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Summary 

With the climate crisis rapidly progressing, industries are faced with the challenge of minimizing 

their environmental footprint. One proven way for achieving this imperative is through the adept 

adoption of digital transformation (DT). However, while certain studies assert a strictly positive 

correlation between DT and companies' environmental performance (EP), a body of evidence 

suggests a more complex, non-linear relationship. This discrepancy between the two research streams 

leads to a research gap, requiring further exploration on the influencing factors of the relationship. 

Since DT is mainly built on digital technologies it appears necessary to examine the correlation 

between the use of these technologies and EP. Positioned within the resource-based view framework, 

which recognizes both digital technologies and EP as strategic resources for competitive advantage, 

this study contributes to the field of DT and its impact on EP. 

Thus, the research aim is to investigate the complex relationship between digital technologies and 

environmental performance within manufacturing companies, specifically investigating the 

hypothesis of a curvilinear association.  

The research objectives encompass: 

1. To investigate the concepts of DT, digital technologies and EP 

2. To review arguments and evidence for both a linear and non-linear relationship between DT and 

EP 

3. To define a research model to analyze the effect of digital technologies on EP 

4. To present the results of the effect of digital technologies on EP and propose theoretical and 

managerial implications of said results based on the resource-based view (RBV). 

The underlying research method required conducting a literatur review to find evidence for both a 

linear positive and a curvilinear relationship to find similarities and differences in the argumentation. 

By leveraging secondary data from a 2022 survey, a regression analysis was conducted to examine 

the potentially curvilinear relationship between a selection of digital technologies and EP. The ten 

queried digital technologies were categorized into five groups based on the 5C architecture of Cyber-

Physical Systems (CPS). 

The empirical findings revealed a significant positive linear relationship between three technology 

categories, namely smart-connection, cyber and configuration, and EP. The strength of the 

relationships were equally weak, suggesting that the integration of these digital technologies improve 

the EP only slightly and there is little difference in which technologies are used. These results 
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contradict the expected inverted U-shape relationship, indicating a linear improvement in EP as 

digital technologies become more integrated into manufacturing processes. The analysis also revealed 

a significant relationship between company size, which was used as a control variable, and EP. 

As a final result, this research underscores the strategic importance of DT in enhancing 

environmental sustainability within the manufacturing context. From a RBV perspective it is 

advisable for manufacturing companies to implement new and further develop existing digital 

technology applications, to improve their competitive advantage. This is restricted to technologies 

from the categories smart-connection, cyber and configuration. However, research suggests that 

digital technologies have their main environmental impact outside of the operative using stage in their 

production and end-of-life disposal. Therefore it is possible, that EP of companies that use these 

technologies does not reflect this impact accordingly.  

This research also emphasizes the need for further qualitative investigation into how digital 

technologies can be utilized in a targeted approach to improve EP. By outlining how the use of digital 

technologies already improves EP and enhances the competitive edge of manufacturing enterprises, 

this study contributes theoretically to the existing body of literature while adding to the global 

empirical evidence base, particularly through the evaluation of data from Lithuania. 
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Santrauka 

Sparčiai progresuojant klimato krizei, pramonės įmonės susiduria su iššūkiu sumažinti savo ekologinį 

pėdsaką. Vienas iš patikrintų būdų tai pasiekti yra veiksmingas skaitmeninės transformacijos (DT) 

įgyvendinimas. Tačiau, nors kai kurie tyrimai rodo, kad tarp skaitmeninių technologijų diegimo ir 

įmonių aplinkosauginio veiksmingumo yra teigiamas ryšys, yra ir įrodymų, rodančių sudėtingesnį, 

netiesinį ryšį. Šis dviejų tyrimų srautų neatitikimas lemia tyrimų spragą, todėl reikia toliau tirti ryšius 

įtakojančius veiksnius. Kadangi DT daugiausia paremta skaitmeninėmis technologijomis, atrodo, kad 

būtina išnagrinėti ryšį tarp šių technologijų naudojimo ir EP.Ištekliais grįsto požiūrio teorijos 

kontekste, kurioje skaitmeninės technologijos ir aplinkosauginis veiksmingumas pripažįstami 

strateginiais konkurencinio pranašumo ištekliais, šis tyrimas prisideda prie skaitmeninių technologijų 

poveikio aplinkosauginiams pasiekimams žinių. 

Taigi, šio darbo tikslas – ištirti kompleksinį ryšį tarp skaitmeninių technologijų ir aplinkosaugos 

veiksmingumo gamybos įmonėse išnagrinėjus netiesinio poveikio galimybę. 

Tyrimo tikslai apima:  

1. Išnagrinėti DT, skaitmeninių technologijų ir EP sąvokas 

2. Apžvelgti argumentus ir įrodymus, patvirtinančius tiek tiesinį, tiek nelinijinį ryšį tarp DT ir EP 

3. Nustatyti tyrimo modelį skaitmeninių technologijų poveikiui EP analizuoti 

4. Pateikti skaitmeninių technologijų poveikio EP rezultatus ir pasiūlyti šių rezultatų teorines bei 

vadybines pasekmes remiantis ištekliais pagrįstu požiūriu (RBV). 

Pagrindinis tyrimo metodas reikalavo atlikti literatūros apžvalgą, kad būtų galima rasti tiek tiesinio 

teigiamo, tiek kreivinio ryšio įrodymų, kad būtų galima rasti argumentacijos 

panašumų ir skirtumų.Remiantis antriniais 2022 m. tyrimo duomenimis, buvo atlikta regresinė 

analizė, siekiant ištirti galimai netisinį ryšį tarp pasirinktų skaitmeninių technologijų ir poveikio 

aplinkai. Dešimt skaitmeninių technologijų buvo suskirstytos į penkias grupes, remiantis kibernetinių 

fizinių sistemų (CPS) 5C architektūra.  

Empirinės išvados atskleidė reikšmingą teigiamą tiesinį ryšį tarp trijų technologijų kategorijų, būtent 

išmaniojo ryšio, kibernetinės ir konfigūracijos bei EP. Ryšių stiprumas taip pat buvo silpnas, o tai 

rodo, kad šių skaitmeninių technologijų integravimas tik šiek tiek pagerina EP ir mažai skiriasi, 

kokios technologijos naudojamos Šie rezultatai prieštarauja anksčiau nustatytam U formos ryšiui, ir 

rodo tiesinį aplinkosaugos veiksmingumo pagerėjimą, kai skaitmeninės technologijos tampa labiau 
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integruotos į gamybos procesus. Analizė taip pat atskleidė reikšmingą ryšį tarp įmonės dydžio, kuris 

buvo naudojamas kaip kontrolinė kintamoji, ir EP. 

Šis tyrimas pabrėžia strateginę skaitmeninės transformacijos svarbą didinant aplinkos tvarumą 

gamybos kontekste.Iš RBV perspektyvos rekomenduojama gamybos įmonėms įdiegti naujas ir 

tobulinti esamas skaitmenines technologijų programas, siekiant pagerinti savo konkurencinį 

pranašumą. Tai ribojama iki išmaniojo ryšio, kibernetinės ir konfigūracijos technologijų kategorijų. 

Tačiau tyrimai rodo, kad skaitmeninės technologijos turi pagrindinį aplinkos poveikį neoperatyvinėje 

naudojimo stadijoje, jų gamyboje ir galutinio naudojimo atliekų tvarkymo procese. Todėl yra 

galimybė, kad įmonių, naudojančių šias technologijas, aplinkos poveikis 

nepakankamai atspindi jų EP. 

Šis tyrimas pabrėžiama, kad reikia atlikti tolesnį kokybinį tyrimą, kaip skaitmenines technologijas 

galima panaudoti tikslingai siekiant pagerinti įmonių poveikio aplinkai minimizavimą. 

identifikuodamas, kaip skaitmeninių technologijų naudojimas gerina aplinkosaugos pasiekimus  ir 

didina gamybos įmonių konkurencinį pranašumą, šis tyrimas prisideda prie esamos literatūros ir 

papildo pasaulinę empirinių įrGneuaodymų bazę, ypač vertinant Lietuvos duomenis. 
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Introduction 

Relevance: 

Against the background of the simultaneous challenges posed by the climate crisis and the 

transformative progress of the fourth industrial revolution, the question arises, of how the digital ages 

shape today's environment, especially in terms of sustainability (Le Ha, Huong, & Thanh, 2022). 

Although digital technologies can support businesses in various aspects, companies are increasingly 

under pressure to work towards becoming more sustainable and try to find out how these two issues 

could be balanced or even combined (Kraus, Rehman, & García, 2020). Lithuania as a country 

exhibits an overall digitalization level that resembles the European average (European Commission, 

2022). While overall, the country is in the top 35 countries concerning the environmental performance 

index (EPI), it is substandard when it comes to air quality factors such as NOx, SO2 or CO emissions, 

which can be caused by manufacturing industries (Wolf, Emerson, Esty, & Sherbinin, 2022). 

 

Problem Analysis:  

With the research landscape focussing on different aspects of digital transformation (DT), one subject 

to discussion is its effect on the environmental performance (EP) of companies (Feroz, Zo, & 

Chiravuri, 2021). In recent years, two main research streams have emerged, one suggesting a strictly 

positive impact and the other proposing a more nuanced, potentially curvilinear relationship between 

DT and EP (Chen, Despeisse, & Johansson, 2020; Feroz et al., 2021). Both research streams are 

supported by empiric data and diverse circumstantial evidence. One side argues that the availability 

of data and the decision support through algorithms enable great possibilities for fact-based eco-

efficiency plans and that smart manufacturing tools can reduce waste, energy consumption and 

emissions (Feroz et al., 2021; Le Ha et al., 2022; Wu, Goepp, & Siadat, 2019). The other side refers 

to the high energy consumption of the required servers and the pollution caused by the production, 

use and end-of-life disposal of new machines and tools (Ahmadova, Delgado-Márquez, Pedauga, & 

La Leyva-de Hiz, 2022; Chen et al., 2020).  

 

Research Gap: 

Thus, a research gap results from the existing divergent opinions as well as a noticeable 

preponderance of research on a positive linear effect. This indicates a need for broader evidence 

across various countries and industry segments. The exploration of influential factors contributing to 

the complex relationship between DT and EP becomes important within this context. As one central 

aspect that DT builds on is digital technologies, this thesis aims to evaluate the difference between 

various digital technologies and their effects on EP, with a focus on Lithuanian manufacturing 

companies. Therefore, the central research question guiding this thesis is: "Do different kinds of 

digital technologies vary in their effect on EP in manufacturing companies?". 

 

Research object:  

The research object is the relationship between digital technologies and EP in Lithuanian 

manufacturing companies. 

 

Research aim: 

The research aim is to evaluate the relationship between digital technologies and EP and give 

recommendations as to which technologies lead to a competitive advantage in terms of their 

environmental effect. 
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Research objectives: 

1. To investigate the concepts of DT, digital technologies and EP 

2. To review arguments and evidence for both a linear and non-linear relationship between DT 

and EP 

3. To define a research model to analyze the effect of digital technologies on EP 

4. To present the results of the effect of digital technologies on EP and propose theoretical and 

managerial implications of said results based on the resource-based view (RBV). 

 

Methodology: 

In order to answer the research question, firstly the concepts of DT, digital technologies and EP have 

to be defined and must be placed in context with each other. Furthermore, there will be an analysis 

of the existing body of literature identifying evidence and arguments for both research streams as 

well as already-found influential factors. To continue with the analysis, there has to be a meaningful 

categorization of the chosen technologies in order to abstract the findings. Finally, by using a dataset 

obtained from a 2022 survey of Lithuanian manufacturing companies, the relationship between digital 

technologies and EP will be analyzed and discussed to answer the research question. 

The methodology encompasses a comprehensive literature review for establishing a theoretical 

framework and a regression analysis to evaluate the relationships within the identified technology 

categories and their impact on EP. From a managerial perspective, this research applies a resource-

based theory view and seeks to contribute nuanced insights to the ongoing discourse surrounding the 

environmental consequences of DT, offering valuable perspectives for sustainable development in 

manufacturing industries. The adoption of a RBV will help in understanding how companies can 

make targeted use of digital technologies to reach environmental sustainability goals and gain a 

competitive advantage from that. 

This thesis will contribute to existing research by expanding the knowledge base with quantitative 

evidence from Lithuania, adding to the solving of the conflict between the two research streams. 

Additionally, it will provide recommendations for organizations and managers on which digital 

technologies can benefit their company by creating or increasing a competitive advantage. 
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1. Problem Analysis 

Nowadays, the connection between DT and EP in manufacturing companies has become a focal point 

for investigation. This chapter will first introduce the concept of DT, establishing the distinction 

between the terms “digitalization“, “digitization“, “digital innovation“ and “digital technologies“. 

Secondly, it will explore barriers and the application of DT in manufacturing companies. Afterwards, 

EP is discussed in more detail by looking at possible definitions, dimensions and the companies‘ 

motivations. Finally, the bridge between DT and EP is forged, building a basis for the following 

analyses.  

1.1. The Need for Digital Transformation in Manufacturing Industries 

In this chapter, the concept of DT and digital technologies, specifically with regard to manufacturing 

industries, is thoroughly explained, creating a foundation for further discussion.  

1.1.1. Definition of Digital Transformation 

DT is a relatively new concept that is often used interchangeably with "digitalization“, "digitization“ 

or "digital innovation“ (Chen et al., 2020; Osmundsen, Iden, & Bygstad, 2018). This makes it 

important to find a definition that differentiates between these terms. Furthermore, this chapter will 

introduce the relationship between these concepts and digital technologies. 

