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Summary 

The effectiveness of combining machine learning methods with Modern Portfolio Theory (MPT) to 

forecast stock prices and enhance investment portfolios is investigated in this thesis. In particular, it 

looks into how well the Random Forest, ARIMA, LSTM, and Transformers machine learning models 

perform when it comes to predicting the stock prices of 20 components of the OMXBBGI index. In 

accordance with the forecasts, the thesis builds a portfolio with the goal of maximizing returns for a 

specific degree of risk using Markowitz's Modern Portfolio Theory. Using historical stock data, the 

machine learning models were trained and verified. Based on these forecasts, a portfolio was 

subsequently constructed using MPT principles, with an emphasis on maximizing the risk-return 

trade-off. Important financial measures including Jensen's Alpha, Value at Risk (VaR), and the 

Sharpe Ratio were used to evaluate the performance of the portfolio. The results show that portfolios 

built using machine learning models' forecasts performed better than the benchmark index, offering 

higher returns for the same amount of risk. This enhancement demonstrates how machine learning 

may be used to improve investment strategies and stock market analytics. By demonstrating the useful 

advantages of fusing analytical methods with traditional financial theories to enhance risk 

management and investment choices, the thesis adds to the body of knowledge in the field of finance. 
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Santrauka 

Šiame darbe tiriamas mašininio mokymosi metodų derinimo su Moderniosios portfelio teorija (MPT) 

efektyvumas prognozuojant akcijų kainas ir sudarant investicinį portfelį. Nagrinėjama, kaip 

atsitiktinių miškų, ARIMA, LSTM ir Transformers mašininio mokymosi modeliai pasirodo 

prognozuojant 20 OMXBBGI indekso komponentų akcijų kainas. Atsižvelgiant į prognozes, darbe 

konstruojamas portfelis, siekiant maksimalių grąžų esant konkrečiam rizikos lygiui, naudojant 

Markowitz Moderniosios portfelio teorijos principus. Mašininio mokymosi modeliai buvo mokomi 

ir patikrinti naudojant istorinius akcijų duomenis. Remiantis šiomis prognozėmis, vėliau buvo 

sukonstruotas portfelis pagal MPT principus, pabrėžiant rizikos ir grąžos santykio maksimizavimą. 

Portfelio veiklos vertinimui buvo naudojami svarbūs finansiniai rodikliai, tokie kaip Jensen Alpha, 

Rizikos vertė (VaR) ir Sharpe santykis. Rezultatai rodo, kad portfelis, sukurtas naudojant mašininio 

mokymosi modelių prognozes, pasirodė geriau nei etaloninis indeksas, siūlydamas didesnę grąžą 

esant tokiam pačiam rizikos lygiui. Šis pagerinimas parodo, kaip mašininis mokymasis gali būti 

naudojamas gerinant investicijų strategijas ir akcijų rinkos analizę. Demonstruodamas praktiškus 

analitinių metodų ir tradicinių finansų teorijų sujungimo privalumus gerinant rizikos valdymą ir 

investicinius sprendimus, darbas prisideda prie finansų srities žinių bazės plėtros.
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Introduction 

The investment landscape has seen a substantial upheaval in recent years. The financial markets are 

now more accessible to a wider range of people because to the growth of digital platforms with the 

likes of Robinhood, Stash, M1 Finance, Public, Webull, majority of whom were founded in the past 

10 years. Additionally, close to zero transaction costs have made investing more appealing to the 

masses. According to Chang (2019), many broker firms including Interactive Brokers, Charles 

Schwab, TD Ameritrade, E-Trade, Ally Invest, and Fidelity have offered to their clients zero-

commission and ETF trading or zero fees across all stock trading back in 2019. Retail investment has 

increased dramatically as a result of this phenomenon, with people actively looking for ways to 

manage their portfolios. Over six million trading apps were downloaded in the US in January 2021, 

setting new records for average daily volumes of stock and options trades at retail brokerages (The 

Rise of Retail Investing | United Fintech, 2021). However, predicting stock prices accurately is one 

of the main issues in portfolio management. The intricacies of the market dynamics are frequently 

too complicated for traditional tools to fully capture. In response, machine learning algorithms have 

gained popularity among researchers and practitioners as a means of making predictions that are both 

more accurate and efficient. 

The purpose of this master's thesis is to investigate how well different machine learning models 

predict stock prices and how to use those predictions to build the best possible portfolio. The research 

specifically focuses on four different algorithms: Random Forest, ARIMA (autoregressive integrated 

moving average), LSTM (long short-term memory), and LSTM with attention mechanism. 

The increasing interest in applying machine learning techniques to improve investing strategies is the 

driving force behind this research. Through the effective use of ML algorithms, investors want to 

maximize returns while minimizing risks. The newly created portfolio's performance will be assessed 

against the 20-member OMXBBGI index, which acts as a benchmark. Index was chosen in order to 

hopefully boost additional interest towards investing as the number of retail investors is still small in 

Lithuania. In 2022 there were 53.8 thousands of retail investors in Lithuania, or 1.9% from total 

population (Investuotojo Portretas: Aktyviausiai Investuoja 33-44 Metų Žmonės, 2023). By providing 

research on how to employ machine learning models in creating optimal portfolio it is hoped that the 

number of retail investors would grow faster in Lithuania. 

Objectives: 

1. Conduct a comprehensive review of literature on portfolio optimization methods, highlighting 

both traditional and modern approaches. 

2. Explore existing literature on machine learning algorithms for stock price prediction, 

emphasizing their strengths and limitations. 

3. Compare the practical performance of Random Forest, ARIMA, LSTM, and LSTM + 

Transformers models in predicting stock prices. 

4. Utilize the predicted stock prices to construct an optimal portfolio comprising 20 constituents 

of the OMXBBGI index. 

5. Evaluate the performance of the newly created portfolio using portfolio efficiency indicators 

such as Sharpe ratio, Jensen's alpha, and Treynor ratio. 
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6. Discuss the feasibility and practical implications of implementing the proposed portfolio 

strategy in real-world investment scenarios. 

Research Question: 

The central research question driving this thesis is: Can an optimal portfolio created using machine 

learning algorithms for stock price predictions surpass the OMXBBGI index in terms of generating 

greater returns with the same level of risk? 

This study has important ramifications for academics and professionals working in the financial and 

investment fields. Through establishing a connection between portfolio management and machine 

learning approaches, the research hopes to offer insightful information on how algorithmic trading 

tactics might improve investment results. 

This is how the rest of the thesis is structured: Chapter 1 reviews the literature on machine learning 

algorithms for stock price prediction, and offers an analysis of the literature on portfolio optimization 

techniques. The methods used to compare and assess the performance of the chosen machine learning 

models are presented in Chapter 2. The results of the empirical investigation and their implications 

for portfolio construction are covered in Chapter 3. Chapter 4 brings the thesis to a close by reviewing 

the main conclusions, outlining the limits, and outlining potential directions for further study. 
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1. Literature Review. 

Over the years, a great deal of research on portfolio optimization has been and continues to be 

published. Even though finance is not a brand-new discipline, new methods and strategies are 

constantly being developed to identify the ideal portfolio. Therefore, in order to present new research 

findings and angles, it would be helpful for this work to analyze and evaluate many articles and papers 

published on the issue of portfolio optimization in order to shed light on the lengths and depths that 

have not yet been explored in the academic community. 

1.1. Modern Portfolio Theory (MPT) 

The idea of portfolio optimization is older than 70 years when Harry Markowitz first introduced it to 

the world. The essential idea of optimal portfolio lied in the trade-off between risk and return – greater 

the risk, the more possibly rewarding return (Markowitz, 1952). Markowitz in his paper described a 

mean-variance model which outlines the best financial assets’ combination to achieve the lowest risk 

possible for the desired rate of return. At the time the trade-off concept between risk and return was 

groundbreaking for two reasons (Kolm et al., 2014). On one hand, it suggested the possibility of 

assessing both the return and risk of a portfolio through a quantitative approach that takes into account 

the returns of individual securities as well as their movements in relation to each other. On the other 

hand, the theory presented a problem formulation called mean-variance optimization (MVO) which 

stated that from an infinite number of portfolios that can achieve a specific return goal, the optimal 

choice for the investor is the portfolio with the least amount of variance (Markowitz, 1952). Any 

other portfolios are deemed incompetent due to their higher variance, resulting in increased risk. The 

portfolio optimization idea made investors realize how diversification in combination with adequate 

risk management could in turn lead to safer and more profitable investment choices. 

However, the MPT had a few imperfections at first as one of its biggest drawbacks was portfolio 

assessment fixated on variance rather than downside risk (Team, 2023). According to the MPT, two 

portfolios with the same level of variance and return would be equally regarded by investors. Yet 

both portfolios might have the same variance by one having periodic tiny declines in its value while 

the other might only rarely experience significant plummets in its worth. Since investors are believed 

to be risk averse, they will always prefer the one with frequent but small losses to the one that poses 

a risk to lose double digits in one day. Another shortcoming the MTP did not consider then was 

transactional costs (Lydenberg, 2016). Investors experience costs when they are buying or selling 

stocks, bonds, options, futures or forwards or any other financial instruments. Those costs can be bid 

ask spread, exchange fees, brokerage fees or regulatory fees, taxes. If an investor is buying or selling 

infrequently, costs will not amount to anything meaningful or impact the investment strategy 

significantly. However, if a trader performs consistent trades trying to profit from short-term market 

tendencies or public speculations it will undoubtedly mean more frequent trades and in turn larger 

transactional costs incurred. Although portfolio optimization may be done frequently and weights of 

the constituents adjusted periodically, the whole idea of portfolio holding rather than separate stocks 

lies in the long-term investment strategy. It means that people who are interested in holding a portfolio 

of stocks will hold it for a very long time and only recalibrate the weights to adjust for increased risk. 

Nonetheless, even holding only one portfolio could mean holding at least 10, 50 or 500 different 

stocks depending on one’s investment strategy. Even if an investor holding a portfolio of 500 stocks 

was recalibrating the portfolio every year, it would mean buying or selling quite a few of the 

constituents. This could make a meaningful impact on the investment strategy and make investor 
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reconsider of the idea of building their own portfolio instead of simply buying regularly shares of 

ETF that tracks S&P 500. 

One more unrealistic assumption that is built in MPT is unconstrained market liquidity (Lydenberg, 

2016). This might hold in a highly developed market like NYSE or NASDAQ in the US, however in 

smaller markets there might be considerable liquidity constraints. However, in smaller markets like 

Baltics it might be hard to find a buyer to liquidate your position at a reasonable price when the market 

turmoil starts. Hence when constructing a portfolio in less liquid markets one must consider their 

abilities to liquidate the position in the unfortunate time of events. 

Furthermore, Green and Hollifield (1992) added that not necessarily but rather contrary – the negative 

relationship between mean-variance portfolios and high diversification factor exists pointing out that 

portfolios which are well optimized based on the MVO approach are poorly diversified. Hence, was 

proposed modern portfolio theory (MPT) which expands on MVO by stressing diversification as a 

means of lowering portfolio risk. It proposes that investors might get a more efficient frontier, or 

better risk-return trade-offs, by combining assets with low or negative correlations. Although there 

are challenges that modern portfolio theory faces, there are also additional developments which help 

to improve the model (Kolm et al., 2014). In their paper authors describe 4 extensions: 

• Taking into account expenses related to transactions (such as costs associated with market impact) 

and the impact of taxes. 

