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SUMMARY 

 

Age-dependent highly reliable systems provide small amount of statistical information and for 

that reason classical frequentist methods cannot be applied due to their asymptotical assumptions. 

However, Bayesian methods, due to their ability to naturally couple all sources of information 

(including expert subjective opinions) and not rely on asymptotic assumptions, are attractive approach 

to solve small sample problems in age-dependent reliability modelling. In this thesis Bayesian 

paradigm and its applicability were presented and general methodology to analyse previously 

mentioned problem was obtained. Methodology successfully was applied for two real data samples: 

failures in European natural gas grid and electrical Instrumentation and Control components. It was 

concluded that presented approach is able to easily investigate small samples in nonlinear age-

dependent models. Also, analysis showed that different model goodness-of-fit approaches can provide 

different inferences and that sometimes it can fail due to nonlinearities and heteroscedasticity present 

in data. For that reason Bayesian posterior model averaging procedure were applied and concluded that 

it gives more reliable and better calibrated results than would be in one model case. Also adaptive 

Metropolis superiority over classical Metropolis – Hastings algorithm for highly correlated parameters 

and nonlinearities in model was validated. 
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1 SANTRAUKA 

Pavojingų objektų, kaip kad atominės elektrinės, cheminės gamyklos, dujų tiekimo tinklai, sauga 

priklauso nuo objektų amžiaus, t.y. nuo senėjimo efekto, kuris didele dalimi veikia tokių objektų 

sutrikimus bėgant laikui.   

Senėjimo poveikis yra aktualiausias pasyvioms sistemoms ar komponentams, veikiantiems 

minėtuose objektuose, tačiau iki šiol dar nėra vieningos metodologijos, tinkamos nagrinėti tokioms 

sistemoms, kadangi gaunami statistiniai duomenys yra labai išsibarstę, reti, bei imtys mažos: 

klasikiniai statistiniai metodai  šioms problemoms spręsti yra netinkami, dėl asimptotinių prielaidų. 

Bajesinių metodų grupė suteikia galimybę mažų imčių problemą išspręsti natūraliu budų, be 

prielaidų, reikalaujančių  daug statistinių duomenų. Šie metodai taip pat suteikia galimybę panaudoti 

ne tik informaciją, esančia statistiniuose duomenyse (per tikėtinumo funkciją), tačiau ir suteikia 

galimybę panaudoti a priori žinias apie nagrinėjamą sistemą apriorinių skirstinių pavidalu. Tai gali 

būti neinformatyvūs (psl. 18), informatyvūs (psl. 19) skirstiniai, statistiniais duomenimis grįsti 

skirstiniai (psl. 20), ar subjektyvi ekspertinė informacija (psl. 21). 

Apriorinė informacija sujungiama su duomenimis per Bajeso formulę. Šis informacijos 

atnaujinimas, kurį galima suvokti kaip žinių apie sistemą būsenos atnaujinimas, gali būti pavaizduotas 

struktūriškai (Pav. 1.1.). 

 

Pav. 1.1. Bajesinės procedūros schematinis vaizdas 

 

Tokiu būdu gaunamas aposteriorinis skirstinys, nusakantis lygį žinių, apie modelio parametrus, 

kuomet buvo atsižvelgta į statistinius duomenis. Tuomet gautasis skirstinys yra naudojamas tiek 

taškiniams įverčiams gauti, tiek intervaliniams (psl. 22). 

Modelio validavimui literatūroje egzistuoja labai įvairių metodų. Tai ir suderinamumo su 

duomenimis analizė, kuriai naudojama Bajesinė liekanų analizė, kryžminio-prognostinio patikrinimo, 

apriorinio-prognostinio, dalinai aposteriorinio-prognostininio patikrinimo metodikos. 
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Kiekvienam modeliui atskirai analizuoti taip pat taikoma taip vadinamos prognozuojančios p 

reikšmės (psl. 24): 

        
   

, ,
, , | | |

rep

rep rep rep

D y D y
p P D y D y y I f y f y dy d

 
    

 
 

     , 

kur  ,D y   yra skirtumų matas, apibūdinantis kiek modelio rezultatai skiriasi nuo duomenų. 

Modeliams tarpusavyje palyginti yra naudojamas nuokrypio informacijos matas, apibrėžiamas 

taip (psl. 30): 

  2ln | , 2i DDIC L y i p    . 

Tik atskirais atvejais gaunami aposterioriniai skirstiniai yra randami analitiškai, visai kitais 

atvejais pasitelkiama aproksimaciniai metodai, iš kurių Markovo grandinių Monte Karlo metodų grupė 

yra viena labiausiai naudojamų ir išvystytų grupių Bajesinėje analizėje.  

Pagrindinė idėja yra generuoti tokią Markovo grandinę (psl. 26), kurios stacionarusis skirstinys 

būtų ieškomas aposteriorinis skirstinys. Vienas labiausiai paplitusių metodų yra Metropolis Hastings 

algoritmas ir jo įvairios modifikacijos (psl. 27). 

Tačiau šiame darbe yra nagrinėjama netiesiniai modeliai, kuomet parametrai yra stipriai 

koreliuoti ir Metropolis Hastings algoritmas praktiškai šios problemos neišsprendžia, todėl šiuo atveju 

svarbi metodų grupė yra adaptyvūs metodai (psl. 29). Vienas iš tokių yra adaptyvus Metropolis 

algoritmas, kuomet generuojama Markovo grandinė yra nehomogeninė ir nuo tam tikros iteracijos, 

kovariacinės matricos pavidalu, tolesni grandinės elementai generuojami atsižvelgiant į praėjusią 

istoriją. 

Šiame darbe buvo siekiama Bajesinius metodus bei su jais susietą subjektyvios tikimybės 

paradigmą panaudoti sudarant metodologiją, leisiančia efektyvesnė nuo amžiaus priklausančių sistemų 

patikimumo analizę. Sudaryta metodologija (psl. 30) susideda iš senėjimo, kaip nuo amžiaus 

priklausomų žinių lygio apie sistemos parametrus apibrėžimo, tuomet pereinant prie dominančio 

patikimumo parametro šuolinio proceso sukonstravimo: 

   
1

1

{ }1
1

N

i

i

t t ti i
d t d t





  
 . 

Naudojant šias konstrukcijas sudaromas duomenų modelis, kuris, kartu su statistine informacija 

suformuoja tikėtinumo funkciją, kuri savyje turi grynai objektyvią informaciją apie modelio 

parametrus, tuomet per Bajeso formule kartu su apriorine informacija gaunamas aposteriorinis 

skirstinys: 

 
    

    

1 1

1 1

| ,

| ,

| ,
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i i j j

i j

m n

i i j j

i j

f y d t

Y t

f y d t d

 



 

 

 



 

 

 

 
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Turint šią struktūrą, kuri nusako žinių lygį, turima kuomet panaudojama apriorinė informacija 

kartu su statistine, taikomi modelio validavimo metodai, kurie jau buvo minėti aukščiau. 

Taip pat, kaip universalų modeliavimo įrankį, į metodologiją įtraukiau aposteriorinio Bajesinio 

modelių vidurkinimo procedūrą, kuri leidžia tiek modelių validavimą, kuomet gaunamos Posteriorinės 

modelių tikimybės, tiek atsižvelgimą į visą informaciją, kurią savyje turi kiekvienas modelis: taip 

apsidraudžiama nuo potencialiai naudingo modelio atmetimo, t.y. efektyviai įvertinami 

neapibrėžtumai, susiję su modelio parinkimu. Jei  A t  dominantis dydis, tuomet aposteriorinė 

suvidurkinta jo reikšmė randama taip: 

          
1

| | , , , |
r

j j j j

j

p A t Y p A t Y d t p d t Y


   . 

Tam, kad butu įvertintas Bajesinių metodų tinkamumas sprendžiamai problemai, buvo 

analizuojamos dirbtinės Puasoninės imtys su tam tikromis intensyvumų funkcijomis (psl. 33). Buvo 

nustatyta, kad Bajeso įvertis yra mažiau pastumtas nei kad maksimalaus tikėtinumo, kas leidžia teigti, 

jog Bajesiniai metodai yra tinkami mažoms imtims tirti. Be to, pastebėta, kad dažnai MTM įverčiai 

įgauna ekstremalias reikšmes ir jei parametrai yra apriboti intervalais, MTM įverčiai linkę 

koncentruotis tų intervalų kraštuose. 

Metodika buvo pritaikyta  dviem realioms sistemoms: elektroniniams valdymo komponentams 

(psl.43), kurie naudojami atominėse elektrinėse, bei gedimams Europos gamtinių dujų tinkle (psl.36). 

Pirmuoju atveju - Europos gamtinių dujų tinklo gedimų analizėje - gedimų intensyvumas yra 

mažėjantis, t.y. kuomet turimas išdeginimo periodas. Gedimų intensyvumo mažėjimas gali būti 

paaiškinamas tuo, kad gerėjančios technologijos, aukštesnės kokybės medžiagos, bei efektyvesnės 

priežiūros strategijos mažina gedimų intensyvumą. 

Buvo įvertintas netiesinis intensyvumo mažėjimas bei su tuo susiję neapibrėžtumai (Pav. 1.4.). 

 

Pav. 1.4. Europos gamtinių dujų tinklo netiesinis modelis su neapibrėžtumais 
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Analizuotas netiesinis modelis taip pat leido įvertinti nuo amžiaus priklausomą dujų sprogimo 

dažnį (Pav. 1.5.) 

 

Pav. 1.4. Europos gamtinių dujų tinklo sprogimų dažnis 

Ši analizė leidžia daug efektyviau įvertinti svarbių objektų, esančių netoli dujotiekio, sprogimų 

riziką bei atsižvelgiant į tai optimizuoti priežiūros darbus taip optimizuojant ekonomines sąnaudas. 

Antruoju atveju, komponentų gedimai buvo įtakojami senėjimo efekto. Atliekant duomenų 

analizę buvo įvertinta tokių modelio parinkimo kriterijų kaip chi kvadrato nuokrypių matas, bei 

deviacijos informacijos kriterijaus galimybės. Buvo nustatyta, kad chi kvadrato nuokrypių matas 

neveikia esant netiesiniams modeliams: gilesnės analizė parodė, kad galbūt galima priežastis yra 

paklaidų heteroskedastiškumas (Pav. 1.2.).  

 

Pav. 1.2. Apibendrinto Makehamo modelio paklaidų heteroskedastiškumas 
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Taip pat naudotas standartinio nuokrypio matas ir deviacijos informacijos kriterijus parodė, kad 

skirtingi validavimo instrumentai pateikia nebūtinai sutampančias modelių aibes. 

Kaip universalus sprendimas, buvo pasiūlyta naudoti aposteriorinį Bajesinį modelių vidurkinimą, 

kuomet neanalizuojami kiekvienas modelis atskirai, tačiau kiekvienam aibės modeliui skaičiuojamos 

tikimybės ir tuomet panaudojant Bajesinius modelius gaunamos posteriorinės suvidurkintos reikšmės 

(pav. 1.3.). 

 

Pav. 1.3. Posteriorinės suvidurkintos reikšmės bei 0.95 tikimybės intervalai 

 

Taip pat šios analizės metu buvo analizuotas adaptyvus Metropolis algoritmas ir palygintas su 

Metropolis-Hastings algoritmu. Nustatyta, kad adaptyvus Metropolis algoritmas yra tinkamas 

netiesiniams modeliams bei itin koreliuotiems parametrams analizuoti, kadangi konvergavimas į 

stacionarų skirtinį pasiekiamas daug efektyviau bei greičiau. 

