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Summary 

Deep neural networks are a group of mathematical methods widely applicable in practice. The field 

of medicine is not an exception, especially medical diagnostics, where medical digital images are 

used for pathology diagnosis. However, this group of methods has a key flaw, which stops its wider 

adoptability in practice. That is being incapable of modelling the uncertainty of the forecast, which 

reduces the reliability of the method in practical settings. 

Gaussian processes are non-parametrical models, which are capable of modelling complex 

relationships and have the capability to evaluate the forecast uncertainties. In this paper we attempt 

to utilize these properties of Gaussian processes in modelling deep features, which are generated by 

convolutional neural networks, and modelling probability uncertainties, which arise from the 

stochastic nature of the data. 

The research object of this paper is digital eye fundus images, which are used for diagnostic of various 

pathologies. We demonstrate that the transition from the convolutional neural network to the 

Gaussian process does not decrease the accuracy of the diagnosis and allows us to evaluate the 

reliability of the diagnosis by using the uncertainty measures to identify difficult cases. These cases 

can then be referred to a specialist, rather than proceeding with automated diagnostics. 
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Santrauka 

Gilieji neuroniniai tinklai yra plačiai praktikoje taikoma matematinių metodų grupė. Ne išimtis ir 

medicina – ypatingai diagnostikos sritis, kuomet naudojami medicininiai skaitmeniniai vaizdai 

įvairioms patologijoms diagnozuoti. Tačiau ši metodų grupė turi vieną esminį trūkumą, kuris stabdo 

platesnį panaudojamumą medicinos praktikoje. Tai negebėjimas tinkamai modeliuoti prognozės 

neapibrėžtumo, o tai mažina metodo patikimumą praktiniuose taikymuose. 

Gauso atsitiktinių procesų grupė yra neparametrinis modelis, įgalinantis modeliuoti sudėtingus 

sąryšius ir tuo pačiu suteikiantis galimybę apskaičiuoti prognozių neapibrėžtumus. Šiame darbe 

siekiama išnaudoti šias Gauso atsitiktinių procesų savybes modeliuojant giliuosius požymius, 

generuojamus sąsūkų neuroninių tinklų, ir tikimybių neapibrėžtumus, kylančius dėl stochastinės 

duomenų prigimties. 

Tyrimo objektas yra akies dugno skaitmeniniai vaizdai, iš kurių siekiama diagnozuoti įvairias 

patologijas. Tyrimu pademonstruojama, kad perėjimas nuo giliojo neuroninio tinklo į Gauso 

atsitiktinius procesus ne tik, kad nesumažina diagnozės tikslumo, bet padeda įvertinti diagnozės 

patikimumą ta prasme, kad gaunami prognozės neapibrėžtumo įverčiai gali būti panaudojami 

identifikuoti sunkiai diagnozuojamus atvejus ir juos referuojant gydytojui, vietoje to, kad vykdyti 

automatinę diagnostiką.



6 

Table of contents 

List of figures ..................................................................................................................................... 7 

List of abbreviations .......................................................................................................................... 9 

Introduction ..................................................................................................................................... 10 

1. Literature analysis ..................................................................................................................... 11 

1.1. Deep learning for eye pathology diagnostics ........................................................................... 11 

1.2. Uncertainty estimation for medical image classification ......................................................... 12 

1.3. Gaussian process and its derived frameworks’ classification .................................................. 13 

1.4. Gaussian process multi-label classification .............................................................................. 17 

1.5. Motivation ................................................................................................................................ 19 

2. Data and methodology .............................................................................................................. 20 

2.1. Data ........................................................................................................................................... 20 

2.2. Methods .................................................................................................................................... 22 

2.2.1. Overall methodology and workflow ...................................................................................... 22 

2.2.2. Convolutional neural network ............................................................................................... 22 

2.2.3. Gaussian process ................................................................................................................... 23 

2.3. Experiment methodology ......................................................................................................... 26 

2.3.1. Convolutional neural network application ............................................................................ 26 

2.3.2. Gaussian process application ................................................................................................. 28 

3. Results and discussion ............................................................................................................... 30 

3.1. Convolutional neural network results ....................................................................................... 30 

3.2. Gaussian process results ........................................................................................................... 31 

3.3. Gaussian process probability uncertainty utilization ................................................................ 34 

Conclusions ...................................................................................................................................... 42 

List of references .............................................................................................................................. 43 

 

  



7 

List of figures 

Fig. 1. Class activation maps on eye fundus images, taken from [5] ................................................ 11 

Fig. 2. The experiment model setup, taken from [16] ....................................................................... 13 

Fig. 3. EyePACS, IDRiD, RFMiD and dermoscopic (left to right) image dataset samples and their 

preprocessed counterparts, taken from [17] ...................................................................................... 16 

Fig. 4. Visual scheme of the MIML framework, taken from [28] .................................................... 18 

Fig. 5. Image samples of MH (a), DN (b), CSR (c), and CRS (d), along with their visual charateristics, 

taken from [29] .................................................................................................................................. 20 

Fig. 6. Label distribution in each subset ............................................................................................ 21 

Fig. 7. Examples of the same image with its raw (a), preprocessed (b) and augmented (c) variants 21 

Fig. 8. The workflow of obtaining GP ensemble probability estimates from image data, EfficientNet 

image taken from [30], Multi-output SVGP image taken from [21] ................................................. 22 

Fig. 9. Baseline EfficientNet architecture scaling method results, taken from [19] ......................... 23 

Fig. 10. GP posterior and its variance (blue), adapted from [33] ...................................................... 25 

Fig. 11. Visual scheme of relation between marginal likelihood and ELBO .................................... 26 

Fig. 12. CNN architecture example for EfficientNet-B0 .................................................................. 27 

Fig. 13. Testing AUC of each label by input handling tactic, averaged over EfficientNetB0-B6 .... 30 

Fig. 14. Testing AUC of each architecture variant using augmented inputs, averaged over labels .. 30 

Fig. 15. Test set receiver operating characteristic curves of the augmented input EfficientNet-B1 for 

each label ........................................................................................................................................... 31 

Fig. 16. Total deep feature explained variance by number of principal components ....................... 32 

Fig. 17. Top performing setups of each kernel variant ..................................................................... 33 

Fig. 18. Test set receiver operating characteristic curves for 1000 GP ensemble using constant mean, 

composite ARD kernel and raw image deep features ........................................................................ 34 

Fig. 19. MH label AUC, flagged sample number and CNN error number dependency on probability 

range width ........................................................................................................................................ 35 

Fig. 20. Image with MH, its CNN/GP predictions, and GP prediction distribution. Whiskers mark 

min/max values .................................................................................................................................. 36 

Fig. 21. Sample, wrongfully labelled with MH by CNN, its CNN/GP predictions, and GP prediction 

distribution. Whiskers mark min/max values .................................................................................... 36 

Fig. 22. DN label AUC, flagged sample number and CNN error number dependency on probability 

range width ........................................................................................................................................ 37 

Fig. 23. Sample with DN, its CNN/GP predictions, and GP prediction distribution. Whiskers mark 

min/max values .................................................................................................................................. 37 

Fig. 24. Sample, wrongfully labelled with DN by both models, its CNN/GP predictions, and GP 

prediction distribution. Whiskers mark min/max values ................................................................... 38 

Fig. 25. CSR label AUC, flagged sample number and CNN error number dependency on probability 

range width ........................................................................................................................................ 38 

Fig. 26. Sample with false positive CSR, its CNN/GP predictions, and GP prediction distribution. 

Whiskers mark min/max values ........................................................................................................ 39 

Fig. 27. Sample with false positive CSR, its CNN/GP predictions, and GP prediction distribution. 

Whiskers mark min/max values ........................................................................................................ 39 

Fig. 28. CRS label AUC, flagged sample number and CNN error number dependency on probability 

range width ........................................................................................................................................ 40 



8 

Fig. 29. Sample with false positive CRS, its CNN/GP predictions, and GP prediction distribution. 

Whiskers mark min/max values ........................................................................................................ 40 

Fig. 30. Sample with false positive CRS, its CNN/GP predictions, and GP prediction distribution. 

Whiskers mark min/max values ........................................................................................................ 41 

 

  



9 

List of abbreviations 

ARD – automatic relevance determination 

CNN – convolutional neural network 

CRS – Chorioretinitis 

CSR – central serous retinopathy 

DGP – deep Gaussian process 

DN – drusen 

DNN – deep neural network 

DR – diabetic retinopathy 

ELBO – evidence lower bound 

FLOPS – floating-point operations per second 

GP – Gaussian process 

GPDNN – Gaussian process hybrid deep neural networks 

IDRiD – Indian Diabetic Retinopathy Image Dataset 

KL – Kullback-Leibler divergence 

MH – media haze 

MIML – multi-instance multi-label 

NN – neural network 

PCA – principal component analysis 

PSF – point spread function 

RBF – radial basis function 

RFMiD – Retinal Fundus Multi-disease Image Dataset 

ROI – region of interest 

SVGP – sparse variational Gaussian process 

SVM – support vector machines 



10 

Introduction 

Convolutional neural networks (CNN) for image classification have found their application in various 

fields. However, they are not ideal learners as their learned representation of knowledge of a selected 

domain is limited, and errors, even as few and far between, are unavoidable. In certain fields, for 

example medicine, these errors can carry serious consequences. Therefore, the modelled results 

require expert-based validation, for the models to have a wider adoption in medicine. 