• Incorporating diverse constraints that consider particular investment guidelines and institutional 

characteristics. 

• Using Bayesian techniques, stochastic optimization, or robust optimization methods to model and 

quantify the influence of estimation errors in risk and return forecasts on portfolios. 

• Expanding the Mean-Variance Optimization (MVO) framework over multiple periods to 

encompass intertemporal factors like hedging requirements, evolving market conditions, market 

impact expenses, and the decay of alpha. 

Though overall the MPT on its own was a groundbreaking theory then, there has been quite a few 

improvements to be made before it could be used as a robust portfolio optimization strategy.   

1.2. Post Modern Portfolio Theory (PMPT) 

To improve the MPT and consider the criticism it has faced over the years a more progressive 

approach was invented at Pension Research Institute in the USA (Todoni, 2015). Before the PMPT, 

it was believed that returns on financial assets followed a normal distribution, that variance and 

standard deviation were trustworthy risk indicators, and that investors had uniform expectations. The 

necessity to construct PMPT as an extended return-risk paradigm has been imposed by the 

incompatibility of these assumptions with market realities. 

Every investor has a separate minimum acceptable return (MAR), which they establish as a target, 

according to PMPT. The rate of return an investor should make in order to prevent a negative outcome 

is known as the investor's target rate of return, or MAR. When assessing the outcomes, MAR acts as 

the investor's own benchmark. Compared to MPT, PMPT is more individually tailored to each 

investor due to the MAR selection option. Risk is defined by the MPT as the total return volatility 
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around the mean value, and it may be quantified using either the standard deviation of return or 

variance. All uncertainties are handled equally by MPT: deviations above and below the mean value 

are handled similarly. PMPT asserts that investment risk should be connected to each investor's 

unique objective, and that returns above this target do not constitute an economic or financial risk, in 

contrast to MPT, which links risk with obtaining an average return. Only volatility below the 

investor's intended return is deemed risk, according to PMPT. Uncertainty created by a return over 

the target is nothing more than a risk-free opportunity to obtain an unexpectedly big return (Rom and 

Ferguson, 1993). 

Moreover, variance and standard deviation are inappropriate risk measures, according to PMPT. This 

is because those two metrics do not mirror the reality of the market and are not good risk indicators. 

The explanation for this stems from the assumption that all deviations from the mean are valued the 

same, the negative and the positive. Additionally, the assumption states that standard deviation is 

symmetrical to risk, though in reality this does not hold true as investors always seek their return to 

be greater than the average return (Dumbliauskienė and Paužuolis, 2015). Hence, PMPT’s risk is 

calculated using downside risk instead of standard deviation or variance. 

1.3. Black-Litterman Model 

MPT idea is taken one step forward by Black and Litterman who stated that mean-variance 

optimization has the potential to generate disproportionate or counterintuitive allocations for certain 

assets within the portfolio (Black and Litterman, 1991; Black and Litterman, 1992). The concept 

underlying Black and Litterman’s (BL) model is the estimation and forecasting of the asset 

parameters through the integration of two information sources: the past performance of the asset 

returns and expert forecasts that are subjective in nature (Stoilov et al., 2020). As a result, subjective 

expert opinions have an impact on the covariance matrix and the portfolio parameters for mean 

returns. When objective perspectives and actual history are combined, portfolios not having a clear 

separation of asset classes are created as is the case with Markowitz portfolios. Because multiple 

points of view will result in distinct portfolio solutions that lack common ground for comparison, the 

BL model is criticized for its perceived lack of efficiency. The incapacity of the Black-Litterman 

model to guarantee portfolio optimization is another of its limitations (Kenton, 2023). Rather, it 

creates portfolios and modifies them based on the opinions of investors or portfolio managers about 

the market. Its dependence on assumptions, which leaves it vulnerable to the subtleties of investor 

opinions, is another significant disadvantage. This suggests that the model works on the premise that 

various points of view act independently of one another and have an uneven impact on the model's 

output. Nonetheless, because of the increased degree of diversification it provides, investors find the 

portfolio structure provided by the BL model to be more acceptable than the one suggested by MPT. 

1.4. Risk Parity Portfolio Optimization 

Another approach to create an optimal portfolio is using risk parity – a strategy that aligns with 

modern portfolio theory by making an effort to optimize returns while continuously monitoring the 

investor's risk tolerance. On the other hand, the risk parity strategy permits leverage and short selling 

(Chen, 2022). Risk parity is a sophisticated portfolio method that is frequently employed by 

professional investors and hedge funds. Its allocations are more sophisticated than those of simpler 

allocation systems since they necessitate a sophisticated quantitative methodology. To achieve the 

best possible return at the desired risk level is the aim of risk parity investing (Chen, 2022). Risk 
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parity techniques provide the utilization of leverage and alternative diversification in addition to 

enabling short selling within funds and portfolios. Portfolio managers are free to utilize any 

combination of assets while using this strategy. However, risk parity strategies base their investment 

decisions on the optimal risk target level rather than creating allocations to various asset classes to 

arrive at an optimal risk target. Leverage is frequently used to accomplish this goal by distributing 

risk evenly across various asset classes while maintaining the ideal risk target level. When using 

leverage in a risk parity approach, assets must be regularly rebalanced (Edwards, 2022). It could be 

necessary to balance out the leveraged investments to maintain the amount of volatility exposure for 

each asset type. Derivatives may be used in risk parity strategies; thus, active management is 

necessary for these positions. Another important concept when creating a risk parity portfolio to 

consider is correlation (Edwards, 2022. In general, it is challenging to find perfect positive and 

negative correlations in finance. Nevertheless, adding assets to a portfolio that are negatively 

correlated with one another increases its diversification. There is no assurance that the relationships 

that have been calculated based on previous data will hold true going forward. One of the primary 

objections to risk parity and contemporary portfolio theory is this. 

1.5. Review of Machine Learning Techniques in Finance 

1.5.1. Random forest 

Leo Breiman and Adele Cutler are the trademark holders of the popular machine learning technique 

known as "random forest," which aggregates the output of several decision trees to produce a single 

outcome. Since random forest algorithm is based on the ensemble of decision trees (DT), it would be 

beneficial to shortly remember what DTs are. Plainly, decision trees can be imagined as branches 

(hence the name) of questions for which answers are leading to more questions, therefore more 

branches and this “tree” develops and grows branches until the final – leaf – node is reached. The 

main usage of such method is to determine the optimal split to limit the data, and DTs are usually 

trained using the Classification and Regression Tree (CART) algorithm. Despite being a popular 

supervised learning algorithm, decision trees have many drawbacks, including bias and overfitting 

(What Is Random Forest? | IBM, n.d.). However, if enough of decision trees are used as an ensemble 

in the RT algorithm, the analysis could yield more precise and accurate predictions, especially when 

individual trees are zero-intercorrelated.  

Node size, the number of trees, and the number of features sampled conclude the essential three 

hypermeters used in the RF algorithm that will need to be determined before the training phase. Then 

each tree in a RT ensemble is made from a bootstrap sample, or data sample, which is taken from a 

training set with replacement. A third of that training sample – referred to as the out-of-bag sample – 

is reserved for testing purposes. Feature bagging is then used to introduce yet another randomization, 

increasing dataset variety and decreasing decision tree correlation. The individual decision trees in a 

regression job will be averaged, and in a classification work, the predicted class will be determined 

by a majority vote, or the most common categorical variable. Lastly, that prediction is confirmed 

using cross-validation using the out-of-bag sample. 
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Figure 1. Decision tree diagram 

Since the RT algorithm is great for handling non-linear data it has been also applied in stock price 

prediction experiments. For instance, Vijh et al. (2020) employed RF to predict closing prices of JP 

Morgan, Nike, Johnson and Johnson, Goldman Sachs and Pfizer. They used RMSE, MAPE and MBE 

indicators to compare the prediction results versus the result presented by an alternative – Artificial 

Neural Network (ANN). Even though, the outcome of comparison favored the ANN model, the 

MAPE values for all five stock predictions using the RF method varied from 0.75% to 1.14% which 

according to Moreno et al. (2013) means highly accurate forecasting since MAPE value is below 

10%.  

1.5.2. Autoregressive integrated moving average (ARIMA) 

A statistical analysis technique called autoregressive integrated moving average, or ARIMA, makes 

use of time series data to forecast future trends or to get a deeper understanding of the data set. 

ARIMA is a type of regression analysis that assesses the strength of a single dependent variable in 

relation to other changing variables (Hayes, 2024). Instead of using actual values, the model looks at 

discrepancies between values in the series to forecast future movements in securities or the financial 

markets. An ARIMA model is composed of three parts: autoregression (AR), integrated (I) and 

moving average (MA). AR section of the model describes how an observation and a predetermined 

number of lagged observations – that is, earlier values – relate. Integrated part is used for differencing 

the time series data one or more times. It is needed to achieve stationarity – the constancy of statistical 

features like mean and variance throughout time. The last piece of the equation is responsible for 

modeling the error term that is represented as a linear mixture of error terms that happened both 

simultaneously and at different points in the past. 

As ARIMA is adopted to predict time series data, it is a potentially useful tool for stock price 

predictions, as stock prices are indeed time series data. Funde and Damani (2023) employed ARIMA 

model to forecast stock prices of 15 selected constituents from NIFTY 50 index for the period 2016 

April 1 to 2021 March 31. The authors applied historical price data of 1239 observations to predict 

the price of 1240th day and used up to date data to retrain and forecast the next day-ahead price for 

the consecutive 38 days. The model’s results were estimated using RSME and MAPE metrics. The 

latter value ranged from 11.53% to 29.31% depending on the stock for which the price was being 
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forecasted. Following Moreno et al. (2013) methodology on forecasting accuracy, the results provided 

by the authors would fall under “good” (MAPE between 10 and 20 percent) and “reasonable” (MAPE 

between 20 and 50 percent) predictions. Ma (2020) in their article analyzed ARIMA‘s potential in 

predicting stock prices in comparison to ANN and Long Short-Term Memory (LSTM) network 

models. The author used ARIMA (1, 0, 0) model to arrive at a conclusion that ANN model was 

superior than that of the ARIMA, and LSTM a better consideration than ANN. Adebiyi et al. (2014) 

also performed a comparison analysis of ARIMA and ANN models for stock price prediction using 

Dell stock index. The authors as well used ARIMA (1, 0, 0) model for stock price prediction as it was 

concluded to be the best fit after a few trials. Number 1 in the ARIMA model means that the best 

predictor of the series is its immediate past value, adjusted by a constant and a stochastic error term. 

Employing forecasting error formula to evaluate the accuracy of predictions, they concluded that 

ARIMA model performed quite well as the forecast error was very small. Another study by Almaafi 

et al. (2023) assessed and compared effectiveness of the ARIMA and XGBoost models in forecasting 

the weekly closing stock prices of Saudi Telecom Company. They used ARIMA (0, 1, 1) model as it 

showed to have the lowest AIC score. Nonetheless, the ARIMA model proved to be inferior to 

XGBoost method as it was providing more linear results, while the latter method was capable of 

picking up the downward trend better. The authors also used MAE, RSME and MAPE scores to 

compare the accuracy of model’s prediction capabilities. Even though, the ARIMA model was 

slightly worse than XGBoost, it still managed to achieve 2.1% MAPE which is considered to be a 

sign of a very accurate forecasting model. 