Apibendrinant galima pasakyti, kad šiame darbe aš pristačiau bendra metodologiją, panaudojant 

Bajesinius metodus, nuo amžiaus priklausomo patikimumo analizei. Buvo parodyta, kad metodologija 

gali būti naudojama mažoms imtims,  išsibarsčiusiems duomenims bei netiesiniams modeliams su 

daug parametrų (Makeham, Xie ir Lai dėsniai) nagrinėti. 

Pasiūlyta metodologija buvo pritaikyta elektrinių kontrolės komponentų senėjimo analizėje. Ši 

analizė buvo atlikta naudojant dalimis homogeninį Puasono modelį su keletu gedimų intensyvumo 

funkcijų. 

Analizuojant bei validuojant modelius, buvo pastebėta, kad nei viena iš modelio parinkimo 

technikų negali duoti vienareikšmiško atsakymo. Prognozuojančios p reikšmės gali būti klaidinančios 

ir gali arba visai neturėti praktinės reikšmės (chi kvadrato mato atvejis), arba gali pasiūlyti daugiau nei 

vieną modelį (standartinio nuokrypio mato atvejis). Kaip vieną iš galimų paaiškinimų, kodėl chi 
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kvadrato matu paremtos prognozuojančios p reikšmės netinka netiesiniu atveju, pasiūliau paklaidų 

heteroskedastiškumo aiškinimą. 

Deviacijos informacijos kriterijus taip pat gali pateikti daugiau nei vieną modeli (ir nebūtinai 

modelių aibė sutaps su p reikšmių pasiūlyta aibe). Dėl šių priežasčių, egzistuoja didelė tikimybė 

atmesti modelį, kuris taip pat gali pateikti gerus rezultatus. Taigi, modelio parinkimas turi būti atliktas 

labai atsargiai. Verta paminėti, kad ir kiti modelio parinkimo kriterijai, kaip kad Bajesinis informacijos 

kriterijus, Bajesiniai faktoriai ir kt.  turi aukščiau įvardintus trūkumus. 

Tam, kad išvengti modelio parinkimo procedūrų trūkumų, Bajesinė aposteriorinė modelių 

vidurkinimo procedūra buvo pritaikyta visai analizuojamai modelių aibei. Toks suvidurkinimas duoda 

geresnius rezultatus, geriau kalibruotas prognozes, kadangi atsižvelgiama ne tik į neapibrėžtus 

įnešamus dėl duomenų išsibarstymo, bet ir į neapibrėžtumus iškylančius dėl modelio parinkimo. 

Nepaisant visų Bajesinio vidurkinimo privalumų, ši metodika taip pat turi tam tikrų trūkumų: 

procedūra negali analizuoti begalinės aibės modelių ir kuomet pasirenkama galimų modelių aibė, 

tinkamas modelis gali būti taip ir neįtrauktas į tą aibę ir Bajesinio vidurkinimo procedūra neturi jokių 

saugiklių leidžiančių tą pastebėti. 

Ši analizė gali būti naudojama kaip pagrindas tolesnei senėjančių sistemų, struktūrų ir 

komponentų analizei. Jos bendrumas ir idėja, kad senėjimas ar degradacija gali būti laikoma kaip nuo 

amžiaus priklausantys įsitikinimai apie sistemos patikimumo parametrus, leidžia plataus spektro 

problemų analizę: tai gali būti stochastinė trūkio augimo elgsena, tai gali būti ir degradacijos 

modeliavimas panaudojant Markovo būsenas ir t.t.  

Analizuojant Europos gamtinių dujų tinklo patikimumą, buvo pateikta naujausia statistinė 

informacija apie dujotiekio tinklo gedimus ir panaudota nuo amžiaus priklausančių gedimo 

intensyvumo bei sprogimų dažnio analizėje. 

Bajesiniai metodai leido robastišką gedimų intensyvumo funkcijos parametrų įvertinimą; dar 

daugiau, parametrų neapibrėžtumai buvo įvertinti ir panaudoti skaičiuojant pasikliautinuosius 

intervalus, kurie yra daug lengviau interpretuojami nei kad klasikinėje statistikoje, kas leidžia 

inžinieriams efektyviau panaudoti statistinius metodus. 

Įvertintas amžiaus momentas, kuomet gedimų intensyvumas pasieks pastovią reikšmę (tam tikros 

paklaidos   ribose) parodė, kad nėra būtinybės atsisakyti intensyvumo funkcijos ir pereiti prie 

pastovios reikšmės. 

Nuo laiko priklausomas gedimų intensyvumas yra daug priimtinesnis dujotiekio tinklo priežiūros 

strategijoms vystyti, taip pat įvertinant riziką skirtinguose tinklo taškuose: tai gali būti atlikta 

pasinaudojant pateikta nuo amžiaus priklausomu dujų sprogimo dažniu. 
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2 INTRODUCTION 

Safety of energy facilities, chemical factories, oil companies, etc. in many cases depends on their 

components reliability, which is mainly age-dependent. Unnoticed on time, ageing effect can cause 

failures or multiple damages at given non-standard operating conditions or breakdown situations. 

Equipment ageing is caused by two important impacts: by operating conditions and technical 

inspection actions.  

Systems can be distinguished into two main categories: active and passive. The term ―passive 

system‖ identifies a system, which is composed entirely of passive components and structures, or a 

system, which uses active components in a very limited way to initiate subsequent passive operation 

[33]. 

The passive components (e.g. heat exchangers, pipes, vessels, electrical cables, structures, etc.) 

are usually neglected or not modelled implicitly in the risk assessment models as having very low 

failure probability, but they could have an increasing contribution due to ageing effects. 

Age-dependent reliability study requires more data and more extended models than a usual 

reliability analysis. With regard to data, one basic issue is scattering of failure histories for passive 

components and systems. Because of this scattering of failure data, reliability and risk model 

parameters, which are estimated from the raw data, have large associated uncertainties. 

Usually, passive systems, components do not provide large samples of failure data and because 

of lack of data it is extremely difficult to deal with degradation of passive systems/components by 

using classical statistical methods which requires considerable amount of data. However, uncertainties, 

related to data scattering could be reduced and assessment of age-dependent reliability of passive 

systems could be improved by considering, so called, prior information – experience of other similar 

facilities, subjective expert insights. Then, by the use of available statistical data, prior knowledge can 

be revised by Bayes formula [7]. When data arrives, Bayes theorem tells how to move from prior 

beliefs to new conditional probabilities for the quantities of interest. 

 The main advantage of the Bayesian approach is that it can rely on multiple sources of evidence 

including: warranty data, customer research surveys, proving ground test data, etc. It also has the 

potential to systematically quantify and process ―soft‖ evidence such as expert knowledge [27]. 

In addition to their ability to deal with sparse data, Bayesian techniques are appropriate for use in 

PRA (Probabilistic Risk Assessment) because they are derived from the framework of subjective 

probability [30]. Further, as Siu and Kelly noticed in their paper [30], practical advantage of the 

subjective probability framework in PRA applications is that propagation of uncertainties through 

complex models is relatively simple. On the other hand, it is very difficult, and intractable in ―real‖ 

problems, to propagate classical statistical confidence intervals through PRA models to estimate a 

confidence interval for a composite result of interest. 
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Despite of the advantages offered by Bayesian methods, applicability of it was very limited and 

generally confined by the use of so called conjugate prior distributions, which provides analytically 

tractable problem solutions just for quite unsophisticated applications. 

The advent of Markov Chain Monte Carlo (MCMC) sampling has proliferated Bayesian 

inference throughout the world, across a wide array of disciplines [10]. MCMC methods are a class of 

algorithms for sampling from probability distributions based on constructing a Markov chain that has 

the desired distribution as its equilibrium distribution [40, 41]. The state of the chain after a large 

number of steps is then used as a sample from the desired distribution. MCMC algorithms enabled 

analysis of highly complex Bayesian models. The freely available software package known as 

Bayesian inference Using Gibbs Sampling (BUGS) has been in the vanguard of this proliferation since 

the mid-1990s [28]. 

Bayesian methods allow data to be combined with ‚prior‗ nformation to produce a posterior 

distribution for parameters. This posterior is used to quantify uncertainty about the parameters and 

functions of parameters. 

Combination of extensive past experience and physical/chemical theory can provide prior 

information to form a framework for inference and decision making. In many applications it is 

necessary to combine prior information with limited additional observational or experimental data. 

[43] 

The use of bayesian methods as both an information combination scheme and an updating tool 

has become widespread, combining or updating prior information with existing information about 

events. Bayesian methods stem from the application of Bayes‗ theorem in probability. Bayesian 

methods provide ways of handling various kinds of uncertainties. 

In Bayesian paradigm, uncertainty is quantified in terms of a personal or subjective probability 

following the axioms of probability theory. There are many uses for and interpretations of Bayes‗ 

theorem extolling its virtues. A few are summarized below [38]: 

1. Bayes‗ theorem indicates how point estimates (and their associated uncertainties) are 

updated (combined) in light of additional pertinent information or data (such as relevant 

information from computer models); 

2. Bayes‗ theorem is a statistical method for combining different kinds of data and/or 

information about some quantity of interest (such as reliability of a system); 

3. Bayes‗ theorem describes how uncertainties in data regarding a quantity of interest (such 

as a performance measure of a system) are modified in light of other available 

information about the quantity of interest; 

4. Bayes‗ theorem provides a mechanism for inverting conditional probability distributions 

of data in light of additional prior information and data. 
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The difficulty in using Bayes‗ theorem is the determination of what information should be 

labelled as prior and what should be labelled within the likelihood function. Because the likelihood 

does not need to satisfy the axioms of probability, it is often misunderstood or misspecified. According 

to the theory, the likelihood should be the data or information collected from an experiment, or 

observation, or new information gained since collection of the old (prior) information. The most 

prominent argument brought against Bayesian-based methods by those with the more frequentist view 

is for the use of the subjectivist or degree of belief probability theory required to interpret the meaning 

of the prior and posterior probabilities. 

On the other hand, the frequentist interpretation of probability violates some basic principles of 

that theory. Frequentists cannot accommodate any existing historical information, ant they rely solely 

on experimental or observational data that may be too sparse (as in the case of passive system failure 

data) for formulating conclusions. 

3 MATHEMATICAL BACKGROUND FOR RELIABILITY 

ASSESSMENT 

The reliability characteristics of an item can be quantified and measured in variety ways. The 

reliability of a product can be calculated during its design and development using probabilistic 

techniques. 

There are three fundamental reliability figures of merit, namely the probability or likelihood of 

successful performance over time, the expected or mean time of successful performance, and the 

failure rate.  

The reliability of an item is the probability that it will, in the future, perform its intended 

functions under specified conditions for a specified period of time. If the random variable T is defined 

as the time to failure of an item, then its reliability is expressed in: 

   



t

dyyftR  
(3.1) 

 

where f(y) is the probability density function of T. 

The properties of the reliability function can be summarized as follows: 

 R is a non – increasing function of time 

 R is bounded:   10  tR ; 

   10 R ; 

   0lim 


tR
t

. 

The failure rate of a product is the instantaneous rate of failure as a function of time, usually 

defined as the age of each item starting at zero time. The instantaneous failure rate of a product is also 

known as hazard rate. The failure rate is a measure of susceptibility to failure as a function of time. 
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The failure rate at time t, denoted by  t , is defined to be the number of failures occurring in 

the time interval t , denoted by  fn t t , divided by the number of survivors at time t, denoted by 

 sn t , as t  approaches zero: 

 
 

 0
lim

f

t
s

n t t
t

n t t


 





 

(3.2) 

 

Or in terms of reliability function: 

 
   

   
 

 

 0

1
lim
t

R t R t t f td
t R t

R t t R t dt R t


 

 
   


 

(3.3) 

 

The properties of failure rate: 

    0, 0;t t      

  
0

lim

t

t
y dy


   

Most of system reliability quantities are expressed in terms of failure rate  t , so this parameter 

is one of the most important parameter in reliability theory. 

