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1. INTRODUCTION

1.1. Relevance of the Research

Informatics engineering promotes biotechnology by creating improved
computer systems tools and algorithms which provide for the effective research and
interpretation of complicated biological data and phenomena, resulting in faster drug
development and manufacture. This synergy between informatics and biotechnology
encourages innovation, efficiency, and quality, alongside the improvement in
healthcare and research [1, 2]. The importance of informatics in the biotechnology
industry, especially in the field of pharmaceuticals, has been gradually growing in
recent decades, and, with the start of the COVID-19 pandemic in 2020-2021, the
importance of informatics engineering has grown rapidly to speed up the production
of drugs and vaccines as much as possible [3, 4].

In the pharmaceutical sector, as well as biologics, large, complex compounds
are derived from live organisms. Microorganisms produce substances, such as
proteins and antibodies, that are used to treat diseases like cancer, autoimmune
conditions, infections and more [5].

Cell culture, formulation, planning, and product synthesis are a few of the
processes in the biologics production process [6]. These cell cultures are cultivated in
bioreactors, where the necessary ingredients are also synthesized. The goal of a
bioreactor is to create the ideal environment for cell growth and product synthesis.
Temperature, pH, dissolved oxygen, mixing, nutrition, and sterility are just a few of
the main variables that must be carefully considered to create the optimal environment
for cells in a bioreactor. High levels of cell growth and productivity can be attained
by researchers by optimizing these variables, which will result in the creation of new
treatments and goods [7, 8].

Many different cell types in a bioreactor depend on glucose as a crucial nutrition
source. It serves as the primary energy source for cellular metabolism and is utilized
to make a variety of cellular products. The growth and productivity of cell cultures
are significantly influenced by the glucose feed [9, 10]. Low glucose levels in the
bioreactor result in slower growth rates. On the other hand, excessive glucose levels
cause harmful buildup of byproducts and alterations in cellular metabolism that may
affect the overall cell survival and synthesis [11, 12]. Researchers must carefully
balance the supply of glucose with the metabolic needs of the cells to optimize glucose
feed in a cell culture. This process requires monitoring the typical bioprocess
parameters, such as the glucose level in the bioreactor, the growth rate of specific
cells, cell concentration, and the product synthesis rate. Adapting the feed rates
regarding those variables is mandatory in case we seek to maintain the optimal level
of the cultivation process efficiency [13, 14].

Yet, without pricey hardware sensors, measuring those crucial bioprocess
parameters online is essentially impossible. The lack of information about the
process is the major problem in biotechnology, and the feedback control is
unattainable without acceptable estimation. In that circumstance, researchers have
begun the development of ‘virtual sensors’, or ‘soft sensors’, which are software-
based instruments that estimate the process variables online based on the previously
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accrued process data [15]. This research relies on soft sensors that evaluate the
cultivation process from the exhaust gas from the bioreactor and give a feedback
signal to the control loop that manages the efficiency of the process.

1.2. Research Object

The research focuses on three key variables in the cultivation process that cannot
be measured online — these are the specific cell growth rate, the viable biomass
concentration, and the target product concentration.

Biomass

Industrial
application

Monitoring
bioprocess state

Figure 1.1. Dissertation’s main goal: full cultivation process monitoring.
It includes biomass estimation, target product estimation, and a specific cell
growth rate algorithm

1.3. Aim of the Research

The aim of the research is to increase the productivity of the cultivation process
by applying precise, reliable estimation algorithms (soft sensors) based on the
bioreactor exhaust gas to monitor the crucial growth process parameters which cannot
be assessed directly. To achieve the goals of this research, the following objectives
have been set out:

1. Development and investigation of an estimation algorithm for biomass
concentration evaluation to monitor the state of a bioprocess.

2. Development and analysis of target product modelling to offer product yield
relationships.

3. Development and investigation of an estimation algorithm for specific cell growth
rate evaluation to provide feedback information to the control system.

4. Development and investigation of an estimation algorithm for viable cells
evaluation of a mammalian cell culture to monitor the state of a bioprocess.
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1.4. Dissertation Key Statements

1. In the first half of the cultivation process (the lag and logarithmic phases), the
maintenance term of the cells is negligible and has a minimal effect on the
precision of estimation procedures.

2. The efficiency of the synthesis of the target products directly depends on the
growth rate capacity of specific cells at the moment of induction.

3. The assessment of the bioprocess state based on the oxygen consumption rate
conforms to the requirements, and its repeatability is unaffected by E. coli bacteria
metabolism.

4. The age of the cell culture is a significant variable which improves the precision
of viable cell concentration estimations.

1.5. Research Novelty

Each publication of this dissertation provided a scientific innovation of
estimation/prediction for significant variables based on fundamental knowledge and
mathematical methods. The robustness, simplicity of implementation, highest
accuracy as of the date of publishing, and a novel concept which affects the algorithm
are the ways in which the papers show their innovativeness.

1. Article 1 (Al)

R. Urniezius, A. Survyla, D. Paulauskas, V. A. Bumelis, V. Galvanauskas

Generic estimator of biomass concentration for Escherichia coli and Saccharomyces
cerevisiae fed-batch cultures based on cumulative oxygen consumption rate, Microb
Cell Fact (2019)

The innovation of Al paper is the improvement of the Luedeking-Piret model
(1959) [16] by expanding the value of the stoichiometric parameter which is
responsible for the biomass maintenance term. According to the proposed theory,
when the biomass concentration is not high, the maintenance term early in the process
is noticeably low and cannot be assessed. Additionally, when induction is being
carried out and product synthesis substantially increases, or when the amount of
biomass has reached a value leading to appreciable oxygen maintenance, the
maintenance term must be evaluated in accordance with the suggested form.

2. Article 2 (A2)

Renaldas Urniezius, Arnas Survyla

Identification of functional bioprocess model for recombinant E. coli cultivation
process, Entropy (2019).

A2 publication is an expansion of Study Al, which has been further developed to
incorporate oxygen (resource) consumption for product synthesis throughout the
maintenance term. The article also covers the effects of a specific growth rate during
induction on the product synthesis and offers relationship to increase the efficiency of
cultivation processes.

3. Article 3 (A3)

Arnas Survyla, Donatas Levisauskas, Renaldas Urniezius, Rimvydas Simutis
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An oxygen uptake-rate-based estimator of the specific growth rate in Escherichia coli
BL21 strains cultivation processes, Computational and Structural Biotechnology
Journal (2021)

The algorithm’s uniqueness lies in its robustness and simplicity because it only
has one tuning parameter and is appropriate for the whole cultivation process with
various conditions and metabolic pathways. To eliminate uncertainties and
recalculation errors, the specific growth rate is calculated directly from the gas data
(the oxygen uptake rate) rather than from the evaluated biomass.

4. Article 4 (A4)

A. Survyla, R. Urniezius, R. Simutis

Viable cell estimation of mammalian cells using off-gas-based oxygen uptake rate and
aging-specific functional, Talanta 254, 124121 (2023)

The study’s primary innovation is the addition of a cell-aging term for use to
estimate viable cells. The age of the culture has an impact on the productivity of the
cultivation process as well as the dynamic and yields of the synthesis.

1.6. Research Methodology

The primary goal of this study is to assess the crucial cultivation process
variables that are impossible to measure online, as shown in Figure 1.1. The
Luedeking-Piret model [16] is a fundamental knowledge-based model that was chosen
as the origin to ensure the robustness and simplicity of the research algorithms. Since
the biomass concentration defines the overall condition of the cultivation process, the
first phase in obtaining the necessary parameters is to investigate and create the
biomass estimation method (Al1). The second publication (A2) is a sequel of article
(A1), which proposed an extended biomass concentration algorithm supplemented by
product synthesis. Furthermore, the study also covers the effects of a specific growth
rate during induction and offers relationship to increase the efficiency of product
synthesis. Since the cells specific growth rate variable is important to the protein
synthesis model, the third published article features an estimation algorithm of the
specific growth rate (SGR) (A3). The final paper (A4) describes an improved biomass
concentration algorithm capable of estimating a viable cell to cover a wider range of
cell cultures. Study (A4) inherited the cell culture age variable from an article written
by colleagues [17].
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Figure 1.2. Methodology of this research and relationship between articles

1.7. Practical Significance

1.

The estimation algorithms of biomass concentrations, specific cell growth rate,
target protein can be implemented and operated in the following biotechnology
companies in Lithuania:

a) Northway Biotech, UAB,

b) Celltechna, UAB,

c) Thermo Fisher Scientific Baltics, UAB,
d) Roquette Amilina, AB.

The methods and algorithms presented in this research have been established in
support of the European Regional Development Fund according to the supported
activity Research Projects Implemented by World-class Researcher Groups under
Measure No. 01.2.2-LMT-K-718.

1.8. Approval of the Results

1.

14

The proposed algorithms and models have been published in 4 different
international scientific journals referred to in the Web of Science database. Three
journals are in Q1 quartile, and 1 journal is in Q2 quartile.

The essential outcomes have been presented in 3 international conferences.



3. All the estimation algorithms presented in this research have been implemented
and used in the laboratory of bioprocessing modelling and management at Kaunas
University of Technology.

4. The estimation algorithm of biomass concentrations (Al) has been installed and
employed in the R&D laboratory of the Centre for Innovative Medicine (IMC).

1.9. Author’s Contribution

Al: RU (the corresponding author) created the concept, edited the manuscript,
and developed the mathematical model. AS created the concept, edited the
manuscript, developed the mathematical model, analysed the data, and validated the
algorithm. DP organized the data and validated the model. VB was responsible for
funding, and project administration. VG reviewed and edited the manuscript and was
responsible for sourcing the funding.

A2: RU (the corresponding author) devised the concept, prepared the
manuscript, developed the mathematical model, and submitted the final manuscript.
AS devised the concept, prepared the manuscript, developed the mathematical model,
analysed the data, and validated the algorithm.

A3: AS: developed and improved the algorithm, was responsible for validation,
data curation, and prepared the original draft. DL: developed the algorithm and
prepared the original draft. RU (the corresponding author): edited the manuscript, was
responsible for funding, and submitted the final version of the manuscript. RS: was
the data organizer and supervisor.

A3: AS worked out the concept, developed the soft sensor, analysed and
validated the data, and prepared the final draft. RU (the corresponding author)
contributed to the model development, edited the manuscript, submitted the final
manuscript, and was responsible for sourcing the funding. RS: was the data organizer
and supervisor, and also reviewed the manuscript.

1.10. Literature Review

The most important issues in biotechnology are the optimal control of the fed-
batch cultivation process and the monitoring of the cell’s growth states [18]. As a
result, fed-batch cultivation process optimization and the development of a precise
monitoring system have been topics of ongoing research for many years, and are still
highly relevant today [19]. This dissertation’s investigation primarily focuses on the
development of fundamental models of the growth process in order to establish an
estimation algorithm which would offer crucial information to the control algorithm
as a feedback signal and data to the monitoring system [20]. The creation of
sustainable engineering solutions should consider using soft/non-invasive sensors
[21] to enhance the product quality, to obtain the coefficient values more effectively,
to increase safety, and to provide the feedback signal. A feedback signal from soft
sensors or estimation algorithms which offer parameters that cannot be directly
measured online [22] is necessary for the implementation of a feedback control
system. The key parameters of the bioprocess — the biomass concentration and the
specific cells growth rate — are taken into account by the control algorithm and the
feedback signal [23-25].
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Scientific techniques are necessary to gather the required information during
cell culture procedures, as critical parameters cannot be examined directly.
Consequently, scientists have been working hard on numerous innovations and
estimating methods of biomass concentration and specific growth values [26]. As of
now, there are numerous methods for achieving the desired outcomes. One of the ways
by which on-line measurements are obtained is by using advanced instrumentation
which has to be implemented in the bioreactor: dielectric spectroscopy, Raman
spectroscopy, and in situ mid-infrared spectrometry. Dielectric spectroscopy is used
for monitoring the biomass concentration [27]. The main drawback of this
measurement device is its need to be calibrated for each cell strain, and it is not
suitable for low concentration measurements. The media composition, density and
homogeneity also have a significant impact on the accuracy. The Raman spectroscopy
instrument [28] and in situ mid-infrared spectrometry [29] are used for the
measurement of glucose concentration in the fed-batch cultivation process. A
nonlinear model for biomass concentration estimation from the glucose measurements
has the primary drawback of the necessity of interaction with the device containing
the medium so that to detect the glucose concentration online. Furthermore, the
function of glucose consumption encounters accuracy issues during the culture death
phase and metabolic pathways of the cells [30]. As a result, the expensive instruments
that must be integrated into the bioreactor must deal with the challenging bioprocess
conditions and the rapidly altering composite medium state that affect the results [31].

Another path taken by the researchers is the development of estimation models
using bioreactor exhaust gas analysis data. The main data points that are directly
related to cell growth and synthesis processes are the Oxygen Uptake Rate (OUR) and
the Carbon dioxide Production Rate (CPR). As estimation algorithms require data
that is closely related to the biomass growth rate and the biomass concentration, this
path is the most popular among scientists [32, 33]. By using data from exhaust gas as
inputs to the artificial neural network (ANN), several researchers have proposed
reliable results of the predicted parameters [33, 34]. When the entire model is a black
box model, the data requirements for network training are substantial and complex
when utilizing ANN alone with OUR and CPR data. Further research demonstrates
that the amount of data required for training and the complexity of the training were
lowered when ANN and the mass balance equation were combined [35, 36]. The
model’s accuracy rises rapidly. However, with hybrid models, obtaining sufficient
data for model calibration remains challenging to attain adequate precision, and
methods are also denoted by high operational demands, and design space maintenance
[37]. The developed model also only functions with one particular cell culture.

The primary areas of research that this dissertation focuses on are fundamental
knowledge-based models relying on exhaust gas analyses. Robert Luedeking and
Edgar L. Piret [16] were the first scientists to propose a stoichiometry equation linking
the oxygen uptake to cell development. The two key elements in the suggested model
are the oxygen consumption term for biomass maintenance and the cell reproduction.
However, since Piret proposed the model in 1959, the cultivation process and the cell
cultures have changed since then, and the model no longer satisfies the criteria for
accuracy. As a result, Piret’s theory has been refined further, and several additional
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concepts and models have since been put forth [38, 39]. Fundamental knowledge-
based estimation algorithms provide the following benefits: fundamental knowledge-
based estimating algorithms use underlying theories, principles, and validated models
to produce estimates that are accurate and resilient. When compared to solely data-
driven methods, fundamental knowledge-based estimation algorithms are frequently
more resistant to noisy or insufficient data. Robustness: mathematical equations that
can be easily implemented on any platform serve as the foundation for many key
knowledge-based estimation techniques [40, 41].
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2. OVERVIEW OF THE PUBLISHED ARTICLES

By addressing the primary issue in biotechnology — a lack of knowledge about
critical parameters — this dissertation provides four soft-sensor publications offering
the accurate feedback signal that is required:

1. Generic estimator of biomass concentration for Escherichia coli and
Saccharomyces cerevisiae fed-batch cultures based on cumulative oxygen
consumption rate (Al) [42] (Section 2.2)

2. ldentification of functional bioprocess model for recombinant E. Coli cultivation
process (A2) [43] (Section 2.3)

3. Oxygen uptake-rate-based estimator of the specific growth rate in Escherichia coli
BL21 strains cultivation processes (A3) [44] (Section 2.4)

4. Viable cell estimation of mammalian cells using off-gas-based oxygen uptake rate
and aging-specific functional (A4) [45] (Section 2.5)

2.1. General Overview of the Articles

This dissertation consists of four articles, and each of them offers a soft-sensor
technique. The primary objective of this project is to develop an estimating method
that is robust, fundamental knowledge-based, and operates on bioreactor exhaust gas.
By using stoichiometric knowledge, the presented algorithms transform information
from exhaust gases to a general picture of the plant. The stoichiometry form, which
connects gas analytics to the state information of the process, was proposed long ago
(1959) [16]. Nevertheless, the proposed equation has become outdated because it does
not account for contemporary inventions that have emerged on the edge of the 20 and
21 centuries and during the most recent period [46].

Hence, one of the key benefits of the papers is that the proposed technology
includes cultivation processes that use induction (e.g., with isopropyl-D-1-
thiogalactopyranoside/IPTG) which activates product synthesis [47]. Following
induction, cultivation process phenomena quickly alter, which makes process
estimation more difficult.

Assessment of fed-batch processes with limited feed rates to the models is
another important advantage of the articles. Low feed rates to the bioreactor result in
a lack of glucose in the media. With this type of cell culture cultivation, the growth
rate of the cells changes dynamically and is based on the feed rate, so the value of the
growth rate can range from zero to the maximum passable value immediately [48].

In general, the major objective of the algorithm creation was to examine the
impact of induction on the process as well as the variations in the feeding methods
and their effects on the efficiency of the cultivation process. Considering these two
key factors, this work provides a reliable model to produce the necessary estimate.
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2.2. Generic Estimator of Biomass Concentration for Escherichia Coli and
Saccharomyces Cerevisiae Fed-Batch Cultures Based on Cumulative
Oxygen Consumption Rate

The first published research article is Generic estimator of biomass
concentration for Escherichia coli and Saccharomyces cerevisiae fed-batch cultures
based on cumulative oxygen consumption rate written by Renaldas Urniezius, Arnas
Survyla, Dziugas Paulauskas, Vladas Algirdas Bumelis, and Vytautas Galvanauskas.
This work focuses on online biomass concentration estimation in fed-batch cultures.
It offers a methodical solution for bioengineering that is investigated for
Saccharomyces cerevisiae and Escherichia coli cells. The experimental analysis of
both cultures provides results of experimental validation from the beginning of the
bioprocess and assesses the induction effect. The main goal of this study is to provide
the possibility to ensure continuous monitoring of the state of the bioprocess and
abandon the sampling procedure.

2.2.1. Material and Methods

In this paper, four different strain cultures were examined to confirm the
biomass concentration estimation. S. cerevisiae (no DY7221) was utilized as a
benchmark for yeast cells. Other cell cultures in the research were Escherichia coli
recombinant strains: E. coli BL21(DE3) pET9a-ldeS, E. coli BL21 (DE3) pET21-
IFN-alfa-5, and E. coli BL21(DE3) pLysS.

Yeast cells were cultivated in the Laboratory of Bioprocess Design and
Modelling at Kaunas University of Technology. The cultivation processes were of the
fed-batch type with a limited feeding rate. The cells were grown in a standard nutrient
medium (YPD) with 0 g/kg initial glucose concentration. The feeding solution
included 600 g/kg of glucose and was used immediately at the beginning of the
process. Online measurements of the bioreactor exhaust gas were monitored by using
a BlueSens gas analyser (BCpreFerm, BlueSens, Herten, Germany).

The cell strains E. coli BL21 (DE3) pET21-IFN-alfa-5 and E. coli BL21 (DE3)
pET9a-1deS were cultivated in industrial R&D laboratories. The growth techniques
were focused on the fed-batch type with limited feeding solution. Induction (ITPG)
was used at both cell cultures to activate product synthesis. The bioreactor’s exhaust
gases were analysed online by BlueSens.

E. coli BL21(DE3) pLysS growing information was collected from the authors
to incorporate different strains and culture techniques from various countries into this
research [48]. Cells were cultivated in a minimal mineral medium.

2.2.2. Novelty and comparison of biomass estimation

The main mathematical framework in this paper, which was used to estimate the
biomass concentration, is the Luedeking-Piret model developed via the stoichiometric
equations for oxygen consumption [16]. As a result, the model for estimating biomass
depends on the cells’ oxygen uptake rate data. The proposed estimator is compared to
the most recently published biomass prediction models that also use oxygen
consumption to demonstrate the uniqueness, robustness, and ease of implementation
of the algorithms.
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Figure 2.1. Related biomass estimators: (a) A. Lubbert [49], (b) M. Achle [35], (c) R.
Simutis [36], (d) biomass estimation of this text, (e) R.A. Davis [50], (f) J.M. Barrigon [51]

The complexity of the chosen algorithms, the number of input signals, and the
precondition parameters or the initial conditions needed are depicted in Figure 2.1,
along with their main distinctions. The main goal of this paper is to demonstrate that,
based on stoichiometry, biomass estimation may be approached from a fundamental
point of view, and that the method’s format does not have to be complicated.

2.2.3. General mathematical model of stoichiometric parameters estimation

The Luedeking-Piret theory serves as the model’s foundation, which links the
stoichiometry of cells with oxygen consumption. It illustrates the relation between the
oxygen uptake rate in a bioreactor and the biomass concentration growth/maintenance
[16, 52]:

OUR(t) = a-X'(t) + B - X(V). (2.1)

The stoichiometric coefficients o and £ are parameters of the biochemical
reactions during the cultivation process, X is the biomass concentration, g/L. In Eq.
(2.1), a coefficient denotes a cell’s oxygen consumption yield for growing (o =Yy /x),
and g coefficient denotes oxygen consumption for maintenance (4 = m) [53, 54]. Real-
time data obtained from the devices contains interference and disruptions throughout
the cultivation process, which might lead to the parameter and estimated value
distortion [55]. To reduce uncertainty, cumulative information is used. Furthermore,
when biomass and its metabolic byproducts increase during culture research, these
masses are more closely connected to the cumulative signals of OUR and CPR [56,
57]. As a result, by integrating the model in Eq. (2.1), the new provided form is
protected from disturbances:

ftto OUR(t") dt* = a-fttoX'(t*)dt* + ﬁ-fttox(t*) dt*. (2.2)

The proposed maintenance term form, which is a growing variable rather than a
constant, especially after induction, is one of the primary novelties of the research.
The fact that the formation of the product and other elements are included in the
oxygen consumption for biomass maintenance may be used to explain the phenomena
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of the parameter’s value growing. Such a circumstance most frequently arises when
induction is carried out, and the product’s synthesis substantially increases near the
end of an exponential phase of microbial cultivation (for recombinant protein
synthesis) [57, 58]. This paper suggests the following g parameter form of two
additive terms:
B = ! + ! 2.3
Yeso Y0 (2:3)
In Equation (2.3), the oxygen demand for product synthesis is denoted by Ypso,
whereas Yxo represents the oxygen consumption for cell respiration. Consequently,
biomass concentration has a linear or polynomial affiliation, which depends on the
strain and cultivation process model, connection to the g parameter, as shown in
Figure (2.2). p(tm) is the maintenance value from the cultivation experimental data at
the moments after induction.

0.3 — - 006 .
025 B(tm) e @ o5 *B(tm) * o
0.04 ~BX)

0 , ‘ , |
20 30 40 50 60 70 0 5 10 15 20 25
X (afl) X (g/l)

Figure 2.2. Biomass concentration influence on oxygen consumption for maintenance,
(a) E. coli, (b) Saccharomyces cerevisiae

Figure (2.2) illustrates how the biomass concentration affects the maintenance
term value. A parabola regression of the biomass concentration is represented by the
expression of parameter 5(X) to the E. coli strain. Induction in the growth processes
carried out at various periods led to the distribution of the maintenance period shown
in the graph.

BX) = B(X(®) = kpo " X2(8) + kgy - X () + kgo. (2.4)

The maintenance oxygen requirement of S. cerevisiae is linearly related to
biomass concentration, kg,>= 0.

ﬂSaccha‘romyces (X) = ﬁSaccharomyces (X(t)) = kﬁsl 'X(t) + kﬁsO' (2'5)

Accordingly, in view of Figure (2.2) and Equations (2.4-2.5), the cell strain has
a particular biomass concentration value Xspecific, at which point the maintenance term
became apparent. Equations (2.4) and (2.5) must be set to zero and solved to determine
the culture’s unique biomass concentration value, Xspecific:
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BX) = p(X(®) = 0. (2.6)

Following the discovery of the stoichiometric cell culture parameters and the
introduction of a new form for the maintenance term, the Luedeking-Piret model with
the dynamic maintenance term takes the following final revised form:

{OUR(t) = a-X'(t) +kgy - X3(t) + kgy - X2(t) + kpo - X (), X(8) > Xopecifics (2.7)
OUR(t) = a-X'(t),X(t) < XspecifiC' I

Therefore, stoichiometric parameters and the cumulative oxygen uptake rate
(cOUR) are used in this work to estimate the biomass concentration. When the oxygen
demand for maintenance is very low or non-existent before the specified biomass
concentration Xspecific Ievel has been attained, the biomass state estimation equation is:

_ cOURp,

Xm —- a + Xo. (2'8)

The second scenario’s stoichiometric parameter j takes effect as a function of
the biomass concentration after the concentration of biomass starts exceeding Xspeciic,
at which point oxygen consumption becomes apparent. The proposed integral form of
the biomass concentration estimation is as follows:

COURp, — X757 B(x) " xp - Aty +
a

IR

(2.9)

Xm Xo-

2.2.4. Result

Three different sorts of indicators were used to assess the results of the biomass
estimation and evaluate the statistical method’s forecast accuracy [59, 60]:

Mean absolute error (MAE): MAE = w (2.10)

Mean absolute error (MAE): MAE = M ; (2.11)

Root mean square error (RMSE): RMSE = /M (2.12)

In Equations (2.10-2.12), n is the number of data counts, y; is the methods’
result, and y; is the measured value from the cultivation process.
Several sources were used to gather the experimental biomass measurements and data
on the cumulative oxygen uptake rate (COUR) from fed-batch experiments with E.
coli and S. cerevisiae, including datasets from the study [48], industrial R&D and
university laboratories. The diversity of cultivation procedures, shown in Table 2.1
with varying reception and methods, demonstrates the universality of the algorithm.
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Table 2.1. Variety of cultivation processes for estimator validation

Cell culture No. of experiments Feeding type Bioreactor size L
E. coli 3 Growth limiting 15
Yeast 2 Growth limiting 5
E. coli 1 Growth limiting 12
E. coli 8 Growth limiting 7
E. coli 7 Growth nonlimiting 7

All the cultivation data was examined before the algorithm validation process
began to determine the stoichiometric characteristics of cell cultures. The estimating
process neglected both metabolic routes: product synthesis in response to induction
(e.g., with isopropyl-D-1-thiogalactopyranoside/IPTG) and acetate metabolic during
unlimited dosed substrate feed cultivations [61]. Table 2.2 contains the findings of an
offline examination of stoichiometric parameters.

Table 2.2. Stoichiometric parameters of cell strains

Escherichia coli Saccharomyces cerevisiae
o=1.01 o=1.35
Confidence Interval ¥0.0186 Confidence Interval 0.149
k[;ez =72-10"% kﬁsz =0
kgey = —2.9625 1073 kps1 = 2.3851- 1073
kgeo = 4.27047d - 1072 kgso = —1.5014 - 102
Xspecific =20.6 g/ Xspecific =6.29 g/l

The second step is to determine the biomass concentration by using both
Equations (2.8) and (2.9) from the cOUR signal after the cell culture’s stoichiometry
parameters have been determined. The biomass estimation method used in this paper
included a variety of cultivation experiments with various cell strains, bioreactor
volumes, feeding solution types, IPTG induction times, OD levels at IPTG injections,
substrate feeding restrictions, and substrate feed start times.

Since the inoculation, the average MAE for biomass concentration estimate was
1.1 g/l, and the average MAPE of biomass estimation was 7.28%. S. cerevisiae
cultivations had an average RMSE value of 0.5 g/l. E. coli cultivations with restricted
substrate feeding had an RMSE value of 1.26 g/l, while cultivations with dosed
substrate feeding had an RMSE value of 2.44 g/l.

In Figures (2.3), (2.4), (2.5), the graphical representation of the biomass estimate
results of the most important cell cultures are contrasted with the measured values
offline.
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Figure 2.3. Results of this paper’s algorithm with recombinant E. coli BL21 (DE3)
pET21-1FN-alfa-5 strain at 7 L bioreactor with unlimited dosed substrate feeding
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Figure 2.4. Results of this paper’s algorithm with recombinant E. coli BL21 (DE3)
pET21-IFN-alfa-5 strain at 7 L bioreactor with limited substrate feeding
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2.3. ldentification of Functional Bioprocess Model for Recombinant E. Coli
Cultivation Process

The second published research article is Identification of Functional Bioprocess
Model for Recombinant E. Coli Cultivation Process written by Renaldas Urniezius,
Arnas Survyla. This work focuses on a system identification model which provides
accurate biomass concentration and target protein concentration estimates in fed-batch
cultivations.

2.3.1. Material and methods

To validate the biomass and protein model fitting in this study, E. coli BL21
(DE3) pET28a (Novagen) was used as the test object in all experiments [57]. Both
active soluble and insoluble forms of E. coli BL21 (DE3)’s product were generated as
inclusion bodies. In this investigation, inclusion bodies, an insoluble protein, were the
intended result. After being induced with 1 mM isopropyl-D-1-thiogalactopyranoside
(IPTG), the T7 promoter was in charge of the protein’s production.

For the analysis in this work, experimental data [48, 62, 63] was used as the
basis of analysis. The BL21 (DE3) pET28a E. coli strain was grown in a B. Braun 10
L bioreactor. At inoculation, the initial medium volume was 5 L. Mineral salt media
was used as the culture medium [62]. Processes for growing plants were implemented
by using a fed-batch mode when there was no glucose present in the bioreactor at the
moment of inoculation. Therefore, the feed was pumped in from the start. The time
picked for induction was 10 hours after the beginning of the process. Online exhaust
gassing tracking was done, and a paramagnetic oxygen sensor (Maihak Oxor 610) was
used to monitor O, concentration. SDS-PAGE electrophoresis assisted in determining
the concentration of the target protein following the actions of cell disruption,
separation of the soluble fraction, and solubilization of inclusion bodies.