According to the Oxford Dictionary, digitalization is the "adaptation of a system, process, etc., to be 

operated with the use of computers and the internet." Specifically the word "operated“ illustrates the 

difference to digitization. While digitization purely involves the conversion from analogue to digital, 

digitalization introduces a social aspect of adopting and using digital technologies (Yoo, Henfridsson, 

& Lyytinen, 2010). Finally, Yoo et al. (2010) define digital innovation as the use of digital 

technologies to create digital and physical components of products. 

As stated above, given the novelty of DT, various definitions exist in research, causing a lack of 

clarity. This thesis will utilise the term as characterized by Vial (2019), defining it as “a process that 

aims to improve an entity by triggering significant changes to its properties through combinations of 

information, computing, communication, and connectivity technologies” based on an analysis of 28 

publications. This understanding, especially with an emphasis on business improvement, is widely 

supported (Feroz et al., 2021; Osmundsen et al., 2018). Using the expression "significant changes“ 

underlines DT not only encompassing technological change but also the organizational way of 

working (Ahmadova et al., 2022). Here also lies the differentiation to digital innovation, which refers 

to innovative products or services based on digital technologies or the process of creation (Vial, 

2019). In contrast to several other sources, Vial (2019) does not use “digital technologies“ as a 

keyword in the definition and instead employs a list of its components as proposed by Bharadwaj et 

al. (2013). By doing so, the author agrees with the consensus that digital technologies are a critical 

enabling element in DT (Feroz et al., 2021; Liere-Netheler, Packmohr, & Vogelsang, 2018; Matt, 

Hess, & Benlian, 2015), while aiming to be more specific in the phrasing.  

Similar to Bharadwaj et al.'s (2013) characterization, digital technologies are often described by 

listing the individual technologies or technology groups that are considered as such (Varriale, 

Cammarano, Michelino, & Caputo, 2024). However, this leads to a number of mutually inconsistent 

lists, changing continuously with ongoing technological development. A more generalized definition 
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is provided by Salmons and Wilson (2009), describing digital technologies as “electronic tools, 

devices, systems, and resources which generate, store or process data“. This is a broader definition, 

including all sorts of technologies that will be specified in chapter 1.1.3 and used in this thesis.  

Finally, it can be summarized that DT is not synonymous with digitalization, digitization or digital 

innovation, but rather builds upon these concepts as illustrated in Fig. 1. It also becomes apparent 

that digital technologies are a key element of DT and digital innovation and can be created through 

but are also used for digitalization. 

 

  

1.1.2. Drivers and Barriers 

As defined, DT is a way to alter value creation in organizations in a potentially disruptive way (Vial, 

2019). Nevertheless, to enable this kind of change through the implementation of digital technologies, 

certain conditions have to be given or created and risks mitigated. Thus, various research highlights 

drivers and objectives of DT that act as motivation or enablers, which will be summarized in this 

chapter to help understand the organizational environment of DT.  

First of all, there is a differentiation between internal and external drivers (Liere-Netheler et al., 2018). 

On the one hand, internal or organizational drivers often manifest themselves by creating a favourable 

cost-benefit ratio (Bhatia, Meenakshi, Kaur, & Dhir, 2024). This means that they help in reducing 

existing costs more than the initial investment required for technology implementation. This can take 

place through process and workplace improvement, management support, or enhancement of 

operation efficiency (Liere-Netheler et al., 2018). Furthermore, digital technologies can support 

business growth by setting up options for vertical and horizontal integration or promoting global 

agility (Bhatia et al., 2024). Recent studies identified environmental consciousness in company values 

and leadership as upcoming strong drivers for DT (Bhatia et al., 2024). As awareness of the impact 

businesses have on the climate increases, companies are making efforts to achieve energy efficiency 

and waste reduction by using digital technologies. 

Fig. 1. Visualization of relationships between digitization, digitalization, digital technologies, digital 

innovation and DT (source: own depiction) 
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On the other hand, external drivers characterize pressure from stakeholders such as customers, the 

government, the market or the supply chain, as well as an innovation push (Liere-Netheler et al., 

2018). Companies seeking a competitive advantage choose DT as a way to stay ahead and be 

equipped for future changes in the market (Bhatia et al., 2024). Finally, employee support is identified 

as another main driver. However, this can also be categorized as a success factor, which is not actively 

driving the transformation but is a key element to generate success, as elaborated by Osmundsen et 

al. (2018). The authors also explain that a supportive organizational culture and values that align with 

change and customer-centricity can aid DT. Other success factors can be well-structured knowledge 

management, a digital business strategy and the development of dynamic and information system 

capabilities (Li, 2022; Osmundsen et al., 2018). 

Nevertheless, some barriers can impede the exploitation of DT for manufacturing companies, most 

of which are grounded in a lack of organizational readiness (Lokuge, Sedera, Grover, & Dongming, 

2019). For instance, inertia poses a significant challenge, as established processes and practices often 

stand in the way of change (Vial, 2019). This appears in the form of path dependency, suggesting that 

the historical choices and investments made in specific technologies shape the current technological 

trajectory. Oftentimes, this aggravates deviating from established paths. However, inertia can also be 

provoked by resistance, fostered by an unfavourable organizational culture with a lack of visibility 

regarding potential benefits further amplifying concerns (Schmid, Recker, & vom Brocke, 2017). In 

addition to that, cybersecurity emerges as a critical concern, since the negative consequences can be 

severe - ranging from damage to company software and reduced productivity to the potential loss of 

intellectual property and customer confidence (Jones, Hutcheson, & Camba, 2021). The associated 

costs, including those for investigating violations and litigation, as well as the risk of reputational 

damage, make cybersecurity a serious barrier (Barmuta et al., 2020). Furthermore, a lack of digital 

capabilities, which refers to the organization's proficiency in leveraging digital technologies, skills, 

and resources effectively, can impede the smooth progression of DT (Ding, 2022). These capabilities 

have to be built on a company-wide and individual employee level to avoid push-back (Cichosz, 

Wallenburg, & Knemeyer, 2020). 

Apart from organizational barriers, the implementation of digital technologies can also fail due to 

financial restrictions (Bhatia et al., 2024). Although with sensible and thorough planning of DT 

applications, a positive cost-benefit ratio can often be achieved, a high initial investment is necessary 

for the acquisition of software, equipment and possible licenses, as well as for the training of 

employees. As with the drivers, there are also external barriers, preventing companies from 

leveraging DT, such as stakeholder acceptance or uncertainty of potential future regulatory changes 

(Vogelsang, Liere-Netheler, Packmohr, & Hoppe, 2019).  

1.1.3. Digital Technologies in Manufacturing 

Digital technologies are used in all kinds of organizations and industries, from agriculture to 

healthcare (Ciarli, Kenney, Massini, & Piscitello, 2021). As this thesis covers the DT in Lithuanian 

manufacturing companies, this chapter will examine the peculiarities that are specific to these types 

of organizations. Therefore, the chapter will discuss key digital technologies, levels of DT in 

companies, as well as strategies and approaches for the integration of technologies. 

As explained in chapter 1.1.1, the DT of manufacturing companies is based on digital technologies 

and innovations that have reshaped the industry. Jones et al. (2021) mention in their review the 
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presence of the following technologies in literature: additive manufacturing (AM), cloud computing, 

connectivity, robotics, and automation, big data and manufacturing analytics, artificial intelligence 

(AI), digital twins, and Model-Based Enterprise environments. Chen et al. (2020) supplement this list 

with the (IoT), virtual reality (VR), and augmented reality (AR). These lists, while not necessarily 

being comprehensive, depict the characteristics of innovations that are connoted with DT. They 

enable data-driven processes and manufacturing and real-time exchange (Chen & Hao, 2022). A 

categorization of the technologies used in the scope of this thesis will take place in Chapter 2.4.  

The implementation of DT in manufacturing companies requires a well-organized process as well as 

structural changes (Vial, 2019). In the initial stages, companies typically focus on assessing their 

current technological landscape and identifying areas for improvement (Zaoui & Souissi, 2020). This 

involves conducting thorough digital readiness assessments and evaluating organizational culture. As 

companies advance, the establishment of a clear digital strategy becomes essential, outlining specific 

goals and aligning technology adoption with business objectives (Zaoui & Souissi, 2020). The 

implementation of cross-functional collaboration and change management initiatives was found to be 

important to fostering a digital-ready culture among employees (Berghaus & Back, 2016). 

Concurrently, data governance and management processes are refined to ensure the availability of 

accurate and reliable information for decision-making. Additionally. companies often invest in 

upskilling and training programs to enhance workforce capabilities in line with emerging digital 

technologies (Berghaus & Back, 2016). Another integral step is the collaboration with external 

partners and suppliers for digital integration throughout the supply chain. During these stages, 

continuous monitoring, evaluation, and iterative improvements are fundamental to the success of the 

DT journey (Berghaus & Back, 2016). Furthermore, the development and strengthening of dynamic 

capabilities are necessary for preventing dependency on certain technologies and rapid changes in the 

market (Li, 2022; Warner & Wäger, 2019). Finally, it has to be emphasized that DT has to be a 

continuous process to adjust to innovations and development and keep up with the competitive 

landscape (Warner & Wäger, 2019).   

To analyze the maturity level of DT in companies, different models can be applied. Maturity models 

describe the stage of transformation and organization (Santos & Martinho, 2020). It can be seen that 

companies with a more advanced digital maturity level reach this state by applying a clear and 

comprehensive digital strategy (Salume, Barbosa, Pinto, & Sousa, 2021). Additionally, digital 

maturity can enhance the economic performance (Westermann & Dumitrescu, 2018). An analysis of 

different industry 4.0 maturity models, performed by Santos and Martinho (2020), for instance, leads 

to a framework encompassing six maturity levels, reaching from no implementation over pilot 

projects and partial implementation to the full application of all proposed concepts. This is evaluated 

in the dimensions of organizational strategy, workforce, smart factories, smart processes, and smart 

products and services (Santos & Martinho, 2020). In contrast to measuring the transformation 

process, the maturity level can also be measured on an absolute scale, where the state of different 

aspects of the company is examined. An example can be found in Klötzer and Pflaum (2017), where 

the five stages go from "digital awareness“ to "data-driven enterprise“.  

1.2.  The Problem of Environmental Sustainability in Companies 

As digital advancements continue to progress, it is important to evaluate the impact these changes 

have on other aspects of modern businesses. For example, many western companies strive to improve 

their sustainable performance (Kraus et al., 2020). In Lithuania, the industrial sector accounts for 
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approximately 15% of the annual greenhouse gas emissions, as shown in Fig. 2 (Aplinkos Apsaugos 

Agentūra, 2022). Although there is already a noticeable downward trend, enterprises are actively 

working to further strengthen this development. 

 

There may occur an underlying intrinsic motivation, coming from managers or employees (Lisi, 

2015). However, companies also face severe external pressure from stakeholders to reduce their 

environmental impact (Chen & Hao, 2022). This can take the form of government regulations, such 

as the European "Green Deal" of 2019, which provides for a comprehensive package of principles as 

well as funding options for companies (European Commission, 2023b). A further sense of urgency 

can be created by society and customers as well as investors, who may view companies with 

environmental efforts as a more attractive investment opportunity (Chen & Hao, 2022). Therefore, 

companies are encouraged to look into opportunities for enhancing their environmental sustainability 

in a way that allows business continuity while at the same time maintaining or improving economic 

efficiency. 

1.2.1. Environmental Performance Definition 

There are several ways to define EP, depending on the context. The keyword "EP" was first mentioned 

in the literature in the late 1980s, when research indicated that EP can create a competitive advantage 

(Clemens & Bakstran, 2010). According to DIN EN ISO 14001, it is defined as the outcome of an 

organizational (EMS) (DIN e.V., 2020). Furthermore, EP is said to relate to the control which the 

organization exercises over its impact on the environment based on its environmental policy, since 

this is reflected in measurable values (Albertini, 2016). However, Nawrocka and Parker (2009) 

criticize that this definition only considers these short-term outcomes and neglects more complex 

impacts, for example, on the stakeholders. They propose the use of a broader definition that includes 

environmental benefits for the company, such as savings generated by an EMS or a competitive 

advantage (Nawrocka & Parker, 2009). 

 

Fig. 2. Greenhouse gas emissions in Lithuania divided by sector (source: Aplinkos Apsaugos Agentūra, 

2022) 
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The EP concept can be applied to a variety of organizations, such as companies or industries as well 

as to countries. Commonly, the EP of a company refers to a set of indicators that measure the direct 

or indirect influence on a specific environmental problem (Campos, Melo Heizen, Verdinelli, & 

Cauchick Miguel, 2015). These indicators can look very different across different industries or stages 

in the value chain at which they are measured. El Saadany et al. (2011) for instance elaborate that for 

supply chains, EP measures assess the amounts of air pollutants emitted from industrial plants and 

hazardous substances released, affecting soil and water quality. Albertini (2016) argues that variables 

can be of different origins, as long as they are observable and quantifiable. Performance is usually 

measured as positive when pollution of any kind is reduced and negative when it augments (Albertini, 

2016). On a country level the EPI, published by the Yale Centre for Environmental Law and Policy, 

is a tool that provides a data-driven ranking with a set of 40 different indicators coming from the 

categories climate, environmental health and ecosystem vitality (Wolf et al., 2022). Every two years, 

180 countries are assessed according to these indicators, but can also use them for self-monitoring 

(Wolf et al., 2022). 

According to Albertini (2016), the dimensions of EP can be displayed on two axes. Within these 

dimensions, companies or organizations have various possibilities of actions to exercise influence 

over said dimension. Firstly, the internal/external axis shows whether action is taken solely within 

the company or with third parties involved. The second axis, process/outcome, captures whether the 

emphasis is on the end result or on the internal processes and methods employed to achieve 

environmental objectives. The dimensions derived from those are (1) organizational systems, (2) 

relations with stakeholders, (3) conformity to regulations, and (4) environmental impacts (see Fig. 3) 

(Albertini, 2016). 