4 BAYESIAN MODELLING AND INFERENCE  

4.1 BAYES‘ RULE AND PRIOR INFORMATION UPDATING 

In order to make probability statements about  given y , we must begin with a model providing 

a joint probability distribution for   and y . The joint probability mass or density function can be 

written as a product of two densities that are often referred to as the prior distribution )(f  and the 

sampling distribution )|( yf  respectively [5]: 

    |)(, yffyf   (4.1) 

 

Bayes‗s rule provides a mechanism for combining prior information with sample data to make 

inferences on model parameters. This is illustrated in Figure 4.1.1 
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Figure 4.1.1 Bayesian methods for making inferences or predictions 
 

 

Analytically, for a vector of parameters   the procedure is as follows. Prior knowledge about   

is expressed in terms of a pdf denoted by )(f . The likelihood for the available data and specified 

modelį is given by    DataLDataL ;|   . Then, using Bayes‗s rule, the conditional distribution of 

  given the data provides the posterior pdf of  , representing the updated state of knowledge about 

 .  This posterior distribution can be expressed as  

 
   

   







dfDataL

fDataL
Dataf

|

|
|  

(4.2) 

 

In general, it is impossible to compute the integral in denominator in closed form. Numerical 

methods are needed and these methods can be computationally intensive when the length of   is more 

than two or three. In the past this has been an impediment to the use of Bayesian methods. Today, 

however, new statistical and numerical methods that take advantage of modern computing power are 

making it feasible to apply Bayesian methods to a much wider range of real problems [43].  

4.2  PRIOR INFORMATION 

It is convenient to divide available prior information about a parameter into three different 

categories [43]: 

1. Parameters that are given as known, leading to a degenerate prior distribution; 

2. Parameters with a diffuse or approximately non-informative prior distribution; 

3. An informative, non-degenerate prior distribution. 

In general, there are two possible sources or prior information: (1) expert or other subjective 

opinion or (2) past data. The prior pdf  f  may be either informative or not. Loosely speaking, a 

non-informative prior distribution is one that provides little or no information about any of the 

parameters in  . Such a prior distribution is useful when it is desired to let the data speak for 

themselves without being influenced by previous data, expert opinion, or other available prior 

information.  

4.2.1 NON INFORMATIVE (DIFFUSE) PRIOR DISTRIBUTIONS 

Non informative (or approximately non informative) prior pdfs are constant over the range of the 

model parameters. Some non-informative priors are ―improper‖ because they do not integrate to a 

finite quantity. Improper pdfs cause no difficulties as long as the resulting posterior pdf is ―proper‖. 
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Whether this is so or not depends on the form of the model and the available data. „Proper― 

distributions are called diffuse distributions.  

While there are a number of formalism for developing non informative prior distributions, one of 

the most common uses Jeffrey’s rule, which results in a distribution often called a Jeffreys’ prior. 

Suppose that we have a one-to-one transformation of our parameter   h . There are two ways we 

can think about determining a prior distribution for  . One is to use a rule to determine a prior 

distribution  f   for   and to use the change of variables technique to determine the implied prior 

distribution for ; the second is to use the same rule to directly determine a prior distribution for  . 

Jeffreys‗ rule states that any rule for determining a prior distribution should yield the same prior 

distribution for   whether we transform from a prior on   or determine a prior directly for   [29]. 

Define the expected Fisher information as  

 
  











2

2 |ln




 

d

yfd
EI  

(4.3) 

 

Jeffreys‘ rule defines a non-informative prior as     2

1

 If  . 

Table 4.2.1 summarizes common choices for non-informative prior distributions [29]. 

 

Table 4.2.1 Common choice for non-informative prior distributions 

Parameters Non informative prior 

 Binomial   5.0,5.0Beta  

 lmultinomia   5.0,...,5.0,5.0Dirichlet  

 Poisson  
2

1


  

 known ,Normal  constant k 

 known ,Normal  1  

 

Prior distributions can also be based on available data. Combining past data with a non-

informative prior distribution gives a posterior pdf that is proportional to the likelihood. This posterior 

pdf can then serve as a prior pdf for further updating with new data. 

4.2.2 INFORMATIVE PRIOR DISTRIBUTIONS 

We use informative prior distributions when we have information about the parameters of our 

model before we collect data. In reliability problems, there are six broad sources of information for 

constructing informative prior distributions [29]: 

1. physical/chemical theory; 
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2. computational analysis; 

3. previous engineering and qualification test results from a process development program; 

4. industry wide generic reliability data; 

5. past experience with similar devices; 

6. expert opinion. 

There are numerous industry wide generic sources of reliability data reported in a variety of 

media, such as reliability databases or reliability data handbooks. These sources report the results of 

analyses performed on actual failure or maintenance event data or, in some cases, are based on expert 

opinion. They usually contain component failure probabilities, failure rates, and, in some cases, 

initiating event frequencies. 

Expert judgment is often used in assessing a prior distribution. In assessing probability 

distribution based on expert opinion there are many potential biases that have been identified that 

either must be minimized or, at the very least, accounted for when assessing prior probability 

distributions.  

Several heuristics in connection with developing an informative prior distribution [29]: 

1. Beware of zero values. If the prior distribution says that a value of the parameter is 

impossible, than no quantity of data can overcome this; 

2. when using expert opinion, beware of cognitive biases caused by the way people think; 

3. beware of generating overly narrow prior distributions. 

4. ensure that the information used to generate the prior distribution is relevant to the 

problem at hand; 

5. be careful when assessing prior distributions on parameters that are not directly 

observable; 

6. beware of conservatism. Realism is the desired ideal, not conservatism. 

4.2.3 DATA-BASED INFORMATIVE PRIORS 

Defining the prior and likelihood functions correctly is critical in applying Bayesian methods in 

risk and reliability analysis. In particular, the more precise and accurate the prior can be made based on 

past data, the more precise the result of the analysis will be, especially for situations with little data.  

A number of different methods have been proposed in the literature for formulating an 

informative prior based on past data, and each of these methods has different theoretical 

underpinnings. Methods, proposed in [35] is (1) the method of moments, (2) maximum likelihood, (3) 

maximum entropy estimation, (4) two-stage updating of a non-informative ―pre-prior‖, (5) a credible 

interval-based method. 
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Large data samples usually are not the case in failure analysis. However, bootstrap estimation cal 

help to overcome this difficulty. As discussed in [37], main idea of bootstrap method is resampling 

from already observed sample (original sample). Resample‘s from original sample represents what we 

would get if we took many samples from the population. 

Overview of data-based informative prior construction methods can be found in [35]. Here two-

stage updating of a non-informative ―pre-prior‖ will be considered, because in ageing analysis, 

bootstrap is not appropriate method and resampling is not possible – information about the age when 

failure occurred can be  lost.  

A simple way to formulate an informative prior based on past data is to treat the past data as a 

separate data sample to be used in updating an appropriate prior that incorporates neither the past data 

nor the new data. This would then form a posterior which would become the prior for the analysis 

using the new data. Initial prior is here termed as ―pre-prior‖. With this approach, the new data is 

effectively treated as an extension of the past data set, and the past data is assumed to dominate the 

pre-prior so that the pre-prior has little effect on the results. 

4.2.4 EXPERT OPINION 

The elicitation of a prior distribution for a single parameter may be straightforward if there has 

been considerable experience in estimating or observing estimates of that parameter in similar 

situations. For a vector of parameters, however, the elicitation and specification of meaningful joint 

prior distribution is more difficult. In general, marginal distributions for individual parameters do not 

completely determine the joint distribution. Also, it is difficult to elicit opinion on dependences among 

parameters and then express these as a joint distribution. Also, it may not be reasonable to elicit 

opinion about parameters from a standard parameterization when those parameters have no physical or 

practical meaning [43]. 

A general approach is to elicit information about particular quantities that, from past experience, 

can be specified approximately independently. Then the corresponding prior distribution for these 

quantities can be described as being approximately independent. 

When there is useful informative prior information for a parameter, one elicits a general shape or 

form of the distribution and the range of it. 
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4.3 THE USE OF POSTERIOR DISTRIBUTION FOR ESTIMATION 

4.3.1 BAYESIAN POINT ESTIMATION 

Bayesian inference for   and functions of the parameters  g  are entirely based on the 

posterior pdf‘s  yf |  and   ygf | . If  g  is a scalar, a common Bayesian estimate of  g  is 

the mean of the posteriors distribution which is given by 

          dyfgygEg ||ˆ  (4.4) 

 

This estimate of  g  is the Bayesian estimate that minimizes the square error loss. Other 

possible choices to estimate  g  include the mode of posterior pdf and the median. Such estimates 

are easy to compute from a simulated sample from a posterior. In particular [43], 

  



M

i

ig
M

g
1

)(
1

ˆ   
(4.5) 

 

is the sample mean. 

4.3.2 BAYESIAN INTERVAL ESTIMATION 

A  %1100   Bayesian lower confidence bound (credible bound) for a scalar function  g  is 

value 
~

g  satisfying     




~

1|
g

dgygf  . Upper bound is value 
~

g  satisfying  

    




~

1|

g

dgygf  . 

4.4 THE PREDICTIVE DISTRIBUTION AND MODEL CHECKING 

4.4.1 PREDICTION WITHIN BAYESIAN FRAMEWORK 

In Bayesian theory, predictions of future observables are based on predictive distributions, that 

is, the distribution of the data averaged over all possible parameter values. For this reason, when data y 

have not been observed yet, predictions are based on the marginal likelihood 

       dfyfyf |  (4.6) 

 

which is the likelihood averaged over all parameter values supported by our prior beliefs. Hence,  yf  

is also called prior predictive distribution. 

Usually, after having observed data y , one finds the prediction of future data y  more 

interesting. Following this logic, we calculate the posterior predictive distribution 
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        dyfyfyyf |||  (4.7) 

 

which is the likelihood of the future data averaged over the posterior  yf | . 

By using the predictive distribution, we can quantify our knowledge about future as well as 

measure the probability of again observing in the future each iy  assuming that the adopted model is 

true. For this reason, we may use the predictive distribution not only to predict future observations but 

also to construct goodness-of-fit diagnostics and perform model checks fore ach model‗s structural 

assumptions [24]. 

If the model fits, then replicated data generated under the model should look similar to observed 

data. To put it another way, the observed data should look plausible under the posterior predictive 

distribution. This is really a self-consistency check: an observed discrepancy can be due to model 

misfit. 

Basic techniques for checking the fit of a model to data, is to draw simulated values from the 

posterior predictive distribution of replicated data and compare these samples to the observed data. 

Any systematic differences between the simulations and the data indicate potential failings of the 

model [5]. 

4.4.2 MODEL EVALUATION AND CHECKING 

Model checking, or assessing the fit of a model, is a crucial of any statistical analysis. Before 

drawing any firm conclusions from the application of a statistical model to a data set, an investigator 

should assess the model‘s fit to make sure that the important features of the data set are adequately 

captured. Serious misfit (failure of the model to explain a number of aspects of the data that are of 

practical interest) should result in the replacement or extension of the model, if possible. 

In Bayesian statistics, a researcher can check the fit of the model using a variety of strategies: (1) 

checking that the posterior inferences are reasonable, given the substantive context of the model; (2) 

examining the sensitivity of inferences to reasonable changes in the prior distribution and the 

likelihood; (3) checking that the model can explain the data, or in other words, that the model is 

capable of generating data like the observed data [11]. 

4.4.3 MODEL CHECKING OVERVIEW  

The first and most natural form of model checking is to check that the posterior inferences are 

consistent with any information that was not used in the analysis. This could be data from another data 

source that is not being considered in the present analysis or prior information that was not 

incorporates in the model. Nonsensical or paradoxical parameter values in the posterior distribution 

may indicate a problem in the computer program used to carry out the analysis. Implausible results 
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may also indicate that a prior distribution chosen for mathematical or computational convenience is 

inappropriate. 

