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Abstract: This article presents the research results of depositing anti-friction coatings (Babbitt) using
three different casting methods: static casting, flame soldering, and clad welding. Babbitt alloy
coatings deposited with different casting methods are discussed and explained in terms of changes in
the coating properties, such as the microstructure, hardness, strength, and chemical composition. The
results showed significant differences in the aforementioned properties, depending on the chosen
coating deposition method. The results of the tests confirmed the importance of using shielding
gas during deposition to ensure the chemical composition of the coating. The analysis revealed
that decreases in the amounts of antimony and copper in the Babbitt coating compared with the
initial concentrations were influenced by selective evaporation, oxidation, and the coating process
parameters associated with different coating methods. To maintain the desired balance of mechanical
properties in Babbitt coatings, it is important to control the antimony and copper contents. Clad
welding deposition using a non-consumable tungsten electrode and argon shielding gas achieved a
chemically stable coating quite close to the initial chemical composition of the Babbitt alloy.

Keywords: microstructure; tin-based Babbitt alloy; coating; clad welding; casting

1. Introduction

In the field of metallurgy and resurfacing, the application of antifriction coatings has
long attracted the attention of both research and industry. The present study explores
the complex practical relationship between theory and application to reveal the structural
properties of anti-friction coatings and their formation under various methods, with a com-
parative analysis used to determine the most effective method. Antifriction coatings, which
are renowned for their versatility and utility in various industries, have also generated
interest in part restoration. This interest is driving research, particularly in metallurgy and
materials science.

This paper focuses on the antifriction coating Babbitt, also known as white metal,
which is used in the manufacturing and restoration of specific parts. Tin-based Babbitt
alloys, which are the objects of this research, are characterized as casting alloys with
microstructures that usually appear in the three-phase form α, β, η, where α is the antimony
(Sb) and copper (Cu) in the tin (Sn), which together form a soft and ductile matrix; β
represents the angular SnSb phase crystals; and η represents the acicular precipitates of
the Cu6Sn5 phase [1]. These coatings are commonly used as bearing materials in various
devices and machines, such as turbines, engines, motors, compressors, and pumps [2–6].
Babbitt alloy coatings are applied to reduce friction between moving parts, thereby reducing
wear on components in contact with each other and extending the service lives of devices
and machines [7–10]. Babbitt’s good damping properties help reduce vibration and noise in
rotating machinery. When applying Babbitt alloy coatings, various spraying technologies
can be selected, including low-pressure cold spray technology, arc spray technology, flame
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spray technology, and thermal spray technology [11–14]. However, studies have shown
that the interface between the coating and substrate is mechanically bonded in coatings
fabricated via cold spraying or thermal spraying, which peel off at high temperatures or
under relatively high loads [15]. The deposition efficiency during cold spraying depends,
to a significant extent, on the speed of the particles in contact with the coated surface. The
particle velocity should remain within the interval between the critical and erosion velocity,
as a coating will not form when the particle velocity is lower than the critical velocity during
impact due to insufficient bonding. However, if the impact velocity is too high and exceeds
the erosion threshold, there is a high probability that the already-deposited layers will be
removed [16]. In addition, it is difficult to avoid the formation of pores or oxidation in the
coating using spray techniques [17–20]. For example, depending on the spray parameters,
the porosity of the coatings when using the thermal spray method can reach up to 16%
or higher by volume [21]. Laser coating technologies allow the fabrication of coatings
with better functional parameters than those using thermal spraying technology [22,23].
However, laser technology requires that the coated surfaces be carefully prepared with a
suitable structure while avoiding any contaminants, which is often difficult to implement in
a manufacturing environment. In addition, the technological process is rather complicated,
requiring expensive equipment and relatively high costs [24,25]. Other possible methods
for fabricating Babbitt alloy coatings involve casting.