ARIMA models can be very useful in forecasting time-series data, however there are some points to 

consider when implementing them. Though models are trustworthy when it comes to predicting short-

term outcomes, they lack stability when forecasting longer periods (Hayes, 2024). Additionally, since 

ARIMA is a linear model, it struggles to capture shocks in predicted values, though it’s great at 

picking up on seasonality and trends (Grogan, 2021; Petrică et al., 2016). 

1.5.3. Long Short-Term Memory (LSTM) Networks 

A popular recurrent neural network (RNN) architecture in deep learning is called LSTM (Long Short-

Term Memory). It was created by Hochreiter and Schmidhuber to address the issue brought about by 

conventional RNNs and machine learning methods. An input layer, one or more hidden layers, and 

an output layer make up LSTM networks. The number of explanatory variables and the number of 

neurons in the input layer are the same. The primary feature of LSTM networks resides in the buried 

layer or layers that comprise so-called memory cells (Fischer & Krauß, 2018). Those cells consist of 

three parts: the forget gate, the input gate and the output gate (see Figure 1). The first part is 

responsible for determining whether the information passed on from the previous timestamp is 

important or has to be dismissed. In the middle part, the cell attempts to learn new information from 

the input to this cell. Finally, the cell transfers the changed data from the current timestamp to the 

subsequent timestamp in the third section. This whole cycle of LSTM can be treated as a single-time 

step (Saxena, 2024).  
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Figure 2. Simplified architecture of LSTM network’s cell. 

Because LSTM has feedback connections, as opposed to standard neural networks, it can handle 

complete data sequences as opposed to simply single data points. Since LSTM can extract meaningful 

insights from sequential data, it has developed into a potent tool in deep learning and artificial 

intelligence that is facilitating advances across a wide range of domains. One of those domains is 

finance and stock price predictions. Chung and Shin (2018) employed genetic algorithms (GA) to 

calculate the LSTM network's temporal window size and architectural components. To validate the 

approach, they took daily Korea Stock Price Index data. They found that the best 1-day ahead 

predictions can be obtained by using past 10 trading days. The same outcome was reported by Chen 

et al. (2021) who were trying 5-, 10-, 15- and 20-day time stamps to conclude that the lowest errors 

were calculated when they used 10 prior days’ information to predict the 11th day’s price. 

Furthermore, Chung and Shin (2018) have determined that the optimal number of LSTM units – that 

is, the number that makes up two hidden layers—is 15 and 7, respectively. Finally, according to the 

performance measures, for which they used mean squared error (MSE), mean absolute error (MAE) 

and mean absolute percentage error (MAPE), the new hybrid model proved to be superior to the 

benchmark. In another article by Liu et al. (2021), authors experimented by combining long short-

term memory model with online social networks to predict the close prices of the SSE 50 constituent 

stocks. They used two layers of neural networks with 16 neurons in each layer. Batch size was chosen 

to be 32 and time window was set to be 5 days which means that past 5 days were used to predict the 

price of the next day. Authors used 100, 200 and 300 epochs for model training and learning rate of 

0.001. The model results were validated using RMSE and MAPE indicators, both of which showed a 

trend that the more learning epochs there were, the better RMSE and MAPE results were obtained. 

One more paper by Zheng et al. (2021) proposed the use of evolutional bidirectional LSTM model 

for price prediction of 3 indexes: Shanghai Securities Composite Index, A-Share Index and S&P 500 

Index. They used the past 20 days’ closing prices to predict the next day’s price with learning rate of 

0.00001 and 150 epochs. The outcome of their analysis measured by MAE, MAPE and MSE 

indicators, all of which supported the superiority of their proposed method. In addition to already 

reviewed articles, (Fischer & Krauß, 2018) also used LSTM for financial market predictions. Namely, 

they used the method to predict price changes for the S&P 500's component stocks between 1992 and 

2015. They used an input layer with 1 feature and 240 timesteps, an LSTM layer with 25 neurons, 

and a dropout rate of 0.1. The output layer consisted of 2 neurons with a “softmax” activation 

function. The authors employed their LSTM model and evaluated it against random forest, deep 

neural network, and logistic regression to find out that regardless of the size of the portfolio, LSTM 
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demonstrated better performance indicators than other methods. For instance, the daily returns for 

LSTM model reached 0.46 percent, when for random forest, deep neural network, and logistic 

regression they stretched to 0.43, 0.32 and 0.26 percent respectively. Nonetheless, Fischer and Krauß 

(2018) provided some criticism for practical implementation of LSTM over time. While LSTMs 

initially brought strong returns, their edge diminished over time as their techniques became more 

widespread and understood within the trading industry. This diffusion among professionals gradually 

eroded profitability, illustrating a common trend in financial markets where novel strategies can give 

an advantage initially, but tend to lose effectiveness as they become mainstream. The RAF's ability 

to capitalize on specific market conditions (like the 2008 financial crisis) highlights the importance 

of contextual factors in algorithmic trading performance. 

1.5.4. Transformers 

Back in 2017, the Google team proposed transformers which is a classic natural language processing 

(NLP) model that is believed to be better in every aspect compared to RNNs and CNNs. Model’s 

novelty lies in attention mechanism that enables parallelization and global information in the model, 

instead of employing the RNN sequential structure (Wang, 2023). In contrast to recurrent networks, 

the transformer may access any point in the past, independent of the distance between words, and 

does not experience gradient disappearance. There is a decoder section and an encoder section in a 

transformer. The latter section has a stack of encoders. In order to produce the desired output, it 

encodes the input data in accordance with a certain mode, and the decoder section decodes the output 

in accordance with the encoded input. In the encoder section, the multi-head self-attention mechanism 

plays a crucial role in enabling the transformer to identify both short- and long-term dependencies. 

To capture additional feature information, different parts of the temporal pattern receive varying 

amounts of attention. Transformers are more adept at anticipating time series issues since they 

comprehend the context better.  

Mian (2023) employed a Transformer sequential-based approach to forecast the next day’s closing 

prices using ten day rolling window. They used RMSE, MAE, and MAPE error terms to evaluate 

model’s predictive abilities for Yahoo Finance, Facebook and JPMorgan stock price forecasting. In 

addition, they ran ARIMA, LSTM, and Random Forest models to give a better understanding of the 

proposed methods’ capabilities compared to other popular machine learning methods for stock price 

prediction. Their study proved that Transformer based model outperformed all other methods for all 

three stocks according to all error terms. Another research done by Zhang et al. (2022) used 

Transformer inspired Attention models and tweets with 5 days look back window to forecast one day 

ahead stock prices. A comparison with baseline models such as ARIMA, CH-RNN, Adv-LSTM and 

others revealed that Transformer enhanced method was superior in 2 datasets of stocks in terms of 

accuraccy, falling second in the other two. 

1.6. Previous Integrations of Machine Learning with Portfolio Optimization 

Although portfolio optimization theory was created in 1950s, it is still widely used in the 21st century 

due to its reliability in core fundamentals (McClure, 2022). Nonetheless, as the time passed on, more 

techniques to find the best portfolio optimization strategies were analyzed. Tola, Lillo, Gallegati and 

Mantegna (2008) used cluster analysis to demonstrate increased model’s accuracy based on 

forecasted and factual risk (Tola et al., 2008). Though the authors had strict assumptions of the market 

conditions including short selling and flawless prediction capability for future gain and volatility of 
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stocks, they also showed that clustering algorithms led to some of the results being confirmed under 

the more rational market conditions. Another impressive method for portfolio optimization was the 

particle swarm optimization, a heuristic approach which aims to mimic the communal interaction 

comparable to swarm of ants or flock of fish (Cura, 2009). The paper describes every representative 

of the swarm as a distinct portfolio. Then each representative recalls any other representative’s best 

preceding location visited including its own and, in a way, creating a massive swarm whose every bit 

is moving closer to its best previous location and in turn moving closer to the best representative. 

More recently, with the advancements in technology, it has become feasible to analyze extensive 

historical price databases using computational systems (Chiang et al., 2016). The extensive utilization 

of intelligent predictive models through intensive computational methods is often referred to as 

machine learning in the research community. Hence, the next section will focus on machine learning 

approaches in particular to seeking optimal portfolio strategy. 

Machine learning revolutionizes the optimization of financial portfolios by offering a fresh 

perspective. Unlike traditional approaches that emphasize quantitative analysis and hedging 

mechanisms, machine learning introduces several distinct advantages (ElectrifAi | Portfolio 

Optimization With Machine Learning, n.d.). Firstly, it enables the processing of vast amounts of data 

and the extraction of patterns that surpass the limitations of conventional mathematical methods. 

Secondly, machine learning effortlessly captures non-linear relationships and effectively reduces 

dimensionality, a feat typically unattainable through alternative means. Thirdly, within a machine 

learning algorithm, the intricate connection between risk and return, often involving numerous 

factors, can be comprehensively processed, and identified. Ultimately, reinforcement learning 

empowers machines to learn and continuously enhance their performance, surpassing human 

capabilities in portfolio optimization. In empirical studies employing machine learning, typically two 

primary stages are involved (Henrique et al., 2019). The initial phase focuses on selecting significant 

variables and models for prediction, where a portion of the data is set aside for training and validating 

the models to optimize their performance. In the subsequent phase, the optimized models are applied 

to separate data specifically designated for testing, enabling the assessment of their predictive 

capabilities. The fundamental techniques commonly employed in the literature encompass artificial 

neural networks (ANNs), support vector machines (SVMs), and random forests (RFs). 

Conlon, Cotter and Kynigakis (2021) use machine learning and its dimensionality contraction method 

to analyze if factor-based covariance matrix established on this feature can improve minimum-

variance portfolios made of separate securities (Conlon et al., 2021). The authors conclude that their 

used factors which were established on principal component analysis and partial least squares 

experienced a more solid dynamic with generally adopted factor proxies in comparison to 

autoencoders. In addition to that, they found that portfolios created from autonomous learning 

methods tend to need much less asset reallocation with their weights being more diversified and less 

volatile at the same time compared to not so autonomous analogues or recognized factors. The study 

achieved a statistically significant decrease of annual portfolio volatility by 3.3% when using the 

suggested models as well as a 25% boost in Sharpe ratio. Even more so, according to the paper, the 

average return for an investor who has medium or low risk appetite, was found to be statistically 

significantly higher by 2.5% to 4.5% when compared to equal-weighted allocation. 

Although mean-variance method for portfolio selection is one of the most frequently used approaches, 

it may yield unseen results when established together with stock price prediction (Chen et al., 2021). 

