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Summary 

With current conflicts, upcoming recession, and green transition there are some disruptions in the 

European energy market. This brings a lot of uncertainty and may negatively affect individuals, 

especially those from the most socioeconomically vulnerable groups. Hence, understanding, 

measuring and tackling energy poverty is becoming more and more important. While a lot of complex 

indicators already exist, they often fail to take into account the changes in energy market, specifically 

the shift from traditional energy resources towards renewable ones. The goal of this study is to create 

a green energy poverty index that considers renewable energy and green transition in the assessment 

of energy poverty. Several already existing energy poverty indices were analysed to better understand 

what are the most suitable indicators and methods for computing the new index. The literature 

analysis also revealed that green transition can reduce energy poverty if the energy transition actions 

are implemented with a focus on improving affordability and efficiency of energy. However, if the 

green transition is premature, it may exacerbate energy poverty. Two methods are selected. Robust 

Principal Component Analysis is used to create a green energy poverty index that can be easily 

computed when the values of the selected indicators are available. Data envelopment analysis is used 

to evaluate efficiency of the countries. Data envelopment analysis evaluates whether the country is 

progressing in green transition with a focus on inclusivity and energy poverty reduction and provide 

the target values for energy poverty with the current use of renewable energy resources if they are 

used efficiency with such focus. The analysis covers 27 EU Member States. Five variables were 

selected for the index – inability to keep adequately warm, arrears on utility bills, use of renewables 

for electricity, use of renewables for heating and cooling, share of energy from renewable resources. 

Robust PCA is used to derive the weights for each of the variables in the index. After that, the green 

energy poverty index value for each country is calculated. DEA is used to determine which countries 

are most efficient, meaning they have lowest values of energy poverty indicators associated with the 

amount of renewable energy resources it has. The newly computed indices are validated using 

correlation analysis with relevant indicators. The study provides a closer look to the relation between 

green transition and energy poverty. The index constructed can be used to inform policy decision-

making process. 
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Santrauka 

Energetikos rinkoje šiuo metu yra daug neužtikrintumo ir pokyčių dėl dabartinių konfliktų, recesijos 

ir didelio susirūpinimo ekologija. Tai galimai neigiamai veikia Europos gyventojus, o ypač 

pažeidžiamiausias socialines grupes. Dėl šios priežasties energetinis skurdas ir jo matavimo metodai 

tampa vis svarbesni. Nors jau egzistuoja daug indeksų, kurie siekia išmatuoti energetinį skurdą, juose 

dažnai neatsižvelgiama į besikeičiančią energijos rinką, ypač į perėjimą prie didesnio atsinaujinančių 

energijos išteklių naudojimo. Šio tyrimo tikslas – sukurti žaliąjį energetinio skurdo indeksą, kuriame 

atsižvelgiama į atsinaujinančios energijos naudojimą vertinant energetinį nepriteklių. Siekiant geriau 

suprasti, kaip turėtų būti sudarytas naujas žaliosios energijos indeksas, buvo išanalizuoti skirtingi jau 

esami energetinio skurdo indeksai. Taip pat buvo išnagrinėti įvairūs energetinio skurdo apibrėžimai, 

kurie yra pateikti akademinėje literatūroje ar politikos dokumentuose. Naujajam indeksui sukurti 

naudojama atspari pagrindinių komponenčių analizė. Duomenų gaubtinė analizė naudojama šalių 

efektyvumui įvertinti ir nustatyti energetinio skurdo rodiklių tikslus, kuriuos galima pasiekti su 

naudpjamu atsinaujinančių energijos šaltinių kiekiu. Analizė apima 27 ES valstybes nares. Indeksui 

pasirinkti penki kintamieji – gyventojų dalis, kuri neišgali palaikyti deramos šilumos namuose; 

gyventojų dalis, kuri turi skolų už komunalines paslauga; atsinaujinančių energijos šaltinių kiekis 

naudojamas elektros energijai; atsinaujinančių energijos šaltinių kiekis naudojamas šildymui ir 

vėsinimui; atsinaujinančių išteklių naudojimas energijai kaip dalis nuo visos sunaudojamos energijos. 

Atspari pagrindinių komponenčių analizė naudojamas kiekvieno indekso kintamojo svoriams 

nustatyti. Po to apskaičiuojama žaliosios energijos skurdo indekso reikšmė kiekvienai šaliai. Indeksas 

patvirtinamas naudojant koreliaciją su kintamaisiais, kurie yra asocijuojami su energetiniu skurdu. 

Duomenų gaubtinė analizė naudojama siekiant nustatyti, kurios šalys yra efektyviausios, o tai reiškia, 

kad jos turi mažiausias energetinio skurdo rodiklių vertes, vertinant turimą atsinaujinančių energijos 

išteklių kiekį. Rezultatai koreliuoja su naujai sukurtu indeksu ir taip pat yra patvirtinti koreliacine 

analize. Tyrime atidžiau pažvelgta į perėjimo prie ekologiškos ekonomikos ir energijos nepritekliaus 

ryšį. Sukurtas indeksas gali būti naudojamas politinių sprendimų priėmimo procesui informuoti.
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Introduction 

Nowadays energy poverty is an important subject among policy makers and academics around the 

globe, including Europe. Energy prices have been fluctuating in the face of recent crises such as 

COVID-19 pandemic and the war in Ukraine. Energy market in Europe is also gradually moving 

towards more sustainable energy sources in the light of climate change and green transition, towards 

which the EU is moving.  

This brings a lot of uncertainty, especially for the most socioeconomically vulnerable groups in 

European society. Hence, energy poverty and the methods to measure it are becoming more and more 

important. However, there is no consensus on the definition of energy poverty and its most suitable 

indicator. While a lot of indicators and indices already exist, only a few of the existing energy poverty 

indices take into account sustainability and consider renewable energy sources. This study is aiming 

to fill this gap by presenting two new indices to evaluate energy poverty. These new indices consider 

the transition towards greener energy market when assessing energy poverty. 

The study proposes two alternative indices – a Green Energy Poverty Index based on principal 

component analysis, and efficiency score based on data envelopment analysis. They both examine 

energy poverty and its connection to green transition. Green Energy Poverty Index computed using 

PCA evaluates how energy poor and lagging behind in green transition the country is. Efficiency 

index examines whether the progress towards green transition is just, inclusive, and contributes to 

reduction of energy poverty. 

The study focuses on 27 Member States of the European Union (EU). The dataset used in the study 

covers the time period between 2010 and 2022. 

The goal of this study is the energy poverty index that considers renewable energy and green 

transition in the assessment of energy poverty.  

The tasks of the study are as follows: 

1. To highlight the existing gap in the literature on energy poverty and green transition nexus; 

2. To identify different indicators related to energy consumption and sustainability that are most 

suitable for the energy poverty index in the EU that taking into account green transition; 

3. To construct and index using principal component analysis; 

4. To construct and index using data envelopment analysis; 

5. To validate the newly created indices; 

6. To map energy poverty in the EU using the newly constructed index; 

7. To highlight potential issues to research further on the topic. 
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1. Literature review 

This part of the thesis presents relevant scientific literature analysing energy poverty and its 

measurements. This literature review presents the research done so far and highlights the need for 

more comprehensive approach in assessing energy poverty in the light of green transition. The 

literature review is structured as follows. It firstly presents the main aspects of existing definitions of 

energy poverty and analyses energy poverty in the light of green transition. Later on, energy poverty 

in the EU is presented and analysed. Finally, the literature review presents different methods to 

measure energy poverty, including those that already take into account transition towards renewable 

energy. While some indices already exist, the literature review highlights the need for a more 

comprehensive approach specifically in the EU. 

1.1. Energy poverty 

1.1.1. Definition of energy poverty 

Energy poverty is a well-researched topic. In the current context, energy poverty is a complex 

phenomenon that generally relates to an inability of a household to meet their energy needs. The term 

is coined around by academics and policy makers to highlight the existing challenges of some 

individuals and households to meet their energy needs. However, there is still a lot of research 

questions left unanswered and scientific community is not in consensus on the definition of energy 

poverty or its most suitable measurement (Widuto, 2023). 

Varying definitions of ‘energy poverty’ can be found in the EU policy documents. They all are related 

to inability of individuals or households to meet their basic energy needs. According to European 

Commission’s proposal for a directive on energy efficiency in 2021, energy poverty is defined as ‘a 

household’s lack of access to essential energy services that underpin a decent standard of living and 

health, including warmth, cooling lighting, and energy to power appliances, in the relevant national 

context, existing social policy and other relevant policies’(European Commission, 2021). According 

to other recent policy documents, energy poverty occurs when a household is not able to access 

essential energy services (European Commission, 2020), and is linked to a combination of high 

expenditure on energy, low income, and low energy efficiency (Widuto, 2023). 

All countries in Europe, except for Sweden, consider energy poverty to be an important issue in both 

political and academic debates. While definitions of energy poverty among the EU member states 

vary, there are some common elements. In general, energy services are understood in a broader 

context, including heating services, cooling services, lighting, and ability to use different appliances 

necessary for everyday life. Most of the member states also consider energy services as basic need 

for all citizens. They also recognise the close links between energy poverty, social exclusion and 

health issues. Finally, the EU member states generally identify three main causes of energy poverty 

– high energy prices, low energy efficiency, and low household income (Sokołowski et al., 2019). 

Scientific literature also does not offer a single definition of energy poverty. It is analysed taking into 

account various dimensions, such as social factors, health, geographical factors, economic factors, 

and political initiatives (Siksnelyte-Butkiene et al., 2021). Considering the energy poverty definitions 

in scientific literature more broadly, they can be divided into two main categories (Streimikiene et 

al., 2020): 



 

12 

 

Figure 1. Broad definitions of energy poverty 

Until last decade, energy poverty was a rather neglected topic in the scientific community and energy 

policy. Energy policy discussions and publications on energy and technology used to focus on modern 

technologies and innovations, while everyday technologies that impact most of the people were often 

overlooked. In the first decade of the 21st century there were only 8 per cent of papers in the top 

scientific energy journals that at least to some extent discussed energy poverty. This challenge was 

also not adequately addressed in the policy agenda (Sovacool, 2014). For example, UN Millenium 

Development Goals (United Nations Millennium Development Goals, n.d.), presented in 2000, did 

not tackle energy poverty or any related challenges, even though energy poverty and energy 

deprivation are seen as some of the main challenges to development. The situation changed in the 

second decade of the 21st century. In 2011, the International Energy Agency and some of the UN 

institutions included a discussion on energy poverty and its challenges in the World Energy Outlook 

(IEA, 2012). In 2012, the UN declared that year ‘International Year of Sustainable Energy for All’. 

This increased focus on energy poverty and related questions in policy discussions resulted in 

increased interest in the topic in the scientific community. Since then, numerous organisations and 

scholars focused on better defining and understanding energy poverty, including its causes, potential 

measurements, and different ways to tackle it (Sovacool, 2014). 

In the EU context, in 2018 European Parliament and Council’s regulation on the Governance of the 

Energy Union and Climate Action highlighted the urgent need to better define and understand the 

energy poverty (European Parliament & The Council of the European Union, 2018). Hence, while 

there is no EU-wide consensus on the definition of the energy poverty, several recent policy 

documents touch upon this issue. Electricity Directive mentions this problem and highlights the need 

to calculate and measure which households can be considered as vulnerable costumers. It proposes 

that such calculation could include several criteria, namely ‘'low income, high expenditure of 

disposable income on energy, and poor energy efficiency’ (European Commission, 2019). 

Commission Recommendation on energy poverty presents specific recommendations for the Member 

States on how to tackle the causes of the energy poverty. They include development of a systematic 

approach to the liberalisation of energy markets, use of specific indicators to better understand and 

assess energy poverty, adoption of complex and comprehensive approach to energy poverty and 

introduction of social policy measures and energy efficiency improvements (European Commission, 

2020). Energy Efficiency Directive, issued by the European Commission in 2021, not only outlines 

the measures for increasing energy efficiency, but also highlights the incentives to address energy 

poverty. It stresses the need to address energy poverty when striving for energy efficiency and 
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suggests that increasing energy efficiency is one of the most effective measures to tackle energy 

poverty (European Commission, 2021). 

While energy poverty generally relates to the inability to meet energy needs, the understanding of 

this problems differs depending on a country, region or social group in question. Cultural norms and 

consumer preferences may significantly impact energy needs and the way these needs are satisfied 

(Nussbaumer et al., 2012). The issue is also understood very differently in developing and developed 

countries. In developing countries, energy poverty relates to both affordability and structural energy 

coverage, while in developed countries the energy affordability is considered as the most important 

challenge and energy infrastructure often has secondary importance (Ruiz-Rivas et al., 2022). Indeed, 

a study focusing on relationship between low-carbon energy and energy poverty in China and 

Germany presents energy poverty index (EPI) and indicates that while in China energy poverty is 

concerned with both affordability and access, in Germany energy affordability is the main concern 

(Bonatz et al., 2019). The understanding of energy poverty also differs in colder and warmer regions. 

In colder regions, energy poverty is closely linked to the necessary heating and household’s ability to 

ensure it, while in warmer regions it is less relevant (Ruiz-Rivas et al., 2022).  

The definition of energy poverty may also be understood in general or context-specific terms. 

Generally, it could be understood as deprivation of energy services. This general definition usually 

considers internationalisation of energy markers and policies aiming to mitigate climate change. 

Country- or context-specific definition of energy poverty allows to consider various specificities and 

nuances of energy poverty in a given context. The use of both of these definitions may have its 

advantages and disadvantages. General definition allows for comparison between countries but may 

fail to capture energy poverty issue in specific national contexts.  Context-specific definition limits 

overgeneralisation of the energy poverty risk and aids national policy makers in effectively addressing 

energy poverty in their specific national context, but may complicate international comparison and 

generalisation (Sokołowski et al., 2019). 

1.1.2. Energy poverty in the light of green transition  

Energy market around the world is slowly changing due to the changes in the availability of different 

resources and the climate change concerns. Traditional energy sources such as coal are being used 

less, while the use of renewable energy resources is becoming more prominent. Already in 2010, 

United National Development Programme in their Human Development Report urged national 

governments to assess their energy pricing. They argued that the price should take into account the 

environmental costs of using conventional energy resources, for example, fossil fuels. The report 

argued that this pricing would be an incentive for the consumers to change their behaviour and 

improve their energy efficiency (UNDP, 2010). Consequently, these changes in energy consumption 

habits and trends may also affect energy poverty. However, the focus on causal link between clean 

energy and energy poverty is rather recent in academia. This section presents an overview of the main 

positive and negative effects of green transition on energy poverty. It highlights that while transition 

towards renewable energy may reduce energy poverty, especially in the long-term, premature 

transition, which is not accompanied by well-thought-out policies, may bring some negative 

consequences for the most vulnerable groups in society. 

Influence of transition towards more renewable energy on energy poverty can be assessed through 

analysing the effect of both energy poverty and use of renewable energy on other economic and social 
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aspects. For example, a study on the connection between energy poverty and development outcomes 

assesses the effect of both energy poverty and renewable energy on development outcomes, such as 

life expectancy, education, income, and similar. Thee authors of the study found that the transition 

towards renewable energy to some extent compensates the negative effects of energy poverty on 

development outcomes (Adom et al., 2021). A study focusing on a causal relationship between 

transition towards low-carbon energy and energy poverty in China finds significant bidirectional 

causality between use of low-carbon energy transition and reduction of energy poverty. The study 

highlights that transition towards low-carbon energy indirectly reduces energy poverty through 

increased availability of energy services, improved cleanness of energy consumption, strengthened 

energy management systems, and improved efficiency and affordability of energy (Dong et al., 2021). 

While some existing studies point to positive effect of wider use of renewable energy on energy 

poverty, green transition also may have some negative effects on energy poverty. This negative effect 

often depends on the policies that are implemented to support green transition. The studies show that 

the policy makers often have to compromise between energy security, sustainability and affordability. 

The environmental concerns and climate change motivated the policy makers to focus on a rapid 

transition towards renewable energy, which, in some cases, may compromise energy security, 

especially if the demand for energy is increasing (Hussain et al., 2023). Not everyone can afford more 

efficient unconventional energy sources and reduction of availability of conventional energy 

resources, such as fossil fuels, or increase in their price may heighten the vulnerabilities of the poor. 

A study on climate policy in Europe finds that poorly designed climate policy measures and premature 

green transition in energy sector, especially coupled with increasing energy prices, may exacerbate 

energy poverty trap (Belaïd, 2022). A study analysing effects of Hungarian National Energy and 

Climate Plan on energy poverty illustrates how the inability of the Plan to address the drivers of 

energy poverty and vulnerabilities of the groups heavily relying on solid fuels may result in an 

increased energy poverty risk (Bajomi et al., 2021). A study on low-carbon development in Germany 

and China also finds that transition from traditional energy sources towards renewable energy sources 

may result in higher energy costs, which are especially burdensome for the most vulnerable groups 

(Bonatz et al., 2019). The already mentioned study on connection between energy poverty and 

development outcomes also finds that even though most negative effects of the transition towards 

renewable energy on development indicators are likely to disappear in the long-term, increased 

energy poverty may be long-lasting (Adom et al., 2021).  

The existing literature shows that transition towards renewable energy may worsen or improve the 

situation of energy poverty depending on a specific economic and political context. Hence, this 

connection should be assessed in a case-by-case manner. This study aims to investigate this 

connection in the EU Member States by presenting green energy poverty indices that evaluate energy 

poverty while taking into account the shift towards renewable energy consumption. 

1.2. Energy poverty in the EU 

European Pillar of Social Rights Action Plan considers energy to be one of the essential services to 

which each person in the EU should be entitled to (European Commission, n.d.-b). Still, energy 

poverty is a serious challenge. According to the available data, the percentage of Europeans who 

could not afford keeping their home adequately warm has been gradually decreasing in past few years, 

after the increase from 2010 to 2012 (Eurostat, n.d.). The change in the inability to keep home 

adequately warm is seen in the Figure 2 below. However, this does not necessarily mean that the 
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situation is improving. The share of individuals not being able to keep their home adequately warm 

in 2018, 7.6 % , translated into 34 million EU residents not being able to keep their home adequately 

warm (European Commission, 2020). In 2020, this number increased to 36 million (Widuto, 2023).  

The situation is also significantly different across the Member States. The Figure 2 below presents 

the percentage of citizens who were not able to keep their home adequately warm in the EU. The 

graph also presents the best and worst performing countries – Finland and Bulgaria, respectively. In 

2021, Finland had the lowest percentage of this indicator and Bulgaria had the highest. In 2010, the 

difference between these two countries was above 65 percentage points and in 2021 it was above 20 

percentage points (Eurostat, n.d.). This indicates that the energy poverty is varying significantly 

across the Member States and in some countries the situation is even more dire than the EU average 

indicates. 

 

Figure 2. Inability to keep home adequately warm in the EU, Finland and Bulgaria (Eurostat, n.d.) 

The energy poverty in the recent years has been fuelled by increasing energy prices and uncertainty 

in the energy supply. In the past years, the European Union and its Member States have experienced 

several challenges that contributed to increasing energy prices over the continent. Firstly, the climate 

change is causing more extreme changes in weather, with the summers in the EU Member States 

getting hotter and winters getting colder. This increases the demand for energy throughout the year 

as the EU citizens are trying to mitigate the extreme weather conditions. The change in weather also 

negatively affects the ability of the EU Member States to produce its own energy from renewable 

sources. For example, due to the summer heatwaves, most of the hydropower sources across Europe 

often become usable in that season. Additionally, energy prices are increasing as a result of the recent 

COVID-19 pandemic recovery and the consequences of Russia‘s war in Ukraine (Rao, 2022). The 

gas supplies by Russia were deliberately reduced, which caused the energy prices, specifically gas 

prices, to increase significantly (European Council, 2023). These challenges result in volatile energy 

prices, which, together with various socioeconomic factors associated with poverty, cause wider 

energy poverty (Widuto, 2023). 
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In the light of these challenges, several policy measures have been implemented to tackle energy 

poverty and its causes. The figure below presents the most important EU policy initiatives that aim 

to reduce energy poverty and ensure the citizens’ entitlement to essential energy services. 