Modern research and development in casting technology contribute to the continuous
improvement of Babbitt alloy coatings in solving engineering problems. When using
coating casting methods, it is important to ensure the uniformity of the coating and high-
quality adhesion to the base metal. Thus, special attention must be paid to the preparation
of the surface to be coated, the chemical composition of the alloy, temperature control,
and the casting technology itself [26–28]. Babbitt alloy coatings fabricated via casting
cannot be strengthened via cold working. This factor is influenced by the relatively low
recrystallization temperature [29]. Uneven heat input during casting affects the grain
sizes of Babbitt alloys [30,31]. Therefore, the solidification rate affects the microstructure
and hardness of the coating. Fine-grained structures created through controlled thermal
processes improve mechanical strength and wear resistance, while proper thermal control
reduces the presence of unwanted inclusions in the matrix [12]. Studies have shown
that a slower cooling rate leads to the formation of larger SnSb and Cu6Sn5 precipitates
and a coarser microstructure. Conversely, an increase in the solidification rate leads to a
decrease in the size of the precipitates [15,32]. Therefore, during the Babbitt casting process,
control of the cooling rate has a significant influence on the formation of the microstructure
and its adaptation to specific performance requirements. The chemical composition of
the antifriction coatings is also an important choice in the production or restoration of
machine and equipment parts. In Babbitt alloy coatings, Sn is the main component that
influences the properties and performance of the coating, providing a soft matrix for the
other metals. Sn is characterized by its softness, ductility, and low coefficient of friction,
enabling the coating to adapt to the irregularities of in-contact surfaces, thereby reducing
friction and wear between moving parts [33–36]. In addition, Sn provides good adhesion of
the coating to the base metal, extending the durability of the coated parts. Thus, a properly
determined amount of Sn in the coating plays a vital role in influencing the tribological,
mechanical, and chemical properties of the deposited layer [37,38]. Cu increases the thermal
conductivity of the coating [26,39–41]. This property reduces the possibility of overheating
among the contacting parts and maintains the temperature balance. Cu enhances the
hydrophobic properties of the coating through its inherent corrosion resistance [42,43].
The protective oxide layers formed under the influence of Cu effectively protect both the
coating itself and the base metal from rust. Cu helps prevent deformation and plastic flow
of the coating under load, through which the required distance between the contacting
surfaces is kept stable [44]. Sb adds hardness to the Babbitt alloy coating and increases
its wear resistance [45–48]. This factor is critical in applications where the contacting
surfaces experience high friction, such as in bearings or other sliding surfaces [14,49–51].
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Another important aspect is that Sb promotes the formation of a fine-grained structure
in the coating, which contributes to the mechanical strength, crack resistance, and wear
resistance [52,53]. Studies have shown that precipitation of the SnSb phase has a decisive
influence on the wear resistance of bearings covered with a Babbitt alloy coating [54]. On
the other hand, research showed that if the amount of Sb in the alloy exceeds 18–20%, then
the wear resistance will begin to decrease [55,56].

The aim of this study is to determine the characteristic properties of Babbitt alloy
coatings and the consequences of creating such alloys using different casting methodolo-
gies. Firstly, we recognize that practical applications extend beyond the confines of the
laboratory. Thus, this study includes a holistic study of Babbitt alloy coatings, including
their characteristics, casting techniques, technical parameters, and applications in real man-
ufacturing. We acknowledge the challenges of practical experimentation, as Babbitt alloy
coatings can be fabricated using an oxidizing flame with burning gas (flame soldering) via
melting in a furnace and pouring directly from a crucible onto the surface of the part (static
casting) or with an electric arc created by a tungsten electrode in an inert gas environment
(clad welding). We explore the intricacies of Babbitt alloy coatings, carefully examining
their physical, mechanical, and metallurgical properties. The relationship between the
importance of chemical composition, mechanical properties, and microstructure in the
context of this research topic is also discussed. The goal is to reveal the nuanced differences
when using different casting methods and ultimately provide sound recommendations for
practical applications.

2. Materials and Experimental Details

The Babbitt casting process began by preparing the Babbitt material in the form of rods.
The most vital element in this process was to maintain the original structure of the Babbitt
material in the recast rods. The use of Babbitt rods (Figure 1) was based on examples of
additional materials used in welding, such as electrodes and welding wires.
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control parameter was continued agitation of the bath until the gas bubbles stopped 
spreading. After remelting the Babbitt alloy into rods, the chemical composition was de-
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Figure 1. Casting of Babbitt rods: (a) cast rod; (b) mold cross-section; and (c) mold sketch.

