core components used for the research are described below. 

The main ideas behind the creation of a development environment: 

– Minimal boilerplate code (easily adding new models, datasets, tasks, experiments, and 

different accelerator configurations). This is done through dynamic hydra configuration. 

– Logging experiments to one place for easier comparison of performance metrics. 

– Hyperparameter searching integration. 

Development language: 

Python is the primary programming language for this project. It is renowned for its simplicity and 

readability, which makes it particularly appealing for scientific computing. It supports various 

programming paradigms and features an extensive ecosystem of libraries, making it an ideal choice 

for machine learning projects. 

Libraries and frameworks: 

– PyTorch: python package offering two high-level capabilities: tensor computation (similar to 

NumPy) with GPU acceleration, and deep neural networks utilizing a tape-based autograd 

system. 

– PyTorch Lightning: a lightweight PyTorch wrapper for high-performance AI research and 

faster prototyping. 

– TorchMetrics: a set of PyTorch metric implementations accompanied by a user-friendly API 

for creating custom metrics. 

– Hydra: a framework for configuring complex applications, featuring the ability to dynamically 

create a hierarchical configuration through composition and override it via config files and 

the command line. 

– Optuna: framework agnostic hyperparameters searching library. 

– OpenCV: an open-source computer vision and machine learning software library. 

– WandB: a machine learning development platform that allows tracking and visualize various 

aspects of the model training process in real-time. 

– Hugging Face: a library for storing models and datasets. 

 

The diagram (Fig. 2.1) outlines a setup for a developed project that uses configuration files and Python 

scripts for training and testing models. Here is a breakdown of each component and how they 

interconnect: 

 

Configuration Section 

This part of the diagram illustrates how configuration files (train.yaml, test.yaml, model.yaml, etc.) 

are used to manage different aspects of the project, such as data preprocessing, model parameters, 

and training settings. These files are in YAML format, which is common for various configurations. 

 

Hydra Loader 
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The diagram shows how Hydra loads all configuration files and combines them into a single 

configuration object (DictConfig). This unified configuration object simplifies the management of 

settings across different modules and aspects of the project, such as data handling, model specifics, 

callbacks, logging, and the training process. 

 

Train/Test Script 

– This section represents the operational part of the project. Scripts train.py and test.py are 

required for training and testing the model. 

– DictConfig: The combined configuration object passed to these scripts, guiding the 

instantiation of the subsequent components. 

 

Instantiating Objects 

– LightningDataModule: manages data loading and processing specific to training, validation, 

and testing phases. 

– LightningModule (model): defines the model, including the computation that transforms 

inputs into outputs, loss computation, and metrics. 

– Callbacks: provide a way to insert custom logic into the training loop, such as model 

checkpointing, early stopping, etc. 

– Logger: handles the logging of training, testing, and validation metrics for monitoring 

progress. 

– Trainer: the central object in PyTorch Lightning that orchestrates the training process, 

leveraging all the other components. 

– The trainer uses the model, data module, logger, and callbacks to execute the training process 

through the trainer.fit() method, integrating all the configuration settings specified through 

Hydra. 
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Fig. 2.1. The flow diagram of model training and testing 

Once the development environment is properly set up, the workflow comes to 4 steps: 

 

Fig. 2.2. The workflow diagram 
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2.2. Multi-head CNN with explainability output 

An additional output is incorporated into the generic binary image classifier to enhance prediction 

explainability, serving as a rough segmentation or localization of defects. A Class Activation Map 

(CAM) [26] is employed for this purpose, as it offers one of the simplest methods for explaining the 

model with minimal modifications to the architecture and few additional calculations. Moreover, 

since the output consists of a single neuron (binary classification with sigmoid activation), this general 

explainability and rough defect estimation remain constant and specific to the given prediction and 

its weights. The formula for generating the CAM-based output is as follows: 

 

 𝑋𝐶𝐴𝑀 = 𝑋𝐿𝑎𝑡𝑒𝑛𝑡 ∗  𝑊𝐵,  (2.1) 

where, 𝑋𝐶𝐴𝑀 – CAM output matrix which is equal to 𝑋𝐿𝑎𝑡𝑒𝑛𝑡 – feature extractor latent space tensor 

before global average pooling and 𝑊𝐵 – binary prediction output neuron weights dot product. 

 

The diagram of the modified convolutional neural network structure is given in Fig. 2.3. 