This thesis demonstrates the application of Gaussian processes (GP) for CNN deep feature modelling. 

The use of GPs allows estimation of forecasted probability uncertainty, which allows to evaluate the 

confidence of the model’s performed forecast. One of the possible utilizations of probability 

uncertainty is to use it as a secondary tool to identify cases for which a forecast result cannot be 

trusted, and then to refer the case to a medical professional. This would help to reduce the workload 

of already strained medical professionals without compromising the accuracy of diagnostics. To 

achieve this, the following aim and tasks were formulated: 

The aim is to create a hybrid method based on deep CNN architecture and GP to enable efficient 

visual feature learning and uncertainty estimation for eye pathology diagnostics. 

Tasks: 

1. Review of literature of Gaussian process applications to the medical domain, focusing on eye 

pathology diagnostics; 

2. Selection of a convolutional neural network architecture for learning deep visual features within 

the context of multi-label eye fundus pathology classification task; 

3. Gaussian process kernel design for multi-label classification and uncertainty estimation of eye 

pathologies using variational formulation of multi-output GPs and minimization of the evidence 

lower bound (ELBO) function; 

4. Investigation of possible strategies for using uncertainty estimates of eye pathology probabilities 

within the medical decision-making process. 
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1. Literature analysis 

1.1. Deep learning for eye pathology diagnostics 

As deep learning adoption has risen over the years, research into medical applications has too. One 

of the most well-researched fields of application in medicine would be ophthalmology. The 

application of CNNs to medical eye image data has been researched for numerous eye pathologies, 

e.g., diabetic retinopathy (DR), glaucoma, age-related macular degeneration, and retinopathy of 

prematurity [1]: 

– [2] has used an Inception-V3 ensemble for referable DR diagnostics, achieving 0.99 AUC 

with two datasets; 

– [3] has used a VGG-19 ensemble to detect referable DR, glaucoma, and age-related macular 

degeneration with stellar performance over 11 datasets; 

– [4] has tested numerous CNN architectures for age-related macular degeneration diagnostic; 

– [5] has extended the framework past a CNN with an explainable deep learning solution for 

DR, providing a heatmap overlay for the input image with global average pooling class 

activation maps (Fig. 1), providing insights regarding which regions of the image have made 

the largest effect for the forecast. Furthermore, the classifier is expanded past the CNN to 

gradient boosted random trees, which take the deep features, extracted from the CNN, along 

with some extra metadata as input, to elevate the performance of the classifier.  

– An automatic DR detection system was proposed in [6], which performs binary detection with 

an addition of identifying potential signs of it in the image. The system employs a large 

ResNet architecture, pretrained with the COCO dataset. 

Even though there are numerous proposed automated diagnostics solutions for eye pathologies, most 

of them do not have interpretable results. Out of aforementioned papers, [5, 6] propose a framework 

that allows a medical practitioner to validate the results provided by the system. However, one main 

drawback of this approach is that, ideally, each case would still require a secondary review from a 

human, as there is no measure of confidence provided for the obtained forecasts, apart from the 

forecasted probability itself. For this reason, the field of deep learning has researched a way to 

estimate the uncertainty of model results. 

 

Fig. 1. Class activation maps on eye fundus images, taken from [5] 
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1.2. Uncertainty estimation for medical image classification 

For a framework using a CNN or any sort of variation of it, one of the most common uncertainty 

estimation methods would be Monte Carlo dropout. The use of a dropout layer allows to introduce 

variability in the model’s predictions by “disabling” neurons with a predefined probability and obtain 

a predictive distribution. Another alternative for uncertainty estimation would be conformal 

prediction, which is applicable to a wider range of models, as it is a statistical data-based method. 

Conformal prediction is a statistical evaluation of the obtained forecasts, as conformal classifiers 

return the forecast’s 𝑝-values by ranking based on a decided nonconformity measure by performing 

case tests against samples of the training set [7, 8]. Apart from these methods, it is also possible to 

quantify uncertainty via simple model ensembling or test-time data augmentation [8]. The latter 

utilizes random image augmentations to create variability in a single sample to obtain numerous 

different probability estimates.  

Applications of Bayesian neural networks are also among the methods for obtaining uncertainty 

estimates, as it replaces the single fixed value of a network weight to a distribution. This theoretically 

draws the model close to an infinite ensemble of neural networks (NN), which allow obtaining a 

distribution of predicted probabilities. However, one of the main drawbacks of a Bayesian NN is the 

extensive changes required to the whole framework for it to be applicable to image data, with the 

additional increase of computational cost [8].  

More concrete examples of uncertainty estimation in eye pathology diagnostics using CNNs would 

be: 

– [9] grading DR severity on retinal images and quantifying prediction uncertainty by 

calculating Cohen’s 𝜅 value for model predictions at threshold levels of uncertainty, which 

are calculated by variance in the grade probability [7]; 

– [10] diagnosing DR by eye fundus images and quantifying prediction uncertainty by 

calculating variance of predicted probabilities obtained from test-time data augmentations [7]; 

– [11] diagnosing DR by eye fundus images and quantifying prediction uncertainty by drawing 

Monte Carlo samples from the approximate predictive posterior and using its standard 

deviation to represent uncertainty [7]; 

– [12] classifying diabetic macular edema from optical cohere tomography images with the 

addition of recurrent NNs and quantifying prediction uncertainty by mean and standard 

deviation of probabilistic predictions yielded from ensemble of models [7]; 

– [13] detecting anomalies in retinal optical coherence tomography images with the addition of 

a Bayesian U-Net and quantifying prediction uncertainty by passing samples through the 

model multiple times, dropping weights each run, and calculating variance across the runs [7]. 

For all the aforementioned tactics to obtain quantification of prediction uncertainty (apart from 

Bayesian NNs) a single unifying property would be that they are surrogate methods, i.e., the 

probabilistic behaviour does not rise directly from the model which produces the predictions, but 

from a secondary modification, that introduces variability. In this regard, a Bayesian NN is the only 

NN framework that models uncertainty which rises from the model’s probabilistic nature. However, 

as their application to image data is difficult and computational costs are high, alternative probabilistic 

frameworks are explored in this thesis. 



13 

1.3. Gaussian process and its derived frameworks’ classification 

The neuroimaging community has shown interest in multivariate pattern analysis and machine 

learning, in this case specifically to learn about the capabilities of GP to perform patient stratification 

from functional-connectivity brain patterns obtained at a resting state. The paper [14] from 2015 tests 

the GP logistic regression classifier with linear and non-linear covariance functions. The publication 

explores this classifier instead of support vector machines (SVM), since “being a probabilistic model, 

(it) provides a principled estimate of the probability of class membership. Class probability estimates 

are a measure of the confidence the model has in its predictions, such a confidence score may be 

extremely useful in the clinical setting.” [14] 

A rather well-researched field of machine learning application in medicine is DR detection and 

grading, popularized by the Kaggle competition [15]. Paper [16] explores the DR grading task with 

a GP twist. DR, a leading cause of blindness in developed countries, is a medical condition in which 

damage occurs to the retina due to diabetes mellitus. Most detection solutions rely on CNNs due to 

their edge in performance when working with image data, however the very best solutions do not rely 

solely on them, e.g., the Kaggle competition winner used random forests to weigh the CNN 

probabilities along some meta-data to improve the results [17]. 

[16] is not an exception to this trend, as here the authors describe the solution as a three-phase process 

of 1) preprocessing the image, 2) using the CNN as a feature extractor and 3) using the GP as the 

forecaster with an uncertainty estimation (Fig. 2). The dataset was filtered to exclude “very dark 

images where the circular (ROI) is not identified” [16], images were cropped to eliminate excess 

black margins, resized to 299×299 px, and augmented by applying horizontal reflection, brightness, 

saturation, hue, and contrast changes. Deep feature extraction was performed using an Inception-V3 

model with pretrained weights of the ImageNet dataset [18] and fine-tuned using the Kaggle 

competition DR dataset, using binary cross-entropy loss, RMSprop optimizer and a decaying learning 

rate policy. The model architecture ends with a global average pooling layer, which results in a 2048 

feature vector per image. An interesting choice was made to train the CNN model for a binary 

classification task of differentiating between non-referable and referable DR, even though the final 

task for the GP is scoring the severity of DR on a five-grade scale. Perhaps that strengthens the notion, 

that ultimately the function of the CNN is of a feature extractor, and so its weights should only be 

fine-tuned for the eye fundus images, rather than training it to be scorer itself, where the responsibility 

of doing so falls on the GP model. The GP is equipped with a radial basis function (RBF) kernel and, 

most notably, is set up not as a classification, but as a regression model for the grading from 0 to 5 of 

the DR scale – the output of this GP is a continuous number. 