The Babbitt material was melted in a crucible in an electric heating furnace with
automatic temperature control at a temperature of 370 ± 10 ◦C. During Babbitt heating,
dehydrated ammonium chloride was used as a flux to clean the Babbitt of impurities and
contaminants. Hot Babbitt oxidizes, and thus it was necessary to shorten the heating and
casting time as much as possible when forming the rods. In addition, Babbitt requires
vigorous stirring during heating to achieve a more uniform and finer grain structure. For
this purpose, we used a special bell that moved along the bottom of the bath until gas
bubbles ceased. The stirring speed and time were not automated. Instead, the relevant
control parameter was continued agitation of the bath until the gas bubbles stopped
spreading. After remelting the Babbitt alloy into rods, the chemical composition was
determined (Table 1).
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Table 1. Chemical composition of the Babbitt alloy remelted rods.

Chemical Element Fe Al Cu As Pb Zn Sb Bi Sn

Amount (wt.%) 0.090 0.002 5.60 0.007 0.094 0.006 13.40 0.001 Bal.

Forming the Babbitt material into rods not only facilitated the casting process but also
ensured that the final Babbitt alloy coatings were of high-quality and had reliable properties.

Before coating with the Babbitt alloy, the surfaces underwent the degreasing, fluxing,
and tinning operations applicable to all Babbitt casting methods. The quality of degreasing
was assessed by wetting the degreased surface with water. The degreased surface was
confirmed to be free from water film damage (grease marks). The surfaces were degreased
again if smooth surfaces remained unwetted. Fluxing is a casting preparation step in which
reagents such as saturated zinc chloride play a key role. This method effectively removes
oxides and dirt from metal surfaces, ensuring that the surface to be coated is chemically
active and receptive to the Babbitt material. This etching step is critical in promoting
uniform and reliable adhesion between the metal substrate and the Babbitt alloy. Tinning is
the last step in the preparation process before casting the Babbitt alloy. First, the surface
of the specimen to be coated is heated to 270–300 ◦C. When the Sn starts to melt, it is
immediately distributed over the entire surface in an even and thin layer. A properly
applied layer of Sn should be a uniform dull silver color. Any other color, such as yellow,
indicates that the tinning process was performed incorrectly and that the Sn is oxidized and
unsuitable for a Babbitt alloy coating, as Babbitt will not adhere properly to such a surface.

Two different types of specimens were developed, each adapted to specific testing and
evaluation processes. The first type of “V-shaped” specimen consisted of two metal plates
carefully joined together in the same way as the welding specimens. These plates formed a
V-shaped groove designed to accommodate the three different Babbitt depositing methods
investigated (Figure 2).
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Figure 2. “V-shaped” specimen type: (a) specimen model; (b) sketch of the specimen; and (c) manu-
factured specimen.

This design choice is compatible with the objective of tensile testing the specimens to
gain valuable insights into the structural integrity, bond strength, and mechanical properties
of Babbitt coatings. Examples of “O-shaped” specimens instead featured a flat round
configuration with side walls forming a bath (Figure 3). These specimens were created for
a comprehensive evaluation that included hardness testing, chemical composition analysis,
and microstructural analysis.

Special stands were designed and manufactured for specimen preparation (Figure 4).
Using the static casting method, the Babbitt material was melted and refined in a

furnace. The Babbitt coating was created by directly pouring liquid Babbitt from a crucible
onto the prepared surface. To ensure the accuracy of the experiment, the temperature under
the Babbitt coating was measured after pouring the coating onto the surface of the base
metal (carbon steel S355J2 was used as the substrate). The temperature reached 378 ◦C,
which was suitable to ensure that Sb, one of the main elements, was not burnt due to the
introduction of excessive heat in Babbitt casting.
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For the flame soldering method, Babbitt was melted using an oxidizing flame gener-
ated by a burning mixture of propane and oxygen gases at a ratio of 1:4 (Figure 5a).
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For the clad welding method, we used a digitally controlled electrode power source
with resonant intelligence, a Fronius TransPocket 2500 TIG welding machine (Fronius
International GmbH, Wels, Austria), a non-consumable Abicor Binzel 1.6 mm diameter
WP green TIG tungsten electrode (Alexander Binzel Schweisstechnik GmbH & Co., KG,
Buseck, Germany), 20 A of current, and argon shielding gas with a concentration of 99%
(Figure 5b).