Sensitivity analysis is important because any single model will tend to underestimate uncertainty 

in the inferences drawn. Other reasonable models could have fit the data equally well yet yielded 

different inferences. Model averaging is one approach to taking account of this information. From the 

model checking perspective the existence of other reasonable models points to the need for sensitivity 

analysis. The basic technique of sensitivity analysis is to fit several probability models to the same data 

set, altering either prior distribution, the likelihood, or both, and studying how the primary inferences 

for the problem at hand change. 

4.4.4 MODEL CONSISTENCY WITH THE DATA 

It seems that a minimum requirement for a good probability model would be that it is able to 

explain the key features in the data set adequately, or put differently, that data generated by the model 

should look like the observed data. This is a self-consistency check.  

There are a number of approaches for carrying out a self-consistency check of the model: (1) 

Bayesian residual analysis; (2) cross-validatory predictive checks; (3) prior predictive checks; (4) 

posterior predictive checks; (5) partial posterior predictive checks; (6) repeated data generation and 

analysis. These approaches can be found here [25, 12,12,34] in more detailed form. 

However, in next chapter posterior predictive check approach is presented in more 

comprehensive way. Posterior predictive model checks are straightforward to carry out once the 

difficult task of generating simulations from the posterior distribution of the model parameters is done. 

One merely has to take the simulated parameter values and then simulate data according to the model‘s 

sampling distribution to obtain replicated data sets. 

4.4.5 POSTERIOR PREDICTIVE MODEL CHECKING TECHNIQUES 

Let  |f y   denote the sampling or data distribution for a statistical model, where  denotes the 

parameters in the model. Let  f   be the prior distribution on the parameters. Then the posterior 

distribution of   is  
   

   

|
|

|

f y f
f y

f y f d

 


  





. Let repy  denote replicate data the one might observe 

if the process that generated the data y  is replicated with the same value of   that generated the 

observed data. Then repy  is governed by the posterior predictive distribution (or the predictive 

distribution of replicated data conditional on the observed data), 

     | | |rep repf y y f y f y d     (4.8) 
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To carry out model checks test quantities or discrepancy measures  ,yD  are defined [1], and 

the posterior distribution of  ,yD  compared to the posterior predictive distribution of  ,repyD , 

with any significant difference between the indicating a model failure. If    yDyD , , then the 

discrepancy measure is a test statistic in the usual sense.  

Model checking can be carried out by graphically examining the replicate data and the observed 

data, by graphically examining the joint distribution of  ,yD  and  ,repyD , or by calculating a 

numerical summary of such distribution. One numerical summary of the model diagnostic‗s posterior 

distribution is the tail-area probability or as it is sometimes known, the posterior predictive p-value: 

        
   

, ,
, , | | |

rep

rep rep rep

D y D y
p P D y P y y I f y f y dy d

 
    

 
 

      
(4.9) 

Though the tail area probability is only one possible summary of the model check it has received 

a great deal of attention. The inner integral in ((4.9) can be interpreted as a traditional p-value for 

assessing a hypothesis about a fixed value of   given the test measure D. If viewed in this way, the 

various model checking approaches represent different ways of handling parameter  . The posterior 

predictive p-value is an average of the classical p-value over the posterior uncertainty about the true  . 

Meng [44] provides a theoretical comparison of classical and Bayesian p-values. One 

unfortunate result is that posterior predictive p-values do not share some of the features of the classical 

p-values that dominate traditional significance testing. In particular, they do not have a uniform 

distribution when the assumed model is true, instead they are more concentrated around 0.5 than a 

uniform distribution. 

Because posterior predictive checks are Bayesian by nature, a question arises about the 

sensitivity of the results obtained to the prior distribution on the model parameters. Because posterior 

predictive checks are based on the posterior distribution they are generally less sensitive to the choice 

of prior distribution than are prior predictive checks. More failures are detected only if the posterior 

inferences under the model seem flawed. Unsuitable prior distributions may still be judged acceptable 

if the posterior inferences are reasonable.  

Strongly informative prior distributions may of course have a large impact on the results of 

posterior predictive model checks. The replicated data sets obtained under strong incorrect prior 

specifications may be quite far from the observed data. In this way posterior predictive checks 

maintain the capability of rejecting probability model if the prior distribution is sufficiently poorly 

chosen to negatively impact of the model to the data [11]. 

Technically, any function of the data and the parameters can play the role of a discrepancy 

measure in posterior predictive checks. The choice of discrepancy measures is very important. 

Virtually all models are wrong, and a statistical model applied to a data set usually explains certain 

aspects of the data adequately and some others inadequately. The challenge to the researcher in model 
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checking is to develop discrepancy measures that have the power to detect the aspects of the data that 

the model cannot explain satisfactorily. A key point is that discrepancy measures corresponding to 

features of the data that are directly addressed by model parameter will never detect a lack of fit. 

Discrepancy measures that relate to features of the data not directly addressed by the probability model 

are better able to detect model failures. 

As noted in [24], posterior p-values can be used for checking the structural assumptions of the 

fitted model. For example, we can check whether the skewness and the kurtosis of the predictive and 

actual data are in agreement (which is particularly useful for normal models), or whether the 

assumption of equal mean and variance in Poisson models is valid. 

For Poisson models we can calculate the sample dispersion index  
 ySD

y
yDI

2
  and its 

corresponding p-value 

    yDIyDIPp rep

DI   (4.10) 

 

A critical shortcoming of posterior-predictive p values is that they are not (even asymptotically) 

uniformly distributed. That is, the presumed sampling distributions of discrepancy measure are not 

actually achieved in posterior-predictive simulations. Although this fact does not preclude the use of 

this methodology for performing case diagnostics, it severely limits its application for formal model 

assessment [39]. 

5 NUMERICAL METHODS FOR BAYESIAN INFERENCE 

5.1 MONTE CARLO METHODS 

Monte Carlo methods are a class of computational algorithms that rely on repeated random 

sampling to compute their results. Monte Carlo methods are often used in simulating physical and 

mathematical systems. Because of their reliance on repeated computation of random or pseudo-random 

numbers, these methods are most suited to calculations by a computer and tend to be used when it is 

infeasible or impossible to compute an exact result with a deterministic algorithm. 

5.2 MARKOV CHAINS 

Suppose we generate a sequence of random variables, ,...,, 210 XXX , such that at each time 

0t , the next state 1tX  is sampled from a distribution  tt XXP |1  which depends only on the 

current state of the chain, tX . That is, given tX , the next state 1tX does not depend further on the 

history of the chain 110 ,...,, tXXX . This sequence is called a Markov chain, and  .|.P  is called the 

transition kernel of the chain. We will assume the chain is time-homogenous: that is,  .|.P  does not 

depend on t . 
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Subject to regularity conditions, the chain will gradually ―forget‖ its initial state and   0|. XP t  

will eventually converge to a unique stationary distribution, which does not depend on t  or 0X . 

Denote the stationary distribution by  . . Thus as t  increases, the sampled points  tX  will look 

increasingly like dependent samples from  . . 

Thus, after a sufficiently long burn-in of say m iterations, points  nmtX t ,...,1;   will be 

dependent samples approximately from  . . Now the output from Markov chain can be used to 

estimate the expectation   XfE , where X  has distribution  . . Burn in samples are usually discarded 

for this calculation, giving an estimator 

 



n

mt

tXf
mn

f
1

1
 

 

(5.1) 

This is called an ergodic average. Convergence to the required expectation is ensured by the 

ergodic theorem [26]. More profound and comprehensive analysis of Markov chains can be found in 

[26,41] 

5.3 METROPOLIS-HASTINGS ALGORITHM 

One problem with applying Monte Carlo (MC) integration is in obtaining samples from some 

complex probability distribution  xp . 

 Suppose our goal is to draw samples from some distribution  xp . The Metropolis algorithm 

than generates a sequence of draws from distribution is as follows: 

1. Start with any initial value   0: 00 XfX  

2. Using 0X  value, sample a candidate point *X  from some jumping distribution 

 21 | XXq , which is the probability of returning a value of 2X  given previous value of 

1X . This distribution is also reffered to as the proposal or candidate-generating 

distribution. The only restriction is that it is symmetric    1221 || XXqXXq  . 

3. Given the candidate point *X , calculate the ratio of the density at the *X  and current 

1tX  points: 

 
 1

*




tXp

Xp
  

4. If the jump increases the density )1(  , accept the candidate ( set *XX t  ) and return 

to step 2. If the jump decreases the density, then with probability   accept the candidate 

points, else reject it and go to step 2. 



 

 

28 

This generates Markov chain  ,...,...,, 10 kXXX , as the transient probabilities from tX to 

1tX depends only on tX  

Following a sufficient burn-in period (say k steps), the chain approaches its stationary 

distribution and samples from vector  nkkk XXX  ,...,, 21  are samples from )(xp . 

Hastings generalized the Metropolis algorithm by using an arbitrary transition probability 

function    11 |   tttt XXPXXq  and setting the acceptance probability as: 

     
    













 1,

|

|
min,

*

**

*

XXqXf

XXqXf
XX

tt

t

t  

So, more general, Metropolis-Hastings algorithm is:  

1. Initialize chain with   0: 00 XfX  

2. Sample a point *X  from proposal distribution  tXXq |*  

3. Calculate      
    

















 1,
|

|
min,

*

11

1

**

*

XXqXf

XXqXf
XX

tt

t

t   

4. Except proposal point *X with probability  . 

The proposal distribution   |q  can have any form and the stationary distribution of the chain 

will be )(xp . This can be seen from the following argument. The transition kernel form the 

Metropolis-Hastings algorithm is [40] 

              dyXYXYqXXIXXXXqXXP tttttttttt ,|1,|| 1111  . (5.2) 

 The first term in ((5.2) arises from acceptance of a candidate 1 tXY , and the second term 

arises from rejection, for all possible candidatesY . Using the fact that 

           11111 ,|,|   tttttttttt XXXXqXpXXXXqXp   

we obtain the detailed balance equation:  

       111 ||   tttttt XXPXpXXPXp . (5.3) 

Integrating both sides of ((5.3) with respect to tX  gives: 

     11 |   ttttt XpdXXXPXp . (5.4) 

The left-hand side of equation ((5.4) gives the marginal distribution of 1tX  under the 

assumption that tX  is from  p . There for ((5.4) says that if tX  is from  p , then 1tX  will be also. 

Thus, once a sample from the stationary distribution has been obtained, all susequent samples wil be 

from that distribution.  



 

 

29 

Various methods can be derived from Metropolis-Hastings algorithm: independence sampler, 

single component Metropolis-Hastings, Gibs sampling, random-walk Metropolis, slice Gibs sampler. 

More information can be found in [24]. 

5.4 ADAPTIVE METROPOLIS ALGORITHM 

Metropolis-Hastings algorithm and its modifications are useful when model has just few 

parameters and tuning of proposal distribution is relatively easy. However, as number of dimensions 

grows (e.g. in hierarchical modelling) satisfactory tuning is impossible.  

Possible remedy is provided by adaptive algorithms, which use history of the process in order to 

―tune‖ the proposal distribution suitably. One of seminal papers is of Haario et. al.[19], where authors 

introduce adaptive Metropolis (AM) algorithm which adapts continuously to the target distribution. 

Significantly, the adaptation affects both the size and the spatial orientation of the proposal 

distribution. Moreover, this algorithm is straightforward to use and to implement in practice. 

An important advantage of the AM algorithm is that it starts using the cumulating information 

right at the beginnings of the simulation. The rapid start of the adaptation ensures that the search 

becomes more effective at an early stage of the simulation, which diminishes the number of function 

evaluations needed. 