The authors use eXtreme Gradient Boosting (XGBoost) and an improved firefly algorithm (IFA) 
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whose sole purpose is boosting the hyperparameters of the XGBoost to forecast the value of 

securities. The second step covers the mean-variance method application when selected stocks with 

higher probable yield are used for optimal portfolio creation. Particularly, for the portfolio 

optimization, authors randomly allocated a set of weights of various securities in different portfolios 

and measured the variance and mean return of such portfolios, constituting a Monte Carlo approach 

in use. In this process, 50 thousand random portfolios were created from which only one was selected 

based on mean-variance model, and namely, a Sharpe ratio to distinguish the best trade-off between 

risk and return. The best one selected had the greatest Sharpe ratio. The paper concluded that the 

created XGBoost model improved by IFA generated better portfolio in comparison to randomly 

selected stocks with MV applied for weight allocation and randomly selected stocks distributed 

equally. It was reported as well that stock price prediction models with applied MV gave better results 

than if stocks were allocated with equal weights concluding that MV method was necessary to create 

an optimal portfolio. And final finding showed that only 7 securities were enough for the investor to 

form a well-balanced portfolio. 

Ma, Han, and Wang (2021) proposed to optimize the portfolio using machine learning and deep 

learning (Ma et al., 2021). Particularly, they suggested using random forest (RF) and support vector 

regression (SVR) models for machine learning methods, as well as LSTM neural network, deep 

multilayer perceptron (DMLP), and convolutional neural network as deep learning methods to 

forecast stock price movement in order to select the best candidates for optimal portfolio creation. As 

benchmarks to compete against, were created portfolios combining suggested stocks by 

autoregressive integrated moving average model. The paper analyzed China’s 100 securities index 

from 2007 to 2015. It was found that random forest stock price prediction capabilities to select best 

stocks for the portfolio, combined with mean-variance with forecast method for portfolio creation, 

resulted in the best optimal portfolio. Once both parts of the equation were obtained – the GA and the 

stock candidates – MatLAB software was used to find the most optimal solution. The optimization 

outcome revealed that for the one year which was used as proxy investment horizon in the paper, the 

GA with selected stocks astonishingly outperformed the market result where the weights of four 

stocks were determined by deterministic programming approach. Although the systematic risk was 

higher for the GA model compared to the deterministic one, the Jensen’s alpha was much more in 

favor for the GA approach, making it the preferable choice. 

Although, here are presented only a few papers on machine learning utilization while solving portfolio 

optimization problem there are numerous other studies which due to a limited space were not looked 

at. Nevertheless, an elaborate review of many more studies on machine learning and its use on 

portfolio optimization was presented by Henrique, Sobreiro and Kimura (Henrique et al., 2019). In 

addition, they revise different markets, assets, predictive variables, predictions, main methods and 

performance measures used by other papers. From 57 papers reviewed, 17 of them used ML to predict 

prices which also will be the main predictor of this paper. Moreover, the majority of the studies used 

neural networks however implementing neural networks whether as a standalone procedure or an 

addition to genetic algorithms and support vector machines. Hence, this paper will also apply the best 

practice and will use some variation of neural network framework. Finally, the performance indicators 

were repeated by all papers, but the main three were singled out to be MSE, MAPE and MAE, 

therefore at same measurements will be used to benchmark created models in this paper as well. 
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2. Methodology 

In this section, we investigate the predictive power of three advanced modelling approaches on stock 

price forecasting: Random Forest, ARIMA, and LSTM. Whereas the ARIMA model offers insights 

based on autocorrelation within time series data, the Random Forest model uses an ensemble learning 

strategy to improve prediction accuracy. Furthermore, the recurrent neural network model known as 

the LSTM model is applied because of its capacity to identify long-term dependencies in sequential 

data. These models have been carefully chosen to offer a thorough examination of price movements 

and patterns in the stock market. Meanwhile, other parts of this section explore other metrics for 

portfolio efficiency and methodologies for portfolio optimization, looking at how well they work to 

improve portfolio performance. This dual approach makes it possible to evaluate investment 

strategies and predictive models in the financial realm holistically. 

The data used for analysis and the methods for creating and fine-tuning the models are covered in this 

section as well. The technical details of the models utilized, and the performance metrics utilized to 

evaluate their efficacy will be covered in the middle portion. The formulation of the optimization 

problem will come next. A number of criteria will be offered in the last section to assess the caliber 

of the optimized portfolio. The analysis was partially run on Google Colabs servers and a MacBook 

Pro with the following specifications – CPU: 2.4 GHz 8-Core Intel Core i9, GPU: Radeon Pro 560X 

4GB, Intel UHD Graphics 630 1536MB, Memory: 32GB 2400 MHz DDR4. 

2.1. Data Collection 

The data for the practical experiment was collected from Yahoo Finance from 2014 to 2023 for each 

of the 20 constituents of OMX Baltic Benchmark Index. The trend of daily prices can be seen in the 

appendix, as well as the annualized returns of the stocks. For the majority of the constituents of 

mentioned index the trend was moving upwards. There were no missing values in the data sample. 

The Python libraries for common tasks among all models included analysis and models were executed 

using Python with prebuilt libraries such as numpy – used for working with arrays, pandas – used for 

data handling and creating lagged values, matplotlib – for plotting results, yfinance – used for 

downloading data from Yahoo Finance. The data for all three models was split the same way – 80% 

of it was used for training the model and the rest for testing it. As majority of the stocks had historical 

price data for the analyzed 10-year period – a training set included price data from 2014 to 2021 and 

the testing sample was constructed from price data from 2022 to 2023. 

2.2. Evaluation of Machine Learning Models 

As the aim of this analysis will be to determine the best prediction power having model identical 

comparison indicators must be employed. For this task standard accuracy metrics will used, most of 

which already were applied in the articles examined in literature review section. All three of the 

metrics will use the error term to determine the best model. If the model had the lowest error term of 

all three, it would mean it has the greatest accuracy. The error terms used for comparison will be the 

mean absolute error (MAE), the rooted squared mean error (RSME) and the means absolute 

percentage error (MAPE). The formulas for computing these indicators are as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡 − 𝑦̂𝑡|
𝑛
𝑡=𝑚+1  for the mean absolute error, (1) 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2
𝑛
𝑡=𝑚+1  for the rooted squared mean error, (2) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑡−𝑦̂𝑡

𝑦𝑡
| ∗ 100𝑛

𝑡=1  for the means absolute percentage error. (3) 

Here n is the sample size, y is the actual values and 𝑦̂ is the predicted values. 

In addition to error term evaluation, a base model with moving averages (MA) will be created for 

forecasting and will be evaluated using the same error terms. The moving averages of 3, 5, and 10 

days will be used to predict the next day’s price. Those MA models will serve as a good benchmark 

against which, hopefully, other models will perform better. The three error terms will be calculated 

for the moving average models as well to have the same foundation for comparison. 

2.3. Random Forest 

The underlying idea behind the random forest model is the combination of multiple decision trees, 

which should yield better results and have greater predictive power compared to individual decision 

trees. In addition to the libraries mentioned in “Data Collection” part, a few others were employed 

for the random forest model: sklearn.ensemble.RandomForestRegressor to call the random forest and 

sklearn.model_selection.RandomizedSearchCV for hyperparameters’ optimization. Before training 

the random forest model, data preprocessing is inevitable to avoid any potential errors later on in the 

analysis. Since there were no missing values in the historical stock price datasets for any constituent 

of the index, the data processing step will only focus on scaling the data. This is needed to ensure that 

the input characteristics have a similar scale and lessen bias towards variables with higher magnitude. 

After data processing, further step includes feature engineering. In this part it is typical to use 

technical indicators to provide the model with more information about historical trends and patterns. 

However, due to the simplicity and aim of this analysis—to demonstrate that with the simplest 

assumptions and ease of replication, retail investors can find inspiration to achieve better results than 

the market index. As selection of appropriate technical indicators requires advanced knowledge of 

financial economics, this part would not be easily replicable. Nonetheless, feature engineering will 

include lagged values of 30 days of stock prices prior to predicted day’s price to forecast day ahead 

stock price. After that a model is developed using 80% of data as training data and 20% as training 

data. Before launching random search method, a base model with no parameters is trained and used 

to predict the future stock prices. The results of base model are measured using MAE, RMSE, and 

MAPE metrics. Then a selection of hyperparameters is entrusted to the random search method to 

determine the best values for the number of trees, depth of the trees, minimum samples split. Then 

the model will predict the future stock prices using 30-day look back period to predict price of one 

day ahead – similarly as it was done when predicting with base trained model. Finally, the tuned 

models will be evaluated using MAE, RMSE, and MAPE indicators. Additionally, graphs of testing 

data and predicted prices will be presented for visual comparison of prediction accuracy while a 

summary table with ticker, training time for each of the three models and their error terms will serve 

as a technical approach to compare the three methods. 

2.4. Autoregressive Integrated Moving Average (ARIMA) 

Successfully employing ARIMA model for stock price predictions requires going through the steps 

provided in the figure below (see Figure 3). First of all, the data will be checked for stationarity using 

the Augmented Dickey-Fuller (ADF) test. The test output shows the ADF score and p-value, which 
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if lower than 0.05 implies that the data is stationary. If, however, the p-value is greater than 0.05, then 

the null hypothesis that data is not stationary, cannot be rejected and it means there are additional 

steps to be taken to make the data stationary. These steps would include logarithmic transformation 

or differencing.  

  

Figure 3. Process of ARIMA model preparations 

After ensuring that the data is stationary, it is split to training and testing datasets at a ratio of 80:20. 

The selection of the ARIMA order is done afterwards. A formula for ARIMA can be expressed as 

follows: 

𝑦𝑡 = 𝐼 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 +⋯+ 𝛼𝑝𝑦𝑡−𝑝 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 +⋯+ 𝜃𝑞𝑒𝑡−𝑞         (4) 

It is also referred to as ARIMA(p, d, q) model. The lagged p data points for the autoregressive 

component of the equation and the lagged q errors for the moving average part, which are all 

differenced, are the predictors. During training period, ARIMA calculates coefficients  and  for the 

provided values of p, d, and q (Kotu & Deshpande, 2019). Though it might be hard to pick the most 

efficient such values manually, using pmdarima library in Python and function auto_arima will save 

time. This function evaluates different ARIMA orders by AIC score and suggests the one with the 

lowest AIC as the best fit.  

Once the most appropriate ARIMA order is known, a model is built in reference to the best fit ARIMA 

order. When the model has trained, it will be used to predict one step at a time using all available 

historical data. The predicted stock prices will be forecasted for the whole test period and then 

compared to the actual stock prices in the test dataset. The predicted and actual prices will be 

displayed visually as well as the three metrics of error term will be calculated to later compare the 

model’s accuracy with other machine learning algorithms. A summary table of each stock with their 

ARIMA model’s order and the three main indicators will be provided to conclude the potential of 

ARIMA for the stock price forecasting in the Baltic market. 

2.5. Long Short-Term Memory Networks 

LSTM networks have been introduced back in 1997 as an improvement to then existing recurrent 

neural networks RNN to solve an underlying issue in latter’s methodology. RNNs were not capable 
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to address the problem of erupting or fading gradients (Sak et al. 2014). However, the LSTMs not 

only were able to solve this issue of RNNs but were primarily great at learning long-term 

dependencies. 