A PMI-Master PRO spectrometer (Oxford Instruments Analytical GmbH, Uedem, Ger-
many) was used to determine the chemical composition of the Babbitt. A microstructural
analysis of the coating was performed using a Zeiss Axioscope A1 microscope (Carl Zeiss
Microscopy GmbH, Jena, Germany), Zeiss Axiocam 208 color imaging camera, and Zeiss
Labscope 4.2 version software. The tensile tests on the specimens were carried out with a
Tinius Olsen H10KT universal tensile test machine (Tinius Olsen Ltd., Salfords, Redhill, UK)
featuring a load capacity of 10 kN at room temperature (22 ± 1 ◦C), with 50 ± 5% relative
humidity at a test speed of 13.8 mm/min. Hardness measurements were carried out with
a Mitutoyo HR-530 Series Hardness Testing Machine (Mitutoyo Corporation, Kanagawa,
Japan) under a load of 10 N with a Ø5.0 mm indenter.

3. Results and Discussion
3.1. Chemical Composition

The chemical composition of Babbitt has a significant influence on the properties of the
coating and its suitability for various applications. An analysis of this composition was thus
necessary to ensure the composition and structural integrity of the material, especially in
cases where the material may be exposed to heat. The results of this analysis are presented
in Table 2.

Table 2. Chemical composition analysis data.

Deposition Method Percentage of Chemical Elements in the Composition (wt.%)

Static casting

Sn Sb As Bi Pb Cu Fe Ni

Balance 12.40 0.007 0.001 0.034 3.73 0.090 0.001

Al Zn Cd Ag Co In

0.002 0.006 0.001 0.001 0.003 0.004

Flame soldering

Sn Sb As Bi Pb Cu Fe Ni

Balance 12.70 0.007 0.001 0.093 3.69 0.090 0.001

Al Zn Cd Ag Co In

0.002 0.006 0.001 0.001 0.002 0.006

Clad welding

Sn Sb As Bi Pb Cu Fe Ni

Balance 13.10 0.007 0.001 0.051 5.57 0.090 0.001

Al Zn Cd Ag Co In

0.002 0.006 0.001 0.001 0.003 0.004

The results of the chemical analysis of the three Babbitt deposition methods revealed
differences in the contents of the key elements, primarily Sb and Cu. In the clad welding
method, the amounts of Sb and Cu were relatively higher at 13.10% and 5.57%, respectively.
The flame soldering method yielded slightly lower amounts of Sb and Cu at 12.70% and
3.69%, respectively. The content of Sb in the Babbitt deposited during static casting was
12.40%, while that of Cu was 3.73%. These differences are attributable to several factors,
including differences in temperature, exposure to oxygen, the duration of the coating
process, and the evaporation rates during the deposition process. During deposition,
the molten Babbitt was exposed to oxygen and other oxidizing agents which affected
elements more reactive than Sn, such as Cu and Sb. The formed oxides then reduced the
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concentrations of Cu and Sb in the coatings obtained using the flame soldering and static
casting methods. Under the clad welding method, the deposition process occurred in a
protective argon gas environment, which eliminated the formation of oxides. Consequently,
the amounts of Cu and Sb in the deposited layer remained practically unchanged. We
also recorded the duration of the experimental coating process. Studies have shown that
the static casting deposition method requires the most time. Compared with the time
investment under the static casting method, the duration of the open-flame soldering
method was reduced by about 60%, while that of the clad welding method was reduced by
65%. As a result, less Cu and Sb was vaporized under the clad welding method.

Because a more homogeneous structure forms under the clad welding method, the
amount of Sb was higher due to Sb separating more evenly and merging into the common
matrix during deposition. Conversely, with the flame brazing and direct casting methods,
the amounts of Sb and Cu were slightly lower due to uneven heat exposure during the
formation of solid precipitates of the aforementioned elements.

3.2. Tensile Test

Tensile tests were performed to determine the ultimate tensile strength of Babbitt alloy
coatings fabricated using the three different methods under static loading, according to
the standard EN ISO 4136:2022 [57]. In total, 15 specimens were prepared for tensile tests.
The specimens for tensile measurements were rectangular in shape, with dimensions of
150 mm × 20 mm × 6 mm (Figure 6). During the tests, the relationship between the
force and the tensile speed was determined experimentally. Calculations showed that the
selected test speed was 13.8 mm/min.
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Detailed results of the tensile strength testing experiment are presented in Table 3, and
the tensile curves are presented in Figure 7. In these curves, we selected the specimens that
withstood the highest loads during the test. The maximum load force and strength values
were determined according to the instructions of the standard ISO 6892-1:2019 [58].