 

Fig. 2.3 Diagram of modified convolutional neural network structure 

Additionally for experiments, the model architecture’s (EfficientNetV2_s and MobileNetV3_large) 

final feature extraction stage was taken out (Fig. 2.4). This modification increases explainability 

output resolution 2 times resulting in 1/16 of original input resolution. The experiments were also 

conducted on full architecture which gives two times lower resolution (1/32 of the original input 

resolution). The intuition behind using higher-resolution feature maps is that they might allow for 

more detailed and granular visual explanations of model decisions. 
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Fig. 2.4. The comparison of CNN full and downscaled architecture outputs  

2.3. Multi-head ViT with explainability output 

Attention Rollout [27] is a technique used to provide explainability for Vision Transformer (ViT) 

models. Vision Transformers use attention mechanisms to determine the importance or relevance of 

different parts of the input data (image patches in this case). Each attention head in the transformer 

layers computes a set of attention weights, indicating how much focus should be given to each patch 

when considering a specific patch. 

Attention Rollout involves combining these attention weights across all the layers of the transformer 

in a way that represents the overall flow of attention through the network. This is done by multiplying 

the attention matrices of successive layers. The idea is to track how the attention to each patch evolves 

from the input layer to the output layer. 

In every Transformer block, an attention matrix 𝐴𝑖𝑗 is created, which determines the flow of attention 

from the token 𝑗 in the previous layer to token 𝑖 in the next layer. Multiplying the matrices between 

each pair of layers calculates the overall attention flow between them. Additionally, there are residual 

connections. These can be incorporated by adding the identity matrix 𝐼 to the attention matrices of 

each layer, resulting in 𝐴𝑖𝑗 + 𝐼. With multiple attention heads, the "Attention Rollout" study [27] 

suggests averaging the heads. Other methods, such as using the minimum or maximum fusion of 

heads, are also viable. Additionally, the quality of attention maps can be enhanced by discarding a 

specific percentage of the lowest attention scores. The attention rollout matrix at the layer 𝐿 is 

recursively computed as follows (it is also necessary to normalize the rows to ensure the total attention 

flow remains 1): 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑅𝑜𝑙𝑙𝑜𝑢𝑡𝐿 = (𝐴𝐿 + 𝐼) ∙ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑅𝑜𝑙𝑙𝑜𝑢𝑡𝐿−1  (2.2) 

The result of the attention rollout can be visualized as a heatmap (upscaled to the original input 

dimensions) overlaid on the original image. This heatmap shows which parts of the image were most 

influential in the model's decision-making process (similarly to CAM in the CNNs). Regions with 

higher attention weights are highlighted, indicating they played a more significant role in the model's 

output (e.g., in classifying the image). The diagram of the modified ViT architecture with 

explainability output is given in Fig. 2.5. 
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Fig. 2.5. Diagram of modified transformer model structure 

2.4. Datasets 

2.4.1. Overview 

In this study, two different open-source image datasets are utilized, each containing various defects 

in visual data. The first dataset, the printed circuit board (PCB) defects dataset , includes 1386 high-
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resolution images of printed circuit boards of varying sizes. The defects featured in this dataset are 

missing holes, mouse bites, open circuits, shorts, spurs, and spurious copper. This dataset is semi-

artificial, as the defects were generated using image editing software. It includes both region and 

class-wise annotations for each defect. The second dataset is the Gear Inspection Dataset (GID), 

created for Baidu's 'National Artificial Intelligence Innovation Application Competition.' It contains 

two thousand grayscale images with a total of 28,575 annotations for three types of defects. Each 

image is accompanied by a separate JSON file detailing the image name, label categories, bounding 

boxes, and segmentation polygons. However, the label categories are represented by numbers rather 

than specific defect types, making it challenging to identify their similarities. The summary of the 

datasets is given the Table 2.1. Cropped samples of images are given in Fig. 2.6. 

Table 2.1. Datasets summary 

Parameter PCB defects GID 

Samples 1386 2000 

Width [px] 1586-2530 1000-1400 

Height [px] 2240-3056 1500-2000 

Type RGB Grey 

   

Fig. 2.6. Cropped image samples from datasets with defects highlighted. Left – PCB dataset, right – GID 

dataset 

2.4.2. Preprocessing 

This research employed a binary image classification method. To achieve this, each dataset was 

organized into two classes/directories: defective and good. Pixel-wise and region labels were not used 

during training. Given the high resolution and varying sizes of the original samples, images were 

divided into smaller, overlapping regions using a sliding window approach. The PCB and GID 

datasets were split into 224x224 pixel regions with a 2-pixel overlap. These regions were labeled as 

defective or good based on whether the defective area exceeded a 1% threshold. This threshold was 

selected considering the size and characteristics of partially visible defects. Additionally, all defect 

classes in both the PCB and GID datasets were combined into a single defect category. The 

preprocessing method is shown in Fig. 2.7. 
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Fig. 2.7. Image preprocessing technique with tiling 

The properties of processed data are given in the Table 2.2. 