 

Figure 3. EU policy initiatives that aim to tackle energy poverty (European Commission, n.d.-a) 

To addition to the policies presented above, emergency regulation was introduced in the late 2022. 

The emergency regulation aimed to mitigate the negative effects of energy crisis on EU citizens and 

businesses and in that way also indirectly affected energy poverty. The regulation applied from 

December 2022 to March 2023 and complemented existing EU initiatives aiming to secure EU’s 

energy supplies. The regulation also aimed to create favourable conditions for the Member States to 

support the most vulnerable individuals and companies in the light of skyrocketing energy prices. 

The regulation presented three measures (European Council, 2023): 

 

Figure 4. Measures included in emergency regulation (European Council, 2023) 
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Together with the mentioned emergency regulation, the EU institutions also introduced REPowerEU 

plan, which is a long-term strategy of the EU for tackling the energy market disruptions caused by 

Russia’s war in Ukraine. The plan outlines the actions that will be taken to achieve Europe‘s 

independency from Russian gas and oil before 2030. While the plan does not directly target energy 

poverty, it affects it through the changes it introduced to the European energy market. The plan 

focuses on three main action areas (European Commission, 2022): 

 

Figure 5. Action areas of REPowerEU action plan (European Commission, 2022) 

The REPower EU plan relies on a significant scaling-up of renewable energy sources as it is hoped 

that clean energy transition will increase EU’s energy independence and contribute to the reduction 

of energy prices over time. The plan also heavily relies on introduction of energy efficiency measures 

by both businesses and individual consumers, which should be identified and promoted by the EU 

together with international organisations, Member States and local authorities (European 

Commission, 2022). 

Both the REPower EU plan and the emergency regulation illustrate a wider long-term EU strategy to 

move towards more sustainable and clean energy market. This strategy is a part of the envisioned 

European green transition, which main objectives include reduced green gas emissions through the 

promotion of circular economy, more efficient use of resources, including energy resources, and use 

of renewable energy sources. The envisioned green transition can be seen as the main strategy in 

addressing the current energy crisis in the EU (Hoyer & Küüsvek, 2022). This transition is envisioned 

through the European Green Deal, the action plan which addresses climate and environmental 

challenges. The Green Deal targets the whole EU economy with a goal to facilitate EU’s transition 

towards a modern, resource-efficient and competitive economy. Its main objectives include “no net 

emissions of greenhouse gases by 2050, economic growth decoupled from resource use, and no 

person and no place left behind” (European Commission, 2019).  

While the green transition and, consequently, the Green Deal targets the whole economy and does 

not directly tackle energy poverty, it transforms the environment in which it develops and influences 

habits and choices of individuals. The Green Deal action plan increased EU’s ambitions for 

greenhouse gas emission reduction targets for 2030 and 2050. According to the increased targets the 

EU should reduce its greenhouse gas emissions by at least 50% by 2030 and reach climate neutrality 

by 2050. The Green Deal also focuses on increasing the supply of clean, affordable and secure energy, 
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which means moving towards renewable energy sources (European Commission, 2019). As part of 

the Green Deal and REPower EU, in March 2023 the EU’s renewable energy target for 2030 was 

increased to 42.5% with an ambition to surpass it and reach 45% (European Commission, 2022). The 

Green Deal also foresees drastic changes in construction, transport, agriculture, and other industries, 

with the focus on circularity, sustainability, resource and energy efficiency. It also introduces a shift 

in national budgets and financing priorities, shifting away from harmful subsidies towards green 

priorities (European Commission, 2019). This may result in the changes of the prices for different 

energy sources and may seriously affect the energy consumption habits of some groups (UNDP, 

2010). Moreover, as already mentioned, if the green transition is introduced to energy market 

prematurely and is coupled with increasing energy prices, which have been observed in the EU in the 

light of COVID-19 and Russia’s invasion to Ukraine, such situation may contribute to energy poverty 

trap (Belaïd, 2022). 

This overview of energy poverty situation in the EU and its relevant changes highlights the need to 

better understand energy poverty and how it is affected by the green transition. As the presented 

policies, together with the national policies in the EU Member States, are causing a shift in a way 

energy is produced and consumed, the daily habits of energy consumers (both individuals and 

business) are also likely to change. The European Green Deal envisions just transition leaving no one 

behind. It aims to ensure that its objectives are achieved in the least burdensome and most effective 

way, following the oath to do no harm. It also foresees specific actions to address energy poverty and 

its risk during the green transition (European Commission, 2019). However, changes in energy supply 

and consumption trends moving towards more renewable energy sources may affect various groups 

in society differently, especially considering the most vulnerable groups. Hence, it is important to 

find a tool to evaluate energy poverty in the context of these changes. The effect of a shift towards 

renewable energy on the most vulnerable households should be closely monitored and this shift 

should be considered when assessing energy poverty. This study aims to provide a measurement of 

energy poverty that considers this change in energy market. This could help the policy makers better 

understand how the most vulnerable groups in society are affected by the changes in energy supply 

and ensure that the ‘leave no one behind’ aim of the European Green Deal is achieved.  

1.3. Existing measurements for energy poverty 

Energy poverty is a complex challenge. Hence, it may be hard to assess it using a single indicator and 

it is usually measured by a complex index that takes into account several different indicators. 

However, similarly as with the definition of energy poverty, one widely accepted indicator or index 

does not exist. Several academics focusing on the issue present their own indices that better capture 

specific situation that individuals and households face. The indices focus on different data, different 

methodologies and different scopes. Detailed overview of the already computed energy indices is 

presented in the literature review synthesis matrix, available in Appendix 1. The Figure 6 below 

presents a summary of this literature review synthesis, with an overview of the differences of the 

existing energy poverty indices.  
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Figure 6. Overview of different scopes, methods and indicators of existing energy poverty measurements 

As it can be seen, existing indices focus on different scopes, use different methods and indicators, 

depending on their aim and objective. Different methodological approaches are used to construct the 

indices, including relying on expert opinion to assign weights to different measurements of the index 

or using mathematical approaches for assigning weights. This section discusses the articles presented 

in the literature review synthesis matrix and presents different approaches to measuring energy 

poverty, existing academic studies that are considering use of renewable energy resources when 

measuring energy poverty, and the main mathematical tools to create socio-economic indices, such 

as energy poverty. 

1.3.1. Existing indices for energy poverty 

In 1991, B. Boardman proposed the 10% indicator for energy poverty. According to this 

measurement, energy poverty is defined as a situation when a household spends more than 10% of its 

income to cover energy costs (Boardman, 1991). This indicator is still often used. However, its several 

shortcomings have also been highlighted. For example, this measurement does not account for 

different expenditure on energy due to different climate. Hence, the researchers have further improved 

indicators for energy poverty and three main types of measurements can be identified (Kahouli & 

Okushima, 2021). These types of measurements include: 

- Objective factual measures that are based on observable and measurable criteria and are 

connected to consumption theory. Such measures consider the amount a household spends to 

meet their energy needs. Such measures include already mentioned 10% indicator (Kahouli 

& Okushima, 2021). 

- Subjective self-reported measures that rely on personal opinions and interpretations. Such 

measures are constructed using self-reported answers of the households to the questions about 

meeting energy needs, such as warmth of the home, and difficulties to cover energy costs that 

are asked in different social survey (Kahouli & Okushima, 2021). 
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- Composite indices including several individual indicators that can be seen as a compromise 

between one-dimensional indicators and the complex nature of energy poverty that needs to 

be accounted for (Okushima, 2017). Such measures tackle the main shortcomings of the one-

dimensional indicators, as already mentioned 10% indicator. At the same time, they aim to 

present the complex nature of energy poverty through a set of sub-indicators condensed into 

an easily understandable indicator (Kahouli & Okushima, 2021). 

The objective factual measures, as mentioned 10% indicator, are rather simple and, consequently, 

widely used. However, they are often criticised. For example, an author of a study assessing the fit of 

energy poverty measures highlights several methodological challenges when assessing energy 

poverty. These challenges include accounting for diversity of domestic energy services, considering 

housing costs, equivalising energy expenditures and household incomes, and issues regarding 

representativeness of data, among others. These issues cannot be addressed when using only one 

metric. Hence, such measurements fail to capture a complex nature of energy poverty (Herrero, 2017). 

Moreover, while the single indicators that are objective factual measures can be easily interpreted, 

they present only a narrow picture of energy poverty (Nussbaumer et al., 2012). Another study that 

analyses the usefulness of energy-access-consumption matrix as energy poverty indicator highlights 

the arbitrariness of single-metric measures (Pachauri & Spreng, 2011). There is currently no 

consensus on what are the minimum energy needs of a household and the process which could help 

derive the definition of those needs (Culver, 2017).  

Subjective self-reported measures, which are based on the household responses to various survey 

questions are also seen controversially (Herrero, 2017). Some academics argue that such indicators 

effectively illustrate a perceived energy poverty and may provide valuable explicit insights into 

energy poverty that objective factual measures often lack (Rademaekers et al., 2016). At the same 

time, the reliability and accuracy of self-reported indicators are often questioned as these indicators 

are based on subjective understanding of comfort and satisfaction of energy needs (Herrero, 2017). 

The more disadvantaged individuals often tend to have lower expectations regarding their comfort 

and needs. They may also be ashamed of their situation and not report their struggles due to social 

bias (Eurostat, 2009, p. 200). Hence, the self-reported measures are subjected to ‘denial of reality 

bias’, meaning that the disadvantaged individuals may deny not being able to meet their energy needs. 

The self-reporting may also be affected by cultural differences in understanding the level of comfort 

needed and the acceptable temperature at home. These cultural differences may result in a situation 

where the same value of a measurement means different outcomes in different countries. Hence, such 

measurements may not be reliable in cross-country analyses (Nussbaumer et al., 2012). Moreover, 

while subjective self-reported measures may present an overview of the perceptions towards the 

situation, they often lack the depth needed for a more complex investigation of energy poverty 

(Herrero, 2017). Hence, it is often proposed that the subjective self-reporting measures are used 

complementarily to more objective factual measures (Rademaekers et al., 2016). 

Composite indices, which aim to illustrate a complex nature of energy poverty, but also provide a 

simplicity of having one condensed value, are, at least partly, addressing the shortcomings of both 

objective factual and subjective self-reported measures. As highlighted in existing studies on 

multidimensional energy poverty indices, these indices aim to close or at least reduce a gap between 

theoretical and operational definitions of energy poverty. Multidimensional energy poverty indices 

capture different dimensions of energy poverty and can take into account complex and nuanced 

theoretical aspects of energy poverty (Pelz et al., 2018). Such indices combine several indicators that 
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tend to be linked to energy poverty. For example, a study on home-heating energy poverty risk in 

Ireland proposes a composite index that utilises 10 indicators related to home heating and energy 

poverty. It accounts for specific characteristics of buildings, households and heating systems. Such 

index helps better understand the situation specific households face and in that way illustrates the 

complexity of energy poverty (Kelly et al., 2020).  

A paper analysing energy poverty measurements across the EU proposes a Compound Energy 

Poverty Indicator (CEPI), which combines several factors to energy poverty. CEPI assesses three 

self-assessed variables referring to living conditions, namely inadequate warmth, inadequate 

coolness, and inadequate level of light. The indicator additionally considers arrears and leaks. The 

inadequate level of light is given a weight of 0.1, while other indicators are given the weight of 0.2 

each. This indicator, according to the authors, offers a more complex overview of energy poverty on 

national levels across the EU. However, the authors also acknowledge that CEPI does not account for 

some of less visible aspects of energy poverty and does not consider climate differences across 

regions (Maxim et al., 2016).  

S. Okushima in a paper published in 2017 presented a multidimensional energy poverty index (MEPI) 

that aims to evaluate energy poverty in developed countries from a multidimensional angle. It 

considers three factors related to energy poverty that are most relevant in developed countries. These 

factors include household income, energy efficiency of the housing, and energy costs. The author 

argues that while energy poverty is generally divided into availability and affordability of energy, 

availability challenges are more relevant in developing countries and affordability is the main concern 

in developed countries. Hence, the proposed index focuses on the challenges that are most relevant 

in developed countries and are related to energy affordability (Okushima, 2017). 

S. Gupta, E. Gupta and G. K. Sarangi presents a Household Energy Poverty Index (HEPI) that was 

derived using principal component analysis (PCA). The index focuses on India and is constructed 

following a multi-dimensional energy poverty framework. The authors use 15 indicators related to 

different dimensions of energy consumption and economic welfare of households. The indicators 

belong to five groups – living standards, affordability of a household, indoor air pollution, use of 

clean fuels, and geographical accessibility. The authors use PCA to derive the weights for the used 

variables. The results are used to compute a value of HEPI. The index is then used to group 

households into four groups depending on their energy poverty and the geographical distribution of 

these groups are used to better understand energy poverty in the country (Gupta et al., 2020). This 

complex index with the weights derived from PCA can be more useful than individual indicators as 

it presents a value that takes into account data variance and different aspects of complex issue of 

energy poverty. A study focusing on energy poverty in Sri Lanka also uses principal component 

analysis to derive the weights of indicators for Multidimensional Energy Poverty Index. The authors 

of the study consider indicators on access to electricity and ownership of electrical devices (fridge, 

computer, and others) when assessing energy poverty. The authors found that the variables that 

mostly contribute to the energy poverty index value are use of modern cooking fuel, ownership of 

computer, and ownership of a fridge (Jayasinghe et al., 2021). This highlights the benefits of using 

PCA for combined energy poverty indices – the method allows to understand which indicators are 

most important for energy poverty without the potential biases that may come from the weights 

derived from expert opinion. 
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A paper exploring a nexus between energy poverty and energy efficiency propose using data 

envelopment analysis (DEA) and entropy method to capture a complex nature of energy poverty and 

its effect on energy efficiency. In the paper, the authors explore indicators of energy poverty, energy 

efficiency, and socio-economic wellbeing of a country. They find that energy poverty negatively 

affects socio-economic indicators in the country. The link between energy poverty and energy 

efficiency is also presented. It is highlighted that inefficient energy use contributes to higher energy 

poverty. The authors also present potential policy changes to address energy poverty through energy 

efficiency. The suggested policy changes include holistic policy framework that focuses on 

supporting low-income households and policies to reduce energy consumption of residential sector 

to improve energy efficiency (Li et al., 2021). Use of DEA and different dimensions of indicators 

allows the authors of the study to not only measure energy poverty, but also provide much needed 

context and potential steps forward, which is not always possible when using only a single indicator. 

S.Kahouli and S. Okushima in their study explores a direct measurement approach that bases 

identification of energy poverty of a household directly on an actual use of domestic energy services 

(Kahouli & Okushima, 2021). This composite index addresses the shortcomings of the previously 

presented Compound Energy Poverty Indicator. However, it may less clearly reflect the subjective 

perception towards energy poverty. The measure focuses on two dimensions – use of energy services 

and income level. It also addresses the differences in energy needs across different regions. The 

measurement defines a specific level of energy use as a poverty line and considers the households 

that fall behind the defined poverty line as energy poor. In order to define a specific level of energy 

use, the measurement classifies the households to types according to factors relevant to the energy 

use and structural management of energy. These factors include different socio-demographic factors, 

such as whether a household includes the elderly, dwelling, separating the households living in 

apartments and in detached houses, and climate. The measurement is superior to a uniform threshold 

as it better assesses specific energy needs of households living under different conditions. For 

example, the poverty threshold is higher in colder regions where households tend to spend more on 

energy use. It also considers the structural management of energy use, specifically the energy sources 

used, as some energy sources may have poverty reduction effect (Kahouli & Okushima, 2021). 

While the composite indices tackled some of the problems arising from using single metric objective 

factual measures or subjective self-reported measures, these indices also have some shortcomings. A 

study exploring European energy poverty metrics analyses the measurement of energy poverty from 

the metrics and measurement research side and energy poverty research (socio-political and economic 

research) side. The authors of the study note that from the metrics side any set of indicators pose a 

risk of silencing some of the aspects of the measure that are hard to quantify and amplifying the 

others. From energy poverty research side, there is an urgent need for an indicator that sufficiently 

contextualises the complex energy use issues. The authors propose an analytical framework to assess 

energy poverty through five dimensions. These dimensions include historical trajectories, which can 

be considered key characteristic of metrology shaping energy poverty metrics, data flattering and 

contextualised identification, that enact metrology, and new representation and policy uptake, that 

influences the reconfiguration of the metrics. The authors of the study stress the problematic act of 

measurement, noting that energy poverty, both its definition and representation, depends on what is 

being measured (Sareen et al., 2020).  

Other studies also find that multidimensional nature of energy poverty poses a challenge of choosing 

the indicators that both capture the complexity of the issue and allow straightforward application of 
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the index (Sokołowski et al., 2019). Most of the indices face a challenge of combining different 

dimensions and levels of different indicators into a single index to measure energy poverty (Pelz et 

al., 2018). One of the main questions when constructing a specific index is the weights of different 

indicators used. The rational weighting strategy that is theoretically sound is very difficult to 

construct. Most of the strategies tend to be arbitrary and value driven. Hence, weighing and 

aggregation of an index should be non-compensatory, and the weights should be used taking into 

account the meaning of coefficients (Nussbaumer et al., 2012).  

Other studies highlight the lack of comparability of the values of different multi-dimensional energy 

poverty indices. As already mentioned, energy poverty is a complex issue of a multi-dimensional 

nature. However, most of the recent energy poverty measurements are too complex. Hence, they 

cannot be operationalised at the global level and cannot always be applied to different national 

contexts. This highlights the need for selection of key energy poverty indicators and dimensions that 

then could be adapted to specific national contexts (Pelz et al., 2018).  Moreover, the study highlights 

that while a specific index may suit one region, it may not properly measure and highlight the most 

pressing aspects of energy poverty in another region (Nussbaumer et al., 2012). 

Another important challenge with composite energy poverty indices is availability of sufficient 

quality data. To produce a good quality internationally consistent energy poverty measurement 

framework, data should be collected regularly, following the same data collection framework 

(Pachauri & Spreng, 2011). However, regular and complete data on energy poverty is rarely available. 

The framework for the data collection also often differs from region to region or even from country 

to country. Reasons for that is that energy poverty is a culturally sensitive and private issue. It is also 

socially and temporally dynamic. Hence, proper evaluation of this concept requires specific data, 

which is often lacking. This limits the ability of researchers and countries to monitor energy poverty 

(Thomson et al., 2017). This challenge related to data could be addressed through the implementation 

of specific surveys dedicated to assessing energy poverty. However, such surveys are often expensive 

and difficult to carry out on a large scale (Pelz et al., 2018). Moreover, as the energy poverty is a 

private and sensitive issue, if survey collected self-reported data, the results may be biased and hardly 

comparable on a cross-country level. This highlights the importance of critically assessing the 

available data when constructing an energy poverty index. 

1.3.2. Construction of energy poverty index taking into account green transition 

The overview of different poverty energy measurements points to the importance of complexity and 

specific context when assessing energy poverty. Hence, with the shift towards renewable energy in 

the EU, it is evident that this transition should be better considered when evaluating energy poverty. 

This section presents the existing efforts to take into account green transition when measuring energy 

poverty. It illustrates the progress made so far considering perspectives of the EU and other regions. 

Energy indicators can be seen as closely connected to other sustainability indicators such as health, 

education, safe food and drink, as energy supply is necessary to ensure their availability (Pachauri & 

Spreng, 2011). Hence, several energy-based sustainability indicators have been developed. The 

Atomic Energy Agency, together with other UN agencies, presented guidelines for energy indicators 

for sustainable development. These guidelines recommend a list of energy indicators in social, 

economic and environmental dimensions that could help measure sustainable development. The 

mentioned three dimensions are then divided into different themes, such as equity and health, among 
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others, and at least one energy indicator is presented for each theme. The energy indicators for each 

theme are chosen from a supply side and allows comparison between countries (IAEA et al., 2005). 

Energy-related sustainability indicators became especially relevant when the concerns about negative 

impact of excessive energy use became more prominent in global politics scene. Consequently, 

academics calculated an upper and lower limit of energy use per capita that is necessary to meet a 

decent standard of living. These limits were very close to each other, around 2000 W per capita per 

year. It was hoped that this indicator would provide some guidance for individual countries and 

regions in their development process (Pachauri & Spreng, 2011). 