The testing machine recorded the force (stress) and length of time which the specimen
could withstand the load before breaking.

The calculated averages showed that the ultimate tensile strength limit of the coatings
for the specimens obtained was 59 MPa via static casting, 71 MPa using the flame soldering
method, and 83 MPa using the clad welding method. These results demonstrate that the
coating fabricated with the clad welding method had the highest ultimate tensile strength of
all three methods, primarily due to the higher amount of Sb in the coating. Sb formed solid
solutions with Sn in the Babbitt coating because the Sb atoms occupied interstitial space,
replaced Sn atoms in the crystal lattice, and formed intermetallic compounds with Sn [59].
As the amount of Sb in the alloy increased, more intermetallic compounds formed, which
increased the general strengthening of the alloy and contributed to its tensile strength. In
addition, the Sb yielded a Babbitt alloy with a finer grain structure. Finer grains yielded
more grain boundaries which hindered dislocation motion during tensile deformation. In
addition, the dominant large SnSb phase precipitates which formed during static casting
acted as notches and influenced the tensile cracking of the coating.
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Table 3. Data from the tensile strength testing experiment.

Description of the Specimen
Max. Load
Fmax (kN)

Ultimate Tensile
Strength Rm (MPa)

(N/mm2)

The Location of
the FailureCoating Method No. of the

Specimen

Static casting (SC)

SC1 8.38 69.00 Bonding point of the Babbitt to the base metal

SC2 5.58 46.00 Bonding point of the Babbitt to the base metal

SC3 9.37 78.00 Bonding point of the Babbitt to the base metal

SC4 5.22 44.00 Bonding point of the Babbitt to the base metal

SC5 7.04 58.00 Bonding point of the Babbitt to the base metal

∆59.00

Flame soldering (FS)

FS1 6.97 58.00 Bonding point of the Babbitt to the base metal

FS2 6.78 57.00 Babbitt coating

FS3 9.30 77.00 Babbitt coating

FS4 10.16 84.00 Babbitt coating

FS5 9.46 78.00 Bonding point of the Babbitt to the base metal

∆71.00

Clad welding (CW)

CW1 12.16 102.00 Bonding point of the Babbitt to the base metal

CW2 8.04 67.00 Bonding point of the Babbitt to the base metal

CW3 9.71 80.00 Bonding point of the Babbitt to the base metal

CW4 10.66 88.00 Babbitt coating

CW5 9.42 79.00 Babbitt coating

∆83.00
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3.3. Hardness Test

The hardness of the coatings was tested using the Brinell method at a constant load
of 1000 g according to ISO 6506-1:2014 [60]. A sintered carbide ball with a diameter of
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5.0 mm was used to obtain the indents during the test. The average hardness results are
summarized in Figure 8.
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To investigate the reason for the higher hardness in the coatings obtained using the
clad welding technique, the chemical composition was analyzed with a spectrometer,
focusing on the Sb and Cu contents. As microstructural studies have shown, Sb influences
the formation of finer-grained structures and promotes the formation of solid intermetallic
phases, such as Sn and Sb compounds, in the microstructure. Deposition of the coating
using the clad welding method resulted in higher contents of Cu and Sb in the Babbitt,
which increased the total volume fraction of Cu6Sn5 and SbSn precipitates, influencing
the greater hardness of the Babbitt coating. The resulting fine precipitates were evenly
distributed throughout the tin matrix. These formed phases contributed to the overall
hardness of the Babbitt, which was confirmed by the hardness measurements.

In summary, the hardness test results of the three Babbitt alloy coating methods re-
vealed clear differences. The coating fabricated using the clad welding method offered the
highest hardness (with average hardness values of about 37.0 HB). The average hardness
values of the coatings obtained with the flame soldering and static casting methods were
about 30.3 HB and 31.1 HB, respectively (Figure 8). These average differences in hardness
values were associated with differences in the microstructures and chemical compositional
changes under each coating method. The higher surface hardness of the coating under
operational conditions would make such a coating more resistant to intensive wear. Chemi-
cal composition analysis showed that the greatest amount of Sb (13.10%) and Cu (5.57%)
remained in the Babbitt when using the clad welding method (Table 2).