In literature review there was presented a structure of LSTM memory cell, containing three gates: 

forget gate, input gate, and output gate. Those gates are provided with the input 𝑥𝑡 at every timestep 

𝑡. Additionally, the output of a memory cell – ℎ𝑡−1 – is provided at timestep 𝑡 − 1. The cell states 𝑠𝑡 

and outputs ℎ𝑡 of the LSTM layer can be calculated through a process of 4 steps. During the initial 

phase, the LSTM layer decides which data from its prior cell states 𝑠𝑡−1 should be deleted. As a result, 

bias terms 𝑏𝑓 of the forget gates together with the current input 𝑥𝑡 and the outputs ℎ𝑡−1 of the memory 

cells at the previous timestep (𝑡 − 1) are used to calculate the activation values 𝑓𝑡 of the forget gates 

at timestep 𝑡. After that scaling is performed by sigmoid function into range from 0 to 1, where 0 

means to completely forget and 1 to completely remember: 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓,𝑥𝑥𝑡 +𝑊𝑓,ℎℎ𝑡−1 + 𝑏𝑓) . (5) 

The following phase describes how the LSTM layer chooses which data to add to the network's cell 

states (𝑠𝑡) in the second step. There are two steps to this process: first, candidate values 𝑠̃𝑡 that might 

be added to the cell states are calculated. Then, the input gates' activation values 𝑖𝑡 are computed: 

𝑠̃𝑡 = tanh⁡(𝑊𝑠̃,𝑥𝑥𝑡 +𝑊𝑠̃,ℎℎ𝑡−1 + 𝑏𝑠̃), (6) 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖,𝑥𝑥𝑡 +𝑊𝑖,ℎℎ𝑡−1 + 𝑏𝑖). (7) 

The Hadamard (elementwise) product is shown by ◦ in the third step, which calculates the new cell 

states 𝑠𝑡 depending on the outcomes of the preceding two steps: 

𝑠𝑡 = 𝑓𝑡°𝑠𝑡−1 + 𝑖𝑡°𝑠̃𝑡. (8) 

Final phase portrays two equations which explain how the output ℎ𝑡 of the memory cells is obtained: 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜,𝑥𝑥𝑡 +𝑊𝑜,ℎℎ𝑡−1 + 𝑏𝑜), (9) 

ℎ𝑡 = 𝑜𝑡°tanh⁡(𝑠𝑡). (10) 

The notation for the vectorized equations mentioned above is explained below: 

• The input vector at timestep t is denoted by 𝑥𝑡. 

• Weigh measures are 𝑊𝑓,𝑥, 𝑊𝑓,ℎ, 𝑊𝑠̃,𝑥, 𝑊𝑠̃,ℎ, 𝑊𝑖,𝑥, 𝑊𝑖,ℎ, 𝑊𝑜,𝑥, and 𝑊𝑜,ℎ. 

• The bias vectors are 𝑏𝑓, 𝑏𝑠̃, 𝑏𝑖, and 𝑏𝑜. 

• The activation values of the corresponding gates are represented by the vectors 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡. 

• The vectors for the cell states and potential values are denoted by 𝑠𝑡 and 𝑠̃𝑡. 

• A vector representing the LSTM layer's output is ℎ𝑡. 

In addition to libraries mentioned in “Data Collection” part, a handful of others were used in LSTM 

analysis, such as Keras and TensorFlow. Keras is an advanced neural network API that can be used 

with TensorFlow. Because of its modular design and ease of use, experimenting with various neural 

network designs is a breeze. Layers such as LSTM, Dense, Dropout, Input, LayerNormalization, 

MultiHeadAttention will be used for building layers of a deep learning model. Tensorflow is an open-

source machine learning platform that provides extensive tools, libraries, and community resources 
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to enable academics to push the boundaries of machine learning while making it simple for developers 

to create and implement ML-powered apps. 

Contrary to the previously used models like RF and ARIMA, where an automated solution was 

employed to find the best hyperparameter set, for LSTM model the optimal parameters will be 

selected through trial-and-error process. The base LSTM model will be constructed likewise: the first 

LSTM layer with return sequence turned on will consist of 128 neurons which can be seen as a 

dimensionality of the output space. Initializing the return sequence in the first layer instructs it to 

provide each sample's complete output sequence. This is required because the sequence's subsequent 

layer—an additional LSTM layer—requires a sequence input. Then an initial dropout layer will be 

set at 0.2 indicating that 20% of the input units are randomly set to 0 at each update during training 

time. This is done in order to reduce the probability of overfitting the model by limiting its sensitivity 

to specific weights of neurons. After that a second LSTM layer with 128 neurons is used, however 

this time with return sequence turned off. This change serves as an indication that the output sequence 

will be reduced to a single vector because the layer will only return the final output. This configuration 

is common in many LSTM architectures, when prediction requires only the final context vector. After 

that another dropout layer of 0.2 is placed, again to help against overfitting the model. Then a dense 

layer is defined with 32 neurons and a ReLU (rectified linear unit) activation function which is 

frequently used to add non-linearities to the model that are required in order to learn more intricate 

functions. It is followed by the last layer of the model which is a completely linked layer that contains 

just one neuron. A linear activation function is employed which is useful for regression problems 

(e.g., forecasting a continuous value) because it enables the model to produce values within a 

problem-appropriate range. Finally, the model is compiled using the Adam optimizer, a well-liked 

option that combines the benefits of two further extensions of stochastic gradient descent and a loss 

function for mean squared errors. This is needed to calculate the average squared difference between 

the estimated and actual values, or the average of the squares of the errors. The LSTM model will be 

run for 50 epochs with a batch size of 32. The number of epochs means that the model will go through 

the entire training dataset 50 times. During each epoch, it will update its weights iteratively based on 

the training data, aiming to minimize the loss function. When the batch size is set to 32, the LSTM 

model will process 32 samples at a time during training before updating its weights. This 

configuration affects training performance, memory consumption, and gradient estimate quality. To 

train LSTM models effectively and efficiently, the proper batch size must be determined. A validation 

split parameter of 20% will be used meaning that twenty percent of the training data should be 

reserved as validation data. The model will utilize this data to assess the loss and any model metrics 

at the conclusion of each epoch, but it will not use it for training. This aids in tracking the model's 

effectiveness and detecting overfitting. Finally, the base model will use 30 days of a look back 

window, meaning that it will use past 30 days’ information on stock’s price to predict the next day’s 

price. From all hyperparameters described only the following will be changed: 

• The number of neurons in the first and second layers. 

• The number of epochs. 

• The batch size. 

• The number of days for look back window. 

As an alternative to the best LSTM model an LSTM with transformers model will be trained and used 

to predict stock prices. Similarly to the best LSTM model, it will take all of its features, which means 
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that the LSTM with transformers will have the same number of neurons in the first two layers as the 

best LSTM model. In addition, there will be the same dropout layers each equal to 0.2, again to help 

address the overfitting problem of the model. However, the novelty to the LSTM with transformers 

model comes from the implementation of a multi-head attention layer that enables the model to 

concurrently process data from many representation subspaces. Two parameters are used in this layer: 

the number of heads and the size of each head. The parameter, key_dim which determines the size of 

each head will be set to 256 while the parameter num_heads will be set to 4 heads indicating that the 

attention mechanism is split into 4 heads. The layer is able to identify the most significant portions 

of the input sequence since it has access to x as both its input and its context. All other parameters 

and layers are kept identical to the best LSTM model used. 

2.6. Evaluation Indicators for Portfolio Optimization 

2.6.1. Return on Investment (ROI). 

A ratio known as return on investment (ROI) compares an investment's gain or loss to its cost in order 

to determine how profitable it was. It aids in determining the possible return on investments made in 

items like stocks or company endeavors. ROI can be determined using a certain formula and is 

typically expressed as a percentage: 

𝑅𝑂𝐼 =
𝐹𝑖𝑛𝑎𝑙⁡𝑉𝑎𝑙𝑢𝑒⁡𝑜𝑓⁡𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡−𝐼𝑛𝑖𝑡𝑖𝑎𝑙⁡𝑉𝑎𝑙𝑢𝑒⁡𝑜𝑓⁡𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐼𝑛𝑖𝑡𝑖𝑎𝑙⁡𝑉𝑎𝑙𝑢𝑒⁡𝑜𝑓⁡𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
∗ 100%             (11) 

Return on Investment (ROI) is one of the simplest methods to compare two investment options. For 

instance, if an investor places money in an actively managed fund with a risk level similar to that of 

a market index for an equivalent period, they can determine whether the actively managed fund has 

outperformed or underperformed the market. However, basing the evaluation of an investment's 

superiority or inferiority solely on ROI, particularly over shorter periods (less than five years), may 

lead to incorrect conclusions about the validity of the investment decision. Nevertheless, under 

straightforward assumptions, ROI can quickly provide insight into whether the investment was 

effectively good or bad during the selected timeframe compared to the decision to invest into 

exchange traded fund which replicates market index. 

2.6.2. Standard Deviation. 

The degree to which the investment returns vary from the mean of the probability distribution of 

investments is indicated by the standard deviation of the portfolio. In other words, it informs investors 

of the amount that the investment will diverge from the anticipated return. The standard deviation of 

portfolio consisting of only two assets can be expressed as follows: 

𝜎𝑝 = √(𝑤1
2 ∗ 𝜎1

2 + 𝑤2
2 ∗ 𝜎2

2 + 2 ∗ 𝑤1 ∗ 𝑤2 ∗ 𝜎1 ∗ 𝜎2 ∗ 𝜌12), (12) 

where: 

• 𝑤1 is weight of asset no. 1 in the portfolio. 

• 𝑤2 is weight of asset no. 2 in the portfolio. 

• 𝜎1 is standard deviation of asset no. 1. 

• 𝜎2 is standard deviation of asset no. 2. 

• 𝜌12 is correlation of asset no. 1 and asset no. 2. 
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A low standard deviation indicates a portfolio with a lengthy history of reliable results (Banton, 2022). 

A fund focused on growth, or emerging markets is probably going to be more volatile and have a 

higher standard deviation. It is therefore more dangerous by nature. However, this relationship 

between risk and return does not indicate that that with high risk comes great return, though high 

return will never be made out from a low-risk investment. Standard deviation also has some setbacks 

to consider, one of them being incapability to show how the portfolio or a fund is performing against 

a benchmark – it only shows stability or instability of portfolio’s return. Presumption that data values 

follow a normal distribution is another drawback of standard deviation as this tendency is not present 

in many portfolios. Hence, similarly to ROI, standard deviation as a standalone performance indicator 

is a poor choice, but in usage with others can help to perform an extensive and informative analysis 

of a portfolio.  

2.6.3. Jensen’s Alpha. 

The extra return that an investment portfolio achieves over its projected performance, as predicted by 

the Capital Asset Pricing Model (CAPM), is measured by Jensen's Index, commonly referred to as 

alpha. The method used to create this index is to compare the portfolio's actual returns to the expected 

returns given its risk (measured by beta), where the predicted returns are derived from the market 

premium multiplied by the risk-free rate and the portfolio's beta (Leković, 2017; Jobson & Korkie, 

1984). 

𝛼 = 𝑅𝑝 − (𝑅𝑓 + 𝛽(𝑅𝑚 − 𝑅𝑓)), (13) 

where: 

• 𝑅𝑝 is the actual return of the portfolio. 

• 𝑅𝑓 is the risk-free rate of return. 

• 𝛽 is the portfolio’s beta, which measures the sensitivity of the portfolio’s returns to the returns 

of the market. 

• 𝑅𝑚 is the expected market return. 