Further will be sketched AM algorithm, as it is described in the original paper. 

Assume that target distribution is supported on the subset dRS   and that it has the density 

 x  with respect to the Legesgue measure on S . 

Suppose that at the moment 1t  we have sampled the states 10 ,..., tXX . The proposal is as 

follows: 

   ttt CXormalNXXqY ,,...,|~ 110    (5.5) 

The covariance matrix 
 









 ddtd

t
IsXXs

ttC
C

10

00

,...,cov

,
, where  is some small constant to ensure that 

covariance matrix is positive definite. 

On the contrary to the Matropolis-Hastigs algorithm, AM generated chain is no longer Markovian, but 

ergodicity still holds. 

6 SOFTWARE 

The beginning of the 21
st
 century found Bayesian statistics to be fashionable in science. But until 

late 1980s, Bayesian statistics were considered only as an interesting alternative to the 

„classical―theory. As history had proved, the main reason why Bayesian theory was unable to establish 

a foothold as a well-accepted quantitative approach for data analysis was the intractability involved in 

the calculation of the posterior distribution. Asymptotic methods had provided solutions to specific 
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problems, but no generalization was possible. Until the early 1990s two groups of statisticians had 

(re)discovered Markov Chain Monte Carlo (MCMC) methods. Physicists were familiar with MCMC 

methodology from the 1950s. Nick Metropolis and his associates had developed one of the first 

electronic supercomputers and had been testing their theories in physics using Monte Carlo techniques. 

Implementation of the MCMC methods in combination with the rapid evolution of personal computers 

made the new computational tool popular within a few years. Bayesian statistics suddenly became 

fashionable, opening new highways for statistical research. Using MCMC, we can now set up and 

estimate complicated models that describe and solve problems that could not be solved with traditional 

methods. 

During 1990-1995, MCMC-related research focused on the implementation of new methods in 

various popular models. During the same period the early versions of BUGS software appeared. BUGS 

was computing-language-oriented software in which the user only needed to specify the structure of 

model. Then, BUGS was using MCMC methods to generate samples from the posterior distribution of 

the specified model. 

The development of WinBUGS had proved valuable for the implementation of Bayesian models 

in a wide variety of scientific disciplines.  

However, at some cases WinBUGS cannot be used for MCMC sampling since not all methods 

are implemented in it, e.g. adaptive Metropolis, which will be needed in our analysis. This calls for the 

use of another program to implement new MCMC methods, e.g. R software [32] which is open source 

and created mainly for statistical analysis purpose. 

7 APPLICATION OF BAYESIAN FRAMEWORK FOR AGE-

DEPENDENT RELIABILITY MODELLING 

Ageing can be thought as age-dependent change of beliefs about systems parameters. Beliefs 

changes not just due to new data or other information (mentioned above) which becomes available in 

time, but also it changes due to flow of time. 

One of the difficulties of Bayesian inference is inability to deal with changes of age-dependant 

parameter as a continuous process. This problem partially can be overcome by considering ageing (or 

degradation) as step-wise process, which is constant in some period of time and has value jump in 

other period. Mathematically this can be expressed as a jump process: 

   
1

1

{ }1
1

N

i

i

t t ti i
d t d t





  
 , 

 

7.1 

where  d t  is any model of characteristic under consideration and constant  id t  is value of 

characteristics at each time period it ; N – number of time intervals. 
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Model of characteristic  d t  can have any functional form. It can be linear, Weibull, or some 

other form. Depending on adopted formula,  d t  will be based on vector of parameters  1,..., m   : 

   ,d t d t  . 7.2 

If analysis considers more than one model, then indexation is used for different models, 

i.e.  ,i id t  , where id  denotes i
th

 model with i  vector of parameters. 

Modelling conception introduced above allows interpreting distribution of parameters as age-

dependent. If prior knowledge and beliefs about systems parameters is represented by probability 

density distribution     and statistical observations has likelihood   |f y d t , where 

 1,..., NY y y  is sample of observations, then, according to Bayes theorem, age-dependent beliefs 

about systems degradation or failure rate is expressed as posterior distribution: 

 
    
    

| ,
| ,

| ,

f Y d t
Y t

f Y d t d







 
 

  
. 

 

7.3 

Assume that parameters 1,..., m   are a priori independent, then, according to definition of 

independent random variables, prior distribution of   can be expressed as: 

   
1

m

i i

i

  


  , 
 

7.4 

where   , 1,i i i m    are priors for components of vector  . 

If data set contains n  statistical observations, then posterior distribution is represented as: 

 
    

    

1 1

1 1

| ,

| ,

| ,

m n

i i j j

i j

m n

i i j j

i j

f y d t

Y t

f y d t d

 



 

 

 



 

 

 

 

. 

 

7.5 

There are various techniques for model validation in Bayesian framework [24, 2, 11]. One of 

possible approaches to analyse model fitness is to use tail-area probability or as it is sometimes known, 

the posterior predictive p-value: 

        
   

, ,
, , | | |

rep

rep rep rep

D y D y
p P D y D y y I p y p y dy d

 
    

 
 

     ; 
 

7.6 

where repy is the replicated data that could have been observed, or, to think predictively, as the data 

that would appear if the experiment that produced y  were replicated tomorrow with the same model 

[2]. Posterior p-value expresses the differences between statistical data and replicated. Rule of thumb 

is p-values close to 0.5 [24, 16]. 
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 ,D y   is discrepancy measure and can have any functional form, for example 

    2

1 ; YEYEyD  ,  
  
 









|

|
;

2

2

t

tt

yVar

yEy
yD . Chi-square statistics  2 ;D y   is quite 

popular among researchers, however as will be showed the use of just one discrepancy measure can be 

very misleading. 

The use of discrepancy measures can be used to assess fitness of each model individually, i.e. 

rejection and acceptance of one model does not depend on other models. 

Another possible way to analyse fitness of models is to use Deviance Information Criterion 

(DIC), which is already implemented in WinBUGS as inner function. DIC can be used to compare 

different models with each other. Spiegelhalter et al. [36] suggest the following rule of thumb: that 

models with DIC difference within the minimum value lower than two (2) deserve to be considered as 

equally well, while models with values ranging within 2-7 have considerably less support. 

DIC of i
th

 model is defined as: 

  2ln | , 2i DDIC L y i p   
; 

 

7.7 

where is the effective number of parameters [36]. 

For more information about Bayesian model selection can be found in [24, 11]. 

Usually it is the case when several trend models fits data almost equally well, i.e. possible set of 

―good‖ models can be represented as  

    1 1, ,..., ,r rd t d t    ,  

7.8 

where  , , 1,i id t i r   are models which were considered as having good fit. In such circumstances 

uncertainties of modelling cannot be handled appropriately within classical statistical framework. 

As noticed in [21], standard statistical practice ignores model uncertainty. Data analysts typically 

select a model from some class of models and then proceed as if the selected model had generated the 

data. This approach ignores the uncertainty in model selection, leading to over-confident inferences 

and decisions that are more risky that one thinks they are. 

According to Hoeting [21], Bayesian averaging advantages include better average predictive 

performance than any single model that could be selected. Model averaging is more correct because it 

takes into account a source of uncertainty that analyses based on model selection ignore [8]. 

Denote  A t  failure rate averaged over set of models . Considering our notation, posterior 

probability of averaged age-dependent failure rate can be represented as: 

          
1

| | , , , |
r

j j j j

j

p A t Y p A t Y d t p d t Y


   , 
 

(7.9) 
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where   , |j jp d t Y  is prior probability distribution of  ,j jd t   model, given set   of available 

models,     | , ,j jp A t Y d t   is a posterior distribution of quantity  A t  under  ,j jd t  . Posterior 

probability distribution for model jM  is given by 

 
     

     
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l l l l
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p Y d t p d t
p M Y

p Y d t p d t


 


 
, 

 

(7.10) 

where   ,j jp d t   is prior probability distribution of models,   | ,j jp Y d t   is marginal likelihood 

conditional on model  ,j jd t  . 

 In the case of non-informative prior distribution equal discrete probabilities can be assigned for 

each model   
1

,j jp d t
r

   and posterior probability distribution for model  ,j jd t   becomes: 

  
  
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(7.11) 

Even though Bayesian model averaging (BMA) seems to have advantages over one-model-

fitting, little work has been done in the engineering field to address model uncertainties. Alvin et al. [4] 

used BMA to predict the vibration frequencies of a bracket component, Zhang and Mahadevan [45] 

applied it in fatigue reliability analysis on the butt welds of a steel bridge, and most recent work was 

done by Inseok Park et al. [22]. Authors analysed uncertainties of 4 finite elements models for laser 

peening process. However, all these works used relatively simple models and probabilistic approaches 

and there was no need to adopt advanced probability sampling techniques such as Markov Chain 

Monte Carlo methods [15]. 

8 BEHAVIOUR OF BAYESIAN ESTIMATES FOR SMALL DATA 

SAMPLES 

It is well known that classical statistical methods fail when facing problems with small data 

samples. Certain parameters of models may not exist or may be on the boundary of the parameter 

space. Also maximum likelihood estimates are assumed to be approximately normally distributed and 

in small sample problems such assumptions can lead to very biased results. 

From a Bayesian point of view, small sample problems can be dealt with without such shortfalls 

as in frequentist approach. However, such statement should be confirmed with empirical analysis. 
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In this chapter, behaviour of Bayesian methods in small sample problems will be investigated. 

Since in the case study Poisson data will be analysed, here I will narrow analysis with just Poisson 

distribution. 

Suppose we have Poisson distribution with known rate curves. Trends with specific parameters 

are presented in ( 

Table 5.4.1). For each trend 1000 samples were generated to investigate bias of maximum 

likelihood estimator and Bayes estimator under quadratic loss, i.e. posterior mean estimator. Two 

sample sizes were used: 5 and 10 fake observations in each sample. 

 

Table 5.4.1 Poisson intensity functions 

 Poisson rate  t  

1.  exp 0.05t  

2.  exp 0.5 0.05t  

3.  exp 0.5 0.1t  

 

 

Figure 5.4.1 Illustration of MLE instability end extreme values of estimates 

 

As for MLE, in unbounded parameter space estimates tend to take extreme values (Figure 5.4.1), 

and in bounded parameters space MLE often lie on the space boundaries (Figure 5.4.2). 
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Figure 5.4.2 Distribution of MLE estimates of bathtub model parameter b 

 

For Bayesian estimation, adaptive Metropolis method were used to assure good chain mixing, 

since in nonlinear regression parameters often are highly correlated.  

Estimates by MLE and Byes estimator presented in Table 5.4.2. 

 

Table 5.4.2 Bias from actual parameter value 

Failure rate 

function 

MLE Bayes 

 N=5 N=10 N=5 N=10 

1. a -0.596 -0.102 -0.331 -0.165 

b  0.035  0.052  0.050  0.052 

2. a  0.337  1.262  0.262 0.355 

b  0.052  0.056  0.048 0.054 

3. a  0.351  0.452  0.418 0.438 

b  0.112  0.102  0.103 0.099 

 

Simulation results shows, that Bayes estimator outperforms MLE when sample size is 5 

elements, but almost no difference can be observed for sample size of 10 elements. Although to more 

simulation analysis needed for more complex intensity curves (bathtub failure rate),  but it can be 

conjectured that for such cases Bayes estimator would demonstrate better features compared to MLE, 

since as number of parameters grows, MLE requires more statistical data. 
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9 AGE-DEPENDENT PROBABILITIC ANALYSIS OF FAILURES IN 

GAS PIPELINES 

Uncontrolled release of natural gas or loss of pressure in the system cause unsafe situations due 

to the potentially explosive mixture of gas and air [20]. Usual practice in assessment of such dangerous 

events is to consider failures rate of pipelines network as constant value. However, due to 

improvements in maintenance strategies, due to use of more advanced materials in the construction of 

new pipelines and in the repair of old ones, due to dynamic operating environment real failure rate is 

time-dependent. 