 

The showcased framework harmoniously corresponds with Nawrocka and Parker (2009) 

interpretation of EP, highlighting that it surpasses a mere list of indicators and emphasizing the 

interconnectedness of diverse dimensions and processes. 

 

Fig. 3. Dimensions of EP (based on Albertini, 2016) 
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For purposes of consistency, the following thesis will use a definition as implemented by DIN EN 

ISO 14001, extended by the means proposed by Nawrocka and Parker (2009). Therefore, EP will be 

seen as the extent to which an organization, in this case companies, can decrease its negative 

environmental impact and simultaneously benefit from its efforts.  

1.2.2. Motivation for Environmental Performance Improvement 

To understand how companies can improve their EP, it is necessary to know, why they aspire to do 

so in the first place. As aforementioned, there are several potential motivations for a company to 

improve its EP.   

While research commonly acknowledges a range of both intrinsic and extrinsic motivations to be 

driving forces, most scholars agree that the main motive for taking environmental action is based on 

economic interests and rather seldom derives from ecological awareness (Cainelli, Marchi, & 

Grandinetti, 2015). Applying an RBV can help managers understand the opportunities they hold to 

gain a competitive advantage by investing their available resources. Research suggests that being 

mindful of a company's resources is a key factor in achieving environmental sustainability and thus 

improving EP (Cainelli et al., 2015; Makhloufi, Laghouag, Meirun, & Belaid, 2022). In addition to 

that, EP has been found to be closely linked to the profitability and performance of companies 

(Miroshnychenko, Barontini, & Testa, 2017; Russo & Fouts, 1997).  

Additional intrinsic motivations can also be derived from the four dimensions of EP identified by 

Albertini (2016) (see Fig. 2). One of the strongest motivators is an improved corporate image (Del 

Río González, 2005; Puttawong & Kunanusorn, 2020). This, in turn, indirectly affects a company's 

performance by influencing customers' opinion and their inclination to engage with the organization. 

While this effect is more commonly observed in B2C sectors, it is still a valuable aspect for B2B 

companies as well (Puttawong & Kunanusorn, 2020). 

Concurrently, extrinsic motivational factors mainly exert pressure on companies to take action, to 

avoid negative consequences (Graafland & Bovenberg, 2020). This is evident in the form of 

regulations, financial sanctions, and pressure from stakeholders. Regulations are one of the key 

extrinsic motivational factors that drive companies to act (Nyahuna & Doorasamy, 2022). 

Governments and regulatory agencies establish rules and guidelines that businesses must adhere to. 

Failure to comply with these regulations can lead to legal consequences, fines, or the suspension of 

business operations (Nyahuna & Doorasamy, 2022). This serves as a powerful incentive for 

companies to actively address the issues at hand. The European Union has developed a framework of 

rules and guidelines, comprised in the so-called Green Deal (European Commission, 2023b). It 

contains for example the Corporate Sustainability Reporting Directive (CSRD), which obliges 

companies to include their sustainability governance, strategy and measures in the annual reports, 

creating accountability for taking environmental, social and economic action (European Commission, 

2023a). In case of non-compliance with the regulation, there will be financial penalties and other legal 

actions. 

In addition to regulations, the European Union (EU) has introduced a “cap and trade” system to 

incentivize a decrease in CO2 emissions (European Parliament, 2003). This system, known as the 

Emissions Trading Scheme (ETS), requires companies to hold a certain amount of emissions 

allowances to legally emit greenhouse gases. If a company exceeds its allocated allowances, it must 

either purchase additional allowances or reduce its emissions. This creates a financial motivation for 
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companies to lower their carbon footprint. In addition to that, many countries introduced taxes on 

CO2 or greenhouse gas emissions. However, Lithuania has not implemented such a thing as of now.  

Finally, the pressure from stakeholders, including investors and customers, plays a central role as 

well in driving companies towards action (Graafland & Bovenberg, 2020). These stakeholders have 

an interest in the environmental practices of companies and are increasingly demanding sustainable 

actions (Nyahuna & Doorasamy, 2022). Any failure to meet these expectations can lead to a loss of 

reputation, a decline in the number of customers, or a decrease in investments (Graafland 

& Bovenberg, 2020). Consequently, companies are compelled to address these concerns to ensure 

stakeholder satisfaction and uphold their reputation. 

1.2.3. Connecting Digital Transformation and Environmental Performance 

As the industrial revolution unfolded, it became evident that technological advancements have 

negative  impacts on the environment across diverse dimensions, thereby adding to the emergence of 

a climate crisis  (Chen & Hao, 2022). The Industry 4.0 movement has positioned itself intending to 

mitigate these effects, harnessing smart factories to work towards a sustainable economy. 

Consequently, a substantial body of research is dedicated to addressing the inquiry regarding the 

efficacy of DT in enhancing the EP of corporations, particularly regarding manufacturing entities 

(Bendig, Schulz, Theis, & Raff, 2023). Moreover, researchers are trying to determine the most 

effective way to implement digital technologies for the benefit of the environment (Plekhanov, 

Franke, & Netland, 2023). Schöggl et al. (2023) discovered that companies that use digital 

technologies in manufacturing rarely prioritize EP. Instead, their main focus is on achieving 

production excellence. 

Albertini (2016) defines five categories to measure EP related to business strategy: general 

management, resource consumption, production process, achieved production, and financial and 

nonfinancial results. DT and digital technologies, mentioned in Chapter 1.1.3, mainly belong to the 

third and fourth categories as they are all production-related. However, it can also be argued that 

some of them have an effect on resource consumption and general management (Ahmadova et al., 

2022). 

It is important to note that there is a consensus in research regarding the existence of a correlation 

between DT and EP (Chen et al., 2020). However, the specific nature of this relationship is still under 

debate, as scholars have expressed differing viewpoints (Li, 2022). While certain studies suggest a 

purely positive influence on EP, other research indicates that the correlation may take on a curvilinear 

trajectory. In such cases, the environmental benefits of digitalization may diminish or have 

unintended consequences under certain conditions (Chen et al., 2020). However, Chen et al. (2020) 

state that only 14% of sources in their literature review investigated a U shape-relationship. 

Consequently, further investigation testing this kind of relationship is required. Additionally, the 

research field is lacking data from diverse countries and regions (Feroz et al., 2021). Currently, the 

knowledge base primarily encompasses insights from Eastern Asian countries (Chen & Hao, 2022; 

Li, 2022; Lin, Zeng, Wu, & Luo, 2024; Sarfraz, YE, Dragan, Ivascu, & Artene, 2022; Wen, Lee, & 

Song, 2021; Yang, Yang, Xiao, & Liu, 2023), with fewer examples from other global regions 

(Ahmadova et al., 2022; Bendig et al., 2023; Le Ha et al., 2022). Furthermore, there is evidence 

suggesting that the relationship between DT and EP might differ between various regions based on 
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differences in their digital and environmental development level (Xu, Li, & Guo, 2023; Yang et al., 

2022).  

Therefore, a more comprehensive understanding needs broader geographical coverage and a 

diversified dataset as well as a focus on a potential non-linear relationship between DT and EP to 

close these research gaps and contribute towards gathering more data in Europe.  
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2.  Theoretical Solution for the Effect of Digital Transformation on Environmental 

Performance 

As concluded in chapter 1.2.3, the problem that this thesis aims to address is determining whether the 

relationship between different digital technologies and EP varies in terms of strength and significance 

and if a non-linear model is appropriate to represent this relationship. To accomplish this, this chapter 

will provide an overview of the theoretical evidence supporting both linear and curvilinear models, 

as well as a categorization of technologies. This will then lead to the development of the research 

model and hypotheses. 

2.1. Theoretical Evidence 

Over the past decade, research on the relationship between DT and EP has become more concentrated 

(Chen et al., 2020). Although the number of published papers on this topic has strongly increased, 

with Chen et al. (2020) finding 65 papers between 2018 and 2020, evidence for various forms of the 

relationship has emerged. While scholars acknowledge the existence of a relationship, it remains 

unclear whether it is linear or non-linear. This chapter will summarize the arguments and findings 

from both research streams, which will be considered when developing hypotheses. 

2.1.1. Evidence for a Linear Relationship 

Firstly, when examining the research stream which supports a strictly positive relationship between 

DT and EP, it has been found that the implementation and use of digital technologies have a direct 

impact on the environmental sustainability of a production (Wen et al., 2021). One of the main effects 

is proposed to be a decrease in energy consumption during the design and production phase 

(Ahmadova et al., 2022; Bendig et al., 2023; Wen et al., 2021). On the one hand, machines become 

increasingly energy efficient, and on the other hand, data collection and evaluation can analyze the 

energy consumption behaviour, waste and root causes and thus help create environmental goals and 

paths (Bhatia et al., 2024).  

Furthermore, digital technologies can lead to a decrease in emissions such as carbon dioxide or other 

greenhouse gases and a reduction in waste (Ahmadova et al., 2022; Yang et al., 2023). In particular, 

the management of waste and the reduction of discarded materials through new manufacturing 

technologies like AM have been highlighted. Another aspect when considering energy and waste 

reduction is predictive maintenance. By using digital technologies, companies can monitor and 

predict equipment failures, enabling timely maintenance interventions and reducing the 

environmental impact associated with unplanned downtime and resource wastage (Bhatia et al., 

2024).  

Additionally, the new level of knowledge acquisition facilitated through DT, in connection to 

computer-aided design (CAD) and simulations, can lead to the design of eco-friendly products, which 

are constructed for a longer lifespan and easy repair, refurbishment or recycling at the end-of-life 

(Yang et al., 2023). Also, the collected data can be used to implement more resource-efficient 

manufacturing practices with modular production and shorter lead-times (Plekhanov et al., 2023).  

Finally, an indirect way, digital technologies can affect EP, is through enhanced knowledge exchange 

within the company or throughout the supply chain (Schöggl et al., 2023).  



25 

2.1.2. Evidence for a Non-linear Relationship 

On the other side, there are some studies suggesting a curvilinear, or also inverse-U-shaped, 

relationship. Although this research stream agrees with the positive findings, the scholars assume 

there to be a tipping point at which digital technologies can no longer serve to an improvement of EP 

but rather foster a negative impact (Ahmadova et al., 2022). These impacts often show a more indirect 

and longterm nature than their positive counterparts (Wen et al., 2021).  

For instance, the systems that are in place to generate and process a vast amount of data require the 

support of an equally large amount of servers, which in turn intensifies energy consumption (Chen et 

al., 2020). Li (2022) adds that approximately 90% of the collected data is not productively used, but 

still stored. Moreover, most digital technologies use some form of sensors or micro-chips, which tend 

to cause pollution in their fabrication, specifically through semi-conductor production, as well as at 

their end of life, since nowadays only a mere fraction of sensors and chips are recycled (Chen et al., 

2020; Ruberti, 2023).  

Concurrently, rapid technological change leads to technologies having a shorter lifetime than they 

were intended to have, which increases the electrical waste of valuable resources in all lifecycle stages 

(Ahmadova et al., 2022). Researchers agree that while there are ways that DT can improve EP, there 

is a rebound effect, which occurs when more and more technologies are used due to their positive 

impact so that these are overcome by negative effects (Ahmadova et al., 2022; Chen et al., 2020; 

Chen & Hao, 2022; Li, 2022). 

In addition to the direct and indirect impacts, research suggests, that there are several moderating and 

influencing factors that play a role in the effect DT has on EP. Firstly, there are industry factors, 

recognizing elements such as market turbulence (Li, 2022) as significant determinants. Secondly, 

there are technological factors, encompassing considerations like overall technological capabilities 

(Sarfraz et al., 2022), have been investigated for their role in influencing the environmental outcomes 

of digital initiatives. Furthermore, organizational factors within companies, spanning production and 

product characteristics, digital strategies (Sarfraz et al., 2022), and organizational and leadership 

culture (Chen & Hao, 2022; Lisi, 2015), are seen to play a role in this context. Understanding these 

factors is essential for a comprehensive exploration of how technologies may contribute to EP in 

varied ways. This realization lays the basis for considering different aspects within the field of 

technology adoption and its implications for environmental sustainability in the manufacturing sector. 

2.2.  A Resource-based View on Digital Technologies and Environmental Performance 

When looking at digital technologies and EP, researchers often make use of the so-called resource-

based view of strategy, which traces back to Wernerfelt (1984). The RBV as opposed to the market-

based view is a strategic management framework that shifts the focus from market factors as key 

influencers on a company's long-term success to the uniqueness and quality of a company's resources 

(Thudium, 2005). It‘s main idea is to build resources for a competitive advantage instead of deriving 

the required resources from the market position and needs. This enables a new perspective on growth 

as well since strategic acquisitions can be planned as the intake of new resources (Wernerfelt, 1984).  

Barney (1991) identified four attributes that contribute to the attractiveness of a resource in this 

context: value, rarity, imperfect imitability, and lack of substitutability. The author also classified 

firm resources into three categories: physical capital resources, human capital resources, and 
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organizational capital resources. Digital technologies generally fall into the category of physical 

capital resources and they possess the ability to fulfill all four attributes (Barney, Wright, & Ketchen, 

2001). They have been found to enable manufacturing companies to create capabilities that improve 

value creation in various ways, depending on their specific application area, thereby improving profit 

generation (Schöggl et al., 2023). For example, digital technologies allow for the adoption of new 

manufacturing methods (Plekhanov et al., 2023). By employing innovative techniques such as AM 

and modular production design, companies can leverage their physical resources differently, 

facilitating mass customization. Furthermore, digital technologies simplify data collection and 

processing in an intelligent way which advances the distribution of resources of all kinds to become 

more sensible, learning from their production through machine learning and AI applications (Bhatia 

et al., 2024). These examples demonstrate how digital technologies can enhance the overall efficiency 

of manufacturing entities, offering a competitive advantage through increased efficiency.  