Utilizing Jensen's Index to assess investment portfolios has several benefits. First of all, by expressing 

the degree to which the management has increased or decreased value in comparison to the market, 

it provides a simple and transparent measure for evaluating a manager's success. Compared to 

straightforward return comparisons, it is a more comprehensive risk-adjusted performance indicator 

since it incorporates the risk of the portfolio through the beta measure. Additionally, this function 

makes it possible to compare several portfolios, which helps investors choose funds or portfolios with 

confidence. 

Jensen's Index does, however, have a number of drawbacks. The accuracy of the index is dependent 

on the Capital Asset Pricing Model (CAPM) being a suitable model for market returns, which is one 

of its main limitations. In the event that the assumptions behind the CAPM are incorrect, Jensen's 

Alpha may not fairly depict the manager's performance. If the market benchmark is chosen 

incorrectly, it can potentially produce deceptive findings as it has a substantial impact on the 

estimated alpha. Furthermore, because it places so much emphasis on performance during a 

predetermined time frame, Jensen's Index may incite managers to prioritize short-term rewards above 

long-term strategy and risk management. Finally, it could oversimplify the evaluation of a manager's 
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performance by ignoring additional elements that can affect returns, like changes in market volatility 

or macroeconomic developments. 

In general, Jensen's Index is a helpful tool for assessing portfolio performance, but how well it works 

depends on how the CAPM is used and which benchmark is selected. In order to have a more 

comprehensive understanding of a manager's performance, analysts and investors should combine it 

with additional tools and measurements. 

2.6.4. Sharpe Ratio. 

William F. Sharpe created the Sharpe Ratio in 1966 to evaluate an investment's performance to a risk-

free asset once its risk has been taken into account. It is calculated by dividing the difference between 

the investment returns and the risk-free return by the risk-representing standard deviation of the 

investment returns. It is used a useful metric for determining how well an asset's return covers an 

investor's risk. The asset with a greater Sharpe Ratio offers a better return for the same risk when two 

assets are compared to the same benchmark. The Sharpe Ratio formula is provided below: 

𝑆𝑝 =
𝑅𝑝−𝑅𝑓

𝜎𝑝
, (14) 

where: 

• 𝑅𝑝 is the return of the portfolio. 

• 𝑅𝑓 is the risk-free rate of return. 

• 𝜎𝑝 is the standard deviation of the portfolio’s excess returns. 

The popularity behind Sharpe Ratio among many lies in its simplicity as it is easy to calculate and 

widely understood and used in the financial industry. This simplicity makes it a go-to metric for 

performance evaluation among both academics and practitioners (Levy, 2017). Additionally, the ratio 

is praised for its standardization and performance comparison. It provides a standardized way of 

comparing investments across different types and sectors by normalizing their returns against their 

risks (Brinză, Ioan, & Lazarescu, 2023). This standardization allows investors and managers to 

compare different investments on a like-for-like basis, irrespective of their risk levels (Levy, 2017). 

However, the simplicity to use has its own cost as the Sharpe Ratio considers only the standard 

deviation to measure risk, ignoring other factors like the shape of the return distribution, which can 

lead to underestimation or overestimation of true economic risk (Levy, 2017). Moreover, the ratio 

assumes that returns are normally distributed, which may not always be the case. This can lead to 

misrepresentations of risk in assets with skewed or kurtotic return distributions (Levy, 2017). 

Though overall the Sharpe Ratio is a useful tool for assessing risk-adjusted performance, depending 

entirely on this metric might cause one to miss out on significant aspects of investing risk, especially 

in portfolios that have highly asymmetric or non-normal return distributions. For a complete 

understanding of investment risks and returns, it is imperative to utilize the Sharpe Ratio in 

conjunction with other metrics and qualitative evaluations. 

2.6.5. Value at Risk (VaR).  

A metric known as value at risk, or VaR, measures the potential extent of financial losses in a position, 

portfolio, or company over a given period of time (Kenton, 2024). The metric is used primarily by 
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financial institutions like investment or commercial banks in order to evaluate the likelihood and 

magnitude of possible losses in their institutional portfolios. There are three key aspects that VaR 

helps to understand about the exposure of financial impact: the prospective loss amount, the 

likelihood that the loss will occur, and the time horizon. For instance, if a portfolio was concluded to 

have 2% one-month VaR of 5%, it means that there is a 2% probability for the portfolio value to lose 

5% of its value during one-month horizon. 

2.7. Portfolio Optimization 

After determining the best machine learning approach for the price prediction, a portfolio 

optimization technique following the Markowitz’s Modern Portfolio Theory will be employed. It 

means that for a set amount of risk a model will try to maximize returns. The portfolio optimization 

task will be carried out with the help of three new functions defined. The first function defines buying 

the stocks by splitting the money available for investment according to the weights of different stocks. 

Then the buying process is initiated by buying as many stocks as possible with allocated amount of 

money for that stock. Buying fractional shares is allowed. The second function defines the process of 

selling stocks. It calculates the amount of money available after selling all the stocks in the portfolio 

at last day’s closing prices. The final and most important function is responsible for portfolio 

optimization. In this function stock weights will be rebalanced every day before the hypothetical 

trading commences. This implies that the entire portfolio will be sold at the beginning of each day 

based on closing prices of the last day. Then using predicted values by the ARIMA model a new set 

of weights is determined. After that a new portfolio with newly computed weights is constructed by 

buying the stocks at the last day’s closing price. The constraints of this optimization method are: 

• The sum of the weights of the constituents of the portfolio cannot exceed 1. 

• The minimum weight of one stock should not be lower than 0.1% and cannot exceed 25%. 

This ensures that portfolio is diversified. 

• The penalty factor is introduced to discourage stock concentration with high weights. This 

additionally improves diversification. 

• The set risk for the optimal portfolio is set to daily volatility of OMXBBGI index from January 

1st, 2014, to November 30th, 2023. It means that when rebalancing the portfolio based on the 

predicted prices, the risk of the newly constructed portfolio cannot exceed historical daily 

volatility of the index. 

After setting the constraints for the optimization problem, the target of this task will be to maximize 

daily returns for the portfolio. Then a calculated result should be provided to show the portfolio’s 

value after daily rebalancing at the end of December. Additionally, a graph will be provided to display 

the differences in portfolio values every day for the simulation month. 
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3. Experimental Setup and Results 

The results of applying the Random Forest, ARIMA, and LSTM models to the task of the stock price 

prediction are displayed in this section. Evaluation of each model's predicted performance in 

comparison to the benchmark MA models and discussion about the advantages and disadvantages of 

each one in relation to the provided dataset takes place. This section also juxtaposes the consequences 

of these discoveries with the performance measures of the different portfolio strategies that were 

previously examined. The purpose is to determine which model best captures market trends and 

provides dependable predictions through a thorough examination of the data, ultimately assisting in 

the making of the best possible investment decisions. This thorough analysis contributes to the 

integration of theoretical modelling and real-world investment applications. 

The benchmark models were created using three different moving averages – 3-day, 5-day, and 10-

day MA models – to predict the next day’s price. The summary results of MAPE values for each 

model is presented in Table 2. The average MAPE values for these models are 0.90, 1.12 and 1.60 

respectively which means that MA could also be used as a high forecasting accuracy yielding method 

keeping in mind that such model does not require any time to train. 

 

Table 1. Summary table of MA models' average MAPE values. 

3.1. Machine Learning Model Performance 

3.1.1. Results of Random Forest 

The random forest forecasting required defining two functions that are later used for the analysis. The 

first one’s purpose was to calculate MAE, RMSE, and MAPE error terms. The other one was used to 

process the dataset to format it into a structure suitable for training the random forest models. 

Additionally, look back window parameter is used that will be utilized to create feature sets. Each 

feature set, or model input sequence, will contain 30 consecutive data points from the dataset because 

the set size is 30. This means that the model will use past 30 days to predict price of a stock one day 

3-day MA 5-day MA 10-day MA

Ticker MAPE MAPE MAPE

IGN1L.VS 0,39 0,48 0,64

TAL1T.TL 1,02 1,26 1,81

EGR1T.TL 1,06 1,29 1,69

SAB1L.VS 1,09 1,37 2,05

LHV1T.TL 1,01 1,28 1,78

TKM1T.TL 0,56 0,70 0,98

TEL1L.VS 0,51 0,63 0,88

TSM1T.TL 0,54 0,72 1,10

CPA1T.TL 0,78 0,95 1,29

MRK1T.TL 0,91 1,18 1,70

TVE1T.TL 0,60 0,73 1,03

HAE1T.TL 1,04 1,29 1,77

GRG1L.VS 1,11 1,39 1,99

AKO1L.VS 1,12 1,40 2,05

APG1L.VS 1,11 1,42 2,16

PKG1T.TL 1,51 1,78 2,61

VLP1L.VS 0,98 1,21 1,75

NTU1L.VS 1,06 1,28 1,73

AUG1L.VS 0,93 1,19 1,81

HPR1T.TL 0,66 0,84 1,22

Average 0,90 1,12 1,60
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ahead of the input sample. After defining the two functions a loop with following steps is run for 

every stock: 

• Download available historical data from Yahoo Finance from 2014 to 2023. 

• Data scaling to have a similar scale and lessen bias towards variables with higher magnitude. 

• Split the data into training and testing datasets at a ratio of 80:20. 

• Train and predict the next day’s prices for all three models: the base model, the random search 

enhanced model and the Bayesian search enhanced model. 

• Evaluate the results of all three models using MAE, RMSE, and MAPE indicators. 

• Visualize training data, testing data, and predicted prices. 

• Save results to a summary table for easier comparison of different RF models. 

The summary results of each model are presented in Table 3 while the result graphs are provided in 

Appendix 3. The random forest base model was created to be used as a benchmark to compare random 

forest with random search and random forest with Bayesian search for parameter optimization. It took 

only 37.5 seconds in total to train the base model with longest training time being 4.6 seconds for 

“Telia Group AB”. The MAPE values for the random forest base model varied from 2.47% to 77.6% 

averaging 26.6%. The high MAPE values could be expected from the base model since no additional 

parameters were added to the model. 

The random forest with random search algorithm to find optimal hyperparameters was tried next. 

Compared to an exhaustive search, this method finds a decent collection of hyperparameters more 

quickly in a potentially huge space, especially when there are a lot of possible combinations. The 

number of trees in the forest for random selection was set from 100 to 1000, while the depth of each 

tree was set to be randomly selected from a range of 5 to 100. The random search then went through 

50 iterations of randomly selected number of trees in the forest and tree’s depth to choose the most 

optimal set to use for training. It took almost 31 hours to train all random forest models with random 

search optimal hyperparameters for all stocks. The MAPE values ranged from 2.38% to 87.6% with 

an average of 25.38% showing only slight improvement over the base model. The result graphs are 

provided in Appendix 3 displaying quite poor predictive capabilities of this approach. Taking into 

consideration the time needed to train the models, the conclusion is clear that RF with random search 

hyperparameter tuning is not a reasonable choice. 