2.3.2. System identification and parameter estimation

A previous study [42] shows that a biomass concentration estimator based on
oxygen consumption may provide sufficiently accurate results. The novelty of the
article [42] was the maintenance terms of the biomass mathematical form, which is
dynamic, rather than constant, by assuming that the maintenance term takes into
account product synthesis. This study proposes a biomass concentration and protein
model fitting based on a mass balance equation when the maintenance term is divided
into product synthesis and maintenance. This model was developed on the basis of the
Luedeking-Piret model [16]:

OUR(t) =a-X'(t) +B-X(t) +y-P'(t). (2.13)

The target protein for this investigation is the inclusion body, and the protein
synthesis yield y in this study is considered to be a function of the biomass
concentration X in a grey box model [64]. Protein productivity is influenced by IPTG
and biomass concentrations during the induction period, as demonstrated by
Babaeipour et al. [65]. The same 1 mM of isopropyl-D-1-thiogalactopyranoside
(IPTG) was used in all tests. Furthermore, in each culture operation, the biomass
concentration at the induction time varied, and we discovered that it significantly
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affected product synthesis. According to our investigation, the biomass concentration
at the induction time is a function of the product synthesis parameter y(X) [66]:

yX) = ky ' (X(t) - Xind): (214)

here, k, is the product synthesis yield, which is assumed to be constant, and Xinq is the
biomass concentration at the moment of induction. In conclusion, the estimator’s final
model form consists of the product synthesis parameter y(X), the maintenance term
which is described in the research [42], and the biomass reproduction term «:
OUR(t) = a-X'(t) + k, - (X(t) — Xing) - P'(t) +
(2.15)
(kpz - X2(t) + kgy - X(©) + kgo) - X (0).
The original signal is converted to the cumulative information, which is an
effective noise filter, to protect the model from disturbances [36]:

ftto OUR(t")dt* = a - fttOX’(t*)dt* +k, - fttO(X(t*) = Xina) -

Pl(t*)dt* + ffto(kﬁz . Xz(t*) + k[i’l X(t*) + kﬁo) . X(t*)dt*. (216)

Regarding the following model analysis and calculations, the results indicate
that, during the whole culture process, the stoichiometric parameter f(X), the oxygen
maintenance term for biomass concentration, is significantly lower than the other
stoichiometric values. The fact is that the biomass concentration at the induction
moment is relatively low (about 30 g/L). The biomass maintenance is unnoticeable
until the induction and after IPTG injection, whereas product synthesis covers the
maintenance term. This phenomenon explains why the biomass maintenance
component is absent in this approach. The model simply takes into account two terms
of oxygen consumption:

J; OUR(e)dt* = a- [{ X'(¢)dt" +ky + [y (X(E%) = Xing) - P'(£)dlE", (2.17)
By simplifying Equation (2.17) and applying the Riemann sum [67], the final

form of oxygen consumption is:
COURp = a- (X = X) + kyy * (P * (X — Xina) — Zi21(Xy — Xi-1) - P). (2.18)

In Equation (2.18), cOUR,, = ftto OUR(t") dt*, X, = X (1), Xo = X(t,) is the
biomass concentration at the inoculation moment, and m € [1,n,] is the
measurement of offline samples. The following algorithm is the final formula for
biomass concentration model fitting:

_ COURp +a-Xo+ky Pn-Xina + ky - X2 (X, — X,_1) - P,
B a+P, -k, '

(2.19)

m

The second proposal of this study is a product estimation algorithm. According
to the work by Levisauskas et al. [68], which asserts that protein synthesis is a function
of the biomass growth rate:
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o P, (2.20)

In Equation (2.20), Px is protein concentration divided by biomass concentration
P.(t) = P(t)/X(t), Opx is a particular protein accumulation rate (U/g/h), u is a
specific biomass growth rate (1/h) [68]. Data analysis and research demonstrated that
product synthesis is inhibited by product concentration and is linearly dependent on
the specific growth rate (SGR) of the biomass [69]:

dP,
dax

In Equation (2.21), parameter k; is a time constant value that is expected to be
a form of the self-inhibition outcome [70]. P, iS @ maximal specific product
concentration, which depends on u (SGR). The maximum particular product
concentration, expressed as the highest potential protein concentration in the current
process stage, is determined by the specific biomass growth rate and biomass
concentration:

Pmax(.u' X) = ,Lt(t) ' (kmO + Ky (X(t) - Xind)): t 2 tinguction

Brax (W X) = u(t) * kino, t < tinduction-

In Equation (2.22), k,,,o and k,,, are empirical parameters suggested by this
study, k,,o relates to SGR and protein synthesis, and k,,; links the biomass
concentration at the induction time and productivity [64], tinduction iS the induction
moment (hours). The product estimation technique also serves as the biomass
estimation model in the cumulative form to protect against disturbances, and by
applying the left-hand Riemann sum, the protein model’s final formula is as follows:

_ (Z;’n:ipmax,J tjj-1 — k- Zm 1Px} j,j—1)'Xm
" 1+ Atmm-1 - ke

pr(.u:P) = Prax (U, X) — k¢ - Px(0). (221)

(2.22)

(2.23)

The paper also presents a parameter identification process using a convex
optimization method and proposes new criteria to find parameter values that are
appropriate from the beginning of the cultivation process, when the biomass
concentration is low, to the end, when the parameter values are much higher:

2
O—)?m"’ Xm )
™1 = Kexp + X2 * Kexp

(2.24)

Here, Kex is a tuning coefficient which is required to adjust the uncertainty. A value
of ‘1° for Kexp (0 < Kexp < 1) replicates the least squares method, which has a heavier
penalty for larger criteria values. In the meanwhile, the squared MAPE criteria are
produced when the value is zero.

2.3.3. Results

Three assessment criteria are applied, the same as in Section 2.2.4, to compare
our results with those of other researchers: MAE, MAPE, and RMSE, as shown in
Equations (2.10-2.12). The experimental data of Escherichia coli fed-batch
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cultivation processes was obtained from the study [62]. Data from 19 cultivation
experiments was investigated in the system identification study to verify and evaluate
the suggested model parameters in this paper. Various formulations were used in
numerous experiments, including prior hypotheses on polynomial maintenance [42].
The goal was to identify the best formula for describing the cell stoichiometry. The
best-achieved coefficient values for the fitted model are shown in Table 2.3.

Table 2.3. Comparison of biomass concentration estimating results. MAPE, mean
absolute percentage error; MAE, mean absolute error

Model o kBO kBl kBZ ky MAE MAPE
Study [3] 0.996 0.07 0.00084 0 — 1.1 7.28%
This study 0.997 0 0 0 2.705 0.68 7.09%

The average value of the investigated experiments was represented by the MAE
and MAPE values. The findings indicate that the maintenance factor in the
stoichiometry equation is not as successful as product synthesis. Table 2.4 presents
the outcomes of the protein model fitting, whereas Table 2.5 represents the model’s
accuracy of biomass and product estimation.

Table 2.4. Protein model parameters in accordance with Equation (2.23)
E. coli BL21 (DE3) pET28a

Kmo = 0.2346
Ky = —0.0172
k¢ = 0.0687

Table 2.5. Estimation results of this study

Dry Biomass Concentration (DCW) Product concentration

No. MAE (g/L) MAPE (%) RMSE (g) MAE (g/L) MAPE (%) RMSE (g)
1 0.769 8.594 5.279 0.128 11.947 0.722
2 0.481 7.39 2.916 0.0813 6.565 0.491
3 0.843 8.107 6.354 0.0563 7.86 0.397
4 0.727 5.25 5.975 0.05 4,996 0.323
5 0.596 7.199 417 0.134 8.715 0.821
6 0.402 6.033 2.768 0.149 9.26 1.185

The average MAE of biomass concentration from the beginning of inoculation
is 0.636 g/L, while that of the product is 0.099 g/L, according to the validation results
displayed in Table 2.5. Since the beginning of inoculation, the biomass concentration
average MAPE was 7.09%, and the product average MAPE was 8.22%. Since the
beginning of inoculation, the average RMSE for the biomass concentration was
4.577%, whereas the average RMSE for the product was 0.656%. These results are
also shown graphically in Figure 2.6 presenting the estimation of biomass
concentration, and Figure 2.7 featuring the product estimation.
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Table 2.6. Comparison of estimating model accuracy outcomes amongst research
projects focusing on product prediction

RMSE (g)
P k
aper works Total Biomass Total S_»oluble Total Insoluble Protein
Protein
Conventional model
from Gnoth et al. [62] 1081 178 0.87
Hybrid network from 471 1.28 062

Gnoth et al. [62]
Model in this study 4.577

0.656

The main objective of this paper is to provide evidence that biomass and protein
model fitting can be handled from a fundamental point of view based on
Stoichiometry Equation (2.1) and protein synthesis Equation (2.20), which would

29



enrich hybrid approaches using the Artificial Neural Network (ANN) or other hybrid
black box systems requiring data training as results are compared in Table 2.6 [62, 70.
71]. In contrast to the usual requirement for enormous quantities of training data, this
study suggests a strategy that aids in the identification of the parameters only once per
strain.

2.4. An Oxygen-Uptake-Rate-Based Estimator of the Biomass-Specific Growth
Rate in Microbial Cultivation Processes

The third published research article is An oxygen-uptake-rate-based estimator
of the biomass-specific growth rate in microbial cultivation processes written by
Arnas Survyla, Donatas Levisauskas. Renaldas Urniezius, and Rimvydas Simutis.
This work focuses on the development of an SGR specific cells growth rate from the
oxygen uptake rate by applying the fundamental knowledge of stoichiometry. It
provides the desired value (SGR) directly calculated from the exhaust gases
measurements taken online without the need for any further modelling or biomass
estimation. This model is the most suitable in control algorithms where the feedback
signal is SGR.

2.4.1. Material and methods

Three different forms of Escherichia coli cell-strain culture data were examined
in this study to validate the SGR estimations and assess their dependability and
adaptability owing to the availability of data. The E. coli BL21(DE3) pET9a-1deS,
pET21-IFN-alfa-5, and pLysS strains were chosen as the study’s test organisms. In
various separate R&D facilities, all three cell strains were grown. A 7 L bioreactor
was used to grow the E. coli BL21 (DE3) pET21-1FN-alfa-5 cell strain. The culture
medium included merely trace amounts of minerals. In a 15 L bioreactor, the E. coli
BL21 (DE3) pET9a-1deS cell strain was grown. The introduction of the cultivation
media followed the minimal specifications for a mineral medium. A BlueSens
BluelnOne Ferm gas analyser with a measurement range of 0 to 100% was used to
monitor the oxygen content in the exhaust gas from the bioreactor while the E. coli
BL21 (DE3) pET21-IFN-alfa-5 and E. coli BL21 (DE3) pET9a-ldeS cell growth
procedures were running. The E. coli (BL21(DE3) pLysS) cell strain was grown in a
minimum mineral medium. All cultivations started out with a mass of 5 kg. The
Biostat C apparatus, manufactured by Sartorius Stedim Biotech, has a working volume
of 15 L and a stirrer speed range of 100 to 1400 rpm. A paramagnetic oxygen sensor,
installed in the reactor’s vent line beneath the exhaust gas cooler by Sidor, Sick-
Maihak, Hamburg, was used to monitor the Oxygen Uptake Rate (OUR) online.

2.4.2. Development of the estimation method

This investigation, as well as other papers included in the dissertation, is based
on oxygen consumption combined with stoichiometry. The fundamental idea is drawn
from the traditional Luedeking-Piret approach [16, 72] and the specific growth rate
expression, which is taken from the biomass growth dynamics:

dx
5 =X (2.25)
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In Equation (2.25), X is the biomass concentration value in the broth; p is the
specific growth rate; t is time. A combination of Piret model Equation (2.1) and the
specific growth rate approach Equation (2.25) gives us the expression of oxygen
consumption, which is mostly dependent on SGR [73]:

1 doUR(®) 1 dy_l_
OUR(t) dt  u+pBja dat®

(2.26)

In Equation (2.26), the cell metabolism of oxygen consumption is described by
the stoichiometric coefficients o and . The goal of this study is to provide a model
that would be robust with the least amount of complexity feasible when using the final
equation, which only contains the oxygen uptake rate, stoichiometry, and SGR,
without any biomass expression [74]. The model needs to be made simpler and
dynamically accurate when it is acquired. From Equation (2.26), the dynamic part is
formed:

R 1 dOUR(t) 1 du
_ ) N g
OUR(t) dt ' u+p/a dt

+u=R. (2.27)

Further on, the relationship between specific growth rate and stoichiometry is
expressed from the main equation as follows:

1
T=—F—.
L+ B/a
The final step is the z-transform which is used to extract the discrete OUR

measurement-based SGR estimate technique. Figure 2.8 presents the discrete
algorithm of the SGR estimator.

(2.28)

1 1
— k= =
OUR,, T My + Pl
\‘_J' ']
OLRH - };—;1_:-:.] R” Ar IH”
Ar T(1-z-1) +Ar

Figure 2.8. Block scheme of the SGR estimation algorithm (z-1 is the backward-shift
operator, At is the sampling time, and n is the number time discretization point) [30]

The link between the dynamics of oxygen consumption and the time constant,
which determines the value of SGR, is depicted in the SGR estimator’s structure
diagram. The application of the z-transform to the equation yields the final SGR
estimator formula:

At N T
A Pt T A
The SGR estimator that is presently shown is adaptable and may be used to track

a variety of cultivation processes. The stoichiometric parameter ratio S/ is the only
one tuning parameter of the approach, which is unique to a certain strain of

U, =R (2.29)
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microorganisms and may be obtained in reference books or determined from
preliminary batch culture experiments [30].

2.4.3. SGR tests in computer simulation

By using computer simulation on the MATLAB/Simulink platform, the first stage
in evaluating the performance of the SGR estimator was chosen. Different fed-batch
cultivation procedures with various SGR time profiles were represented in the
simulation by altering the feeding solution’s speed. This is a description of a
mathematical model of the E. coli culture technique [75, 76]. The biomass
concentration (g/L) formula is as follows:

dX X
. 2 2.
s u@s) -X—F-—, (2.30)

here, X is the biomass concentration, g/L; V is the working volume, L; [ is a specific

cells growth rate, 1/h; F is the substrate feeding rate, g/h; t is the cultivation process
time, h. The glucose concentration model is as follows:

ds Sg—S
= . 2.31

here, gs is the substrate consumption rate, g/(g*h); sy is the glucose concentration in
the feeding solution, g/L.

dv
i 2.32
= (2.32)

OUR=a-u(s)-X-V+p-X-V. (2.33)

Equation (2.32) is the volume of media in a bioreactor dependent on the feeding
solution. Equation (2.33) is the Luedeking-Piret model. The specific growth rate is
expressed by the Monod model, when the growth rate is dependent on the glucose
concentration [77, 78].

S ki
Umax "7 1 2 ’
ks+s ki+s

u(s) = (2.34)

here, w4, 1 the maximum possible specific cells growth rate of the cell culture, and
ks, k; are the Monod coefficients. The final simulation equation is the specific glucose
consumption rate:

u(s)
Yx/s

qs(s) = —+m, (2.35)

here, Y/, is the yield coefficient (g/g); and m is the glucose requirement for biomass
maintenance g/(g*h).
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Table 2.7. Values of model coefficients [44]

‘ Parameter Value Dimension Parameter Value Dimension ‘
k; 85 g/L a 0.82 a/g
ks 0.7 g/L B 0.01 g/(g*h)
m 0.02 g/(g*h) Umax 11 1/h
Sf 150 g/L X (0) 0.5 g/L
Yy/s 0.8 a/g s (0) 5.0 g/L
V (0) 8.0 L

With the given Equations (2.30-2.35) and the coefficients from Table 2.7,
various combinations of the specific growth rate of the cultivation process were tested
in simulation with different feeding profiles. Additionally, white noise was introduced
to the oxygen consumption signal to test the model’s stability and tolerance to

disturbances:

2.4.4. Results

OURm,, = OUR, + o - OUR,, - Rand.

(2.36)

The recursive estimating algorithm’s time discretization step was set in the
simulation trials to t = 0.0025 h, and the ratio f/a (the tuning parameter) value was
established as 0.01. Figure 2.9 (Experiment | and Experiment 1) shows the outcomes
of the simulation experiments carried out under different cultivation disturbances.
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Figure 2.9. Simulation results of SGR estimator performance by tracking various SGR
time trajectories (Experiments I, 11): (a), (b), (c) feeding rate, biomass growth, and oxygen
uptake rate curves, respectively; d) comparison of the simulated SGR versus estimated SGR

curves (dotted and solid lines, respectively)
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Furthermore, the approach of this study was tested with the real cultivation
process data of three types of E. coli cell strains which were cultivated in different
R&D laboratories and in different bioreactors. All those cell strains are described in
the Material and Methods section. The MAE and RMSE approaches were utilized to
determine the indications for the model’s correctness. Furthermore, for all the three
cell strains, the SGR estimation parameter /o ratio remains the same (the ratio o =
0.04). The process data for the whole set of 20 cultivations was run via the SGR
approach during the validation testing by using actual experiments. In a fed-batch
culture, 17 processes were carried out with limited substrate feed, while 3 processes
were carried out with unlimited dosage feeding. The results showed that the overall
average RMSE of the SGR estimation was 0.074 1/h, and the overall average MAE
of SGR was 0.044 1/h. Additionally, overall, the average MAPE of SGR was 9.77%.
These findings demonstrate the suitability of this strategy for both restricted and
unlimited fed-batch culture methods using different E. coli cell strains.
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Figure 2.10. SGR estimation results with cultivation process data: (a—b) limited fed-
batch cultivation processes; (c—d) unlimited fed-batch cultivation processes

2.5. Viable Cell Estimation of Mammalian Cells Using Off-Gas-Based Oxygen
Uptake Rate and Aging-Specific Functional

The fourth published research article is Viable cell estimation of mammalian
cells using off-gas-based oxygen uptake rate and aging-specific functional written by
Arnas Survyla, Renaldas Urniezius, and Rimvydas Simutis. This research focuses on
the estimation of the active biomass concentration —that is, on the estimation of viable
cells from the oxygen uptake rate by using stoichiometric principles and the aging
phenomena. This method works with a wider variety of cell types, including bacteria
and mammalian cells. The primary innovation in this study is the application of the
aging term to assess the state of long-term culture processes, where conventional
approaches are ineffective.

2.5.1. Material and methods

This study’s viable cell estimator for a mammalian cell culture was developed
by using information from the growth of CHO-K1 (CHO-S, No. 11619-012,
Karlsruhe, Germany). The cultivation procedures used in Biostat B bioreactors are
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described in the study [79], and the details of the bioreactor system are shown in Table
2.8. Offline viable and total cell concentrations were measured by using an automated
cell counter (CASY TT; Roche Innovatis AG, Mannheim, Germany). A guadrupole
mass spectrometer (Balzers QMA 200; Balzers, Liechtenstein) was used to analyse
exhaust gases.

Table 2.8. Cultivation process details of a mammalian cell

Condition State Condition State
Bioreactor volume 2L Broth volume 1L
Temperature 37°C pH 7.15
pO: 20% Airflow 0.1 L min?
Stirrer 60-400 RPM Feeding start At75h

Furthermore, the biomass was estimated by using information from
bioprocesses involving the Escherichia coli strain. E. coli BL21 (DE3) pET21-IFN-
alfa-5 bacteria were grown on a minimal-mineral medium (Table 2.9) [44]. The
BlueSens BlueinOne Ferm was used for gas analysis.

Table 2.9. Cultivation process details of recombinant E. coli

Condition State Condition State
Bioreactor volume 7L Broth volume 3.7L
Temperature 37°C pH 6.8

pO2 20% Feeding start At5-7h

2.5.2. Development of the viable cells estimation algorithm

The Luedeking-Piret-type model is a common exhaust gas based contender for
the stoichiometric link between the total OUR and the development and maintenance
of the biomass [16, 80]. In order to offer a general estimator for the number of viable
cells, the Piret model is additionally altered. The time dependency of both kinetic
parameters suggests a general inhomogeneous first-order differential equation [81].

, B(t) OUR(t)
X'(t) + E X)) = 2

In Equation (2.37), X is the concentration of viable cells, t is the process duration
time, o and g are variables establishing the corresponding stoichiometric relationship
with the growth and maintenance of viable cells. Regarding article [42], a cumulative
form of information is advisable to remove the disturbance effect on estimation.
Hence, Equation (2.37) restructuring for viable cell concentration variable and apply
integral is derived:

(2.37)

t1f(tz)
Xo + fotOIch]gt(t)l) efo w(t2) dtzdt1
X(t) — 1 ) (238)

eff B(t3) dts

0 a(ts)

In Equation (2.38), variable X, is the concentration of viable cells at the
inoculation moment. According to study [42], in microbial bioprocesses, the
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maintenance term is insignificant before the induction phase of biosynthesis. The age-
related threshold of the viable cell concentration serves as the rational hypothesis to
assume the beginning of the cell maintenance effect because there is no induction in
the mammalian upstream development. The verge is described as follows in the

interim expression: k.y = fOtCXX(t) dt, where tcx is a time when the cumulative

biomass concentration value reaches variable kcx, which is proposed in this study after
analysis of the data. Hence, the final form of the number of the cell estimation
combines Equation (2.38) and the maintenance term form based on the study [42]:

tOUR(t,) t
[ X(@) = X, + f ————dty;  if k= f X(ty) dty
o alt) 0 (2.39)
X, + chUR(tl) + () Kex o K ate ‘.
X() = 0((;1[)?? ) , otherwise.
0 a(ts

In Equation (2.39), variable Xcx is the cells concentration at the moment when
the condition applies k .y = fOtCXX(t) dt.

Based on the findings of studies [17, 82, 83], both kinetic parameters « and 5 of
the Luedeking-Piret model are typically functions of time. However, stoichiometry
values dependencies on time do not hold true when the target object of interest is
mammalian cells, and cultivation processes are long-term ones in such a case. Then
Kinetic parameter dependencies are more akin to the average age of the cell
population.

Jy X&) dty

Age(t) = T (240)
The aging approach, in both fed-batch and continuous biosynthesis, is equally
practical for non-invasive estimates. The age expression is more influenced by the
condition than by the passage of time. Such a premise is pertinent for perfusion
bioprocesses [84, 85], in which the biomass concentration (for microorganisms) or the
viability rate (for mammals) may be age-invariant. Incorporating a parametric
hypothesis for a fed-batch mammalian culture was the decision which we took. The
model fitting classes used to enable a non-invasive online estimate of the kinetic

coefficient a(z) at runtime were the following functionals:

A

Of(t) — amax - . ge(t) , (241)

- t
1 —e Lagtime

here, the theoretical aerobic oxidative capacity is represented by the maximum
growth-based oxygen consumption yield (amax) for cells, and the lag time (Lagiime) is
connected to exponential decay [85] and designates the point at which cells transition
from the lag phase to the exponential growth phase. The oxygen consumption
yield for maintenance (5(t)) allows cells to remain alive, the expression which is
dependent on the aging term as follows:
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Age(t)

BO= B 2560 + hage”

(2.42)

In Equation (2.42), the aging-specific parameter Kage is the ‘half-age-constant’
when the maintenance coefficient S is treated as the maximal maintenance value.

As aresult, Equation (2.41)—( 2.42) demonstrates the direct dependence of the
stoichiometry parameters on the aging component. These two expressions are
incorporated into the viable cell estimate method created in Equation (2.39) to make
the model completely applicable to both brief bacteria cultivations and extended fed-
batch procedures.

2.5.3. Results

The active biomass concentration — the viable cells estimation approach — was
tested with CHO mammalian cells and E. coli bacteria. The prediction accuracy is
compared with the offline data by applying the Mean Absolute Error (MAE) and the
Root Mean Square Error (RMSE) indicators Equations (2.10)—(2.12) [59].
Additionally, in order to find out the model’s parameters to a CHO mammalian cell
culture, cross-validation was employed [86]. The main goal of the approach that was
selected was to obtain a result from the candidates that were supplied by averaging
them according to a weight that relies on the item’s importance. Specifically, by using
the ensemble averaging equation, the weights of 10 candidate sets were based on
RMSE:

=D W) (2.43)

"_ RMSE; — RMSE;
w; = ,
‘T X RMSE; - (n—1)

(2.44)

here, ¥ is the final guess of the parameter, w; is the weight of the parameter y;, and n
is the number of parameters’ sets n = 10. The final CHO cell culture’s parameter set
is shown in Table 2.10.

Table 2.10. The final parameter set of the estimation model

Parameter Value Unit
Lagtime 20.489 h
Omax 0.727 g e%cells?
B 0.034 ge’cellstht
Kex 29.99 e%cellsh L?
Kage 102.05 h

Hence, with the proposed parameter set for the CHO cells, the prediction
approach yields accurate results. The average MAE and RMSE results were 0.139 and
0.158, respectively. Additionally, the average MAPE results were 5.15%. Figure 2.11
and the associated confidence bands show how well the model estimations performed.
The confidence band of the procedure may be identified by categorizing the error
values between the measured and computed points for 6 tests throughout a range of
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viable cell concentrations. The confidence band o = 0.01 in Figure 2.11 is shown with
the purple shadow. The error statistics in this sector have a high (pessimistic) bound
because it contains a systematic error of 0.1° cells L- and a random error of 4%.

O =« N W s OO

0 20 40 60 80 100 120 140

Viable cell concentration, e’cells L

0.54

O =« N W s OO

0 |
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Time, h

Figure 2.11. CHO viable cell estimation results from experiments Nos. 1-6. Vertical
error bars indicate the total error. The purple shadow represents the prediction band

The same cross-validation technique was applied to the E. coli bacteria strain,
which is also the test subject of this study. The data of a total of 12 experiments was
analysed, and 10 sets of parameters were generated to establish the optimal values of

the parameters. The final optimization results of the parameters are shown in Table
2.11.

Table 2.11. E. coli strain parameter set for the estimation approach

Parameter Value Unit
Lagtime 0 h
Omax 0.75 g g"l
B 0.16 ggtht
Kex 17 g hL?
Kage 0 h

The results of the validation procedure were 1.78 g L' MAE, 2.53 g L RMSE
and 6.97% MAPE. An analogous process for microbial analysis is shown in Fig. 13,
and the confidence band connection for bacterial analysis is the same as it is for
mammalian analysis. The purple shadow indicates the confidence band o = 0.01. The
error bars consisted of a systematic error of 0.2 g L™! and a random error of 4%. These
errors reflect the bounds of experimentation-related errors and device characteristics.

38



0 0 0 I
02 4 6 810121416 0246 81012141618 0 2 4 6 8 10 12 14 16

Biomass, g Lt

[ o
0 2 4 6 8 1012 14 16 02 46 81012141618
Time, h

Figure 2.12. E. coli bacteria biomass estimation results of the six initial experiments.
The vertical error bars indicate the total error. The purple shadow represents the prediction
band
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CONCLUSION

In this dissertation, a biomass estimation method based on stoichiometry and
oxygen consumption has been proposed. The biomass concentration estimation
algorithm is suitable for use with a wide spectrum of cell cultures: yeast, three
different bacterial strains, and mammalian cells. These cultures are the main cells
used in industry. Hence, the described algorithm has a great potential for
marketing. It would solve the problem of sampling and increase the efficiency of
human work. Concerning the method precision for yeast and bacteria, the average
mean percentage error (MAPE) is 6.97%, while the average MAPE for
mammalian cells is 5.15%.

This dissertation has proposed and applied a target protein modelling approach
based on stoichiometry and oxygen consumption. The product synthesis model
showed that the target product concentration depends on the specific growth rate
at the time of induction and biomass increment. The aforementioned relationships
allow guiding the process to the optimal conditions in the cultivation process for
efficient potential protein production. The method’s model fitting average MAE
and MAPE accuracy is 0.099 g L™ and 8.22%, respectively.

In this dissertation, a specific cells growth rate estimation method based on
stoichiometry and oxygen consumption has been offered and put into application.
The aforementioned approach has a single tuning parameter which varies based
on the cell strain. This leads to its resilience and simplicity. This method combines
well with control algorithms as it provides feedback information from the
cultivation process. The accuracy of the method on MAPE is 9.77%, and it
directly estimates SGR without using any additional observations.

It has been demonstrated in this dissertation that stoichiometry coefficients cannot
be assumed as stationary in all contexts. The maintenance term’s dependence on
product synthesis is significant. In mammalian biosynthesis, the age of the culture
participates in expressions describing the cells growth and maintenance. This is
crucial to cultivation methods which are continuous or significantly prolonged.
The proposed innovation allows the algorithms of this dissertation to be used in
various types of growing processes: batch, fed-batch, or continuous. Furthermore,
the algorithms are fit to be used in bioprocesses with inductor (ITPG).



4. FUTURE WORKS

The proposed aging term in biomass estimation showed that the age of the
culture has an impact to the yields of oxygen consumption. In this dissertation, the
aging term is significant in cultivation processes with mammalian cells because the
growth was prolonged due to the low specific growth rate of the cell. The future work
is to prolong the cultivation processes with E. coli bacteria and make the growth
process in the continued mode, which implies that, at any moment, some of the media
with biomass would be taken off from the bioreactor and replaced with a fresh media.
In this case, the inhibition of an excessive amount of biomass would be avoided, and
the age of the cell culture would continue to increase. Data of those cultivation
processes would prove that the aging term for all the cell cultures is relevant.

41



5. SANTRAUKA

5.1. Ivadas
5.1.1. Tiriama problema

Bioreaktoriuje gliukozé yra gyvybiskai svarbus maistas jvairiy tipy lasteléms
[87]. Gliukozé vartojama gaminant jvairius lasteliy produktus ir veikia kaip
pagrindinis lgsteliy metabolizmo ir anabolizmo energijos Saltinis [88]. Mazas
gliukozés kiekis bioreaktoriuje lemia mazesnj augimo greitj [89]. Kita vertus, per
didelis gliukozés kiekis sukelia kenksmingy Salutiniy produkty susidaryma ir Igsteliy
neigiamus metabolizmo poky¢ius, kurie gali turéti jtakos bendram lasteliy augimui ir
produkto sintezei [90]. Tyr¢jai turi kruopsciai subalansuoti gliukozés tiekima pagal
esamg lasteliy kultiiros biiseng bioreaktoriuje, kad optimizuoty Iasteliy augimo greitj
ir produkto gamyba [91]. Tam reikia stebéti tipinius kultivavimo proceso parametrus,
tokius kaip gliukozés koncentracija bioreaktoriuje, santykinis lgsteliy augimo greitis,
biomasés koncentracija, produkto gamybos greitis [92]. Norint iSlaikyti optimaly
kultivavimo proceso efektyvumo lygj, pagal Siuos kintamuosius privaloma pritaikyti
gliukozés tirpalo tiekimo greitj [92].

Taciau be brangiy aparatinés jrangos jutikliy nejmanoma iSmatuoti esminiy
bioproceso parametry realiuoju laiku. Informacijos apie proceso biiseng triitkumas
yra pagrindiné biotechnologiju problema, proceso automatizavimas ir idealus
valdymas nejmanomas be reikalingy grjZtamojo rySio signaly. Todé¢l Sioje
disertacijoje yra déstomi buidai, kaip panaudoti netiesioginio jvertinimo algoritmus
(programuojamieji jutikliai), kad bity galima stebéti pagrindinius parametrus [93].