Moreover, digital technologies foster digital innovations, as discussed in Chapter 1.1.1, which can 

help companies establish technological leadership (Plekhanov et al., 2023). Such differentiation 

options can also lead to the possibility of generating higher profit margins. Additionally, they 

strengthen the resilience of production systems, empowering companies to react to unforeseeable 

market situations or new external threats (Osmundsen et al., 2018). Additionally, well-rounded digital 

resources might open up the possibility of vertical or horizontal expansion to markets that require 

similar resources (Barney, 1991). This counteracts the threat of being locked into one market by a set 

of competencies in case the market changes (Yadav, Han, & Kim, 2017). 

Indirectly, DT can also lead to a competitive advantage if it is positively affecting the EP of a 

company, as explained in chapter 2.1.1. Originally, Wernerfelt (1984) defined a resource as “anything 

which could be thought of as a strength or weakness of a given firm“ and which is tied semi-

permanently to it. Hence, EP can also be seen as a resource, albeit an intangible one. From a RBV, 

EP can have several beneficial effects on the competitive position of a company. In today‘s more 

environmentally conscious society, public environmentally sustainable behaviour elevates a 

company's reputation if done right (Yadav et al., 2017). A positive reputation is seen as a strong 

intangible resource that can reinforce a sustainable competitive advantage, as it is a central aspect of 

brand recognition (Wernerfelt, 1984). This does not only apply to customers or potential investors 

but also affects the job market's reputation. Skilled personnel might be inclined towards working for 

a company with a good EP (Graafland & Bovenberg, 2020). A good reputation can also lead to 

beneficial conditions in bargaining situations in both customer and supplier positions.  

Financially, Surroca et al. (2010) revealed corporate responsibility performance (CRP) to be directly 

related to the overall business performance. With EP being part of the CRP, it contributes to a general 

profit improvement by reducing the spending on governmental induced carbon taxes, emission 

trading or other regulatory expenses that incentivise companies to reduce their environmental 

footprint (Graafland & Bovenberg, 2020). Moreover, in the internal process dimension  (see Fig. 3), 

EP is often demonstrated through improved products and processes (Albertini, 2016). Efficiency, in 

particular, is closely associated with effective EP (Yadav et al., 2017). This entails reducing 

unnecessary waste, energy consumption, and other resources (Schöggl et al., 2023). While initial 

investments may be necessary, this can ultimately lead to lower production costs in the long term 

(Yadav et al., 2017). 
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As a result, digital technologies, DT and EP are all individual resources that help ensure a competitive 

advantage. By understanding the relationships between them,  this effect can be reinforced. As this 

thesis aims to answer the question of the nature of the relationship, digital technologies and EP have, 

it can help companies to make strategic decisions on how to develop and expand their technological 

capabilities to profit from the competitive advantages, EP offers. 

2.3. Categorization Framework Selection 

This thesis ought to offer recommendations on which technologies to implement to which level for 

achieving a positive impact on EP. In order to create an abstractable outcome that can potentially be 

transferred to technologies not examined in this research, this chapter aims to classify the studied 

technologies. It will present requirements for the categorization, three potential classifications and 

reasoning for the decision for one of the options.  

As mentioned in Chapter 1.1.1, numerous scholars attempt to define the term "digital technologies" 

by providing a list of recent technologies. In this context, there have been several efforts to create a 

meaningful categorization for digital technologies  (Varriale et al., 2024). However, there is currently 

no academic consensus on the best approach to categorize them. Therefore, this chapter aims to 

analyze and compare different categorization methods. 

2.3.1. Categorization Requirements 

Before introducing the options, it is important to establish the criteria based on which they will be 

evaluated and selected (Kwasnik, 1999). This step is necessary to ensure a well-informed decision 

that is based on objective requirements. To achieve this, a comprehensive number of attributes and 

characteristics must be clearly defined (Tan, Steinbach, & Kumar, 2006). This will endow a 

meaningful and accurate characterization of the options, ultimately leading to the creation of 

consistent and empirically valuable categories. The four qualities that will be taken into consideration 

for the choice of the categorization framework will be category broadness, scalability, consistency 

and academic recognition. 

Categorization is the process of organizing different objects into groups based on their shared 

characteristics (Apostel & Rose, 2022; Spivak, 2014). A descriptive model allows for a more 

structured and organized understanding of the objects being classified and their characteristics (Tan 

et al., 2006). It is necessary to ensure that each category has the ability to include multiple objects. 

This is because a too narrow definition of a category may restrict its usefulness and limit the objects 

that can be included within it. By having broader categories, we can capture a wider range of objects 

and increase the effectiveness of the categorization system. This is also a way to ensure scalability. 

Scalability, or generalization ability, refers to the ability of a system to expand and adjust as needed 

(Tan et al., 2006). In the context of a categorization framework, it means that the framework should 

have the capability to accommodate additional objects or data without requiring extensive 

modifications, such as the inclusion of new categories. This flexibility allows the framework to easily 

adapt to evolving needs and accommodate a growing range of objects without hindrance and include 

new objects based on the attributes of each category. In other words, scalability ensures that the 

categorization framework can effectively handle increasing amounts of information without causing 

disruptions or the need for substantial changes to its structure.  
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In addition to that, it is important to maintain consistency not only within each category but also 

across different applications (Brucks, 1986). This means that the classification and organization of 

items should be uniform and coherent within the entire system. By ensuring consistent and distinct 

categories, users will have a seamless experience and be able to easily navigate and comprehend 

them. 

Finally, for the purpose of this thesis, the chosen categorization framework should ideally have a 

considerable level of consensus within the academic community. As mentioned earlier, there is 

currently no academic consensus regarding a single form of categorization. However, some papers 

and authors have expressed support for a particular idea or approach. 

2.3.2. Option 1: Technology-based categorization 

The first option introduces a comprehensive framework that was developed to establish a connection 

between digital technologies and supply chain risks. Ivanov et al. (2019) formulated this framework 

by reviewing existing research and identifying four distinct categories. Although this framework was 

originally designed for a study focused on supply chain management, it is still relevant and applicable 

to the specific case being examined in this thesis, given that the study is exclusively centred around 

manufacturing applications. The four categories for this option are predictive analytics, Industry 4.0, 

3D printing and advanced tracking and tracing (T&T) technologies.  

Ivanov et al. (2019) discuss the concept of predictive analytics and its application by using big data 

analytics as an exemplary enabler. Big data refers to the large volume, velocity, and variety of data 

that is generated from various sources such as social media, sensors, and online platforms (Buhl, 

Röglinger, Moser, & Heidemann, 2013). Predictive analytics involves the use of statistical techniques 

and algorithms to analyze these large sets of data in order to make predictions and forecast future 

outcomes. Due to their close relationship, they are often referred to as a combined entity 

(Gunasekaran et al., 2017). 

The concept of Industry 4.0 lacks an overall definition (Ivanov et al., 2019). However, it is widely 

used as an umbrella term for a large variety of technologies, such as IoT, smart products, robotics or 

augmented and VR, as used by Ivanov et al. (2019). The technologies are characterized by enabling 

smart and interconnected manufacturing processes (Queiroz, Pereira, Telles, & Machado, 2021).  

The third category, 3D printing, specifically encompasses additive manufacturing as a technology 

(Ivanov et al., 2019). However, it is important to note that AM comprises several technologies that 

fall under this umbrella term (Mehrpouya et al., 2019). These technologies include material jetting, 

selective laser melting, and screen printing, among others. AM processes involve the creation of 

three-dimensional objects by adding layers of material on top of each other (ASTM, F2792-12a). 

Finally, the last category, advanced T&T technologies, includes sensors and RFID technology 

(Ivanov et al., 2019). This category is the only one out of the four, which is specific to supply chain 

management, as tracking and tracing throughout the supply chain build the foundation for decision-

making in this context (Bearzotti, Salomone, & Chiotti, 2008). By accurately monitoring the 

movement and location of goods, this technology establishes a strong foundation for effective and 

informed decision-making within the supply chain context. 
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This method of categorizing technologies is widely used in various disciplines. Many authors use 

overarching terms like Big Data, Industry 4.0, CPS, IoT, or cloud computing, and then include 

additional categories for technologies that do not fall under these broad labels (Varriale et al., 2024). 

Examples of this can be found in research by Dantas et al. (2021)or Zheng et al. (2021). The first one, 

on the one hand, used Industry 4.0 as a general term to describe all of the digital technologies, which 

were then categorized into big data, CPS, AM, IoT, Internet of Services, cloud computing, systems 

integration, AR, autonomous robots, and cybersecurity (Dantas et al., 2021). Zheng et al. (2021) on 

the other hand used the categories CPS, IoT, cloud technology, blockchain, big data and analytics, 

AI, simulation and modelling, automation and industrial robotics, visualization technology, and AM. 

Hence, it can be seen that the way of performing the classification as proposed by Ivanov et al. (2019) 

is generally accepted and serves as a common framework for organizing and understanding various 

technological advancements. 

Nevertheless, it has to be noted that some categories within the classification system are relatively 

broad and lacking in precise definitions, such as Industry 4.0. On the other hand, the category AM is 

more narrowly defined. This lack of specificity could potentially hinder the consistency and 

scalability of the classification system. It may pose a challenge to incorporate new technologies that 

were not previously included in the taxonomy proposed by Ivanov et al. (2019) due to this issue. 

2.3.3. Option 2: 5C Architecture of CPS 

The second option is the 5-level architecture of cyber-physical-systems (CPS), a model created by 

Lee et al. (2015). The paper provides a systematic guideline for the implementation of CPS 

particularly in the manufacturing industry. The U.S. National Science Foundation (2021) defines CPS 

as "systems that are built from, and depend upon, the seamless integration of computation and 

physical components“. They consequently permit close monitoring and synchronization of 

information between the physical factory and the cyber computational space, facilitating connected 

machines to operate more efficiently, collaboratively, and durably through advanced information 

analytics.  

While the framework aims to provide a guideline for the deployment of the technologies, it 

concurrently offers a form of categorizing them (Lee et al., 2015). Although some sources 

differentiate between CPS and digital technologies, others see them as part of CPS (Piardi, Leitão, 

Queiroz, & Pontes, 2024; Wu et al., 2019). Therefore,  the categorization can be applied to all kinds 

of digital technologies, as proposed by Chen et al. (2020). The five levels, as shown in Fig. 4,  are the 

smart connection level, data-to-information conversion level, cyber level, cognition level and 

configuration level. As shown, the levels build upon each other and from progress level to level in 

automation and autonomy of the CPSis attained.  

The smart connection level enables seamless communication and data acquisition from machines and 

their components (Lee et al., 2015). Its main objective is the acquisition of accurate and reliable data, 

ensuring that it is seamlessly transferred to the central server. To achieve this, for instance, advanced 

smart sensors can be employed to gather precise data from the machines. 

The data-to-information conversion level focuses on transforming raw data acquired from the smart 

connection level into meaningful and actionable information for decision-making processes (Lee et 

al., 2015). The primary objective is to convert vast and often complex datasets into a comprehensible 

format that facilitates analysis and supports informed decision-making. The data-to-information 
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conversion level acts as a bridge between the raw data collected from the smart connection level and 

the more abstract and meaningful information needed for higher-level decision-making at the cyber 

and cognition levels. 

 

The cyber level is often referred to as a central information hub (Lee et al., 2015). All gathered data 

is centralized and supports self-comparison amongst the machines of a fleet in terms of health and 

performance. This leads to the ability to compare and rank the performance of single machines in a 

fleet in order to operate the fleets in a long-lasting way (Jiang, 2018).  

The cognition level is primarily responsible for higher-order decision-making, reasoning, and 

intelligent behaviour based on the information processed and generated in the lower levels of the 

architecture (Lee et al., 2015). The cognition level integrates advanced computational methods, 

simulation, and human-machine interaction to derive insights and make informed decisions. 

Finally, at the configuration level, the systems can give corrective or preventative feedback from the 

cyber world to the physical world (Lee et al., 2015).  This level oversees the management and 

adaptation of the system to meet specific objectives and requirements (Jiang, 2018). Accordingly, it 

is instrumental in ensuring the flexibility, scalability, and optimal functioning of the entire CPS and 

is responsible for resilience control (Wu et al., 2019).  

Each of the categories is defined by Lee et al. (2015) with a specific set of attributes. According to 

the author, these categories are interconnected, and as the level of complexity of technologies, self-

management capabilities, and independence of human input increases, so does the level of the 

category. This allows for smooth scalability if needed. It also ensures consistency within the 

framework. However, Chen et al. (2020) point out that categorizing technologies into these categories 

can be challenging because they often fit into multiple categories. This complicates the application 

of this framework. Nevertheless, since its creation, several authors have reviewed and successfully 

applied this framework (Ahmadi, Cherifi, Cheutet, & Ouzrout, 2017; Chen et al., 2020; Wu et al., 

2019), thereby confirming its academic relevance. 

Fig. 4. 5C levels (Lee et al., 2015) 
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2.3.4. Comparison and Selection  

When comparing the two options for categorizing digital technologies, namely the framework 

proposed by Ivanov et al. (2019) and the 5C architecture of CPS introduced by Lee et al. (2015), 

several factors come into play. As discussed in Chapter 2.3.1, the comparison will focus on 

scalability, the broadness of categories, consistency, and academic acceptance. It is clear that different 

authors have different understandings of technologies and technology categories. For instance, some 

consider CPS as a distinct group of technologies among others (Dantas et al., 2021; Zheng et al., 

2021), while others include all digital technologies under CPS since they all have a digital and 

physical component (Lee et al., 2015).  