3.4. Microstructure

An analysis of the coating’s microstructure revealed information about its grain size,
distribution, and morphology, which directly affected the mechanical strength, hardness,
and other properties of the material. This analysis also helped identify any damage,
defects, or other anomalies that could affect the performance of the deposited layer. We
selected round “O-shaped” specimens for the microstructural analysis. The microsections
(Figure 9) for the microstructural analysis were prepared using metallographic techniques
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and chemically etched with 4% nitric acid (HNO3) after polishing with a SMARTLAM 2.0
single-plate polishing machine (LAM PLAN S.A., Gaillard, France).
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Figures 10–12 present trinocular microscope images of the microstructures of the
coatings deposited via different casting methods.
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Figure 11. Images of the microstructures of the Babbitt alloy coating deposited via the flame sol-
dering method: (a) magnification of 2.5×; (b) magnification of 5×; (c) magnification of 20×; and
(d) magnification of 50×.

Materials 2024, 17, x FOR PEER REVIEW 12 of 16 
 

 

Figure 11. Images of the microstructures of the Babbitt alloy coating deposited via the flame solder-
ing method: (a) magnification of 2.5×; (b) magnification of 5×; (c) magnification of 20×; and (d) mag-
nification of 50×. 

  

(a) (b) 

  

(c) (d) 

Figure 12. Microstructural images of the Babbitt alloy coating deposited via the clad welding 
method: (a) magnification of 2.5×; (b) magnification of 5×; (c) magnification of 20×; and (d) magnifi-
cation of 50×. 

Numerous star-shaped formations (asterisks) were observed in the microstructure of 
the Babbitt layer deposited via clad welding with a tungsten electrode in an argon gas 
environment, showing the dominance of Cu6Sn5 precipitates (Figure 12). These crystalline 
formations resulted from interactions between the electrode material and the molten Bab-
bitt alloy. Due to the controlled solidification conditions, a fine microstructure was 
formed, which improved the mechanical properties and wear resistance of the coating 
[61–63]. Traces of the coating process were visible in the microstructure (Figure 12a), 
which appeared due to the electric arc. These traces provided a visual representation of 
the Babbitt’s material transfer path onto the surface of the base metal, demonstrating the 
ability to control the coating operation. In contrast to other casting methods, the micro-
structure under clad welding contained fewer large SnSb phase precipitates. The star-
shaped formations, fine structure, complete absence of pores (Figure 12), and controlled 
casting process underscore the advantages of the clad welding method over other casting 
methods. These observations were also confirmed by the chemical composition (Table 2), 
tensile strength (Figure 7 and Table 3), and hardness tests (Figure 8), the results of which 
indicated the superiority of the clad casting method. The elimination of pores in the Bab-
bitt coating under the clad welding method produced a coating with high adhesion 
strength to the substrate, as reflected in the reduced probability of surface damage. 

The microstructural analysis explored the research results for different methods of 
Babbitt layer deposition. The outcomes highlighted the exceptionally fine structure of the 
Babbitt formed under the clad welding method, characterized by star-shaped Cu6Sn5 

Figure 12. Microstructural images of the Babbitt alloy coating deposited via the clad welding method:
(a) magnification of 2.5×; (b) magnification of 5×; (c) magnification of 20×; and (d) magnification
of 50×.



Materials 2024, 17, 2662 12 of 15

Relatively large SnSb phase precipitates were clearly visible in the microstructure
(Figure 10), next to which were small precipitates of the Cu6Sn5 phase. The microstructure
of the statically cast Babbitt layer, characterized by dominant, large SnSb phase precipitates,
had a significant influence on the coating properties. Incomplete homogenization of the
alloy is one reason why alloy components such as Sn and Sb mix and melt unevenly during
casting. Rapid solidification and non-uniform cooling rates during casting contributed to
the formation of larger precipitates, which created a coarse-grained structure.

The microstructure of the Babbitt layer deposited via the flame soldering method
presented a complex arrangement characterized by numerous pores and different precip-
itates (Figure 11). In the microstructure, larger SnSb phase precipitates surrounded by
smaller Cu6Sn5 derivatives formed a heterogeneous network in the coating. However, the
combined precipitates were not as widely distributed as in static casting, which improved
the overall quality of the coating.

Pore formation affects the structural integrity and mechanical properties of the coating,
an interesting aspect of which is the pore closure in SnSb compounds. This localization
indicates a relationship between the formation of precipitates and the appearance of pores
during the casting and solidification process. The microstructure confirmed the results of
the mechanical tests, as the lower tensile strength here (Figure 7) was due to the relatively
high porosity and the reduced density of the deposited layer’s structure.