5.1.2. Tyrimo objektas

Trys pagrindiniai lasteliy kultivavimo proceso kintamieji, kuriy negalima
iSmatuoti tiesiogiai, — specifinis lasteliy augimo greitis, biomasés koncentracija ir
tikslinio produkto koncentracija.

5.1.3. Tyrimo tikslas ir iSkelti uzdaviniai

Tyrimo tikslas — padidinti kultivavimo proceso naSuma pritaikant tikslius,
patikimus jvertinimo modelius (programuojamus jutiklius), pagrjstus bioreaktoriaus
iSmetamosiomis dujomis, leidzianCius stebéti esminius augimo proceso parametrus,
kuriy negalima tiesiogiai jvertinti. Norint pasiekti §io tyrimo tikslus, buvo iskelti Sie
tikslai:

1. Sukurti ir iStirti biomasés koncentracijos jvertinimo algoritma, kuris leisty sekti
proceso biiseng.

2. Sudaryti ir i8tirti tikslinio produkto sintezavimo modelj ir pasitilyti produkto
sintezés iSeigos priklausomybes.

3. Sukurti ir iStirti santykinio lasteliy augimo grei¢io jvertinimo metoda, skirta
pateikti informacijg valdymo sistemai.

4. Sudaryti ir istirti jvertinimo algoritma, skirta gyvybingoms lgsteléms nustatyti,,
zinduoliy lgsteliy kultarai, kultivavimo biisenai sekti.
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5.1.4. Mokslinis naujumas

Kiekvienoje sios disertacijos publikacijoje buvo pateikta reiksSmingy moksliniy
kintamyjy jvertinimo / prognozavimo naujoviy, kurios pagrjstos fundamentaliomis
ziniomis ir matematiniais metodais. Paprastumas, lengvas pritaikomumas, tikslumas
ir nauja koncepcija, kuri turi jtakos algoritmui, yra kriterijai, jrodantys naujuma.

Al straipsnio naujové yra Luedeking-Piret modelio (1959 m.) [16]
patobulinimas, pasitlyta nauja stechiometrijos parametro, kuris apraso deguonies
suvartojimg lasteliy gyvybinéms funkcijoms palaikyti, iSraiska. Remiantis pasiiilyta
teorija, kai biomasés koncentracija néra didelé, biomasés palaikymo narys proceso
pradzioje yra pastebimai mazas, todél jo galima nevertinti ir po indukcijos. Kai
produkto sintezé pradedama arba kai biomasés kiekis virSija slenksting verte, tada
palaikymo narys turi biiti vertinamas.

A2 publikacija yra Al darbo tesinys, pasitlytas naujumas yra biomasés
palaikymo nario isskaidymas j dvi dalis: produkto sintez¢ ir biomasés palaikymo narj.
Taip pat straipsnio kitas pasitilytas naujumas susijes su tikslinio produkto sintezés
priklausomybe nuo santykinio Igsteliy augimo greicio.

A3 straipsnyje pasitlyto algoritmo unikalumas ir naujumas slypi jo
atsikartojamume ir paprastume, nes jis turi tik vieng derinimo parametrg ir yra
tinkamas naudoti viso auginimo proceso metu, jvairiomis salygomis ir esant jvairiems
metabolizmo tipams. Siekiant pasalinti neapibréztumus ir perskai¢iavimo klaidas,
specifinis augimo greitis apskaiciuojamas tiesiogiai i§ dujy duomeny (deguonies
suvartojimo grei¢io), o ne pagal jvertintg biomasg.

A4 darbe pateikto metodo naujové yra lgsteliy senéjimo termino vartojimas,
skirtas gyvybingoms lasteléms jvertinti. Kultiiros amzius turi jtakos auginimo proceso
produktyvumui, taip pat sintezés dinamikai ir efektyvumui.

5.1.5. Tyrimo metodologija

Sio tyrimo pagrindinis tikslas yra jvertinti svarbius auginimo proceso
kintamuosius, kuriy negalima iSmatuoti tiesiogiai. Norint uztikrinti algoritmy
patikimumg ir paprastumg, Luedeking-Piret modelis [16] buvo pasirinktas kaip
pagrindas. Kadangi biomasés koncentracija apibrézia viso auginimo proceso bukle,
todél pirmasis tikslas buvo istirti ir sukurti biomasés jvertinimo metodag (Al). Antra
publikacija (A2) yra straipsnio (Al) tesinys, joje siilomas iSpléstas biomasés
koncentracijos algoritmas, papildytas baltymo sintezés kintamuoju. Taip pat tyrime
pateikiama santykinio augimo grei¢io indukcijos metu jtaka produkto sintezés
efektyvumui. Kadangi lasteliy specifinio augimo grei¢io kintamasis yra svarbus
jéjimo signalas baltymy sintezés modeliui, treCias publikuotas straipsnis yra
santykinio augimo grei¢io (SGR) jvertinimo algoritmas (A3). Paskutiniame
straipsnyje (A4) aprasomas patobulintas biomasés koncentracijos algoritmas, galintis
jvertinti gyvybingy lasteliy skai¢iy ir apimantis platesnj lasteliy kultiry spektra.
Tyrime (A4) panaudotas lasteliy kultiiros amziaus kintamasis, kuris pateiktas kolegy
parasytame straipsnyje [17].
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5.1.6. Praktiné reikSmeé

1.

Sioje disertacijoje pateikti jvertinimo algoritmai yra reikalingi ir reik§mingi ne tik
nacionaliniu, bet ir tarptautiniu mastu. Sukurti algoritmai gali bati naudingi
Imonéms, uZzsiimancioms biotechnologine veikla, pavyzdziui nacionalinéms
jmonéms:

a) Northway Biotech, UAB,

b) Celltechna, UAB,

c) Thermo Fisher Scientific Baltics, UAB,
d) Roquette Amilina, AB.

Siame darbe pateiktiems metodams galimybe vystyti sudaré Europos Sajungos
strukttriniy fondy finansuojamas projektas ,,Biotechnologiniy procesy biisenos
jvertinimo programiniy jutikliy sistemos sukiirimas ir taikymas®“ (Nr. 01.2.2-
LMT-K-718), 2019-2023 m.

5.1.7. Tyrimo rezultaty aprobavimas

1.

Pateikti metodai publikuoti 4 skirtinguose tarptautiniuose mokslo Zzurnaluose,
turin¢iuose cituojamumo rodikli ,,Web of Science* duomeny bazgje. Trys
pasirinkti zurnalai yra Q1 lygio, o 1 Zurnalas yra Q2 lygio.

Esminiai rezultatai pristatyti trijose tarptautinése konferencijose.
Visi Siame tyrime pateikti jvertinimo algoritmai yra jdiegti ir naudojami Kauno
technologijos universiteto bioprocesy modeliavimo ir valdymo laboratorijoje.

Inovatyvios medicinos centro (IMC) MTEP laboratorijoje jdiegtas ir pritaikytas
biomasés koncentracijos jvertinimo algoritmas (Al).

5.1.8. Disertacijos ginamieji teiginiai

1.
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Pirmoje kultivavimo proceso puséje (lag ir log fazés) lasteliy gyvybiniy funkcijy
palaikymo narys yra nereik§mingas ir turi minimaly poveikj jvertinimo procedury
tikslumui.

Tikslinio produkto sintezés efektyvumas tiesiogiai priklauso nuo santykinio
lasteliy augimo greicio indukcijos momentu.

Bioproceso biisenos jvertinimas remiantis deguonies suvartojimo greiiu yra
priimtinas, jo atsikartojamumui neturi jtakos E. coli bakterijy metabolizmai.

Lasteliy kultiiros vidutinis amzius yra reikSmingas kintamasis, kuris pagerina
tikslinio produkto ir biomasés koncentracijos jvertinimy tiksluma.



5.2. Straipsniy apZvalga

5.2.1. Generic estimator of biomass concentration for Escherichia coli and
Saccharomyces cerevisiae fed-batch cultures based on cumulative oxygen
consumption rate

Vienas i§ reikalingiausiy kultivavimo proceso tiesiogiai nematuojamy
parametry yra biomasés koncentracijos jvertis. Todél pirmojo isleisto straipsnio
Generic estimator of biomass concentration for Escherichia coli and Saccharomyces
cerevisiae fed-batch cultures based on cumulative oxygen consumption rate tikslas —
— suteikti galimybe nuolat stebéti bioproceso bukle ir atsisakyti méginiy émimo
procediros. Straipsnyje yra pateiktos dvi naujovés: biomasés palaikymo narys, kuris
apibudina, kiek deguonies suvartoja biomasé vien tik kvépavimui (gyvybiniy funkcijy
palaikymui), néra konstanta, kaip dazniausiai traktuojama kituose straipsniuose [16,
50]. Straipsnyje pasitlyta biomasés palaikymo narj laikyti auganCios vertés
kintamuoju. Kita hipotezé yra tai, kad kultivavimo pradzioje palaikymo narys yra
labai mazas, todél galima jo nevertinti, ir tik susidarius tam tikram biomasés Kiekiui,
§is narys pradeda didéti. Sios hipotezés ypa¢ aktualios kultivavimo procesuose,
kuriuose yra naudojamas induktorius (isopropyl-D-1-thiogalactopyranoside/IPTG),
nes §is preparatas suaktyvina tikslinio baltymo sinteze, todél proceso dinamika staigiai
kinta [57]. Didéjan¢iame biomasés palaikymo kintamajame yra jvertintas deguonies
suvartojimas baltymy sintezei. Si prielaida leidZia Siame straipsnyje pateikti
nesudétingg matematinj biomasés koncentracijos jvertinimo metodg, kuris sudarytas
i§ dviejy daliy: biomasés palaikymo jvercio ir lasteliy dalijimosi. Pasitilyto algoritmo
privalumai yra tikslumas ir nesudétinga algoritmo forma, kuri tinkama naudoti
biomasés koncentracijai jvertinti viso auginimo proceso metu.

Sio straipsnio algoritmo pagrinda sudaro Luedeking-Piret matematiné israiska,
kuri apibiidina ry$j tarp deguonies suvartojimo ir stechiometrijos parametry [16]:

OUR() = a-X'(t)+ B - X(¢), (5.1)

Cia o ir B yra stechiometrijos parametrai, OUR yra deguonies suvartojimo greitis, X
yra biomasés koncentracija. Koeficientas a apibtidina deguonies suvartojima lasteliy
populiacijos augimui ir g yra deguonies suvartojimas gyvybinéms funkcijoms
palaikyti. Naudojant klasiking Piret iSraiska su duomenimis, gautais i§ eksperimenty,
, kuriy metu buvo atlikta indukcija, gauti rezultatai turi dideles paklaidas. Todél
pradétas tyrimas Siekiant iSsiai$kinti dinamikg deguonies suvartojimo biomasés
palaikymui ir jo priklausomybé nuo biomasés koncentracijos pries ir po indukcijos.
Siam tyrimui buvo naudojami duomenys, surinkti i§ kultivavimo procesy
eksperimenty, kuriy metu buvo naudojamos keturios skirtingos lasteliy kultiiros:
mielés lgstelés S. cerevisiae (no DY7221), E. coli BL21(DE3) pET9a-ldeS, E. coli
BL21 (DE3) pET21-IFN-alfa-5, E. coli BL21(DE3) pLysS. Lasteliy jvairové tyrime
buvo pasirinkta dél modelio rezultaty patikimumo ir universalumo. Deguonies
suvartojimo biomasei palaikyti tyrimas buvo vykdomas i§ bendro deguonies
suvartojimo grei¢io eliminavus deguonies suvartojimg gyvybinéms funkcijoms
palaikyti f: OUR(t) = a-X'(t). Siam tyrimui atlikti buvo pasitelktos biomasés
koncentracijos vertés 1§ eksperimentiniy kultivavimo proceso. Rezultatai
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pademonstravo, kad deguonies suvartojimas biomasei palaikyti kultivavimo proceso
pradzioje lygus nuliui ir esant kritiniam biomasés Kiekiui, §is kintamasis pradeda
didéti. Palaikymo dinamika priklauso nuo lgsteliy kultivavimo proceso, kaip parodyta
5.1 paveiksle.

0.3 T T T ‘ 0.06

025,',8(tm) . (a) 0.05 *B(tm) * |(b)
02 —BX) co 004 ~B(X)
£o.15 So03
2 01 S0.02!
0.05 0.01
0 0 | | ) ] |
20 30 40 50 60 70 0 5 10 15 20 25
X (g/)) X (g/)

5.1. pav. Biomasés koncentracijos jtaka deguonies suvartojimui, skirtam biomasei
palaikyti, (a) E. coli, (b) S. cerevisiae

Pagal gautus rezultatus, straipsnyje pasiilyta galutinés biomasés koncentracijos
jvertinimo modelis, kuriame gyvybiniy funkcijy palaikymas yra vertinimas nuo tam
tikros biomasés koncentracijos ir jo forma aprasoma antros eilés polinomu:

X, = cOUR,, + X, (5.2)

a
- COURw = Zﬁzli(xl) XAl (5.3)
[;(X) = B(X(t)) = kﬁz 'Xz(t) + kg1 “X(t) + kBO' (5.4)

Siose formulése Xo yra biomasés koncentracija inokuliavimo momentu, cCOUR
yra deguonies suvartojimo greicio integralas: cOUR = fot OUR(t) dt. ko, ks, Kgoyra
biomasés palaikymo koeficientai, pateikti israiskoje (5.3), kurie priklauso nuo Igsteliy

kulttiros. Biomasés palaikymo koeficientai gauti naudojant duomenis i§ kultivavimo
procesy ir pritaikant iSkilaus optimizavimo metoda [42].

5.2.2. Identification of Functional Bioprocess Model for Recombinant E. Coli
Cultivation Process

Toliau tesiant tyrimg susijusj su deguonies suvartojimu biomasei palaikyti ir jo
dinamikos priklausomybe, gauti rezultatai publikuoti straipsnyje Identification of
Functional Bioprocess Model for Recombinant E. Coli Cultivation Process. Siame
darbe toliau tesiamas tyrimas tarp deguonies suvartojimo ir stechiometrijos [16, 42].
AnksCiau apraSytame straipsnyje biomasés palaikymo narys apémé ir produkto
sintezés deguonies suvartojima, kad biity galima islaikyti modelio paprastuma [42].
Taciau, norint padidinti biomasés koncentracijos prognozavimo tiksluma, produkto
jvertinimas realiu laiku yra nei§vengiamas [46]. Siame darbe pasiiilyta isplésta
Luedeking-Piret modelio iSraiska [16]:
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QUR() =a-X'(t)+B-X({t)+y-P'(b), (5.5)

Cia y yra produkto sintezés iSeigos parametras, nusakantis, kiek deguonies reikia
sintetinant baltymus, P yra produkto koncentracija. Si israiska galioja daugumai
kultivavimo procesy, taip pat ir procesuose, kai yra naudojamas induktorius [56].
Siame straipsnyje i§ esmés yra analizuojami Iasteliy kultivavimo procesai, kuriuose
yra naudojamas IPTG preparatas, ir jo jtaka produkto sintezei. Tyrimo objektas Siame
darbe yra rekombinantinés E. coli BL21 (DE3) pET28a bakterijos [57]. Iki
induktoriaus suleidimo j bioreaktoriy bakterijos negamina produkto, tik dauginasi.
Todél iki indukcijos deguonies suvartojimas produkto sintezei yra laikomas lygus
nuliui (P'(t) = 0) [94]. Tyrimo eksperimentuose induktorius buvo suleidziamas
skirtingais momentais. Tai leido aptikti désninguma, kad induktoriaus suleidimo
momentu biomasés koncentracija bioreaktoriuje turi jtakos produkto sintezei y(X)
[66]:

y(X) = ky - (X() = Xina), (5.6)

¢ia ky yra produkto skyrimosi iSeigos koeficientas, kuris yra konstanta, Xing biomasés
koncentracija indukcijos metu. Sujungg straipsnio biomasés palaikymo nauja iSraiska
[42] ir formuléje (5.6) pateikta produkto sintezés iSraiska, gauname visg deguonies
suvartojimo grei¢io iSraiska:

t t t
OUR(t)dt" = a- f X'(£)dt" +ky | (X(t") = Xing) - POt
to . to to (57)
+ f (kg - X2(t") + gy - X(t*) + kpo) - X(t)dt".
to

E. coli bakterijos eksperimenty duomenys buvo paimti i§ pramoniniy
bioproceso vystymo laboratorijy, kuriose induktorius buvo suleidziamas kultivavimo
procesy logaritminéje fazéje [48] (esant apie 30 g/L biomasés koncentracijai), kultiirai
nepasiekus stacionariosios fazés [91]. Atliekant tyrimus su pateikta visa deguonies
suvartojimo formule (5.7), pastebéta, kad biomasés palaikymo narys yra minimalus,
nes, esant nedidelei biomasés koncentracijai suleidus induktoriy, deguonis i$ esmés
yra suvartojimas produkto sintezei ir minimaliam Igsteliy dalijimuisi:

t t t
f OUR(t)dt* = a - f X'®dt* + k- [ (X(t) = Xina) - P'Edt". (5.8)
o to to
Rezultatai parodé, kad deguonies suvartojimas gyvybingoms funkcijoms
palaikyti yra labai mazas, kad pagrindiniai kultivavimo proceso veiksniai lasteliy
dalyba ir baltymo sintezé nustelbia. Galutinis Siame straipsnyje pasitilytas biomasés
koncentracijos jvertinimo modelis i§licka nesudétingos formos:

_COURm+a'X0+ky'Pm'Xind+ky'2ﬁ1(Xl_Xl—l)'Pl
me a+P, k, '

(5.9)

Siame straipsnyje pasiilytas ir kitas naujumas — produkto koncentracijos
jvertinimo modelis. Kadangi biomasés koncentracijos jverCio algoritmui yra
reikalinga produkto koncentracijos verté, todél vienu metu buvo vystomi du
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prognozavimo modeliai. Produkto koncentracijos jvertinimo algoritmo idéja paimta
i§ darbo [68], kai produkto sintezé priklauso nuo santykinio lasteliy augimo greicio:

dp,

d_; = pr(.u: P, (510)

¢ia Py yra baltymy koncentracija, padalinta i§ biomasés koncentracijos Py (t) =
P(t)/X(t), gpx yra santykinis produkto kaupimosi greitis (U/g/h), p yra santykinis
lasteliy augimo greitis (1/h) [68]. Atlikus tyrimus su eksperimenty duomenimis,
pastebéta, kad produkto sintezé yra slopinama produkto koncentracijos bioreaktoriuje.
Tai yra biomasés koncentracija po indukcijos turi riba, kiek produkto galima
pagaminti [69]. Todél produkto sintezés greitis mazéja, didéjant baltymy
koncentracijai:

dP,

d_): = pr(ﬂ' Py) = Prax(u, X) — k¢ * Py (0), (511)

¢iakintamasis k, yra nuo laiko nepriklausomas koeficientas, kuris nulemia savaiminio
slopinimo elgsena [70], P4, Yra maksimali santykiné produkto koncentracija. Sis
kintamasis tiesiogiai priklauso nuo u santykinio lasteliy augimo greicio indukcijos
metu. Véliau, po indukcijos, Pmax, maksimali tikslinio produkto koncentracija,
nustatoma pagal santykinj biomasés augimo greitj ir biomasés koncentracija:

Pmax(.u' X) = :“(t) ' (kmO + K (X(t) - Xind)): t 2 tinguction:

Prax (t, X) = u(t) * ko, t < tinguctions

¢ia Kmo ir km1 yra $io tyrimo pasitilyti empiriniai parametrai, kmo koeficientas, susijes
su augimo greiiu ir baltymy sinteze, o kmi susijes su biomasés koncentracija
indukcijos momentu [65], tinduction Yra indukcijos momentas. Siame straipsnyje visuose
pagrindiniuose jvertinimo modeliuose yra naudojama kumuliatyviné informacija dél
jos savybés sumazinti triuk§mo jtaka jver¢iams. Todél ir produkto prognozavimo
algoritmo ((5.11) formulé) galutiné lygtis yra isreiksta per integrala:

B (X2 Praxj - Atj—q — ke * X271 Py - Ati-q) - Xim
1+ Atym-g ke ’

(5.12)

P, (5.13)

Straipsnyje taip pat pristatomas parametry identifikavimo procesas, naudojant
iSgaubto optimizavimo metodg. Taip pat pasitlytas naujas kriterijus, skirtas rasti
parametry reikSmems, kurios galioty viso kultivavimo proceso metu:

X7
- Kexp + szn ' Kexp'

2
Oxm~ 1

(5.14)

¢ia Keyp yra derinimo koeficientas, kuris reikalingas pakoreguoti neapibréztumui ir
sujungti du optimizavimo kriterijus: maziausiy kvadraty metodo ir vidutinés
procentinés paklaidos. Kai Key kintamojo verté lygi 1(0 < Kexp < 1), tai kriterijaus
iSraiska yra lygi maziausiy kvadraty metodui. O kintamojo reik§mei prilygus O,
kriterijus tampa lygus vidutiniam procentiniam paklaidos metodui.
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5.2.3. An oxygen-uptake-rate-based estimator of the biomass-specific growth
rate in microbial cultivation processes

Pirmiau pristatyti du prognozavimo metodai straipsniuose pateiké labai svarbiy
kultivavimo proceso kintamyjy skaié¢iavimo budus [42, 43]. Turint Siuos pagrindinius
kintamuosius: biomasés koncentracijg ir produkto koncentracija, tolesnis zingsnis
automatizuojant Igsteliy auginimus bioreaktoriuje yra automatinio valdymo sistema.
Sios sistemos svarbi dedamoji yra griztamasis rysys i§ valdymo objekto. Sis signalas
turi biiti tikslus ir atspindintis proceso dinamikg. Biomasés koncentracija, kaip
griztamasis rySys, gautas i§ anks¢iau pateikty programiniy jutikliy [42, 43], néra
tinkamas. Priezastis yra ta, kad Sio kintamojo dinamika yra 1éta ir jo, kaip grjZztamojo
ry$io signalo, tinkamumas mazéja, ypaé esant dideléms koncentracijoms [46].
Neseniai i$leistose publikacijose yra pastebéta, kad santykinis lgsteliy augimo greitis
yra patikimesnis signalas grjztamajam rysiui valdiklyje [88]. Straipsnyje An oxygen-
uptake-rate-based estimator of the biomass-specific growth rate in microbial
cultivation processes yra pasiiilytas algoritmas, skirtas santykiniam lgsteliy augimo
greiciui apskaiciuoti tiesiogiai i§ deguonies suvartojimo grei¢io. Pagrindinis naujumas
yra santykinio lasteliy augimo grei¢io jvertinimo modelis, kuris tiesiogiai i§ dujy,
naudojant tik vieng derinimo parametra, pateikia priimting rezultata.

Same darbe modelis buvo vystomas remiantis dviem klasikiniais modeliais,
Luedeking-Piret ir biomasés augimo grei¢iu [16, 72]:

dx
=K@, (5.15)

Siekiama gauti santykinio augimo greicio jvertinimo iSraiska, kurioje nebiity
biomasés koncentracijos dedamosios. Todél sujungiant Piret ir biomasés augimo
greiio formules, biomasés koncentracija iSreikSta per deguonies suvartojima ir
stechiometrijos parametrus:

1 dOUR() 1 du
OUR(H) —dt  p+pBja d ' H*

(5.16)

Kitas zingsnis yra supaprastinti modelj taip, kad S§is bty patikimas,
nesudétingas ir dinamiskai adekvatus proceso elgsenai. Siam tikslui (5.16) iraiska
yra skiriama j dvi dalis: dinamine¢ dalj ir fundamentaliaja dalj, susiejant deguonies
suvartojimo greitj su Igsteliy augimo grei¢iu. Dinaminé dalis yra jvardinta kaip R
kintamasis:

1 dOUR(t) 1 du

R=0ury ~—ac ' " utpla ac MR (6.17)
Fundamentalioji dalis yra jvardinama kaip T kintamasis:
1
T = : 5.18
Wt Bl (518)

Paskutinis Zingsnis yra z transformacijos pritaikymas. Sio metodo tikslas -
pritaikyti algoritma diskretiniams deguonies suvartojimo grei¢io matavimams (OUR)
tam, kad sekmingai jvertintume santykinj biomasés koncentracijos augimo greitj. 5.2
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paveiksle pavaizduotas visas diskretinis santykinio lasteliy augimo greicio jvercio
algoritmas.

1 1
b= =
- OUR, fiyy + Plo
w i
OLR’? -~ -k'rl':'i-' R,; At -”:'.‘
- At T(1-z-1) +Ar -

5.2. pav. SGR jvertinimo algoritmo blokiné schema (z! — poslinkio atgal operatorius,
At — laiko diskretizavimo Zingsnis, n — diskretizacijos tasky skaicius)

RySys tarp deguonies suvartojimo dinamikos ir laiko konstantos, lemiancios
santykinio augimo greicio reikSme, pavaizduotas struktirin¢je diagramoje. Pritaikius
z transformacijg lygciai, gaunama galutiné modelio formulé:

R At N T
T rac MU T A

Galutiné algoritmo iSraiSka yra supaprastinta, lengvai integruojama j bet kokia
valdymo sistema ir gali buti naudojama jvairiy lasteliy kulttiry auginimo procesams
sekti. Stechiometrijos koeficienty santykis f/o. yra tik vienas metodo derinimo
parametras, kuris biidingas tik tam tikrai mikroorganizmy padermei ir gali bati rastas
Zinynuose arba nustatytas atlikus iSankstinius Kartotinius kultiiros kultivavimo
eksperimentus [42].

Kartu su santykinio lasteliy augimo grei¢io jvertinimo modeliu pristatytas
kompiuterinis proceso elgsenos modeliavimas, kurio metu buvo testuojamas $io
straipsnio pagrindinis netiesioginis biisenos jvertinimo algoritmas. Sio modeliavimo
tikslas yra grubiai atkurti bioreaktoriuje vykstanéius procesus ir i$testuoti santykinio
augimo greicio jvertinimo algoritmo veikima kritinémis situacijomis, kai Sio greicio
nuostatas staigiai operatoriaus pakei¢iamas arba pakinta dél iSoriniy salygy.
Kompiuterinio modeliavimo pagrindg sudaro trys pagrindinés diferencialinés lygtys:
biomasés augimo, gliukozés suvartojimo ir bioreaktoriaus darbinio tario kitimas [75,
76].

My = (5.19)

dx X
_ X_p. 2 2

5 = HE) X=F-, (5.20)

ds_ x4 pad S (5.21)
dt__qS(S) + V )] .

av
B 5.22
ac - (5.22)

Siose diferencialinése lygtyse F kintamasis yra gliukozés substrato tiekimo
greitis g/h, gs gliukozés suvartojimo greitis g/(g h), V bioreaktoriaus tiiris L, S
gliukozés koncentracija bioreaktoriuje g/L, St gliukozés koncentracija pamaitinimo
tirpale g/L. Sios trys pagrindinés diferencialinés lygtys apraso bioreaktoriuje
vykstanc¢ius pagrindinius rei$kinius, nesigilinant j pasalinius metabolinius veiksnius,
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kurie netrukdo santykinio Iasteliy augimo jvertinimo modelio adekvatumo
patikrinimui. Kadangi $io straipsnio modelis yra paremtas deguonies suvartojimu,
pateiktos papildomos trys lygtys, kurios Kkartu atkartoja lasteliy augimo greicio
elgsena, Kuri priklauso nuo gliukozés koncentracijos bioreaktoriuje, gliukozés
suvartojimo ir klasikinés Piret iSraiskos (formulé (5.1)) [78, 79]:

S ki

‘LL(S) = Hmax " m ’ ki +s , (523)
4s(s) = ‘;(S) +m. (5.24)
X/s

Paskutinése dviejose lygtyse, tm,q, Yra maksimalus galimas lgsteliy kultiiros
augimo greitis, kg, k; yra Monod iSraiSkos koeficientai [78], m yra gliukozés
suvartojimo parametras biomasei palaikyti, Y, /s yra biomasés koncentracijos iSeigos
koeficientas. Pateiktas lgsteliy kultivavimo proceso skaitmeninis dvynys yra labai
patogus naujy matematiniy modeliy testavimo jrankis. Skaitmeninio dvynio
privalumas yra galimybé testuoti kuriamus modelius kritinése situacijose, neatliekant
sudétingy eksperimenty.

5.2.4. Viable cell estimation of mammalian cells using off-gas-based oxygen
uptake rate and aging-specific functional

Publikavus du straipsnius apie biomasés koncentracija ir pradéjus juos naudoti,
rezultatai atitiko spaudoje pateiktus tikslumus, kai objektas yra mikroorganizmai,
kuriy santykinis augimo greitis yra didesnis nei 0,1 h'%, ir kultivavimo procesas vyksta
iki keliy pary. Taciau pateikti modeliai yra netinkami naudoti su zinduoliy lastelémis,
kai Sios kultiiros auginimas vyksta ménesiais [79]. Todél, iSkilus poreikiui, pradétas
tiriamasis darbas, kuris apraSytas ketvirtame straipsnyje Viable cell estimation of
mammalian cells using off-gas-based oxygen uptake rate and aging-specific
functional. Sis tyrimas skirtas aktyviai biomasei — gyvybingoms lasteléms jvertinti
pagal deguonies jsisavinimo greitj, naudojant stechiometrinius principus ir lasteliy
kultiiros sené¢jimo fenomenga. Sio straipsnio pagrindinis naujumas — vidutinis Iasteliy
populiacijos amzius, kurio taikymas skirtas ilgalaikiy kultiiros procesy buklei
jvertinti, pavyzdziui, zinduoliy lastelése, kur jprasti metodai yra netinkami [80, 81].
Amziaus kintamojo naudojimas leido straipsnio [42] modelj padaryti dar
universalesnj, tinkama naudoti pla¢iam lasteliy tipy diapazonui, jskaitant ir zinduoliy
lasteles.

Remiantis tyrimy iSvadomis [17, 82, 83], abu Luedekingo-Piret modelio
kinetikos parametrai a ir S paprastai yra laiko funkcijos. Ta¢iau stechiometriniy verciy
priklausomybés nuo laiko negalioja, kai objektas yra zinduoliy lgstelés ir auginimo
procesai uzsitgsia. Tada kinetiniy parametry priklausomybeés yra labiau panasios |
vidutinj Igsteliy populiacijos amziy.