 

Fig. 2. The experiment model setup, taken from [16] 
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The paper reports results of considerable performance, one that surpasses of simply using the NN, 

however they are not comparable to any other contemporaries that use the same dataset because of 

their unorthodox further “binarization” of the GP results. Furthermore, for a paper that notes the GPs 

capability of uncertainty quantification, it is rather underutilized by focusing only on the result of the 

regression and disregarding the possibility to explore predictive uncertainty of the classifier. 

The proposed hybrid model of [16] could be reinterpreted as just a GP model that uses extensively 

preprocessed data, and it so happens that for that instance a CNN was chosen to transform and reduce 

the dimensionality of the data, as opposed to principal component analysis (PCA) or another method. 

However, “true” hybrid frameworks have also been proposed, such as [19]. The notion of using a 

deep neural network (DNN) as a feature extraction tool and then leveraging these features with a GP 

or any other model is not groundbreaking. However, most of these hybrid solutions are set up as 

separate stages, whereas in [19] it is trained end-to-end as a single model with a consistent 

architecture. The structure their GP hybrid DNNs (GPDNN) use the libraries of TensorFlow [20] and 

GPflow [21], which itself is based on the former, therefore the implementation is rather fluid from a 

package, dependency, and algorithm cohesion standpoint, as the libraries allow to consistently back-

propagate through all the model parts, Cholesky decomposition (for matrix inversion) of GP part 

included, by using training batches. The NN aspect of the model is covered by a CNN framework and 

the GP aspect of the model is executed by a sparse variational GP (SVGP) framework. 

The GPDNNs of [19] are tested with classification tasks, exposure to adversarial examples and 

domain transfer to showcase their capabilities and robustness. Image classification results report a 

consistent performance increase over base CNNs or their modified counterparts, which have extra 

hidden units before the top layer, to give more hyperparameters to the networks and perform a fairer 

comparison. What is worth noting is that, again, the difference between performance decreases as 

more data becomes available to the classifiers. Another unexpected behavior is that when using a 

different image dataset and a larger CNN base, the DenseNet architecture, the hybrid network failed 

to start successfully fitting the data from random weight initializations, therefore a workaround of 

pretraining the base was required.  

After exploring how the hybrid framework responds to non-targeted adversarial examples generated 

by the fast gradient sign method, it was found that their error rate increases much slower and on a 

lesser scale than CNN counterparts when adversarial perturbations are increased. Furthermore, for 

large perturbations, which translate to unknown regions in the data/feature space, the model holds 

reserved confidence when making predictions. For Carlini and Wagner L2 optimization attack 

method, “the hybrid model appears more robust, with a greater number of attack failures and larger 

perturbations needed for successful attacks” [19]. After testing the GPDNN behavior in a domain 

shift setting, it became apparent that they underperform against CNNs in terms of accuracy (although 

not extremely, with a 0.14 difference in the most difficult dataset change setting), however, as with 

adversarial examples, hybrid models begin to lean more towards the undecisive likelihoods, showing 

their domain shift awareness. Overall, this hybrid combination leverages the strong representational 

ability of CNNs and the domain-awareness and robustness of a GP resulting in a competent model 

with comparable performance and strong uncertainty estimation, which has great potential for 

applications in real life, such as in fields of medicine or autonomous driving. 

The authors of [22] have developed an analogous approach of an end-to-end trainable solution of a 

CNN and GP and applied it to DR data with the most practical training and testing scenario for the 
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medical background of the task. The hybrid approach, developed by [23], uses a GP layer for the 

network top, which is operating on the CNN’s deep feature space. The number of GPs can be chosen, 

each of which take a subset of the CNN’s activations as input. The model’s likelihood is computed 

by passing the outputs of the GPs through a final layer, resembling an additive operation over the 

GPs, and applying the softmax function. This approach also leverages stochastic variational inference 

and sparse approximation for GPs with the addition of newly derived efficient and scalable sampling 

scheme for the approximation of ELBO. As with the previous proposed hybrid approach, here the 

CNN and GP structure is also jointly optimized via backpropagation and minibatch training. This 

model, as [23] call it stochastic variational deep kernel learning, is reportedly an improvement over 

standard NNs and the “separated” CNN-GP hybrid approaches performance-wise. Although it is not 

a universal upgrade from a separated structure, as being conjoined to and trained by the algorithms 

of a CNN allows them to be prone to overfitting, whereas an isolated GP is not, but it can be mitigated 

by applying Monte-Carlo dropout or weight regularization to the NN. 

[22] first separately pretrain the CNN, then, after freezing the weights, joined with the GP layer, and 

trained to fine tune the variational parameters. Afterwards the full hybrid model is trained end-to-end. 

All models use the Adam optimizer [24] with a plateau scheduler, which halves the learning rate after 

10 epochs of no improvement, and an early stopping tactic which interrupts the fitting after 20 plateau 

epochs. Several deep kernel learning application variations are prepared – ones that only encompass 

the base description, modifications employing Monte-Carlo dropout, spectral norm for each 

convolution group and interchanging the original Swish activation function with its Lipschitz 

alternative, or collections of models as deep ensembles. 

For in-distribution data, a union of two popular DR datasets are used – the Kaggle competition/ 

EyePACS dataset and the Indian Diabetic Retinopathy Image Dataset (IDRiD), both consisting of 

ophthalmoscopic eye fundus images annotated for 5 classes of DR severity. However, only 

EyePACS’ public data split is used for training, and the private split is kept for testing. The training 

data oversamples minority classes and augments all images by random horizontal and vertical 

flipping, rotation, shifts along both axes and scaling. For near-out-of-distribution data, the Retinal 

Fundus Multi-disease Image Dataset (RFMiD) [25] is used, which, in addition to DR, extends the set 

to a multitude of other eye diseases. Finally, for out-of-distribution data a medical dataset of 

dermoscopic images is used, which comprises of somewhat similar features (Fig. 3). The in-

distribution data is preprocessed by cropping to a square containing the retinal disc, and out-of-

distribution data is padded to a square. All images are downsized to 224×224 px and the local color 

mean is removed using a Gaussian filter, which is a tactic borrowed from the Kaggle competition 

winner [17]. 
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The models are tested for DR severity grading and referable DR detection tasks. In-distribution 

performance is evaluated with AUC, accuracy, negative log-likelihood and Cohen’s kappa. The 

uncertainty is evaluated with expected calibration error and area under the accuracy rejection curve. 

The first uncertainty measure summarizes the model’s confidence with a perfectly calibrated one. 

The second measure imitates the real-life application of the model, where high-uncertainty samples 

are returned for a second opinion. The model’s performance measures, when compared to the 

baseline’s, are tested for significant differences with analysis of variance, t-tests and the Wilcoxon 

signed-rank test. 

This extensive research culminates with results that support the superiority of deep kernel learning. 

The deep ensembles that use the further-modified models are of greater performance, however their 

uncertainty evaluations are worse than the base model’s for the DR grading task. The base model 

struggles with near-out-of-distribution samples, it is understandable given the nature of the dataset 

and the representative nature of the CNN, but it is not all too disappointing, as for fully-out-of-

distribution data, the model performs significantly better, although this comparison is far from a 

practical scenario given the data.  

On the other hand, the deep ensemble that utilizes all possible modifications is reported to have an 

astonishing performance, being capable of modelling the uncertainty at a near-perfect level of 

performance for both out-of-distribution datasets. As for the comparison against the baseline CNNs, 

which have analogous modifications as the deep kernel learning counterparts, consistent 

improvements over performance of in-distribution data are reported for the hybrid models, apart from 

uncertainty evaluation, where the expected calibration error is better for the CNNs by a slight margin. 

Although the results are very much in favor of the hybrid method, it would have been interesting to 

see how it compares to a “simpler” alternative of keeping the CNN and GP separate. 

Another alternative GP extension was presented in 2013 by [26] in the form of deep GP (DGP) 

models. The basic idea is to chain multivariate GP models by making one’s output another’s input. 

This idea can be analogously described in terms of DNNs, where the chained GP models are similiar 

 

Fig. 3. EyePACS, IDRiD, RFMiD and dermoscopic (left to right) image dataset samples and their 

preprocessed counterparts, taken from [17] 
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to network layers and the number of GPs in each model is akin to the number of nodes. It is worth 

noting that DGP models are a form of deep belief networks, as the nodes are not interconnected 

between the layers, only layers themselves are. 