Numerous star-shaped formations (asterisks) were observed in the microstructure
of the Babbitt layer deposited via clad welding with a tungsten electrode in an argon gas
environment, showing the dominance of Cu6Sn5 precipitates (Figure 12). These crystalline
formations resulted from interactions between the electrode material and the molten Babbitt
alloy. Due to the controlled solidification conditions, a fine microstructure was formed,
which improved the mechanical properties and wear resistance of the coating [61–63].
Traces of the coating process were visible in the microstructure (Figure 12a), which appeared
due to the electric arc. These traces provided a visual representation of the Babbitt’s material
transfer path onto the surface of the base metal, demonstrating the ability to control the
coating operation. In contrast to other casting methods, the microstructure under clad
welding contained fewer large SnSb phase precipitates. The star-shaped formations, fine
structure, complete absence of pores (Figure 12), and controlled casting process underscore
the advantages of the clad welding method over other casting methods. These observations
were also confirmed by the chemical composition (Table 2), tensile strength (Figure 7 and
Table 3), and hardness tests (Figure 8), the results of which indicated the superiority of the
clad casting method. The elimination of pores in the Babbitt coating under the clad welding
method produced a coating with high adhesion strength to the substrate, as reflected in the
reduced probability of surface damage.

The microstructural analysis explored the research results for different methods of
Babbitt layer deposition. The outcomes highlighted the exceptionally fine structure of the
Babbitt formed under the clad welding method, characterized by star-shaped Cu6Sn5 phase
precipitates (Figure 12c). The flame soldering method was characterized by a relatively high
porosity for the SnSb phase precipitates (Figure 11b,c), while the direct casting method was
characterized by large SnSb phase precipitates which dominated the structure (Figure 10).

4. Conclusions

The research results yielded the following conclusions. The investigated Babbitt alloy
coatings were characterized by a multiphase microstructure consisting of large precipitates
of solid SnSb phases and numerous precipitates of Cu6Sn5 phases, which were both needle-
and star-shaped. The matrix of deposited coatings was a solution of Sb and Cu in Sn.
Our research showed that the coatings deposited via different methods differed in their
microstructures, mainly due to the distribution and shapes of the CuSn and SnSb phase
precipitates. In the coating deposited via static casting, the SnSb precipitates were relatively
large and rhomboidal, resulting in a coarse-grained structure which reduced the mechanical
properties of the coating compared with those of the coating deposited with the clad
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welding method, which was dominated by star-shaped Cu6Sn5 phase precipitates. This
phenomenon was observed after performing tensile tests, in which the average ultimate
tensile strengths of the specimen coatings fabricated via static casting and clad welding
were 59 MPa and 83 MPa, respectively.

When casting using the clad welding method, we obtained more homogenous melted
layers. In addition, the grain size of the intermetallic SnSb was more refined compared
with that under static casting and flame soldering, yielding Babbitt with a greater hardness
(37 HB versus 31.1 HB and 30.3 HB, respectively) due to grain refinement and homogeniza-
tion of the microstructure. Overall, the presence of star-shaped Cu6Sn5 phase precipitates
in the Babbitt layers had a critical effect on the material’s mechanical properties (hardness,
plasticity, and tensile strength).

Analyses of the chemical composition showed that the quantity of chemical elements
(5.57% Cu and 13.10% Sb) in the layer deposited using the clad welding method remained
almost unchanged compared with the amounts in the original raw material (5.60% Cu and
13.40% Sb). Conversely, a decrease in these elements was clearly reflected in the layers
deposited using the other two methods. When depositing via the flame soldering method,
the Cu and Sb contents decreased to 3.69% and 12.70%, respectively. Under the direct
casting method, these contents decreased to 3.73% and 12.40%, respectively.

The present research revealed that a higher amount of Sb yielded a coating with greater
hardness. In addition, a higher amount of Cu increased the tensile strength of the coating.
However, excessive contents of these two elements are known to reduce the ductility of the
coating, and this it is extremely important to control the desired concentrations of Sb and
Cu. The results of the experiments showed that the chemical composition of the coating
changed little from that of the Babbitt alloy when using the clad welding method to deposit
the alloy under a protective argon gas environment.
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