Table 2.2. The properties of processed data 

Parameter PCB defects GID 

Samples 68270 77978 

Train/Validation/Test ratio 0.7/0.1/0.2 

Tile size (width x height) 224 x 224 

Tiling overlap 2 px 

Allowed defective area for good tile < 1 % (501 px) 

 

For training, random horizontal and random vertical flip augmentations were used with occurrence 

probability of 0.5. The tile size of 224x224 was chosen because of the fixed input shape of pre-trained 

vision transformer models. 

2.5. Explainability output segmentation evaluation 

2.5.1. Evaluation methodology 

Explainability evaluation using annotations from the original dataset was conducted by normalizing 

the activation map output to a range of 0 to 255 and applying a threshold with a lower intensity value 

of 127. This output label was considered only when the binary prediction exceeded 0.5, indicating 

the model predicted the image as defective. Otherwise, the output was black (defect-free), signifying 

a defect-free image. The diagram illustrating the evaluation of the explainability output is shown in 

Fig. 2.8. 
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Fig. 2.8. Explainability output evaluation diagram 

2.5.2. Segmentation metrics 

Explainability maps were evaluated using traditional segmentation metrics to quantify how well the 

maps align with the ground truth. The description of each metric is provided below. 

 

Precision: 

Measures the proportion of correctly predicted positive pixels (true positives) out of all pixels 

predicted as positive. It answers the question: "Out of the pixels that were predicted to belong to a 

certain class, how many belong to that class?" 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,  

(2.3) 

where, TP – true positives and FP – false positives. 

 

Recall: 

Measures the proportion of correctly predicted positive pixels out of all actual positive pixels in the 

ground truth. It answers the question: "Out of the pixels that belong to a certain class, how many were 

correctly predicted?" 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,  

(2.4) 

where, TP – true positives and FN – false negatives. 

 

F1 score: 

Harmonic mean of precision and recall. It provides a balance between these two metrics, making it 

useful to account for both false positives and false negatives. 

 𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  

(2.5) 

 

Jaccard Index (Intersection over union, IoU): 



35 

Quantifies the overlap between the predicted segmentation and the ground truth. It is defined as the 

size of the intersection divided by the size of the union of the predicted and ground truth sets. 

 𝐼𝑜𝑈 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
,  

(2.6) 

where A is the set of pixels in the predicted segmentation and B is the set of pixels in the ground truth 

label. 

 

Accuracy: 

Measures the proportion of correctly classified pixels (both true positives and true negatives) out of 

all pixels. It provides a general measure of how often the model is correct. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
,  

(2.7) 

where, TP – true positives, TN – true negatives, FP – false positives, FN – false negatives. 

 

Pointing game: 

The Pointing game [28] is a qualitative metric often used to evaluate the interpretability of models. 

The Pointing game metric assesses whether the peak of the explainability heatmap falls within the 

ground truth annotated area. This is typically used in scenarios where the goal is to identify key 

regions rather than pixel-level accuracy. 

 𝑃𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝐺𝑎𝑚𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑋

𝑌
,  

(2.8) 

where, X – the number of images where the peak of the explainability heatmap falls within the ground 

truth annotated area, and Y – the total number of images. 

 

2.6. Conclusions 

This section described the principles for creating the development environment. The design 

minimized boilerplate code and incorporated logging for improved experiment tracking. 

Modifications to CNN and ViT models were introduced, enabling them to output both class 

predictions and explainability map by embedding calculations into the model architecture. A dataset 

preprocessing methodology using a tiling approach was also introduced, preserving the original image 

resolution while ensuring a constant image size. Additionally, a strategy for evaluating the 

explainability output was presented. 
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3. Research results 

The experiments were conducted as follows: hyperparameter tuning was performed for each model 

across all datasets. The experimental runs that achieved the highest test accuracy were then selected 

for further analysis. An explainability output segmentation test was conducted on these selected 

models, followed by a comparison of the results. The flow diagram of experiments is shown in Fig. 

3.1. 