Jy X(t) dty

e (5.25)

Age(t) =
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Amziaus iSraiskai didesng jtaka daro proceso buklé, o ne laiko eiga [85]. Atlikus
tyrimg su Zzinduoliy lgsteliy auginimo proceso duomenimis, nuspresta jtraukti
parametring hipoteze Zinduoliy kultirai, kai kinetinis koeficientas a(z) Kinta
kultivavimo proceso metu pagal désninguma:

a(t) = E—— (5.26)

1 —e Lagtime

¢ia a4, kintamasis nusako maksimalig oksidatyving galig lasteliy dauginimuisi,
Lagime kintamasis yra susijes su lasteliy lag faze, t.y. per kiek laiko Igstelés uztrunka
pereiti i$ lag fazés j logaritming faze [91]. Deguonies suvartojimas aktyvios biomasés
— gyvybingy lasteliy gyvybiniy funkcijoms palaikyti (8(2)) leidzia lasteléms iSlikti
gyvybingoms, o §io kintamojo priklausomybé nuo sen¢jimo nario pateikta Zzemiau:

Age(t)

BO= B 2560 + kaga

(5.27)

(5.27) lygtyje senéjimui budingas parametras Kage yra ,,pusés amziaus
konstanta“, 0 gyvybiniy funkcijy palaikymo koeficientas £ laikomas maksimalia
verte.

Sio straipsnio jvertinimo modelio pagrinda sudaro [42] straipsnio biomasés
jvertinimo israiSka, kai deguonies suvartojimas aktyviai biomasei — gyvybingoms
lasteléms palaikyti pradedamas vertinti, kai aktyvi biomasé — gyvybingy lasteliy
Kiekis — pasiekia kritine verte:

YOUR(t,) . t
X(t) = XO + J — < dtl; kal kCX > j X(tl) dtl )
0 a(tl) 0 (5 28)
. t18(t2) '
X, + fOtOUR(tl)a‘i('tB)(t) Xex efo a(ty) dtzdt1
X(t) = D ,  kitaip.
eIO a(ts) dts

(5.28) formuléje kex yra parametras, kuris apibrézia laiko momenta, nuo kurio
iSraiskoje (5.25) pradeda dalyvauti gyvybiniy funkcijy palaikymo narys S.

5.3. Rezultatai

Visuose $ios disertacijos straipsniuose lyginimui yra naudojami kriterijai:
vidutiné absoliuti paklaida (MAE), vidutiné absoliutiné procentiné paklaida (MAPE)
ir vidutiné kvadratiné paklaida (RMSE), kad biity galima gautus rezultatus lyginti ir
jvertinti.

Pirmuosiuose dviejuose straipsniuose Al (Generic estimator of biomass
concentration for Escherichia coli and Saccharomyces cerevisiae fed-batch cultures
based on cumulative oxygen consumption rate) ir A2 (ldentification of Functional
Bioprocess Model for Recombinant E. Coli Cultivation Process) aprasyti du biomasés
koncentracijos jvertinimo metodai, kuriy pagrindg sudaro deguonies suvartojimas ir
stechiometrija. Al straipsnyje pateiktas modelis, kai deguonies suvartojimas lasteliy
gyvybei palaikyti kultivavimo proceso pradZioje yra nevertinamas, ir tik biomasés
kiekiui virSijant kriting biomasés verte, Sis kintamasis pradeda galioti, ir jo
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priklausomybé nuo biomasés yra laikoma tiesiskai priklausoma. Antrajame
straipsnyje A2 modelyje pateikta, kad kultivavimo procesuose su indukcija (IPTG)
deguonies suvartojimo biomasei palaikyti galima nevertinti, nes IPTG produktas yra
suleidziamas logaritmingje fazéje, kai deguonies suvartojimas biomasei palaikyti yra
lygus nuliui. Jrodyta, kad vietoj $io kintamojo galima naudoti baltymy sintezés greicio
kintamajj ir iSeigos koeficienta deguonies suvartojimui. Abiejuose darbuose pasitelkta
E. coli bakterija kaip eksperimentinis objektas. 5.1 lent. pateikti Sios kulttros
stechiometrijos parametrai, kurie buvo optimizuoti pagal dviejy straipsniy modelius,
taip pat pateikiant $iy dviejy biomasés koncentracijos jvertinimo modeliy
eksperimenty rezultaty vidurkius pagal MAE ir MAPE Kkriterijus. Abiejy biomasés
koncentracijos modeliy rezultatai grafiskai pavaizduoti Figure 2.4-2.5 ir Figure 2.6
(rezultaty skiltyje ir toliau vartojamos nuorodos j angliskoje versijoje pavaizduotas
iliustracijas ,,Figure®).

5.1. lentelé. Biomasés koncentracijos modeliy rezultaty palyginimas

Model o kBO kBl kﬁz ky MAE MAPE
Al 0.996 0.07 0.00084 0 — 1.1 7.28%
A2 0.997 0 0 0 2.705 0.68 7.09%

Taip pat A2 straipsnyje aprasytas produkto koncentracijos jvertinimo modelis.
Pademonstruota idéja, kad maksimali produkto koncentracija priklauso nuo
santykinio lgsteliy augimo grei¢io indukcijos momentu ir biomasés koncentracijos
poky¢io po indukcijos. Modelio jrodymas buvo atliktas su E. Coli BL21 (DE3)
pET28a bakterijos duomenimis. Pateikti optimalis proteino koncentracijos jvertinimo
modelio parametrai su E. coli BL21 bakterija: kmo = 0,2346, km; =-0,0172, ki=0,0687.
5.2 lent. pateiktas baltymo koncentracijos prognozavimo algoritmo visy eksperimenty
rezultaty vidurkis pagal RMSE kriterijy. Sis rezultatas 5.2 lent. taip pat palygintas su
tuo metu buvusiais naujausiais straipsniais, kuriy autoriai tyré netiesioginj produkto
koncentracijos jvertinima. Produkto koncentracijos jvertinimo algoritmo rezultatai
grafiskai iliustruoti Figure 2.7.

5.2. lentelé. Modelio rezultaty palyginimas su kity tyréjy projektais, kuriuose
pagrindinis démesys skirtas produkto prognozavimui

RMSE (g)
Straipsniai . . . Visas tirpus Visas netirpus
Visa biomasé
produktas produktas

Tradicinis modelis 18

Gnoth et al. [62] 10,81 1.78 0.87
Hibridinis modelis i§

Gnoth et al. [62] 47l 1.28 0,62
A2 straipsnio modelis 4,577 — 0,656

TreCiame Sios disertacijos straipsnyje A3 (An oxygen-uptake-rate-based
estimator of the biomass-specific growth rate in microbial cultivation processes)
pateiktas santykinio lgsteliy augimo grei¢io modelis, kurio pagrindg sudaro deguonies
suvartojimo greitis (OUR) ir vienintelis derinimo parametras f/a, kuris priklauso nuo
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lasteliy kultdros. Publikacijos modelio veiksnumas iStirtas naudojantis trimis
skirtingomis bakterijy kultiromis: E. coli BL21(DE3) pET9a-1deS, E. coli
BL21(DE3) pET21-IFN-alfa-5, E. coli BL21(DE3) pLysS. Atlikus tyrimus, pateikta
optimali derinimo parametro verté f/a = 0,04, kuri galioja visoms lasteliy kultiiroms,
tirtoms Siame straipsnyje. I§ viso 20 kultivavimo proceso duomeny buvo testuojami
naudojant SGR jvertinimo metoda. Rezultatai parodé, kad bendras vidutinis SGR
jvertinimo RMSE buvo 0,074 1/h, bendras vidutinis SGR MAE buvo 0,044 1/h ir
bendras vidutinis MAPE buvo 9,77 %. Keli kultivavimo proceso eksperimentai ir
metodo rezultatai grafiskai pavaizduoti Figure 2.9-2.10.

Ketvirtame Sios disertacijos straipsnyje A4 (Viable cell estimation of
mammalian cells using off-gas-based oxygen uptake rate and aging-specific
functional) jrodytas gyvybingy lasteliy — aktyvios biomasés koncentracijos jvertinimo
modelio veiksnumas su jvairaus tipo lgstelémis (zinduoliy lastelés, bakterijos).
Pateiktas modelis iStestuotas su dviejy tipy lasteliy kultiromis: CHO-K1 zinduoliy
lastelés ir E. coli BL21 (DE3) pET21-IFN-alfa-5 bakterija. Pademonstruota lgsteliy
populiacijos vidutinio amziaus jtaka stechiometrijos parametrams S, pagal lygtis
(2.40) ir (2.41). Kartu su gyvybingy lasteliy — aktyvios biomasés — koncentracijos
jvertinimo modelio iSraiSka pateikti ir tiriamy kultiry optimaliis parametrai,
pavaizduoti 5.3 lent.

5.3. lentele. CHO zinduoliy lasteliy ir E. coli bakterijy parametry rinkiniai
prognozavimo algoritmui

CHO zinduoliy lastelé E. coli bakterija
Parametras Verté Vienetai Parametras Verté Vienetai
Lagtime 20,489 H Lagtime 0 h
Omax 0,727 g ecells? Omax 0,75 g g'l
B 0,034 ge®cellsth? B 0,16 ggtht
Kex 29,99 ecellsh L1 Kex 17 ghL?
Kage 102,05 H Kage 0 h

I8 viso 10 CHO zinduoliy lgsteliy eksperimenty duomenys buvo iSanalizuoti ir
iStestuoti su $io straipsnio modeliu. Su pateiktu CHO lasteliy parametry rinkiniu (5.3
lent.) gyvybingy lasteliy netiesioginis jvertinimo metodas pateiké priimtinus
rezultatus. Vidutiniai MAE, RMSE ir MAPE rezultatai buvo atitinkamai 0,139 eocells
L, 0,158 eocells Ltir 5,15 %. Figure 2.11 grafiskai atvaizduoja pirmy SeSiy testy
rezultatus.

Taip pat $io straipsnio prognozavimo algoritmas buvo istestuotas su 12
skirtingais E. coli kultivavimo proceso duomenimis, optimalus parametry rinkinys
pateiktas 5.3 lent. Atlikus testus su modeliu gauti rezultatai: 1,78 g L' MAE, 2,53 g
Lt RMSE ir 6,97 % MAPE. Pirmy $e$iy testy rezultatai atvaizduoti Figure 2.12.

5.4. ISvados

1. Sioje disertacijoje siiilomas biomasés jvertinimo metodas, pagristas
stechiometrija ir deguonies suvartojimu. Biomasés koncentracijos nustatymo
algoritmas tinkamas naudoti su plataus spektro Igsteliy kultiiromis: mielémis,
trimis skirtingomis bakterijy padermémis ir Zinduoliy lastelémis. Sios kultiiros
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yra pagrindinés pramonéje naudojamos lgstelés. Todél apraSytas algoritmas turi
didelj rinkodaros potenciala, kuris iSsprgsty méginiy émimo problema ir padidinty
zmogaus darbo efektyvuma. Metodo gautas tikslumas su mieléms ir bakterijoms
yra 6,97%, vidutiné procentiné paklaida (MAPE), 0 su zinduolinémis lastelémis
gauta vidutiné procentiné paklaida (MAPE) yra 5,15%.

Sioje disertacijoje sifilomas ir taikomas tiksliniy baltymy modeliavimo metodas,
pagristas stechiometrija ir deguonies suvartojimu. Produkto sintezés modelis
parodé, kad tiksliné produkto koncentracija priklauso nuo Ssantykinio augimo
grei¢io indukcijos metu ir nuo biomasés prieaugio po indukcijos. Sios jrodytos
priklausomybés gali biiti panaudotos kaip optimizavimo kriterijai, siekiant gauti
reikiamas salygas kultivavimo procese, norint uztikrinti efektyvy baltymy
sintezavima. Metodo modelio pritaikymo vidutinis MAE ir MAPE tikslumas yra
atitinkamai 0,099 g L ir 8,22 %.

Sioje disertacijoje sitilomas ir pritaikytas santykinis lasteliy augimo greigio
jvertinimo metodas, pagrjstas stechiometrija ir deguonies suvartojimu. ApraSytas
metodas turi vieng derinimo parametrg, kuris skiriasi priklausomai nuo lgstelés
kultiiros, 0 tai lemia jo stabiluma ir paprastuma. Sis metodas puikiai derinamas su
valdymo algoritmais, nes suteikia griZztamajg informacijg apie auginimo procesa.
Santykinio augimo grei¢io jvertinimo tikslumas yra vidutiniskai (MAPE) 9,77 %.

Sioje disertacijoje buvo parodyta, kad stechiometrijos koeficientai negali biti
laikomi stacionariais jvairiomis salygomis. Lasteliy gyvybiniy funkcijy
palaikymo nario priklausomybé nuo produkto sintezés yra reikiminga. Zinduoliy
kultivavimo procesuose lasteliy kultiros amzius dalyvauja iSraiSkose,
apibudinanciose lasteliy augimag ir gyvybiniy funkcijy palaikyma. Lasteliy
kultiiros amzius yra labai svarbus kintamasis kultivavimo procesams, kurie yra
nepertraukiami arba istesti. Sitiloma naujové leidzia Sios disertacijos algoritmus
panaudoti jvairaus tipo kultivavimo procesuose: periodiniuose, periodiniuose su
pamaitinimu, testiniuose. Be to, algoritmai gali buti naudojami bioprocesuose su
induktoriumi (ITPG).
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Abstract

Background: The focus of this study is online estimation of biomass concentration in fed-batch cultures. It describes
a bioengineering software solution, which is explored for Escherichia coli and Saccharomyces cerevisiae fed-batch
cultures. The experimental investigation of both cultures presents experimental validation results since the start of
the bioprocess, i.e. since the injection of inoculant solution into bioreactor. In total, four strains were analyzed, and 21
experiments were performed under varying bioprocess conditions, out of which 7 experiments were carried out with
dosed substrate feeding. Development of the microorganisms’ culture invariant generic estimator of biomass concen-
tration was the main goal of this research.

Results: The results show that stoichiometric parameters provide acceptable knowledge on the state of biomass
concentrations during the whole cultivation process, including the exponential growth phase of both E. coli and S.
cerevisiae cultures. The cell culture stoichiometric parameters are estimated by a procedure based on the Luedeking/
Piret-model and maximization of entropy. The main input signal of the approach is cumulative oxygen uptake rate at
fed-batch cultivation processes. The developed noninvasive biomass estimation procedure was intentionally made to
not depend on the selection of corresponding bioprocess/bioreactor parameters.

Conclusions: The precision errors, since the bioprocess start, when inoculant was injected to a bioreactor, con-
firmed that the approach is relevant for online biomass state estimation. This included the lag and exponential
growth phases for both E. coli and S. cerevisiae. The suggested estimation procedure is identical for both cultures. This
approach improves the precision achieved by other authors without compromising the simplicity of the implementa-
tion. Moreover, the suggested approach is a candidate method to be the microorganisms'culture invariant approach.
It does not depend on any numeric initial optimization conditions, it does not require any of bioreactor parameters.
No numeric stability issues of convergence occurred during multiple performance tests. All this makes this approach

a potential candidate for industrial tasks with adaptive feeding control or automatic inoculations when substrate feed-
ing profile and bioreactor parameters are not provided.
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Background

Biotechnology industry development over the last years
made quality assurance more stringent for pharmacy
production [1]. As a tool to resolve process data distor-
tion and prevent operator from accidently making mis-
takes, bioengineering solutions help to automate tasks,
which results in rise of cultivation process performance
and quality. To strengthen product quality, to more effi-
ciently acquire coefficient values, to improve safety and
flexibility of adaptive feedback control, the soft/noninva-
sive sensors [2] become a rational choice for development
of sustainable engineering solutions. Implementation of
feedback control system requires a feedback signal from
soft sensors or estimators that provide parameters [3],
which are unavailable to be directly measured online [4].
The control algorithm and the feedback signal consider
the product and the main characteristics of bioprocess
parameters—the biomass concentration and the specific
growth rate [5, 6].

This study delves into biomass estimator development
based on stoichiometric parameters and Luedeking—Piret
model. The cell's yields and stoichiometry both form a
generic information, which is an acceptable candidate
to be included in estimators when the microorganisms
culture does not change from experiment to experi-
ment. Depending on stoichiometry, the estimator of bio-
mass concentration can be used to automatically inject
the inoculant solution at a predefined level of the opti-
cal density in bioreactor medium. At this point, camula-
tive oxygen uptake rate signal from an off-gas analyzer is
informative to determine the biomass concentration.

The biomass estimator described in this study includes
optimization algorithm, which returns the stoichiomet-
ric parameters of the controlled culture. The algorithm
refers to several optimization criteria and is based on a
gray box model originating from Luedeking—Piret model.
Then offline maximization of entropy leads to satisfac-
tory parameters values for estimation procedure, which
is then applied to Escherichia coli bacteria and S. cer-
evisiae yeast cultures. In other words, the stoichiometry
optimization algorithm must be performed once for each
strain to determine the necessary coefficients. These
coefficients can be later used in the subsequent experi-
ments to estimate biomass concentration online, unless
the strain does not change. Such offline analysis can be
considered as an estimator tuning algorithm for a specific
microorganisms’ culture.

The “Materials and methods” section describes the
materials, strains and the bioreactor system operat-
ing conditions. The “Comparative analysis of biomass
estimators” section reviews literature references of the
off-gas analysis approaches and introduces the motiva-
tion for this study. The “General mathematical model of
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stoichiometric parameters estimation” section layouts
the derivation of the bioengineering approach for both
the offline (stoichiometry) analysis and the online (bio-
mass concentration) analysis stages. It also resolves a
general formulation of the oxygen consumption for bio-
mass maintenance coefficient, which is relevant for both
E. coli and S. cerevisiae cultures. The “Experimental vali-
dation” section provides experimental proof of the devel-
oped stoichiometry coefficients offline identification and
the biomass concentration online estimation algorithms.
The “Conclusions” section discusses the results and con-
cludes the final statements of this study.

Materials and methods

Cell strain’s

Four types of strain cultivation were analyzed in this
work to verify biomass estimation. S. cerevisiae (no
DY7221) strain was used as representative of yeasts
cells. The recombinant strains E. coli BL21(DE3) pET9a-
IdeS, E. coli BL21 (DE3) pET21-IFN-alfa-5 (cloning of
fused gene into bacterial systems with strong bacterio-
phage T7 promoter, pET21a+ plasmid) [7] and E.coli
BL21(DE3) pLysS [8] were used in bacterial cultivations.

Medium and culture conditions

In order to check biomass estimator’s reliability and accu-
racy, data were collected from different cell strains which
have been cultivated in multiple different R&D laborato-
ries, including the laboratory of bioprocessing modeling
and management in Kaunas University of Technology.
Saccharomyces cerevisiae (no DY7221) strain was cul-
tivated in the standard nutrient medium (YPD) [9, 10],
which contained 1% yeast extract, 2% Bacto peptone, and
0.1% glucose. The feed solution contained 600 g/kg glu-
cose which increased the solution density to 1.21 g/.

The medium temperature was maintained at 30 °C
and it was monitored by using temperature sensor
“Pt100% and pH was kept constant at 4.9 by addition of
NaOH(aq) [11]. Dissolved oxygen tension DOT in the
bioreactor was measured by oxygen electrode Mettler
Toledo and controlled by shifting stirrer speed from
230 to 600 rpm. The DOT set point was chosen as 30%
of air saturation. The air flow was kept around 4 l/min
and measured by a mass air flow sensor. The off-gas from
bioreactor was measured online by BlueSens gas ana-
lyzer (BCpreFerm, BlueSens, Herten, Germany), which
has O,, CO, and pressure sensors. The culture broth
mass was measured online with balanced reactor ves-
sel which contained load cell weight sensor. The initial
substrate concentration in the bioreactor was equal to
zero, S=0 g/kg. Hence, after inoculation the substrate
solution feeding was started. The cultivation process was
performed in 5 | bioreactor.
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The cell strain of E. coli BL21 (DE3) pET21-IFN-alfa-5
was cultivated in 7 1 bioreactor. Cultivation medium was
based on minimal mineral medium, which was made of
46.55 g potassium dihydrogen phosphate, 14 g ammo-
nium phosphate dibasic, 5.6 g citric acid monohydrate,
3 ml of concentrate antifoam, 35 g magnesium sulphate
heptahydrate, 105 g D (+) glucose monohydrate. The
initial volume of medium was 3.7 kg. At the cultivation
process the environment parameters were kept con-
stant. The temperature setpoint was 37 °C, DOT set
at 20% of air saturation and pH kept at pH 6.8 by addi-
tion of NaOH(aq). The stirrer rpm range was from 800
to 1200 rpm, the air flow rage was from 1.75 to 3.75 1/
min. In order to increase oxygen transfer rate during
cultivation process, pure oxygen flow was provided to
bioreactor at range from 0 to 7.5 I/min. The off-gas from
bioreactor was measured online by BlueSens.

The other cell strain of E. coli BL21 (DE3) pET9a-IdeS
was cultivated in 15 1 bioreactor. Cultivation medium
based as minimal mineral medium. At the cultivation
process the environment parameters: temperature set
point was 37 °C, DOT set at 30% of air saturation and pH
kept at pH 6.98 by addition of NaOH(aq). The stirrer rpm
range was from 300 to 750 rpm, the air flow range was
from 0.3 to 15 I/min. During the cultivation process pure
oxygen flow was provided to bioreactor at range from 0
to 7.5 I/min. The off-gas from bioreactor was measured
online by BlueSens.

For diversity of validation, the fourth cell strain was E.
coli (BL21(DE3) pLysS) [8]. The cultivation medium used
as minimal mineral medium composed with (NH,),SO,,
2.46 g/l; NH,Cl, 0.5 g/I; NaH, PO, x H20, 3.6 g/I; Na,SO,,
2 g/l; K,HPO,, 14.6 g/l; (NH,),-citrate, 1 g/I; 1 M MgSO,,
solution, 5 ml/l; trace elements solution, 2 ml/l; and no
glucose. Initial masses of all cultures were 5 kg. The glu-
cose solution and initial substrate concentration at the
bioreactor used same as at cultivation with yeasts, pH
kept constant at pH 7 and temperature was regulated to
30 °C. Dissolved oxygen tension DOT was measured by
an amperometric oxygen electrode (Mettler—Toledo) and
the DOT set point was 30% of the saturation. The size of
bioreactor was 15 | working volume (Biostat C, Sartorius
Stedim Biotech) and the stirrer speed varied from 100 to
1400 rpm.

Comparative analysis of biomass estimators

In order to adaptively control and monitor chemical or
biotechnological process, it is mandatory to implement
a data collection system that provides desired variables
at real time with acceptable precision and performance.
This requires corresponding equipment, which may
be unaffordable, not implementable in system or the
required instrument doesn’t exist. Hence, the better
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alternative is to use soft or noninvasive sensors, which
collect measurable variables and estimate unmeasurable
parameters [2, 12]. Especially in biotechnology processes,
there are complex relationships between process and
variables, so the best way to infer online unmeasurable
parameters is to use corresponding estimators [4].

Over time, the studies of both bioprocesses and indus-
trial production perspectives have shown that a biomass
estimator requires data, which is closely related to bio-
mass growth rate and biomass concentration. It can be
indirectly measured online, with well-established and
validated devices and soft sensors [4, 13], which are still
in development. Oxygen uptake rate (OUR) and car-
bon dioxide production rate (CPR) are directly related
to biomass growth rate and biomass concentration [14,
15]. Oxygen uptake rate (OUR) and carbon dioxide
production rate (CPR) data for estimator must be com-
puted from online signals that are reliable and meas-
ured directly in bioreactor system. These signals are the
concentration of O, and CO, in the off-gas [16]. The
proposed noninvasive biomass concentration estima-
tion procedure was intentionally made to not depend
on the selection of bioprocess/bioreactor parameters.
The approach is valid for aerobic cultures as long as it is
possible to obtain the off-gas measurements of sufficient
quality.

The main model, dedicated to biomass concentra-
tion estimation in this work, is a Luedeking—Piret model
derived from the stoichiometric equations for oxygen
consumption. It represents relationship between biomass
X growth/maintenance and oxygen uptake rate in biore-
actor [14, 15]:

OUR(t) = - X'(t) + B - X(2) eV
Stoichiometric coefficients @ and S represent cell’s
metabolisms of oxygen consumption and correspond to
the yield coefficients of these biochemical conversions.
In Eq. (1) coefficient a« means specific cell’s oxygen con-
sumption yield (¢ = Yo,/x) for growth and f is a model
parameter termed as oxygen consumption for mainte-
nance (8 = myo,/x) [17-20]. The generic structure of the
Eq. (1) that describes the process does not include any
strain specific information and there are no any initial
conditions assumed for the values of both « and .
Simutis and Liibbert (2006) improved a hybrid model
estimator [21]. The main improvement of a dynamical
mathematical model was a modification of mass bal-
ance equation to the new one, which was based on the
oxygen uptake rate OUR, the carbon dioxide rate CPR
and the base consumption rate BCR [22]. In order to
further improve hybrid model’s capacity, Kalman filter
(EKF) was introduced to biomass estimations [23]. The
new improved hybrid model produced better results and
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accuracy, but general drawbacks remained, estimator’s
complexity, a lot of data required for artificial neural net-
work training and biomass estimation offline with a large
execution duration [22-24]. In 2010, Simutis and Liib-
bert improved biomass estimator with cumulative vari-
ables that made model more conventional. The estimator
procedure was transformed to a simpler system.

When comparing stoichiometry biomass estimators’
mathematical models to the hybrid model estimator
approaches, the latter contains more main state variables:
biomass (X), oxygen uptake rate (OUR), specific biomass
growth rate (), broth weight (w), carbon dioxide produc-
tion rate (CPR), base consumption and other model coef-
ficients. Additionally, additional equations and a fuzzy
expert system are required. The latter gives an input to
the combination of a dynamical mathematical model
(DMM) represented by a set of nonlinear ordinary differ-
ential equations with an artificial neural network (ANN)
[24]. The main advantage of the stoichiometry biomass
estimator, compared to hybrid model, is its simplicity
and accuracy. As hybrid model consists of several mod-
eling systems, a common problem of estimation arrives
from artificial neural network (ANN) training [21, 23,
24]. Meanwhile, stoichiometry biomass estimator was
based only on OUR and stoichiometric parameters a and
B, which both were kept static for a particular cell strain.
This led to ability to calculate biomass online [14, 22—24,
28]. A general comparison of different biomass estima-
tors is presented in Fig. 1. This work’s biomass estimation
approach is depicted by Fig. 1d. The estimation methods,
which are based on gas consumption stoichiometry, are
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shown in Fig. le, f. The main differences consist of the
approach picked, its complexity and the number of input
signals and prerequisite parameters or initial conditions
required. The main purpose of this paper is to show that
biomass estimation can be treated from the fundamental
point of view based on the stoichiometry Eq. (1). The idea
comes from entropic and Bayesian inference approaches
involving integral optimizations [29, 30]. The focus lays
on the implementation, which can be not only used in
scientific R&D laboratories, but also on the industrial
plants level.

This paper presents a generic biomass estimation rou-
tine that is suitable for determination of biomass state
in high diversity of bioreactors (Fig. 2) with potentially
wide variety of industrial microorganisms. Prior to bio-
mass determination, it is necessary to identify cell strain’s
stoichiometry parameters & and S, which both describe
oxygen consumption by a microbial culture. This is
accomplished by offline analysis Fig. 3 (stage A).

Afterwards, industrial scale cultivation processes
reuse information about strain information for corre-
sponding biomass concentration estimation in online
analysis (stage B), as shown in Fig. 3. In order to
achieve better accuracy at strain stoichiometry analy-
sis during upstream development, it is recommended
to identify a and B parameters at the laboratory scale
bioreactors, Fig. 3 (stage A). This way, strain stoichi-
ometry analysis, based on “ground-truth” of stage A,
is economically beneficial, and data from cultivation
process consists of less disturbances in more flexible
control environment.

OTR —%| Fuzzy ANN Balance X l—-b Bal
| ) > X | p| Balance X
CPR —p| expert equation OUR —p ANN equation
Ri —p)| E¥EE ) CPR —
12inputs BASE—p
10nc inputs
a b
ANN Balanc=

Ry _ﬂ s equation ke OUR —p) Balance —> X
CPR —p{ EKF q Stoichiometry—p| equation
BASE__p| parameters

¢ d

v —»
CER—¥ palance % Fin —p| Balance %
e = equation ’ OUR—p| equation ’
Stoichiometry__y,|
parameters Stoichiometry—pp|
parameters

€

Fig. 1 Comparison of biomass estimators: a Lubbert [21], b Achle [25], ¢ Simutis [22], d biomass estimation of this text, e Davis [26], f Barrigon [27]
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Fig.3 Biomass estimator’s structure scheme of different estimation stages

General mathematical model of stoichiometric
parameters estimation

During the cultivation process, the real-time data col-
lected from the devices has interference and distur-
bances, which may cause distortion of parameters and
estimated values [14]. Simutis and Liibbert [4] stated “the
reason for cumulating the original signals is to improve
the signal-to-noise ratio (SNR) and thus increasing the
information content about the process. Additionally, as
the biomass and its metabolic products are accumulated
during the cultivation, these masses are better correlated
with the cumulative signals of OUR and CPR” The main
method of the current text is also based on the integral
approach, which can be considered as a filter eliminat-
ing noise [22]. Hence, the Luedeking—Piret model Eq. (1)
outcomes are being protected from disturbances by inte-
grating it:

t
X(t%)de™.

/t OUR(t*)dt* = a -
. Jto
2

to

t
/ X'(t*)de* + B -
Jto
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According to data from bioprocesses and previous
experience, the stoichiometric parameter 8 is assumedly
not a process constant. During the cultivation, param-
eter f—oxygen maintenance coefficient for biomass,
increases due to biomass concentration growth. The
phenomenon of increasing value of parameter  can be
explained by the fact that the consumption of oxygen for
biomass maintenance also includes the generation of the
product and other factors. Such situation occurs at the
end of the exponential phase of a microbial cultivation
(for recombinant protein synthesis) when the induction
(e.g., with isopropyl-p-1-thiogalactopyranoside/IPTG)
is performed and the synthesis of the product increases
noticeably. As a result, oxygen consumption for biomass
maintenance also increases [31, 32]. The parameter f
consists of two additive terms

1 1
+ 3)

Ypo'

" Yxo

B

where Yxo is oxygen consumption for cells breathing
and Ypo is oxygen consumption for product formation.
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Consequently, biomass has linear/polynomial relation-
ship to parameter p which is directly dependent on bio-
mass concentration.