More recent studies on energy poverty tend to focus more and more on both availability of physical 

energy infrastructure and accessibility of different energy sources (Siksnelyte-Butkiene et al., 2021).  

This often includes a focus on a shift towards clean energy or a focus on climate change mitigation 

policies through addressing energy consumption. For example, a study on the EU climate change 

mitigation measures addressing energy poverty present a framework linking energy poverty and 

climate change mitigation measures. It highlights the importance of well-targeted climate change 

mitigation policy packages. The authors of a study also stress the need to link social, regulatory, 

economics, financial and behavioural barriers that the households face when implementing climate 

change mitigation measures, for example shifting towards clean energy (Streimikiene et al., 2020). 

A study on energy poverty evaluation in the EU countries presents an approach to evaluating energy 

poverty that addresses energy demand, shift towards clean energy, and energy justice. The study 

proposes energy poverty framework that is based on three pillars. Firstly, it considers demand of and 

access to energy, focusing on society. Second pillar focuses on administration that should ensure 

accessibility to different energy sources and alignment between energy market and import policies of 

a country. Third pillar is concerned with sustainability and the level of available renewable energy 

sources. Such framework considers accessibility, affordability and sustainability. The study applied 

this framework to evaluate energy poverty in the EU Member States by weighing the criteria with 

Threshold-based Attribute Ratio Analysis method and evaluating the countries using Measurement 

Alternatives and Ranking according to Compromise Solution methodology. However, the authors of 

the study acknowledge the ambiguity of the proposed framework that stems from the complexity of 

energy poverty and related problems (Hasheminasab et al., 2023). 

A study addressing the nexus between energy poverty and energy insecurity with the role of various 

environmental concerns, including climate change, presents a set of indicators that can help evaluate 

energy poverty in the light of environmental concerns. The authors of the study take into account 

various indicators that are often associated with energy poverty, including social, economic, energy 

and environmental performance indicators. They use data envelopment analysis (DEA) to define the 

nexus between energy poverty and environmental performance. The derived composite indicator 

allows to measure energy, economic, social, and environmental performance index (EPI). The new 

index assesses whether countries are able to tackle energy poverty question without compromising 

environment and contributing to climate change (Ehsanullah et al., 2021). 

While the studies presenting specific energy poverty indices and measurements accounting for a shift 

towards more renewable energy in the EU are rather scarce, there are several studies focusing on 

other countries, especially China, aiming to integrate green transition to poverty measurement. For 

example, study analysing the role of low-carbon energy transition in mitigating energy poverty in 

China presents a composite energy poverty index that takes into account natural gas consumption. 



 

25 

The authors consider energy consumption cleanliness, energy service availability, energy 

affordability and efficiency, and energy management completeness. The study allows to better 

understand the effect of energy cleanliness and use of different energy sources on energy poverty. 

However, the study also highlights a few shortcomings of the index. It notes that the index does not 

consider nonlinear link between energy poverty and natural gas consumption (Dong et al., 2021) 

(Dong, et al., 2021). Another study focusing on China employs 28 indicators that can be grouped in 

three categories – energy service availability, residential energy efficiency and affordability, and 

cleanliness of energy consumption and generation. These indicators also capture policy factors 

relevant in China. It allows the authors to capture the complexity of energy poverty and also include 

green transition to their considerations. The authors find a clear link between transition towards clean 

energy and improvement in energy poverty. They also highlight the importance of other factors that 

contribute to the observed improvement (Liang & Asuka, 2022). 

This overview of the existing studies that connect energy poverty with green transition and, more 

specifically, with the use of the renewable energy resources, highlights some of the potential gaps in 

the existing academic research on the nexus between energy poverty and green transition. While 

several indices already exist, they are not always easily interpretable. Most of the indices consider a 

high number of indicators that touch upon a large number of issues related to both energy poverty 

and green transition. This study aims to present an index that is more concrete and easier to interpret. 

1.4. Main takeaways from the literature review 

The literature review highlights the lack of clear definition of energy poverty and lack of consensus 

on how it should be measured. It is clear that the issue is multifaceted and its measurement will always 

have to depend on the context in which energy poverty is analysed. As presented, energy poverty is 

often defined as a situation where a large share of income is spent on energy needs or as an inability 

to meet a specific energy consumption level. Energy poverty is measured using objective factual 

measures, subjective self-reported measures, and composite indices that often combine the different 

objective and subjective indicators. Literature review revealed that all of these methods have their 

specific advantages and disadvantages. Therefore, the selection of measurement depends on 

circumstances in which energy poverty is assessed and specific objectives of that assessment. 

Considering mathematical methods that are used for composite energy poverty indices, literature 

review presented two methods – Principal Component Analysis and Data Envelopment Analysis. 

Both of these methods have slightly different objectives. PCA aims to simplify the complex reality 

and present different variables in one indicator. The derived index can present complex dataset in one 

value and can be used for comparison between countries. DEA, on the other hand, evaluates each 

observation individually and instead of aiming to just present the situation at hand it also provides 

recommendations for improvement.  

The literature review also presented the current situation of energy market and energy poverty in the 

EU. It is clear that the energy market in the EU is rapidly changing. Energy prices are fluctuating due 

to different problems, including COVID-19 and Russia’s war in Ukraine. These challenges also bring 

more uncertainty to the energy market. At the same time, the EU is focusing on green transition that 

promotes increased use of more sustainable energy sources. However, this transition is rarely 

considered when assessing energy poverty. Hence, there is a need for a clearly defined energy poverty 
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index that takes into account the progress towards green transition. This study presents such index 

and provides more information for policy makers on the current situation and potential steps forward. 

To sum up, the literature review, presented above, highlights the existing gap in academic research 

on energy poverty and green transition nexus, which is the first task of this study. The literature review 

presents the existing dilemmas about the definition of energy index and the ways this problem is 

measured ad assessed. The literature review also presents the overview of energy poverty in the EU, 

which points to an urgent need for an index that this study is presenting. 
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2. Methodology and data 

This section presents information about software that is used in the study, describes in more detail 

statistical approaches used for constructing the indices (PCA and DEA) as well as methods to validate 

them. Data used in the study is also presented in this section. 

2.1. Necessary software 

During this study the following programming languages were used: R (in RStudio environment), 

Python (in JupyterLab environment). 

RStudio is an integrated development environment that supports R and Python. For this study, RStudio 

was used for computations using R. RStudio was selected for using R due to the personal preferences 

of the author of the study. R is a programming language that is usually used for statistical analysis, 

computing and data visualisation. This programming language offers its user a variety of statistical 

and graphical techniques and can produce high quality plots. R language is open source and is 

available as free software (The R Foundation, n.d.). It is popular in academia, specifically for data 

science and data analytics. In this study, following R libraries were used: dplyr, arules, rrcov, 

tidyverse, ggplot2, ggthemes, plyr, dear, and ggridges. 

JupyterLab is a web-based integrated development environment that supports over 40 programming 

languages, including R and Python. JupyterLab was selected for using Python due to the personal 

preferences of the author of the study. Python is a programming language that has recently become 

widely used for data analysis tasks. However, it is a general-purpose programming language that can 

be used for different occasions. Python supports object-oriented, functional, structured, procedural 

and reflective programming paradigms. With a vast number of developed libraries, Python can be 

used for statistical computations, machine learning, and data visualisation, among other purposes. In 

this study, following Python libraries were used: pandas, numpy, Eurostat, ydata_profiling, sci-

kitlearn, matplotlib, scipy, seaborn, folium, and json. 

2.2. Construction of the index 

This study uses several different methods that are usually applied for the creation of the 

socioeconomic indices. They will be used to compute green energy poverty index. The tested methods 

were selected based on the literature review. The author of this study uses statistical approaches that 

have been used in recent studies exploring different energy poverty and socio-economic status indices 

and have proved to be suitable for this task. These methods are explained below and include the 

following: 

1. Principal Component Analysis; 

2. Data envelopment analysis. 

2.2.1. Principal component analysis 

2.2.1.1. Usefulness of the method for index construction 

In early 2000s Principal Component Analysis (PCA) has become one of the most regularly used 

methods to construct socio economic indices (Vyas & Kumaranayake, 2006). For example, PCA was 

used to create a living standards index for World Bank (Gwatkin et al., 2000). This approach was also 
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used to modify UNDP Human Development Index. Previously, Human Development Index used to 

be constructed by a simple aggregation procedure, which proved to be inappropriate for the index. 

Hence, PCA was carried out to assign more appropriate weights to the indicators  (Lai, 2003). 

PCA can be seen as a favourable method to construct socioeconomic index for its relative 

computational simplicity. This approach allows a researcher to transform a set of variables into a 

smaller more coherent set of orthogonal factors that account for a large part of the variation among 

the original data. With PCA a researcher constructing an index can avoid most of the problems that 

often arise when using traditional methods to compute an index, such as standardisation or 

aggregation (Krishnan, 2010). These problems include seasonality, recall bias, and nonlinear 

relationships. Moreover, PCA is computationally easy compared with alternative statistical 

approaches for index creation. The index derived with PCA also facilitates comparison over time or 

between countries (Vyas & Kumaranayake, 2006).  

While PCA is commonly used for the construction of complex socioeconomic indices, the method 

also receives some criticism. For example, it is argued that the weights given to each indicators using 

PCA may fail to capture weighting preferences for each indicators for each individual case, 

individual, household, or, as in this study, country (Jayasinghe et al., 2021). Moreover, PCA 

technique is often seen as arbitrary. In most cases when constructing an index using PCA the 

methodology for choosing a number of components and selection of variables is not well defined. It 

is also important to note that the issues related to the data used will influence PCA. Hence, they should 

be considered when creating the index and interpreting its results (Vyas & Kumaranayake, 2006).  

2.2.1.2. Presentation of the method 

PCA can be described as a technique that transforms a vast number of different variables into a 

smaller set of principal components, uncorrelated orthogonal factors. These principal components 

account for variance in the dataset in the values of the original variables. Each principal component 

can be seen as a linear weighted combination of the initial variables. For example, first and zth 

principal components for the dataset with variables from X1 to Xn can be written as follows (Vyas & 

Kumaranayake, 2006): 

𝑃𝐶1 = 𝑎11𝑋1 + 𝑎12𝑋2 + ⋯ + 𝑎1𝑛𝑋𝑛           (1) 

𝑃𝐶𝑧 = 𝑎𝑧1𝑋1 + 𝑎𝑧2𝑋2 + ⋯ + 𝑎𝑧𝑛𝑋𝑛           (2) 

In the equations azn stands for the weight for the zth principal component and the nth variable (Vyas & 

Kumaranayake, 2006). 

The weights are allocated so that the principal components would be orthogonal and the first principal 

component would account for the largest share of the variation in the original variables in the dataset. 

Consequently, second principal component accounts for the maximum variation in the original 

variables that is not covered by the first principal component and is not correlated with the first 

component. Hence, all principal components are completely uncorrelated with each other and cover 

the variance in the original variables that is not covered by other components, representing different 

statistical dimensions in the original data (OECD, 2008). The figure below represents how principal 

components are located in respect to one another. 
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Figure 7. Two sequential dimensions of PCA (Vyas & Kumaranayake, 2006, p. 460) 

It is important to keep in mind that the traditional PCA is implemented under several assumptions. 

Firstly, a number of observations available should be sufficient. However, there is no consensus on 

how many observations is sufficient. Secondly, it is assumed that the selection of indicators was not 

biased. Thirdly, it is assumed that the data has no outliers as their presence may influence the 

interpretations of the analysis. When implementing PCA it is also assumed that the data is interval 

and linear, and there is multivariate normality. Finally, it is assumed that there are underlying 

dimensions that clusters of indicators share and the data is correlated (OECD, 2008).    

Even if the abovementioned assumptions are not met, PCA could still be appropriate with some 

modifications. For example, if a dataset used has outliers, robust PCA can be used instead of 

traditional PCA. Robust PCA differs from traditional PCA by a determinant it uses to decompose the 

original dataset.  

One of the robust PCA methods that is used with datasets with outliers is a robust PCA using 

Minimum Covariance Determinants estimator (MCD). In traditional PCA, the principal components 

are computed from the decomposition of covariance matrices. The decomposition depends on the 

means of original variables and covariance matrix of the dataset. This makes the analysis sensitive to 

outliers. In the robust PCA with MCD estimator, the estimator depends on a mean and covariance 

matrix of subset of the dataset with the observations that have covariance matrix with the smallest 

determinant. This makes the estimator robust to the outliers in the data (Hubert et al., 2018). 

The difference between classical and MCD estimator can be best understood through the graphic 

illustration. Figure 8 below presents the scatter plot of the data set of 59 Italian wines from the paper 

by Hubert et al. (Hubert et al., 2018). The scatter plot shows proline and malic acid quantity in all 

wines in the dataset and presents classical tolerance ellipse (in red) and robust tolerance ellipse (in 

blue).  

Classical tolerance ellipse can be described as a set of p-dimensional points x. Their Mahalanobis 

distance, which shows how far away a specific point x is from the centre of the whole data cloud, 

taking into account its shape and size, is computed as follows (Hubert et al., 2018): 

𝑀𝐶(𝑥) = 𝑑(𝑥, �̅�, 𝐶𝑜𝑣(𝑋)) = √(𝑥 − �̅�)′𝐶𝑜𝑣(𝑋)−1(𝑥 − �̅�)         (3) 
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This classical estimator using Mahalanobis distance includes most of the data points into the tolerance 

ellipse, as it is strongly influenced by contamination and cannot detect outliers in the data (Hubert et 

al., 2018). 

Robust tolerance ellipse based on MCD estimate (in blue in Figure 8 below) is significantly more 

sensitive to outliers. Robust distances are counted as follows (Hubert et al., 2018): 

𝑅𝐷(𝑥) = 𝑑(𝑥, �̂�𝑀𝐷𝐶 , Σ̂𝑀𝐶𝐷) = √(𝑥 − �̂�𝑀𝐷𝐶)𝑡Σ̂𝑀𝐶𝐷
−1

(𝑥 − �̂�𝑀𝐷𝐶)       (4) 

Where �̂�𝑀𝐷𝐶 is the MDC estimate of location, and Σ̂𝑀𝐶𝐷 is the MCD covariance estimate.  

The location estimate can be understood as a mean of the data set with h observations that have the 

covariance matrix with smallest determinant. The covariance estimate is the corresponding 

covariance matrix of the data set with the observations h multiplied by a consistency factor. This 

results in the situation where tolerance ellipse is significantly more sensitive to outliers. As it can be 

seen in the figure below, using this estimator significantly more data points are considered to be 

outliers (Hubert et al., 2018). 

 

Figure 8. Tolerance ellipses using classical (red) and MCD (blue) estimates (Hubert et al., 2018) 

As already mentioned, the MDC estimate of location and robust distances explained above are used 

in the robust PCA algorithm that was first presented by Rousseeuw & Van Driessen (Rousseeuw & 

Driessen, 1999). The algorithm first starts with a fixed number of random elemental subsets that are 

then used to construct their halfsets. After these halfsets are constructed, classical centres and 

covariance matrixes are computed and robust distances are computed for each point for each halfset 

using equation (4). After these computations, “best” halfsets are selected and the computations are 

carried out until the convergence. The MCD estimator is then based on the halfset that had the lowest 
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determinant of the covariance matrix (Nisa et al., 2006). These computations then can be used to get 

principal components that are expressed by equations (1) and (2). 

In this study, to implement the PCA method, these steps are followed: 

1. The variables that may help explain and map energy poverty in the EU are identified; 

2. Data is analysed to check for outliers; 

3. The selected variables are checked for correlation; 

4. The selected variables are standardised; 

5. The PCA method is implemented; 

6. The index is computed and the values for all the EU countries are calculated. 

The first step is to select the most suitable indicators for the index. The indicators are selected based 

on the previously presented literature analysis and data availability. The data selection is discussed in 

more detail in the section 2.4. In general, data for PCA should not be categorical and all qualitative 

categorical variables should be coded into binary variables (in this study, categorical variables are not 

used). Missing values is also an issue for PCA. Hence, if there are a lot of missing values, different 

methods to impute those values should be considered (Vyas & Kumaranayake, 2006). In this study, 

there were no missing values in the original dataset. 

Second step is analysing whether the data has outliers. Outliers may affect the results of PCA and its 

interpretation through its influence on correlations (Krishnan, 2010). However, it is important to also 

have clear criteria which points are considered outliers. In some cases, the data points that seem to be 

outliers from the first sight may actually include important information. For example, if the datapoints 

that can be considered as outliers all represent the same country in a dataset covering several 

countries, taking out these observations may require to take out the whole country out of the analysis. 

Moreover, as the analysis may be sensitive to non-linear relationships, linearity of data should also 

be assessed. If variables have non-linear relationship, the correlation coefficients presented may not 

properly reflect the strength of the relationship between the variables (Krishnan, 2010). After 

assessing the data, the data is standardised. Standardisation of the data is also a common practice to 

ensure that one variable does not have unnecessarily large influence on the PCA (OECD, 2008).  

Fourth step of the PCA implementation includes assessing the appropriateness of the selected method 

(PCA) through examining the correlation of the variables. While some researchers do not consider 

multicollinearity a problem for PCA, it may result in higher standard errors (Krishnan, 2010). Still, 

the selected original variables have to be correlated for the PCA method to be applicable. If the 

original variables are not correlated, the analysis will not produce the desired results (OECD, 2008).  

After data is assessed, it can be determined whether PCA is an appropriate method of analysis. If 

some of the assumptions are not met, for example, data includes outliers, robust PCA can be 

implemented instead of traditional PCA. Once the analysis is carried out, the results can be used to 

construct the index.  

To calculate the weights for the index, it has to be firstly determined which principal components are 

significant and should be kept in the calculation of the weights. Once it is determined, the weights 

can be computed. This study uses the same computation method as already presented in the study 

constructing Household Energy Poverty Index for India using PCA(Gupta et al., 2020). Each variable 
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has a weight in each principal component and each principal component has a weight that is computed 

dividing its eigenvalue from the sum of the eigenvalues of retained principal components. The 

formula to calculate the individual weights of each variable is as follows: 

𝑊𝑖 =
𝜆1𝑓𝑖1+𝜆2𝑓𝑖2+𝜆3𝑓𝑖3

𝜆1+𝜆2+𝜆3
               (5) 

Where λn is an eigenvalue for nth principal component, and fin is a weight inside the nth principal 

component for i indicator (Gupta et al., 2020).  

The weights then can be standardised to ensure that they are easier to interpret. The values are often 

scaled to add to 1 (Nardo et al., 2005). However, in this study it was decided to scale the weights 

from -1 to 1. This decision was taken as the variables used in the index present two different 

dimensions (energy poverty and progress in green transition). Therefore, having index with both 

negative and positive weights results in easier interpretability of the index weights. 

2.2.2. Data envelopment analysis 

2.2.2.1. Usefulness of the method for index construction 

Data envelopment analysis (DAE) is another method that has been used to develop composite indices. 

In recent years DAE has been used to evaluate energy efficiency and energy poverty (Li et al., 

2021).However, the use of DAE method in analysing socioeconomic issues is rather new. The method 

was firstly introduced for industrial applications to evaluate the profitability or efficiency of 

companies (Golany & Roll, 1989). It is a mathematical approach based on linear programming to 

determine a set of weights of different variables to maximise efficiency of the selected unit (country, 

region, company, or other) (Mariano et al., 2015).  

DEA can be seen as a favourable approach due to the several approaches to extracting weights. DEA 

allows to extract weights from the data itself with individual weights that are most suitable for each 

analysed unit. However, DEA also allows to determine a common set of weights that is most 

advantageous for all analysed units and could be used for constructing an index (Mariano et al., 2015).  

The indices constructed using DEA can also be perceived as fairest for all analysed units (countries) 

as it tends to result in highest composite scores compared to the indices got from other weighting 

schemes (Nardo et al., 2005). 