 

Fig. 3.1. Experiments flow diagram 

3.1. CNN and ViT training results 

For each dataset, hyperparameter search training was performed. Common hyperparameters for 

model training are given in Table 3.1. The Adam optimizer was utilized for Convolutional Neural 

Networks (CNNs) and AdamW for Vision Transformers (ViTs). The learning rate was managed by 

the ReduceLROnPlateau scheduler, which dynamically adjusts the rate based on the improvement of 

metrics during training. To enhance model accuracy and accelerate the training phase, pre-trained 

weights from ImageNet1K were utilized. The training was set to proceed for 20 epochs. 
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Table 3.1. Common hyperparameters for model training 

Parameter 
Model 

CNN ViT 

Optimizer Adam AdamW 

Learning rate (interval) [0.0001; 0.01] [0.00001; 0.0001] 

Learning rate scheduler ReduceLROnPlateau 

Pretrained weights ImageNet1K 

Epochs 20 

Hyperparameter searching trials 10 

Batch size (choice) [32; 64] 

Hyperparameter optimization was conducted using the TPE (Tree-structured Parzen Estimator) 

algorithm. During each trial, TPE fits a Gaussian Mixture Model (GMM) 𝑙(𝑥) to the set of parameter 

values associated with the best objective scores and another GMM 𝑔(𝑥) to the remaining parameter 

values. It then selects the parameter value x that maximizes the ratio 𝑙(𝑥)/𝑔(𝑥). Batch size and 

learning rate were selected as optimized hyperparameters. During 10 trial runs, optimal batch size 

and learning rate were selected based on the optimization objective: validation accuracy. 

3.1.1. Training results of the PCB dataset 

Table 3.2 shows the comparison of the models trained on the PCB dataset picking the best 

hyperparameter search trial run. From the table, it can be noticed that vision transformers require a 

much lower learning rate to converge. However, observing the batch size, it is hard to make any 

insights. The EfficientNetV2_s_d (downscaled) version achieved the best test accuracy even though 

the model has fewer parameters compared to EfficientNetV2_s. 

Table 3.2. Comparison of the models trained on PCB dataset based on loss and accuracies. 

Model Learning rate Batch size Loss 
Val accuracy, 

% 

Test accuracy, 

% 

EfficientNetV2_s 0.0028 64 0.079 98.41 98.49 

EfficientNetV2_s_d 0.0020 32 0.073 98.46 98.54 

MobileNetV3_large 0.0080 64 0.082 98.33 98.15 

MobileNetV3_large_d 0.0028 64 0.087 98.10 98.12 

DeiT_tiny_patch16_224 0.00008 64 0.088 98.13 98.26 

ViT_tiny_patch16_224 0.00007 32 0.084 98.30 98.36 

The effectiveness of hyperparameter searching can be seen from the parallel coordinates graph (Fig. 

3.2). Particularly for EfficientNetV2_s_d (downscaled version), the test accuracy ranges from 97% 

to 98.5% depending on different hyperparameters. 
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Fig. 3.2. Parallel coordinates graph showing how batch size and learning rate influences validation and test 

accuracy. 10 trial runs of EfficientNetV2_s_d (downscaled) version. 

3.1.2. Training results of the GID dataset 

Table 3.3 shows the comparison of the models trained on the GID dataset picking the best 

hyperparameter search trial run. Compared to the PCB dataset, lower batch sizes show better results. 

On this specific dataset, ViT_tiny_patch16_224 achieved the best test accuracy. The parallel 

coordinates graph for 10 trial runs of ViT_tiny_patch16_224 is given in Fig. 3.3. In this case, the test 

accuracy varies from 92.96% to 93.74%. 

Table 3.3. Comparison of the models trained on GID dataset based on loss and accuracies. 

Model Learning rate Batch size Loss 
Val accuracy, 

% 

Test accuracy, 

% 

EfficientNetV2_s 0.0020 32 0.170 94.06 93.34 

EfficientNetV2_s_d 0.0020 32 0.169 93.97 93.56 

MobileNetV3_large 0.0020 32 0.217 93.59 93.33 

MobileNetV3_large_d 0.0028 64 0.172 93.59 93.18 

DeiT_tiny_patch16_224 0.00009 32 0.177 94.04 93.49 

ViT_tiny_patch16_224 0.00008 32 0.165 94.20 93.74 
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Fig. 3.3. Parallel coordinates graph showing how batch size and learning rate influences validation and test 

accuracy. 10 trial runs of ViT_tiny_patch16_224. 