Firstly, the 5C architecture of CPS offers an advantage in terms of scalability due to its hierarchical 

structure and interconnected levels. As the complexity of technologies increases, the architecture 

allows for smooth scalability by accommodating higher levels of complexity, self-management 

capabilities, and reduced human dependency. Each level builds upon the previous one, enabling the 

system to adapt and grow as needed. On the contrary, the framework proposed by Ivanov et al. (2019) 

might face challenges in scalability due to both relatively broad and narrow categories. Incorporating 

new technologies into the framework could be inconvenient and may require modifications to the 

existing categories. 

In terms of the broadness of categories, the framework by Ivanov et al. (2019) offers a more specific 

approach, with four distinct categories: predictive analytics, Industry 4.0, 3D printing, and advanced 

T&T technologies. While this provides a broad overview of digital technologies, some categories 

lack generalizability, which could hinder consistency and scalability. On the other hand, the 5C 

architecture of CPS provides a more granular categorization, with five distinct levels that encompass 

different aspects of CPS, from data acquisition to decision-making and system configuration. This 

allows for a more detailed understanding of how digital technologies are sorted within the CPS 

framework, enhancing both consistency and scalability. 

Considering consistency, both options demonstrate a certain level within their respective frameworks. 

The 5C architecture of CPS maintains consistency by defining clear attributes for each category and 

ensuring that the levels are interconnected and build upon each other. This consistency contributes to 

a cohesive framework that facilitates understanding and application. The framework proposed by 

Ivanov et al. (2019) is very specific in determining which digital technologies fit into which category, 

indicating a certain level of consistency and ease in its application. However, some categories within 

this framework may lack generalized definitions, which could lead to lower consistency.  

Finally, both papers have been well-received in the academic community, with numerous studies 

citing and applying these frameworks in various contexts. The 5C architecture of CPS has been 

reviewed and successfully applied by several authors, confirming its academic relevance and practical 

utility (Chen et al., 2020; Venancio Teixeira, da Silva Hounsell, & Wildgrube Bertol, 2023; Wu et 

al., 2019). Meanwhile, the framework proposed by Ivanov et al. (2019) has strong similarities with 

the way that numerous other authors have categorized digital technologies in their field of application 

(Dantas et al., 2021; Varriale et al., 2024; Zheng et al., 2021).  

After a comprehensive comparison, it is evident that both options have their own strengths and 

weaknesses. However, for the purpose of this thesis, the 5C architecture of CPS appears to be the 

more suitable choice. Its hierarchical structure and clear attributes provide advantages in terms of 



32 

scalability and consistency. In addition to that, the detailed and descriptive categorization offered by 

the 5C architecture enables an easy allocation of technologies for each category. Therefore, the 5C 

architecture of CPS will be used as the primary framework for categorizing digital technologies in 

this study. 

2.4. Categorization Application 

As explained, the 5C architecture of CPS will be used to categorize technologies to receive clear and 

abstractable outcomes. In the following, the model will be reviewed and applied for a selection of 

digital technologies, which were mentioned in Chapter 1.1.3: Enterprise resource planning system 

(ERP) supported manufacturing, industrial automation, CAD manufacturing, digitalization of 

production, real-time control of inventory, real-time control of manufacturing, machine learning and 

AI, simulation, AR solutions, and fully-automated/smart manufacturing 

2.4.1. 5C Architecture of CPS Review 

This chapter will provide additional insights into the 5C architecture framework and adjustments or 

alterations proposed by scholars. This will create a base for a detailed explanation of the allocation 

of technologies to each category.  

According to Jiang et al. (2018), the five levels as proposed by Lee et al. (2015) can also be interpreted 

as a cycle in terms of data flow instead of a strictly hierarchical order. Data is collected via sensors 

and converted into useful information first on a machine level, then on a fleet level. After a critical 

mass of data has been collected, it can be used for simulation or machine learning purposes. 

Concurrently, during the operation of smart manufacturing, the data collection continues. While IT 

used to have a more supportive function in the manufacturing process, Industry 4.0 transformed it 

into a central key element in the value creation (Javaid, Haleem, Singh, & Suman, 2023). Despite 

that, safety must be prioritized when talking about collaboration between human operators and CPS 

(Venancio Teixeira et al., 2023). All levels of the 5C architecture can be connected to several norms 

and standards which allow standardization within industries and can support the implementation of 

digital technologies (Ahmadi et al., 2017). 

A systematic review by Venancio Teixeira et al. (2023) stated that more often than not, not all levels 

of CPS are reached and companies tend to focus on two to three of the categories. Reasons might be 

that companies face barriers to implementation as mentioned in Chapter 1.1.1, such as cyber security 

issues or a lack of digital capacities to handle this large amount of data (Bruton, Walsh, Cusack, 

O’Donovan, & O'Sullivan, 2016). While Wu et al. (2019) claim that the configuration level is still 

widely underresearched, most of the papers analyzed by Venancio Teixeira et al. (2023) emphasize 

the importance of examining the configuration and cognition levels, as well as the technologies 

associated with them. This suggests that research, specifically on the more complex parts of the 

model, has increased over the past few years. While improvements were mostly measured concerning 

operation time, the authors argue that a more comprehensive comparison to traditional industry could 

be seen as beneficial (Venancio Teixeira et al., 2023).  

Jiang (2018) proposes an integration of three additional components to the architecture, making it an 

8C framework. The author argues that the model focuses mainly on vertical integration and suggests 

adding the horizontal facets of coalition, content and customer. Firstly, the coalition sphere refers to 

value chain and product chain integration. Secondly, the customer facet highlights the role of the 
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customer in the production process. Third, the content facet is centered around extracting, storing and 

retrieving all product-related content. Although these are important factors to take into account in the 

implementation of digital technologies and achieving a smart factory, they do not extend or change 

the levels of technologies but rather surround them (Jiang, 2018). Thus, in this thesis, the additional 

3C facetts can be neglected, since the focus lies on the digital technologies and their categorization. 

When it comes to the categorization according to the 5C architecture, some technologies can be 

associated with more than one of the five levels. Nevertheless, for reasons of clarity, they will be 

assigned to the level they are most compliant with (Chen et al., 2020). A detailed evaluation of the 

allocation, summarized in Table 1, follows in Chapters 2.4 to 2.4.6. 

Table 1. 5C Categorization of Technology 

2.4.2. Smart Connection Level 

As the base layer of the 5C architecture, the smart connection level ensures the connection between 

all systems and the machines (Lee et al., 2015). Efficient management of data acquisition procedures 

and the selection of appropriate sensors are key aspects of the smart connection level (Chen et al., 

2020). Appropriate sensors can transmit valuable information on for example temperature, vibration, 

rotating speed, feed speed, and oil concentration of machines (Jiang, 2018). Nevertheless, since all 

the components collect an enormous amount of data, suitable acquisition approaches and data 

cleansing models are needed and subject to a broad research stream (Wu et al., 2019). In addition to 

that, standard protocols, interfaces, and information models are critical elements in handling data 

from diverse sources. 

On the smart connection level, ERP systems, manufacturing execution systems (MES) and 

digitalization of documentation and reporting are chosen as the representative technologies. ERP and 

MES systems in this context are used for identifying the order delivery process of each production 

batch and integrating data from the sales, manufacturing planning, warehouse and accounting 

(Ghobakhloo et al., 2023). The digitalization of documentation and reporting involves the transition 

from traditional paper-based methods to electronic formats. This empowers the creation, storage, and 

retrieval of documents and reports in digital form, eliminating the need for physical copies and 

reducing the risk of loss or damage (Lee, Azamfar, Singh, & Siahpour, 2020). By digitizing 

instructions, organizations can enhance accuracy, speed, and accessibility, allowing employees to 

quickly access relevant information and perform tasks more effectively. Both technologies facilitate 

tether-free communication and enable data collection and management (Chen et al., 2020). While the 

5C-Level Technologies 

Configuration 
Fully-automated/smart manufacturing 

Machine-learning / AI 

Cognition 
Simulation 

Augmented and virtual reality solutions 

Cyber 
Real-time control of inventory 

Real-time control of manufacturing 

Data-to-Information-Conversion 
Industrial Automation 

CAD Manufacturing 

Smart Connection 
ERP Supported manufacturing 

Digitalization of production 



34 

digitalization of documentation and reporting could theoretically fall into various categories 

depending on its purpose, the given application in this context (see Chapter 3.1) is the use of electronic 

instructions, performance reporting, and documentation. Consequently, in this case, digitalization 

aligns mostly with the objectives of the smart connection level. 

2.4.3. Data-to-Information Conversion Level 

On the data-to.information conversion level the collected data is transformed into useful information 

that humans can work with (Lee et al., 2020). Algorithms and data processing techniques are 

employed to filter, aggregate, and contextualize the raw data. This transformation is necessary to 

extract valuable insights, identify patterns, and generate information that is relevant to the specific 

requirements but also health and remaining useful life of the physical components (Jiang, 2018). This 

allows transformation to reduce equipment failures and downtime, which enhances the efficiency and 

effectiveness of the overall system (Javaid et al., 2023). To manage the amount of data proficiently, 

tools and methodologies such as data processing, big data analysis and data mining approaches must 

be incorporated (Wu et al., 2019). The data-to-information conversion level can also involve 

transforming input data into actionable output data, carried out by machines or robotic applications 

(Chen et al., 2020). 

For this level, the decision was made to incorporate the technologies of industrial automation and 

CAD manufacturing. Industrial automation, as a concept, revolves around the integration of robots 

within the manufacturing environment in order to optimize and streamline processes (Ciarli et al., 

2021). These robots possess the ability to transform input data into physical, automated tasks, thus 

effectively carrying out a variety of manufacturing operations. This also involves implementing AM 

for the prototyping of new products, parts or tools. Additionally, CAD and computer numerical 

control (CNC) manufacturing equipment or production lines are also essential components of this 

system(Nee, 2014). These technologies use the existing CAD data and transform it into automated 

routines, resulting in efficient and precise manufacturing processes. 

2.4.4. Cyber Level 

As the cyber level serves as an information hub with centralized and interconnected data, it already 

permits a higher level of self-management (Lee et al., 2015). This means that it has the capability to 

compare the status of various components such as machines and fleets. This level establishes a 

communication infrastructure necessary for seamless interaction between the components of the 

whole manufacturing system (Wu et al., 2019). This includes communication protocols, networking 

technologies, and data transmission mechanisms. The reliability and efficiency of communication 

systems are important to ensure continuous information exchange. One of the main benefits of having 

strong systems on the cyber level is the opportunity to have real-time data and control (Lee et al., 

2020). A key technology is the digital twin, which allows computational resources to process and 

analyze information quickly, allowing for timely responses to changing conditions in the physical 

environment. Accordingly, technologies for real-time control of inventory, raw material and finished 

goods, as well as manufacturing will be evaluated in the following, to allow a holistic view and 

management of all data in the network. 

Cybersecurity appears to be one of the main concerns at the cyber level (Yeboah-Ofori, 2019). The 

implementation of robust security measures to protect the system from unauthorized access, data 

breaches, and cyber-attacks is a central activity when concentrating on this level (Wu et al., 2019). 
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Therefore, encryption, authentication mechanisms, and intrusion detection systems are employed for 

the protection of sensitive information. 

2.4.5. Cognition Level 

On the cognition level, complex systems are already able to support human decision-making 

processes (Lee et al., 2015). This is achieved by leveraging the data collected and processed in the 

lower stages of the CPS architecture. One common field of application is the maintenance and 

possible predictive maintenance of machines (Jiang, 2018). A well-implemented CPS on the 

cognition level offers the opportunity to take over diagnostics and prioritization of tasks related to the 

physical health of production facilities. This collaboratively takes place between humans and the 

system. However, what is needed for a successful implementation is the purposeful adaption of the 

system to the existing expertise within the company to enable a functioning collaboration, since on 

this level the systems are made for decision support and not fully independent operation (Wu et al., 

2019). This also necessitates appropriate presentation tools to illustrate the data in an aesthetically 

pleasant and more importantly clear way, enabling easy interpretation by users.   

Technologies that fall into the cognition category include simulation and augmented and virtual 

reality solutions. Simulations are versatile and can be used to visualize technological problems and 

their sources of error and for the solution process, making it easier to identify and understand potential 

issues (Nee, 2014). They are also useful from a process planning perspective, to prevent bottleneck 

situations and optimize the manufacturing work flow. Furthermore, manufacturing companies can 

use simulation technologies to predict plant performance and test the effectiveness of the production 

schedule 

AR and VR can serve as a supplementary tool in production environments, helping workers by 

providing practical information and visualizations (Nee, 2014). For instance, it can display 

instructions or reference material that can enhance productivity and accuracy. AR can also be used 

during maintenance or logistics operations, enabling workers to view and interact with digital 

overlays on physical objects, which can simplify complex tasks and reduce the risk of failure. 

Furthermore, it can be used as a tool for employee training, allowing for an interactive learning 

experience (Le Ha et al., 2022). 

2.4.6. Configuration Level 

The configuration level is considered the most independent component out of the whole CPS 

architecture, making it the most complex (Lee et al., 2015). The systems in place at this level allow 

feedback between the physical and digital worlds. This enables them to fulfil objectives and tasks 

almost fully self-managed (Wu et al., 2019). Consequently, the configuration level poses significant 

challenges in terms of both implementation and maintenance, demanding the expertise of highly 

skilled and well-trained personnel. 