One of the main benefits of this Bayesian structure of the deep belief network is that the application 

is possible even when data is not available in large volumes, as opposed to the traditional requirement 

when using stochastic gradient descent optimization. The DGP defined in [26] also employs 

automatic relevance determination (ARD) covariance functions for further optimization of the model 

structure. For the deep multiple-output GPs, which can be applied to multi-label classification tasks, 

it is only required to expand the model horizontally (i.e., increase the number of nodes) to a desired 

degree and set them up to perform independently. The authors note that “this special case of our 

model makes the connection between our model’s structure and NN architectures more obvious: the 

ARD parameters play a role similar to the weights of NNs, while the latent variables play the role of 

neurons which learn hierarchies of features” [26]. The proposed approach was tested by the authors 

of [26], with toy data and real-life datasets, e.g., human motion or digit image data, where DGP has 

proven its applicability with positive results. 

1.4. Gaussian process multi-label classification 

Up until this part of literature analysis we were only reviewing how the GP can be applied to binary 

of multi-class classification tasks (with the exception of DGP). However, the literature regarding the 

application of GP to multi-label classification tasks is rather sparse, possibly due to the difficulty of 

the task and the computational intensity that comes with trying to apply such an algorithm. 

[27] introduced a TensorFlow-based GP model developed for multi-label classification of big data, 

which addressed computational challenges via the sparse variational framework. The authors 

employed a semi-parametric latent factor model which “allows to capture the correlation of multiple 

labels using a small set of shared latent GP functions” [27], extended to a multi-label case. However, 

the authors of [27] only demonstrated the application for text classification datasets. 

In general, it is a multi-output model that uses a set number of latent GPs, in this case called “factors”, 

to generate multiple outputs through a linear mapping. If we denote 𝑃 as the number of latent GPs, 

ℎ𝑝
(𝑖)

(𝑝 = 1, 𝑃 ̅̅ ̅̅ ̅̅ ) as a latent function drawn from a GP of zero-mean and kernel function of choice and 

evaluated at input of index 𝑖, then a utility score, which when transformed by a sigmoidal or Bernoulli 

likelihood returns the 𝑘-th (𝑘 = 1,𝐾̅̅ ̅̅ ̅) binary label, is described as  

𝑓𝑘
(𝑖)
=∑𝜙𝑘𝑝ℎ𝑝

(𝑖)

𝑃

𝑝=1

+ 𝑏𝑘, 

where 𝜙𝑘𝑝 is the weight for 𝑝-th factor for the 𝑘-th label and 𝑏𝑘 is the bias value of the 𝑘-th label for 

linear mapping. The approach is then extended to the sparse variational framework by employing the 

inducing variables and stochastic optimization. This allows the GP to be fitted with datasets where 

there are over a million training samples or over 200 thousand labels. Testing was carried out over 6 

text datasets, three small- and three large-scale, 2 kernels, linear and RBF (with extra hyperparameters 

for extremely high dimensional datasets) or a linear combination of the two, and by allowing for the 

inducing points to be optimized.  
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As the results report, this novel method stays on par with its state-of-the-art contemporaries and even 

manages to overtake them in terms of certain performance measures. However, this comes at the cost 

of extremely high training times, where other models manage to train in a fraction of the time. 

Furthermore, as the novelty of the GP is its predictive uncertainty, it is not showcased or described 

how it could be utilized. 

Alternative approaches to multi-label tasks with sparse GPs were also explored by [28] in 2012. The 

authors have proposed a framework that used multiple named instance feature vectors to represent 

each sample in image data. The multi-instance multi-label (MIML) framework (Fig. 4) explores 

possible ambiguity in instance and label spaces [28]. Even though this framework has explainable 

prediction capabilities, which, as authors state, allow understanding of the causality of predicted 

labels, it still has two main challenges. The first one is the modelling of connections between instances 

and labels, as depending on the image, there might be either a single or multiple instances of a subject 

visible in different regions of the image. The second is how to properly exploit the correlations 

between different labels, as it is a powerful tool in improving the performance of the model, since it 

can encode certain data rules, and in sparse data settings it can compensate for the lack of training 

samples to a degree. 

Fig. 4. Visual scheme of the MIML framework, taken from [28] 

[28] describes the basic idea of this MIML learning framework as defining a latent GP prior in the 

instance space for each label. The correlations between labels are captured by the covariance matrix 

of the GP and the connections between instances and labels can be explored by various likelihood 

functions, as the kernel matrix is inferred by maximizing marginal likelihood. 
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The authors have tested their proposed algorithm with multi-label and multi-instance learning 

problems. The performance of the algorithm is compared to MIML RBF NN, MIML SVM and MIML 

k-nearest neighbors frameworks to have a relative measure of performance. The first multi-label 

classification problem is the classification of natural scene images belonging to five classes. Each 

sample is a bag consisting of several multi-dimensional instances, which are generated by the method 

described in [28]. Over 22% of images have multiple labels and the average number of labels per 

image is 1.24. The novel algorithm outperforms its competitors by precision, coverage, hamming 

loss, one-error and raking loss measures. 

The same conclusion of outperforming its competitors is also reached with the second multi-label 

classification problem. This scenario covers text analysis and is realized with the Reuters-21578 

dataset. Here, each document is represented as a bag of instances, obtained by overlapping rolling 

windows, and the seven largest categories are considered. After a custom dataset preprocessing, the 

final set contains 2000 documents and around 15% of them have multiple labels. 

For the multi-instance setting, first the algorithm is applied to a text categorization problem with data 

derived from 20 Newsgroups corpus. Here, the framework’s performance is compared to MI-Kernel 

and mi-Graph frameworks, which are consistently overtaken in terms of accuracy. The second setting 

of application is again an image categorization task, where 1000 or 2000 sample size image sets 

obtained from COREL are split into 10 or 20 categories of 100 images. The same superiority in 

performance is also obtained here, as the algorithm is compared to numerous methods, along with 

ones used for the text categorization task. 

1.5. Motivation 

As frameworks that allow computiationally- and time-efficient optimization of GPs for larger 

amounts of data were developed not too long ago, the amount of research of its applications is 

resurging. However, papers regarding its medical applications, especially for eye fundus pathologies 

are rather sparse. Furthermore, most of these papers focus on binary or multiclass DR detection, rather 

than a wider array of diagnostics of eye pathologies. As far as I am aware, this is the first work that 

looks into a multi-label eye pathology detection using GPs. 

On the other hand, medical practitioners remain (rightfully) sceptical of automated diagnostics. 

Automated diagnosis systems, as well-performing as they may be, have a limited knowledge of the 

domain they operate on and rarely produce an estimate on how certain these systems are about the 

predictions they are producing. This can inadvertently lead to errors in diagnostics, which are more 

severe than human errors. 

As for making a diagnosis based on image data, CNNs are incapable of modelling the uncertainty of 

their predictions on their own. This reduces the reliability of the method in practical medical settings. 

GPs have the inherent capability to model probability uncertainties. That, in turn, allows us to 

evaluate the reliability of the diagnosis by using uncertainty measures to identify difficult cases which 

could be referred to further analysis. As the field of medicine is exceptionally burdened with 

responsibility, it is physically and mentally demanding work. If we approach the idea of machine 

learning methods in medicine not as a replacement, but a complement to medical proffesionals, GPs 

might allow us to reach a compromise, by reducing the workload of an expert. 
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2. Data and methodology 

2.1. Data 

The experiments are conducted with the multi-label RFMiD dataset [25]. The total of 3200 images 

are split into 1920, 640 and 640 images for training, validation and testing respectively. These images 

contain visual characteristics for 46 categories – 45 eye pathologies and the healthy control group. 

The supplied categorization is used, which summarizes the images into 28 categories, as only 

pathologies that have more than 10 samples remain as an independent label. This results in a label 

stratification of 60±7% samples (depending on the label), 20±7% and 20±5% for training, validation 

and testing sets respectively [29]. The average label count for a sample with any pathology is ~2.3 

and the average label count for the whole dataset is ~1.1. 

In this thesis, only a subset of 4 labels is used, as the objective is not to create a quintessential eye 

pathology detector, but to demonstrate the benefits of expanding classifier framework beyond the 

CNN to a GP. The selected labels are: 

1. Media haze (MH) – this label does not directly correspond to a certain pathology, as it is more of 

a descriptive label that indicates quality of the obtained image. However, as the data descriptor 

notes – “The opacity of media can be a hallmark for the presence of (various pathologies)” [29]. 

Furthermore, it is important to detect, whether an image is affected by any sort of artifact, to 

improve the decision-making process (Fig. 5a); 

2. Drusen (DN) – yellow or white extracellular deposits, naturally occurring in the aged population, 

which are indicative of various pathologies (Fig. 5b);  

3. Central serous retinopathy (CSR) – “a round serous detachement of the neurosensory retina from 

the underlying (retinal pigment epithelium)“ [29], identified by the presence of subretinal fluid. 