3.2. Explainability output segmentation evaluation 

This chapter presents a comparative analysis of two explainability methods, CNN Class Activation 

Mapping (CAM) and Vision Transformer (ViT) Attention Rollout, in the context of image defect 

segmentation. Evaluating these techniques on two distinct datasets, PCB and GID, aims to determine 

their efficiency in generating meaningful explainability maps. The comparison is based on how well 

the generated maps align with the ground truth segmentation labels. The best-performing models 

from the previous section were picked for analysis. The models were ranked based on their 

performance across various segmentation metrics. The model with the lowest average rank was 

deemed the best for localizing defects using explainability output. 

3.2.1. PCB dataset 

The segmentation results obtained are compared across various models considering metrics described 

in section 2.5.2. The purpose of this comparison is to determine the effectiveness of full-scale versus 

downscaled CNN architectures and ViTs explainability outputs with different fusion modes and to 

identify the best-performing model with the most accurate interpretations for the decision-making 

process. The results are given in Table 3.4. 

Full-scale vs. downscaled CNN architectures: 

The downscaled EfficientNetV2_s_d model achieves higher Precision (0.8918) and Pointing Game 

score (0.823) compared to the full-scale EfficientNetV2_s model. This suggests that the downscaled 

architecture, which provides higher resolution explainability output, is more effective for defect 

segmentation. Similarly, MobileNetV3_large_d performs better in F1 score (0.6397 vs. 0.5214), 

Recall (0.6941 vs. 0.5518), and Jaccard Index (0.4703 vs. 0.3527), confirming the advantage of the 

downscaled model. 
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Vision Transformers with different attention fusion modes: 

The comparison of DeiT (Data-efficient image Transformer) and ViT (Vision Transformer) models 

using different fusion modes (min, mean, and max) for attention heads reveals that the max fusion 

mode generally provides better performance across both model types. Among the evaluated models, 

the ViT_Tiny_patch16_224_fmax model stands out with the highest F1 score (0.5142), Jaccard Index 

(0.346), and Recall (0.3901). 

Table 3.4. Explainability output segmentation metrics on PCB test set. 

Model F1 Precision 
Jaccard 

Index 
Accuracy Recall 

Pointing 

game 

Classification 

accuracy 

EfficientNetV2_s_d 0.5482 0.8918 0.3776 0.9962 0.3958 0.823 0.9853 

EfficientNetV2_s 0.4652 0.7886 0.3031 0.9956 0.321 0.7867 0.9849 

MobileNetV3_large_d 0.6397 0.5933 0.4703 0.9954 0.6941 0.7598 0.9812 

MobileNetV3_large 0.5214 0.4943 0.3527 0.9941 0.5518 0.5701 0.9815 

DeiT_tiny_patch16_224

_fmin 
0.3262 0.9620 0.1949 0.9953 0.1964 0.7877 

0.9825 
DeiT_tiny_patch16_224

_fmean 
0.43 0.8791 0.2739 0.9956 0.2846 0.7838 

DeiT_tiny_patch16_224

_fmax 
0.5113 0.5993 0.3434 0.995 0.4458 0.7239 

ViT_tiny_patch16_224_f

min 
0.2726 0.886 0.1578 0.9949 0.1611 0.7912 

0.9836 
ViT_tiny_patch16_224_f

mean 
0.4041 0.8896 0.2532 0.9955 0.2613 0.7924 

ViT_tiny_patch16_224_f

max 
0.5142 0.7543 0.346 0.9957 0.3901 0.7724 

 

Best performing model: 

Based on Table 3.5 model ranking, the best performing CNN model is EfficientNetV2_s_d with an 

average rank of 1.67. ViT_tiny_patch16_224_fmax stands out as the best performing transformer 

model with an average rank of 2.5. Based on segmentation metrics, EfficientNetV2_s_d demonstrates 

improvements over ViT_tiny_patch16_224_fmax across all metrics. It enhances the F1 Score by 

6.61%, Precision by 18.23%, Jaccard Index by 9.14%, Accuracy by 0.05%, Recall by 1.46%, and 

Pointing game by 6.55%. These results highlight that EfficientNetV2_s_d is the best performing 

model for defect localization on PCB dataset. 
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Table 3.5. CNN and ViT models ranking based on explainability output segmentation metrics (PCB dataset). 