Next to performance optimization, this CPS level sets up companies to improve resource managment 

and create dynamic capabilities (Chen et al., 2020). This is one of the main areas where the EP of the 

company can be altered on a daily basis, depending on the decisions the system makes. It has a direct 

influence on the "enhanced products and processes“ dimension of organizational EP and can lead to 

a decrease in energy, raw material and water consumption (Albertini, 2016). 
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Technologies such as AI, machine learning or smart manufacturing systems fall into this category 

due to their ability to self-adapt, -configure and -optimize at this stage (Wu et al., 2019). These 

technologies demonstrate their ability to continuously learn and enhance performance through the 

utilization of algorithms and data analysis (Chen et al., 2020). AI and machine learning can be used 

in a production scenario for demand forecasting, quality control or predictive maintenance through 

real-time anomaly detection (Feroz et al., 2021; Le Ha et al., 2022). Meanwhile, smart manufacturing 

systems are characterized by manufacturing processes that are integrated into continuous automated 

production lines. These systems are built upon real-time and historical data, as well as patterns 

collected throughout the production processes. 

Javaid et al. (2023) emphasize that, despite the processing power and strength of the underlying 

algorithms, humans still act as the "highest level controlling instance“. disparity between artificial 

machines and humans in terms of flexibility and intelligence, despite the impressive processing power 

and advanced algorithms possessed by machines. Similar to the cognition level, this requires 

interfaces to be designed with a profound understanding of human cognition, aiming to deliver 

seamless and intuitive user experiences. 

2.5. Research model 

 

This thesis aims to define the relationship between a number of digital technologies and EP of 

Lithuanian manufacturing companies, as discussed in Chapter 1. In Chapter 2.1, the literature was 

reviewed to investigate the possibility of linear or curvilinear relationships. Given that these two 

forms of relationships theoretically exclude each other, and there appears to be a lack of research on 

the non-linear side, this thesis will focus on estimating curvilinear effects. To provide a more abstract 

Fig. 5. Research model (Source: own depiction) 
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understanding, the technologies were classified into five levels: smart connection, data-to-

information conversion, cyber, cognition, and configuration. This classification was based on their 

implementation in manufacturing, as well as their level of complexity and independence (see Chapter 

2.4). Throughout this study, the direct effects of these technology levels on EP will be measured, and 

the nature and strength of this relationship will be evaluated. These findings will then be used to 

provide managerial recommendations from a RBV. 

2.6. Hypotheses Development 

As described in Chapters 1.2.3 and 2.1, there is conflicting evidence concerning the impact of DT 

and digital technologies on the EP of manufacturing companies. While there are direct factors in 

production that help reduce energy consumption, waste, and other emissions, some researchers have 

also found a rebound effect that occurs once a certain level of DT is reached (Ahmadova et al., 2022; 

Chen et al., 2020; Hao, Wu, Wu, & Ren, 2020; Li, 2022). This thesis aims to further investigate this 

relationship. 

As shown in Fig. 5, for this thesis the five technology categories are assumed to add up to create the 

overall DT level of a company. In turn, if DT has a non-linear relationship with EP, the same would 

be expected from the digital technologies that are combined in the categories. However, it is important 

to consider that the relationship might vary when considering different types of technologies due to 

their distinct environmental benefits and pollution patterns.  

When it comes to smart connection technologies and data-to-information conversion technologies, 

the initial use is expected to have a strong positive influence on EP. For instance, these technologies 

can help predict and control water quality, air pollution, and contamination by hazardous waste, as 

they are capable of acquiring and managing a significant amount of information and data (Chen et 

al., 2020). Additionally, intelligent robots and AM can stabilize manufacturing quality, reducing 

rejects and waste, while enhancing production efficiency. However, it is important to acknowledge 

that the physical components of these technologies result in high energy consumption and diverse 

emissions throughout their life cycle, particularly during production and use (Ahmadova et al., 2022). 

Furthermore, at the end of their life cycle, the recycling rates of many of these components, especially 

sensors and microchips, are currently very low (Chen et al., 2020). 

Considering technologies at the cyber level, the real-time control of inventory and manufacturing 

tracking can be beneficial for the implementation of EP initiatives, as companies can respond to 

observed outcomes and enable green manufacturing practices (Schöggl et al., 2023). However, it is 

important to note that the storage and processing of a large amount of data, of which only a small 

fraction is ultimately used, consumes a non-negligible amount of energy (Li, 2022). Hence, it can be 

expected that while there will be an initial positive effect, there is still an overall non-linear 

relationship. 

At the configuration level, technologies such as fully automated/smart manufacturing, AI, and 

machine learning can be utilized to optimize resource allocation, including material, energy, and 

water use (Chen et al., 2020). Similarly, at the cognition level, simulation and AR solutions can reduce 

material and energy consumption by minimizing design errors and incorporating design for 

disassembly principles (Schöggl et al., 2023). These technologies also offer virtual testing 

opportunities and effective scenario generation, which ultimately reduces the need for physical 

prototypes and therefore decreases material and energy consumption. It can be assumed that these 
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positive effects outweigh the energy consumption and pollution associated with the production and 

utilization of these technologies to a certain degree, so that the tipping point might be at a later level 

of implementation or the inverse-U shape might be more shallow.  

Thus, the following hypotheses result:  

H1: There is an inverted U-shape relationship between configuration technologies and 

environmental performance. 

H2: There is an inverted U-shape relationship between cognition technologies and environmental 

performance. 

H3: There is an inverted U-shape relationship between cyber technologies and environmental 

performance. 

H4: There is an inverted U-shape relationship between data-to-information conversion technologies 

and environmental performance. 

H5: There is an inverted U-shape relationship between smart connection technologies and 

environmental performance. 
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3. Methodological Solutions 

The following chapter will present the research methodology, based on the research model described 

in Chapter 0. For the preparation of the analysis, the overall approach and data collection process will 

be explained. Afterwards, the measures and data analysis procedure will be discussed. 

3.1. Overall Approach and Data Acquisition 

To investigate the relationship between different types of digital technologies and EP in 

manufacturing companies, a bivariate regression analysis was conducted using the SPSS statistical 

software. The research approach adopted in this study is positivist, aiming to gather empirical 

evidence through a deductive reasoning process.  

Secondary data were utilized, sourced from a survey conducted in 2022 by Ghobakhloo et al. (2023). 

The data is not publicly available and was collected through a survey conducted with 506 

manufacturing companies in Lithuania. It employes a cross-sectional design.  As this survey was 

created to find out about different dimensions of DT in Lithuanian manufacturing companies it does 

not reflect the research objectives specific to this thesis. Therefore, the technologies that can be 

examined were limited to the ones that were chosen for the survey 

In terms of data collection, the survey was administered via telephone to ensure a wide coverage of 

participants. Stratified sampling was utilized, involving a total of 3,297 companies being contacted. 

The response rate obtained was 15.3%. The survey respondents consisted mainly of CEOs, 

accounting for 62.8% of the sample. Additionally, production managers, IT technical managers, 

technology/development managers, and other relevant individuals were also included in the sample.  

3.2. Measures 

The survey aimed to assess the technological and digital readiness of Lithuanian companies 

(Ghobakhloo et al., 2023). It consisted of questions related to change management, resources, 

products & services, operating systems, supply chain, investments in digitalization, and performance 

compared to competitors. The survey items were derived from existing literature on digital innovation 

(Lokuge et al., 2019) and the principles of industry 4.0 design (Annarelli, Battistella, Nonino, Parida, 

& Pessot, 2021). The levels of readiness were determined through an analysis of the implementation 

of specific technologies, such as CAD design and manufacturing employing CAD software, CNC 

machines, and AM. The questions were formulated as positive statements in the format of “We use..“, 

“We apply..“ and similar expressions (. Respondents were required to rate the items on a 5-point 

Likert scale, where 1 indicated strong disagreement, 5 indicated strong agreement, and there was an 
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additional option for "Not applicable for our company." Unanswered questions will be treated as 

missing values and “not applicable“ will be represented as a value of zero.  

Table 2. Construct composition 

 

For this study, a two-stage hierarchical latent variable was employed, as presented in Table 2 (Becker, 

Klein, & Wetzels, 2012). The independent variables included general DT level (survey items 18-27), 

configuration (survey items 24 & 27), cognition (survey items 25 & 26), cyber (survey items 22 & 

23), data-to-information conversion (survey items 19 & 20), and connection (survey items 18 & 21). 

The dependent variable was EP level (survey item 32b). Each item consisted of three questions, and 
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the latent variables were calculated by summing up the values of the questions and dividing them by 

the number of values.  

3.3. Data Analysis Procedure 

A combination of descriptive and inferential statistics was used to address the research question. 

Initially, the data was analyzed using descriptive statistics to provide a comprehensive overview of 

the data and the respondents in terms of company size and industry. 

To ensure internal consistency within the questions for each independent variable, a reliability 

analysis was conducted. This involved performing an exploratory factor analysis to confirm the 

structure of the selected latent variables created from the chosen items as shown in Chapter 2.4, as 

well as examining Cronbach's alpha to ensure internal reliability (Hair, Jr., Black, Babin, & Anderson, 

2013). The outer loadings of indicators should ideally be >0.7. If they are lower but still over the 

acceptable level of 0.4, it will be investigated if the removal of said item would improve the internal 

reliability. The overall internal reliability measured by Cronbach’s alpha has to be a minimum of 0.7 

for each construct. If the indicator loadings and reliability confirmed the appropriateness of the 

constructs, they were utilized as predictors for the subsequent analysis.  To investigate the existence 

of a relationship between the predictors and the independent variable, a Spearman correlation analysis 

was conducted. 

To address the hypotheses, inferential statistics, specifically bivariate regression analysis, were 

employed to examine the relationships between the variables. This included assessing the square and 

cubic polynomials of the independent variables to identify if non-linear relationships are given (Hair, 

Jr. et al., 2013). Afterwards, the robustness and stability of the relationships were tested to rule out 

spurious correlations. For this purpose, the control variables company size, number of IT staff and 

age of the company were introduced into a multivariate regression analysis. Using forward addition, 

a hierarchical linear regression with the predictors and their polynomials was performed. The 

construct had to be tested for multicollinearity issues, as these interrelations of independent variables 

could impose problems in the regression analysis. This was tested by assessing the tolerance and 

variance inflation factor (VIF), expecting a high tolerance level (close to 1) and VIF to be smaller 

than 3 (Hair, Jr. et al., 2013). The results will provide insights into the origin of the relationship 

between the five digital technology categories and EP. 
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4. Research Findings and Discussion  

This chapter reports and reviews the empirical findings that resulted from conducting the analysis as 

described in Chapter 3.3. After creating a thorough understanding of the data and the relationships 

tested in this thesis, the results will be discussed and interpreted from a RBV. This finally leads to 

recommendations for organisations and managers and avenues for further academic research. 

4.1. Descriptive Statistics 

A thorough understanding of the sample composition provides valuable insights into the 

representativeness of the collected data. Moreover, it establishes a foundational framework for 

following analyses that explore the relationship between digital technologies and EP among 

manufacturing companies in Lithuania. The first section will present various characteristics of the 

sample and conduct a thorough examination of them. Afterwards, an overview of the data will be 

provided, including a detailed analysis of the dependent variable, "EP," and its predictors. 

4.1.1. Sample and Population 

The sample included 506 Lithuanian manufacturing companies. They represent a range of different 

sectors, sizes and business models from all over Lithuania. The survey respondents come from a range 

of companies in manufacturing subsectors. They were classified using the statistical classification of 

economic activities in the European Community (NACE) (European Commission, 2008). Since the 

focus was NACE cluster C, manufacturing, the NACE divisions 10 to 33 were taken into account. To 

receive a clearer overview they were grouped into six sectors. The sectors were diversely distributed, 

with 34.4% in metal and engineering (divisions C22, C24-C30, C33), 29.2% in wood and furniture 

(divisions C16-C18, C31), 11.2% in food and beverages (divisions C10-C11), 10.6% in textiles and 

apparel (C12-C15) 7.4% in chemical pharmacy (divisions C19-21, C23), and 7.2% in other sectors 

(division C32). This aligns closely with the current distribution of the population as shown in the 

comparison of sample and population in Table 3. 

Table 3. Distribution industry sectors 

 

Regarding company size, most of the participating companies had fewer than 250 employees. As can 

be seen in Table 4, around two-thirds of manufacturing companies in Lithuania are small businesses 

with less than ten employees. This could not be portrayed in the data, as this group only makes up 
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16.8% of the respondents, whereas companies with a workforce of 10 to less than 50 employees 

account for the greatest share of respondents.  

Table 4. Distribution company size 

 
The companies were also asked about their year of foundation. The age distribution is spread over a 

range of 33 years, relatively evenly. All age groups are represented in this range with 0.6 to 4.7% (see 

Fig. 6).  

 

 

4.1.2. Digital Technology Levels and Environmental Performance Overview 

The data findings suggest that the levels of digital technology implementation are relatively low 

across all sectors and technologies. In the survey, an answer of 1 or 2 indicates disagreement with the 

given statement. Thus, these results imply that digital technologies are not or hardly implemented in 

the responding companies. However, it is noteworthy that companies in the "metals and engineering" 

sector appear to have the highest overall level. 
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When examining the different technology categories, it is observed that the highest overall levels are 

found in the "connection" and "cyber" categories. This suggests that these areas may be more 

advanced in terms of technology implementation compared to higher levels, such as cognition or 

configuration.  

 

Fig. 8 shows the technology implementation in companies with different-sized workforces. There’s 

a tendency observable for larger companies to have a higher level of implementation in the examined 

technology categories. The lower implementation rate for small companies may be a result of high 

implementation costs or a lack of resources, such as skilled personnel and knowledge. This could 

indicate a correlation between the complexity of the technology and its level of implementation, 

which, however, will not be further discussed in this thesis. 