If actual failure rate is higher than the value used in reliability and explosion assessment, then 

inferences made from such evaluation is overly optimistic and leads to underestimated risk. If actual 

failure rate is lower, then this leads to higher economical costs in risk management. 

9.1 REVIEW OF STATISTICAL INFORMATION 

UKOP (United Kingdom Onshore Pipeline Operators‘ Association) in its report for 2008th years [6] 

presents time-dependent (Figure 9.1.1) statistical estimates of failure rate, which were calculated every 

5 years in 1969-2008 period.  
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Figure 9.1.1 UKOP failure rate estimates of every 5 years 

 

Failure
1
 rate estimate of last 5 years (from 2004 till 2008) is 0.064 events for 1000 km per year, 

while general estimate of 1962-2008 period is 0.242 events for 1000 km per years. There is an increase 

over the last 5 year incident rate, but it is within the expected variation shown over the last ten years. 

An overview of the development of this failure frequency over the period 1962 to 2008 is shown in 

Figure 9.1.2. 

 

                                                 
1
 In this thesis, pipeline failure is defined as product (natural gas) loss incident, i.e. unintentional loss of product from the 

pipeline, excluding associated equipment  (e.g. valves, compressors) or parts other than the pipeline itself 
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Figure 9.1.2 Development of overall incident frequency [6] 

 

EGIG(European Gas Pipelines Incident Data Group) in its report [13] for period from 1970 till 

2007 reports failure frequency equal to 3.7E-4. Overall length of pipeline network was 129719 km. 

EGIG has investigated the relationship between the age of the pipelines and their failure 

frequencies to determine whether older pipelines fail, due to corrosion, more often than more recently 

constructed pipelines. The influence of the age of the pipelines on their failure frequencies has been 

studied in the ageing analysis presented in Figure 9.1.3. 

 

Figure 9.1.3 Ageing analysis (corrosion) relationship between age and construction year class 

Early constructed pipelines had a higher failure frequency due to corrosion, in their early years, 

than recently constructed pipelines. In recent years, due to improved maintenance, pipelines age is no 

longer a major influence on the occurrence of corrosion failures. 

Table 9.1.1 Distribution of failure frequencies 

Category Failure frequency (for 1 

kilometer per 1 year) 
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Wall thickness less than 5 mm 4E-4 

Wall thickness less than 10 mm 1.7E-4 

Wall thickness less than 15 mm 8.1E-5 

Wall thickness higher than 15 mm 4.1E-5 

 

Distribution (Table 9.1.1) of failure frequencies according to pipe wall thickness is presented in 

report [12] for 2010th years of The International Association of Oil & Gas Producers. In 1172 events 

registered in EGIG database 11 ended with human injuries or death. 

9.2 STOCHASTIC MODEL FOR FAILURE DATA 

Suppose failure rate (Figure 9.1.1) follows decreasing trend function and data is generated by 

Gaussian nonlinear regression model with unknown dispersion, then full Bayesian model is as follow: 

  

 

2~ , , , ,

, , , 1,8
1

, , ~ (0, )

t

t

Y N d t a b c

b
d t a b a c t

t

a b c uniform K



   


, 

 

(9.1) 

where K is some large constant (we used 1000K  ), ensuring that large enough space of states is 

explored by MCMC algorithm (Markov Chains Monte Carlo – is a family of specific algorithms, 

which allows generation of random number distributed by some distribution, known up to constant 

[18]). Uniform prior distributions for regression parameters are chose because no prior information is 

available to make any prior judgments about values of parameters. 

MCMC simulation of stated model allows estimation of posterior distribution of regression 

parameters (Figure 9.2.1) and of dispersion parameter (Figure 9.2.2). These posterior distributions 

represent updated state of knowledge about variability of model parameters. 

  
Figure 9.2.1 Posterior distributions of regression parameters a and b 
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Figure 9.2.2 Posterior distributions of regression parameter c and model standard deviation 

 

Point estimates and Bayesian confidence intervals, representing uncertainty about parameters 

after data were obtained are presented in Table 9.2.1. 

Table 9.2.1  Bayesian point and interval estimates 

Parameter Mean 95 % Confidence 

interval 

a 0.11 [0.0059;0.2549] 

b 0.52 [0.0350;1.1682] 

c 0.26 [0.0215;0.6112] 

sigma 0.16 [0.0917; 0.2925] 

 

It is worth to note, that Bayesian intervals have different meaning compared to frequentists 

confidence intervals: Bayesian intervals reflects probability of being in that interval while frequentists 

confidence intervals represents long-run frequency to „fall― into calculated interval. For frequentists, at 

every new sample probability that parameter will be in previously computed confidence interval is 

either 1 or 0. Usually, which is a mistake, frequentists confidence intervals are interpreted as Bayesian 

confidence intervals. 

Estimated failure rate of pipeline network under consideration is shown in Figure 9.2.3. 

 



 

 

40 

 
Figure 9.2.3 Age-dependent failure rate regression curve Bayesian and frequentists estimates  

 

Failure rate with one term equal to constant a  considered in this analysis were chose 

deliberately. Despite continuously improving maintenance strategies of natural gas transition network, 

it is unrealistic that failure rate will become equal to zero, so it is reasonable to analyze failure rate 

trend function with some limiting constant. 

As is usually the case in reliability analysis, useful lifetime is of interest, i.e. system operation 

with constant failure rate. We will dismiss the case when ageing of system manifests, since it is highly 

unlikely, because of previously mentioned reasons for decreasing failure rate. 

Further, in this section we will estimate time moment *t , when failure rate approaches limiting 

constant (say, with error 0.01  ) and whole lifetime of pipeline network can be divided into two 

sections: with decreasing and constant failure rate. 

Time moment *t  is such that  *t a    or 
*

*
0.01

1

tb
c

t
 


 and approximate solution is 

* 51t   time periods, which is equal to 5 51 255   years. These results show, that failure rate of gas 

grid settles down after quite long time and, since predictions for such time period would be very 

inaccurate, there is no reason to further analyze constant failure rate segment. Such segmentation 

would be useful in case when failure rate would approach constant value after relatively short time 

period (e.g. 10 or 20 years). 

Failure rate estimate of UKOP natural gas transmission grid allows more advanced improvement 

of whole energy network reliability assessment and enables making more accurate predictions 

decisions. Well established practice to use constant failure rate for whole system lifetime when 

assessing reliability is harmful in terms of underestimated risk.  

Age-dependent analysis presented in this section also allows modification of gas grid 

maintenance strategies dependent on network age, and, as a consequence, risk related to network 

accidents (such as gas leakage explosions) is more accurately assessed, as will be shown in next 

section, where age-dependent  natural gas explosion probability will be estimated. 
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9.3 TIME-DEPENDENT EXPLOSION PROBABILITY OF NATURAL 

GAS PIPELINES NETWORK 

The usual practice to calculate explosion probability near to nuclear power plant is to use 

constant pipeline failure rate [31]: 

s t d wP D f f f f       (9.2) 

where    is pipeline failure frequency, D  is pipeline length, close to nuclear power plant, sf  is 

hazardous pipeline accidents frequency, tf  - frequency of accidents related to technical works 

performed close to site, df  unnoticed and not repaired accidents, wf  - ratio of adverse weather 

conditions. 

Further we will use estimates, presented in [13, 31]: 

Table 9.3.1   Parameter values 

Parameters Value 

  3.7E-4 

sf  0.32 

tf  0.25 

df  0.1 

wf  0.5 

Suppose, that 1 kmD  , then probability of natural gas explosion near to nuclear power plant site 

is 4 63.7 10 1 0.32 0.25 0.1 0.5 1.48 10P           . However, the use of constant pipeline failure 

frequency can lead to overestimated or underestimated (depending whether actual failure rate is higher 

or lower than averaged constant value) gas explosion probability. So, to improve accuracy of explosion 

probability estimate and to better evaluate the risk, pipeline causes to nuclear power plant, time-

dependent failure rate, like estimated in previous section, should be used. 

Further we will use previously estimated failure rate  
0.52

0.11 0.26
1

tt
t

   


. So, prediction of 

time-dependent probability of gas explosion close to (imaginary) nuclear power plant is as inFigure 

9.3.1. 
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Figure 9.3.1 Time-dependent gas explosion probability near to nuclear power plant. 

  

Gas explosion probability estimation approach is quite universal, because the object which is 

close to pipeline grid can be not necessarily nuclear power plant, it can be factory, houses and other 

important objects. 
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10 FAILURES OF ELECTRIC AND I&C COMPONENTS 

10.1 DATA REPRESENTATION  

Data set represents the failure and replacement dates of electrical instrumentation and control 

(I&C) components. The considered data is quite similar to the real (data were encoded and places 

where it was collected can‘t be identified) operating experience data collected in French or German 

nuclear power plants. In particular, it is a large sample that represents one technological group of 

continuously operating components. The data set contains records from type ―T‖ reactors, which are 

operated by a single utility with a single management philosophy. The components are all of the same 

type (design, manufacturer, technology, etc.). The components operate in ―A‖ environment having 

more stressful pressure and temperature. The scope of maintenance is the same for all components.  

Data were collected in prior of eleven years, from January 1, 1990 through December 31, 2000. 

The components in the sample do not all have same date of being put into service, and as a 

consequence do not have the same ages at the beginning and end of observation. The failure counts 

were taken from a review of the maintenance data, so any reported date of failure is actually the date of 

the periodic test. A ―critical‖ failure is one that causes the component to lose its safety function in a 

PSA model. 

There are 20 units of type ―T‖, each with 20 components of type A. The data collection period is 

eleven years, so there would be 4400 component-year except for the fact that some of the units were 

commissioned after the start of the data collection (Table 1). 

 

Table 10.1.1 Failure data of I&C components under consideration 
Unit Start up eqp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T01 1988.01.06 20 0 0 0 0 0 3 0 0 1 0 0 1 5

T02 1989.01.01 20 1 1 0 0 0 1 0 0 1 0 0 0 4

T03 1987.01.04 20 0 0 0 1 1 0 0 0 0 0 0 0 2

T04 1988.01.02 20 0 0 0 0 0 0 0 1 0 0 0 0 1

T05 1991.01.02 20 0 0 0 1 0 0 0 0 1 0 2

T06 1992.01.01 20 0 0 0 0 0 0 0 0 0 0 0

T07 1986.01.12 20 0 4 0 1 1 0 0 4 0 1 0 2 13

T08 1987.01.03 20 0 0 0 0 1 3 2 0 1 1 1 1 10

T09 1991.01.02 20 0 0 2 0 0 0 0 0 0 0 2

T10 1994.01.03 20 0 0 0 0 0 0 1 1

T11 1988.01.02 20 0 0 0 0 0 0 0 0 0 0 0 1 1

T12 1989.01.05 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T13 1985.01.12 20 2 0 0 1 2 1 4 2 3 3 2 0 20

T14 1985.01.12 20 0 1 1 2 2 2 6 3 0 3 0 0 20

T15 1986.01.02 20 0 0 1 2 3 1 2 0 0 1 1 5 16

T16 1986.01.06 20 0 2 1 2 0 0 0 0 1 0 5 1 12

T17 1990.01.12 20 0 0 0 0 2 2 0 0 0 0 0 4

T18 1992.01.11 20 1 0 0 0 0 1 2 0 0 4

T19 1986.01.05 20 0 0 1 1 0 3 0 1 1 0 1 5 13

T20 1987.01.03 20 0 0 0 0 0 1 0 1 0 1 2 2 7

1 1 3 1 10 8 16 11 12 8 16 9 10 16 15 0 137

126,56 171,62 231,36 314,8 396,6 400 396,76 380 363,34 336,73 281,68 273,42 288,44 168,58 85,16 3,36 4218,41

0,0079 0,0058 0,013 0,0032 0,0252 0,02 0,0403 0,0289 0,033 0,0238 0,0568 0,0329 0,0347 0,0949 0,1761 0 0,032477

Number of failures

Operating time

λ  
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Simple failure rate (Figure 10.1.1) and cumulative failure rate (Figure 10.1.2) plot gives first 

impression about failure behaviour over time: failure rate increases in time showing equipment 

degradation due to ageing. 