The observational data used for proposed biomass
estimation was obtained from the processes that involve
recombinant protein expression. As it can be seen from
the Eq. (3), the parameter B accounts for both, biomass
and product, yields. This parameter may exhibit different
behavior depending on the process phase and the strain/
product involved. However, comprehensive comparison
of various strains with respect to the impact, that particu-
lar product has on the biomass estimator performance,
or to explore the effect on metabolic noise debugging in
strain engineering, goes beyond the scope of this study.

To remove the assumption that the stoichiometric
parameter B is a function of a biomass, this parameter
is expressed as a function of time in the mathematical
model. Hence, Eq. (3) is rewritten to linear regression of
time:

B =k *t+ ky; 4)
where kj and k are linearly dependent mathematical
coefficients. When bioprocess is at lag phase or early
phase of exponential growth (when biomass concentra-
tion is relatively low), the 8 parameter is extremely small
and negligible. Only after induction or specific value of
biomass concentration, oxygen consumption for mainte-
nance becomes appreciable. Hence, during a time prior
to fact when the Eq. (4) comes into effect, the parameter
B should be set to zero in the estimation procedure. At
that moment the biomass concentration reaches a value
from which the consumption of oxygen for biomass
maintenance becomes significant:

ields
0= ki %t +hky'—> (5)

ky = —kq * t;. 6)
Then parameter g becomes

B =k xt—kyxt; (7)
where ¢; is the duration from cultivation process start to
the time when amount of biomass reaches value resulting
in appreciable oxygen maintenance, or when induction is
performed and product formation noticeably increases,
or when stoichiometry parameter f8 is no longer zero [9,
31, 32]. In order to have full mathematical model for-
mula, main balance Eq. (2) has parameter $ replaced in
the linear regression Eq. (7):

‘/r OUR(t*)dt* =« - /IX’(t*)dz* + tkl (=) X (¢)de*
fo ty fo
®)
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Offline analysis of stoichiometry parameters (stage A)
Prior to the estimation of the biomass, specific cell
strain’s stoichiometric parameters must be identified dur-
ing offline analysis. There are few compulsory inputs to
approach this task.

+ Model fitting procedure requires offline observa-
tions: dry cell weight (DCW) or optical density OD
value (in o.u.) multiplied by a coefficient of biomass
concentration (approximately 0.4 g/l/o.u.) [33];

« Process duration time since cells’ inoculation to bio-
reactor, in hours;

+ Oxygen uptake rate (OUR) data since the inocula-
tion;

For model fitting a chosen mathematical expression
is equated to gray box model since the collected experi-
mental data is combined with fundamental knowledge
about bioprocess [34]. Considering that the bioprocess
consists of two main parts, prior to induction and after
it, the parameters fitting procedure is based on two inde-
pendent gray box models. The first one covers the first
two cultivation process phases: the lag and exponential.
During these phases the amount of biomass is low and
materials, resources concentrate to biomass growth [35].
Hence, oxygen requirement for biomass maintenance is
minimum and stoichiometric parameter f is negligible:

t t
/ OUR(t*)dt* = a - / X'(¢*)de*, )
Jitg Jity

In the Eq. (9) the variable ¢; is the time of the induc-
tion or the time when biomass reaches a quantity where
oxygen usage for maintenance is appreciable. The sec-
ond cultivation stage represents the biomass growth
deceleration and increasing product formation. In this
cultivation phase, additional term comes into effect,
oxygen consumption for maintenance and product for-
mation, known as stoichiometric parameter 8. To prop-
erly describe second gray box model, the induction time
or time when biomass concentration reaches specific
amount must be identified. Throughout this period the
maintenance term becomes significant and can’t be negli-
gible. After applying maintenance parameter to a model,
the second gray box model’s expression is generalized to

t t t
/ OUR(t*)dt*=a~/ x'(z*)dr*+/ ky- (8 — &) - X(¢*)de*.
to fo o
(10)
In summary, the Eqgs. (10) and (11) both yield the con-
ditional definition of cumulative oxygen uptake rate
function:
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COUR(t < t;) = [} OURE*)dt* = o - (X () — Xo):
COUR(t > t;) = [, OUR(t*)dt*

~ o (X(8) — Xo) + 2yt k- (8 — t) - X () - Atyy_y;

t<t; (11)
t >t

In Eq. (11) the last sum of pr?ducts is the expression of

left Riemann sum [36], ie. [k - (t* — ;) - X (t*)dt* =

St ki (tp—t) - X(&) - Atyy—y, when time’s ¢ sample is
indexed by m. Discrete DCW values define variable
X; = X(t;),where [ € [1,n,,], n,, is the total number (e.g.
hourly) of offline sampling intervals with index m and
Xo = X (tp) is an initial biomass concentration after inoc-
ulation into bioreactor.

Procedure for offline analysis of stoichiometry parameters
The prediction value of the cumulative OUR model [37]
for Eq. (11) is

previous work [37]. In other words, empirical coefficient
Ky is a “weight” coefficient between the two additive
terms of optimization criterion. The first term is the least
squares criterion and the other is “squared MAPE” crite-
rion as in [37]. Another note about Monod Egs. (15) and
(12) is that the relationship of o2 OURH ™ cr)%m is valid, i.e.
the uncertainty of cumulative OUR is proportional to the
uncertainty of biomass variable.

To rationally prepare Eq. (15) for simplified numeric
operations avoiding infinities when estimating values, an
intrinsic variable Ky, expression replaces Ky, — }—H':ﬂ
and transforms Eq. (15) to

cOUR(ty; = ) = a - (X, — Xo);

POURmi= { COUR(ty > t)) = & - (X — Xo) + 7,

(12)

k- (8 —t) - Xp- Atyy—y;

Then the posterior distribution for m-th offline sample
is

Pposterior (COUR,y) ~ N(COURM’UCZOLH?)‘ (13)

where every sampled prediction m has constant variance

2
Ocour

Prior distribution also has the form of Gaussian distri-
bution [38]

Piicliood (€OUR) ~ N (cOUR, 0 20umm)s  (14)
where cOUR;;, is the m-th observation value of the cumu-
lative OUR and its unique variance is "cZOUR.m'

In previous work [37] the uncertainty of prior distribu-
tion was assumed to be equal to the square of observed
value, ie. ”cOUR.m was assumed to be proportional to
cOUR}?. However, this assumption is not quite rational
from practical considerations based on this work expe-
rience when deriving a generic estimator for both E. coli
and yeast cultures. It appears that the assumption of
UczOUR.m ~ cOUR;? is just a special case, which has even
more general form. Interestingly this form matches the
form of Monod formulation [39] applied to uncertainty, i.e.

XZ

52
maxm' (15)

2
OcOURm =

where scenario with Ky» = 0 resembles least squares
approach, i.e. all samples’ relative weights become equal,
and Ky» — o¢ means that UCZOURMNCOUR*Z as in

m
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2 2
o X3 yielis e ey
,
cOURm = max I_IzﬁXE ) "85 ]~ Kexp + X2, - Kexp

(16)

The fact, that o, and Kexp both are positive scalar

values and do not depend on the index m of a sampling
interval, allows to simplify Eq. (16) to

2
Xm

—_——— 17
1 — Kexp + X2 - Kexp a7

2
UcOLIR,m ~

Equation (17) exposes the physical meanmg of Kex,,
The scenario with Ky, = 0 recovers ”cowem NXm as
in [37]. The scenario with Ky, = 1 recreates the least
squares method as in [38, 40]. Both scenarios show that
Keyxp is an exponential weight, which constructs a hybrid
criterion for both least squares and the MAPE squared.
Later in the text, the experimental validation will show
that there exists a rational empirical value of Key,, which
enables estimation of the biomass concentration, with an
acceptable precision, for both yeast and E. coli cultures
since the beginning of the cultivation right after the cul-
ture was inoculated to a bioreactor.

After gray box model is identified and hybrid criterion
derived, the next step is to use optimization approach to
find the stoichiometry parameters. The main equation
solving for unknown parameters comes from the maxi-
mization of entropy [37, 39] based on Egs. (13), (14) and
(17)
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s — _ = (OURy —a - Xpn = X0))?
P> X
=l Kep X3 +(1-Kexp) a8)

X2

. PECTIR sle  SRRPEIE,
— R X+ (1K)

m 2
S (COUR — & - (Xom — Xo) — 7Ly ki - (5 — ) - X (&) - Atyy—y)

Hence, at the optimization method, which is shown at
the Eq. (18), the whole S expression is maximized, and
unknown stoichiometry parameters are found by solving
partial derivative of Eq. (18) with respect to a and %,

B =0
s _ (19)

Equation (19) yields the linear system of two equations
a-B+k -C=A,
{a-E+k1-F=D;' (20)

where Eq. (20) parameters are:

Hm

(X — Xo) - cOUR
A= Z m = m: @1)

M=l Koy Xo (1 Kexp)

Hm 2
Xm —X0)™
B=) —m—— (22)
m=1 Koy X2 +(1—Kenp)

m

e Z Ko = Xo) - 300 (4 — 1) - X(tr) - Aty

X
L —
Kexp XipH(1—Kexp)

m=i+1
(23)
o o~ COURy - Ly (t1—ti) - Xi - Aty |
- i .
- i
L Kep X3 H(1-Kexp)
(24)

P Z (Xom— X0) - 1Ly (61— t) - Xy - Atyy_y
= X, '

Kep X3, +(1—Kexp)

m=i+1
(25)

i 2
o i (CHy =) - X - Atg—r) o8
- o ‘
Rop X+ (1=Keng)

m=i+1
Equations (20)—(26) finalizes the offline estimation of
stoichiometry parameters, which are then later used for
online estimation of biomass concentration. However,

the variable #; has no direct meaning with yeast cultures,
so it must be dealt with separately. First, the specific time
when the maintenance coefficient becomes appreciable is
analyzed in the next subsection.

Identification of yeasts’ specific time for maintenance
Variable ¢; at Eq. (12) is the time of induction or the time
when biomass concentration reaches a specific amount
when oxygen maintenance for cells becomes non negli-
gible. In the case of cultivation processes of E. coli, the
induction time is known, i.e. it can be defined by the time
moment when IPTG solution is injected into bioreac-
tor. In the cultivation process of S. cerevisiae yeasts the
IPTG solution was not used. Hence, the variable ¢; defines
the time when biomass concentration reaches a specific
value when maintenance coefficient becomes noticeable.
The search for ¢; utilizes the convex optimization method
and maximization of entropy [37, 41]. The optimization
procedure is depicted in Fig. 4.

The knowledge of the specific time ¢; enables the bio-
mass concentration estimation. However, the specific
time ¢; is not known in advance prior to online experi-
ment with yeast cells, because it has just a theoretical
meaning in this case. Therefore, a generic relationship
between the maintenance coefficient value and the bio-
mass concentration will be inferred in the next subsec-
tion. Such a generic form of maintenance coefficient will
enforce online estimation without dependence on the
type of the microbial culture. Moreover, the value of the
specific time ¢; becomes irrelevant for the online estima-
tion procedure.

Identification of maintenance coefficient parts

After optimization of stoichiometry parameters, which
had determined unknown parameters of the mathemati-
cal method, the next step is to validate those identified
parameters with experimental data. Prior to comparison
of theoretical and experimental data, the mathematical
model, as in Eq. (7), must be reconstructed so that g is
no longer a function of time and still satisfies the actual
behavior of biotechnological process. The stoichiometric
parameter S directly depends on biomass concentration

BX) = B(X(t) = kpga - X*(t) + kp1 - X (t) + kgo;
(27)
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Fig.5 Dependence of oxygen consumption for maintenance on biomass concentration, a £ cofi, b Saccharomyces cerevisiae

The expression of parameter S(X) represents a parab-
ola regression of biomass in the case of the E. coli strain
Fig. 5a. Meanwhile, S. cerevisiae oxygen consumption for
maintenance is dependent linearly on biomass concen-
tration, thus kg =0,

BsaccharomycesX) = Bsaccharomyces (X (£)) = kps1 - X(2) + kpso:
(28)

In Egs. (27) and (28) regression coefficients connect
maintenance coefficient B to biomass variable. In both
culture cases, stage A helps to obtain 8 values from linear
regression based on Eq. (7) output

BXm) = B(tm) = ki * (tm — ti). (29)
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The assumed relationship of 8(X) considering biomass
concentration is presented in Fig. 5.

According to data from cultivation processes of E. coli
in Fig. 5, the stoichiometric parameter of cell mainte-
nance can be assumed as directly dependent on biomass
in parabolic manner. At the cultivation processes of E.
coli, the induction of IPTG, which initiates product syn-
thesis, may cause nonlinear dependence of oxygen con-
sumption on biomass maintenance. Based on Egs. (27)
and (28), it is possible to calculate strain’s specific bio-
mass concentration (Xgpecific) when oxygen consumption
for maintenance is no longer negligible. This is done by
setting Eqs. (27) and (28) to zero and solving them for the
specific biomass concentration Xpecific
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,

B(Xspecific) = BX (£)) = 0; (30)

The workflow of both stoichiometry and biomass esti-
mations improves structure, as in Fig. 3, to the shape of
the one in Fig. 6.

The solution of Eq. (30) identifies the specific biomass
concentration Xgpecific and finalizes the offline estima-
tion of stoichiometry coefficients for a strain. After the
stoichiometry coefficients are found in stage A, a generic
procedure for online biomass estimation can be per-
formed independently on the knowledge of bioreactor
parameters. In conclusion, B, as in Eq. (27), transforms
Eq. (1) into

Prior to the specific biomass Xpcific level is reached, i.e.
when oxygen consumption for maintenance is very low
or negligible, biomass state estimator equation is

COURy

o

Xo. (32)

m

After biomass concentration exceeds X during
the second scenario, i.e. oxygen consumption becomes
noticeable, the stoichiometric parameter f comes into
effect as a function of biomass concentration. Equa-
tion (12) helps to derive the approximate estimator for
biomass state, as follows

{

OUR(t) = a - X'(t), X(t) < Xspecific:

OUR(t) = a - X'(t) + kg - X2(t) + kp1 - X2(8) + kgo -

X(£),X(t) > Xspecifics (31)

In spite of the fact that Eq. (31) form is the third order
function, it is still the same equation as Eq. (1). How-
ever, it was inferred by the estimation procedure and
the observation data in Fig. 5. Variable 8 manipulation
compensates the effect of biomass concentration X on
B and makes all Eq. (31) coefficients linearly dependent
and constant throughout the course of the experiment.
Eventually, this serves as a prerequisite to the simplified
generic procedure for estimation of biomass concentra-
tion, coming in the next subsection.

Online estimation of biomass concentration (stage B)

In this paper, estimation of biomass concentration is
based on stoichiometric parameters and cumulative oxy-
gen uptake rate cOUR. When stoichiometric parameters
are discovered in stoichiometry estimation, stage A, or it
was given, only one input from bioreactor system, cumu-
lative oxygen uptake rate, is necessary to estimate the bio-
mass state. This procedure is depicted by stage B (online
analysis) in Fig. 6. The block of “biomass estimation’,
Fig. 6, consists of two main scenarios which both return
biomass concentration at a time instance with index m.

COUR,y, — S 15" BOXD) - Xy - Aty
o

1

X

+ Xo.

(33)
The variable X, as in Egs. (32) and (33), is an initial bio-
mass concentration at the time of inoculation into bioreac-
tor. Its value can be either a dry biomass measurement value
or optical density OD value (in o.u.) multiplied by a coeffi-
cient of biomass concentration (approximately 0.4 g/l/o.u.).
This subsection initializes the online biomass estima-
tion procedure (Fig. 7), which can be used in biotech-
nological industrial practices. The suggested approach
does not require the bioreactor-dependent parameters, it
serves as a good candidate to be applied to more micro-
bial strains and the experimental validation, in the com-
ing section, will show that such an approach can be used
for biomass estimation since the time moment of inocu-
lation into bioreactor.

Experimental validation

Validation performance indicators

Both mean absolute error (MAE) and mean absolute per-
centage error (MAPE) were used as indicators to evaluate

7
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the estimation results. MAE and MAPE methods both
evaluate the errors between estimated and observed bio-
mass values of a cultivation process. MAE approach is
defined as follows [42]:

MAE = X |5’i_3’i|,
n

(34)
where n is the number of data counts, y; is estimation
result, which is compared to y;, the observed value from
the cultivation process. Mean absolute error represents
average vertical distance between both values. MAPE
method can be expressed as follows [43]:

Yi— i

yi | (35)

100%
MAPE = _E
" =l

The mean absolute percentage error is a statistical
measure representing the accuracy of a forecast system,
in percentage. Root mean square error represents the
square root of residuals of the differences between pre-
dicted values and observed values. RMSE method’s for-
mula are as follows [42]:

RMSE = (36)

78

Table 1 Stoichiometric parameters of cell strains

Escherichia coli Saccharomyces cerevisiae
a=101 a=135
Confidence Interval 3£0.0186 Confidence Interval 30.149
kge2 = 7.2-1073 kg2 =0

kper = —2.9625 1072
kgeo = 4.27047d - 1072
Xspeoﬂx = 2069/

Koxp = 04

kgs1 = 238511073
kgeo = —1.5014 - 1072
Xspe(\ﬁ( =6.299/1

Comparative analysis of experimental results

Experimental biomass measurements and data of cumu-
lative oxygen uptake rate cOUR from fed-batch experi-
ments of E. coli and S. cerevisiae were taken from [8],
experiments led by authors of this text and industrial
R&D laboratories. There were three cultivations of E. coli
cells in 151 bioreactor with limited substrate feed [8] and
two R&D laboratory cultivations of S. cerevisiae yeasts
in 5 | bioreactor with limited substrate feed. Addition-
ally, there was one cultivation of E. coli in 12 | bioreactor
with limited substrate feed and there were 15 cultiva-
tions in 5 | bioreactor, out of which 7 cultivations were
with dosed substrate feeding. As the first step, all cultiva-
tion data was analyzed in the stoichiometric parameters’
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estimation (stage A). The estimation procedure ignored
both metabolism pathways, occurring during dosed sub-
strate feed cultivations, and increasing product forma-
tion due to IPTG injections. The results of offline analysis
of stoichiometric parameters are present in Table 1.

The tuning coefficient K.y, was identified empirically
and its value of 0.4 showed acceptable outcome for the
performed experiments. However, S. cerevisiae stoichio-
metric results come from just two cultivation experi-
ments. Therefore, the results might still be improved
when more experimental data becomes available in the
future.

In industrial processes, strain’s stoichiometric param-
eters are given, unless they were estimated using offline
analysis, stage A. Then biomass concentration is calcu-
lated iteratively using both Eqs. (32) and (33) from cOUR
signal (online analysis, stage B). This work’s biomass esti-
mation method used different cultivation experiments,
with different cell strains, bioreactor volumes, type of
substrates feeding solution, different IPTG induction
time moment and their corresponding OD levels at IPTG
injection, different substrate feeding limitations and dif-
ferent time of starting the substrate feed. Estimation
results are shown in Table 2.

Table2 Analysis of experiments for biomass estimation

Page 12 of 17

Seven experiments (#5-#11) were performed with
dosed substrate feeding. Meanwhile the rest of experi-
ments had limited feeding with various combinations
of control strategies described in [37]: multiple different
substrate limited feedings prior to induction and after it.

The overall average MAE of biomass estimation since
inoculation is 1.1 g/l and overall average MAE of bio-
mass estimation since feed start is 1.41 g/l. The overall
average MAPE of biomass estimation since inoculation
is 7.28% and overall average MAPE of biomass estima-
tion since feed start is 6.29%. Overall average RMSE
value of S. cerevisiae cultivations is 0.5 g/l. RMSE value
of E. coli cultivations with limited substrate feeding is
1.26 g/l and for cultivations with dosed substrate feeding
is 2.44 g/l. RMSE value of E. coli cultivations before sta-
tionary phase, when DCW reaches ~40 g/l (to compare
with results in [22]) with limited substrate feeding, is
1.07 g/I and for cultivations with dosed substrate feeding
is 1.2 g/l. These results show that this approach improves
the precision achieved in [22] without compromising the
simplicity of the implementation. Offline analysis (stage
A) execution lasted 2-15 ms and online analysis (stage
B) calculations took 13-30 ms on a single core CPU in
bioprocess engineering software tool dedicated for the
purposes of this work. No initial conditions for numeric

No. Strain Bioreactor MAE since inoculation ~ MAE since feed MAPE since inoculation, MAPE

volume, | g/l start, g/l % since feed
start, %

1 Escherichia coli 15 104 1.04 5 57

2 096 0.96 411 411

3 138 138 561 561

4 12 145 16 53 491

5 7 165 23 7.26 534

6 25 33 6.9 7

7 154 213 867 6.28

8 129 1.94 757 6.12

9 152 254 7.2 7.96

10 155 2.09 935 6

" 187 27 10.75 6.6

12 116 1.55 6.88 6.61

13 097 1.22 9.03 6.89

14 078 1.01 9.88 6.26

15 1 1.22 892 6.99

16 076 1 7.14 7.85

17 074 09 851 5.69

18 118 154 783 755

19 08 1.07 5.83 6.30

20 Yeasts 5 029 0.29 6.69 6.69

21 066 0.66 7.28 7.28

79
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Fig.8 Biomass concentration estimation result with recombinant E.cofi BL21(DE3) pLysS strain at 15 L bioreactor
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Fig.9 Biomass concentration estimation result with recombinant £

coli BL21(DE3) pET9a-IdeS strain at 121 bioreactor
u

optimization procedure were used. The speed of online
estimation can be explained by the fact that the predic-
tion value of biomass concentration estimate is calcu-
lated once during the whole estimation procedure. There
is no updating performed for the predicted value of bio-
mass. In the future, this optimization condition might be
released though. The substrate feed was started from the
beginning of cultivation process right after inoculation
moment in the experiments #1-#3 and #20-#21, while
for the rest of cultivations had their substrate feed started
after 5-6 h since inoculations. The errors between

80

off-line and on-line data mainly originate from offline
measurements. Especially in #5-#19, because historically
the accuracy of offline measurements was not of high pri-
ority during these experiments. Therefore, in the future
the true ground truth of biomass concentration might
testify that the approach suggested in this work has even
higher overall precision than the one stated in above. All
biomass state estimation results are shown at the Figs. 8,
9,10,11, 12.

Conclusions

The suggested biomass estimation’s numeric approach
using cumulative oxygen uptake rate signal showed no
dependability on selection of the initial variable val-
ues for optimization procedures. This study assumed,
by Pareto principle, that the proposed method is only
dependent on stoichiometry parameters of the strain, i.e.
the developed noninvasive biomass estimation proce-
dure was made to not depend on both the manipulation
with a specific growth rate variable and the selection of
corresponding bioreactor parameters. The precision
errors, since the bioprocess start, when inoculant was
injected to a bioreactor, confirmed that the approach
is relevant for online biomass state estimation. This
included the lag and exponential growth phases for both
E. coli and S. cerevisiae. The experimental investiga-
tion of E. coli and S. cerevisiae cultures showed that the
estimation procedure is identical for both cultures. The
overall average MAE of biomass estimation since inocu-
lation is 1.1 g/l and the overall average MAPE of biomass
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Fig. 10 Biomass concentration estimation result with recombinant £. cofi BL21 (DE3) pET21-IFN-alfa-5 strain at 7 L bioreactor with dosed substrate
feeding

estimation since inoculation is 7.28%. RMSE value
of E. coli cultivations before stationary phase, when
DCW reaches ~40 g/l (to compare with results of other
authors) with limited substrate feeding, is 1.07 g/l and
for cultivations with dosed substrate feeding is 1.2 g/l
These results show that this approach improves the
precision achieved by other authors without compro-
mising the simplicity of the implementation. Moreover,
the suggested approach is a candidate method to be the
microorganisms’ culture invariant approach, it does not
depend on any numeric initial optimization conditions,
and it does not require any of bioreactor parameters. No
numeric stability issues of convergence occurred during
multiple performance tests. All this makes this approach
a potential candidate for industrial tasks with adaptive

feeding control or automatic inoculations when sub-
strate feeding profile and bioreactor parameters are not
provided.

Neither numeric artifacts nor abrupt worst-case sce-
narios were experienced during both offline and online
analysis of 21 experiments, out of which 7 ones were car-
ried out with dosed substrate feeding. The experiments
executed in 51,71, 12 I and 15 | bioreactor volumes. Feed
start, inoculation, bioreactor medium, feeding limita-
tion and other conditions varied with no manual control
or adjustment. This encourages the use of such estima-
tor in adaptive feedback control systems. Both online
and offline estimations were tested on a single core
CPU processing and each procedure took no more than
30 ms when overall 1-min interval data was sampled
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Fig. 11 Biomass concentration estimation result with recombinant £. cofi BL21 (DE3) pET21-IFN-alfa-5 strain at 7 L bioreactor with limited substrate
feeding
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Abstract: The purpose of this study is to introduce an improved Luedeking-Piret model that
represents a structurally simple biomass concentration approach. The developed routine provides
acceptable accuracy when fitting experimental data that incorporate the target protein concentration
of Escherichia coli culture BL21 (DE3) pET28a in fed-batch processes. This paper presents system
identification, biomass, and product parameter fitting routines, starting from their roots of origin to the
entropy-related development, characterized by robustness and simplicity. A single tuning coefficient
allows for the selection of an optimization criterion that serves equally well for higher and lower
biomass concentrations. The idea of the paperis to demonstrate that the use of fundamental knowledge
can make the general model more common for technological use compared to a sophisticated artificial
neural network. Experimental validation of the proposed model involved data analysis of six
cultivation experiments compared to 19 experiments used for model fitting and parameter estimation.

Keywords: gray box; relative entropy; microbial cultivation; numerical convex optimization;
parameter estimation; stoichiometry

1. Introduction

Biotechnology plants seek to increase the productivity and controllability of cell cultivations.
In order to achieve those two quality conditions, they need a trustworthy data collection system that
provides mandatory variables in real time to smoothly control processes and achieve the required
productivity. A system like this would require compatible equipment that might restrict access due
to financial concerns, because it is not compatible with the chosen system or may lack functionality.
However, it is worth replacing sophisticated equipment with soft sensors that estimate the desired
non-observable parameters from the measured data collected [1,2].

In previous works [3], the biomass estimation model relied on stoichiometry, where biomass
maintenance eventually proved to be the third-order polynomial term. The biomass maintenance term
consists of oxygen consumption, not only for maintenance, but also for product synthesis [4]. This study
suggests fundamental knowledge based on the Luedeking—Piret model [5], in which the infrastructure
of the maintenance term consists of both actual biomass maintenance and target protein production.
In this case, the proposed model is clearer and can achieve greater accuracy. The main aim of this paper
is to estimate the Luedeking-Piret model parameters in the offline mode using product information.
Simultaneously, this paper provides an alternative way to fit a protein production model and analyze
the parameters of the model based on offline data. To date, few studies and publications have estimated
the state of target proteins using a soft-sensor approach. The majority of published works estimating
target protein productivity and biomass concentration use an artificial neural network (ANN) approach.
The novelty of this study is that it involves the fundamental knowledge of incorporating target protein
synthesis into a product and biomass concentration model. This results in a rational parametric model
that can serve as an alternative approach to ANN. Parameters of the proposed model of estimation
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have practical significance; therefore, approach-related artifacts are less expected and their elimination
is manually controllable during the development of industrial processes.

Section 2: Materials and Methods describe the materials, strains, and bioreactor system operating
conditions. Section 3: Basis of Biomass and Product Model Fitting reviews the idea and basis of this
study. Section 4: System Identification and Parameter Estimation presents the derivation of a known
method for fitting to target protein and biomass concentration models. It also lays out a general
formula for oxygen consumption according to the stoichiometric coefficients of biomass, which is
relevant to the specific culture of Escherichia coli. Section 5: Experimental Validation provides results
from experimental data supporting the validity of the improved Luedeking-Piret model and an offline
estimation of target protein and biomass concentrations. Section 6: Conclusions discusses the results
and concludes the final statements of this study.

2. Materials and Methods

2.1. Cell Strains

In this work, E. coli BL21 (DE3) pET28a (Novagen) served as the test object in all experiments [4]
in order to validate biomass and protein model fitting. The product of E. coli BL21 (DE3) appeared in
two forms: Active soluble and insoluble forms, which were formed as inclusion bodies. In this study,
the target product was insoluble protein, inclusion bodies. The protein’s expression was under the
control of the T7 promoter after induction with 1 mM isopropyl-D-1-thiogalactopyranoside (IPTG).

2.2. Medium and Culture Conditions

Experimental data [6—8] served as the basis for analysis in this study. Genetically modified E. coli
BL21 (DE3) pET28a strain was cultivated in a B. Braun 10 L bioreactor. Due to confidentiality restrictions,
the authors of Reference [6] claimed that the organism expressed commercial protein, and no specific
details are available on the target recombinant protein. The initial medium volume at inoculation
was 5 L. The cultivation medium contained mineral salt medium, consisted of Na;SOy, 2.0 g/L;
(NH4),S04, 2.46 g/L; NH4Cl, 0.5 g/L; K;HPOy, 14.6 g/L; NaH,PO, x HyO, 3.6 g/L; (NHy),~H-citrate
1.0 g/L; MgSOy4 x 7H,0, 1.2 g/L; trace element solution, 2 mL/L; thiamine, 0.1 g/L; and kanamycin,
0.1 g/L [6]. Cultivation experiments took place in fed-batch mode with zero glucose concentration in
the bioreactor at the inoculation time. Pumping of the feed solution containing glucose and mineral
salts in the same composition as the starting medium started after inoculation in the bioreactor [7].
During all experiments, after inoculation, the initial biomass inside the bioreactor was 0.25 g/L of dry
cell weight (DCW). At the beginning of cultivation, the feed rate of the substrate was set very low,
approximately 11-15 g/h, and used substrate solution with as low as 300 g/kg glucose concentration to
avoid overdose, which resulted in substrate inhibition or a different metabolic pathway. At ~4 g/L
biomass concentration in medium, feed solution of 600 g/kg replaced the one with 300 g/kg glucose
concentration [8]. The temperature set point in the bioreactor was set at 35 °C. The induction time was
10 h since inoculation. Tracking of off-gassing from the bioreactor was done online, and a paramagnetic
oxygen sensor (Maihak Oxor 610) operated for O, concentration observation. An Ingold DO probe
(Mettler Toledo) measured dissolved oxygen tension (DOT) values. The DOT set point was set to
25% of saturation [9]. pH was measured with an Ingold pH probe (Mettler Toledo) and kept at 7.0
using a PID controller [10]. After the action of cell disruption, separation of the soluble fraction,
and solubilization of inclusion bodies, SDS-PAGE electrophoresis helped to determine the amount of the
target protein. The method for measuring protein concentration (g/L) consisted of several preparation
steps. Initially, 200 g of wet biomass was dissolved in 1 mL of solution and mixed for 30 min. After that
SDS-PAGE, (sodium dodecyl sulfate polyacrylamide gel) electrophoresis was performed on 200 uL of
the suspension sample to measure the amount of total protein concentration. The remainder of the
suspension was mixed with SDS (sodium dodecyl sulfate) buffer to dissolve all proteins and centrifuged
for 15 min at 4 °C with 20,000 G force. After centrifugation, SDS-PAGE electrophoresis was used to
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determine the soluble protein concentration in a 200 uL sample. The remaining supernatant discarded
and replaced with 1 mL of water, then mixed and centrifuged. After decanting the supernatant, 1 mL of
solubilization buffer (8M urea; 50 mM, pH 8.0 Tris base) was added and mixed for approximately 12 h.
The final step after mixing was the measuring of insoluble protein (inclusion bodies) concentration
with SDS-PAGE electrophoresis.