Fig. 7. Heatmap: Level of technology use by sector (source: own depiction) 

Fig. 8. Heatmap: Level of technology use by company size (source: own depiction) 
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Regarding the EP level, the average level is 3.17, with no significant discrepancies between 

industries. The standard deviation is relatively small at 0.48. However, the data shows a high kurtosis 

of 4.365, indicating a relatively high peak in the distribution, as shown in Fig. 9. Based on these 

findings, most companies state that their EP level is equal to that of their competitors. The data also 

shows relatively low variance, which could be attributed to a slight central tendency bias. Central 

tendency bias occurs when respondents consistently select the midpoint option (e.g., "3" on a 5-point 

Likert scale) as default or due to uncertainty (Douven, 2018). Consequently, this leads to a clustering 

of responses around the centre of the scale. This phenomenon reduces the variability in the data, 

which may consequently obscure the true distribution of opinions or attitudes among respondents. As 

a result, it makes the data less informative and meaningful for analysis.  

Table 5. Correlation matrix EP, digital technologies and DT total 

 
 

When looking at the correlations between the constructs, it can be observed that almost all digital 

technologies except for the data-to-information conversion category exhibit weak but significant 

correlations with the EP. As to be expected, the technology categories show significant high 

correlations with each other. Moreover, DT total is calculated by using all the survey items that were 

used for the technology constructs, which is why there are correlations >0.07 visible.  

4.2. Empirical Findings 

In this chapter, the results from the analyses will be presented. It will examine the findings in detail, 

providing a thorough and comprehensive overview of the outcomes. 

0

50

100

150

200

250

300

0 1,00 1,67 2,00 2,33 2,67 3,00 3,33 3,67 4,00 4,33 4,67 5,00

F
re

q
u
en

cy

EP level

Fig. 9. Histogramm of EP 



46 

4.2.1. Reliability of Constructs 

As described in Chapters 3.2 and 3.3, the first step is to investigate the appropriateness of constructs 

and explore the underlying dimensions by assessing the factor loadings of the survey items onto their 

respective constructs. Five constructs were examined: smart connection, data-to-information 

conversion, cyber, cognition, and configuration. Each of the constructs was based on theory and 

consisted of two technologies, with each technology represented by three survey items, resulting in a 

total of six items per construct (see Table 2). 

Table 6. Factor analysis and Crohnbach's alpha results 

 

The results, as shown in Table 6, revealed strong factor loadings (>0.7) for most items, indicating a 

clear coherence between the survey items and their intended constructs. However, for the smart 

connection and cognition constructs one item each, and for the data-to-information conversion 

construct three items showed factor loadings between 0.4 and 0.7. As this result is still acceptable, 

but not ideal, these items were further examined within the internal reliability analysis. 

Following the factor analysis, internal reliability analysis was performed using Cronbach's alpha 

coefficient to assess the consistency and reliability of the measurement scales. It was found that 
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Cronbach's alpha coefficient for the three problematic items of the data-to-information conversion 

constructs improved with these items included. As a result, these items were retained in the data-to-

information conversion construct, despite their factor loadings below the threshold of 0.7. However, 

the two items of the smart connection and cognition constructs were removed, as their removal 

improved the internal consistency and therefore the informative value of these constructs. 

Overall, Cronbach's alpha values for all constructs exceeded the threshold of 0.7, indicating 

satisfactory internal consistency among the survey items within each construct. Specifically, the alpha 

values were as follows: smart connection (α = 0.833), data-to-information conversion (α = 0.739), 

cyber (α = 0.806), cognition (α = 0.883), and configuration (α = 0.862). 

This process of examining both factor loadings and Cronbach's alpha coefficients ensured that the 

final measurement scales accurately captured the intended dimensions of the underlying constructs 

while maintaining satisfactory levels of internal consistency. 

4.2.2. Regression Analysis 

The regression analysis aimed to investigate the relationship between the five technology categories, 

smart connection, data-to-information conversion, cyber, cognition, configuration, and EP in 

Lithuanian manufacturing companies. First of all, a bivariate regression with one technology category 

as independent and environmental performance as the dependent variable was performed. This was 

repeated for all categories and the polynomials of each variable, to find any linear, quadratic or cubic 

relationships. The results can be seen in Fehler! Verweisquelle konnte nicht gefunden werden. 

Table 7, and indicate a significant and positive relationship of some form for all categories except for 

data-to-information conversion.  

 

Table 7. Bivariate regressions with technology categories and EP 

 

 

The strength of these relationships can be compared by looking at the standardized β coefficient and 

the R square value. Both of these indicators show that although most of the tested relationships are 
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significant, they tend to be weak (stand. β < 0.3). The coefficients for smart connection, linear (β = 

0.171, p < 0.001) and cyber, linear (β = 0.152, p < 0.001) show a profoundly high significance level. 

Except for data-to-information conversion, where no significant relationship to EP was proven, and 

cognition, all tests showed significant results for the linear, quadratic and cubic predictors. Hence, 

further testing is required to find the models that provide the best fit for the relationship.  

Thus, to validate the revealed relationships and examine their stability, multiple regression analyses 

were conducted. Control variables, namely company size based on the headcount in 2021, company 

age and number of IT staff, were introduced in the equations, performing a hierarchical linear 

regression. The control variables were chosen since they reflect objective indices and information on 

the respondents and do not use subjective ratings. In addition to that studies show that these kinds of 

corporate key figures can affect the overall company performance (Rahman & Yilun, 2021; Rossi, 

2016; Yadav et al., 2017). 

Table 8. Regression analysis smart-connection 

  

Table 9. Regression analysis data-to-information conversion 

 

In Table 8Fehler! Verweisquelle konnte nicht gefunden werden., it can be seen that in the 

regression model with only the control variables, exclusively the company size has a significant 

relationship to EP, while IT staff and company age do not reach the critical significance level to be 

considered beneficial to the model. Since the intention of adding them is solely the testing of the 

digital technologies, the non-significance is not an issue for the procedure. When inserting the linear 

smart connection variable in the equation, there is a significant and positive but weak relationship 

visible. The R square value, however, is lower than in the first model. Continuing with the 
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polynomials, neither they nor the linear variable have a significant effect anymore. This indicates that 

the relationship between digital technologies that fall into the category “smart connection“ and EP is 

rather unstable. Nevertheless, there is a slight linear relationship. 

As expected, the data-to-information conversion category variable shows no significant influence 

when introducing control variables to the regression. This is the case for the linear, quadratic and 

cubic variables, similar to the bivariate regression shown in Table 9. Therefore, no relationship 

between the data-to-information conversion technologies and EP could be determined.  

Table 10. Regression analysis cyber 

 

Table 11. Regression analysis cognition 

 

Table 12. Regression analysis configuration 
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The cyber (see Table 10) and configuration (see Table 12) variables show the same pattern as the 

smart connection and thus establish a weak but significant relationship between these digital 

technologies and EP. Concurrently, cognition (see Table 11) as a predictor does not show a reliable 

significance level as soon as control variables are introduced in the equation. This proves that the 

relationship is not stable enough to be considered confirmed. 

The strength of the effect, measured by the standardized Beta value, is considerably similar for all 

three significant relationships with values between β=0.114 and β=0.142. This indicates that the 

improvement of the DT level always has a similar effect on the EP, regardless of the digital 

technology used, given that it stems from the smart-connection, cyber or configuration category.  

To ensure the quality and meaningfulness of this regression analysis, it is important to test for 

multicollinearity issues, since this could also have an influence on the tested relationships. For all 

models, the tolerance for each predictor is close to one and the VIF is below the threshold of three 

(Hair, Jr. et al., 2013), which would indicate minor multicollinearity issues. Additionally, a potential 

correlation between the technology category variables and company size was checked. Although there 

is a weak correlation between these variables, as shown in Table 13, there is no correlation over the 

critical value of 0.7 (Hair, Jr. et al., 2013), which would indicate severe multicollinearity issues. 

 

Table 13. Correlation analysis technology categories and control variables 
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Finally, the hypotheses H1 and H3 were confirmed, while H2, H4 and H5 were rejected. In addition 

to that it was found that there is a stable, significant relationship between company size and EP, 

indicating that larger companies tend to exhibit higher levels of environmental performance. 

The empirical results have to be set into perspective of the environment in that they were developed 

as well as some executive decisions that were made for the analysis and which can have an impact 

on the outcome. First of all, the categorization of digital technologies was created theoretically. As 

explained in chapter 2.3 there are many ways to categorize digital technologies. Those other 

categorizations might have led to a different outcome with more or less significance. However, the 

linearity or non-linearity is most likely unchanged by that. It is probable that any categorization would 

have led to the conclusion that there is a linear relationship between the regarded technologies and 

the corporate environmental performance of manufacturing companies. Another possibility might 

have been to perform an exploratory factor analysis and use the created factors as predictors, but this 

solution lacks meaningful predictors and is therefore difficult to interpret. 

Secondly, the results in the regression analysis can be influenced by a central tendency bias in the 

dependent variable, EP. With a variance of 0.2304, indicating limited variability among responses, 

and a majority of respondents, approximately 52.6%, consistently selecting the midpoint score of 3 

on a 5-point Likert scale, there is a risk of reduced accuracy in the data. This clustering of responses 

around the neutral option may disguise differences in EP that exist in reality. This might reduce the 

ability of the regression model to accurately capture the relationships between predictors and the 

dependent variable. Therefore, the regression coefficients may lack precision, confidence intervals 

may widen, and statistical significance may be lower, leading to inconclusive findings regarding the 

impact of predictor variables on EP, like in this case with data-to-information conversion and 

cognition. 

4.3. Discussion 

This investigation sought to clarify the relationship between digital technologies and EP. The 

previous chapter served as a foundation for the theoretical analysis examined the secondary data and 

presented empirical results from the regression analysis. The purpose of this chapter is to discuss the 

theoretical implications derived from these findings, provide recommendations based on the RBV 

theory, and outline the limitations and potential directions for future research in this area. 

4.3.1. Theoretical Implications 

The results of the regression analysis indicate a weak yet statistically significant positive linear 

relationship between smart connection technologies and EP (H1), cyber technologies and EP (H3), 

and configuration technologies and EP (H5). This contradicts the assumption that there is a non-linear 

relationship between digital technologies and EP, suggesting instead a linear relationship. Given that 

digital technologies are a central component of DT (see Chapter 1.1.1), this study also proposes a 

positive relationship between DT and EP. As a result, this thesis aligns with the research conducted 

by Chen and Hao (2022), Wu et al. (2019), Feroz et al. (2021), Sarfraz et al. (2022), and Bendig et 

al. (2023), who all proposed a positive link between DT and EP. Consequently, the EP of 

manufacturing companies improves as they implement digital technologies of various levels of 

complexity and independence into their production systems. Hence, the increasing use of digital 

technologies leads to improved EP. 
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Consequently, this study disagrees with the findings of Ahmadova et al. (2022), Chen et al. (2020), 

and Hao et al. (2020), who suggested a more complex relationship, such as an inverse U-shaped 

relationship. The differences in findings may be due to several reasons, On the one hand, different 

measurement models for EP were applied. While some studies measured energy or material 

consumption in absolute values, the data from the survey evaluated in this thesis was conducted using 

a comparative approach (Wen et al., 2021). On the other hand, the results can differ based on local 

circumstantial differences due to geographical location, political climate and social dynamic, being 

factors that affect the common level of environmental sustainability or development stage of digital 

technologies (Yang et al., 2022).  

Furthermore, the negative effects of digital technologies on EP can have long-lasting implications. 

These effects may not be immediately apparent but rather appear at a later stage in the lifecycle or 

after a few years of implementation. While digital technologies may initially facilitate change and 

improvements that positively influence EP, it is important to consider the potential negative 

consequences that may arise over time.  

These negative effects can encompass a range of issues, such as maintenance, energy consumption, 

data landfill, and end-of-life disposal. It is worth considering that these detrimental environmental 

effects may not be accurately reflected in the EP measurements of companies using these 

technologies. For instance, the primary environmental impact of microchips, which serve as the 

foundation for many digital technologies, stems from the production of semiconductors and their 

disposal at the end of their lifespan (Ruberti, 2023). Kuo et al. (2022) suggest that 85% of the climate 

change impact of integrated circuits originated in the production stage, while the highest impact on 

water resources was measured in the raw-material stage. Therefore, it is evident that the negative 

consequences of digital technologies on EP extend beyond what can be measured solely through the 

EP metrics of companies. 

An additional finding that emerged from this study is that the size of the company has a positive 

impact on EP. It is worth noting, however, that due to the limitations of this thesis, a more 

comprehensive investigation into this specific aspect will not be conducted. 

In summary, technological advancement has been found to play an important role in enhancing the 

EP of manufacturing companies. By adopting technologies that enable the digitalization of production 

processes, real-time monitoring of inventory and manufacturing activities, or fully automated and 

smart manufacturing systems, a demonstrable improvement in the EP of Lithuanian manufacturing 

companies has been proven. This improvement is primarily attributed to the enhancement of 

production efficiency and more effective distribution of resources, thereby reducing waste generation 

as well as water and energy consumption (Le Ha et al., 2022). The results from this analysis contribute 

additional insights from Europe to the existing body of research, further strengthening the evidence 

supporting a positive linear relationship between DT and EP. 

4.3.2. Managerial Perspective and Recommendations 

From a RBV perspective, the main findings of this thesis suggest that companies should expand their 

digital technology resources in order to enhance their EP. This means that companies need to invest 

in acquiring and developing more digital technology resources, such as advanced software and 

hardware, that can be utilized to improve their EP. By doing so, companies can optimize their 

environmental practices and processes within the scope of their EMS, leading to more sustainable 
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and eco-friendly operations. Furthermore, they should effectively leverage their existing digital 

technology applications to capitalize on opportunities that can significantly reduce their 

environmental footprints. They should identify and explore opportunities within these applications 

that can support environmental sustainability initiatives.  