Model F1 Precision 
Jaccard 

Index 
Accuracy Recall 

Pointing 

game 

Average 

rank 

EfficientNetV2_s_d 2 1 2 1 3 1 1.67 

EfficientNetV2_s 4 2 4 2 4 2 3 

MobileNetV3_large_d 1 3 1 3 1 3 2 

MobileNetV3_large 3 4 3 4 2 4 3.3 

DeiT_tiny_patch16_224_fmin 5 1 5 3 5 2 3.5 

DeiT_tiny_patch16_224_fmean 3 2 3 2 3 4 2.83 

DeiT_tiny_patch16_224_fmax 2 6 2 5 1 6 3.67 

ViT_tiny_patch16_224_fmin 6 3 6 6 6 3 5 

ViT_tiny_patch16_224_fmean 4 4 4 4 4 1 3.5 

ViT_tiny_patch16_224_fmax 1 5 1 1 2 5 2.5 

 

The heatmaps in Fig. 3.4 reveal that DeiT and ViT focus their attention more precisely on the 

defective areas, even when the labels encompass significant non-defective regions. In contrast, CNNs 

display more dispersed attention, occasionally missing finer details. Additionally, the figure suggests 

that the lower performance metrics for ViTs could be attributed to rough labeling, where the labels 

include a substantial amount of unnecessary background. 

 

 

Fig. 3.4. Comparison of explainability outputs (PCB dataset) 
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3.2.2. GID dataset 

Similarly, segmentation metrics for different models trained with the GID dataset are compared. The 

results are given in Table 3.6. 

Full-Scale vs. Downscaled CNN Architectures: 

The downscaled EfficientNetV2_s_d model demonstrates the highest Precision (0.5144) and Pointing 

Game score (0.5827) when compared to its full-scale counterpart. MobileNetV3_large achieves better 

results in F1 score (0.254 vs. 0.2003), Jaccard Index (0.1455 vs. 0.1113), and Recall (0.2183 vs. 

0.1338) compared to the downscaled version. 

Vision Transformers with different attention fusion modes: 

The comparison of DeiT and ViT models employing different fusion modes for attention heads yields 

varied results. The DeiT_tiny_fmin model excels in Precision (0.3811) and Pointing Game score 

(0.4603). Meanwhile, among the ViT models, the ViT_tiny_patch16_224_fmean model stands out 

with the highest F1 score (0.2223). 

Table 3.6. Explainability output segmentation metrics on GID test set. 

Model F1 Precision 
Jaccard 

Index 
Accuracy Recall 

Pointing 

game 

Classification 

accuracy 

EfficientNetV2_s_d 0.1364 0.5144 0.0732 0.9812 0.0787 0.5827 0.9356 

EfficientNetV2_s 0.2171 0.3103 0.1218 0.9773 0.1669 0.3411 0.9334 

MobileNetV3_large_d 0.2003 0.398 0.1113 0.9798 0.1338 0.5419 0.9318 

MobileNetV3_large 0.2540 0.3038 0.1455 0.9758 0.2183 0.5228 0.9332 

DeiT_tiny_patch16_224

_fmin 
0.2123 0.3811 0.1188 0.9794 0.1472 0.4603 

0.9349 
DeiT_tiny_patch16_224

_fmean 
0.1749 0.1889 0.0958 0.971 0.1628 0.2516 

DeiT_tiny_patch16_224

_fmax 
0.1333 0.1354 0.0715 0.9678 0.1314 0.1888 

ViT_tiny_patch16_224_f

min 
0.1264 0.3539 0.0675 0.9799 0.0769 0.4524 

0.9373 
ViT_tiny_patch16_224_f

mean 
0.2223 0.2784 0.1251 0.9756 0.1851 0.4043 

ViT_tiny_patch16_224_f

max 
0.2035 0.1865 0.1133 0.9669 0.2239 0.2995 

 

Best performing model: 

Based on Table 3.7 model ranking, the best performing CNN model is MobileNetV3_large with an 

average rank of 2.33. DeiT_tiny_patch16_224_fmin stand out as the best performing transformer 

model with an average rank of 2. Based on segmentation metrics, MobileNetV3_large shows notable 

improvements over DeiT_tiny_patch16_fmin in several metrics. It enhances the F1 Score by 19.63%, 

Jaccard Index by 22.48%, Recall by 48.33%, and the Pointing game by 13.57%. These results 

highlight that MobileNetV3_large is the best performing model for defect localization on GID 

dataset. 
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Table 3.7. CNN and ViT models ranking based on explainability output segmentation metrics (GID dataset). 