3. Basis of Biomass and Product Model Fitting

A previous study [3] showed that the development of a biomass concentration estimator required
data that was linked to the biomass growth rate. Oxygen uptake rate (OUR) was the main characteristic
variable that provided information about the biosynthesis phenomenon [7,11,12]. To enforce soft
sensors [13,14], OUR must have been an online measurement coming from devices that registered
not only mass airflow, but also O, concentration in the off-gas [15]. This study proposes biomass
concentration and protein model fitting based on a mass balance equation. For fed batch cultivations,
such a model originates from the Luedeking—Piret model. The mass balance model represents the
relationship between oxygen uptake rate (OUR) and biomass growth characteristics [5]:

OUR(t) = aX'(t) + B-X(t) )

In Equation (1), X is dry biomass concentration (g/L), t is duration time since inoculation (h)
and stoichiometric coefficients « and (3 represent cell metabolism of oxygen consumption, where «
describes the cell’s oxygen consumption yield for biomass growth («x = Yo, /x, [ g(02)/g(X)]) and
B describes the cell’s oxygen consumption for maintenance (f = mo,/x, [§(02)/g(X)/h]) [16-18].
Calik [19], studying the effects of pH on benzaldehyde lyase production by Escherichia coli, and
Kocabas [20], studying L-tryptophan production, clarified that oxygen consumption consisted of three
parts: Cell growth, maintenance, and byproduct formation. In order to enable model fitting of protein
and biomass concentration, this study suggests modifying the Luedeking—Piret model in Equation (1)
by adding parameter v, which represents the oxygen consumption yield for protein synthesis rate
P'(t) (v= Yoz/p) [4,21]:

OUR(t) = o- X' (t) + B-X(t) +v-P'(t), (2)

where the last term represents the oxygen update rate for product formation.
4. System Identification and Parameter Estimation

4.1. Stoichiometric Parameter Estimation

In a previous study [3], there was an assumption that stoichiometric parameter 3, the oxygen
maintenance term, was not a process constant, and one explanation was that it embraced the target
protein P production:

OUR(t) = - X'(t) + B(X)X(t), 3)

where the 3 function had the form
B(X) = B(X(t)) =kp2X*(t) +kp1X(t) +kgo- @

Equation (3) gives acceptable results, but is highly uncertainty for the 3 term [3], which can be
seen in Figure 1, where (3 (X) is the maintenance coefficient as a function of biomass concentration and
3(tm) is the maintenance coefficient observed at discrete time t;;, and is associated with biomass X at
time ty. Graph data for Figure 1 originated from Reference [3].
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Figure 1. Dependence of oxygen consumption for maintenance on biomass concentration of E. coli
estimated as a function of biomass and observed at discrete time ty,, taken from Reference [3].

In order to refine the model to a simpler and more versatile one, an additional parameter y(X)
extends the parsimonious model [22] to the shape of Equation (5):

OUR(t) = o X'(t) 4 B(X)-X(t) +v(X)- P'(t). (5)

This represents the main novelty of this study, protein production yield y [4,21], which is assumed
to be a function of biomass concentration X in a gray box model of Equation (3) [6,22]. The motivation
of Equation (5) is that, through a convex programming procedure, the parameters with higher statistical
significance overcome those with lower significance by leaving their entries populated with zero
values. Babaeipour et al. [23] showed that protein productivity depends on IPTG and biomass
concentrations at the induction time. In previous research [6], experiments had the same 1 mM amount
of isopropyl-D-1-thiogalactopyranoside (IPTG). However, the biomass concentration at the induction
time in each cultivation process was different. We found that it had a significant impact on the biomass
model fitting. Our analysis showed that the product formation parametery(X) is a function of biomass
concentration at induction time [24]:

¥(X) = ky-(X(t) = Xina), (©)

where Xjng is biomass concentration at induction time and k. is the product synthesis yield, which is
assumed to be constant. In summary, the full gray box model of the estimator has the form:

OUR(t) = o X" (t) + ky-(X(t) = Xina)- P/ () +

(kp2X3(t) +kg1-X(t) +kpo) X (). @

In electrical systems, disturbances and interferences are inevitable, and the model’s parameters
and estimated values are distorted [11]. Urniezius et al. [3] and Schaepe et al. [13] showed that
cumulative signals had less disturbance and an improved signal-to-noise ratio (SNR). In order for
the original signal to be cumulative, this study employs an integral approach, which is a good noise
filter [25]. After integration, the improved Luedeking-Piret model in Equation (7) becomes more
resistant to state variable noise [26]:

J OUR(E)dt = - 1 X (£)dt" + ey [ (X(t') = Xina) P (£)dt+

8
fu(kmxz(t*) +kprX(t") +kpo) X(t)dt". @

After model analysis and calculations, the obtained results show that the stoichiometric parameter
B(X), the oxygen maintenance term for biomass concentration, is extremely low in comparison to other
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stoichiometric parameters during the whole cultivation process. The convex estimation of coefficients
kg2, kg1, ko, manifested in this study, shows that all of those coefficients obtain zero values in this
parsimonious model. The phenomenon where the biomass maintenance factor is absent from the
growth process can be explained by the fact that the biomass concentration at the induction moment is
relatively low (around 30 g/L) and the biomass maintenance term is negligible in this specific situation.
A previous study [3] presented biomass maintenance model fitting procedures; therefore, Equation (8)
considers only two terms of oxygen consumption:

f OUR(t")dt' = o f X! (£)dt* + ky- f t(X(t*)—de)P’(t")dt*. ©)
to to to

Integration with parts [27] of the last term in Equation (9) enables model fitting of biomass
concentration. This helps to remove the protein production rate containing considerable uncertainty:

ﬁ OUR(t)dt' = a-(X(t) = X(to) )+

2 (10)
Ky (P (X(8) = Xina) = 1 (X(E) = Xina) P ),

The differential of current biomass concentration minus biomass concentration at induction time
simplifies to (X(t) = Xina)’ = 24X Xid) — &) Therefore,

* *\ Jp dax(t *\ Jp
J(X(#) = Xina) P(t)dt = [ 2LELP(t)dt" =

(11)
JoP(E)aX(E) = TR, (% = Xi1)-Py,

where the last integral of Equation (11) represents the left-hand Riemann sum [28], when the time’s
t sample has an index of m. Discrete DCW samples define variable Xm = X(t), where m € [1,np];
Ny is the total number (hours) of offline sampling intervals and Xo = X(tp) is an initial biomass
concentration after inoculation in the bioreactor. Introducing cOURy, = j:) OUR(t*) dt* and Equation
(11) into Equation (10) yields:

m
COURm = &-(Xm = Xo) + ky-(Pan(Xm = Xina) = Y | (X1 =X1-1)-Py). (12)
The final formula for offline model fitting of biomass concentration is as follows:

_ OURy, + o-Xg + Ky P Xind + ky- L0 4 (X1 = X11) Py
- o+ Pm-ky '

m (13)
Equation (13) also represents the prediction value of the proposed model, i.e., it serves as the
constraint over the probabilistic mean (X ).

4.2. Procedure for Offline Analysis of Stoichiometry Parameters

Fitting the biomass concentration parameters to the gray box model means that the analysis of
offline bioprocess data evaluates the stoichiometric parameters of the cell strain. Equation (13) shows
that the essential data must consist of dry cell weight (DCW) or an optical density (OD) value (o.u.),
which is converted to DCW by multiplying it by a factor of 0.4 g/L/o.u. [29], cumulative oxygen uptake
rate (COUR), and insoluble target protein values. However, the time duration of the process since
inoculation is not required during this gray box model fitting procedure.

The model for fitting parameter values is a gray box model, because collected experimental data
are combined with fundamental knowledge about bioprocesses [30]. The posterior distribution for the
m-th offline sample is:

Pposterior(xm) = N(<Xm): 0'%)())/ (14)
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2

%" Prior distribution also has the form of

where every sampled prediction m has a constant variance o
Gaussian distribution [31,32]:

Piketihood (Xm) ~N(X3, 0% ), (15)

where X}, is the mth observation value of the biomass concentration and its individual variance is
0')2( - Integration of relative entropy [31] yields:

Ppasterior (Xm )
Sm(PposteriorrPlikelihood) = jj:oPposterior(Xm)‘ln P:kd:hood(xm)de (16)
) =X2,)°
= -{ 2o L 4o,

where a further procedure neglects coefficient c. In a previous study [31], the uncertainty of prior
distribution was set as equal to the squared observed value. However, Reference [3] showed that there
are trade-offs between the least squares approach and the squared mean absolute percentage error
(MAPE) criterion. A separate tuning coefficient Kexp [3] is required to adjust uncertainty:

X

L — (17)
i L= Kexp = sz‘Kexp

which yields the sum of two criteria after insertion into Equation (16)

v \2
(X )—Xin
Sm(Pposterior: l—)likelihood) =iy %,

2- =
1=Kexp+ X3y Kexp (18)
(0 (1 Kexp) (X)) Kenp
- 2.X2, 2 :

The tuning coefficient Kexp (O <Keyp < 1) with a value of 1 recreates the least squares approach,
which has a higher penalty for bigger criterion values. Meanwhile, the value of zero results in the
squared MAPE criterion [31], which restricts estimation errors to smaller overall criterion values.
Such criteria showed acceptable practical benefits in a generic case of a biomass model fitting procedure.
As aresult, the least squares method is combined with the squared MAPE to apply the advantages of
both criteria and top overcome their disadvantages, where Kexp is an empirical “weight” coefficient
between the two additive terms of the optimization criterion.

4.3. Model of Product Model Fitting

Product evaluation technology is a complex soft sensor and is important for the biotechnology
industry, demonstrating process efficiency and saving time in protein measurements [9]. In this study,
the basic idea of the protein model fitting comes from Levisauskas’ research [33], claiming that relative
protein synthesis is a function of the specific biomass growth rate:

o = Gt P, (19)

where qp,, is a specific protein accumulation rate (U/g/h), i is a specific biomass growth rate (1/h), and Px
is specific protein activity (U/g), where protein concentration is divided by biomass concentration,
Py (t) = P(t)/X(t) [33]. Data analysis and studies have shown that production synthesis is linearly
dependent on the specific growth rate (SGR) of the biomass and the product concentration acts as an
inhibitor of product synthesis [34]:

dP
d_xx = qpx(l»‘z Py) = Pmax (1, X) —kePx(t). (20)
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In Equation (16), coefficient ki is a corresponding time constant that is assumed to be a form
of the self-inhibition effect [35]. Pmax is a maximal specific product concentration value, which is
asymptotically dependent on p. The specific biomass growth rate and biomass concentration determine
the maximum specific product concentration term [36], which represents the maximum possible protein
concentration in the current process state:

Prax (1, X) = p(t):(kmo + km1- (X(t) = Xind)), (21)

where ko and ki1 are empirical coefficients proposed by this study, ko relates to SGR and protein
synthesis, and kp,; links the biomass concentration at the induction time and productivity [23].
Equation (21) is only valid after induction and biomass concentration at induction time is a prerequisite.
Before IPTG injection into the bioreactor, coefficient k., is equal to zero and the maximum specific
product concentration term becomes:

Pmax(”v X) = u(t)'km0~ (22)

The protein model fitting is comparable to the gray box model and the biomass concentration
model. Prior to performing the coefficient evaluation, the gray box model, represented by Equation (20),
integrates to:

t
t
Py (t) = f Pnax (£)dt* — k- f Py (t')dt' 23)

to “
The integrals of Equation (23) are expressed as the left-hand Riemann sum [28], i.e., ﬁ Prmax (t)dt* ~
er:l Praxj-Atij-1; ﬁ Px (t*)dt* ~ Px ;m-Atm, m-1 + Z;";}l Pyx-Atjj—1; when time’s t sample is indexed by

m, discrete protein values define the variable Py ,, = Px(t), wherem € [1,nm]. The final formula of
protein model fitting is as follows:

B (Z]ri, Pmax,i'Atj,j—l — ke Z,n;;l Px,i'Ati,i—l )'Xm (24)
m 1+ Aty m-1ke ’

Model fitting uses Equation (24) for a prediction value (Py,) and observed product concentrations
P}, inside convex optimization.

4.4. Identification of E. Coli Parameters by Convex Optimization

The process of identifying E. coli BL21 (DE3) pET28a strain’s stoichiometric parameters and
protein model fitting coefficients is based on the convex optimization method and the maximization of
entropy [31,37]. Figure 2 depicts the workflow of the optimization procedure.

Convex optimization uses the maximization of entropy as an indicator of local extremum
detections [38]. Equation (18) helps with identification of stoichiometry parameters and Equation (25)
does the same for the product model fitting:

Py =P (1= Kexp)  ((Pen) = PLL) Kex
. K z-zen( p) ( : ) Kep 55
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Figure 2. Workflow of structural scheme for convex optimization method identifying stoichiometric
and product model fitting parameters.

5. Experimental Validation

For the comparison of results, the mean absolute error (MAE) and mean absolute percentage error
(MAPE) are operated as evaluation criteria. The definition of MAE is [39]:

MAE = ) (26)

Zil5: - vil
n
where n is the number of data counts, ¥, is the estimation result, and y; is the observed value from the

cultivation process. MAPE has the expression [40]:

n

100 %
MAPE = — ;

Yi—Yi

. 27
% 27)

Root mean square error (RMSE) represents the square root of the residuals of the differences
between predicted and observed values. The formula is as follows [39]:

RMSE = (28)

The experimental data of the fed-batch cultivation process of Escherichia coli were taken from
Reference [6]. In order to test and validate the proposed models of this paper, data from 19 cultivation
experiments were used in the system identification analysis. The start of this research included
investigating a suitable expression describing stoichiometry parameters in biomass model fitting.
Multiple tests employed various formulations, including previous assumptions on polynomial
maintenance [3]. The purpose was to indicate the most suitable formula that describes cell stoichiometry.
Table 1 describes the best-achieved coefficient values for the fitted model.

Table 1. Analysis results of biomass concentration models. MAE, mean absolute error; MAPE, mean
absolute percentage error.

Model « Kgo Kp1 Kp2 Ky MAE  MAPE
Equation (3) 0.99 0.07 0.00084 0 — 1.422 8.85%
Equation (12) 0.997 0 0 0 2.705 0.68 6.92%
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The MAE and MAPE values show the average from 19 experiments. The results of protein model
fitting Equation (24) are presented in Table 2.

Table 2. Values of protein model parameters according to Equation (24).

E. Coli BL21 (DE3) pET28a

kmo = 0.2346
k1 = —0.0172
ke = 0.0687

Table 2 presents the model parameters that produce the protein estimation results of this study.

These parameters are only suitable for the genetically modified E. coli BL21 (DE3) pET28a cell strain
investigated in this study and is mentioned in the Materials and Methods Section. Equation (24)
mainly describes the recurrent procedure of offline estimation. Protein estimates were determined
from previous protein estimates and offline biomass measurements. First, parameters ko and k1
were used for determination of Pp,yj in Equation (21). This equation also used an approximate value
of SGR, ; = (Xi _Xi—1)/ (Xj-Ati’j_]). Equation (24) was only dependent on offline biomass observations
in this study, or online biomass estimates in future applications. After calculating the protein value
using Equation (24), the “normalized” protein value Py; = P;/X; served as input for the estimation
of the next target protein value by Equation (24). In this way, model fitting used the equation in a
recursive manner and had no dependency on target product related state variables.

Protein and biomass model fitting results are presented in Table 3 using the best-fit configurations
of models parameters.

Table 3. Analysis of biomass and product concentration models. RMSE, root mean square error.

Dry Biomass Concentration (Dry Cell Weight, DCW) Product
No. MAE (g/L) MAPE (%) RMSE (g) MAE (g/L) MAPE (%) RMSE (g)
1 0.728 6.802 5212 0.139 5.378 0571
2 0.762 4.997 6.621 0.231 6.095 0.647
3 0.860 11.022 6.172 0.473 52.526 291
4 0.388 4.458 3.085 0.184 13.265 1.248
5 0.798 8.02 6.107 0.527 82.075 3.258
6 0512 8.82 3.703 0.113 6.7898 0.608
7 0.595 4.787 4.605 0.127 6.957 0.84
8 0311 4.433 2.191 0.629 35.36 3.757
9 0.576 6.046 4.266 0.178 11.250 1471
10 0.873 9.017 6.166 0.634 33.844 4.147
11 0.582 5.248 4.468 0.1407 8.286 0.872
12 0.61 5.884 5.264 031 19.407 1946
13 0.7642 5.477 4962 0.318 39.614 1.834
14 0.404 3.862 3.563 0.056 7.001 0.594
15 0.531 5.724 3726 0.137 9.681 0914
16 0.628 7.532 4503 0.066 4504 0.401
17 0.86 7.057 6.685 0.16 17.13 1.042
18 1.262 11.767 9.218 0.134 10.328 1.026
19 0.862 10.582 5.933 0.111 8.15 0.738

Therefore, the average MAE of biomass model fitting since the start of the bioprocess of inoculation
is 0.679 g/L and that of product model fitting is 0.246 g/L. The overall average MAPE of biomass model
fitting since the start of inoculation is 6.92% and that of product model fitting is 19.87%. The overall
average RMSE of biomass model fitting since the start of inoculation is 5.07 g and that of product
model fitting is 1.517 g. The MAPE, MAE, and RMSE of the product model fitting neglects the very
first measurement after induction, since it has less meaning for MAPE when product synthesis starts.
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To validate the identified model parameters shown in Table 2, data from six cultivation experiments of
the same cell culture were processed.

According to the validation data shown in Table 4, the average MAE of biomass since the start of
inoculation is 0.636 g/L and that of product is 0.099 g/L. The overall average MAPE of biomass since
the start of inoculation is 7.09% and that of product is 8.22%. The overall average RMSE of biomass
since the start of inoculation is 4.577% and that of product is 0.656%.

Table 4. Model validation results.

Dry Biomass Concentration (DCW) Product
No. MAE (g/L) MAPE (%) RMSE (g) MAE (g/L) MAPE (%) RMSE (g)
1 0.769 8.594 5.279 0.128 11.947 0.7222
2 0.481 7.39 2916 0.0813 6.565 0.491
3 0.843 8.107 6.354 0.0563 7.86 0.397
4 0.727 5.25 5.975 0.05 4.996 0.323
5 0.596 7.199 417 0.134 8.715 0.821
6 0.402 6.033 2.768 0.149 9.26 1.185

Figure 3 portrays some typical biomass model fitting results and Figure 4 shows biomass validation
results. These results show that estimation approaches for biomass concentration and product attained
acceptable precision without compromising the simplicity of implementation. The proposed models
show a simplistic structure while being accurate and a basis of fundamental knowledge. The main
purpose of this paper is to show evidence that biomass and protein model fitting can be handled from
the fundamental point of view based on stoichiometry Equation (1) and protein synthesis Equation (19),
without the need for an artificial neural network (ANN) or other hybrid black box systems requiring
data training [6,41-43]. Training procedures normally require huge amounts of training data, while
this study proposes an approach that helps with the identification of the parameters once per strain.
For comparison, the results of ANN and the model in this paper are compared in Table 5.
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Figure 3. Biomass model fitting results with cultivation processes data, where time is the cultivation
time since inoculation in the bioreactor.
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Figure 4. Biomass validation results with cultivation processes data, where time is the cultivation time
since inoculation in the bioreactor.

Table 5. Comparison of prediction quality of the model in this paper and Gnoth et al. [6] model.

RMSE (g)
Total Biomass  Total Soluble Protein ~ Total Insoluble Protein
Conventional model
from Gaotatal [b] 10.81 1.78 0.87
Hybrid network from
Gnoth et al. [6] 471 1.28 0.62
Model in this study 4577 - 0.656

Moreover, instead of induction time [6], this study suggests using biomass concentration at
induction, which better confirms conventional bioprocess development practices. The results of protein
model fitting are shown in Figure 5 and are validated in Figure 6.
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Figure 5. Protein model fitting results compared with cultivation experiment data, where time is the
cultivation time since inoculation in the bioreactor.
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Figure 6. Protein validation results compared with cultivation experiment data, where time is the
cultivation time since inoculation in the bioreactor.

6. Conclusions

This paper suggests two functional models for biomass and product concentration, which are
crucial for the later development of online product and biomass estimators. The biomass model fitting
approach uses the stoichiometry model proposed by Luedeking and Piret in 1959. This study assumed
that the estimation routines are dependent on stoichiometry parameters of the strain and the biomass
concentration at the time of induction. The proposed model fitting method utilizes only few inputs:
Specific biomass growth rate and biomass concentration at time of induction. The approach is thus
based on fundamental knowledge about biosynthesis. Analysis of process data from 19 cultivation
experiments validated the routines. Evaluation errors confirmed that the approach is relevant for
model fitting of the Escherichia coli BL21 (DE3) pET28a cell strain. The overall average MAE of biomass
model fitting was 0.679 g/L and that of product model fitting was 0.246 g/L. The overall average MAPE
of biomass model fitting was 6.92% and that of product model fitting was 19.87%. The suggested
approach does not depend on any numeric initial optimization conditions and does not require any
bioreactor parameters. The proposed approach has certain benefits compared to artificial neural
networks. Training procedures normally require a huge amount of training data, while this study
proposes an approach that helps with the identification (training) of parameters once per strain. This
study suggests using a more general biomass concentration at induction, normally defined in contract
or biotechnological protocols.
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monitoring and control compatibility. The specific cell growth rate is a crucial parameter that describes
the online quality of the cultivation process. Most methods and algorithms developed for online estima-
tions of the specific growth rate controls in batch and fed-batch microbial cultivation processes rely on
biomass growth models. In this paper, we present a soft sensor - a specific growth rate estimator that does
not require a particular bioprocess model. The approach for online estimation of the specific growth rate is
based on an online measurement of the oxygen uptake rate. The feasibility of the estimator developed in
this study was determined in two ways. First, we used numerical simulations on a virtual platform, where
the cell culture processes were theoretically modeled. Next, we performed experimental validation based
on laboratory-scale (7, 12, 15 L) bioreactor experiments with three different Escherichia coli BL21 cell
strains.
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1. Introduction

Currently, the production of therapeutic proteins, drugs, and
vaccines to treat diseases has been carried out in large-scale indus-
trial bioreactors [1]. The cultivation processes in large-scale reac-
tors are high-value manufacturing processes in which failure is
intolerable. Moreover, the efficiency of these processes must be
high and not compromised by their control simplicity. Monitoring
and control algorithms with feedback signals are necessary to
reduce errors and increase the efficiency of biotechnological pro-
cesses [2]. The real-time monitoring and controlling tools for main-
taining production processes within certain boundaries [3] will
eventually become mandatory in upstream and downstream
development, scale-up and scale-down reiterations, and contract
development and manufacturing organization technology transfer
services.

In microbial cultivation processes, specifically with recombi-
nant Escherichia coli, one essential procedure is to monitor and con-
trol the growth characteristics of the culture. The specific growth
rate (SGR) is an essential cultivation process variable because it
represents a characteristic of the physiological state of the cell cul-
ture. The SGR is also related to the biosynthesis of the target pro-

* Corresponding author.
E-mail address: renaldas.urniezius@ktu.lt (R Urniezius).

https://doi.org/10.1016/j.csbj.2021.10.015

duct [4,5]. In addition, the quality of the desired product and the
entire cultivation process can be defined by the specific growth
rate of the biomass [6-8]. The SGR value can be obtained in two
ways. The first method for calculating the SGR was based on the
rate of change in the dry biomass samples. This procedure can take
several hours or days. Hence, this method cannot be used as feed-
back for a control system. The second method to acquire the SGR is
to use soft sensors, that is, estimating the SGR value by using other
measurable online parameters such as the oxygen uptake rate.
Such a calculation approach of SGR provides real-time values that
serve as feedback to the control system.

This study explores the development of a specific growth rate
estimator based on the stoichiometric parameters (more specifi-
cally, on the single ratio of those parameters) of the cell culture
and oxygen uptake rate signal. Kinetics information does not vary
and does not depend on the environment or other growth process
conditions. Thus, constant stoichiometric parameters serve as
inputs for the SGR estimator. Furthermore, the constant coeffi-
cients o define the oxygen demand for biomass growth, and the
maintenance term f relates to the oxygen consumption by the bio-
mass. Consequently, the off-gas analyzer's oxygen uptake rate
(OUR) signal is beneficial for determining the specific growth rate.

Section 2 reviews the literature related to this study. Section 3
describes the materials, strains, and operating conditions of the
bioreactor system. Section 4 outlines the developmental path of

2001-0370/© 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses by-nc-nd/4.0/).
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the SGR estimation algorithm. Section 5 provides an investigation
of the SGR estimator’s performance, detailing the estimator’s
advantages, and estimation results. The final section, Conclusions,
discusses the results, and provides the final statements of this
study.

2. Related work

Many important cultivation process variables, such as SGR and
biomass concentrations, cannot be directly measured in real time
because biotechnology processes have complex relationships
between the processes and variables. The best way to express
unmeasurable parameters in real time is to use appropriate soft
sensors/estimators [9].

One of the attractive ways to estimate SGR is the direct use of
biomass concentration measurements. However, this approach
faces difficulties in online measurements of biomass concentration,
which is a challenging state variable to measure accurately in a lig-
uid culture [10] noninvasively when various cultivation conditions
are to be tested online. This is particularly true for non-stationary
processes at the upstream bioprocess development stage. A dielec-
tric spectrometer was used to estimate the biomass concentration
and implement an observer-based estimator of the SGR [11]. How-
ever, the developed estimation algorithm requires an accurate tun-
ing of the estimator parameters. Moreover, oscillations and
instability in estimator performance occur at low biomass concen-
trations. An SGR estimation approach using biomass concentration
measurements obtained through dielectric spectroscopy was pre-
sented in [12]. However, the calculated SGR values suffered from
biomass measurement uncertainty, which could be reduced by
increasing the observation window. However, a large observation
window increased the SGR signal delay.

Because online analyzers of biomass concentration are often
unavailable or not sufficiently reliable, the SGR needs to be esti-
mated through directly measurable variables, such as the substrate
consumption, oxygen uptake rate, carbon dioxide production rate,
and base consumption rate [7,10]. For example, the successful
implementation of unscented Kalman filters (UKF) combined with
an artificial neural network for estimating the SGR based on cumu-
lative oxygen consumption and carbon dioxide production mea-
surements was reported by Simutis and Liibbert [13]. An
advanced Kalman filter (EKF) is also suitable for SGR and biomass
concentration estimations, where the oxygen uptake rate is one
of the input signals [14,15].

Rocha et al. [6] presented a biomass observer that involved the
development of an SGR estimator for the fed-batch bioprocess of
recombinant E. coli, for which online measurements of the dis-
solved oxygen, oxygen transfer rate, and culture weights were
used. The observer and estimator algorithms are based on the
asymptotic observer approach, a mathematical model, and the
assumption that the model parameters are known. The develop-
ment of a complex SGR estimation algorithm requires specific
knowledge and is a time-consuming task. For example, SGR esti-
mation, data-driven models such as artificial neural networks
(ANNs), and hybrid models can be employed, especially in indus-
trial processes. A large amount of data can be used to train and val-
idate ANN-based models [16,17]. However, the ANN and hybrid
model approaches entail considerable performance trade-offs and
design costs to select proper experimental data and training for
ANNSs. In addition, each ANN-based estimator applies only to a
specific cultivation process. Therefore, the complex approaches
that result in complex algorithms are not attractive for developing
robust SGR estimators for industrial applications.

In this study, we developed a robust and straightforward esti-
mator of cell biomass SGR in batch and fed-batch cultivation pro-
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cesses based on online estimates of the oxygen uptake rate. The
algorithm is simple because it requires only two inputs: the OUR
and a tuning parameter that uses the stoichiometric parameter
ratio. The reliability and simplicity of the SGR estimator make it
easy to implement it into the control system as feedback (1).

3. Materials and methods
3.1. Medium and culture conditions

In this work, due to data availability, three types of Escherichia
coli cell-strain cultivation data were studied to verify the SGR esti-
mates and determine their reliability and versatility. The E. coli
BL21(DE3) pET9a-IdeS, E. coli BL21 (DE3) pET21-IFN-alfa-5,
and E. coli BL21(DE3) pLysS were chosen as the study subjects. All
three cell strains were cultivated in several independent R&D
laboratories.

The cell strain of E. coli BL21 (DE3) pET21-IFN-alfa-5 was culti-
vated in a 7 L bioreactor. The cultivation medium featured minimal
mineral concentrations, including 46.55 g potassium dihydrogen
phosphate, 14 g ammonium phosphate dibasic, 5.6 g citric acid
monohydrate, 3 ml of concentrated antifoam, 35 g magnesium sul-
fate heptahydrate, and 105 g D (+) glucose monohydrate. The initial
weight of the medium was 3.7 kg. The environmental parameters of
the cultivation process remained constant throughout the experi-
ment. The temperature was set to 37 °C, the DOT was set to 20% of
air saturation, and the pH was maintained at pH 6.8 through the
addition of NaOH(aq). The stirrer speed ranged from 800 to
1200 rpm. The airflow scope ranged from 1.75 to 3.75 L/min. During
the cultivation process, pure oxygen flow from 0 to 7.5 L/min was
used to increase the oxygen transfer rate in the bioreactor.