Failure rate
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Figure 10.1.1 Failure rate 

  

Cumulative failure rate
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Figure 10.1.2 Cumulative failure rate 

 

In report of JRC Institute for Energy [9] can be found full frequentist analysis of data in Table 

4.2.1. In that analysis side-by-side 90% confidence intervals are calculated and plotted, nonparametric 

and parametric test are performed to validate ageing in observed data.  

10.2 BAYESIAN MODEL FOR PIECEWISE HOMOGENEOUS POISSON 

COUNT DATA 

In this analysis, failure rates are considered as constant values in each year, but at every year this 

value jumps at the value which can be calculated from linear, Weibull or other model. 
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Consider as the model for the failure rate   ; 0t t   a jump process structure described above: 

   
1

1
1

N

i

i
t t ti i

t 


  
 . 

 

(10.1) 

In each year period failures occurs as Poisson process but with different rate 

parameter , 1,2,...,15i i  . In every time period (which in this case is equal to one year) equipment was 

in operation for i  time (operating time). Denote number of failure that occurred in one year as iN . 

Probability of failure can be expressed as: 

 
 

!

i i
k

i i

i

e
P N k

k

  

  . 

 

(10.2) 

Likelihood function, that contains all information obtained from data, is: 

      
  

1

,
| exp ,

!

iN
n

i i
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L P y t
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 
 




      . 

 

(10.3) 

Since there is no available information in data source [9] about which particular I&C 

components were under observation, prior distribution for parameters of failure trend function is 

chosen as diffuse distribution. In WinBUGS implementation diffuse prior gamma distribution were 

assigned for all parameters and in all models except for Xie and Lai model – for one parameter beta 

distribution where assigned. So for Xie and Lai failure rate trend model joint prior distribution can be 

expressed as 

 
   

 
3

11

4 4
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1
1

1
,
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ba ib i
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  
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(10.4) 

When for other models join prior distribution is: 

 
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(10.5) 

In further analysis we considered 5 failure rate trend models described previously. Linear, 

exponential and power models represent class of trends which is common in ageing analysis and 

Makeham and Xie & Lai models represents more flexible bathtub trend class. We excluded constant 

failure rate model because ageing has been already validated in [9]. 
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Fitted trend models
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Figure 10.2.1 Comparative representations of fitted trend models 

10.3 MODEL FITTING AND SCREENING 

Adaptive Metropolis algorithm presented in theoretical part of this thesis, proves to be very 

useful in nonlinear regression modelling: convergence of generated chains are achieved without 

problems. However, in Xie and Lai model algorithm had to run a bit longer to achieve good chain 

mixing and convergence (Figure 10.3.1). 

 

Figure 10.3.1 Nonhomogeneous Markov chain of Xie & Lai parameter c 
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To ensure, that the chain is converged to stationary distribution, cumulative means of parameters 

were monitored. 

 

Figure 10.3.2 Cumulative mean of Xie and Lai model parameter c 

 

Posterior joint marginal distributions for Xie and Lai trend model parameters: 

 

Figure 10.3.3 Joint marginal density of Makeham model parameters a and b 

 



 

 

48 

 

 

Figure 10.3.4 Joint marginal density of 

Makeham model parameters a and c 

Figure 10.3.5 Joint marginal density of 

Makeham model parameters a and c 

 

Age-dependent evolution of generalized Makeham failure rate is captured in (Figure 10.3.6). It is one 

of Bayesian advantages to be able to naturally quantify uncertainties present in inferences. 

 
Figure 10.3.6 Age-dependent evolution of uncertainties of generalized Makeham failure rate 
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Estimated posterior p-values for different failure rate models are in Table 10.3.1: 

 

Table 10.3.1 Posterior p-values for different failure rate models 

 Linear Exponential Power Makeham Xie & Lai 

1p  0.5458 0.6333 0.7134 0.6178 0.7006 

2p  0.0042 0.0278 0.0102 0.0306 0.011 

 

As can be seen from posterior p-values 2p  presented in Table 1, none of proposed failure rate 

trend models gives good enough fit and all models should be rejected. However, p-values 
1p  shows 

satisfactory discrimination abilities – linear and generalized Makeham trend models can be interpreted 

as better fit than exponential and power low failure rate trend models.  

It is worth to take notice of chi-square discrepancy measures inability to assess model goodness-

of-fit, even though graphical investigation shows quite tolerable fitness. Authors think that, one of 

possible reasons is because of heteroscedasticity in errors (Figure 10.3.7). 

 

Figure 10.3.7 Heteroscedasticity of nonlinear generalized Makeham model errors 

 

Analysis of fake data showed that chi-square discrepancy measure behaves well when data is 

transformed to be linear, in this case errors heteroscedasticity is not so obvious and does not cause any 

trouble (if heteroscedasticity is the main problem at all, because this is just hypothesis of authors and 

needs separate investigation). However, data transformation into linear form is not the best solution, 

because it highly depends on the problem at hand what kind of transformation will result into desirable 

linearity. Also any transformation, either of data or of parameters in model, leads to different results, 

since invariance under transformation is not preserved, e.g. deviance information criterion values are 

dependent on which transformation is applied. 
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Even though standard deviation measure seems to work, but it might be that applied to another 

data sample it fails as is the case with chi-square measure in this problem. This leads to the conclusion 

that discrepancy measures (and as a consequence, posterior predictive p values) does not provide 

automatic model assessment tool for practitioners. 

It is well known that more complex curves will fit data more precisely, but fitness of very 

complex models can lead to over fitting (e.g. perfect fitness can be achieved by splines, but this 

apparently leads to nonsensical inference). 

Nevertheless, this obscurity can be solved by using DIC measure. This criterion naturally adopts 

Occam‘s razor principle, because it incorporates penalty - the effective number of parameters: more 

complex models will be penalized more severely. DIC values for all models under consideration are 

presented in Table 10.3.2. 

 

Table 10.3.2 Values of Deviance Information Criterion 

Model Linear Exponential Power law Generalized Makeham Xie & Lai 

DIC 91.39 86.48 86.42 94 88 

 

As can be seen from DIC values, exponential and power law model shows best fit. Also, Xie & 

Lai model can be accepted.  

Two measures of fitness – discrepancy measure and DIC – shows different results and 

unambiguous answer cannot be given. Preference to one model over another can lead to too 

pessimistic or optimistic predictions of ageing phenomena behaviour. Such uncertainty related to the 

selection of model for further use has to be quantified to make sure that applications of model will not 

be influenced on incorrect choice of trend. Such quantification will be demonstrated in further analysis 

where Bayesian model averaging (BMA) will be applied. 

10.4 BAYESIAN POSTERIOR MODEL AVERAGING 

As was concluded previously, discrepancy measure and DIC gave quite ambiguous results; 

subsets of models, selected by these criterions are not exactly the same. In practice, usual decision is to 

adopt just one model, but as mentioned in theoretical part, this could lead to overoptimistic results if 

model uncertainty is not incorporated into modelling process.  

In this part of paper application of Bayesian model averaging to analyse age-dependent failures 

will be demonstrated. We will perform averaging procedure for all models that were considered in this 

paper. To be able to average over set M of models, probabilities of each model has to be obtained by 

calculating marginal likelihoods. To do so, power posteriors were used [14]. Obtained probabilities are 

presented in Table 10.4.1. 
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Table 10.4.1  List of probabilities of analysed models 

 Linear Exponential Power Gen. Makeham Xie & Lai 

  , |j jp d t Y  0.027 0.456 0.444 0.046 0.026 

 

Calculated probabilities partially justifies assessments made by DIC and do not confirm 

conclusions based on discrepancy measures.  Posterior uncertainty limits for both exponential and 

power trends are presented in Figure 10.4.1. 
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Figure 10.4.1 Uncertainty intervals for exponential and power law posterior failures 

 

Authors think, that Bayesian averaging procedure can be good alternative to various goodness-

of-fit approaches since it prevents decision maker of exclusion of models which have good fit and 

could lead to reasonable posterior inferences. 

 The results of Bayesian model averaging are presented in Table 10.4.2. 

Table 10.4.2 Posterior averaged values of failure rate together with uncertainty limits 

Statistical data Averaged 
failure rate 

Upper credibility interval 
bound 

Lower credibility interval 
bound Age Failure rate 

1 0.007901 0.00639 0.000364 0.0167 
2 0.005827 0.00877 0.000991 0.01941 
3 0.012967 0.01151 0.003294 0.02178 
4 0.003177 0.01465 0.006547 0.02454 
5 0.025214 0.01799 0.009665 0.02769 
6 0.020000 0.02166 0.01253 0.03218 
7 0.040327 0.02568 0.01564 0.03691 
8 0.028947 0.03013 0.01908 0.04246 
9 0.033027 0.03513 0.0229 0.04869 
10 0.023758 0.04059 0.02697 0.05571 
11 0.056802 0.04672 0.03053 0.06469 
12 0.032916 0.05357 0.03579 0.0734 
13 0.034669 0.06136 0.04211 0.08302 
14 0.094910 0.07014 0.04368 0.09992 
15 0.176100 0.08016 0.0426 0.125 
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Posterior averaged failure rate values are better calibrated, because not only uncertainty in 

parameters accounted, but also uncertainty regarding model selection. This averaging procedure 

prevented us from exclusion of models by giving very small weights for those which were unlikely, 

according to the evidence contained in marginal likelihood. One drawback on Bayesian posterior 

averaging is that if we construct set of models that all have very poor fit then averaged posterior 

quantities will also fit inadequately. In this case DIC could be applied to eliminate models with highest 

deviance information criterion values. Also, accounting of model uncertainty cannot be fully 

performed, because there is infinite number of possible models. 
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11 CONCLUSIONS AND FINAL REMARKS 

 In this thesis I presented general methodology of Bayesian methods application for age-

dependant analysis. It was showed that this methodology is able to deal with disperse and 

small data amount along with multiple parameter set (Makeham and Xie & Lai trend 

models); 

 Observed instability of MLE for small samples and when parameter space were bounded; 

 Metropolis-Hastings method was compared to adaptive Metropolis method and results 

showed that the latter is able to deal with nonlinear modelling and highly correlated 

parameters; 

 Proposed methodology was successfully applied for ageing analysis of electrical I&C 

components. This application was carried in terms of piecewise homogeneous Poisson 

model with several failure trends; 

 For fitting and screening of various trend models, it was noticed that none of model 

selection approaches can give unambiguous answer. P-values can be quite misleading 

and can either show no discriminatory abilities (as in case of chi-square p-value) or can 

suggest more than one model as having good fit (as in case of standard deviation p-

value). It was concluded that failure of p-values, based on chi-square discrepancy 

measure, could be due to heteroscedasticity present in model errors; 

 Performed posterior Bayesian averaging procedure over set of selected trends resulted to 

better predictive performance, because averaged future failure rates will not be 

underestimated in terms of their uncertainties; 