While DEA approach has its advantages, it also has some shortcomings. For example, if the scores 

are normalised in different ways, each of them may produce different weighting scheme. Individual 

weights may also result in a composite equal to 1 for all countries if there are no constraints imposed 

on weights. On the other hand, if the constraints on the weights are imposed, the analysis may provide 

no solution for the maximisation problem for some analysed units (countries) or it may have several 

solutions, making it impossible to determine the optimal set of weights. It is also important to note 

that the best performing unit (country) is used as a reference in the analysis. Hence, the progress of 

the best performer over time cannot be tracked by DEA (Nardo et al., 2005).  

2.2.2.2. Presentation of the method 

DAE can be described as a mathematical procedure based on linear programming. This method uses 

frontier approach to assess relative performance or efficiency of decision-making units (DMUs) based 
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on fractional programming problem which is converted into a linear programming problem. DMU 

can be a company, organization or jurisdiction, among others (in this study, it is a country) (Cotte 

Poveda, 2012). DAE allows to incorporate several variables into a single value without converting 

those variables into the same measurement unit (Mariano et al., 2015).  

Different models of DAE have been developed over the years. The first model was CCR model based 

on the method of frontier analysis. Other well-known models include BCC model, and window 

analysis assessing the performance of DMU over selected time period by looking at the DMU as a 

different entity in each time point (Cotte Poveda, 2012).  

CCR model is also often called constant returns to scale (CRS) model. It assumes that the outputs in 

the model grow proportionally to inputs in the model. BCC model, which is a model of variable 

returns to scale (VRS), does not require proportionality. Evaluations of CRS/CCR model are based 

on constant returns to scale that can be represented as mathematical problem (Bowlin, 1998): 

minimise: 𝜃 − 𝜀 [∑ 𝑠𝑖
−𝑚

𝑖=1 + ∑ 𝑠𝑟
+𝑠

𝑟=1 ]           (6) 

subject to: 0 =  𝜃𝑥𝑖𝑜 − ∑ 𝑥𝑖𝑗𝜆𝑗 − 𝑠𝑖
−𝑛

𝑖=1            (7) 

𝑦𝑟𝑜 = ∑ 𝑦𝑟𝑗𝜆𝑗 − 𝑠𝑟
+𝑛

𝑗=1              (8) 

Where θ is unrestricted in its sign, and 0 ≤ λj, si
-, sr

+ for i = 1, …, m; r = 1, …, s; j = 1, …, n 

Evaluations of VRS/BCC model are slightly more flexible with variable returns to scale. It can be 

expressed as (Bowlin, 1998): 

minimise:  𝜃 − 𝜀 [∑ 𝑠𝑖
−𝑚

𝑖=1 + ∑ 𝑠𝑟
+𝑠

𝑟=1 ]           (9) 

subject to: 0 =  𝜃𝑥𝑖𝑜 − ∑ 𝑥𝑖𝑗𝜆𝑗 − 𝑠𝑖
−𝑛

𝑖=1            (10) 

𝑦𝑟𝑜 = ∑ 𝑦𝑟𝑗𝜆𝑗 − 𝑠𝑟
+𝑛

𝑗=1              (11) 

1 = ∑ 𝜆𝑗 

Where θ is unrestricted in its sign, and 0 ≤ λj, si
-, sr

+ for i = 1, …, m; r = 1, …, s; j = 1, …, n 

The main difference between CCR and BCC models is that for CCR model DMU has to be both scale 

and technical efficient, while for BCC model DMU only needs to achieve technical efficiency to be 

considered as efficient (Bowlin, 1998). Both of these models are considered to be radial models as 

the efficiency index presents either equiproportional increase in outputs or equiproportional decrease 

in inputs needed to achieve efficiency. For this reason, these models also require selection of the 

orientation of the model (Mariano et al., 2015). 

DEA models can be input- or output- oriented. The orientation of the analysis depends on its goal. 

The input-oriented analysis focuses on the reduction of inputs. Output-oriented analysis focuses on 

expanding the output (Cook et al., 2014). For example, if DMU is a public space with costs for public 

spaces as input and quality of public spaces as output and the aim is to decrease the cost while keeping 

the quality of public spaces, input-oriented DEA would be most appropriate. If DMU is a country 
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with education quality indicators as inputs and economic development indicators as outputs and the 

aim is to improve economic development, output-oriented DEA would be most useful. 

In DEA model there can be several input and output variables for each DMU. The variables are 

linearly aggregated using the weights determined by the DEA methods. From that, virtual inputs and 

outputs are developed (Cotte Poveda, 2012): 

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 =  𝑣1𝑥1 + ⋯ +  𝑣𝑛𝑥𝑛 =  ∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1          (12) 

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑢1𝑦1 + ⋯ +  𝑢𝑚𝑦𝑚 =  ∑ 𝑢𝑖𝑦𝑖
𝑚
𝑖=1         (13) 

In these equations vi represents the weight assigned to an input xi and ui represents the weight assigned 

to an output yi in the linear aggregation. These equations then can be used to maximise the ratio using 

the following equation (Cotte Poveda, 2012): 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  
𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡

𝑉𝐼𝑟𝑡𝑢𝑎𝑙 𝑖𝑛𝑝𝑢𝑡
=  

∑ 𝑢𝑖𝑦𝑖
𝑚
𝑖=1

∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1

           (14) 

These calculations reduce multiple inputs and outputs into a single virtual input and single virtual 

output that can then be used to evaluate a specific DMU. The scores vary from 0 to 1, 0 marking 

complete inefficiency and 1 marking absolute efficiency. The DAE model determines the weights of 

the outputs and inputs by aiming to maximise the ratio between the weighted virtual output and 

weighted virtual input. The DMUs that have maximised efficiency are then called a reference set and 

receive efficiency value of 1. The reference set is then compared to each of the DMUs in the dataset. 

The analysed DMU is assessed by its divergence from the reference set. However, it is important to 

note that a unique reference set for each DMU is developed and is used as its benchmark (Cotte 

Poveda, 2012). 

In general, data envelopment analysis presents what a DMU (country) can achieve with a level of 

resources it has or what level of resources is needed to efficiently achieve the level of progress that 

is already achieved. If input-oriented analysis is used, the aim is cost/resource reduction. If output-

oriented analysis is used, the aim is to enhance observed effects. Reference set is used to develop a 

benchmark line for a DMU that is not efficient. The benchmark is also often called best practice 

frontier and can be illustrated as a line in a graph.  

The Figure 9 below represents DEA results. It presents the results for both constant returns to scale 

(CCR) model and variable returns to scale (BCC) model. The CCR model illustration is a dashed line 

marked ‘CCR’. The BBC model is explained by the solid line marked ‘BCC’. Points P1, P2, P3, P4, 

and P5 illustrate the DMUs used in the analysis. The numbers next to the points’ names present the 

values of those DMUs for inputs (first number) and outputs (second number). Inputs are measured 

by x axis and outputs are measured by y axis. 



 

35 

 

Figure 9. Illustrated example of DEA analysis (Bowlin, 1998, p. 10) 

Dashed line presents the benchmark/best frontier for CRR/CRS model input-oriented model 

Solid line presents the benchmark/best frontier for BCC/VRS model input-oriented model 

Considering the illustration of CRR/CRS input-oriented model in the Figure 9, only DMU P2 is 

considered to be efficient and would have an efficiency score of 1. As presented, CRR, or constant 

returns to scale, model evaluates both technical and scale efficiency. Hence, it considers DMUs as 

efficient only when they both efficiently distribute their inputs and outputs, and operate at constant 

returns to scale point. In this model, DMUs P1, P3, P4, and P5 are considered as inefficient. In the 

graph, the distance between the DMU P5 and point P5CCR helps determine the efficiency score of 

DMU P5. In this example, the DMU P5 by CRR/CRS model receives efficiency score of 0.36. It 

means that to be considered efficient, this DMU would have to lower its input to 1.8, by 64%. At such 

point where inputs are equal to 1.8 and outputs are equal to 3 DMU P5 would be both technically and 

scale efficient (Bowlin, 1998). 

Considering the illustration of BCC/VRS input-oriented model in the Figure 9, DMUs P1, P2, P3, 

and P4 are considered as technically efficient. They all receive efficiency score of 1. However, while 

all of these DMUs used in the reference set are technically efficient, only DMU P2 is both technically 

and scale efficient. This illustrates the difference between stricter CRR/CRS model and more flexible 

BCC/VRS model. DMU P2 has constant returns to scale, so it appears in reference sets of both 

models.  The line between DMUs P1 and P2 represents locally increasing returns to scale. Between 

these points, an increase in inputs results in a larger increase in outputs. The line between DMUs P2, 

P3 and P4 represents locally decreasing returns to scale. Between these points, an increase in inputs 

result in an increase of outputs that is proportionally smaller. DMUs P1, P3 and P4 are technically 

efficient, but not scale efficient, because they do not have constant returns to scale. In the graph, the 

distance between the DMU P5 and point P5BCC can be used to calculate the efficiency score of DMU 

P5 by BCC/VRS input-oriented model. Efficiency score for this DMU in this example is 0.47. It 

indicates that to achieve efficiency DMU P5 should reduce its inputs by 53% (Bowlin, 1998). 

Data envelopment analysis has several assumptions that should be met so that this analysis approach 

could be used. Firstly, it is assumed that selected DMUs are to some extent homogenous. They should 

have the same inputs and outputs so that they would be comparable. Conditions under which the 

DMUs operate should also be similar to some degree so that the comparison between them would be 
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logical. Secondly, it is assumed that the amount of data provided is sufficient for a critical evaluation. 

If a number of DMUs is too small, the results of the analysis may be too optimistic (Golany & Roll, 

1989). There are no strict mathematical rules how many DMUs should be included in the analysis. 

General rule is to have at least twice as many DMUs as inputs and outputs combined (Cook et al., 

2014). However, Banker, Charnes, Cooper, Swarts and Thomas stated that there should be at least 

three times more DMUs than the number of inputs and outputs combined not to lose discrimination 

power in the analysis (Banker et al., n.d.). Thirdly, it is assumed that the data is in appropriate scale 

so that no single input or output is dominating the analysis. However, Cook, Tone and Zhu argue that 

mixture of raw data and percentiles or ratios can be allowed if the data is properly mixed, for example, 

ratio values are used as inputs and total values are used as outputs. The authors point out that in 

VRS/BCC model with ratio variables projections of the analysis remain in the range from 0 to 100, 

but when using CRS/CRR model one should exercise caution as the projection values may exceed 

100 (Cook et al., 2014). Considering the values of the input and output variables it is also important 

to make sure that there are no negative values or zero values. DEA is concerned with the ratios of the 

presented variables, so negative or zero values may present misleading or undefined results of the 

analysis. 

In this study the DAE method will be implemented following these steps: 

1. The DMUs are chosen, meaning the scope of the analysis is determined; 

2. Inputs and outputs are defined; 

3. Appropriate parameters for DEA model are set and the model is applied; 

4. The EU Member States are classified according to the newly developed efficiency index. 

Considering selection of DMUs, it is important to keep in mind that DEA approach aims to assess 

comparable units with an aim to improve their performance in assessed area. The number of units 

analysed is also important. While a larger set allows to more accurately identify relationships between 

inputs and outputs, it also results in higher heterogeneity within the dataset, potentially causing the 

results to be influenced by exogenous factors that are not the focus of the analysis (Golany & Roll, 

1989). In this study, the selected units for analysis are 27 EU Member States.  

After DMUs are selected, inputs and outputs can be defined. As mentioned, the general rule is to 

include at least twice as many units as the number of inputs and outputs included in the analysis 

(Golany & Roll, 1989). While this rule does not necessarily have to be satisfied, having more inputs 

and outputs may diminish the discrimination power. At the same time, it is important to ensure that 

relevant inputs and outputs are included in the analysis. Inputs and outputs generally depend on the 

specific problem. While there may be different scenarios that are solved with DEA, the aim of such 

analysis, in most cases, is to minimise the inputs and maximise the outputs (Cook et al., 2014). In this 

study the same approach is followed. Energy poverty indicators are treated as inputs and the aim is 

to minimise them, while indicators of the use of renewable energy sources are treated as outputs and 

higher quality of them is desired.  

Once the DMUs, inputs and outputs are determined, DEA model can be chosen, and the analysis can 

be implemented. DEA model’s specifics depend on the problem analysed. In this study, only a basic 

model of DEA is considered as it is deemed appropriate for the aim of the analysis. Variable returns 

to scale input-oriented model is chosen. It is also important to determine what data is used for the 

analysis. In DEA one can choose which observations are evaluated and which observations are used 
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as reference data. Evaluated observations get results about their performance, while reference 

observations are used to understand how efficiency may differ in the countries and determine what is 

considered to be efficient and what is not efficient. Same observations can be used as evaluated and 

reference set. However, they can also differ. The selection of model and its justification is presented 

in more detail in results section 3.3. 

2.3. Validation of the index through correlation analysis 

In this study, correlation analysis is used as a method to validate the values of the newly computed 

indices. Correlation analysis is a useful tool to examine associative relationships between different 

variables. In this context, correlation analysis is used to understand whether the newly created indices 

are related with other indicators that are related to the same issue of energy poverty. The chosen 

indicators are presented in section 3.4. If correlation analysis indicates correlation between the newly 

created indices and selected parameters, it will indicate that the newly constructed indices are 

measuring aspects of energy poverty, as it should. 

Correlation can be assessed through several different methods. The most commonly known method 

is Pearson’s correlation. This correlation is computed as follows (Makowski et al., 2020):  

𝑟𝑥𝑦 =
𝑐𝑜𝑣(𝑥,𝑦)

𝑆𝐷𝑥𝑆𝐷𝑦
                 (15) 

In this equation, cov(x,y) stands for the covariance of the two variables in question, x and y, while 

SDx and SDy stand for standard deviations for x and y variables (Makowski et al., 2020).  

Pearson’s correlation is used to assess linear relationship between two variables and cannot detect 

non-linear relationships. It is sensitive to outliers and assumes that the variables analysed are normally 

distributed. This correlation analysis method is widely used and easy to interpret. 

If data is not normally distributed, there are outliers or the relationship between the variables is 

suspected to be non-linear, Spearman's rank correlation coefficient can be used. It is a non-parametric 

correlation measurement, which assesses monotonic relationships. Spearman’s rank correlation can 

be also expressed as Pearson’s correlation between the rank scores of the two variables in question. 

It is computed as follows (Makowski et al., 2020): 

𝑟𝑠𝑥𝑦
=

𝑐𝑜𝑣(𝑟𝑎𝑛𝑘𝑥,𝑟𝑎𝑛𝑘𝑦)

𝑆𝐷(𝑟𝑎𝑛𝑘𝑥)∗𝑆𝐷(𝑟𝑎𝑛𝑘𝑦)
              (16) 

In this equation, cov(rankx, ranky) stands for the covariance of the ranks of two variables in question, 

x and y, while SD(rankx) and SD(ranky) stand for standard deviations of the ranks of x and y variables 

respectfully (Makowski et al., 2020). 

While Spearman’s rank correlation coefficient is less sensitive towards outliers, does not require 

normal distribution and can detect non-linear trends, it is important to keep in mind that it is less 

sensitive to linear trends than Person’s correlation. 

More correlation analysis methods exist. However, in this study only Pearson’s and Spearman’s 

correlations were considered for its straightforward interpretability. Moreover, initial descriptive 

statistical analysis indicated that the data used in the study does not require more elaborate correlation 

analysis methods. 



 

38 

2.4. Data for the index 

The analysis of this study covers 27 EU Member States – Austria, Belgium, Bulgaria, Croatia, 

Republic of Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, 

Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, 

Romania, Slovakia, Slovenia, Spain and Sweden. Selected time period includes 13 years – from 2010 

to 2022. This time period was selected due to data availability. This results in a dataset with 351 

observations. 

The aim of this study is to construct a green energy poverty index that can be used to evaluate energy 

poverty in the EU in the light of green transition. The index in this study has indicators for two 

different issues – energy poverty and progress in green transition or sustainability, measured by the 

use of renewable energy. The selected variables are presented in the Figure 10 below. 

 

Figure 10. Indicators used to construct green energy poverty index 

Considering specific indicators for energy poverty dimension, recent energy poverty indices consider 

metrics such as energy consumption, affordability, reliability, quality, availability and safety. 

However, there is no consensus on which of these metrics are necessary to adequately measure energy 

poverty and what thresholds for each of the mentioned dimensions are desirable in energy poverty 

index (Pelz et al., 2018). As presented in the Literature review section, in developed countries, as the 

countries in the EU, one of the most important dimensions is affordability, while dimensions as 

infrastructure or availability are of secondary importance (Ruiz-Rivas et al., 2022).  

Consequently, the green poverty energy index focuses on the indicators of affordability dimension. 

The EU Energy Poverty Advisory Hub proposes to focus on inability of a household to keep their 

home adequately warm, high share of disposable income being spent on electricity, low absolute 

expenditure on electricity, and having to borrow to pay the bills for energy (Widuto, 2023). This study 

uses inability of a household to keep their home adequately warm and having to borrow to pay the 

bills for energy.  

Share of disposable income being spent on electricity has been considered. However, Principal 

Component Analysis showed that the variable is not significant as the weights given to the variable 

by first two principal components (PCs that had Eigenvalue higher than one) were small compared to 

other variables.  Absolute expenditure on electricity has been excluded because the change in its value 

should be interpreted differently than of other indicators. It means that while a higher value of selected 

measures indicates higher energy poverty, higher absolute expenditure on electricity indicates lower 
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energy poverty. While this would not be problematic for the Principal Component Analysis, it would 

require additional data manipulation for Data Envelopment Analysis. As the variable is very strongly 

corelating with the share of disposable income being spent on electricity, the variable which was 

deemed insignificant, it was decided to exclude absolute expenditure on electricity as well. 

To illustrate renewable energy use, the constructed index includes three variables that directly show 

the use of renewable energy sources. These variables are the use of renewables for electricity, the use 

of renewables for heating and cooling, and share of energy from renewable resources. Higher values 

of all of these variables indicate the higher level of green transition.  
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3. Results and discussion 

This section presents the results of the implemented approaches to constructing the green energy 

poverty indices. The section is constructed as follows: initial data analysis is presented, the 

experiments conducted are explained in detail, and the results and their interpretation are presented. 

3.1. Initial data analysis and manipulation 

All of the variables selected are available in Eurostat database and were extracted through Python 

using eurostat library. The main descriptive statistics and other information about the selected 

variables are presented in the table in Appendix 2. The graphs showing the change of all indicators’ 

values for each country in the data set are also available in the Appendix 2. Descriptive statistics 

indicate a great level of variance in the data. For majority of the indicators chosen, the standard 

deviation is greater than both mean and median of the data set. The chosen indicators also differ 

greatly in values, which indicates a potential need for data standardisation before PCA.  

As it can be seen from the graphs presenting different countries (available in Appendix 2), some of 

the countries have significantly higher values for some of the variables than others throughout the 

whole observed period. For example, Greece has significantly higher percentage of population that is 

unable to keep their homes adequately warm. At the same time, Germany has significantly higher use 

of renewables for electricity and for heating and cooling. In the analysis, the values for these variables 

for these countries will likely appear as outliers. This can be confirmed looking into the box plots 

also available in Appendix 2. However, taking them out may reduce the usability of the index for the 

EU. Hence, to deal with the outliers robust PCA is used instead of traditional PCA when constructing 

the index. While DEA may generally be sensitive to outliers, the closer examination of the data for 

individual countries (presented in Appendix 2) indicates that the higher values of specific indicators 

illustrate specific individual countries. Hence, looking from individual DMU (country) perspective, 

those values could not be considered as outliers. Hence, they are not problematic for data envelopment 

analysis. 

Variables that account for energy poverty (inability to keep adequately warm and arrears on utility 

bills) are percentages from population, while variables concerned with progress towards green 

transition (use of renewables for electricity, use of renewables for heating and cooling, and share of 

energy from renewable resources) are measured in absolute values. As the variables are measured in 

different scales, standardisation is highly recommended for PCA. For DEA, non-standardised values 

can be used as percentage values and absolute values are used as inputs and outputs respectively and 

are not mixed. For PCA, data was scaled using median absolute deviation (MAD). This means that 

when computing scaled values, the distance between each data point and the median is measured 

instead of measuring the distance to the mean. This makes the scale more robust to outliers. The 

following formula (15) is used to scale the data: 

𝑋𝑖𝑠𝑐𝑎𝑙𝑒𝑑
=

(𝑋𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝑖)

𝑀𝐴𝐷𝑋𝑖

             (17) 

where 𝑀𝐴𝐷𝑋𝑖
= 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − �̃�|)              (18) 

Where Xi is a specific observation, and �̃� is median of X.     
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This scaling method was chosen due to the existence of outliers in the dataset. Scaling was 

incorporated in the PcaCov function of the rrcov R package used for PCA.   