Depending on the severity, vision loss is possible (Fig. 5c); 

4. Chorioretinitis (CRS) – caused by infections and causes inflammation of parts of the eye (Fig. 

5d). 

The selected labels have strongly varying sample sizes. Of all pathology label sample sizes, MH is in 

2nd place, DN is in 5th place, whereas CSR and CRS are in 13th and 15th places respectively. In Fig. 

6 details of the label distribution in each subset are shown, along with the amount of other pathology 

and healthy samples, which are encoded as 0 in our multi-hot label subset.  

 

Fig. 5. Image samples of MH (a), DN (b), CSR (c), and CRS (d), along with their visual charateristics, taken 

from [29] 
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The images in the dataset come in various resolutions. They are trimmed by removing the dark 

padding to bring the dimensions closer to a square format and remove uninformative data (Fig. 7a). 

For fitting the CNN, apart from the raw images, variations of preprocessed and augmented inputs are 

considered. All images are resized to 256×256 px. 

The preprocessing tactic comes from the Kaggle DR competition [15] winner, used for similar data 

[17], where the color local average is subtracted from the image (we do not crop the boundaries 

resulting from this transformation, Fig. 7b). The idea of this approach is to reduce “variation between 

images due to differing lighting conditions, camera resolution, etc.“ [17]. Of course, as the feature 

shift is quite extreme from the original, the preprocessing is applied to all data subsets. 

The augmented inputs are raw images for which random horizontal flips with probability 𝑝 = 0.5, 

random rotations in the range of [−90°, 90°] and shifts with a factor of 0.1, with 𝑝 = 1, and elastic 

transformations with 𝑝 = 0.2 are applied (Fig. 7c). The augmentations are applied to a 10x expanded 

testing set to introduce slight variability without transforming the data too drastically. This augmented 

and expanded training subset is created prior to fitting, to have stable comparability of results between 

the tested models. 

 

Fig. 6. Label distribution in each subset 

 

Fig. 7. Examples of the same image with its raw (a), preprocessed (b) and augmented (c) variants 
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2.2. Methods 

2.2.1. Overall methodology and workflow 

For the complete workflow, first a CNN model is trained to optimal performance using a single 

selected type of image input. After obtaining an optimal CNN model, we use it to extract deep visual 

features from the same image subsets. PCA is performed for dimensionality reduction and a selected 

number of first principal components. The GP model is optimized using the principal component 

inputs. Afterwards, we sample GP realizations from the posterior distribution and pass them through 

a logistic function to obtain a set of probabilities (Fig. 8).  

 

2.2.2. Convolutional neural network 

EfficientNet is a CNN family which was developed by “leveraging a multi-objective neural 

architecture search that optimizes both accuracy and floating-point operations per second (FLOPS)” 

[30] and utilizing an originally devised compound scaling method. The method uniformly scales 

network depth, width and input resolution dimensions using a compound coefficient, justified by 

intuition, that “if the input image is bigger, then the network needs more layers to increase the 

receptive field and more channels to capture more fine-grained patterns on the bigger image”. The 

formalized compound scaling dictates that at the cost of approximately 2𝜙 times more computational 

resources, the network depth, width and image resolution should be respectively increased by 𝛼𝜙, 

𝛽𝜙, 𝛾𝜙 times. Here 𝛼, 𝛽, 𝛾 are constant coefficients, determined by the authors using a small grid 

search of the following system of equations with constraints: 

 

Fig. 8. The workflow of obtaining GP ensemble probability estimates from image data, EfficientNet image 

taken from [30], Multi-output SVGP image taken from [21] 
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{
 
 

 
 

depth: 𝑑 = 𝛼𝜙

𝑤𝑖𝑑𝑡ℎ:𝑤 = 𝛽𝜙

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑟 = 𝛾𝜙

𝑠. 𝑡.  𝛼 ∙ 𝛽2 ∙ 𝛾2 ≈ 2
𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1

 

The idea of the constraint is that the regular convolution operation is proportional to 𝑑, 𝑤2, 𝑟2. 

Of course, the method of [19] is also backed up by empirical observations that the different scaling 

dimensions are not independent and best performance is achieved by scaling the dimensions together 

(Fig. 9).  

For the root variant of EfficientNet, dubbed EfficientNet-B0, based on the inverted bottleneck 

residual blocks of MobileNetV2 and complemented with squeeze-and-excitation optimization, the 

found values for fixed 𝜙 = 1 are 𝛼 = 1.2, 𝛽 = 1.1, 𝛾 = 1.15. Scaled up variations of EfficientNet-

B1 to EfficientNet-B7 are obtained by fixing the found values and increasing 𝜙. Such architecture 

and scaling approach reaped multiple benefits – most notably, the performance to model size ratio is 

one that was not achieved before, as the EfficientNet models achieve state-of-the-art accuracy on 

various datasets with an order of magnitude fewer parameters (e.g., matching the ImageNet [18] top-

1 accuracy of GPipe of 84.3% while being 8.4 times smaller and 6.1 times faster). Furthermore, in 

the words of the authors – “EfficientNets also transfer well and achieve state-of-the-art accuracy on 

5 out of 8 widely used datasets, while reducing parameters by up to 21x than existing ConvNets”. 

[19] Therefore, models of considerable performance can be developed in a much shorter time frame 

with the added benefit of speed-up from transfer learning. 

2.2.3. Gaussian process 

The GP model is constructed as follows. Consider a 1-dimensional case with noise-free observations. 

We have a training set 𝒟 = {(𝑥𝑖, 𝑦𝑖) | 𝑖 = 1,… , 𝑛} = (𝑋, 𝑌), where 𝑥 denotes covariates and 𝑦 – the 

 

Fig. 9. Baseline EfficientNet architecture scaling method results, taken from [19] 
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dependent variable. A GP 𝑓(𝑥) ~𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) is a collection of random variables, where any 

finite number of which have a joint Gaussian distribution. It is completely specified by its mean  

𝑚(𝑥) = 𝔼[𝑓(𝑥)] 

and covariance (or otherwise called a kernel)  

𝑘(𝑥, 𝑥′) = 𝔼[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] 

functions. Vector 𝑥′ belongs to the testing set, defined analogously as the training set. [31] 

The GP definition may seem abstract, but GPs are simple objects – any function 𝑓(𝑥) = 𝑤𝑇𝜙(𝑥) 

with 𝑤 drawn from a Gaussian distribution and 𝜙(∙) being any vector of basis functions is a GP [32]. 

As the specification of the covariance function implies a distribution over functions, GP regression 

can be described as a process of drawing functions from the GP prior and conditioning them on 

observations to obtain a GP posterior. [31] 

Assuming noise-free observations, if we denote  

𝑘(𝑥, 𝑥1:𝑛) = [𝑘(𝑥, 𝑥1) … 𝑘(𝑥, 𝑥𝑛)], 

𝑘(𝑥1:𝑛, 𝑥1:𝑛) = [
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑛)

⋮ ⋱ ⋮
𝑘(𝑥𝑛, 𝑥1) ⋯ 𝑘(𝑥𝑛, 𝑥𝑛)

], 

𝑓(𝑥1:𝑛) = [𝑓(𝑥1) … 𝑓(𝑥𝑛)], 

𝜇 = 𝑘(𝑥, 𝑥1:𝑛)𝑘(𝑥1:𝑛, 𝑥1:𝑛)
−1𝑓(𝑥1:𝑛), 

𝜎2 = 𝑘(𝑥, 𝑥) − 𝑘(𝑥, 𝑥1:𝑛)𝑘(𝑥1:𝑛, 𝑥1:𝑛)
−1𝑘(𝑥, 𝑥1:𝑛), 

then we can compute the conditional distribution of 𝑓(𝑥) for any 𝑥 given 𝑓(𝑥1),… , 𝑓(𝑥𝑛) as  

𝑓(𝑥) | 𝑓(𝑥1),… , 𝑓(𝑥𝑛) ~ 𝒩(𝜇, 𝜎
2). 