Enhancing EP is attractive for companies as it not only contributes to their competitive advantage but 

also enhances their reputation in the market. By improving EP, companies can achieve increased 

efficiency, leading to significant cost savings. This cost advantage can give companies an edge by 

increasing their profits or allowing them to offer lower prices, depending on their strategic goals.  

Concurrently, enhancing EP can make a company more appealing to potential employees. In today's 

world, many employees prioritize working for environmentally responsible companies. By 

demonstrating a commitment to environmental sustainability, companies can attract top talent and 

improve their recruitment efforts. 

Based on the findings of this thesis, it is recommended that companies focus on three key areas: smart 

connection, cyber technologies, and configuration technologies. This involves leveraging advanced 

technologies such as ERP-supported manufacturing and the digitization of production processes. By 

embracing these technologies, companies can streamline their operations, improve efficiency, and 

enhance overall productivity. By adopting technologies that empower real-time inventory control and 

manufacturing companies can gain valuable insights into their inventory levels and production 

progress, allowing for better planning and allocation of resources, such as material, parts and human 

resources. Configuration technologies, involving machine learning, AI, and fully-automated / smart 

production, enhance efficiency, minimize errors, and reduce production costs. These technologies 

also have the potential to enable customization and personalization of products, allowing companies 

to cater to individual customer preferences and gain a competitive edge. 

Furthermore, better EP can help companies minimize the expenses associated with regulatory 

compliance. For instance, reducing CO2 emissions can result in reduced costs spent on ETS carbon 

emission allowances. By actively improving their EP, companies can also become eligible for 

subsidies offered for achieving good EP in various areas.  

Nevertheless, the literature evaluated for the problem analysis still shows that there are environmental 

impacts caused by digital technologies that need to be addressed. The results from this thesis open up 

the possibility that the negative environmental effects of digital technologies do not primarily affect 

the sustainability performance of the analyzed companies. Since they only use the technologies, and 

the majority of the footprint is generated during production and disposal, the EP does not fully reflect 

these influences. 

The European Parliament recently approved the Corporate Sustainability Due Diligence Directive 

(CSDDD) (European Parliament, 2024). This directive aims to enforce corporate due diligence, with 

a particular focus on environmental impact and human rights compliance. According to Human 

Rights Watch (2024), this means that companies will be held accountable for thoroughly examining 

their value chains. As a result, environmental factors related to the production of digital technologies 

will also be affected. The semi-conductor production industry has previously faced criticism for its 

environmentally and socially problematic practices (Ruberti, 2023). With the responsibility now 

partly shifting to manufacturing businesses, this might become an additional metric for their corporate 
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EP and thus develop pressure to mitigate the environmental effects of this part of the digital 

technologies‘ lifecycle. 

In conclusion, based on the findings of this thesis, the RBV suggests that investing in digital 

technologies is advisable for companies aiming to improve their EP. By capitalizing on already 

implemented digital technologies and investing in smart connection, cyber, and configuration 

technologies, companies can reduce their environmental footprints, gain a competitive advantage, 

reduce costs, comply with regulations, and become more attractive to various stakeholder groups such 

as investors, customers and potential employees. However, managers should be careful about the 

selection of the technologies and their impact outside of the operational stage, since the impact on the 

production and end-of-life disposal of these technologies can be greater and should be considered 

when measuring the internal EP, especially to comply with future regulation based on the CSDDD. 

4.3.3. Limitations and Directions for Further Research 

The study conducted has certain limitations that should be taken into account when examining the 

results. One limitation is that the study was solely conducted in Lithuania, which means that there 

may be certain local factors or peculiarities that have influenced the outcome. While this geographical 

focus allowed for a comprehensive analysis within a specific context, it also restricts the 

generalizability of the findings to broader contexts. Additionally, the study only included respondents 

from the manufacturing industry sectors, specifically NACE cluster C. This provided insights into 

the manufacturing industry as a whole, although it was not possible to evaluate potential differences 

between smaller sectors due to the small sample sizes. To gain a more comprehensive understanding, 

further research could be conducted on more specific industries, allowing for an exploration of the 

variations between them. Moreover, there is potential for future research to expand the scope of the 

study. One suggestion is to include multinational comparisons or cross-cultural analyses to enhance 

the external validity of the findings. This would allow for a more robust understanding of the topic 

by considering different cultural contexts and exploring potential variations in the outcomes. 

Other constraints relate to the way the data was gathered. The survey format allowed different levels 

of understanding of digital technologies among survey respondents. This variance could have 

introduced bias or inconsistency in the collected data. To address this issue, future research could 

consider conducting interviews to ensure a comprehensive understanding of how exactly these 

technologies are being employed within the companies. Additionally, the subjective assessment of 

EP by managers in higher-level positions, as well as production managers, IT technical managers, 

and technology/development managers instead of sustainability managers, may have implications for 

the accuracy and comprehensiveness of the data collected. To gain a more grounded insight into the 

various aspects that contribute to EP within manufacturing companies, future research could explore 

the perspectives of sustainability managers. Another option could be evaluating EP based on 

measurable indicators such as greenhouse gas emissions, energy and water consumption, or waste per 

unit of time or unit of production. 

Considering the long-term nature of EP, it would be beneficial to conduct a follow-up survey after a 

period of two to five years. This follow-up survey would provide valuable insights into the long-term 

effects of adopting digital technology on the environment. By conducting such a survey, a more 

comprehensive evaluation of how digital technologies influence environmental outcomes over time 
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would be possible. This would facilitate a deeper understanding of the impact of digital technology 

on the environment and informed decision-making regarding its implementation. 

In addition, the study revealed a heterogeneous distribution of the digital technologies being 

considered and their respective categories. This can potentially affect the measurable impact on EP, 

given that it appears as if the categories with no significant relationship to EP had very low 

implementation levels across all industries. Since these technologies have not been widely 

implemented, it is difficult to determine how a higher level of implementation would affect EP. Future 

studies could further explore this discrepancy and investigate the contribution of different types of 

technologies to environmental sustainability in manufacturing companies. 

Moving forward, several directions for further research emerge. Firstly, further investigation of 

moderating and mediating factors could be performed to deepen the understanding of the relationship 

between digital technologies and EP. This could involve investigating contextual factors that 

influence the effectiveness of technology interventions in driving sustainability outcomes. 

Secondly, qualitative research provides an opportunity to explore the nuances of how companies 

employ technologies to improve environmental sustainability. Through the identification of best 

practices and the examination of real-world case studies, qualitative research can provide valuable 

insights into the strategies and mechanisms by which digital technologies can be leveraged to 

accomplish environmental objectives. 

In conclusion, while this study has highlighted the positive relationship between digital technologies 

and EP in manufacturing companies, it also opens up areas for further investigation and refinement. 

By addressing the constraints encountered and investigating new research directions, future studies 

can contribute to advancing knowledge in this research field. 
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Conclusion 

1. Although research agrees that DT and digital technologies provide opportunities for 

improving the EP, there is conflicting evidence as to whether a broad and higher-level use 

of digital technologies can lead to negative effects that outweigh the positive ones or not.  

DT has several ways of impacting the EP of manufacturing companies, which can be positive and 

negative.  

On the one hand, the positive effects are primarily direct in nature. They help reduce environmental 

issues such as greenhouse gas emissions, water and energy consumption, and waste by improving 

production efficiency. Technologies, such as IoT, real-time control of production and stock, or 

simulations help create efficient workflows, optimise material distribution, and manage tasks. 

Machine learning and AI applications can also learn from existing data collected by machines and 

tools and improve maintenance and logistics operations or independently adapt the production based 

on orders. Additionally, technologies can support the design stage of new eco-friendly products that 

are made for a more circular economy and are created with eco-efficiency in mind. 

On the other hand, the production of digital technologies can also cause significant environmental 

damage. In particular, the production of micro-chips and the required semi-conductor extraction were 

shown to have a detrimental effect on the environment. In addition to that, the technology lifecycles 

become increasingly shorter as technological progress becomes more rapid. Together with low 

recycling rates at the end of life, this facilitates an increasing amount of technological waste. This 

phenomenon is known as the rebound effect, which occurs when the usage of digital technologies for 

environmental purposes escalates to a point where it becomes destructive 

In summary, the technological advancement and use of digital technologies for production purposes 

present opportunities for improvement and eco-efficiency. However, they also carry risks, such as the 

potential for a rebound effect that could harm the environment more than it protects it. 

 

2. The proposed framework to sensibly categorize digital technologies is the 5C architecture 

of CPS. It allows categorizing digital technologies according to their complexity and 

independence of human input.  

The 5C architecture of CPS, developed by Lee et al. in 2020, offers a practical and effective method 

for classifying digital technologies. Originally designed to streamline the implementation of CPS in 

companies, this framework also serves as a valuable categorization model for digital technologies 

that are part of CPS. 

The framework comprises five distinct categories: smart-connection, data-to-information conversion, 

cyber, cognition, and configuration. Each category includes unique core activities and specific areas 

of focus for CPS implementation. The technologies encompassed within these categories span a wide 

range of complexity and reliance on human input. For instance, the smart-connection category 

includes technologies such as sensors that have low complexity and thus high dependency on human 

input. On the other hand, the configuration category includes technologies such as AI, which are 

characterized by high complexity and low dependency on human input. 
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Due to the detailed characterization of these categories, the framework permits a seamless allocation 

of digital technologies into their appropriate categories. Some technologies may be eligible for 

inclusion in multiple categories, as they can sometimes have varying levels of complexity within 

different application areas. However, for the purposes of this study, a single category was selected 

for each technology to avoid redundancy. 

To validate the selection of categories utilized in this thesis, an internal consistency analysis was 

conducted using Crohnbach's Alpha and factor analysis. This analysis confirmed that the chosen 

categories were internally consistent and reliable. Each category was treated as a construct consisting 

of a 3-stage latent variable, which was derived from two technologies using three survey items each. 

 

3. Based on empirical research, three out of five digital technology categories were found to 

have a statistically significant and positive relationship with EP. This suggests a positive 

relationship between DT and EP as well. Next to these key outcomes, the analysis in this 

thesis revealed that there is a significant positive relationship between the firm size and EP. 

The empirical research conducted in this thesis involved performing a regression analysis with control 

variables to examine the relationship between each of the five technology categories and EP. The 

problem analysis revealed an area that so far received limited research attention, specifically, the 

potential non-linear relationship between DT and EP. To investigate this relationship, the 5C 

constructs and their quadratic and cubic polynomials were tested. Within this analysis, no issues of 

multicollinearity were discovered. 

The quantitative analysis revealed a statistically significant but weak linear relationship between the 

smart-connection, cyber, and configuration technologies with EP. The strength of the relationships is 

very similar, indicating that all technologies from the smar-connection, cyber or configuration 

categories have a comparable effect on EP and none of them should be specifically prioritized when 

it comes to implementation. As a result, the hypotheses proposing a curvilinear effect of these 

technologies on EP were disproven. However, since digital technologies are a fundamental aspect of 

DT, it can be assumed that a linear relationship exists between DT and EP, which is consistent with 

much of the recent research in this field. 

Additionally, one of the control variables, the size of the company, demonstrated a significant impact 

on EP. The firm size was measured by the number of employees in 2021 and consistently exhibited 

a measurable effect across all regression models. However, due to the scope of this thesis, the 

underlying reasons for this relationship were not further investigated. 

 

4. The resource-based view methodology shows how companies should invest in implementing 

and further developing their digital resources to create a competitive advantage through 

EP. A better EP can lead to improvements in cost and reputation in various ways. 

The implementation and utilization of digital technologies in manufacturing companies have 

numerous benefits from an RBV perspective. Despite being digital in nature, these technologies are 

considered physical capital resources. By enhancing efficiency and enabling new manufacturing 

methods, they can support cost reductions and, subsequently, profit maximization. Mass 

customization capabilities, facilitated by new production technologies such as AM, can create a 
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competitive advantage, particularly appealing to new and existing customers. Moreover, technology 

leadership can attract various stakeholders. 

When companies focus on how DT can positively impact their EP, they can simultaneously benefit 

from the advantages that EP as an intangible resource offers. One of the most significant benefits is 

an improved reputation. As society and governments exert pressure on industries to become more 

environmentally friendly, making efforts towards environmental sustainability can increase 

popularity among stakeholders such as customers, investors, and potential employees. A positive EP 

can also ensure compliance with regulatory reforms, such as those outlined in the EU Green Deal. 

Additionally, companies can save costs that would otherwise function as sanctions for having a 

detrimental environmental footprint, such as ETS carbon emission allowances. 

In summary, from an RBV standpoint, it is logical for companies to invest in the implementation and 

expansion of digital technologies across smart-connection, cyber, and configuration categories. By 

doing so, they can leverage the benefits that these technologies and an improved EP bring to gain a 

competitive advantage. 

 

5. Although in principle there is a positive influence, the negative environmental effects of 

digital technologies have to be kept in mind and counteracted actively. They oftentimes 

occur outside of the operational use in the production and end-of-life disposal of digital 

technologies and can, therefore, not be reflected properly in the EP of manufacturing 

companies that simply employ them. 

This study provides evidence of a positive linear relationship between certain digital technologies and 

EP. This finding is consistent with the conclusions drawn from various studies mentioned in this 

thesis. However, there is also research suggesting a more complex relationship, highlighting the 

negative effects associated with the production and disposal of these technologies. Therefore, the 

results of this study can be interpreted as an indication that these adverse impacts occur during stages 

other than the actual use of the technology. This is supported by lifecycle assessments conducted with 

semi-conductors and technology-related materials. 

Although this may not be an immediate concern for the companies examined in this thesis that employ 

the digital technologies under investigation, it could become relevant in the future, particularly with 

the introduction of the EU's CSDDD and CSRD. Therefore, it is advised that companies start 

investigating these effects, even though it does not directly impact their EP at the moment. 
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