Finally, the selected dataset was assessed for correlation. As already mentioned, selected variables 

should be correlated with each other for PCA to be an appropriate analysis approach. However, 

multicollinearity may be a problem and should be addressed before the analysis and collinear terms 

should be eliminated or combined before applying PCA (OECD, 2008). In the figure and table below, 

the correlation matrix for the variables, which are used in the green energy poverty index, is presented. 

Spearman's ρ is used to evaluate relationships between the variables. This correlation statistic was 

chosen because it is not-parametric, meaning it does not assume that the data follows normal 

distribution, and robust to outliers. Normality test results are available in Appendix 4 and indicate 

that indeed the variables are not normally distributed. As it can be seen, the correlation between the 

variables differs. Weakest positive correlation appears between arrears on utility bills and share of 

energy from renewable resources (0.019). Highest positive correlation is detected between use of 

renewables for electricity and use of renewables for heating and cooling (0.899). Weakest negative 

correlation exists between inability to keep adequately warm and share of energy from renewable 

resources (-0.118). Highest negative correlation appears between arrears on utility bills and use of 

renewables for electricity (-0.329). The only potentially concerning relation is between use of 

renewables for electricity and use of renewables for heating and cooling. Correlation between other 

variables does not exceed 0.7 or -0.7, indicating that the correlation between the variables likely does 

not imply collinearity.  

 

Figure 11. Correlation heatmap (Spearman’s ρ) for variables used for the index 
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Inability to 

keep 

adequately 

warm 

Arrears on 

utility bills 

Use of 

renewables 

for 

electricity 

Use of 

renewables 

for heating 

and 

cooling 

Share of 

energy 

from 

renewable 

resources 

Inability to 

keep 

adequately 

warm 

1.000  
0.687 

(0.000) 

-0.192 

(0.000) 

-0.172 

(0.000) 

-0.118 

(0.027) 

Arrears on 

utility bills 

0.687 

(0.000) 
1.000  

-0.329 

(0.000) 

-0.289 

(0.000) 

0.019 

(0.716) 

Use of 

renewables 

for 

electricity 

-0.192 

(0.000) 

-0.329 

(0.000) 
1.000  

0.899 

(0.000) 

0.288 

(0.000) 

Use of 

renewables 

for heating 

and 

cooling 

-0.172 

(0.001) 

-0.289 

(0.000) 

0.899 

(0.000) 
1.000 

0.358 

(0.000) 

Share of 

energy 

from 

renewable 

resources 

-0.118 

(0.027) 

0.019 

(0.716) 

0.288 

(0.000) 

0.358 

(0.000) 
1.000 

Table 1. Correlation (Spearman’s ρ) for variables used for the index 

p-values are presented in the brackets 

Bolded correlations are significant 

To conclude, correlation analysis indicates that variables used for the construction of the index are 

corelating with each other. Majority of the correlation relationships is moderate, which is necessary 

for PCA. However, as some of the correlations are strong, there is a risk of multicollinearity. This 

means that the performed PCA analysis should be also checked for multicollinearity by examining 

the condition index values for different principal components. This is discussed in section 3.2. 

3.2. Results of PCA 

Descriptive data analysis indicated that the selected dataset does not meet some of the assumptions 

of traditional PCA. More specifically, the dataset includes several outliers that cannot be omitted 

without losing an important share of information. Hence, robust PCA has been chosen for the 

analysis. To implement robust principal component analysis, rrcov package in R was used. As already 

mentioned, a robust scaler with median absolute deviation (MAD) was used to standardise the data 

for PCA. To address the issue of outliers in PCA itself, robust PCA with MCD estimator was used.  
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The results of the robust PCA are presented in the Table 2 below. As five variables were used, the 

analysis resulted in five principal components. The first principal component explains 68.97% of 

variance in the original dataset, second PC explains 16.39% of variance, adding to the total of 85.36%, 

and the third PC explains 10.81% of variance in the original dataset, adding to the total of 96.17% of 

variance. The rest of the principal components explain less than 5% of variance each and can be seen 

as less relevant for the analysis. First principal component, which assigns largest weights to inability 

to keep warm and arrears on utility bills, explains more than half of the variance in the original dataset. 

Hence, it is clear that these two indicators may be some of the most important in understanding and 

explaining the variance between countries.  

While interpreting principal components, it is also important to consider condition index, which helps 

determine whether there are issues of multicollinearity. If the value of the condition index is between 

10 and 30, it signals potential multicollinearity. If the value of the index for the PC is higher than 30, 

it indicates strong potential multicollinearity. It may also mean that the principal component with an 

index higher than 30 contains residual noise rather than necessary information (Kim, 2019). From the 

results in the Table 2 below, it seems that only the data in the last principal component of the principal 

components may have a problem of multicollinearity. It is likely that this component contains residual 

noise as it is the last component. However, as this principal component is not retained in the further 

analysis, its potential problem of multicollinearity is irrelevant. The decision which principal 

components are retained is explained later on in this section. 

 

 PC1 PC2 PC3 PC4 PC5 

Statistics of the PCs 

Eigenvalue 6.075 1.444 0.952 0.329 0.010 

Proportion of variance 68.97%  16.39% 10.81% 3.74% 0.09% 

Cumulative variance 68.97% 85.36%  96.17%  99.91% 1.000 

Condition index 1.000   2.051  2.526   4.298  27.300 

Standard deviation 2.465  1.202  0.976 0.573  0.090 

Weights of each variable in each principal component 

Inability to keep adequately warm 0.795 -0.469 0.377  0.071 -0.039 

Arrears on utility bills 0.606  0.587 -0.530 -0.065  0.044 

Use of renewables for electricity -0.013   0.155  0.013 0.732 -0.663 

Use of renewables for heating and cooling -0.000  0.181 0.184  0.626 0.736 

Share of energy from renewable resources 0.030   0.615  0.736 -0.252 -0.121 

Table 2. Results of robust PCA 

The plot in Figure 12 below shows how the observations are distributed according to the first and 

second principal components. PCA was applied to the whole data set, meaning observations from all 

27 countries of 13 years period were included. It is not surprising that the observations from different 

year for the same country are mostly close together. The first principal component has larger weights 

for indicators for energy poverty (inability to keep warm and arrears on utility bills) and very low 

weights for all three indicators for the progress in green transition (use of renewables for electricity, 

use of renewables for heating and cooling and share of energy from renewable resource). Hence, it is 

not surprising that countries like Bulgaria (BG) or Greece (EL) that generally tend to have more 

socio-economic challenges score high on the axis of the first PC. Second principal component assigns 
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large weight for one indicator of energy poverty (arrears on utility bills), which may explain the high 

score of Greece (EL) on the second PC axis as well. However, as this component also has larger 

weights for three indicators indicating the progress in green transition, countries that are well known 

for their focus on renewable energy resources, such as Germany (DE) and Sweden (SE) also have 

high scores on the PC2 axis. 

 

Figure 12. PCA plot for robust PCA 

While the results of the robust PCA already shines some light on how the variance in the original 

dataset and difference between the countries can be explained, additional analysis is necessary before 

constructing the index. Principal component analysis resulted in five different principal components. 

However, not all of the components are relevant for further analysis. In most cases, principal 

components are retained if they have eigenvalues higher than 1 (Kaisen criterion), explain more than 

10% of variance in the original dataset, or together account for a set specific share of variance (target 

usually varies from 70% to 90%) (Nardo et al., 2005). As it can be seen from Table 2 above, first two 

components have eigenvalues higher than 1. The share of explained variance is higher than 10% for 

first two components. First two components accumulatively account 85.36% of the variance, while 

first three components explain 96.17% of the variance. This indicates that an optimal number of 

principal components is two. 

In this study, to determine the number of PCs to keep, it was decided to use findPC package in R that 

uses computational methods to identify elbow points to determine which PCs could be kept.  The 

elbow method is often used to determine the number of relevant PCs. According to this method, 

optimal number of principal components is identified from the scree plot of standard deviations of 

principal components. The point where the elbow in the curve occurs is considered as the optimal 

number of principal components. The used package has six different computational methods to find 



 

45 

the optimal number of PCs (Zhuang et al., 2022). As it can be seen from the graph below, all methods 

suggest two principal components as optimal. Hence, in further computations only first two principal 

components are used. 

 

Figure 13. Elbow method to determine an optimal number of PCs 

The weights of each indicator in the overall index are computed using eigenvalues of the principal 

components and the weights they contribute to individual indicators. This study uses the same method 

as already presented in the study constructing Household Energy Poverty Index for India using PCA 

(Gupta et al., 2020). This means that formula (5) is used to compute the weights for each indicator. 

The weights for each indicator for green poverty index are presented in the table below. The weights 

are scaled to have values from -1 to 1 for better interpretability. While usually the scaling is done in 

a way to ensure that the weights add to 1 (Nardo et al., 2005), in this study it was decided to take a 

different approach. The variables used in the study present two different dimensions – energy poverty 

and progress towards the green transition. As can be seen from the presentation of PCA results, two 

main principal components, which have the most weight in index creation, also to some extent present 

these two different dimensions. Therefore, having positive and negative index weights makes the 

index easier to interpret. Indicators with negative weights (energy poverty indicators) contribute to a 

lower value of an index, while indicators with positive weights (sustainability indicators) contribute 

to a higher value of an index. 
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 Weight 

Inability to keep adequately warm -0.826 

Arrears on utility bills -1.000  

Use of renewables for electricity 1.000 

Use of renewables for heating and cooling 0.949 

Share of energy from renewable resources 0.580 

Table 3. Weights for the Green Energy Poverty Index 

Using the weights and values of the chosen indicators, it is possible to calculate the values of the 

index for each country for each year available in the dataset. However, it is important to keep in mind 

that the PCA was carried out using scaled data, which means that to calculate the values of the index 

the data also has to be scaled using the same scaler (using median absolute deviation (MAD)). The 

scaled values of the indicators can be computed using the formula (17). For that, median of each 

indicator and MAD of each indicator is needed. MAD is computed using formula (18). These statistics 

are presented in the table below. 

 

 Median MAD 

Inability to keep adequately warm 6.1 3.700 

Arrears on utility bills 7.4 3.800 

Use of renewables for electricity 11718.408 10490.139 

Use of renewables for heating and cooling 1666.2 1381.579 

Share of energy from renewable resources 17.852 6.993 

Table 4. Median and MAD for variables used in the green energy poverty index 

With these values, the index value can be easily calculated for a selected country for selected year. 

The following formula should be used:  

𝐺𝐸𝑃𝐼 = 𝑟𝑒𝑛𝑒𝑤_𝑒𝑛𝑒𝑟𝑔 + 0.949 ∗ 𝑟𝑒𝑛𝑒𝑤_ℎ𝑛𝑐 + 0.580 ∗ 𝑠ℎ_𝑟𝑒𝑛𝑒𝑤     (19) 

−0.826 ∗ 𝑖𝑛𝑎𝑏𝑡𝑘_𝑤𝑎𝑟𝑚 − 𝑎𝑟𝑜𝑢_𝑏𝑖𝑙𝑙𝑠 

Values of the green energy index for 27 EU Member States for 2022 are available in Appendix 3. As 

it can already be seen from the weights of the index, lower values mean that the country is energy 

poor and lagging behind in green transition, while higher values indicate low energy poverty and 

more progress towards green transition.  

To make the values of the index more interpretable, it was decided to scale the values to fit into the 

scale from 0 to 1. Standardised index values for the last year available (2022) can be found in 

Appendix 3. The values of the standardised index range from 0, the most energy poor and the least 

advanced in green transition, to 1, the least energy poor and most advanced in the green transition 

process through the use of renewable energy resources. However, it is important to keep in mind that 

the values of the index were scaled, so both 0 and 1 do not refer to theoretical situations of complete 

energy poverty or complete green transition. These values refer to the worst and best performance 

observed in 27 EU Member States in the period between 2010 and 2022.  
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Between 2010 and 2022 period, the best performing country was Germany in 2022, when the value 

of standardised green energy poverty index for Germany was equal to 1. The worst performing 

country was Bulgaria. It obtained a standardised green energy poverty index value of 0 in 2010. The 

Table 5 below presents the descriptive statistics for the Green Energy Poverty Index. Average value 

for the index is equal to 0.402. Standard deviation is 0.163, which means that the variance in the data 

is moderate. As only 25% of the observations have an index value higher than 0.500, in majority of 

the observations the countries can be considered as moderately to highly energy poor and lagging 

behind in green transition.  

 

Descriptive statistics Green energy poverty index by PCA 

Count 351 

Mean 0.402 

Standard deviation 0.163 

Minimum 0.000 

1st quartile 0.304 

Median 0.365 

3rd quartile 0.500 

Maximum 1.000 

Table 5. Descriptive statistics for Green Energy Poverty Index 

The histogram in Figure 14 below shows the distribution of the index values. As it can be seen, 

majority of values are clustered between 0.300 and 0.500, which is also seen from the values of 1st 

(0.304) and 3rd (0.500) quartiles presented in Table 5. This means that majority of the observations 

vary from highly energy poor and highly lagging behind in green transition to mildly energy poor and 

mildly lagging behind in green transition. 

 

Figure 14. Histogram for Green Energy Poverty Index 

To summarise, PCA was implemented to better understand how the selected variables contribute to 

explaining the variance observed in the data. First two principal components, that explain 85% of the 

whole variance, have been determined to be significant components and have been used to derive the 

weights for selected variables in the Green Energy Poverty Index. First principal component focused 

more on energy poverty dimension, while second principal component was more concerned with the 

progress towards green transition. The weights of the index were standardised for simpler 
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interpretation. The variables for energy poverty (inability to keep adequately warm and arrears on 

utility bills) received negative weights, while variables for renewable energy use (use of renewables 

for electricity, use of renewables for heating and cooling, share of energy from renewable resources) 

received positive weights. This means that lower values of the index are related to greater energy 

poverty and lagging in green transition. Majority of the observations from EU Member States between 

2010 and 2022 point to moderate or high energy poverty. More detailed interpretation of the index 

values is available in section 3.5. 

3.3. Results of DEA 

The first step of data envelopment analysis is to select the scope of the analysis through the selection 

of DMUs. The aim of the DEA is to assess similar units, in this case, countries, and provide 

suggestions on how to improve their performance. Therefore, selected units of analysis should be 

similar to be comparable, but some differences between them are desirable for meaningful insights 

(Golany & Roll, 1989). The selected units for analysis (DMUs) in this study are 27 EU Member 

States. These countries are similar to each other considering their geographical location (all of them 

are in Europe), culture, development level (all countries are developed countries). However, they are 

different in climate and some socio-economic factors. 

Second step of DEA is to determine which variables are used as inputs and which are defined as 

outputs. It was decided to treat energy poverty indicators (inability to keep adequately warm, arrears 

on utility bills, and housing cost overburden) as inputs and green transition indicators (use of 

renewables for electricity, use of renewables for heating and cooling, and share of energy from 

renewable resources) as outputs. The variables are already presented in section 2.4. As there are two 

inputs and three outputs and 27 DMUs, the selection satisfies the general rule to have at least twice 

as many DMUs as inputs and outputs (Golany & Roll, 1989). Energy poverty indicators are chosen 

as inputs and green energy indicators as outputs as the aim of DEA is to minimise energy poverty 

(inputs) and the greater amount of renewable energy sources (outputs) is desired. This means that the 

analysis follows the classical use of DEA where the aim is to minimise inputs and maximise outputs. 

The manipulation of the data (scaling) before the analysis in this case is not required. While the used 

dataset includes both percentage values and total values, it is unlikely that it negatively affects the 

analysis. As pointed out by Cook et al., mixture of absolute and ratio values can be used in some 

cases, for example, when ratio values are used as inputs and total values are used as outputs. The 

DEA projections also should not exceed 100 when VRS/BCC model is used (Cook et al., 2014). This 

approach is followed in this study. The ratios (inability to keep adequately warm, arrears on utility 

bills) are used as inputs, and absolute values (use of renewables for electricity, use of renewables for 

heating and cooling, and share of energy from renewable resources) are used as outputs.  

The DEA model used in the analysis is BCC/VRS input-oriented model. The analysis was carried out 

using R package DeaR.  Variable returns to scale model has been chosen for its flexibility. In this 

model the DMU, in this case country, needs to be only technically efficient to be considered as 

efficient as scale efficiency is not required. As scale efficiency is not the aim of this exercise, 

CRS/CRR model is deemed as not suitable. The input-oriented model was chosen as the analysis 

focuses on the reduction of energy poverty (inputs). 
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As already presented in the literature review section, use of renewable energy sources and progress 

in green transition may compensate for the negative effects of energy poverty in the development of 

a country (Adom et al., 2021). Use of renewable energy sources may also result in lower energy 

poverty as it may improve availability, efficiency and affordability of energy (Dong et al., 2021). 

However, at the same time, if transition towards renewable energy is too rapid or not well thought-

out, it may further worsen a problem (Hussain et al., 2023), and have long-lasting negative 

consequences (Adom et al., 2021). Hence, the main aim of DEA in this study is to determine which 

countries are efficiently using their renewable energy resources to achieve lower energy poverty. The 

countries that receive an efficiency score of 1 can be considered as best performers. They have 

achieved the lowest energy poverty possible with the amount of renewable energy resources they are 

using. Countries with an efficiency score lower than 1 have not achieved the highest efficiency 

possible, meaning they could have lower energy poverty indicators considering the amount of 

renewable energy resources used. 

The data envelopment analysis was carried out three different times: 

1. Using the whole dataset for both evaluation and reference; 

2. Using data from 2022 for evaluation, and using the whole dataset as reference; 

3. Using data from 2022 for both evaluation and reference. 

The first analysis focuses on the whole dataset. 27 countries are evaluated for the whole 13 years 

period. Each observation is treated as a separate DMU. The figure below shows the distribution 

between efficient and inefficient observations in the whole dataset.  

 

Figure 15. Distribution of efficient and inefficient observations (whole dataset) 

Out of 351 observations, efficiency was achieved in nine observations by four countries:  
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- Luxembourg in 2010; 

- Sweden in 2013, 2014, 2015, 2021 and 2022; 

- Germany in 2019, 2021 and 2022; 

- The Netherlands in 2021.  

These best performing countries appeared in the reference set of the observations when a specific 

country was not efficient in their use of renewable energy to achieve lower energy poverty. This 

means that every time inefficiency was observed, the combination of these best performers was used 

to construct the line of marking an optimal amount of inputs and outputs and the distance between 

observed inefficient country and the constructed line is used to determine the efficiency targets. While 

the model is input-oriented, it focuses primarily on reduction of the inputs, energy poverty. However, 

as several inputs and outputs are used, the model presents target values not only for inputs, but also 

for outputs. In all cases at least one output remains the same in the target point and observed values 

and other outputs in the target point are slightly higher.  

As can be seen from Figure 16 below, the Netherlands appeared in the reference sets the most. It was 

used as a reference for 279 observations. Luxembourg has appeared in 260 reference sets. Sweden as 

a country appeared in more reference sets than the Netherlands. However, it was through five different 

years, hence, as five different observations. Its performance in 2013 did not appear in any of the 

reference sets, its performance of 2014 appeared in 17, of 2015 – in 26, results of 2021 appeared in 

42 reference sets, and Sweden’s performance of 2022 appeared in 272 reference sets. Germany was 

included in the reference sets of inefficient observations the least. Germany’s data from 2019 did not 

appear in any of the reference sets, its data from 2021 was used in 1 reference set, and its performance 

of 2022 appeared in 54 reference sets.  