Model F1 Precision 
Jaccard 

Index 
Accuracy Recall 

Pointing 

game 

Average 

rank 

EfficientNetV2_s_d 4 1 4 1 4 1 2.5 

EfficientNetV2_s 2 3 2 3 2 4 2.67 

MobileNetV3_large_d 3 2 3 2 3 2 2.5 

MobileNetV3_large 1 4 1 4 1 3 2.33 

DeiT_tiny_patch16_224_fmin 2 1 2 2 4 1 2 

DeiT_tiny_patch16_224_fmean 4 4 4 4 3 5 4 

DeiT_tiny_patch16_224_fmax 5 6 5 6 5 6 5.5 

ViT_tiny_patch16_224_fmin 6 2 6 1 6 2 3.83 

ViT_tiny_patch16_224_fmean 1 3 1 3 2 3 2.17 

ViT_tiny_patch16_224_fmax 3 5 3 5 1 4 3.5 

 

The heatmaps in Fig. 3.5 shows the differences in explainability output among different models. 

 

Fig. 3.5. Comparison of explainability outputs (GID dataset) 

3.3. The effect of CNN downscaling on CAM output 

Taking one feature extraction stage from CNNs (MobileNetV3 and EfficientNetV2) increases the 

explainability output resolution by two times, from 7x7 pixels to 14x14 pixels. This output is then 

upscaled to the original input resolution. Figures Fig. 3.6 and Fig. 3.8 showcase the comparison of 

segmentation metrics between the full and downscaled architectures. A substantial increase in all 
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metrics with the downscaled version can be observed for the PCB dataset (Fig. 3.6). For the GID 

dataset (Fig. 3.8), the downscaled versions perform better in terms of precision and the pointing game 

metric. Fig. 3.7 and Fig. 3.9 illustrate the effect of downscaling on the CAM output.  

 

Fig. 3.6. Comparison of full vs downscaled model performance (PCB dataset) 

 

Fig. 3.7. CNN CAM comparison considering full and downscale architectures (PCB dataset) 
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Fig. 3.8. Comparison of full vs downscaled model performance (GID dataset) 

 

Fig. 3.9. CNN CAM comparison considering full and downscale architectures (GID dataset) 

3.4. The effect of ViT head fusion and discard ratio 

Analyzing the results from the heatmaps (Fig. 3.10) generated for the different performance metrics 

across fusion modes and discard ratios, some insights could be observed. 

Impact of fusion modes: 

Min fusion mode: this mode selects the minimum attention values across different heads. Lower 

performance metrics in this mode suggest that the least attended areas are not always crucial for 
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accurate explainability. This could indicate that the areas where attention is minimally focused might 

not be essential for understanding the model's decisions or might be missing key features. 

Mean fusion mode: averages attention across heads, potentially smoothing out the specific peaks of 

attention that highlight critical features. Moderate performance in this mode suggests that while 

averaging provides a more comprehensive view than the minimum, it might dilute the impact of 

highly attended areas that are more relevant for pinpointing the model's focus and reasoning. 

Max fusion mode: selecting the maximum attention values across heads for each region emphasizes 

the areas where the model pays the most attention. The high performance observed here underscores 

the importance of these highly focused areas in creating effective explainability outputs. The 'max' 

mode likely captures the most influential features or decision points in the input, aligning well with 

the objectives of explainability to reveal what the model considers most important. 

Impact of discard ratio: 

Generally, improves performance in the 'max' fusion mode, suggesting that eliminating the least 

attended regions helps to clarify and enhance the visibility of crucial decision-making areas. This 

supports a focus on quality (high attention) over quantity (all attention values). In the min and mean 

modes, the impact is mixed, indicating that in these modes, some of the discarded low-attention areas 

might still hold value for a fuller understanding or might contribute necessary context that supports 

the overall interpretability. 

Model comparison (DeiT vs VIT): 

ViT often performs better, especially in the max mode. DeiT shows less sensitivity to changes in 

discard ratios, possibly indicating a more uniform distribution of attention across heads. 

Metric-specific observations: 

Precision and Jaccard Index: these metrics improve notably in the max mode with higher discard 

ratios, reinforcing the value of focusing on areas with the highest attention as these areas are most 

relevant to the model’s decision-making process. 

Recall and Pointing Game: the variability in these metrics suggests a trade-off between achieving 

comprehensive coverage (recall) and focusing on the most critical areas (precision). High discard 

ratios in 'max' mode might miss some relevant but less attended features, impacting recall and 

pointing accuracy. 
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Fig. 3.10. Performance metrics across fusion modes and discard ratios for vision transformer models (PCB 

dataset) 

The visual outputs from the DeiT model (Fig. 3.11) demonstrate the impact of different fusion modes 

(min, mean, max) with a 0.8 discard ratio on the model's attention focus and segmentation results. 