The third random forest model employed Bayesian search for hyperparameter tuning. Because it 

creates a probabilistic model of the function translating hyperparameter values to the target evaluated 

on a validation set and uses that model to choose which hyperparameters to evaluate next, this method 

is especially helpful. This method may be more efficient—especially in high-dimensional spaces – 

than grid search and random search since it can identify better parameters in fewer stages. The 

efficiency compared to random search is evidently visible as the total amount of time required for the 

Bayesian search random forest models to train was 21.5 hours, 30% less compared to the random 

search training time. The MAPE values ranged from 2.99% to 86.2% resulting in an average value of 

25.65%. The error term is still large and improved by only 1pp from the base model leading to the 

same conclusion as for the random search hyperparameter tuning: this path to forecast prices is not 

worth the time when the base model can yield very similar results for practically no training time 

required. 
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Table 2. Summary table of Random Forest models‘ training times and error terms.   

Certainly, the random forest models can be used to predict stock prices more accurately, however due 

to the purpose of keeping it simple and replicable no technical indicators or more sophisticated feature 

engineering took place. 

3.1.2. Results of ARIMA 

Checking the stock price data for stationarity is the first step following the methodology. The ADF 

test was performed for all 20 constituents of the OMXBBGI index. Summary results can be examined 

in Table 1. Though there were two stocks – “Enefit Green AS” and “Novaturas AB” which price data 

came relatively close to stationarity, since the p-values were not lower than 0.05, the null hypothesis 

that data is not stationary could not be rejected. It means that historical stock price data for all 

securities in the index is non-stationary. The next step would include taking the first difference in the 

price data to ensure stationarity. If the data would still be non-stationary, then second differences 

would be employed or logarithmic transformation. 

 

Table 3. Stationarity check for the constituents of the index. 

Ticker ADF Statistic p-value

IGN1L.VS -1,81 0,38

TAL1T.TL -1,58 0,50

EGR1T.TL -2,28 0,18

SAB1L.VS -1,20 0,67

LHV1T.TL -0,85 0,80

TKM1T.TL -1,67 0,45

TEL1L.VS -1,02 0,74

TSM1T.TL -0,21 0,94

CPA1T.TL -1,65 0,46

MRK1T.TL -1,11 0,71

TVE1T.TL -1,75 0,41

HAE1T.TL -1,48 0,54

GRG1L.VS -0,89 0,79

AKO1L.VS -0,60 0,87

APG1L.VS -1,93 0,32

PKG1T.TL -1,16 0,69

VLP1L.VS 0,02 0,96

NTU1L.VS -2,29 0,17

AUG1L.VS -2,05 0,27

HPR1T.TL -2,08 0,25
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However, manually differencing and looking for the best difference order with 20 different stocks 

might be a time-consuming task. Therefore, an auto_arima function is employed to look for the best 

autoregressive, difference and moving average orders or p, d, and q. The process was looped in Python 

to make the analysis more efficient. The loop included the following steps: 

• Download available historical data from Yahoo Finance from 2014 to 2023. 

• Select the best ARIMA model using auto_arima function. 

• Split the data into training and testing datasets at a ratio of 80:20. 

• Predict the next day’s prices based on all available data prior to the forecasted day’s price. 

• Evaluate the results using MAE, RMSE, MAPE metrics. 

• Save the results to a data frame for the ease of comparison, including the following columns 

– Ticker to identify the stock, ARIMA Order to show the best ARIMA model selected by 

auto_arima function used for future stock price predictions, Train Time to understand how 

long it took for the model to train, MAE for mean absolute error, RMSE for the root mean 

squared error, and MAPE for the mean absolute percentage error. 

• Plot and save charts with the train stock price data, the test stock price data, and the predicted 

stock prices. 

• Export results data frame to excel file for easier result examination. 

The results of looped ARIMA forecasts are presented in Table 2. For the majority of stocks, the 

training time for ARIMA model took under 3 minutes (15 out 20 stocks) while the total amount of 

time required for all trainings to complete was 55 minutes and 37 seconds. For 9 out of 20 securities 

the autoregressive order was selected to be 0 as the best fit. This means that the model does not use 

any lagged terms of the series itself in the forecasting equation. It rather relies solely on other 

components, like the moving average part instead of predicting future values based on past values 

directly. The stock price data for all constituents of the index except “Novaturas AB” was stationary 

after the first differences, while for the latter it needed second differences to achieve stationarity. The 

last part of the ARIMA model – the moving average part – that indicates how many lagged forecast 

errors the model uses in the prediction equation. For 5 stocks this order was equal to 0 implying the 

model, relying solely on autoregression and differencing, is well-suited for cases where the stock 

prices are believed to follow a "random walk with drift" or some other autoregressive process. For 

other 5 securities it was 1 and for other 6 it was 2, meaning that this model is particularly good at 

adjusting predictions based on the most recent unexpected changes (errors), which can be useful in 

volatile markets like stock trading where recent events can significantly impact future prices. 
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Table 4. Summary table of best ARIMA models and error terms. 

The other part of the ARIMA model forecasts is to analyze error terms to evaluate the accuracy of 

this model’s predictive capabilities. To check if there is a relationship between training times and the 

MAPE error terms, correlation was computed. If training times indeed were highly correlated with 

error terms, a strong negative relationship would be observed, where increasing training time would 

lead to lower error terms. The calculated correlation results were -0.03676, implying almost 

negligible negative correlation between training times and MAPE. Additionally, for all of the 

constituents of the index, the MAPE value was below 1%, “Merko Ehitus AS” being an exception in 

this case with MAPE value reaching 1.22%. Nonetheless, following Moreno et al. (2013) 

methodology, a MAPE of under 10% means a highly accurate forecasting. In addition, comparing 

ARIMA MAPE values to the benchmark models, it can be concluded that for each stock ARIMA 

model produced smaller mean absolute percentage error terms. 

3.1.3. Results of LSTM and LSTM with Transformers 

Before the training of the models could take place four functions were created to help with the 

analysis. The first function was used to create a dataset that is later used with LSTM and LSTM with 

transformers models. The function's goal was to convert an input dataset into target values (Y) and 

input sequences (X) that can be used to train the models. In this function a look back window 

parameter was defined by the amount of prior time steps to use as input variables to forecast the 

subsequent time step. Since the default value was 30, there were 30 time steps in every input sequence, 

however this number was changed to 60, 10 and 5 to check if model’s accuracy changes. The second 

function was created to evaluate the model by MAE, RMSE, and MAPE error terms. The last two 

functions defined LSTM and LSTM with transformers models respectively with the parameter 

detailing provided in the methodology. Then a loop is executed to perform the following steps: 

• Download available historical data from Yahoo Finance from 2014 to 2023. 

Ticker ARIMA Order Train Time (min) MAE RMSE MAPE

IGN1L.VS (1, 1, 1) 0,26 0,06 0,09 0,30

TAL1T.TL (0, 1, 2) 2,78 0,00 0,01 0,78

EGR1T.TL (0, 1, 1) 0,16 0,03 0,04 0,73

SAB1L.VS (0, 1, 0) 0,82 0,01 0,01 0,83

LHV1T.TL (0, 1, 2) 0,64 0,03 0,04 0,75

TKM1T.TL (0, 1, 3) 2,59 0,04 0,07 0,41

TEL1L.VS (2, 1, 0) 1,48 0,01 0,01 0,40

TSM1T.TL (2, 1, 2) 0,94 0,01 0,01 0,43

CPA1T.TL (0, 1, 1) 0,37 0,02 0,02 0,61

MRK1T.TL (2, 1, 4) 15,63 0,09 0,15 0,62

TVE1T.TL (2, 1, 2) 7,53 0,06 0,09 0,46

HAE1T.TL (2, 1, 2) 5,29 0,04 0,09 0,77

GRG1L.VS (0, 1, 0) 0,7 0,01 0,01 0,80

AKO1L.VS (3, 1, 3) 4,36 0,01 0,02 0,88

APG1L.VS (0, 1, 0) 0,65 0,02 0,04 0,77

PKG1T.TL (1, 1, 1) 1,34 0,01 0,02 1,22

VLP1L.VS (0, 1, 0) 0,73 0,03 0,05 0,74

NTU1L.VS (1, 2, 5) 5,99 0,03 0,04 0,81

AUG1L.VS (2, 1, 2) 2,96 0,00 0,01 0,66

HPR1T.TL (3, 1, 1) 0,31 0,04 0,06 0,58
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• Generate the dataset for LSTM and LSTM + Transformers models. Split data into training 

and testing datasets at a ratio of 80:20. 

• Train the LSTM model and measure time required for the task. Predict the prices and estimate 

the error terms. 

• Train the LSTM + Transformers model and measure time required for the task. Predict the 

prices and estimate error terms. 

• Visualize the results in graphs. 

• Save the results to summary data frame. 

The general LSTM model was run under 12 different parameter combination – the scheme of 

parameter changes can be found in Figure 4 while the summary statistics of training time required 

and MAPE can be analyzed in Tables 5 and 6 and the result graphs can be examined in Appendix 5. 

 

Figure 4. LSTM trial-and-error process. 

The initial LSTM model was run with 128 neurons in the first layer and the same number of neurons 

in the second layer. The model ran through 50 epochs with a batch size of 32 and produced a MAPE 

equal to 2.29% over almost 51 minute of training time. The first trial was to change the number of 

batch size to 16, however the outcome was an increased error term to 3.16%. Then it was decided to 

change the number of epochs to 100 as it was believed that more iteration would lead to better weight 

allocation. Nonetheless, the result again showed an increased MAPE of 3.08%. After that, a different 

angle was tried – increasing the number of neurons in the first and second layers to 256. The 

hypothesis behind increasing the number of neurons relied on the idea that this change should enhance 

the model’s capacity to learn and represent more complex patterns and capture long-term 

dependencies. The outcome showed a decrease of 0.53pp in MAPE to 1.76% which is a significant 

improvement. Following this logic a model with 512 neurons in each layer was run, however resulting 

in a slightly worse MAPE of 1.83%. The train time for this model was the longest of all LSTM models 

running for more than 6.5 hours becoming a result inefficient attempt. As 256 neurons seemed to be 

the most optimal number of neurons it was decided to stick with this option in the upcoming trials. 
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Unfortunately, neither the changing the batch size to 16, nor to 64, nor changing the number of epochs 

to 100 or to 25 brought any improvements to the MAPE of 1.76%. Finally, it was decided to change 

the number of days for used as a look back window from 30 to 60 to see if this would provide better 

results as the model would have more days and might capture more complex patterns in how the 

stock’s price moves. However, increasing the look back window produced a worse MAPE of 2.16%. 

Then contrary to increasing the number of look back days, it was reduced to 10. The lower number 

of days could help the model capture the most recent changes and trends in stock’s price. The outcome 

supported this hypothesis as MAPE was 1.74%, however only by 0.02pp better than the one using 30 

days look back window. This difference could easily be interpreted as the noise in neural network 

forecasting; hence it was chosen to decrease the look back window even more – to only 5 days. This 

change yielded the best results for LSTM model with a MAPE of 1.69%. Additionally, it took just 

over 24 minutes to train the models for all 20 stocks which was the best result observed from all 

LSTM models. For none of the stocks model required more than 2 minutes to train, for 7 out of 20, 

the model needed less than a minute to train. The LSTM model had the best MAPE value of 0.67% 

for “Tallina Vesi AS” while the worst error term was for “Pro Kapital Grupp AS” with almost four 

percent. A correlation between training time and MAPE values was calculated to check if longer 

training times cause lower MAPE values, however an output of 0.09 shows negligible positive 

correlation, though for the statement to be true there should have been a strong negative correlation 

observed. Nonetheless, even the best LSTM model could not outperform a simple 10-day MA model, 

let alone 5- or 3-day MA models in terms of the mean absolute percentage error. 