 

Figure 16. Best performers’ appearance in refence sets (whole dataset) 

Figure 15 presents not only the division between efficient and inefficient observations, but also the 

distribution of efficiency scores of the observations that are considered to be inefficient (have an 

efficiency score lower than 1). As it can be seen, around half of the observations have efficiency score 

between 0 and 0.25. As presented in descriptive statistics in Table 6, the lowest efficiency value is 

0.039, which is the efficiency score of Bulgaria in 2010. It means that in 2010 Bulgaria would have 

had to decrease its energy poverty by around 96% to be considered as technically efficient. Average 
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of all index values is 0.339. This means that on average in all observations the countries should have 

had around 64% lower energy poverty indicators to be considered as efficient. Standard deviation is 

equal to 0.256. The standard deviation being approximately two thirds of the mean points to a rather 

high variance in the data. This could be caused by unequal distribution of data points. Two thirds of 

the data being distributed in the efficiency values from 0.039 to 0.498 (3rd quartile), meaning the 

countries at the given time period were from mildly to highly inefficient in using their renewable 

energy resources in a way that contributes to energy poverty. At the same time, the remaining 25 % 

of the data is distributed between the values of 0.498 and 1. 

Descriptive statistics Efficiency index (DEA) 

Count 351 

Mean 0.339 

Standard deviation 0.256 

Minimum 0.039 

1st quartile 0.137 

Median 0.264 

3rd quartile 0.498 

Maximum 1 

Table 6. Descriptive statistics for efficiency index (whole dataset) 

The histogram in Figure 17 presents the distribution of the efficiency index values in slightly more 

details than Figure 15. However, it points to the same conclusions. Majority of the countries over the 

observed years were from inefficient in a way they are using renewable energy if the goal to improve 

energy poverty is considered. 

 

Figure 17. Histogram for efficiency index (whole dataset) 

After the whole dataset was analysed, it was decided to examine only the data from the latest available 

year – 2022. Firstly, 2022 observations were used as DMUs for evaluation, and the rest of the 

observations were used as DMUs for reference. The analysis presents the same results as the analysis 

where the whole data set is used for both evaluation and reference. It finds that only two countries in 

2022 can be considered as efficient (Germany and Sweden). The efficiency values for all countries 

for 2022 are available in the appendix 3. The Figure 18 below shows the number of efficient and 

inefficient countries and distribution of efficiency scores of inefficient DMUs.  
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Figure 18. Distribution of efficient and inefficient observations (data from 2022 evaluated) 

The Figure 18 indicates that majority of the countries have the efficiency score of 0.6 or lower. It 

means that all the countries besides Germany and Sweden could have had at least 40% lower values 

of energy poverty indicators with the same or slightly higher use of renewable energy use if renewable 

energy was used with the focus on improving accessibility and affordability of energy.  

While only Germany and Sweden are considered as efficient in the 2022 dataset, reference sets for 

inefficient countries include also other observations that are considered as efficient in the whole 

dataset and are presented above. Figure 19 below presents which observations were used in reference 

sets and how often. Figure 20 present for which country each of the benchmark observations are used 

as reference. This diagram illustrates where the counted appearances from Figure 19 actually appear. 

 

Figure 19. Best performers’ appearance in refence sets (data from 2022 evaluated) 
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Figure 20. Use of best performers in reference sets (data from 2022 evaluated) 

Points DE (Germany) and SE (Sweden) with no connections are Germany 2021 and Sweden 2013 

observations respectfully. These best performers were not used in any of the reference sets. Sweden’s 

performance from 2014, 2015 and 2021 (smaller SE points at the top) are used only in one reference 

set each. Two of these observations are used in the reference set for Greece (ES), while the third one 

is used for the reference set for Slovenia (SI). Sweden’s performance in 2022 was used in the 

reference sets for majority of the countries, except for Finland (FI), Hungary (HR) and Lithuania 

(LT). Germany’s performance from 2022 is included in the reference sets for Greece (ES), France 

(FR), Ireland (IE), the Netherlands (NL) and Poland (PL).  

Finally, the analysis where only data from 2022 is used was carried out. It presents more optimistic 

results than the analysis of 2022 data with the whole dataset as a reference. In this analysis, six 

countries are considered to be efficient (Austria, Czech Republic, Germany, Finland, Netherlands, 

and Sweden). The results differ because of the amount of data used in the analysis. As known from 

the literature, if a number of evaluated DMUs is smaller, the results of the analysis may be overly 

optimistic (Cook et al., 2014). Hence, while in this section both, the analysis with the whole dataset 

and analysis with only the 2022 data, are presented, in later sections only the results of the analysis 

where the whole dataset is considered as reference DMUs are considered. 

Figure 21 resents the division between efficient and inefficient countries and provides the distribution 

of efficiency scores for inefficient countries. As it can be seen, even though there are less inefficient 

countries, their scores are quite similar to the efficiency scores computed when the whole dataset is 

used as reference DMUs. Majority of the countries still have efficiency score of 0.6 or less, meaning 

they could have had at least 40% lower values of energy poverty indicators if renewable energy 

resources were used in a more efficient way, meaning focusing on improving accessibility and 

affordability of energy. 
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Figure 21. Distribution of efficient and inefficient observations (only data from 2022) 

Figure 22 indicates how many times each of the best performing countries were used in the reference 

set for the countries that are considered inefficient. Figure 23 illustrates these connections between 

inefficient countries and the best performers used in their reference sets. As it can be seen, Czech 

Republic is used in the largest number of reference sets (17), while Austria and Germany are used in 

the smallest number of reference sets (4). This shows that not using observations from previous years 

as reference DMUs changes the relations between the data and presents different efficiency scores. 

While these scores are also informative, having more references presents a more critical view. For 

this reason, in the later sections the results for 2022 from the analysis with the whole dataset are 

referenced. 

 

Figure 22. Best performers’ appearance in refence sets (only data from 2022) 
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Figure 23. Use of best performers in reference sets (only data from 2022) 

DEA results reveal how efficiently green energy resources are used to reduce energy poverty. 

However, it is important to keep in mind that the comparison of the results of different countries is 

rather complex. For example, if two countries have an efficiency score of 1, it does not mean that 

they have the same energy poverty. However, it means they both have the lowest energy poverty with 

the renewable energy resources they are using. 

3.4. Validation of the Green Energy Poverty Indices 

After the principal component analysis and data envelopment analysis approaches have been 

implemented and the indices are computed, the derived values can be validated. Correlation analysis 

is used for validation of the results of PCA and DEA. In this section, the results of this validation 

exercise are presented. 

For correlation analysis, the index values are compared with the following indicators: 

- Absolute expenditure on electricity – lower values of this indicators point to potential energy 

poverty; 

- Disposable annual household income – lower values of this indicator point to potential energy 

poverty; 

- Population considering their dwelling as too dark – higher values of this indicator point to 

potential energy poverty. 

These variables were selected as they are mentioned as potential indicators for energy poverty in the 

literature. As already mentioned, low absolute expenditure on electricity is one of the indicators that 

the EU Energy Poverty Advisory Hub proposes to focus on when evaluating energy poverty (Widuto, 

2023). As this indicator is not used to compute the green energy poverty index and efficiency scores, 

it is suitable for the validation of the index. Disposable annual household income and population 

considering their dwelling as too dark variables are also mentioned in the EU Energy Poverty 

Advisory Hub report from 2023 as indicators that can also provide information about energy poverty. 

Income is considered to be one of the main drivers of energy poverty. Therefore, disposable annual 

household income can help identify in which countries households are more vulnerable to energy 

poverty. Population considering their dwelling as too dark is also a relevant indicator because it can 
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stem from the lack of natural or artificial lighting. If there’s too little artificial lighting, this may be a 

result of low energy consumption that is often a sign of energy poverty (Gouveia et al., 2023). 

All of these indicators are available in Eurostat. They were extracted in the same way as the indicators 

used for constructing the index through Eurostat library in Python. The descriptive statistics of these 

indicators is available in Appendix 2. Shapiro-Wilk test showed that all variables do not follow 

normal distribution. Normality test results are available in Appendix 4. While absolute expenditure 

on electricity has values for all countries (27 EU Member States) for the investigated period (2010-

2022), other two indicators have missing values. Disposable annual household income variable has 

295 values (compared with 351 index values) and population considering their dwelling as too dark 

variable has 319 values (compared with 351 index values). However, the number of missing values 

was deemed not high enough to affect correlation analysis. 

Green Energy Poverty Index, which was constructed using principal component analysis, assesses 

how energy poor and how much lagging behind in the green transition an EU Member State is. As 

presented in section 3.2, the value of the index ranges from 0 (very energy poor and highly lagging 

behind in the green transition) and 1 (low energy poverty and great progress towards the green 

transition). Considering the meaning of the values of the index, the index should positively corelate 

with absolute expenditure on electricity and disposable annual household income and negatively 

corelate with the population considering their dwelling as too dark. 

Data envelopment analysis produced an efficiency score that can be used to understand whether the 

countries are using their renewable energy resources in a way that contributes to decreasing energy 

poverty or in a way that is not socially inclusive. The values of the efficiency score can range from 

0, completely inefficient, to 1, completely efficient. The interpretations of the values are presented in 

section 3.3. The interpretation of the index is slightly more complex that the interpretation of the 

index computed using PCA. Higher value, indicating higher efficiency, does not necessarily indicate 

lower energy poverty, but indicates that the energy poverty is lowered as much as possible taking into 

account the renewable energy resources used by the country. Hence, the efficiency score may have 

lower correlation with variables that indicate energy poverty. Still, the correlation should exist. 

Considering the meaning of the values of the index, the efficiency score should positively corelate 

with absolute expenditure on electricity and disposable annual household income and negatively 

corelate with the share of population considering their dwelling as too dark. The created indices 

should also correlate with each other. Correlation should be positive as for both of the indices worse 

performing countries should have lower values, while countries with low energy poverty and great 

progress towards green transition should have values close to 1. 

Figure 24 and Table 7 below present the results of the correlation analysis that includes both of the 

constructed indices (green energy poverty index based on PCA and DEA efficiency scores). 

Spearman's ρ is used to evaluate relationships between the variables. This method was chosen as it 

does not assume normal distribution and is not as sensitive to outliers. The results of the correlation 

analysis are as expected – both indices positively correlate with absolute expenditure on electricity 

and disposable annual household income and negatively corelate with the population considering 

their dwelling as too dark. The indices also positively correlate with each other. The correlation 

between green energy poverty index based on PCA and selected variables varies from weak to strong. 

Correlation between the efficiency scores based on DEA and selected variables vary from moderate 

to strong. As already mentioned, energy poverty is a complex problem that could be assessed from 



 

57 

different angles. Hence, not all variables related to energy poverty are highly correlated, as they 

examine different sides of this multifaceted problem. Still, as the correlation between the computed 

indices and the selected variables is as expected, even if it is weak with some variables, it can be 

stated that the indices are measuring the issue that they should be measuring – energy poverty.  

 

 

Figure 24. Correlation matrix (Spearman’s ρ) between the constructed indices and chosen variables 

Correlation with the DEA efficiency 

scores 

Green Energy Poverty 

Index based on PCA 

Efficiency scores based on 

DEA 

Absolute expenditure on electricity 0.750 (0.000) 0.421 (0.000) 

Disposable annual household income 0.621 (0.000) 0.738 (0.000) 

Population considering their dwelling as 

too dark 

-0.262 (0.000) -0.363 (0.000) 

Green Energy Poverty Index based on 

PCA 

1.000 0.795 (0.000) 

Efficiency scores based on DEA 0.795 (0.000) 1.000 

Table 7. Correlation (Spearman’s ρ) between the constructed indices and chosen variables 

p-values are presented in the brackets 

Bolded correlations are significant 

The correlation between the indices is also strong and positive (0.795), which shows that they are 

measuring the same issue. The distribution of the values of both indices is presented in the scatter 

plot in Figure 25 below. The values for the latest available year (2022) are in dark blue, while past 

values are presented by light blue points. The scatter plot indicates that the observations with high 

efficiency scores do not necessarily have high score of green energy poverty index based on PCA, 

while the observations with high green energy poverty index scores generally also have high 

efficiency scores. This can be because of a slightly different objectives of the indices. Green energy 

poverty index based on PCA shows whether the country has low energy poverty and is well 

progressed in green transition. The efficiency scores, on the other hand, show whether the country 

has the lowest energy poverty indicators considering the progress it has made towards green 
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transition. Hence, it may be a case that the country still has high energy poverty and is slightly lagging 

behind in the green transition, so it has relatively low score of green energy poverty index, but it also 

used its renewable energy sources in a way that focuses on increasing energy affordability and 

accessibility, so the country is awarded high efficiency score from DEA. 

 

Figure 25. Scatter plot of Green Energy Poverty Index and efficiency scores 

In conclusion, correlation analysis confirmed that the two computed indices – Green Energy Poverty 

Index based on PCA and efficiency scores from DEA – are measuring energy poverty. They correlate 

with selected variables that are associated with energy poverty. More specifically, both indices 

positively correlate with absolute expenditure on electricity and disposable annual household income, 

and negatively correlate with a share of population that considers their dwelling as too dark. The 

indices also positively correlate with each other, which further confirms that they are both measuring 

energy poverty. 

3.5. Interpretation of the results and policy implications 

Previous sections present the results of PCA and DEA and briefly explains how the results can be 

understood. However, they are more concerned with the statistical meaning of the results and their 

reliability. This section focuses on the policy implications of the results. It presents how the indices 

could be used to better understand the connection between energy poverty and green transition. The 

section also presents a closer look into the related policies in the best and worst performing countries 

to derive policy suggestions for the countries that wish to improve their situation. 

3.5.1. Green Energy Poverty Index based on PCA 

The Green Energy Poverty Index based on PCA has values from 0 to 1. The values of the index were 

standardised, meaning that both 0 and 1 are not theoretical worst and best scenarios, but refer to the 

lowest and highest existing values of non-standardised index. Index score 0 is given to Bulgaria in 

2010, when the country is most energy poor and the least advanced in green transition from the whole 

dataset. Index score 1 is given to Germany in 2022, when the country has lowest energy poverty 

indicators and highest indicators of renewable energy use. 



 

59 

This index differs from other energy poverty indices because it considers not only energy poverty 

indicators, but also use of renewable energy resources. As already discussed in literature review 

section 1.1.2, if high use of renewable energy resources is followed by proper policies that promote 

socially inclusive green transition, their use may contribute to higher availability, affordability and 

efficiency of energy, reducing energy poverty (Dong et al., 2021). Hence, the index takes into account 

not only the observed energy poverty, but also this potential to reduce energy poverty through green 

transition.  

Index values for all 27 EU Member States for the last year available (2022) can be found in Appendix 

3. The values are also illustrated in the map in the Figure 26 below and ranked in Table 8. Countries 

that are not coloured (beige) are not included in the index. As it can be seen, majority of the countries 

have low to moderate index scores, as they are coloured light green. This indicates that there is still a 

lot to be done in these countries to ensure that they progress in green transition in an inclusive way 

that contributes to lower energy poverty.  The best performing country is Germany (in dark green), 

while worst performing countries are Cyprus, Bulgaria and Greece (light yellow). 

 

Figure 26. Green Energy Poverty Index based on PCA map for 2022 
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In general, while most of the countries are moderately to highly energy poor and lagging behind in 

green transition, the overall situation in European Union is improving. The Figure 27 below shows 

the change of the index values in EU27 between 2010 and 2022. As it can be seen, EU average is 

gradually increasing over the years except for a slight decrease from 2021 to 2022. This is not 

surprising considering different policy measures that have been taken over the years to address energy 

poverty in the EU and ensure inclusive green transition. These policies are already discussed in 

section 1.2. Specific measures tackling energy poverty include introducing the concept of energy 

poverty in EU policy measures in 2009, launching Energy poverty Observatory in 2016,and  

presenting Commissions recommendation on energy poverty in 2020, to name a few (European 

Commission, n.d.-a). Most significant policy measures focusing on just and rapid green transition 

include European Green Deal (European Commission, 2019), and REPowerEU (European 

Commission, 2022). The slight improvement in the Green Energy Poverty Index shows that the 

measures taken are, at least to some extent effective.  

The slight decrease between 2021 and 2022 can be explained by several challenges that could have 

contributed to worsening energy poverty faced by the EU Member states in recent years, which are 

already discussed in section 1.2. For example, COVID-19 pandemic and Russia’s invasion of Ukraine 

resulted in higher energy prices (Rao, 2022). 

 

Figure 27. Green Energy Poverty Index in EU27 (average) between 2010 and 2022 

The index values can provide guidance for policy makers in decision making process specifically 

focusing on energy poverty, climate policies and green transition. They are most informative together 

with other indicators related to energy poverty and green transition as the index highlights the relation 

between the two issues. For example, if the country has a relatively low value for the index, it can 

mean that the country is energy poor and lagging in green transition. However, if the indicators related 

to green transition are examined at the same time and they indicate more progress in green transition 

than the index, this may also mean that the country is not ensuring that the green transition is inclusive 

and contributing to lower energy poverty instead of the other way around. 

3.5.2. Efficiency scores based on DEA 

The efficiency scores from DEA show whether the country achieved the lowest energy poverty 

possible with the renewable energy resources it has. It means that if the country has effective policies 

and its green transition is well-thought out to improve affordability and availability of energy, 
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efficiency value for that country is 1 or close to 1. At the same time, if the green transition has been 

premature and climate polities implemented are not socially inclusive, efficiency score will be low. 

Index values for all 27 EU Member States for the last year available (2022) can be found in Appendix 

3. The values are also illustrated in the map in the Figure 28 below. The best performing country is 

Germany (dark green), while worst performing country is Greece (light green).  

The Figure 28 shows that majority of the countries are highly or moderately ineffective in using their 

renewable energy resources to reduce their energy poverty. As known from existing academic 

literature, increased use of renewable energy resources may positively affect energy poverty if it is 

paired with policies that ensure that this change in use of energy resources improve availability and 

affordability of energy (Dong et al., 2021). However, if the green transition is premature and followed 

by poor climate policy that does not promote social inclusiveness, it may worsen energy poverty 

(Belaïd, 2022). Hence, low efficiency scores signal that a large share of the EU27 countries may have 

not properly prepared for the green transition and did not focus on improving efficiency and 

affordability of energy when increasing the amount of renewable energy resources used.  

 

Figure 28. Efficiency score based on DEA map for 2022 
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The efficiency scores can be used as a great addition to the Green Energy Poverty Index based on 

PCA that is presented above. While the index shows how well the country is performing considering 

energy poverty and green transition, the efficiency scores help to understand whether a country is 

achieving the best possible results with the resources it has. For example, Denmark and the 

Netherlands have similar values of green energy poverty index, 0.478 and 0.458 respectively. This 

would mean that they are similarly energy poor and similarly lagging behind in green transition. 

However, efficiency scores for these countries differ. Denmark efficiency score of 0.507, while the 

Netherlands has efficiency score of 0.838. This means that while both countries are performing 

similarly, the Netherlands is using its renewable resources more efficiently to tackle energy poverty. 

With their use of renewable resources, the Netherlands could improve its energy poverty indicators 

by 17.2%, while Denmark could have 49.3% lower energy poverty indicators if it had more inclusive 

green transition policies and focused its use on renewable energy on improving energy affordability 

and effectiveness. 

In general, situation in the EU is slightly improving considering the efficient use of renewable energy 

with an aim to reduce energy poverty. Figure 29 below shows the average efficiency scores in the EU 

between 2010 and 2022. While the average scores point to moderate inefficiency in the whole EU, it 

is also clear that situation is slightly improving. The same is seen from the average Green Energy 

Poverty Index. The improvement in average efficiency scores further confirms that policies focusing 

on just green transition, such as Green Deal, are ensuring that green transition consider vulnerable 

society in groups and that efficiency and affordability of energy is improved when more renewable 

energy resources are introduced in the energy market.  

As with the average Green Energy Poverty Index, there is a decrease in efficiency scores from 2021 

to 2022. This can be a result of the already mentioned challenges and higher energy prices. Moreover, 

climate change resulted in changes in energy demand and reduced ability of the EU Member States 

to produce energy from renewable energy sources due to harsher weather conditions (Rao, 2022). 