The terms of 𝜇 and 𝜎2 are respectively responsible for point prediction and uncertainty. As we are 

dealing with a Gaussian distribution, the 95% confidence interval of 𝑓(𝑥) would be (𝜇 − 2𝜎; 𝜇 +

2𝜎). Usually, the covariance function also has parameters 𝜃 which, for optimal results, must also be 

estimated. For that, marginal likelihood  

𝑝(𝑦|𝑥, 𝜃) = ∫𝑝(𝑦|𝑓, 𝑥, 𝜃) 𝑝(𝑓|𝑥, 𝜃)𝑑𝑓 

is utilized by maximizing the log marginal likelihood with respect to the parameters  

log 𝑝(𝑦|𝑥, 𝜃) = −
1

2
𝑦 𝑘(𝑥, 𝑥) 𝑦 −

1

2
log 𝑘(𝑥, 𝑥) + 𝑐, 

where 𝑐 is a constant. [31] 

The key property of GPs is that the obtained posterior becomes “distance-aware” of the data points – 

as the process approaches the data point, variance tends to decrease, and vice versa – as the process 

furthers from observed data, variance increases (Fig. 10). 
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Fig. 10. GP posterior and its variance (blue), adapted from [33] 

Another property is that numerous GPs can be drawn from the same posterior, which, in a practical 

view, is a cheap way to generate GP model ensembles. For binary classification of target values +1 

and -1, the basic idea is to place a GP prior over a latent (i.e., hidden) function 𝑓(𝑥) and pass it 

through the logistic function 𝜆(𝑧) =
1

1+𝑒−𝑧
 to obtain a prior on 𝜋(𝑥) = 𝑝(𝑦 = +1 | 𝑥). [31] 

Considering a machine learning classification or regression task, data comes in vast amounts in a 

practical setting. This poses a computational problem, as a key element in GP posterior calculation is 

the computationally expensive matrix inversion operation which has the complexity of up to 𝑂(𝑛3). 

Therefore, the basic GP algorithm performance is bottlenecked by the number of observed data points 

used. Simple data down-sampling poses a risk of important information loss, so it is not a viable 

option. However, assume we select a subset of the dataset, which is much smaller than the full set, 

but still encompasses the essence of the dataset. By “summarizing” the dataset in a sense, and only 

passing such data to the GP, we should expect the model performance to be comparable to one that 

uses all the data, without the expense of long computation times. The SVGP model is built on this 

idea. 

Consider a new set of data points 𝑋𝑠, called inducing points, where 𝑛𝑠 ≪ 𝑛. The value of the points 

can be either known or not, by either choosing them to be a subset of the fixed observed data points, 

or to be estimated by the algorithm, as to find the optimal summarization based on the number of 

possible data points. The latter option corresponds to the variational aspect of SVGP. This model 

aims to generate training data with high probability as to accurately “summarize” it. Therefore, it 

establishes the relationship between GP function values at inducing points and the target variable at 

training locations. [34] 

Furthermore, variational inference technique minimizes the Kullback-Leibler divergence (KL) 

between a variational GP and the true posterior GP instead of maximization of the log marginal 

likelihood objective function for traditional GPs. Alternatively, the minimization is equivalently 
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expressed as the maximization of the variational lower bound of the true log marginal likelihood (Fig. 

11), known as the ELBO formula: 

𝐸𝐿𝐵𝑂(𝑞) = 𝔼[log 𝑝(𝑧, 𝑥)] − 𝔼[log 𝑞(𝑧)]. 

Here 𝑝(𝑧, 𝑥) is the joint density of observed variables 𝑥 and inducing variables 𝑧, which have the 

density 𝑞(𝑧). [34, 35] 

Fig. 11. Visual scheme of relation between marginal likelihood and ELBO 

Lastly, a GP extension to multiple outputs can be defined as a GP that approximates 𝑇 outputs while 

considering their correlations. The base difference from a single-output GP is that the kernel is now 

transformed to also model the covariance between its outputs 

𝐾(𝑥, 𝑥′) = [
𝑘11(𝑥, 𝑥′) ⋯ 𝑘1𝑇(𝑥, 𝑥′)

⋮ ⋱ ⋮
𝑘𝑇1(𝑥, 𝑥′) ⋯ 𝑘𝑇𝑇(𝑥, 𝑥′)

] , 

where 𝑘𝑡𝑡′(𝑥, 𝑥′) is covariance between outputs 𝑓𝑡(𝑥) and 𝑓𝑡′(𝑥′). [36] 

2.3. Experiment methodology 

The CNN models are realized and fitted using the TensorFlow [20] library. The GP models are 

realized using PyTorch [37] and GPyTorch [38] libraries. All experiments are run on Python [39] 

using Jupyter Notebook [40], with additional aid of Matplotlib [41], NumPy [42], Scikit-learn [43], 

pandas [44, 45] and Joblib [46]. 

2.3.1. Convolutional neural network application 

We started with an extensive search for an optimal CNN setup between the three input data variations 

and the EfficientNet architecture family, from B0 to B6 variants (B7 excluded due to computational 

and time limitations), resulting in 21 models. The model architectures are standard implementations, 

except for our added global average pooling layer before the dense output layer for later deep feature 

extraction purposes (Fig. 12).  
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Models are set up with the Adam [24] optimizer using learning rate of 10−5 for raw or preprocessed 

data and learning rate of 10−6 for augmented data. As the models are set up for a multi-label 

classification task, binary cross entropy is used 

−
1

𝑁
∑[𝑦𝑖 log 𝑝(𝑥𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝(𝑥𝑖))]

𝑁

𝑖=1

 

as the loss function, where 𝑁 is the total number of samples, 𝑦𝑖 – the ground truth and 𝑝(𝑥𝑖) – the 

classifier prediction based on the associated features 𝑥𝑖 of the ground truth. The sigmoid function  

1

1 + 𝑒−𝑥
 

is used for output layer activations. Fitting is started using the weights obtained from the ImageNet 

dataset [18] for faster model convergence. Performance is evaluated using the AUC score separately 

for each label  

∑ ∑ 1𝑥𝑖>𝑦𝑖
𝑛
𝑗=1

𝑚
𝑖=1

𝑚𝑛
 

where 𝑚 and 𝑛 are numbers of positive and negative samples respectively, 𝑥𝑖  (𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ ) and 𝑦𝑗  (𝑗 =

1, 𝑛̅̅ ̅̅ ̅) are outputs of a classifier on positive and negative samples, 1𝑋 is the indicator function of a set 

𝑋 [47]. The TensorFlow implementation of AUC calculation is used during fitting to collect training 

and validation results, however we use the Scikit-learn implementation for testing results for a 

consistent comparison with GP results. 

EfficientNet variants from B0 to B2 are fit with a batch size of 32, B3-B5 with a batch size of 16 and 

B6 with batches of 8 images. Models are fit past the point that would be considered overfitting (when 

training loss is lower than validation loss), as our validation AUC values improve past that point. We 

also decrease the learning rate by a factor of 0.1 to see if any improvement in performance can be 

 

Fig. 12. CNN architecture example for EfficientNet-B0 
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gained after the current fit metrics saturate. Finally, an optimal model is chosen as the performance 

baseline and deep feature extractor. 

2.3.2. Gaussian process application 

The CNN global average pooling layer’s outputs are collected as our deep features for each subset of 

data to use as input for our GP models. As this results in a large number of features, PCA is performed 

on them to reduce the strain of calculations of the GP. 

The GP is set up as an independent multitask SVGP using 800 inducing points, the initial values are 

set to the first 800 observations of the training set, and the inducing locations are made part of the 

learned parameters. The mean field variational distribution, independent multitask variational 

strategy, and the multivariate Bernoulli distribution likelihood (set up from sigmoid values of the GP 

outputs) is used, and the batch shape for the GP components is set to be equal to the number of labels 

in order to set it up as a multi-label classifier. 

For the mean function, the primary experiments are run using 𝜇(𝑥) = 0, but after finding the optimal 

kernel setup we also test if a learned 𝜇(𝑥) = 𝐶 improves the results. For the kernel, experiments are 

focused on the Matérn-5/2 covariance function  

𝑘Matérn(𝑥, 𝑥′) = 𝜎
2(1 + √5

‖𝑥 − 𝑥′‖

𝜌
+
5

3
(
‖𝑥 − 𝑥′‖

𝜌
)

2

)𝑒
−√5

‖𝑥−𝑥′‖
𝜌  

where 𝜎 and 𝜌 are learnable outputscale and lengthscale parameters. The ARD variant of the kernel 

is also considered, where each input dimension 𝑚 of 𝑑 has its own lengthscale parameter, therefore 

the term  

‖𝑥 − 𝑥′‖

𝜌
 

is replaced with 

∑
‖𝑥𝑚 − 𝑥𝑚

′ ‖

𝜌𝑚

𝑑

𝑚=1

 . 

Furthermore, it is investigated if additional parameters in the covariance function improve the results, 

so an addition to the Matérn kernel is also considered in the form of a linear kernel: 

𝑘𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒(𝑥, 𝑥′) = 𝑘Matérn(𝑥, 𝑥′) + 𝜈𝑥
𝑇𝑥′ 

where 𝜈 is the variance parameter. 