E. coli BL21 (DE3) pET9a-IdeS cell strain was cultivatedina 15L
bioreactor. The cultivation medium was introduced according to
the minimum requirements of a mineral medium. During the cul-
tivation process, the environmental parameters were as follows:
temperature, 37 °C; DOT, 30% of air saturation; and pH maintained
at 6.98 via the addition of NaOH(aq). The stirrer speed ranged from
300 to 750 rpm. The operating airflow range ranged from 0.3 to 15
L/min. Pure oxygen flow was provided to the bioreactor during the
cultivation process from 0 to 7.5 L/min. During cultivation of the
E. coli BL21 (DE3) pET21-IFN-alfa-5 and E. coli BL21 (DE3) pET9a-
IdeS cell strains. During the E. coli BL21 (DE3) pET21-IFN-alfa-5
and E. coli BL21 (DE3) pET9a-IdeS cell cultivation processes, the
oxygen concentration in the off-gas from the bioreactor was mea-
sured online using a BlueSens BlueInOne Ferm gas analyzer, which
had a measuring range from 0 to 100%.

The E. coli (BL21(DE3) pLysS) cell strain was cultivated in min-
imal mineral medium. This medium was composed of (NH4)2504,

Feeding
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+
SGR Regulator [~ ] Bioreactor
Setpoint -
e S Tl '
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\ estimator '_S(mchmmetry
i
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'

Fig. 1. Principal scheme of the SGR control system.
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2.46 g/L; NH4CI, 0.5 g/L; NaH2PO4 x H20, 3.6 g/L; Na2504, 2 g/L;
K2HPO4, 14.6 g/L; (NH4)2-citrate, 1 g/L; 1 M MgSO4 solution,
5 mL/L; trace element solution, 2 mL/L; and no glucose. The initial
mass of all cultivations was 5 kg. The pH was kept constant at pH 7,
and the temperature was set to 30 °C. DO was set to 30% saturation.
The bioreactor had a working volume of 15 L (Biostat C, Sartorius
Stedim Biotech), and the stirrer speed varied from 100 to
1400 rpm. The oxygen uptake rate, OUR, was measured online with
a paramagnetic oxygen sensor placed in the reactor's vent line
behind the offgas cooler (Sidor, Sick-Maihak, Hamburg).

4. Devel of the SGR esti

p algorithm

Cells are living organisms that breathe and consume food (glu-
cose), so respiratory data can express the state of the cell culture
in the bioreactor. The higher the biomass content, the more evident
is the respiration data. The main parameters of respiratory data are
the oxygen uptake rate (OUR) and carbon dioxide production rate
(CPR). In this study, the algorithm for the online estimation of SGR
during microbial cultivation processes relies upon reasonable esti-
mates of the OUR, as the OUR signal is less sensitive to cellular meta-
bolism and other negative cell growth phenomena than the CPR
signal. The oxygen uptake rate can be calculated online from the dif-
ference between the oxygen concentration entering the bioreactor
and the oxygen concentration leaving the bioreactor [18,19]:
OUR(t) = Q - (05 — 03"); (1)
where O and 03" are the oxygen concentrations at the inlet and
outlet gas streams, and Q is the gas flow rate. The relationship
between the OUR and biomass growth in microbial cultures can
be modeled using Luedeking/Piret-type relationships [20,21]:

OUR(L) = o - X/(t) + B - X(t): 2)

- 3)
where X is the amount of cell biomass in the bioreactor, yu is the
SGR, tis time, and o and f are stoichiometry parameters.

The stoichiometric coefficients o and f define the cell metabo-
lism of oxygen consumption. Stoichiometry means that the same
cell strain has the same coefficients or forms. In Eq. (2), the coeffi-
cient o describes a specific cell’s oxygen consumption yield
(o = Yo,x) for growth, while f is a coefficient representing the oxy-
gen consumption for maintenance (§ = mo, x) [22,23,7].

Taking the derivative of Eq. (2) with respect to time and com-
bining it with Eq. (3), we obtain:

dOUR(t)
dt

Eq. (4) can then be reconstructed to eliminate the biomass
parameter X to make the algorithm dependent only on OUR and
stoichiometry:

1 dOUR(t) du

dt p+pjo dt

- X(t),

du
e -X(t)+ OUR(t) - p.

=« (4)

+ 0. (5)

Parameter R denotes the dynamics of oxygen consumption:
1 dOUR(t)

OUR(t) — dt

The differential equation can then be used to represent the
dynamic relationship between the SGR values x and R:

(6)

1 du
TENTE a +p=R (7)
One can also use the first-order transfer function:
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1

C,uR(S) Z:I.m.

(8)
where s is the Laplace variable, and T is the time constant related to
the SGR.

1
T:m.

The dynamic relationship between OUR and R is defined by the
differentiator transfer function

Griour(s) = ks,

9)

(10)

where k = 1/OUR. The resulting transfer function relating the OUR
to the SGR is as follows:

G;x‘euuR(S):TSLj_T. 11

The discrete OUR measurement-based SGR estimation algo-
rithm is then obtained from the transfer function (11) by applying
the z-transform. The discrete algorithm of the SGR estimator is
illustrated in Fig. 2.

In the structure scheme of the SGR estimator (Fig. 2), the first
part is intended for calculating the parameter R,, which conveys
the dynamics of oxygen consumption:

k1-z1)
At
By applying the z-transform for Eq. (12), where k = 1/0UR,,the
results yield
1 OUR, —OUR,_,
"~ OUR, At :
The last part of the structure diagram of the SGR estimator

shows the relationship between the dynamics of oxygen consump-
tion and the time constant, which gives the value of the SGR:

Ry = OUR, - (12)

R

(13)

At
=R )
Ho =R g =0y Far

The final formula for the SGR estimator is obtained by applying
the z-transform to Eq. (14):

(14)

1, = Rn (15)

At T
Trat MU TrAD
where T=1/(t, , + (/).

The presented SGR estimator is versatile and can be applied to
the monitoring of various cultivation processes. A single turning
parameter is the stoichiometric parameter ratio /o, which is
specific to a particular strain of microorganisms and can be found
in reference books or estimated from early batch culture experi-
ments [24]. For many cell strains and in many cultivation pro-
cesses, the maintenance term f is negligible. The ratio g/«
(typically 0.01-0.04) is usually smaller than the SGR by orders of
magnitude. Therefore, even using a zero value for f/« in the esti-
mation algorithm provides interpretable SGR estimation results.

1 1
k=GR, ‘ [T'm
oR, | [ ka-zv | Ry.| ar [N
ik | At | | Ta-zY+ar |

Fig. 2. Block scheme of the SGR estimation algorithm (z ! is the backward-shift
operator, At is the sampling time, and n is the number time discretization point).
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5. Investigation of the SGR estimator performance
5.1. Computer simulation

The first step in assessing the performance of the SGR estimator
was chosen by computer simulation using the MATLAB/Simulink
platform. In the simulation, different fed-batch cultivation pro-
cesses with different SGR time profiles were modeled by varying
the feeding speed of the feeding solution. A mathematical model
of the E. coli cultivation process is described in [25,26]. The follow-
ing differential equation describes the biomass concentration (g/L):

g—);:u(s)«x—F«é.
where x is the biomass concentration, g/L; y is the specific biomass
growth rate (1/h); V is the volume of the liquid culture, L; F is the
substrate feeding rate, g/h; and t is the process time, h. Another dif-
ferential equation describing the glucose concentration in a bioreac-
tor (in g/L) is as follows:

ds
Et:*qs(s)'XfF'

(16)

Sp—S
v
where g, is the specific substrate consumption rate, g/(g-h), and sy is
the substrate concentration in the feeding solution (g/L). The vol-
ume of the medium in the bioreactor depends directly on the feed-
ing speed of the feeding solution.

v

de
The oxygen uptake rate signal is calculated using the Luedek-

ing/Piret model (g/(h-V)):

OUR=o-pu(s)-x-V+p-x-V. (19)
The dependence of the relative growth rate on the substrate

concentration can be mathematically expressed using the Monod
model [2728]:

S
H(S) = Himax EFs

(17)

F. (18)

ki

ki+s’ (20)

where p,,,. is the maximum possible specific growth rate of the
specific cell culture, and k; and k; are the Monod expression param-
eters indicating the inhibition of the cell culture by overfeeding.
Finally, the simulation’s mathematical expression describing the
relative substrate consumption rate (in g/(g-h)) is as follows:
Hs)

= em,

Y., (21)

qs(s)
where Y, is a specific cell culture yield factor that describes the
need for a certain amount of food (glucose) for a certain amount
of biomass (g/g), and m refers to the model parameters that define
the food requirements for biomass maintenance, g/(g-h).

The parameters of the model Egs. (12)-(17) and the initial val-
ues of the state variables in the simulation experiments are listed
in Table (1).

In the simulation experiments, various time profiles of the SGR
were obtained by manipulating the feed rate. Feed-rate interrup-
tion disturbances were also added to the feed-rate time profiles
to simulate the complicated process control conditions. As the
actual measurements of the OUR are usually corrupted by noise,
the measurements applied in the recursive estimation algorithm
(Fig. 2) were simulated by adding white Gaussian noise:

OURm, = OUR, + & - OUR, - Rand, (22)

where OURm is the measured value of OUR; the percentage stan-
dard deviation of the absolute OUR value estimated from observa-
tions is ¢ (¢ = 3%), Rand is a number from the Gaussian random
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Table 1
Values of model parameters.
Parameter Value Dimension
ki 85 gL
ks 0.7 g/L
m 0.02 gl(gh)
s 150 g/L
Yy 08 88
o 0.82 glg
B 0.01 gl(gh)
. 11 1/h
x(0) 05 g/L
s(0) 5.0 gL
V(o) 8.0 L

number sequence with zero mean and unit variance, and subscript
n denotes the count of discrete measurement points.

In the simulation experiments, the time discretization step of the
recursive estimation algorithm was set to At =0.0025 h,and the ratio
f/o. (tuning parameter) value was determined to be /o = 0.01.

Preliminary simulation experiments showed problems in the
estimator’s performance during the initial stage of the cultivation
process. The convergence rate to the actual value of SGR at the
beginning of the process was sensitive to the initial value of the
SGR entered into the recursive algorithm (Fig. 2). The OUR estima-
tion errors significantly corrupted the estimator’s performance in
the initial stage of the cultivation process when the OUR signal-
to-noise ratio was low [6]. It was discovered that the initial
measurement-based estimate of the variable (Eq. 7 provides a valid
first-approach value for the SGR in the recursive estimation algo-
rithm. Therefore, the initial SGR value can also be estimated from
the early cultivation experiments. The above estimator perfor-
mance problems can be resolved by switching the estimator out-
put after some time once the OUR increases, and the estimation
algorithm captures the actual value of the SGR. A proper time point
for enabling the estimator was found to be 1-3 h into the cultiva-
tion process in the simulation platform.

The results of the simulation experiments under various culti-
vation conditions are presented in Fig. 3 (Experiments I and II).
The time trajectories of the feeding rate applied to simulate differ-
ent cultivation conditions are shown in Fig. 3a. The trajectories of
biomass growth are shown in Fig. 3b. The simulated values of
the OUR measurements OURm,, upon which the SGR estimation
is based, are shown in Fig. 3c. The estimator’s performance in
tracking time-varying biomass SGR is illustrated in Fig. 3d, in
which the estimated SGR trajectories (solid lines) are compared
with the actual trajectories (dotted lines).

The simulation results presented in Fig. 3 (Experiments I and II)
show that the proposed estimator offers accurate SGR estimates
during fed-batch cultivation processes under feeding rate distur-
bances and OUR measurement noise.

5.2. Experimental testing

The SGR estimator’s performance and reliability were investigated
using actual E. coli cultivation process data. Experimental SGR values
and OUR data for the oxygen uptake rate were collected from fed-
batch experiments of Escherichia coli obtained from [29] and industrial
R&D laboratories. To cover more practical scenarios, three types of
E. coli cell strains were used in different sizes of bioreactors:

1. The E. coli BL21 (DE3) pET21-1FN-alfa-5 cell strain was culti-
vated in a 7 L bioreactor. Eleven fed-batch cultivations were
performed, where eight cultivations were carried out with a
growth-limiting feed rate and three without a growth-limiting
feed rate, that is, batch or repetitive batch processes.
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Fig. 3. Simulation results of the SGR estimator performance by tracking various SGR time trajectories (Experiments I, I1): (a), (b), (c) feeding rate, biomass growth, and oxygen
uptake rate curves, respectively; d) comparison of the simulated SGR versus estimated SGR curves (dotted and solid lines, respectively).

N

The E. coli BL21 (DE3) pET9a-1deS cell strain was cultivated in a
12 L bioreactor. Two cultivations were performed at a growth-
limiting rate.

The E. coli (BL21(DE3) pLysS) cell strain was cultivatedina 15L
bioreactor. Seven fed-batch cultivations under growth-limiting
rate conditions were selected for SGR estimator inspection.

W

The offline biomass concentration values in the cultivation
experiments were determined from the measurements of the opti-
cal density OD (in o.u.) multiplied by the coefficient of the biomass
concentration (approximately 0.4 g/L/o.u.) [30]. The experimental
SGR values were calculated from offline biomass concentration val-
ues collected from the sample measurements. The stoichiometry
parameters of cell cultures o« and f were determined using the lit-
erature and experimental data [24]. In this work, the values for the
stoichiometry parameters of oxygen consumption remained the
same in all E. coli cell cultures (ratio /o = 0.04).

The precision and reliability of the SGR estimator were evalu-
ated by comparing the estimator predictions with the SGR values
calculated offline from the biomass growth curve approximating
the biomass concentration measurements. To describe the SGR
estimator results, the indicators of mean absolute error (MAE)
and root mean square error (RMSE) were applied. The MAE method
evaluates the errors between the estimated and observed biomass
values during the cultivation process. The MAE approach is defined
as follows [31]:

S -l
MAE=EL |

7 (23)

where n is the number of data counts, and y; is the estimation result
compared to y;, which is the value determined through the cultiva-
tion process. The root mean square error represents the square root
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of the residuals of the differences between the predicted and
observed values. The RMSE formula is as follows [31]:

The SGR estimator results for the three different cell strains are
shown below.

Three experiments (9-11) were performed with a dose-
unlimited substrate feeding. The rest of the experiments were pro-
vided limited feeding using the various control strategies described
in [32], with multiple substrate-limited feeding profiles. The

Computational and Structural Biotechnology Journal 19 (2021) 5856-5863

human factors and equipment influenced the results, as shown in
Tables 2-4. Because the samples were taken manually, the SGR
experimental values featured errors that affected the outcomes of
the estimates. The overall average MAE of the SGR was 0.042 1/h,
and the overall average RMSE of the SGR estimation was
0.051 1/h. These results show that this approach is acceptable for
both limited and unlimited fed-batch cultivation processes with
various E. coli cell strains.

At the beginning of the cultivation process, the SGR estimator
requires an initial SGR value. This can be done in two ways to
obtain an initial SGR value. The first method uses two biomass con-
centration values taken from the measurement samples at the
beginning of the cultivation process and calculate the initial SGR
value. This method allows the use of the SGR estimator at the
beginning of the cultivation process when two samples are taken
atan interval of at least half an hour. This method is suitable if data
monitoring does not start from the beginning of inoculation and
when offline OD values are available. The second method (recom-
mended by the authors of this study) uses the initial value of the
SGR value set to zero. This method can be used when data monitor-
ing of the cultivation process data started immediately after the
inoculation or when the cells were still dormant. At the inoculation
moment, the cells have the stress of a new environment and must
be prepared for reproduction. This phase is called the lag phase.
The cells prepare ferments to start reproduction; hence, in the
lag phase, the specific growth rate is equal to zero [33,34].This
method allows the use of the SGR estimator at the beginning of
the cultivation process after inoculation without any measure-
ments of the biomass. As shown in Figs. 4-6, the SGR estimator
begins to run the start of the cultivation process.

During online monitoring of the cultivation experiments, the
SGR estimator demonstrated robust behavior and consistency
between the SGR online estimates and the rough SGR observations
obtained from the discrete offline biomass concentration
measurements.

6. Conclusions

In this study, an estimator of the biomass-specific growth rate
was developed for online monitoring of microbial cultivation pro-
cesses. The estimation algorithm is based on a functional model
and measurements of the oxygen uptake rate.

The computer simulation of our specific-growth-rate estimator
revealed robust behavior of the recursive estimation algorithm and
sufficiently accurate tracking of the specific-growth-rate time tra-
jectories under process disturbances and measurement errors of

Table 2
Analysis of E. coli BL21 (DE3) pET21-IFN-alfa-5, 7 L bioreactor.
Exp. No. RMSE, 1/h MAE, 1/h
1 0.034 0.027
2 0.054 0.047
3 0.056 0.040
4 0.051 0.036
5 0.050 0.038
6 0.045 0.038
7. 0.054 0.046
8 0.057 0.040
9 0.040 0.035
10 0.041 0.030
11 0.034 0.030
Table 3
Analysis of E. coli(BL21(DE3) pLysS), 15 L bioreactor.
Exp. No. RMSE, 1/h MAE, 1/h
1 0.058 0.054
2 0.056 0.048
3 0.049 0.036
4 0.058 0.053
5 0.050 0.042
6 0.062 0.048
7 0.059 0.048
Table 4
Analysis of E. coli(BL21(DE3) pET9a-IdeS, 12 L bioreactor.
Exp. No. RMSE, 1/h MAE, 1/h
1 0.060 0.050
2 0.053 0.044
0.8 —— ]
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Fig. 4. SGR estimation results with cultivation process data: a) Exp. 1 Table 2, limited fed-batch cultivation processes; b) Exp. 2 Table 2, limited fed-batch cultivation process;
and ¢) Exp. 9 Table 2, unlimited fed-batch cultivation process; d) Exp. 10 Table 2 and the unlimited fed-batch cultivation process.
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Fig. 5. SGR estimation results with limited feeding solution fed-batch cultivation process data: a) Exp. 1 Table 3; b) Exp. 2 Table 3
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Fig. 6. SGR estimation results with limited feeding solution fed-batch cultivation process data: a) Exp. 1 Table 4; b) Exp. 2 Table 4.

the off-gas parameters. The experimental investigation estimator
was established using three different E. coli strains in bioreactors
with several different working volumes. The overall average MAE
of the SGR was 0.044 1/h, and the overall average RMSE of the
SGR estimation was 0.074 1/h.

This estimator can be applied to the online monitoring of vari-
ous cultivation processes with limited or unlimited substrate feed-
ing. This method requires adjusting only a single tuning parameter,
that is, the ratio of /o, to adapt the estimator to a particular pro-
cess. An approximate or zero value of the tuning parameter pro-
vided satisfactory estimation results. Thus, the presented
estimator can provide a proper feedback signal for advanced SGR
automatic control systems.
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This study developed an estimation routine for counting the viable cells in an in vitro fed-batch Chinese hamster
ovary cultivation that relies on off-gas information and inlet gas mixture knowledge. We computed the oxygen
uptake rate bound to the bioreactor exhaust gas outlet when the inlet gas mixture was stationary. Our
mammalian biosynthesis analysis determined the stoichiometric parameters as a function of the average popu-
lation age. We cross-validated an identical algorithm for mammalian and microbial cultivations and found that
the’ 99% confidence band of the model generally overlapped with the error bars defined from observations. The

resulting RMSE and MAE averages were 0.188 and 0.14e°cells L', respectively, when estimating the viable
mammalian cell count. The validation for the estimation of total bacterial biomass yielded an MAE and RMSE of
1.78 g L' and 2.53 g L™, respectively. Moreover, our proposed approach provides an online estimation of the
average population age for both aerobically cultivated microorganisms.

1. Introduction

Over a decade ago, investigators showed that the cumulative oxygen
uptake rate (OUR) is a reliable indicator of the cell viability repeatability
in mammalian fed-batch biosynthesis [1]. In the same year, they showed
that simple and efficient substrate-feeding control based on the OUR
signal is a promising tool for validating the variability of viable cell
counts using an off-gas analyzer [2]. Similarly, another team showed
that gas analyzer information and bioreactor parameters can further
help optimize the target product in mammalian fermentation [3]. Later
efforts estimated the intermediate state variables of bioreactors; how-
ever, no report on noninvasive viable cell estimation in fed-batch
mammalian biosynthesis has yet to be published. Animal cells are the
closest strain to human cells, producing many high-quality and specific
proteins that are used in unique medical applications [4]; for example,
the Chinese hamster ovary (CHO) is a well-known mammalian cell strain
used to produce glycoproteins [5].

Cultivating bioprocesses with lian cells to complete target-
product fermentation with high efficiency is challenging. Animal-cell-
based biosynthesis is at a relatively higher risk than that based on mi-
crobial cells [6] because of the longevity of the process, the seed of the
strain, and the nutrition medium. To reduce the risks of this process,
bioreactor control [7,3] must depend on reliable real-time estimations of

* Corresponding author. Department of A ion, Kaunas University of Tech

the culture state. Thus, monitoring the main characteristic parameter,
that is, the number of viable cells, is crucial; however, contemporary
viable cell measurements are performed offline, which is
time-consuming and human resource intensive.

This paper presents a soft sensor (i.e., estimator) as a tool for esti-
mating viable CHO cells using noninvasive off-gas [9] measurements
that depend on oxygen consumption rate [10] information. The method
is based on stoichiometric parameters and the Luedeking-Piret model
with an aging term introduced [11-13]. The primary off-gas signal re-
ported by the viable cell estimator defined the oxygen uptake rate input.
Exhaust gas analyses have provided information about cultures in media
that is indirectly related to oxygen-consuming viable cells [14].

Section 1 discusses the motives for using the noninvasive cell counter
as a novel functionality of gas analyzers; Section 2 reviews literature
related to this study; Section 3 describes the bioreactor system materials
and the protocol conditions; Section 4 outlines the development of a
viable cell-estimation algorithm; Section 5 lays out the hypothetical
functional model, aging-specific parameters, and the motivation behind
the assumptions; and the final section discusses the conclusions of this
study.
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2. Related work

The Luedeking-Piret model was used to estimate the viable cells of a
mammalian strain in a bioreactor. Earlier researchers have shown thata
standard stoichiometric model is crucial for estimating the microbial
biomass of Escherichia coli, as it provides acceptable results [15]. The
main difference between microbial and mammalian cells is the specific
growth rate, which is relatively low for the CHO strain. Consequently,
the long cultivation time leads to instability in the oxygen consumption
rate by viable cells. The average age of the cell population was used to
describe its yield dynamics. At low ages, the potential specific growth
rates of the cells were high, and the inhibition of the cell count had a
negligible effect. Furthermore, cultures of more considerable ages have
their cell growth inhibited. The maintenance of aging cells [16] de-
termines excess oxygen intake.

Cell fermentation is a complex process [17] that requires sophisti-
cated control [18,19] and monitoring of biotechnological phenomena
[20]; therefore, data collection and model management are critical [21],
as they provide essential variables in real time with acceptable accu-
racies [22] to identify the state of the process and its adaptive control
[23]. Several developments have been made to obtain real-time mea-
surements of the amount of viable cells using equipment installed in a
bioreactor. One of these developments includes using image analysis,
such as microscopy [24,25]. The equipment necessary to count the cells
requires maintenance (recalibration), and image data might be
disturbed owing to enriched media supplements or homogeneity-related
effects. Furthermore, the predicted cell counts often deviate from the
ground truth, even for simple test images [26].

Another way to indirectly estimate viable cell counts in culture is to
use in situ mid-infrared spectrometry and online glucose concentration,
which has been established [27]. Using a non-stationary growth yield
parameter, viable cells can be computed from direct glucose concen-
tration measurements; however, one major disadvantage of such an
approach is the necessity for in situ equipment to obtain the glucose
concentration online. Moreover, the function of glucose consumption
faces accuracy challenges when determined in the culture death phase,
that is, the decline of the cell population instead has steady-state prop-
erties [27].

Soft sensors [28] are analytical tools for the online observation of
in-situ parameters [10,29]. Many different models of soft biomass sen-
sors have been proposed for microbial biosynthesis, such as dielectric
spectroscopy [30]; however, their use for cell count estimation remains
challenging in mammalian and stem cell bioprocessing [31,32].

Cultivation processes with animal cells are more complex than those
with microorganism cells because of the meager specific growth rate and
strict requirements for the composition of the medium and precise
maintenance of environmental parameters [33]. The shallow specific
growth rate of mammalian cells significantly prolongs the cultivation
process, which can greatly disturb the in-situ data with relatively higher
transient constants, and noise has a considerable influence on the signal
[l

To eliminate signal noise and resolve the complexity of estimating
the viable cells of animal strains, a hybrid model with artificial neural
networks (ANN) was proposed as a viable cell estimation tool [34], with
a hybrid model that includes exhaust gas analyses and a base (NaOH for
pH setpoint control) providing the most acceptable results; however,
obtaining sufficient accuracy for ANNs requires considerable data for
model calibration. Moreover, hybrid model approaches require signifi-
cant performance trade-offs and design-space maintenance. Addition-
ally, the resulting model applies exclusively to a specific bioprocess [34,
35].

This study estimates cell counts based only on exhaust gas data and
the OUR, which is closely associated with dissolved oxygen [36] and is
crucial for aerobic cultivation (Table 1).

The chosen viable cell estimation method is based on stoichiometry
and aging theory [11,12] and avoids the use of a data-driven black box
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Table 1
Comparison between proposed mammalian viable cells estimation.
Source Inputs Model-based Equipment
Joerisetal. [24],  Visual material  Image processing  Microscope
Shah et al. [25] software
Ducommun et al. Glucose Parametric Mid-infrared
[271 3 ptimizati P
Aehle et al. [34] OUR, CPR, Base Data-driven Exhaust gas
(ANNs), recurrent  analyzer, balance
model for base
This study OUR Functional Exhaust gas
optimization analyzer

(ANN). The selected model was based on knowledge combined with
off-gas analytics.

3. Materials and methods
3.1. Cultivation conditions

The viable cell estimator for mammalian cell culture proposed in this
study used data from the cultivation process of CHO-K1 (CHO-S, No.
11619-012, Karlsruhe, Germany). Prior research [37] presents the
Biostat B bioreactor cultivation processes, the information of which is
presented in Table 2.

An automated cell counter was used to measure offline viable and
total cell concentrations (CASY TT; Roche Innovatis AG, Mannheim).
Exhaust gas analyses were performed using a quadrupole mass spec-
trometer (Balzers QMA 200; Balzers, Liechtenstein).

Furthermore, data from bioprocesses with the Escherichia coli strain
were used to estimate the biomass. The bacteria E. coli BL21 (DE3)
PET21-IFN-alfa-5 (Table 3) were cultivated in a minimal-mineral me-
dium [38].

The BlueSens BlueInOne Ferm gas analyzer (oxygen concentrations
from 0 to 100%) and airflow information from Applikon BioBundle
bioreactor enabled the oxygen uptake rate assessment.

3.2. Development of the viable cells estimation algorithm

Off-gas analysis is founded on the basis that its information source is
cumulative. The entire bioreactor medium, with an inevitable time
delay, determines the gas mixture content at the condenser outlet, that
is, accumulated carbon dioxide needing to be removed from nutrient
media explains the reason that off-gas analysis with the oxygen uptake
rate signal is a rational intuitive candidate invariant to the homogeneity
of the bioreactor medium. A typical off-gas-based candidate for the
stoichiometric relationship between the total OUR and the biomass
growth and maintenance is the Luedeking-Piret-type model [11,12].

OUR(t) = a-X (1) + p-X(1); (6))

where X is the total count of viable cells, t is the time, and @ and f are
parameters that determine the corresponding stoichiometric relation-
ship with the growth and maintenance of viable cells. To introduce a
generic estimator for the number of viable cells, the time dependence of
both kinetic parameters indicates a general inhomogeneous first-order
differential equation [39].

Table 2

Mammalian cell cultivation details.
Condition State Condition State
Bioreactor volume 2L Broth volume 1L
Temperature 37°C PH 7.15
po2 20% airflow 0.1 Lmin~!
Stirrer 60-400 RPM Feeding start at75h
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Table 3

Recombinant E. coli cultivation details.
Condition State Condition State
Bioreactor volume 7L Broth volume 37L
Temperature 37°C PH 6.8
p02 20% Feeding start at5-7h
F A1) OUR(t)

X0 +Z2x0 = : @
(1) ) X(1) «0)

The generic solution to 2 is as follows:

ot [0, [ g
X1) = ——F——, ®

e.

where integration constant ¢ must account for the boundary condition.
Specifically, the exact form of the answer with initial condition X(0) =
Xo is as follows:

10(2)
y ) o
1) % j:loimh I(J; )

N &

3.3. Maintenance component

Previously, the authors [15] demonstrated that the boundary con-
dition has to be computationally resolved when the maintenance term is
negligible prior to the induction phase of biosynthesis during microbial
bioprocesses. As there is no induction in mammalian upstream devel-
opment, the age-related threshold of viable cell populations serves as the
rational hypothesis to assume the start of the cell maintenance effect. In
the interim, the verge is defined as follows: kx = f;“ X(t)dt, where the
time instant t.x and its biomass (Xex = X(tex)) are unknown in advance.
However, the approximate value of k.x was assessed or estimated in the
model training phase. Then, 1 generalizes to the following:

if /X(fl)dfl < kex
0

otherwise,

(5)

{OUR(r) =a(t)-X (1)
OUR(1) = a(t)-X (1) + (1) (X(1) — Xex),

where the second equality, similarly to 2 has an alternative arrangement

; / OUR(1) + f(1)-X.
X0+ %-xm B aUis )amﬂ( phe
The solution of 6 is the extended form of 4. Then,
X(1) :xu+/'0UR(’Q dr,:
0

a(n)

X, +f0ﬂ?,(,",)i€(j)'xixeﬁ)%w dny
Xp) = —e

a(ty)

(6)

if /X(Il)dfl <kx
0

otherwise.

@)

Equation (7) indicates that, as time approaches infinity, the initial
value of the biomass is negligible. Second, because the aging effect is
noticeable in OUR(), at least for fed-batch bioprocesses, such an integral
form has potential benefits for estimators based on finite differences.