 

Table 5. Summary results of LSTM models. 
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Table 6. Summary results of LSTM models. 

The training time for the LSTM with transformers model using the same parameters as the best LSTM 

model took almost 76 minutes in total to train or on average close to 4 minutes per stock – almost 3 

times longer when compared to the LSTM model. A correlation between training time and MAPE 

was calculated to see if there was any relationship between longer training time and lower error term, 

however a result of -0.26 proved that only weak negative correlation exists. Analyzing MAPE values 

for transformers models further, it was obvious that this alternative is less stable as MAPE values 

range from 0.56% to 40% compared to general LSTM MAPE range of 0.67% to 3.96%. Even though 

that for majority of shares the error term was higher than the one observed in general LSTM, there 

were four stocks where LSTM with transformers model managed to increase forecasting accuracy by 

reducing MAPE by 0.43pp for “Ignitis Grupe AB”, 1.93pp for “Coop Pank AS”, 0.02pp for “Tallina 

Vesi AS”, and 0.28pp for “Pro Kapital Grupp AS” which had the highest MAPE under general LSTM 

model. However, the stock price predictions require continuous stability and error terms to be under 

appropriate level of variance, hence LSTM with transformers with current parameter would not 

qualify as a good approach for stock price forecasting. The findings coincide with similar doubts 

about transformers’ stability and predictability are shared in an article by May (2023) where they as 

well observed that though both models had good MAPE values, the one that used transformers had 

greater range of the error term then the general LSTM model. 
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Table 7. Summary table of LSTM with transformers training times and error terms. 

There were 6 different machine learning models (random forest base, random forest with random 

search, random forest with Bayesian search, ARIMA, LSTM, and LSTM with transformers) created 

and tested for predicting prices of the constituents of the OMXBBGI index. While some of them 

performed quite poorly with an average MAPE reaching over 25% in case of random forest models, 

others like ARIMA or general LSTM managed to prove their abilities to successfully forecast stock 

prices. However, in relation to providing the lowest error terms, ARIMA model demonstrated its 

superiority by having smaller MAPE errors for all stocks with an average of 0.68% compared to 

1.69% of the LSTM model. Hence, for further portfolio optimization task the ARIMA model will be 

employed. 

3.2. Portfolio Optimization Results 

Markowitz's Modern Portfolio Theory was integrated into the forecasts provided by the ARIMA 

model for portfolio optimization and find the best asset allocation to maximize returns at a given risk 

level. It was determined as the daily volatility for the portfolio which was calculated to be 2.63%. 

The optimization solution worked through every business day for December 2023 to calculate the 

maximum return for the given risk level. While the model for the majority of days favored always 4 

stocks (see Figure 6) allocating the largest weights to them, it did not violate constraint of daily 

volatility for the constructed portfolio. Though it might not seem like a very balanced portfolio, 

however if an investor is seeking  a portfolio that can replicate the same risk as the benchmark index, 

this simulated portfolio required only 4 stocks to do that.  

Ticker
Time to train 

LSTM_T
MAE RMSE MAPE

IGN1L.VS 1,14 0,11 0,15 0,56

TAL1T.TL 5,29 0,03 0,04 5,10

EGR1T.TL 1,10 0,10 0,11 2,59

SAB1L.VS 4,90 0,06 0,07 9,51

LHV1T.TL 3,74 0,45 0,47 12,79

TKM1T.TL 4,98 0,17 0,20 1,72

TEL1L.VS 4,68 0,30 0,31 15,37

TSM1T.TL 2,68 0,12 0,13 9,16

CPA1T.TL 2,18 0,02 0,03 0,88

MRK1T.TL 4,33 0,99 1,07 6,55

TVE1T.TL 4,50 0,08 0,11 0,65

HAE1T.TL 4,91 0,17 0,22 2,98

GRG1L.VS 5,02 0,05 0,06 5,46

AKO1L.VS 4,13 0,36 0,40 27,27

APG1L.VS 4,66 0,04 0,06 1,64

PKG1T.TL 4,82 0,03 0,04 3,69

VLP1L.VS 4,59 0,33 0,39 7,02

NTU1L.VS 2,38 0,19 0,20 5,97

AUG1L.VS 4,77 0,00 0,01 1,08

HPR1T.TL 1,01 3,03 3,24 40,47
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Figure 5. Daily stock weights for optimal portfolio. 

The total value of the portfolio with daily rebalances at the end of the month was equal to 1015.15 

EUR, yielding a monthly return of 1.515%. In comparison if the market index was bought in the 

beginning of December 2023 with 1000 EUR, at the end of the month the value of such portfolio 

would have been equal to 1002.51 EUR giving 0.251% return on the month. The daily portfolio value 

movements are displayed in Figure 7. This shows that optimized portfolio with daily rebalancing 

strategy can outperform a benchmark index. 

 

Figure 6. Comparison of Portfolio Values for December 2023. 

Additionally, annualized Sharpe ratio is calculated for the optimal portfolio and the benchmark index. 

The former with annualized Sharpe ratio of 2.02 is significantly more efficient in terms of risk-

adjusted returns compared to the benchmark one with a Sharpe Ratio of 0.1. It indicates that the 
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investment is providing a significantly higher return compared to the risk taken. The risk-free rate of 

return was used to be 3% as the current 1-year return for a term deposit. Another metric calculated to 

measure portfolio’s efficiency was Jensen’s Alpha. The results obtained from the calculations were 

equal to 0.0108 which means, that over the analyzed time, the investment has produced a return that 

is 1.08% (annualized) more than the expected return projected by its risk level (as indicated by its 

beta relative to the market). One more indicator on optimal portfolio to measure its efficiency was 

calculated Value at Risk (VaR) indicator. The output provides the highest anticipated loss over a 24-

hour period that, 95% of the time, won't be exceeded. The results of 1-day VaR at 95% confidence 

interval for optimal portfolio showed a 0.75% loss while for the benchmark index it was 0.72%. In 

terms of VaR metric, the optimal portfolio would seem to be slightly worse off compared to the 

benchmark, however the difference is rather small and probably not impactful. 

The newly created portfolio demonstrated its superiority over the market index while keeping the 

same level of risk. However, performing daily model retraining and stock reweighting might be a 

challenging task. The limitation of predicting only day ahead price leads to at least a two-fold 

problem. First of all, running intense machine learning models might take a lot of time and machine 

learning itself is a resource-intensive task that requires increased power consumption for efficiently 

completing the task. Even though the model might have a very high accuracy in predicting the next 

day's price, the overall change in the portfolio weights according to the forecasted prices might result 

in a minor change in the portfolio’s value. This leads to questioning whether daily price forecasting 

is really that profitable, given the time and power consumed for the retraining of ML models. Another 

part of the problem from forecasting the next day’s prices stems from the ability to quickly capitalize 

on gains. Since models employed here do not consider transaction costs because some of the Baltic 

banks allow buying and selling Baltic stocks for 0 commission, the process itself might not be as fast 

as trading on other brokerage firms. Hence, this could neglect all the benefits of machine learning for 

predicting only one day ahead prices. Instead, predicting the price of 5 or 10 days ahead might be 

more beneficial and easier implemented in realistic trading conditions. Finally, the weights of the 

optimal portfolio and return were calculated only for one month, whereas calculating for longer 

periods might reveal additional drawbacks to the optimization method proposed. 
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Conclusions 

This thesis investigated the use of machine learning algorithms, such as LSTM, ARIMA, and RF, to 

forecast stock prices. Through the integration of these predictive models with Modern Portfolio 

Theory, the goal was to create investment strategy that maximizes returns while maintaining a 

predetermined degree of risk. 

The results of optimized portfolio proved that such portfolio might be superior to the benchmark 

index with the total return over one month’s period of 1.515% compared to a passive “buy and hold” 

strategy’s result of 0.251%. This finding helped answering the research question of this thesis that 

indeed an optimal portfolio created using machine learning algorithms for stock price predictions can 

surpass the OMXBBGI index in terms of generating greater returns with the same level of risk. In 

addition to returns and standard deviations, metrics such as Sharpe Ratio, Jensen’s Alpha, and Value 

at Risk were calculated providing useful information about the optimal portfolio constructed. 

The study did, however, have a few imperfections leaving it to future studies to build upon. For 

instance, the random forest models could benefit more from feature engineering and introduction of 

technical indicators to improve its forecasting accuracy. More complex LSTM features could be 

introduced as well to help boost the accuracy as in other studies the LSTM models often proved to be 

significantly more accurate than ARIMA or other benchmark models. Another global limitation of 

the experiment which could be analyzed in later studies is forecasting not one single day at the time, 

but 5 or 10 days in the future.  

In summary, this thesis emphasizes the potential of machine learning algorithms to improve portfolio 

management and stock market analytics, but it also emphasizes the difficulties and complexities 

involved in putting these technologies into practice. Nonetheless, the study managed to portray that 

even when implementing comparatively simple stock price forecasting models and a straightforward 

portfolio optimization method, the simulated portfolio’s results are better compared to the benchmark 

index. 
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Appendices 

Appendix 1. Historical Prices of the Constituents of the OMXBBGI Index. 
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Appendix 2. Summary of Index Constituents. 

Name Ticker Weight 

Annualized 

return 

[Close] 

Based on 

AB Akola Group AKO1L.VS 0,98% 8,72% 10 years 

APB Apranga APG1L.VS 1,44% -0,05% 10 years 

Auga Group AB AUG1L.VS 0,91% 10,77% 10 years 

Coop Pank AS CPA1T.TL 6,05% 30,33% 3,1 years 

Enefit Green AS EGR1T.TL 7,10% 21,31% 1,2 years 

Grigeo AB GRG1L.VS 2,09% 9,67% 10 years 

AS Harju Elekter HAE1T.TL 2,01% 6,62% 10 years 

Hepsor AS HPR1T.TL 0,20% -33,06% 0,9 years 

AB Ignitis grupe IGN1L.VS 11,95% -6,89% 2,2 years 

AS LHV Group LHV1T.TL 27,89% 26,88% 6,6 years 

AS Merko Ehitus MRK1T.TL 3,07% 9,16% 10 years 

Novaturas AB NTU1L.VS 0,48% -25,44% 4,8 years 

AS Pro Kapital Grupp PKG1T.TL 1,89% -11,31% 10 years 

AB Siauliu Bankas SAB1L.VS 10,30% 20,48% 10 years 

AS Tallink Grupp TAL1T.TL 8,10% -4,92% 10 years 

Telia Lietuva, AB TEL1L.VS 4,25% 9,73% 10 years 

TKM Grupp AS TKM1T.TL 4,68% 5,51% 10 years 

AS Tallinna Sadam TSM1T.TL 3,77% -6,68% 4,5 years 

AS Tallinna Vesi TVE1T.TL 1,91% 3,15% 10 years 

AB Vilkyskiu pienine VLP1L.VS 0,93% 14,39% 10 years 
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Appendix 3. Result Graphs of Random Forest, Random Forest with Random Search, 

Random Forest with Bayesian Search models. 
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Appendix 4. Result Graphs of ARIMA Models. 
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Appendix 5. Result Graphs of LSTM Models. 
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