The GP models are optimized with minibatches of 16 samples with a learning rate of 10−3 using the 

Adam optimizer, by calculating the variational ELBO of the selected likelihood. The learning rate is 

not decreased further as it does not improve performance. Lastly, for the selected options of the 

covariance function, the effect of Gaussian noise applied on input is tested with mean 𝜇 = 0 and 

standard deviation values of 𝜎 = 0.1 and 𝜎 = 0.5, resulting a total of 12 primary test GP models. 
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We collect the GP optimization metrics every 𝑁/100 steps, where 𝑁 is the total number of minibatch 

iterations. The loss values of GP are collected for both training and validation subsets, however label 

AUC values are calculated only for the validation subset, to reduce the optimization loop time and 

since there is no risk for the GP to overfit. Furthermore, metrics are collected only for GP ensembles, 

of sizes 10, 100 and 1000 to investigate if there are differences in performance. 
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3. Results and discussion 

3.1. Convolutional neural network results 

After extensive training of the CNN models, it was found that the best data handling tactic for this 

dataset was applying augmentations, and the worst was applying preprocessing. This is a natural 

conclusion, as augmentations are a tried-and-true approach to fitting regularization, and since the 

original training set is rather small, the extra introduced variability of samples is beneficial. The 

lowest performance of preprocessed inputs can be explained by the possible loss of information due 

to local color mean subtraction, although the average performance for CRS overtakes its raw 

counterpart, meaning for some labels it helps to accent the relevant features (Fig. 13). 

While using the augmented inputs, the performance of architecture variants does not differ greatly, 

but it seems that EfficientNet-B1 is best suited for 256×256 px inputs, as the slight decrease in 

performance as the models get bigger would indicate that the architectures are becoming too large for 

the used input dimension (Fig. 14). 

The augmented input EfficientNet-B1 variant obtains high performance for MH, CSR and CRS 

labels. That is expected, as these labels have the most prominent features, as opposed to the subtle 

 

Fig. 13. Testing AUC of each label by input handling tactic, averaged over EfficientNetB0-B6 

 

Fig. 14. Testing AUC of each architecture variant using augmented inputs, averaged over labels 
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dotting of DN, for which the AUC performance leaves more to be desired (Fig. 15). EfficientNet-B1 

is selected for extraction of deep visual features in the next section. 

 

3.2. Gaussian process results 

Training Gaussian processes requires larger amounts of computer memory. Therefore, to avoid 

computational issues a PCA dimensionality reduction was used. After performing PCA and reducing 

the dimensions of input data from 1280 deep features, we keep the first 550 components, which 

explain ~96% of total variance (Fig. 16). 

 

Fig. 15. Test set receiver operating characteristic curves of the augmented input EfficientNet-B1 for each 

label 
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As was detailed in the methods section, a number of different kernel design options were considered. 

In total 12 alternative models were trained and analyzed. The following are condensed insights of 

what was learned from this process: 

– The basic Matérn kernel cannot handle noise with standard deviation as strong as 𝜎 = 0.5, 

whereas 𝜎 = 0.1 barely makes an effect; 

– The ARD Matérn kernel cannot handle noise of even 𝜎 = 0.1; 

– The basic composite kernel is indifferent to the use of noise; 

– The composite variant using the ARD Matérn kernel benefits from noisy inputs, the difference 

in results is an inprovement of 0.3 AUC at most; 

– It seems that the CNN learned a linear decision boundary within the deep feature space, as the 

composite kernel variants outperform the basic ones, as the addition of the linear kernel 

introduces linearity to GP’s decision boundary; 

– Increasing the size of the ensemble (i.e. number of samples from the trained Gaussian process) 

does not make a significant difference to our setups, however since the ensemble generation 

is very cheap, we can continue to use our maximum selected number of GPs for increased 

probability distribution stability. 

In the reviewed literature about the method, there was a notion of GPs being able to discern that their 

knowledge of the domain is limited. In hindsight, an assumption can be made that this behaviour can 

be applied to the evaluation of probability uncertainty. Perhaps difficult cases, e.g., ones that have 

multiple pathologies, can confuse the classifier and the GP could model its parameters in a way that 

would result in an “indecisive” label probability of 𝑝 = 0.5. However, this type of behaviour is not 

possible in our setting, where a multi-label classification is performed on deep features, obtained from 

a multi-label CNN classifier; I believe, this expectation should be attributed to multi-class problem 

cases.  

A multi-label CNN classifier models independent binary classifications for each label. This results in 

discriminative deep features, which are mainly modelled to allow an efficient detection of the required 

subject, without any dissection of features for supplementary information, as they are simply 

generalized into groups of positive and negative samples. Of course, this is the intended behaviour 

 

Fig. 16. Total deep feature explained variance by number of principal components 
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which allows the linear boundary of accurate separation of sample groups. However, as the deep 

features are already so generalized on a per-label basis, any supplementary information, in our case 

regarding any extra unknown pathologies, is lost. This was tested with methods described in [48] for 

various subsets of data (both for CNN and GP), but as experiments were not fruitful, any results 

regarding them are omitted for brevity. Furthermore, the approach of 𝑝 → 0.5 when feature variance 

increases is only possible for GP kernels like RBF or Matérn, which model non-linear decision 

boundaries, but since the deep features are well-refined for a linear boundary, in our case we only 

suffer a loss of performance, as the pilot model results reveal. 

After selecting and comparing the top performing setups of each kernel variant, we deem that the best 

performing setup was one that used an ARD Matérn and linear kernel composition with 𝜎 = 0.5 

Gaussian noise used on input. The difference between the composite kernel and its ARD variant is 

minuscule, however the performance of latter is ever so slightly better with the MH label (Fig. 17), 

which can be attributed to the increased parametrization of the model. 

The top performing setup is then reoptimized using a constant mean, to see for improvements. Lastly, 

the setup is reoptimized using deep features obtained from the raw images, to see whether using the 

original feature distribution improves the results. As this time the full training set only consists of 

1920 original observations, 550 components manage to explain 98% of total variance. This helps to 

improve upon the CNN results for MH, CSR, CRS labels by 0.1 AUC and bring DN label 

performance up to par (Fig. 18). 

 

Fig. 17. Top performing setups of each kernel variant 
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A variation of max pooled deep features and their concatenation to global average pooling features 

were also tried, but did not improve the performance, possibly due to the CNN weights being trained 

with an architecture setup using the global average pooling layer. DGP models were also tested, with 

a single or double hidden layer setup employing multiple GPs, set up in a similar manner to the best 

GP model, however they were prone to overfitting and underperformed in comparison to the CNN 

and GP. Lastly, two versions of hybrid ensembles were tested – one where the CNN predictions share 

the same weight as the GP realizations, and one where the GP realization results are first averaged 

and then share the same weight as the CNN predictions. For the former, the use of 1000 GP samples 

far outweighs the CNN predictions and make no impact on the results when comparing to pure GP 

performance. For the latter, it resulted in performance similar to CNN’s, due to CNN probabilities 

having more extreme values. 

3.3. Gaussian process probability uncertainty utilization 

Since GP ensembles can be generated by sampling functions from the learned distribution, probability 

uncertainty estimation can be obtained. 1000 realizations from the trained Gaussian process are 

sampled and then passed through a logistic function to obtain a sample of probabilities for each testing 

case. This sample represents a posterior distribution of an event where a given test image belongs to 

a particular class. Difficult test set images, i.e. the ones for which diagnostics is more challenging, 

are expected to have wider confidence intervals and therefore a larger uncertainty estimates (of course 

this is only valid under a condition that comparisons are made for the same sample size, as increasing 

 

Fig. 18. Test set receiver operating characteristic curves for 1000 GP ensemble using constant mean, 

composite ARD kernel and raw image deep features 
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the sample size will generally reduce uncertainty of the prediction). Uncertainty levels could be used 

to determine whether a particular test image requires attention of a professional and therefore whether 

it should be diagnosed manually rather than automatically. The probability range can and should be 

fine tuned for each label separately, as labels with a sample distribution of smaller variance in the 

deep feature hyperspace will have tighter decision boundaries, especially ones with smaller sample 

sizes. For further discussion it is assumed that the cases referred to a medical specialist will receive 

the correct diagnosis. 

Probability threshold of 𝑝 = 0.151 is selected to identify CNN errors for MH label. The selected 

probability threshold corresponds to 91.35% sensitivity and 91.6% specificity. By choosing the 

probability variation range wider than 0.6, 69 cases are flagged, 36 of which would have been 

mislabelled by the CNN. By referring the flagged cases this system would raise the AUC score from 

0.969 to 0.984. In other words, around 1 out of 10 cases would require a manual review to improve 

AUC by 0.015. For the extreme improvement to 1 AUC, around half of all cases would need to be 

manually reviewed by selecting the probability range of 0.05 or larger (Fig. 19). 

Fig. 20 depicts an MH case, that would be caught using a probability range wider than 0.6. The MH 

in this sample is rather obvious, with visual artefacts around the edge and center of image. Both CNN 

and GP predictions are lower than the set threshold, therefore a false negative labelling would occur. 

However, the GP prediction is ever so slightly closer to the threshold. 