 

Figure 29. Efficiency scores in EU27 (average) between 2010 and 2022 

While discussing the relevance of DEA results for policy making, it is also important to consider the 

target values that the analysis produces. Target values show what values of all used indicators the 

country could have if it was more efficient. More specifically, they indicate how much the country 

could reduce its energy poverty if it used its renewable energy resources with a focus on improving 

energy availability and affordability. These target values can be informative to policy makers and 
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could be used as realistic targets in action plans for energy poverty reduction. The target values for 

all countries for 2022 are available in Appendix 5.  

3.5.3. Policy implications 

The scores of the indices show that majority of the countries in the EU27 are still highly or moderately 

energy poor and their green transition, evaluated through the use of renewable energy resources, is 

not as just as envisioned. However, while some countries are still significantly lagging behind, others 

have managed to progress in green transition and reduce its energy poverty in the process.  

The Table 8 below presents the values of the green energy poverty index based on PCA and efficiency 

scores based on DEA for EU27 countries for 2022. The countries are ranked from the best performing 

to the most lagging behind. While the ranking of both indices differs due to different objectives of 

the indices, both of them show that Germany is the best performer, while Greece is the most lagging 

behind. Closer look to these countries can provide meaningful insights on the possible steps struggling 

countries could take to improve their energy poverty while progressing in green transition. 

 

 Country Green Energy Poverty 

Index (PCA) 

 Country Efficiency Score 

(DEA) 

1. Germany 1.000 1. Germany 1.000 

2. Sweden 0.751 2. Sweden 1.000 

3. France 0.719 3. The Netherlands 0.838 

4. Italy 0.659 4. Czech Republic 0.750 

5. Spain 0.577 5. Finland 0.699 

6. Finland 0.561 6. Austria 0.679 

7. Austria 0.528 7. Denmark 0.507 

8. Poland 0.509 8. Luxembourg 0.454 

9. Denmark 0.478 9. Estonia 0.451 

10. The Netherlands 0.458 10. Belgium 0.421 

11. Czech Republic 0.429 11. Poland 0.412 

12. Portugal 0.413 12. Italy 0.369 

13. Belgium 0.411 13. Slovenia 0.349 

14. Estonia 0.401 14. Portugal 0.348 

15. Latvia 0.394 15. France 0.308 

16. Slovenia 0.375 16. Latvia 0.307 

17. Hungary 0.363 17. Lithuania 0.279 

18. Luxembourg 0.359 18. Slovakia 0.262 

19. Slovakia 0.359 19. Malta 0.258 

20. Croatia 0.343 20. Hungary 0.229 

21. Romania 0.339 21. Spain 0.195 

22. Lithuania 0.333 22. Ireland 0.172 

23. Ireland 0.329 23. Cyprus 0.164 

24. Malta 0.328 24. Croatia 0.148 

25. Cyprus 0.284 25. Romania 0.101 

26. Bulgaria 0.245 26. Bulgaria 0.083 

27. Greece 0.226 27. Greece 0.059 

Table 8. EU27 countries ranked by their green energy poverty index and efficiency scores for 2022 
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The scores of Green Energy Poverty Index indicate that Germany is the least energy poor country 

with the most progress in green transition. The efficiency score of 1 indicates that the country has 

also achieved the lowest energy poverty it can achieve given its use of renewable resources. Such 

good performance can be related to several policy measures that have been taken in Germany before 

and during the analysed period. Firstly, the government includes energy poverty in a comprehensive 

set of social policies focusing on poverty in general. For example, basic social support includes energy 

costs in its consideration of living expenses of a household. Individuals can also apply for government 

backed loans to cover debts on energy payments so that they would avoid energy disconnection and, 

in some cases, long-term debts caused by high energy costs may be taken over by the government. 

The government also may issue subsidies for various improvements that improve energy efficiency. 

Moreover, research community in the country has been actively focusing on energy poverty since 

early 2000, with recent work focusing also on the effect that the changes in energy market have on 

energy poverty. Finally, there are several local level initiatives that tackle energy poverty. These 

include improving energy efficiency, support for local governments with energy audits, and social 

tariff implemented by local energy suppliers, among others (EU Energy Poverty Observatory, 2020).  

Germany also invests a lot of effort into green transition that is well thought-out and just, which may 

explain efficiency score of 1. Two main policies that are currently leading green transition in Germany 

include Climate Action Programme 2030 and Climate Action Act. These policies focus on use of 

renewable energy resources, improvement of buildings to increase their energy efficiency, and 

transformation of transport sector. The main goals of these actions include reducing greenhouse 

emissions by 55 % by 2030, phasing out coal as a resource for energy production, and restructuring 

transport sector (Die Bundesregierung, n.d.). These policies and the whole energy transition in 

Germany also heavily focuses on ensuring energy affordability in the process (EU Energy Poverty 

Observatory, 2020). 

The actions presented above may explain high scores Germany received for both of the indices. The 

policy makers acknowledge energy poverty as a complex problem that is a part of a broader poverty 

issue and addresses it through a broad comprehensive set of social policies. The issue of energy 

poverty also has been closely analysed and monitored since early 2000s, which allowed the 

government to make informed decisions on different measures that may tackle this problem. 

Moreover, actions for green transition are implemented with an aim to improve energy efficiency and 

affordability in the country. As already discussed in the Literature review, green transition actions 

with such focus tend to result in lower energy poverty, among other benefits (Dong et al., 2021). 

The worst scores for both computed indices were given to Greece. These scores may be a result of a 

long-term struggles the country has faced. Energy poverty, as poverty in general, increased in the 

country after the financial crisis in 2008. The situation has been further worsened by generally low 

energy efficiency of residential buildings and increasing energy prices. Worsening situation in the 

country since the financial crisis required a comprehensive policy framework that targets energy 

poverty and related challenges. However, Greece lacked such framework during the observed time 

period. The country also lacks systems to accurately measure and monitor energy poverty and assess 

the effectiveness of different implemented measures that should address energy poverty. Research on 

energy poverty in Greece is also scarce,  which results in a lack of understanding of the factors that 

contribute to energy poverty in the country and makes it difficult for individuals and policy makers 

to find relevant and up-to-date information about the issue (EU Energy Poverty Observatory, 2019). 
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In recent years specific actions were taken to address the challenges that Greece face in tackling 

energy poverty. Energy Poverty Observatory was established in 2014 to develop research activities 

on the topic of energy poverty in Greece. The Observatory aims to provide clear framework for 

measuring and evaluating energy poverty in the country as well as policy measures to tackle it. It 

strives to also provide clear and up-to-date information for individuals and policy makers about 

energy poverty, main factors contributing to it, and most important factors to consider when tackling 

this issue (EU Energy Poverty Observatory, 2019). Between 2010 and 2020 Greece also aimed to 

introduce specific measures that tackle the causes of energy poverty. These measures focused on 

improving energy access and efficiency. They included social electricity tariff introduced in 2010, 

heating oil allowance since 2013, regulatory measures for the protection of energy poor household 

introduced in 2015, energy efficiency obligation schemes active since 2017, energy upgrade 

programme for dwelling available since 2020, and scheme to replace heating oil boilers, introduced 

in 2015 (ONPE, 2021).  In 2021 the government introduced an Action Plan to Combat Energy 

Poverty. This action plan can be seen as a first step towards a comprehensive policy framework that 

aims to tackle energy poverty in Greece. The main objectives of the action plan include mapping and 

analysing the households affected by energy poverty, introducing a comprehensive set of policies to 

tackle energy poverty, and setting up a system for monitoring energy poverty and the policies that 

should tackle it. Foreseen set of policies tackling energy poverty considers three dimensions – 

information and training, consumer protection, and development perspective with a focus on 

improving energy efficiency and increasing use of renewable energy sources (FAO, n.d.). However, 

the effect of these recent policies is not yet visible, as indicated by the Green Energy Poverty Index 

and efficiency scores.  

Considering the green transition, Greece has recently introduced policies aiming to reduce emission 

from energy use across different sectors, facilitate the move from traditional energy sources to 

renewable ones across different sectors, and mitigate negative impact of climate change on 

individuals and businesses. While there is hope that transition from fossil fuels to renewable energy 

prices will increase availability of reliable and affordable energy, clear measures to mitigate potential 

negative effects from rapid green transition are missing from the current policy framework (Leidecker 

et al., n.d.). Hence, increased energy prices, consequently increased prices of some goods, especially 

those intensive in carbon, and other challenges may further worsen energy poverty trap among Greek 

households.  

The political and economic situation of Greece may explain the low Green Energy Poverty Index and 

efficiency scores. As the research on energy poverty in a country is scarce, it is difficult to understand 

the underlying causes of energy poverty and identify effective solutions to tackle them. This lack of 

knowledge may explain why previously implemented policy measures tackling energy poverty seems 

to be ineffective. The measures aiming to improve energy efficiency seem to lack focus on the poorest 

households, while the financial support for debts related to energy costs tackle the results of energy 

poverty, not its causes.  A comprehensive policy framework focusing on energy poverty has been 

introduced only in 2021, which means that its potential effect is not yet visible. However, during the 

majority of the observed time period such policy framework was not in place. Moreover, while the 

country introduced several actions to progress in green transition, these actions lack focus on 

improving availability and affordability of energy, which means that they may exacerbate energy 

poverty in the country.  
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Data envelopment analysis produced target values for inefficient countries, including Greece. These 

values show how much a country could decrease its energy poverty if the use of its renewable energy 

resources would be accompanied by the policies that ensure affordability, efficiency and availability 

of energy during the green transition. These values are presented in the Table 9 below. 

 

 Current values Target 

Inability to keep adequately warm 18.700 1.108 

Arrears on utility bills 34.100 2.020 

Use of renewables for electricity 23742.000 39549.446 

Use of renewables for heating and cooling 1666.200 3718.718 

Share of energy from renewable resources 22.678 22.678 

Table 9. Current and target values of the chosen indicators for Greece 

The principal component analysis resulted in a formula (19) that can be used to easily calculate non-

scaled values of the green energy poverty index, if the values of the needed indicators are available. 

The indicators should be scaled using formula (17) and median absolute deviations and medians of 

each indicator provided in Table 4. The formula can be used to calculate the index value for Greece 

with its target values to better understand how much the country could improve with better thought-

out green transition policies. The scaled target values are presented in the Table 10. 

 

 Target values Scaled target values 

Inability to keep adequately warm 1.108 -1.349 

Arrears on utility bills 2.020 -1.416 

Use of renewables for electricity 39549.446 2.653 

Use of renewables for heating and cooling 3718.718 1.486 

Share of energy from renewable resources 22.678 0.690 

Table 10. Non-scaled and scaled target values of the chosen indicators for Greece 

The Green Energy Poverty Index for Greece with its target values is calculated as follows: 

𝐺𝐸𝑃𝐼 = 2.653 + 0.949 ∗ 1.486 + 0.580 ∗ 0.690 − 0.826 ∗ (−1.349) − (−1.416) = 6.994  

Table 12 in Appendix 3 presents non-scaled values for the Green Energy Poverty Index for 2022. As 

it can be seen, value for Greece is -5.594. The index score calculated with the target values would 

place Greece between Austria and Finland, making it 7th best performing country in 2022, as seen 

from Table 8 above. This shows how much progress Greece could make with the right actions and 

policies in place. 

To sum up, the analysis of the situation of best and worst performing countries, Germany and Greece 

respectively, revealed which policy measures may help countries progress in their green transition in 

a way that also results in lower energy poverty. Three most important actions were identified. Firstly, 

the issue of energy poverty should be thoroughly researched to better understand its underlying causes 

and the most suitable solutions. Secondly, policy actions targeting energy poverty should be a part of 

a comprehensive long-term policy framework that focuses on both energy poverty and broader related 

socioeconomic challenges, such as overall poverty. Finally, actions towards green transition, such as 
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increased use of renewable energy sources, should be introduced with an aim to also improve energy 

efficiency and affordability.  

3.6. Limitations of the study and topics for future research 

This study presents valuable findings that can inform policy decision making process focusing on 

energy poverty in the light of green transition. However, the study has some limitations. These 

limitations mainly stem from the complexity of the issue in question – energy poverty – and the 

availability of the data. The challenges include complex relationship between indicators used in the 

analysis and use of created indices for the future computations. 

Firstly, it is important to remember that while the Green Energy Poverty Index and efficiency scores 

present the progress made towards green transition and the effect it has towards energy poverty, the 

values of the indices should be considered critically. While the connection between energy poverty 

and progress towards green transition exist, there may be other factors affecting energy poverty in a 

country that are not accounted for in the analysis. For example, as already discussed in literature 

review section 1.1.2, energy poverty in the light of green transition is strongly affected by the climate 

policies and political actions leading to green transition (Belaïd, 2022). As quality and nature of 

policies implemented in the EU Member States are not included in the index, some of the specific 

connections may be overlooked. DEA efficiency scores and target values partly account for this 

limitation. The efficiency scores show whether the country achieved the lowest energy poverty 

possible with the renewable energy resources it has. Still, to better understand how the desired effect 

can be achieved, inclusion of quantitative policy analysis is required. Therefore, further analysis is 

needed to better understand the relation between energy poverty and green transition as well as the 

factors influencing this relation. 

Second important limitation is concerned specifically with the index computed by PCA. The aim of 

the index to consider energy poverty in the light of green transition. Hence, the index evaluates if the 

country is energy poor and at the same time lags behind in green transition. The indicators of energy 

poverty have positive weights in the index, while the indicators for the use of renewable energy 

resource use have negative weights. In general, this satisfies the objective of the index to evaluate 

both energy poverty and progress in green transition. It also makes the index easy to interpret. 

However, this also may result in situations where energy poverty is not properly presented by the 

index because of high use of renewable energy resources that masks the real level energy poverty. 

The index computation allows to compensate for high energy poverty with high use of renewable 

energy.  Hence, best performing countries have to be analysed closely to make sure that it is not a 

case. 

Third important limitation is the sensitivity of the index to the size of a country. This is specific for 

the index created using PCA. As already mentioned, the index uses absolute values for renewable 

energy use. This means that the values for these indicators are likely larger for the countries that are 

larger and have more residents. Hence, in some cases, smaller countries may seem to be performing 

worse than they actually perform compared with the larger countries. This could be addressed by 

using the share of renewable energy used from the total consumption for specific purpose, namely 

electricity or heating and cooling. However, such data is not available for all countries for the whole 

time period analysed. The number of missing values was too great to employ interpolation without 
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compromising the results of the analysis. Therefore, this limitation needs to be kept in mind when 

examining the values of the Green Energy Poverty Index. 

Final important limitation stems from the index computation. Both Green Energy Poverty Index based 

on PCA and efficiency scores from DEA were calculated using data from 2010 to 2022. Index based 

on PCA is also normalised, so the normalised values can be only compared in this dataset. If more 

data is added, the standardisation has to be repeated including both the already used data and new 

data. This may change the values of the standardised index for the observations already included in 

this study. This does not compromise the reliability of the index values, especially non-scaled values. 

However, it is an important point to keep in mind if the index is used in the future. Considering the 

replication of data envelopment analysis, it is important to keep in mind that if the past values are not 

used in DEA, the results may be more optimistic. Moreover, the analysis of the progress of the country 

over the years would also be slightly less straightforward. 

These limitations highlight the topics that could be a focus of future research on energy poverty and 

green transition. These topics include: 

- Complexity of the relationship between energy poverty and green transition; 

- Factors influencing complex relationship between energy poverty and green transition; 

- Availability of data for green transition and potential proxies. 
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Conclusions 

1. Energy poverty is highly discussed issue. However, the consensus on definition of energy poverty 

and the most suitable method to measure it is lacking. The challenge to find a universal definition 

and measurement is also complicated by frequent changes in the energy market that increase its 

uncertainty. For example, the green transition in the EU is slowly changing energy market in the 

EU and the energy consumption habits of the EU citizens. However, this is rarely acknowledged 

and taken into account when assessing energy poverty. While there are some attempts to better 

capture the relationship between energy poverty and green transition, they often do not have a 

strong mathematical background. Hence, there is a clear need for an energy poverty assessment 

that sufficiently accounts for the green transition. This study fills this gap by presenting Green 

Energy Index based on PCA and efficiency scores derived from DEA analysis of the energy 

poverty and green transition nexus. 

2. The study focused on five indicators: inability to keep adequately warm, arrears on utility bills, 

use of renewables for electricity, use of renewables for heating and cooling, and share of energy 

from renewable resources. First two indicators are used to assess energy poverty and are 

recommended for this aim by the EU Energy Poverty Advisory Hub, which makes them most 

suitable indicators of energy poverty in the EU context. Indicators of the use of renewable energy 

resources were chosen as proxies for the progress in green transition. While green transition is 

significantly more complex than the switch from traditional energy sources to renewable sources, 

these indicators were seen as most suitable as the focus is on energy market. 

3. PCA was used to create a Green Energy Poverty Index. This method of analysis helps simplify 

the complex dataset and can be used to create an index that is easy to interpret. The index had the 

following weights for chosen indicators: 

- Inability to keep adequately warm: -0.826; 

- Arrears on utility bills: -1.000; 

- Use of renewables for electricity: 1.000; 

- Use of renewables for heating and cooling: 0.949; 

- Share of energy from renewable resources: 0.580. 

The index values were standardised. The standardised values range from 0 to 1. 0 indicates that 

country is highly energy poor and is lagging behind in the green transition, while 1 means that the 

country has low energy poverty and is well progressed towards green transition.  

4. DEA was used to calculate the efficiency scores for the 27 EU Member States. This analysis 

presents the current situation and suggests possible improvements. Values of the efficiency index 

may range from 0 to 1. Countries that receive value of 1 are considered as efficient. It means that 

they are moving towards the green transition in a way that is inclusive and tackles energy poverty. 

Countries that receive the value lower than 1 are using their renewable energy resources in a way 

that is not necessarily focused on increasing affordability and accessibility of energy and could 

have lower energy poverty considering the amount of renewable energy resources they use. The 

analysis also provides the target values for energy poverty indicators, meaning values that could 

be achieved with the same amount of renewable energy used if there was more focus on improving 

efficiency and affordability of energy. 

5. The created indices are validated through correlation analysis. Correlation analysis includes 

variables that are closely related to energy poverty. These variables are absolute expenditure on 

electricity, disposable annual household income, and population considering their dwelling as too 

dark. The correlation analysis revealed that constructed indices are correlating with these 
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variables in a way that was expected. The newly computed indices also strongly correlate to each 

other. Hence, it is clear that the newly constructed indices are measuring the problem for which 

they are constructed – energy poverty. 

6. The study presents two indices that aim to assess energy poverty while taking into account green 

transition. Index based on PCA presents the current situation and provides values that facilitates 

cross-country comparison in the analysed time period. The standardised Green Energy Poverty 

Index ranges from 0, high energy poverty and lagging in green transition, to 1, low energy poverty 

and great progress towards green transition. The analysis revealed that majority of the countries 

have scores lower than 0.5, meaning they are moderately to highly energy poor and lagging behind 

in green transition. Considering 2022 values, the best performing country is Germany, while the 

worst performing country is Greece.  

DEA produced efficiency scores are more related to individual observations and provides clear 

targets for minimising energy poverty. Efficiency can have values between 0 and 1. Value of 1 

indicates that a country is using its renewable energy resources in a way that is inclusive and 

contributes to reducing energy poverty. Values lower than 1 indicate that a country could achieve 

lower energy poverty if its green transition progress, namely increase in renewable energy use, 

would be more focused on social inclusivity, energy affordability, and energy accessibility. 

Considering 2022 values of the index, two countries can be considered as efficient – Germany 

and Sweden. The most inefficient country in 2022 is Greece. 

Both of the indices presented in the study should be considered together in policy discussions. 

The PCA index presents an overall situation and facilitates the comparison over the years and 

between the countries. The DEA index allows to move from the general overview and comparison 

and presents not only the current situation, but also realistic targets for energy poverty that could 

be achieved by a country if its current consumption of renewable energy was more inclusive and 

oriented towards increasing energy affordability and efficiency. 

A closer look into the policies implemented by the best performing and worst performing 

countries in 2022, Germany and Greece respectively, provides clear guidelines on how EU 

Member States could effectively tackle energy poverty and progress in just green transition. 