3.4. Hypothetic functional model of kinetic parameters

Generally, both kinetic parameters (a(t) and f(t)) of the Luede-
king-Piret model are functions of time 7; however, we hypothesized,
based on previous research results [12,40,41], that in prolonged
fed-batch aerobic bioprocesses, such as mammalian cell cultivation,
kinetic parameters are functionals that depend on the average age of the
cell population.
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TaEli) = Xot + ﬂJ(tx_(,')l)'xm )dh‘

The main drawback of this expression, when used for continuous
biosynthesis analysis, is that it is time-dependent. It is more suitable to
make it more generalizable so that both fed-batch and continuous
biosynthesis use the same form. The arrangement and integration give
the following:

(8)

X(1)-1 — [yndX(n)

X(r) ’

After applying the integration by parts formula to the numerator, it
becomes the following:

JoX(n)dny
X))

Age(r) = Q)

Age(t) = Age(r) = (10)

which is equally convenient for non-invasive estimation in both fed-
batch and continuous biosynthesis. The age expression depends on the
state rather than time. Such an assumption is relevant for perfusion
bioprocesses [42], when the biomass concentration (microbial) or
number of viable cells (mammalian) might be age-invariant.

The choice was to introduce a parametric hypothesis for fed-batch
mammalian cultivation. The following functionals served as the model
fitting classes to enable non-invasive online estimation of the kinetic
coefficient (a(t)) at runtime:

a() = e 280, an
1 —eTtime 1

where the maximal growth-based oxygen consumption yield (amax) for
cells represents the theoretical aerobic oxidative capacity and the lag
time (Lagyme) is related to exponential decay [43] and defines the
moment when the lag phase approaches the end and cells enter the
exponential growth phase. The rightmost multiplier 11 also has a
physical meaning of the relative time ratio, designated for the last stage
of biosynthesis. The oxygen consumption yield (4(t)) allows cells to
remain alive

Age(t)

“Age(t) + Kage' a2

Blt)=p
where aging-specific coefficient kg, is “half-age-constant™ if the main-
tenance coefficient f is treated as the maximal maintenance value.

3.5. Online numeric estimation of viable cells count

Finite differences allow integral routines to be simplified; however,
the computational inertia of accumulating errors and algorithmic per-
formance challenges must be avoided. The first biomass value could be
zero if the fed-batch bioprocess is considerably longer, similar to
mammalian cultivation. Moreover, the initial biomass, that is, the
number of viable cells, is typically known after bioreactor inoculation in
industrial installations. The initial count of viable cells is the result of
offline analyses in this study and serves as the initial estimate. In this
work, the age estimate is a function of the prior viable cell estimates, as
follows:
7y .Z"—XA’,I a3)

where n denotes the total number of discrete observations (estimates).
The critical time at which maintenance starts is defined as follows:

(x or the total duration
tx = (/ X(l)dl)
0

=1

(kex ), (14
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where the notation “-1” is an inverse function or t. is such that the

cumulative biomass equals the threshold kcx. The discrete formula is
expressed as follows:

-1
Tox (Z;(.-AI.H) (kex ) (15)
=

where the cumulative biomass X,y is the boundary value for the iterative
routine. The stoichiometry parameters depend on the most recent esti-
mates. Then, the kinetic coefficient (a(t)) at runtime,

(16)

= Ageiy
Ageiy +kog'

Bi a7
which does not degrade the convergence of the overall algorithm.
Therefore, it is recommended that the sampling interval /At; =/\t;; ; be
noticeably smaller than the expected transient constant of the popula-
tion age dynamics. One minute (0.167 h) represented a discretization
step during the experiments because of the dependency on the off-gas
OUR observations. Moreover, the algorithm is sufficient for varying
sampling intervals, that is, when measurements are temporarily lost,
because the aging state of the culture does not change abruptly in fed-
batch cultivations.

s L OUR; il
X=X +Z = AN if ZIX/AU < ky
= j J=

L OUR; + fXex D &
o
Xo + E 5 ) Ay

= T .
X = i otherwise,

(18)

where Algorithm 18 did not show convergence issues when the time
variable t approached higher values than the microbial analysis. Non-
invasive online observations decrease over time in fed-batch cultiva-
tion when nutrient medium perfusion is absent.

4. Results and discussion

Viable CHO cells and the biomass of the recombinant E. coli strain
were selected to determine the reliability and performance of the esti-
mation. The stoichiometric parameters of the cell culture (a, f) were
assumed to be independent of the experimental analysis in which they
lie. The discrete check compares the offline and online analysis results
using the mean absolute error (MAE) and root mean square error
(RMSE). The MAE is defined as [44]:

j=1
MAE,; =

19)

where the average ¥; is the total number (n) of observations y; obtained
through offline sampling. The RMSE formula is defined as [44]:

RMSE; = (20)

Overall, ten cross-validation steps returned ten estimation sets. Next,
the ensemble averaging [45] scheme inferred a single optimal set of
parameters for the estimation. The principal purpose of the chosen
technique was to acquire a result from the submitted candidates by
averaging them according to a weight that depends on the relevance of
the item. Specifically, the weights of ten candidate sets were dependent
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on RMSE by applying the ensemble averaging equation:
= Z wiyi(x), (21)
i=1

where the final guess of parameter y and the weight w; of parameter y;
are RMSE-based functions resulting from the parameters listed in
Table 5:

1 _ Sj1RMSE; — RMSE;

" SR T) -

In Equation (22), the number of parameter sets n = 10 leads to the
final and optimal parameter sets presented in Table 4.

4.1. Estimation of mammalian cells viability

Experimental data on viable CHO cells and oxygen consumption are
presented in detail in Ref. [37]. Every 12 h, manual offline sampling was
used to quantify the count of viable cells using an automated cell counter
(CASY TT).

The development of a method for estimating CHO viable cells and
stoichiometric and inhibition parameters passed cross-validation using
data from 12 cultivations of a CHO mammalian strain [46]. The 12
presented experiments were unique in terms of growth profile similarity.
In the cross-validation method, 80% of the process data points helped in
model fitting (training stage), and the remaining 20% concluded trials.
Uniform Random indexes to skip in the model calibration originated
from the “Random™ function (C#) with default seed values. The exper-
iment consisted of ten random data sets. Table 5 contains the model
calibration and validation results using RMSE and MAE; Table 4 lists the
optimal parameter values.

During parameter identification, the interference from signal noise
and device calibration inaccuracy of the exhaust gas analysis sensors had
a significant impact. The specific growth rate of mammalian cells is
meager; thus, the signal-to-noise ratio is sufficiently high to cause issues
in estimation precision [47]. To increase the parameter estimation ac-
curacy, the choice was to introduce an offset for the oxygen concen-
tration signal at the gas mixture inlet of the bioreactor. Such an
improvement considers practical experience and knowledge of how the
volumetric oxygen transfer coefficient (kLa) varies in the bioreactor. It
was assumed that the acceleration of oxygen consumption could not
exceed the dynamics of the pO2 signal, considering that the airflow and
stirrer values were stationary [48] (Fig. 1).

In conclusion, an abrupt change in the oxygen consumption rate
results in the quality of sensor calibration in this specific context. Hence,
the offset values (Table 6) were re-fitted for all 12 experiments to in-
crease confidence in the proposed approach.

Overall, the estimation of viable mammalian cells provided accurate
predictions. The average RMSE and MAE values were 0.188 and 0.14,
respectively.

The average RMSE and MAE validation values were 0.158 and 0.139,
respectively. Table 7 compares ‘our results with a hybrid model. Figs. 2
and 3 represent the performance of the model estimations and the
confidence band with @ = 0.01. Classification of the error values be-
tween the measured and calculated points for all data from the 12 ex-
periments over a range of viable cell concentrations was sufficient to

Table 4

Final and optimal values of model parameters.
Parameter Value Unit
Lagime 20.489 h
max 0.727 g ecells !
p 0.034 gecells 'h'h)
kex 20.99 ecellsh L™
Kaoge 102.05 h
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Table 5
Individual model fitting the cross-validation results.

Iteration Model calibration, (ecells L") Validation, (e%cells L")
No. MAE RMSE MAE RMSE
1 0137 0.191 0.154 0.169
2 0.145 0.198 0.122 0.135
3 0.141 0.189 0.154 0.166
4 0142 0.189 0.123 0.146
5 0.149 0.198 0.105 0.122
6 0.143 0.19 0.129 0.158
7 0.14 0173 0.18 0.202
8 0.144 0.193 0.12 0.132
9 014 0.188 0.131 0.146
10 0.14 0.176 0178 0.199
80 19.85
— D02
70 1975
=02 offgas ®
60 19.65 g
* g
o 50 19.55 =
Q §
=Y o
a0 1945 §
S
~
30 1935 ©
20 1925
o 1 2 3 4 s 6 7 8 9 10
Time, h

Fig. 1. The steep oxygen concentration drop at the exhaust gas outlet. The
unique identity of this experiment was No 9.
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4.2. Biomass estimation on E. coli bacteria

The chosen method also evaluated the biomass estimation of the
bacterial strains to verify the ‘versatility of the algorithm. Half of the 12
experiments contained a growth-limiting substrate feed. Offline biomass
concentration values helped to identify the parameters of the estimation
model for E. coli bacteria and evaluate the validation results. The offline
measurements consisted of optical density (OD) (in o.u.) samples
(Eppendorf BioSpectrometer basic) multiplied by the coefficient of the
biomass concentration (approximately 0.4 g L ™! o.u.”!) [49].

Table 9 presents the parameter se( for the bacterial stmins. Param-
eter identification results in 1.67 gL ' MAE and 2.87 g L ' RMSE. The
validation proces pmduced 1.78 gL' MAEand 2.53 gL' RMSE. Fig. 4

an | methodology applied to microbial analysis, and
t.he confidence band relationship for bacterial examination is identical to
that for mammalian analysis.

The histogram statistics are presented in Table 10 and the obtained
prediction error dependencies by biomass (X) are as follows:

2(X) = 0.00172X° + 0.03431X + 0.56058. (29)

In Fig. 4, the purple shadow indicates the confidence band a = 0.01
inFig 4. The error bars consisted of a systematic errorof 0.2 gL ' and a
random error of 4%. These errors reflect the bounds of experimentation-
related errors and device characteristics.

5. Conclusions

This study proposes a model for estimating viable cells in a
mammalian CHO strain to indirectly monitor the crucial state variable of
the cultivation process. The proposed method was developed using
functional optimization, including aging information and off-gas ob-
servations, based on the OUR at the outlet of the bioreactor. Experi-
mental cross-validation was performed for both microbial and

Table 6 mammalian strains. A total of 12 experiments for each strain allowed the
The oxygen consumption signal characteristics at the gas mixture inlet. same model training and validation procedures to pass through. The
Exp.No.  Inlet 0:(%)  Offset (%) Exp.No. InletO:(%)  Offset (%) final average MAE of the viable cell estimation (mammalian scenario)
1 20,584 0.143 7 19.327 0.045 result was 0.139¢’cells L ' and the overall mean RMSE result was
2 19.785 0.034 8 21546 ~0.12 0.158e°cells L '. These numerical precision results match the original
3 19.689 011 9 21.195 0 hybrid findings [37] but with additional benefits. First, the number of
4 29973 a4 20 et =0.080, p used in the fi approach was minimal. Second, these
5 19.476 0.043 11 21.698 ~0.022 h By = o ol planni
6 19.353 -0.102 12 21.776 0.028 aver g optim
control for future ¢ digital twin technology
Furthermore, a universality check was performed on the experi-
Table7 mental data of the Escherichia coli recombinant strain. The procedure
able 5 3 NS AT 5
B —— was identical except that the micr ol?xul sloxchxome!ry. pnmme!elf did not
— directly depend on the average aging of the bacterial population. The
Author F‘:"‘_““““ mg‘s'l!l:ff"l"“‘““ﬂ R?j;‘ Vil results were satisfactory: the final mean MAE was 1.78 g L', and the
technique (ecells L) (e L overallRMSEwasZSSgL 1
Achle etal.  Hybrid model 0.16 0.154 A comparison of [he rsults for CHO nml E colx cells shows that the
34 Foiey 1 a1 deli
Thisstudy  Functional 0.188 0158 ging-sp lfic or £ lmf A ) s onrh S, 4
optimization when ﬂ:e ong ,‘ of the biop is ve, that is, in

determine the confidence band of the method. The statistical histogram
and degrees of freedom are presented in Table 8. The error classification
method shows the error dependence of the viable cell concentration
(VC) as a model fit:

2(VC) = 0.0068VC? + 0.0604VC. (23)

The purple shadow depicts the confidence band @ = 0.01 in Figs. 2
and 3. This area has a high (pessimistic) bound to the error statistics. The
emror bars were assumed to result from applying a systematic error of
0.1 cells L'! and a random error of 4%. These emrors consisted of
experimentation-related additive errors and device characteristics.
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Fig. 2. CHO viable cell results from No 1-6. Vertical error bars indicate a total error. The purple shadow represents the prediction band. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. CHO viable cell estimation results from experiments No 7-12. Vertical error bars indicate a total error. The purple shadow represents the prediction band.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 8 Table 9
Numbers of freedom at a specific range of viable cell concentration. The model parameters for E. coli bacteria biomass estimation.
Range, e’cellsL™' 01 1.2 23 34 45 56 67 7-8 Parameter Value Unit
No. of freedom 36 35 13 8 13 5 4 4 Lagime 0 h
o 075 gg!
p 0.16 gg 'h'h
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Fig. 4. E. coli bacteria biomass estimation results of the first six experiments. Vertical error bars indicate a total error. The purple shadow represents the prediction
band. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 10

Numbers of freedom at a specific range of biomass concentration.
Range, X o 0-5 5-10 10-15 15-20 20-30
No. of freedom 66 17 13 5 12
Range, X L 30-40 40-50 50-60 60-70 70-80
No. of freedom 10 7 29 16 6

interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
Data will be made available on request.

References

[1] M. Aehle, A. Kuprijanov, S. Schaepe, R. Simutis, A. Liibbert, Simplified off-gas
analyses in animal cell cultures for process monitoring and control purposes,
Biotechnol. Lett. 33 (11) (2011) 21032110, https://doi.org/10.1007/510529-011-
0686-5.

[2] M. Aehle, S. Schaepe, A. Kuprijanov, R. Simutis, A. Liibbert, Simple and efficient
control of CHO cell cultures, J. Biotechnol. 153 (1-2) (2011) 56-61, https://doi.
org/10.1016/j.jbiotec.2011.03.006.

(3] F.David, A. Berger, R. Hinsch, M. Rohde, E. Franco-Lara, Single cel.l | analysis

applied to antibody fragment production with Bacillus
of logy and bi state estimation tools, Mlcrob. Cell
Factories 10 (1) (2011) 23, ht{p' doi.org/10.1186/1475-2859-10-23.

[4] G. Walsh, Bi h ks 2006, Nat. Bi hnol. 24 (7) (2006)

769-776, https://doi.org/10.1038/nbt0706-769.

[5] P. Hossler, S.F. Khattak, Z.J. Li, Optimal and consistent protein glycosylation in
mammalian cell culture, Glycobiology 19 (9) (2009) 936-949, https://doi.org,
10.1093/glycob/cwp079.

[6] R. Urniezius, A. Survyla, Identification of functional biop model for
recombinant e. coli cultivation process, Entropy 21 (12) (2019), https://do.org
10.3390/e21121221.

[7] D. Levisauskas, R. Simutis, V. Galvanauskas, R. Urniezius, Simple control systems

for set-point control of dissolved oxygen con ion in batch f ion
processes, Chem. Eng. Transact. 74 (2019) 127132, https://doi.org/10.3303
CET1974022.

[8] Simutis Gal kas, Urniezius Levisauskas, Practical solutions for specific

growth rate control systems in industrial bioreactors, Processes 7 (10) (2019),
https://doi.org/10.3390/pr7100693.

[9] A. Survyla, R. Urniezius, V. Vaitkus, D. Levisauskas, L. Jankauskaite,
D. Lukminaite, G. Laucaityte, Noninvasive continuous tracking of partial pressure
of oxygen in arterial blood: adapting microorganisms bioprocess soft sensor

(101

(1

[12]

[13]

[14]

[15]

(161

(71

18]

[19]

[20]

[21]

[22]

[23]

technology for holisic analysis of human respiratory system, in: 2021 IEEE
1 C

on Fusion and for
Systems, MFI), 2021, hrrp' doi 0rg/10.1109 mfi52462.2021.9591182.
G.C. Goodwin, Predicting the p of soft sensors as a route to low cost

automation, Annu. Rev. Contml 24 (2000) 55-66, https://doi.org/10.1016/51367-
5788(00)90013-0.
R. Luedeking, E.L. Piret, Transient and steady states in continuous fermentaion.
theory and experiment, J. Biochem. Microbiol. Technol. Eng. 1 (4) (1959)
431-459, https://doi.org/10.1002/jbmte.390010408.
R. Urniezius, B. Kemesis, R. Simutis, Bridging offline functlonal model carrying
aging-specific growth rate i and
entropic extension of akaike information criterion, En!mpy 23 (8) (2021), httpsy
doi.org/10.3390/e23081057.
M. Matukaitis, D. Masaitis, R. Urniezius, L. Zlatkus, V. Vaitkus, Non-invasive
estimation of acetates using off-gas information for fed-batch e. coli bioprocess, in:
ECP 2022, 2022, https://doi.org/10.3390/ecp2022-12668.
H. Gjerkes, J. Malensek, A. Sitar, 1. Golobic, Product identification in industrial
batch ion using a variable forgetting factor, Control Eng. Pract. 19 (10)
(2011) 1208-1215, https://doi.org/10.1016/j.conengprac.2011.06.011.
R. Umiezius, A. Survyla, D. Paulauskas V. A Bumells v. Galvamuslus, Generic
iomass for hia coli

cerevisiae fed-batch cultures based on cumulative oxygen consumption rate,
Microb. Cell Factories 18 (1) (2019), https://doi.org/10.1186/512934-019-1241-7,
C. Tomasetti, J. Poling, N.J. Roberts, N.R. London, M.E. Pittman, M.C. Haffner,
A. Rizzo, A. Baras, B. Karim, A. Kim, C.M. Heaphy, AK. Meeker, R.H. Hruban, C.
A. lacobuzio-Donahue, B. Vogelstein, Cell division rates decrease with age,

iding a potential expl d

for the 1 in cancer
mmdence, Proc. Natl. Acad. Sci. USA 116 (41 ) (2019) 20482-20488, https://doi.
org/10.1073/pnas.1905722116.
E. Bender, Stem-cell start-ups seek to crack the mass-production problem, Nature
597 (7878) (2021) $20-S21, https://doi.org/10.1038/d41586-021-02627-y.
S. Cmven, J. Whelan, B. Glennon, Glucose concenmmon contml ofa fed batch
cell bi using a nonlinear model p

J. Process Control 24 (4) (2014) 344-357, https: doi. org/10.1016/j.
jprocont.2014.02.007.
B. Wang, Z. Wang, T. Chen, X. Zhao, Development of novel bioreactor control
systems based on smart sensors and actuators, Front. Bioeng. Biotechnol. 8 (2020),
https://doi.org/10.3389 /fbice.2020.00007.
J. Randek, C.-F. Mandenius, On-line soft sensing in upstream bioprocessing, Crit.
Rev. Biotechnol. 38 (1) (2017) 106-121, https://doi.org/10.1080/
07388551.2017.1312271.
P. Noll, M. Henkel Hmoryand lution of modeling in bi hnol delis

i i and hard performance, Comput. Struct. Biotechnol.
J. 18 (2020) 3309-3323, https://doi.org/10.1016/j.csbj.2020.10.018.
P. Sagmeister, P. Wechselberger, M. Jazini, A. Meitz, T. Langemann, C. Herwig,
Soft sensor assisted dynamic bioprocess control: efficient tools for bioprocess
development, Chem. Eng. Sci. 96 (2013) 190-198, https://doi.org/10.1016/]
ces.2013.02.069.
M.M. Schuler, LW. Marison, Real-time monitoring and control of microbial
bioprocesses with focus on the specific growth rate: current state and perspectives,
Appl. Microbiol. Biotechnol. 94 (6) (2012) 14691482, https://doi.org/ 10,1007,
s00253-012-4095-z.

113



A. Survyla et al.

[24]

[25]

[26]

[271

[28]

[29]

[301

311

[32]

[33]

[34]

[35]

[36]

K. Joeris, J.-G. Frerichs, K. Konstantinov, T. Scheper, CBIOT 38 (1/3) (2002)
129-134, https://doi.org/10.1023/a:1021170502775.

D. Shah, M. Naciri, P. Clee, M. Al-Rubeai, NucleoCounter—an efficient technique
for the determination of cell number and viability in animal cell culture processes,
CBIOT 51 (1) (2006) 39-44, https://doi.org/10.1007/510616-006-9012-9.

X. Ding, Q. Zhang, W.J. Welch, Classification Beats Regression: Counting of Cells
from Greyscale Microscopic Images Based on Annotation-free Training Samples,
2020, https://doi.org/10.48550/ARXIV.2010.14782 arXiv.

P. Ducommun, I. Bolzonella, M. Rhiel, P. Pugeaud, U. von Stockar, LW. Marison,
On-line d ion of animal cell hrol. Bioeng. 72 (5)
(2001) 515-522, htps://doi.org/10.1002/1097-0290(2001 0305)72:5 <5 15::aid-
bit1015>3.0.co:2-q.

R. Luttmann, D.G. B I, G. Comelissen, K.V. Gernaey, J. Glassey, V.C. Hass,
C. Kaiser, C. Preusse, G. Striedner, C.-F. Mandenius, Soft sensors in bioprocessing: a
status report and recommendations, Biotechnol. J. 7 (8) (2012) 1040-1048,
hitps://doi.org/10.1002/biot.201100506.

R. Mansano, E. Godoy, A. Porto, The benefits of soft sensor and multi-rate control
for the impl ion of wireless ked control systems, Sensors 14 (12)
(2014) 24441-24461, https://doi.org/10.3390/5141224441.

RE. Madrid, C.J. Felice, Microbial biomass Crit. Rev. Biotechnol. 25 (3)
(2005) 97-112, https://doi.org/10.1080/07388550500248563.
J. Chen, Y. Xu, Y. Gao, L. Sun, X. Meng, K. Gu, Y. Zhang, X. Ning, A mitochond

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Talanta 254 (2023) 124121

M. Aehle, A. Kuprijanov, S. Schaepe, R. Simutis, A. Liibbert, Increasing batch-to-

batch reproducibility of CHO cultures by robust open-loop control, CBIOT 63 (1)

(2010) 41-47, https://doi.org/10.1007 /s10616-010-9320-y.

A. Survyla, D. Levisauskas, R. Urniezius, R. Simutis, An oxygen-uptake-rate-based

estimator of the specific growth rate in escherichia coli BL21 strains cultivation
Comput. Struct. Biotechnol. J. 19 (2021) 5856-5863, https://doi.org/

10.1016/j.csbj.2021.10.015.

G. Si Diffe ial with

ed., 2016, https://doi.org/10.1201/9781315371825.

B. Kemesis, R. Urniezius, T. Kondratas, L. Jankauskaite, D. Masaitis, P. Babilius,

Bridging functional model of arterial oxygen with information of venous blood gas:

validating bioprocess soft sensor on human respiration, in: Intelligent and Safe

Computer Systems in Control and Diagnostics, 2022, pp. 42-51, https://doi.org

10.1007/978-3-031-16159-9_4.

A. Survyla, R. Urniezius, B. Kemesis, L. Zlatkus, D. Masaitis, V. Galvanauskas,

Modeling the specific glucose ion rate for the binant e.coli

bioprocesses based on aging-specific growth rate, Chem. Eng. Transact. 93 (2022)

265-270, https://doi.org/10.3303/CET2293045.

M. Sbarciog, D. Coutinho, A.V. Wouwer, A simple output-feedback strategy for the

control of perfused mammalian cell cultures, Control Eng. Pract. 32 (2014)

123-135, https://doi.org/10.1016/j.conengprac.2014.08.002.

V. Gal k R. Simutis, S.C. Nath, M. Kino-oka, Kinetic modeling of human

and

| Notes, third

specific fluorescent probe for rapidly assessing cell viability, Talanta 221 (2021),
https://doi.org/10.1016/j.talanta.2020.121653.
P. O'Mara, A. Farrell, J. Bones, K. Twomey, Staying alive! sensors used for
cell health in b Talanta 176 (2018) 130-139, https://doi

org/10.1016/j.talanta.2017.07.088.
A. Verma, M. Verma, A. Singh, Animal tissue culture principles and applications,
Anim. Biotechnol. (2020) 269-293, https://doi.org/10.1016/b978-0-12-811710-
1.00012-4.
M. Aehle, R. Simutis, A. Liibbert, Cc of viable cell

ion methods for a lian cell ion process, CBIOT 62 (5) (2010)
413-422, https://doi.org/10.1007/510616-010-9291z.
K.M. Desai, B.K. Vaidya, R.S. Singhal, $.5. Bhagwat, Use of an artificial neural
network in modeling yeast biomass and yield of f-glucan, Process Biochem. 40 (5)
(2005) 16171626, https://doi.org/10.1016/j.procbio.2004.06.015.
0. Johnsson, D. Sahlin, J. Linde, G. Lidén, T. Hagglund, A mid-ranging control
strategy for and its ication to dissolved oxygen
control in a bioprocess, Control Eng. Pract. 42 (2015) 89-94, https://doi.org
10.1016/j.conengprac.2015.03.003.

114

[44]
[45]
[461

[471

[48]

[49]

induced pl stem cell ion in culture, e
Therapy 12 (2019) 88-93, https://doi.org/10.1016/j.reth.2019.04.007.

C. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the
root mean square error (RMSE) in assessing average model performance, Clim. Res.
30 (2005) 79-82, https://doi.org/10.3354/cr030079.

S. Haykin, Neural Networks: a Comprehensive Foundation, 1999.

B. Efron, R. Tibshirani, Imp; on lid: the .632+ b

method, J. Am. Stat. Assoc. 92 (438) (1997), https://doi.org/10.2307/2965703.
S. Schaepe, A. Kuprijanov, C. Sieblist, M. Jenzsch, R. Simutis, A. Liibbert, Current
advances in tools improving bioreactor performance, CBIOT 3 (2) (2013) 133-144,
https://doi.org/10.2174/2211550102666131217235246.

M. iter, B. Sissolak, W. G. Striedner, Oxygen uptake rate
soft-s sensmg via dymmnc kLn computation: cell volume and metabolic transition
Front. Bioeng. Biotechnol. 7 (2019),

S5, dolow 10.3389/ Ib,oe 2019.00195.

J. Shiloach, R. Fass, Growing E. coli to high cell density—a historical perspective
on method development, Biotechnol. Adv. 23 (5) (2005) 345-357, https://doi.org/
10.1016/j biotechadv.2005.04.004.




APPENDIXES

Appendix 1. Activity diagram in UML for biomass concentration estimation
algorithm in the article Generic estimator of biomass concentration for
Escherichia coli and Saccharomyces cerevisiae fed-batch cultures based on
cumulative oxygen consumption rate

The process of biomass concentration estimation algorithms begins with the
initial biomass concentration measurements taken at the inoculation moment. When
the initial reference value is known, the estimation approach begins its iteration until
the cultivation process has been stopped. The iterations consist of the following steps:

1. Off-gas analysis; we calculate the oxygen uptake rate

2. Depending on the previous or initial biomass concentration, the algorithm’s
equation is selected

3. We estimate the biomass concentration by using the oxygen uptake rate and
stoichiometry parameters

The activity diagram in UML is presented in the following figure.
o

A 4
Initial biomass |
concentration

_ Y
(@) Process stop '®
A2

Process running

Y . Y i
Off gas Stoichiometry
analysis parameters

A L Y
— [ __ ]
¢ Biomass > Xypecite—

Biamas;L Xspecitic l
Equation 1 Equation 2.

L] L]

-

115



Appendix 2. Activity diagram in UML for biomass concentration estimation
algorithm in the article Identification of functional bioprocess model for
recombinant E. Coli cultivation process

The process of biomass concentration estimation algorithms begins with the
initial biomass concentration measurements taken at the inoculation moment. When
the initial reference value is known, the estimation approach begins its iteration until
the cultivation process is stopped. The iterations consist of the following steps:

1. Off-gas analysis; we calculate the oxygen uptake rate

2. We check if induction has been performed. If yes, then, we evaluate the current
protein concentration from the target product model described in Appendix 3;
otherwise, protein concentration is equal to zero

3. We estimate the biomass concentration by using the oxygen uptake rate,
stoichiometry parameters, and protein concentration

The activity diagram in UML is presented in the following figure.
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Appendix 3. Activity diagram in UML for target product model in the article
Identification of functional bioprocess model for recombinant E. Coli cultivation
process

The process of the product concentration evaluation model begins with the
initial biomass concentration measurements taken at the inoculation moment. When
the initial reference value is known, the evaluation model begins its iteration until the
cultivation process is stopped. The iterations consist of the following steps:

1. The biomass concentration estimation procedure described in Appendix 2

2. We check if induction has been performed. If the inductor is not injected, the
product concentration is equal to zero, and the next iteration is initiated.
Otherwise, the current iteration continues

We calculate the specific growth rate at the induction moment

4. We calculate the Pmax maximum possible protein concentration at the end of the
cultivation variable

5. We calculate the current target protein concentration, and the next iteration is
initiated

The activity diagram in UML is presented in the following figure.
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Appendix 4. Activity diagram in UML for specific growth rate estimation
algorithm in the article Oxygen uptake-rate-based estimator of the specific
growth rate in Escherichia coli BL21 strains cultivation processes

The process of the specific growth rate estimation algorithm starts with the
cultivation process. This approach is running until the bioprocess is stopped. Each
iteration consists of 2 steps:

1. Off-gas data analysis. We conduct the oxygen uptake rate calculation

2. We run the specific growth rate evaluation by using stoichiometry and the
previous iterations of the specific growth rate value

The activity diagram in UML is presented in the following figure.
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Appendix 5. Activity diagram in UML for viable cells concentration estimation
algorithm in the article Viable cell estimation of mammalian cells using off-gas-
based oxygen uptake rate and aging-specific functional

The process of viable cells concentration estimation algorithms begins with the

initial biomass concentration measurements taken at the inoculation moment. When
the initial reference value is known, the estimation approach begins its iteration until
the cultivation process is stopped. The iterations consist of the following steps:

1.

2
3.
4

Off-gas analysis; we calculate the oxygen uptake rate
We evaluate the age of cell cultures
We adapt stoichiometry parameters regarding the cell current culture age

Depending on the previous or initial biomass concentration, the algorithm’s
equation is selected

We estimate the biomass concentration by using the oxygen uptake rate and
stoichiometry parameters

The activity diagram in UML is presented in the following figure.
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