  

Fig. 19. MH label AUC, flagged sample number and CNN error number dependency on probability range 

width 
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Fig. 21 depicts a case, that would be wrongfully labelled as MH by the CNN, but was correctly 

labelled by the GP. Nonetheless, it was also caught by selecting cases with MH probability variation 

range larger than 0.6. It is possible that the sparse dark red dotting, which is indicative of another 

pathology, has confused the CNN model into labelling it as MH. Here we observe again, that the GP 

is closer to the correct result than the CNN. The probability distribution is rather symmetrical and 

wide, which is indicative of a difficult case, which throughout the ensemble rests of varying places 

of the decision boundary. 

Probability threshold of 𝑝 = 0.033 is selected to identify CNN errors for DN label. The selected 

probability threshold corresponds to 69.57% sensitivity and 67.68% specificity. By choosing the 

probability variation range wider than 0.2, 161 cases are flagged, 133 of which would have been 

mislabelled by the CNN. By referring the flagged cases this system would raise the AUC score from 

0.737 to 0.88. In other words, around 1 out of 4 cases would require a manual review to improve 

AUC by 0.143. In this label’s case, probability range of 0.1 would result in roughly half of all cases 

being manually reviewed for AUC of 0.947 (Fig. 22). 

  

Fig. 20. Image with MH, its CNN/GP predictions, and GP prediction distribution. Whiskers mark min/max 

values 

 

Fig. 21. Sample, wrongfully labelled with MH by CNN, its CNN/GP predictions, and GP prediction 

distribution. Whiskers mark min/max values 
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Fig. 23 depicts a DN case, that would be caught using a probability range wider than 0.1. The DN in 

this sample is singular, most prominently visible on the right side. In this case the GP probability 

barely manages to overcome the threshold, whereas the CNN result falls short. 

Fig. 24 depicts a case, that would be wrongfully labelled as DN by both CNN and GP. It was caught 

by selecting cases with DN probability variation range larger than 0.2. This is a visually confusing 

case, as there is a certain light dotting, especially in the top right corner of the image, which has fooled 

the models into labelling it as DN. The GP ensemble probability distribution is rather symmetrical, 

and the average is lower than the GP forecast, but that is not enough for a correct result. As the 

probability range for this case is rather wide, it would be caught easily. 

  

Fig. 22. DN label AUC, flagged sample number and CNN error number dependency on probability range 

width 

 

Fig. 23. Sample with DN, its CNN/GP predictions, and GP prediction distribution. Whiskers mark min/max 

values 
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A probability threshold of 𝑝 = 0.018 is selected to identify CNN errors for CSR label. The selected 

probability threshold corresponds to 92.31% sensitivity and 91.55% specificity. By choosing the 

probability variation range wider than 0.1, 81 cases are flagged by choosing the probability variation 

range wider than 0.1, 58 of which would be mislabelled by the CNN. By referring the flagged cases 

this system would raise the AUC score from 0.954 to 0.982. In other words, around 12% of cases 

would require a manual review to improve AUC by 0.028. For a near-perfect AUC of 0.995, roughly 

a third of cases would require referring to a medical specialist, with a probability range wider than 

0.05 (Fig. 25). 

Fig. 26 depicts a false positive CSR case, that would be caught using a probability range wider than 

0.1. The visual features of depicted fundus are more visually more similar to one affected by CRS. 

Yet again the GP prediction is lower than the CNN’s and is twice as closer to the threshold. However, 

that is not enough for a correct result but nonetheless it is still referable. 

 

Fig. 24. Sample, wrongfully labelled with DN by both models, its CNN/GP predictions, and GP prediction 

distribution. Whiskers mark min/max values 

   

Fig. 25. CSR label AUC, flagged sample number and CNN error number dependency on probability range 

width 
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Fig. 27 depicts another false positive CSR case, that would be caught using a probability range wider 

than 0.1. The yellow dotting is indicative of another pathology, but there are no discernable visual 

features indicative of subretinal fluid or CSR. Once more, the average of GP probabilities is closer to 

the decision threshold. 

A probability threshold of 𝑝 = 0.011 is selected to identify CNN errors for CRS label. The selected 

probability threshold corresponds to 81.82% sensitivity and 81.72% specificity. By choosing the 

probability variation range wider than 0.1, 101 cases are flagged, 91 of which would be mislabelled 

by the CNN. By referring the flagged cases this system would raise the AUC score from 0.903 to 

0.97. In other words, around 15% of cases would require a manual review to improve AUC by 0.067. 

The perfect AUC of 1 can be achieved by also referring cases of probability range wider than 0.05, 

which would result in a 60% decrease in manual labour (Fig. 28). 

 

Fig. 26. Sample with false positive CSR, its CNN/GP predictions, and GP prediction distribution. Whiskers 

mark min/max values 

 

Fig. 27. Sample with false positive CSR, its CNN/GP predictions, and GP prediction distribution. Whiskers 

mark min/max values 
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Fig. 29 depicts a false positive CRS case, that would be caught using a probability range wider than 

0.1. The eye is definitely affected by a pathology; however it is not CRS. Yet again, even though the 

GP prediction is closer to the threshold than CNN’s, it fails to be low enough, but the possibility to 

evaluate the variability of the probability redeems the performance. 

Lastly, Fig. 30 is another false positive CRS case, that would be caught using a probability range 

wider than 0.1. From the distribution of probabilities, we see that this case is highly irregular. Both 

mentioned cases have unusual discoloration, which, seemingly, confuses the models as fundi affected 

by CRS do have irregual colouring, however it is much more distinctive and less gradient. Yet again 

the GP probability is lower than CNN’s, but not to a satisfactory degree. 

 

Fig. 28. CRS label AUC, flagged sample number and CNN error number dependency on probability range 

width 

 

Fig. 29. Sample with false positive CRS, its CNN/GP predictions, and GP prediction distribution. Whiskers 

mark min/max values 
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Overall, we can see that the averaging over the GP ensemble probabilities consistently results in a 

more regularized, “softened” estimate, when compared to the CNN counterparts. Understandably, the 

improvements in performance for already well-performing labels are not extreme and the tradeoff of 

additional effort of manual labor might not sound too attractive. However, for more difficult cases, 

e.g., DN detection, this might be a very attractive alternative to a classifier that does not have stellar 

performance and cannot supply any sort of measure of confidence for its probability forecasts, or a 

great alternative to pure manual labour. Furthermore, MH results show that it is possible to achieve 

perfect performance with only 50% of manual labor and CRS results show that the same is possible 

with only 40% of manual labor. 

 

Fig. 30. Sample with false positive CRS, its CNN/GP predictions, and GP prediction distribution. Whiskers 

mark min/max values 
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Conclusions 

1. From EfficientNet-B0 to EfficientNet-B6, EfficientNet-B1 is best suited for eye fundus image 

inputs: observed drop in performance as the model size increase indicates deterioration of learned 

features and overfitting. 

2. The subtle discolored dotting of drusen are more difficult features to capture for the EfficientNet 

convolutional neural network family, with average AUC ranging from 0.68 to 0.76. 

3. Matérn-5/2 kernel is sensitive to stronger noise in data – a Gaussian process using deep feature 

inputs polluted with Gaussian noise with mean 𝜇 = 0 and standard deviation 𝜎 = 0.5 will fail to 

fit data. 

4. The additive composition of the Matérn-5/2 and linear kernels achieved better results compared 

to just the Matérn-5/2 kernel. Possible explanation would be that the CNN learned a linear 

decision boundary within the deep feature space, therefore a linear kernel in GP context was 

optimal to learn these boundaries, while the Matérn kernel captured local nonlinearities which 

were not resolved by the linear kernel. 

5. Among the tested Gaussian process model setups, the best results are obtained by using a constant 

mean, an additive composition of Matérn-5/2 kernel (with automatic relevance determination) 

and a linear kernel in combination with added Gaussian noise (𝜇 = 0, 𝜎 = 0.5) on the inputs (first 

550 principal components). The improvement was by 0.1 AUC for media haze, central serous 

retinopathy and chorioretinitis labels. 

6. Cases that are more prone to be mislabeled by the CNN generally have larger uncertainty. 

Therefore, by using uncertainty estimates, provided by GPs, cases that require further manual 

review can be identified: 

– Media haze detection – AUC of 1.0 with manual review of ~50 % of all cases, as opposed to 

automatically labelling all samples with AUC of 0.97; 

– Drusen detection – AUC of 0.947 can be achieved by manually reviewing ~50 % of all cases, 

as opposed to automatically labelling all samples with AUC of 0.74.; 

– Central serous retinopathy detection – AUC of 0.995 can be achieved by manually reviewing 

~33 % of all cases, as opposed to automatically labelling all samples with AUC of 0.96; 

– Chorioretinitis detection – perfect performance of 1 AUC can be achieved by manually 

reviewing ~40% of all cases, as opposed to automatically labelling all samples with AUC of 

0.91. 
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