Firstly, there should be an active research community focusing on energy poverty to ensure that 

this problem is well understood and decisions taken to address it are well informed. Secondly, as 

energy poverty is a complex problem it should be tackled by a comprehensive set of policies that 

are a part of a larger framework focusing on other related socio-economic issues, such as general 

poverty. Finally, when progressing in green transition, including increasing use of renewable 

energy resources, countries should ensure that this progress also improves energy efficiency and 

affordability. 

7. While the study contributes to the knowledge gap on the relationship between energy poverty and 

green transition, the complexity of the issue should be further researched. Hence, the future 

research could focus on better understanding the specificities of the relationship between the 

energy poverty and green transition that the study highlighted, focusing on other factors that may 

be influencing this relationship. The study also highlighted a clear limitation in the availability of 

data to measure both energy poverty and green transition. Hence, future research could explore 

suitable proxies for these issues. 
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Appendices  

Appendix 1. Literature review matrix 

Source Issue addressed Sample Method Measurement Indicators  

Boardman, 

1991 

There is a difference between 

poverty and fuel poverty, and 

it needs to be addressed 

differently. However, for the 

fuel poverty to be effectively 

addressed, there is a need to 

find a way to measure it.  

- More than 10% household 

income spent on energy needs 

is considered as energy poor 

10% indicator Household spending on 

energy exceeds 10% its 

income 

Mirza & 

Szirmai, 2010 

Authors developed a complex 

energy poverty index using 

data from Pakistan to measure 

energy poverty specifically 

among rural households. 

Pakistan The authors combined an 

average of energy shortfall, 

index of energy inconvenience 

(combined from unweighted 

indices and then weighing 

their combinations by the 

share of the energy source use 

in the whole energy use of a 

household), and percentage of 

the minimum basic level of 

energy consumption. 

Energy Poverty 

Index (EPI) 

Data collected through the 

survey specifically designed 

for the study 

Nussbaumer 

et al., 2012 

While the most existing 

indicators focus on energy 

access or development level 

related to energy, the authors 

present an index assessing 

Selected 

African 

countries 

Methodology is derived from 

Oxford Poverty and Human 

Development Initiative, so 

there is a focus on absence of 

opportunities. The index 

measures energy poverty 

Multidimensional 

Energy Poverty 

Index (MEPI) 

Type of cooking fuel 

Food cooked on store or open 

fire if using any fuel beside 

electricity, LPG, natural gas, 

or biogas 

Has access to electricity 
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lack of access to modern 

energy sources. 

analysing d variables in a 

population of x individuals. 

The indicators are weighted 

unevenly with the weighting 

vector.  

Has a fridge 

Has a radio OR television 

Has a phone land line OR a 

mobile phone 

Thomson & 

Snell, 2013 

The authors address the 

knowledge gap about fuel 

poverty in the EY. Using EU-

SILC survey data they 

examine fuel poverty in the 

EU in the contex of rising fuel 

prices and accession to the EU 

of several former social states. 

EU The authors choose three 

proxies to estimate fuel 

poverty and create logistic 

regression models to 

determine what variables 

contribute to higher fuel 

poverty. 

Fuel poverty 

proxy indicators 

Ability to pay to keep the 

home adequately warm 

Arrears on utility bills, and the 

presence of a leaking roof 

Damp walls or rotten windows 

IEA, 2015 

 

There was a need to look into 

energy poverty and 

development in a 

comprehensive manner 

- The index was constructed by 

calculating an average of three 

normalised components 

(weighted equally). 

Energy 

Development 

Index (EDI) 

Per capita commercial energy 

consumption 

Share of commercial energy in 

total final energy use 

Electrification rate 

Dubois & 

Meier, 2016 

 

The authors present an 

analytical framework to assess 

energy poverty across the EU 

at the macro-scale. The 

framework is based on energy 

services deprivation and, 

secondly, on analysis of 

energy inequality, taking into 

account that different 

households may be differently 

EU The authors focus on macro 

level indicators. Three 

dimensions are used: ability to 

keep home adequately warm, 

energy affordability and 

energy efficiency. Second and 

third dimensions are indices 

made from 3 different 

indicators that are equally 

weighted. All three 

Energy services 

deprivation 

indicator 

Ability to keep home 

adequately warm 

Ability of the household to 

purchase necessary quantity of 

energy without suffering 

undue financial hardship (3 

indicators) 

Energy efficiency (3 

indicators) 
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affected by deprivation of 

energy services. 

dimensions are weighted 

equally to derive energy 

services deprivation indicator. 

Snell et al., 

2015 

Authors consider relationship 

between fuel poverty, 

disability and policy changes.  

UK Authors use two 10% 

measures of fuel poverty with 

two classifications of income 

(full and basic income). They 

also use Low Income High 

Costs indicator for fuel 

poverty where to be 

considered as fuel poor 

households have required 

costs above average or their 

income after spending on fuel 

are below poverty line. 

Measurement for 

fuel poverty 

Data from EHS (cross-

sectional study on people’s 

housing circumstances and 

energy efficiency of housing) 

Maxim et al., 

2016 

 

Energy poverty is a complex 

issue that requires a complex 

measurement. The paper 

offers an improved energy 

poverty index focusing on the 

EU to better assess this issue. 

The EU The weights were assigned 

following Energy Poverty 

Index weights 

CEPI Inadequate living conditions 

(not warm, not cool, dark) 

Arrears 

Leaks 

Gupta et al., 

2020 

Authors present a novel 

measurement of energy 

poverty on a household level. 

The new index aims to form an 

analytical basis for energy 

policies in India. 

India Principal Component 

Analysis (PCA)  

Household 

Energy Poverty 

Index (HEPI) 

15 indicators that present 

different dimensions of energy 

and energy poverty  
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Faiella & 

Lavecchia, 

2021 

 

The authors present a 

multidimensional indicator 

that was developed by them 

earlier and was adopted by 

Italian government to measure 

energy poverty. 

Italy The authors determine a 

threshold for needed heating 

level using adjustment factor 

and find the level of income 

needed to afford it. Then they 

create a matrix for mapping 

the minimum needed heating 

expenditure for each 

combination of household 

type, geographical area and 

city size. 

Measure of 

absolute fuel 

poverty 

The authors estimate the 

heating demand of a 

household through the 

integration of technical 

heating requirement 

information with expenditure 

data from Italian Household 

Budget Survey  

Li et al., 2021 Authors analyse the 

relationship between energy 

efficiency and energy poverty 

in developed and developing 

countries to better understand 

how energy poverty may 

affect country’s development. 

USA, India, 

Russia, Italy, 

UK, Norway, 

Qatar, 

Kuwait, 

Germany, 

Thailand, 

Austria, 

South Korea, 

Spain, 

Indonesia 

Data Envelopment Analysis 

and entropy analysis 

Measurement of 

energy poverty 

effect on social 

welfare 

Energy poverty 

Energy efficiency 

Socio-economic indicators 

Kelly et al., 

2020 

 

The authors propose a new 

composite index that assesses 

energy poverty in Ireland 

taking into account these 

characteristics. 

Ireland Weighting based on an 

arbitrary, a priori basis using 

Relative Risk Ratio (RRR) 

calculations 

HH-EPRI Heating requirements (3 

indicators) 

Building characteristics (2 

indicators) 

Household characteristics (5 

indicators) 
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Sokołowski et 

al., 2020 

Authors propose a 

multidimensional energy 

poverty index that considers 

multi-faceted nature of energy 

poverty but at the same time 

can be easily used for poverty 

mapping and in policy 

decision making process. 

Poland Authors assess join 

distribution of deprivations 

that is defined by a set of 

deprivations D. Then authors 

use dual cut-off approach. A 

household is considered as 

poor if the weighted 

deprecation score is higher 

than the set poverty cut-off. To 

derive the value of the index, 

the authors calculate the 

headcount ratio that considers 

multi-dimensionally poor 

households. 

 Household income and 

household energy expenditure 

used to calculate low income, 

high costs and high share of 

energy expenditure in income 

Inability to keep the home 

adequately warm 

Presence of leaks, damp, or rot 

Inability to pay utility bills 

Ehsanullah et 

al., 2021 

 

Authors address the nexus 

between energy poverty and 

energy insecurity with the role 

of various environmental 

concerns. 

G7 Data envelopment analysis 

(DEA) 

Energy, 

economic, social, 

and 

environmental 

performance 

index (EPI) 

Set of indicators on energy 

economics and environmental 

concerns related to energy 

poverty 

Jayasinghe et 

al., 2021 

Authors create an energy 

poverty index for Sri Lanka to 

better understand this problem 

in a country. 

Sri Lanka Principal Component 

Analysis (PCA) 

Multidimensional 

Energy Poverty 

Index (MEPI) 

Set of indicators from 

household income and 

expenditure survey: use of 

modern cooking fuel, access 

to electricity, having a fridge, 

having a radio or television, 

having a landline or mobile 



 

82 

phone, having a computer, 

having access to electric fan 

Lan et al., 

2022  

Authors develop a 

multidimensional energy 

poverty index for five Asian 

countries. The index is used to 

better examine the 

consequences of energy 

poverty in Asia. 

Pakistan, 

India, Sri 

Lanka, 

Bangladesh, 

Nepal 

Authors used multi-criterion 

decision analysis (MCDA) 

and standard-weight data 

envelopment (DEA) related 

model to assign weights to 

selected indicators. 

Multidimensional 

energy poverty 

index (EPI) 

Rural people’s electricity 

access 

Urban people’s electricity 

access 

Alternative and nuclear 

energy 

Electric power consumption 

Net energy imports 

Energy use 

Fossil fuel energy utilization 

Energy consumption (GDP 

per unit) 

R&D 

Output of renewable 

electricity 

Renewable energy utilization 

The time it takes to get energy 

Access to clean cooking fuels 

and technology 

Primary energy’s energy 

intensity level 

At ($1.90)/per day, the 

poverty headcount ratio 

Gini Index 

Liang & 

Asuka, 2022 

There is no consensus on how 

to measure energy poverty. As 

China Entropy method Multidimensional 

energy index for 

Household energy 

consumption (5 indicators) 
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 China is undergoing 

socioeconomic 

transformations and energy 

transition, new index to 

capture China’s energy 

poverty is needed. 

China. Used to 

calculate energy 

poverty in China 

from 2014 to 

2019 

Household energy supply (5 

indicators) 

Energy consumption structure 

(4 indicators) 

Air pollutants from residential 

energy consumption (4 

indicators) 

Energy/electrical appliances 

(5 indicators) 

Residential energy 

affordability (4 indicators) 

Hasheminasab 

et al., 2023 

There is a need for a 

comprehensive energy 

poverty assessment for the EU 

that considers sustainability. 

EU Multiple Criteria Decision-

Making methodology – 

ITARA methodology 

Energy poverty 

index taking into 

account changing 

energy market in 

the EU 

Primary energy consumption 

Final energy consumption 

Final energy consumption in 

household per capita 

Energy productivity 

Share of renewable energy in 

gross final energy 

consumption by sector 

Energy import dependency by 

products 

Population unable to keep 

home adequately warm by 

poverty status 

Greenhouse gas emissions 

intensity of energy 

consumption 
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Appendix 2. Variables used for the green energy poverty index and its validation 

Descriptive statistics 

Variables Source Measurement unit Median Average Standard 

deviation 

Min value Max value 

Energy poverty 

Inability to keep adequately 

warm 

Eurostat 

Code: ilc_mdes01 

Percentage of population 

struggling to maintain adequate 

temperature at their home 

because of financial difficulties 

6.1 10.253 9.962 0.5 66.5 

Arrears on utility bills Eurostat 

Code: ilc_mdes07 

Percentage of population that 

are unable to pay their utility 

bills on time because of 

financial difficulties 

7.4 10.387 8.575 1.2 42.2 

Use of renewable energy sources 

Use of renewables for 

electricity 

Eurostat 

Code: nrg_ind_ured 

Produced electricity from 

renewable resources as a share 

of the consumed elevtricity 

11718.408 32683.445 47076.169 0.68 260603.5 

Use of renewables for 

heating and cooling 

Eurostat 

Code: nrg_ind_urhcd 

Produced energy for heating and 

cooling from renewable 

resources as a share of the 

consumed energy 

1666.2 3590.347 4092.031 4.32 18628 

Share of energy from 

renewable resources 

Eurostat 

Code: nrg_ind_ren 

Produced energy from 

renewable resources as a share 

of the consumed energy 

17.852 20.816 11.819 0.979 66.002 

Variables for the validation of the index 

Absolute expenditure on 

electricity 

Eurostat 

Code: nama_10_co3_p3 

Total household expenditure on 

electricity  

4654.000 11187.524 16938.217 105.500 91487.000 
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Disposable annual 

household income 

Eurostat 

Code: ilc_mdho04 

Total income received by 

all household members from all 

sources 

5.600 5.829 1.945 2.600 12.100 

Population considering their 

dwelling as too dark 

Eurostat 

Code: nama_10r_2hhinc 

Percentage of population that 

consider their dwelling as not 

having enough light or being too 

dark 

13200.000 14330.094 7295.245 3100.000 38300.000 

Table 11. Descriptive statistics 

 

Variables presented by country over time 

  

Figure 31. Arrears on utility bills in EU27 2010-2022 Figure 30. Inability to keep adequately warm in EU27 2010-2022 
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Figure 33. Use of renewables for electricity in EU27 2010-2022 

Figure 32. Share of energy from renewable resources for 

EU27 2010-2022 
Figure 34. Use of renewables for heating and cooling in EU27 

2010-2022 
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Box plots for outliers’ detection 

     

Figure 38. Box Plot for Inability to keep 

warm variable 

Figure 39. Box Plot for Arrears for utility 

bills variable 

Figure 37. Box Plot for Use of 

renewables for electricity variable 

Figure 36. Box Plot for Use of 

renewables for heating and cooling 

variable 

Figure 35. Box Plot Share of energy from 

renewable resources variable 
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Appendix 3. Results of index for 2022 

Country Country 

code 

Green Energy Poverty 

Index (PCA) not scaled 

Green Energy Poverty 

Index (PCA) scaled 

Efficiency Score (DEA) 

Austria AT 6.155 0.528 0.679 

Belgium  BE 1.578 0.411 0.421 

Bulgaria BG -4.866 0.245 0.083 

Cyprus CY -3.367 0.284 0.164 

Czech Republic CZ 2.293 0.429 0.750 

Germany DE 24.485 1.000 1.000 

Denmark DK 4.177 0.478 0.507 

Estonia EE 1.188 0.401 0.451 

Greece EL -5.594 0.226 0.059 

Spain ES 8.038 0.577 0.195 

Finland FI 7.401 0.561 0.699 

France FR 13.562 0.719 0.308 

Croatia HR -1.057 0.343 0.148 

Hungary HU -0.287 0.363 0.229 

Ireland IE -1.595 0.329 0.172 

Italy IT 11.242 0.659 0.369 

Lithuania LT -1.444 0.333 0.279 

Luxembourg LU -0.447 0.359 0.454 

Latvia LV 0.929 0.394 0.307 

Malta MT -1.638 0.328 0.258 

Netherlands NL 3.410 0.458 0.838 

Poland PL 5.400 0.509 0.412 

Portugal PT 1.679 0.413 0.348 

Romania RO -1.201 0.339 0.101 

Sweden SE 14.817 0.751 1.000 

Slovenia SI 0.187 0.375 0.349 

Slovakia SK -0.450 0.359 0.262 

Table 12. Results of PCA and DEA analyses – values for 2022 
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Appendix 4. Normality test results 

Variables Shapiro-Wilk test 

statistic 

Shapiro-Wilk test p-

value 

Energy poverty  

Inability to keep adequately 

warm 

0.802 0.000 

Arrears on utility bills 0.829 0.000 

Use of renewable energy sources  

Use of renewables for 

electricity 

0.687 0.000 

Use of renewables for 

heating and cooling 

0.782 0.000 

Share of energy from 

renewable resources 

0.940 0.000 

Variables for the validation of the index  

Absolute expenditure on 

electricity 0.640 
0.000 

Disposable annual 

household income 

0.964 0.000 

Population considering their 

dwelling as too dark 

0.935 0.000 

Indices  

Green Energy Poverty 

Index based on PCA 

0.943 0.000 

Efficiency score based on 

DEA 

0.885 0.000 

Table 13. Results for Shapiro-Wilk normality test
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Appendix 5. Target values for 2022 from DEA analysis 

 Target values Actual values 

Country Inability to 

keep 

adequately 

warm 

Arrears on 

utility bills 

Use of 

renewables 

for 

electricity 

Use of 

renewables 

for heating 

and cooling 

Share of 

energy from 

renewable 

resources 

Inability to 

keep 

adequately 

warm 

Arrears on 

utility bills 

Use of 

renewables 

for 

electricity 

Use of 

renewables 

for heating 

and cooling 

Share of 

energy from 

renewable 

resources 

Austria 1.834 1.766 66445.957 5801.465 33.758 2.700 2.600 54820.600 4104.400 33.758 

Belgium  2.146 1.347 38677.653 2190.193 13.759 5.100 3.200 25334.500 1742.500 13.759 

Bulgaria 1.870 1.563 43620.015 3136.158 19.095 22.500 18.800 7744.900 1263.200 19.095 

Cyprus 2.309 1.330 49770.328 3236.976 19.429 19.200 8.100 893.600 237.600 19.429 

Czech 

Republic 2.174 1.424 50790.809 3539.900 21.161 2.900 1.900 10900.100 3539.900 18.195 

Germany 6.700 4.300 260603.500 18628.000 20.796 6.700 4.300 260603.500 18628.000 20.796 

Denmark 1.997 1.776 80994.355 7243.756 41.601 5.100 3.500 28175.000 3711.400 41.601 

Estonia 1.535 1.986 70108.847 6632.152 38.472 3.400 4.400 2895.600 938.800 38.472 

Greece 1.108 2.020 39549.446 3718.718 22.678 18.700 34.100 23742.000 1666.200 22.678 

Spain 2.344 1.796 136487.900 9582.015 22.116 17.100 9.200 136487.900 5452.000 22.116 

Finlan 0.979 3.985 82566.443 8808.225 47.886 1.400 5.700 40586.100 7828.500 47.886 

France 2.444 2.183 219492.818 15295.700 20.259 10.700 7.100 132287.700 15295.700 20.259 

Croatia 1.034 2.143 49218.338 4927.065 29.354 7.000 14.500 10438.100 1187.500 29.354 

Hungary 1.075 1.944 27234.540 2352.928 15.190 4.700 8.500 7353.000 1939.300 15.190 

Ireland 1.241 1.828 26058.522 1989.020 13.107 7.200 10.600 12452.500 278.000 13.107 

Italy 2.405 1.847 154689.882 10625.600 19.131 8.800 5.000 120601.400 10625.600 19.131 

Lithuania 2.166 1.534 64092.372 5074.832 29.599 17.500 5.500 3385.500 1266.400 29.599 

Luxembourg 0.954 1.999 24362.399 2190.121 14.356 2.100 4.400 1065.400 151.400 14.356 

Latvia 1.973 1.810 83409.528 7553.679 43.316 7.100 5.900 3895.800 1433.300 43.316 

Malta 1.959 1.444 35716.247 2108.506 13.404 7.600 5.600 297.000 51.600 13.404 
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Netherlands 2.375 1.257 46918.100 2673.478 14.972 5.300 1.500 46918.100 1968.300 14.972 

Poland 2.019 1.854 97937.571 8403.900 41.146 4.900 4.500 37190.800 8403.900 16.879 

Portugal 2.095 1.636 71243.536 5992.495 34.677 17.500 4.700 34009.100 2837.200 34.677 

Romania 1.540 1.804 47413.497 4024.272 24.140 15.200 17.800 24631.800 3465.600 24.140 

Sweden 3.300 3.600 116494.700 10928.700 66.002 3.300 3.600 116494.700 10928.700 66.002 

Slovenia 0.907 2.268 41182.378 4182.271 25.002 2.600 6.500 5480.200 590.200 25.002 

Slovakia 1.862 1.547 40981.511 2845.296 17.501 7.100 5.900 6404.400 1224.200 17.501 

Table 14. Target values and actual values from DEA analysis for 2022 