The min mode displays a focused and narrow heatmap, indicating a conservative attention strategy 

that precisely targets key areas. The mean mode provides a similar attention spread. Conversely, the 

max mode shows the most extensive heatmap coverage, highlighting multiple potential areas. These 

differences illustrate how each fusion mode affects the model's interpretative focus and can guide the 

selection of fusion strategies for specific applications requiring varying levels of detail and coverage. 

 



48 

 

Fig. 3.11. Comparison of DeiT_tiny model explainability output with different fusion modes and 0.8 discard 

ratio 

Fig. 3.12 displays segmentation results from a DeiT model using a mean fusion mode with varying 

discard ratios (0.2, 0.6, 0.8). As the discard ratio increases, the focus of the model's explainability 

map narrows, highlighting areas that receive consistently higher attention across the heads. Initially, 

with a low discard ratio of 0.2, the heatmap is more dispersed, showing broad areas of attention. 

 

 

Fig. 3.12. Comparison of DeiT_tiny model explainability output with different discard ratios and mean 

fusion mode 
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3.5. Conclusions 

The main observations from the study: 

– The EfficientNetV2_s_d (downscaled) model achieved the highest test accuracy of 98.54% 

on the PCB dataset. Hyperparameter tuning improved the test accuracy from 97% to 98.5%. 

– The ViT_tiny_patch16_224 model achieved the highest test accuracy of 93.74% on the GID 

dataset. Hyperparameter tuning improved the test accuracy from 92.96% to 93.74%. 

– Vision transformer models require a significantly lower learning rate to converge. The optimal 

learning rate for the EfficientNetV2_s_d model is 0.002, while for the ViT_tiny_patch16_224 

model, it is 0.00008. 

– Regarding explainability and output segmentation metrics, in 3 out of 4 cases, downscaled 

CNN models with higher output resolution performed better. An average increase of 32% in 

precision and 27% in the pointing game metric was observed. 

– Introducing fusion modes and discard ratios in the explainability maps of vision transformers 

enhances their versatility and adaptability for specific tasks. Max fusion achieves better F1 

score, Jaccard index, and recall, while min and mean fusions perform better in terms of 

precision, accuracy, and pointing game metrics. As the discard ratio increases, the model's 

explainability map narrows its focus, highlighting areas that consistently receive higher 

attention. 

– Considering different architectures, CNNs explainability output is more precise. On PCB 

dataset EfficientNetV2_s_d outperformed ViT_tiny_patch16_224_fmax, improving the F1 

Score by 6.61%, Precision by 18.23%, Jaccard Index by 9.14%, Recall by 1.46%, and Pointing 

game metric by 6.55%. On GID dataset MobileNetV3_large outperformed 

DeiT_tiny_patch16_fmin, improving the F1 Score by 19.63%, Jaccard Index by 22.48%, 

Recall by 48.33%, and the Pointing Game metric by 13.57%. 



50 

Conclusions 

1. Literature review of efficient and lightweight CNN and ViT models was conducted. For further 

analysis, EfficientNetV2_s and MobileNetV3_large were chosen as convolutional neural 

networks (CNNs), while ViT_tiny and DeiT_tiny were selected as vision transformers (ViTs). 

Different architectures explainability methods were reviewed and their applications in the 

industry demonstrated the interest of explainability methods utilization for defect localization, 

validating the relevance of this research. 

2. The EfficientNetV2_s_d (downscaled) model achieved the highest test accuracy of 98.54% on 

the PCB dataset, with hyperparameter tuning increasing the accuracy from 97% to 98.54%. 

Similarly, the ViT_tiny_patch16_224 model achieved the highest test accuracy of 93.74% on the 

GID dataset, with hyperparameter tuning enhancing the accuracy from 92.96% to 93.74%. 

3. Modifications to CNN and ViT models were introduced. CAM and attention rollout techniques 

were optimized to generate outputs (class and explainability map) in a single forward pass without 

significantly increasing model complexity, requiring only a few additional matrix multiplications. 

4. Considering different architectures, CNNs stand out as better explainable models. On PCB dataset 

EfficientNetV2_s_d outperformed ViT_tiny_patch16_224_fmax, improving the F1 Score by 

6.61%, Precision by 18.23%, Jaccard Index by 9.14%, Recall by 1.46%, and Pointing Game 

metric by 6.55%. On GID dataset MobileNetV3_large outperformed DeiT_tiny_patch16_fmin, 

improving the F1 Score by 19.63%, Jaccard Index by 22.48%, Recall by 48.33%, and the Pointing 

Game metric by 13.57%. 
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