 This paper and its results can be used as groundwork for further assessment of ageing 

systems, structures and components. Its generality and idea, that ageing or degradation 

can be thought as age-dependent change of beliefs about system reliability parameters, 

allows analysis of wide spectrum of problems - it can be stochastic behaviour of crack 

growth (in this case characteristic  d t  of interest would be crack growth rate), it can be 

degradation modelling as transitions through Markovian states (  d t  could be transition 

rates, time-homogeneous or time-inhomogeneous, between degradation states), etc; 

 Up-to-date statistical natural gas pipeline grid data were presented and used to estimate 

time-dependent failure rate and gas explosion probability which led to more accurate 

failure rate assessment; 

 Bayesian methods allowed more robust estimation of time-dependent failure rate 

parameters; furthermore, uncertainties of these parameters were also obtained and used to 
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estimate confidence intervals which are more easily interpretable (compared to 

frequentists);  

 Estimated time point when failure rate decreases to constant value (with some error ) 

showed that there is no necessity to divide failure rate into two segments: strictly 

decreasing and constant; 

 Time-dependent failure rate is advantageous for development of risk-informed 

maintenance strategies of pipeline grid, also for evaluating risk at different network 

points – this can be done by using time-dependent gas explosion probabilities instead of 

constant. 
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13 APPENDIX 

13.1 POSTERIOR QUANTITIES OF INTEREST 

 

1. Power law model:   tt ab  ; 

Posterior joint distribution of parameters a and b: 

 
Figure 13.1.1 Joint distribution of power law model parameters 

 

Posterior marginal distribution of model parameters: 

 

 
Figure 13.1.2 Posterior marginal density estimates of power law parameters 
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Age-dependent evolution of uncertainties, present in failure rate estimates 

 
Figure 13.1.3 Age-dependent evolution of uncertainties of power law failure trend estimates 

 

2. Linear model:  t a bt   ; 

 

Posterior joint distribution of parameters a and b: 

 
Figure 13.1.4 Joint distribution of linear model parameters 

 

Posterior marginal distribution of model parameters: 
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Figure 13.1.5 Posterior marginal density estimates of linear model parameters 

 

 

 

Age-dependent evolution of uncertainties, present in failure rate estimates 

 
Figure 13.1.6 Age-dependent evolution of uncertainties of linear trend failure rate estimates 
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3. Exponential model:   a btt e  ; 

 

Posterior joint distribution of parameters a and b: 

 
Figure 13.1.7 Joint distribution of exponential model parameters 

 

Posterior marginal distribution of model parameters: 

 

 
Figure 13.1.8 Posterior marginal density estimates of exponential model parameters 
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Age-dependent evolution of uncertainties, present in failure rate estimates 

 
Figure 13.1.9 Age-dependent evolution of uncertainties of exponential trend failure rate 

estimates 

 

 

4. Xie & Lai model:   1b dt at ct   ; 

 

Posterior joint distribution of parameters a and b: 

 
 

Figure 13.1.10 Joint distribution of Xie&Lai 

model parameters a and b 

Figure 13.1.11 Joint distribution of Xie&Lai 

model parameters a and b 
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Figure 13.1.12 Joint distribution of Xie&Lai model parameters b and c 

 

Posterior marginal distribution of model parameters: 

 

 
Figure 13.1.13 Posterior marginal density estimates of exponential model parameters 

 

 

 

Age-dependent evolution of uncertainties, present in failure rate estimates 
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Figure 13.1.14 Age-dependent evolution of uncertainties of Xie&Lai trend failure rate estimates 

 



 

 

65 

13.2 CODES OF R AND WINBUGS PROGRAMS 

 

Likelihood function of piecewise homogeneous Poisson process with Xie &Lai trend function (it is 

trivial to modify the code to adapt it to other cases of trend model). 

 

loglike=function(a,b,c,d){ 
   t=c(1:15) 
   lamb=a*(t^(b-1))+c*t^(d) 
   sand=data[,2]*lamb 
   suma=sum(data[,1]*log(sand))-sum(sand)-sum(lfactorial(data[,1])) 
   suma 
} 
 

 

Code for 4 parameter Bayesian model with  Adaptive Metropolis sampling: 

 

n=4*300000; X=rep(0,n); X=matrix(data=X,nrow=4,ncol=(n/4),byrow=TRUE) 
X[,1]=runif(4,min=0.01,max=0.1) 
 
#variances of parameters 

 

C=matrix(0.00001,4,4) 
C[1,1]=0.01; C[2,2]=0.01; C[3,3]=0.01; C[4,4]=0.01 
 
T0=1000 
ST=rep(0,n) 
ST=matrix(ST,nrow=1,ncol=(n/4),byrow=TRUE) 
Rho=ST 
 
#Algorithm for non-adaptive method part 

 

for(i in 2:T0){ 
   Y=mvrnorm(1,X[,i-1],C) 
   while((sum(Y[1:4]<=0)+sum(Y[2]<1)+sum(Y[4]>=1))>=1){Y=mvrnorm(1,X[,i-1],C)} 
   rho1=loglike(Y[1],Y[2],Y[3],Y[4])+mvdnorm(X[,i-1],Y,C) 
   rho1=rho1-loglike(X[1,i-1],X[2,i-1],X[3,i-1],X[4,i-1]) 
   rho1=rho1-mvdnorm(Y,X[,i-1],C) 
   X[,i]=X[,i-1]+(Y-X[,i-1])*(log(runif(4))<rho1[1,1]) 
} 
 
# Set-up for adaptive method part 

 
g1<-C 
mean11<-rowMeans(X[,1:(T0-1)]) 
mean12<-rowMeans(X[,1:(T0)]) 
 
for(i in (T0+1):(100000)){ 
   Y=mvrnorm(1,X[,i-1],1*(g1+0.00001*diag(4))) 
   while((sum(Y[1:4]<=0)+sum(Y[2]<1)+sum(Y[4]>=1))>=1){Y=mvrnorm(1,X[,i-    
            1],1*(g1+0.00001*diag(4)))} 
   rho1=loglike(Y[1],Y[2],Y[3],Y[4])+mvdnorm(X[,i-1],Y,1*(g1+0.00001*diag(4))) 



 

 

66 

   rho1=rho1-loglike(X[1,i-1],X[2,i-1],X[3,i-1],X[3,i-1]) 
   rho1=rho1-mvdnorm(Y,X[,i-1],1*(g1+0.00001*diag(4))) 
   X[,i]=X[,i-1]+(Y-X[,i-1])*(log(runif(4))<rho1[1,1]) 
   mean12<-((i-1)/i)*mean12+(X[,i])/i 
   mean11<-((i-2)/(i-1))*mean11+(X[,i-1])/(i-1) 
   g1<-((i-2)/(i-1))*g1+((mean11)%*%t(mean11))+((X[,i]%*%t(X[,i])))/(i-1)-(i/(i- 
           1))*((mean12)%*%t(mean12)) 
ST[i]=sum(g1) 
} 
 
WinBUGS code for Bayesian mode with Makeham trend function: 

 
model{ 
for(i in 1:N){ 
     x[i]~dpois(mean1[i]) 
     x.rep[i]~dpois(mean1[i]) 
    mean1[i]<-lambda[i]*time[i] 
    lambda[i]<-p[1]/(1+i)+p[2]*exp(p[3]*i) 
    dummy[i]<-T[i]  
} 
 
 
######################### 
#chi-square discrepancy 
######################### 
 
for(j in 1:N){ 
  chisq.rep[j]<-pow(x.rep[j]-mean1[j],2)/mean1[j] 
  chisq.obs[j]<-pow(x[j]-mean1[j],2)/mean1[j] 
} 
chisq<-step(sum(chisq.rep[])-sum(chisq.obs[])) 
 
########################## 
#standard deviation discrepancy 
########################## 
 
stand<-step(sd(x.rep[])-sd(x[])) 
 
 
 
for (i in 1:N){ 
  log.like[i]<--mean1[i]+x[i]*log(mean1[i])-logfact(x[i]) 
} 
exp.like<-exp(-sum(log.like[])) 
 
p[1]~dunif(0,100) 
p[2]~dunif(0,100) 
p[3]~dunif(0,100) 
} 
 
T[]       x[]      time[] 
1         1       126.56 
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2         1       171.62 
3         3      231.36 
4         1       314.8 
5        10       396.6 
6         8         400 
7        16       396.76 
8         11        380 
9        12        363.34 
10        8        336.73 
11       16        281.68 
12       9      273.42 
13      10          288.44 
14        16      168.58 
15       15      85.16 
 
END 
 
list(N=15) 
list(p = c(0.02,0.0065,0.18),x.rep=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
 
WinBUGS code for posterior Bayesian model averaging procedure: 

 
model{ 
 
for(i in 1:N){ 
    x_mak[i]<-x[i] 
    x_exp[i]<-x[i] 
    x_lin[i]<-x[i] 
    x_pow[i]<-x[i] 
    x_xl[i]<-x[i] 
} 
 
for(i in 1:N){ 
      x_xl[i]~dpois(mean_xl[i])                                
      #time[] tai isdirbis                          
     mean_xl[i]<-lambda_xl[i]*time[i] 
     #pacios intensyvumo fukcijos apibrezimas 
    lambda_xl[i]<-p_xl[1]*pow(i,p_xl[2]-1)+p_xl[3]*pow(i,p_xl[4]) 
    dummy[i]<-T[i]  
} 
p_xl[1]~dunif(0,100) 
p_xl[2]~dunif(1,10) 
p_xl[3]~dunif(0,100) 
p_xl[4]~dunif(0,1) 
 
 
 
for(i in 1:N){ 
      x_exp[i]~dpois(mean_exp[i]) 
     mean_exp[i]<-lambda_exp[i]*time[i] 
    lambda_exp[i]<-exp(p_exp[1]+p_exp[2]*i) 
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} 
p_exp[1]~dunif(-10,3) 
p_exp[2]~dunif(-10,3) 
 
for(i in 1:N){ 
      x_lin[i]~dpois(mean_lin[i]) 
     mean_lin[i]<-lambda_lin[i]*time[i] 
    lambda_lin[i]<-(p_lin[1]+p_lin[2]*i) 
 
} 
p_lin[1]~dunif(0,100) 
p_lin[2]~dunif(0,100) 
 
for(i in 1:N){ 
      x_pow[i]~dpois(mean_pow[i]) 
     mean_pow[i]<-lambda_pow[i]*time[i] 
    lambda_pow[i]<-(p_pow[1]*pow(i,p_pow[2])) 
 
} 
p_pow[1]~dunif(0,100) 
p_pow[2]~dunif(0,10) 
 
for(i in 1:N){ 
      x_mak[i]~dpois(mean_mak[i]) 
     mean_mak[i]<-lambda_mak[i]*time[i] 
    lambda_mak[i]<-p_mak[1]/(1+i)+p_mak[2]*exp(p_mak[3]*i) 
 
} 
p_mak[1]~dunif(0,100) 
p_mak[2]~dunif(0,100) 
p_mak[3]~dunif(0,10) 
 
for(i in 1:N){ 
  lambda[i]<-
0.046*lambda_mak[i]+0.456*lambda_exp[i]+0.027*lambda_lin[i]+0.444*lambda_pow[i]+0.026
*lambda_xl[i] 
} 
 
} 
 
T[]       x[]      time[] 
1           1       126.56 
2           1       171.62 
3           3       231.36 
4           1       314.8 
5         10       396.6 
6           8       400 
7         16       396.76 
8         11       380 
9         12       363.34 
10         8       336.73 
11       16       281.68 
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12        9      273.42 
13      10      288.44 
14      16      168.58 
15      15      85.16 
 
END 
 
list(N=15) 
 
list(p_mak=c(0.02,0.0065,0.18)) 
list(p_exp=c(-4.95,0.17)) 
list(p_lin=c(0.0033,0.0038)) 
list(p_pow=c(0.0078,1.18)) 
list(p_xl=c(0.0027,2.322,0.01,0.445)) 


