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The search for novel classes of hole-transporting materials
(HTMs) is a very important task in advancing the
commercialization of various photovoltaic devices. Meeting
specific requirements, such as charge-carrier mobility,
appropriate energy levels and thermal stability, is essential for
determining the suitability of an HTM for a given application.
In this work, two spirobisindane-based compounds, bearing
terminating hole transporting enamine units, were strategically
designed and synthesized using commercially available starting
materials. The target compounds exhibit adequate thermal
stability; they are amorphous and their glass-transition
temperatures (>150°C) are high, which minimizes the
probability of direct layer crystallization. V1476 stands out with
the highest zero-field hole-drift mobility, approaching 1 × 10−5

cm2 V s−1. To assess the compatibility of the highest occupied
molecular orbital energy levels of the spirobisindane-based
HTMs in solar cells, the solid-state ionization potential (Ip)
was measured by the electron photoemission in air of the
thin-film method. The favourable morphological properties,
energy levels and hole mobility in combination with a simple
synthesis make V1476 and related compounds promising
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materials for HTM applications in antimony-based solar cells and triple-cation-based perovskite solar
cells.

1. Introduction
Since the use of the first device incorporating an organic semiconductor (OS) in the latter part of the
twentieth century [1], a number of innovative devices using organic materials for charge transport
have been developed. These include organic field-effect transistors (OFETs) [2], organic light-emitting
diodes (OLEDs) [3] and various types of organic or hybrid solar cells (SCs) [4–6]. Typically, these
devices comprise multiple layers of OSs, each serving a distinct function, such as light emission, light
absorption and charge transfer [6,7].

In  recent  decades,  antimony-  and triple-cation-based SCs have been significantly  improved,
resulting in  notably  enhanced efficiencies.  Hole-transporting materials  (HTMs)  play a  pivotal
role  in  all  types  of  SCs as  they transport  photogenerated holes  to  contact  [8,9].  High hole-
drift  mobility,  appropriate  energy levels  and the  capacity  to  create  high-quality  thin  films are
essential  attributes  of  effective  HTMs [10–12].  Small  molecules  as  HTMs have attracted a  lot  of
attention due to  their  well-defined structures,  facile  synthesis/purification,  high chemical  purity
and reproducible  film forming ability  [13,14].  Until  recently,  the  organic  low-molecular-mass
spiro-OMeTAD, derived from 9,9′-spirobifluorene,  has  been central  to  the  development  of  highly
efficient  SCs.  The following factors  are  characteristic  of  spiro-OMeTAD. (i)  It  has  a  large  band
gap (approx.  3.0  eV)  and a  relatively  deep-lying HOMO energy level,  which provides  good
electronic  alignment  with  the  perovskite  layers;  its  band gap can be  further  tuned to  the
electronic  structure  of  a  chosen perovskite  [15,16].  (ii)  Spiro-OMeTAD benefits  from a  thoroughly
researched synthesis  and solution method,  making it  advantageous for  manufacturing both
rigid and flexible  SCs on a  large  scale.  (iii)  Its  high melting point  contributes  to  the  thermal
stability  of  a  device  [17,18].  (iv)  Pure  spiro-OMeTAD hole  transporting layer  (HTL)  exhibits  low
conductivity  and hole  mobility  [19].  A commonly used method includes  the  use  of  additives,
such as  4-tert-butylpyridine  (TBP)  and LiTFSI,  to  enhance  electrical  properties  of  spiro-OMeTAD
films [20–22].  For  these  reasons,  HTMs based on spiro-OMeTAD undeniably  have a  significant
impact  on the  advancement  of  antimony-based and triple-cation-based SCs.

Despite its numerous advantages, the crystallization tendency of spiro-OMeTAD, owing to the
symmetry of its central spirobifluorene fragment [23], limits its ability to form films, potentially
impacting device stability [24]. Taking into account this criterion, a logical approach involves removing
two arms of the spirobifluorene core [25] to transform it into the spirobisindane core [26] with reduced
symmetry. Additionally, the advantages of spirobisindane are its synthesis from a cheap commercially
available bisphenol A in high yield and simple purification.

It  is  imperative  to  synthesize  new OSs via  simple  and green chemistry  methods without
compromising the  efficiency of  the  solar  cell  [27–29].  One of  the  approaches  is  the  preparation
of  enamines  by a  facile  condensation reaction because  condensation chemistry  offers  a  promis-
ing alternative  to  palladium-catalysed reactions  since  it  produces  water  as  the  only  by-product
and eliminates  the  need for  expensive  catalysts.  In  addition,  it  includes  facile  product  workup
and purification [30–32].  Furthermore,  enamines  have been successfully  applied in  antimony-  or
triple-cation-based SCs with  and without  additives,  showing excellent  efficiency and long-term
stability  [32–34].

This  study is  devoted to  further  exploration of  the  enamine family  HTMs using spirobisin-
dane as  the  central  core.  By combining different  aniline  substituents,  two spirobisindane-based
HTMs shown in  figure  1  were  designed and synthesized from commercially  available  com-
pounds without  the  use  of  costly  metal  catalysts.  The optical,  thermal  and electrophysical
properties  of  V1476 and V1481 were  thoroughly investigated.  Both HTMs exhibited high thermal
stability  and relatively  high hole-drift  mobility,  making them viable  candidates  for  application
as  HTMs in  SCs.  Density  functional  theory (DFT)  Cam-B3LYP method and 6-31G(d)  basis  set
(supplemented with  polarization functions  (d))  were  used for  ground-state  optimization that
supplemented the  experimental  study.
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2. Experimental section
2.1. Chemical reagents and instruments
Information about chemical reagents used for synthesis of the target compounds V1476 and
V1481 and instruments used for their characterization is provided in the electronic supplementary
material.

2.2. Synthesis

2.2.1. 3,3,3ʹ,3′-Tetramethyl-1,1′-spirobisindane-6,6′-diol (1), 6,6′-dimethoxy-3,3,3′,3′-tetramethyl-1,1′-
spirobisindane (2) and 5,5′-dibromo-6,6′-dimethoxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane (3)

3,3,3′,3′-Tetramethyl-1,1′-spirobisindane-6,6′-diol (1), 6,6′-dimethoxy-3,3,3′,3′-tetramethyl-1,1′-spirobi-
sindane (2) and 5,5ʹ-dibromo-6,6′-dimethoxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane (3) were prepared
according to the synthesis procedures described in [35]. Detailed synthesis procedures are provided in
the electronic supplementary material.

2.2.2. 5,5′-Bis(4-aminophenyl)-6,6′-dimethoxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane (4)

A mixture of 3 (1 g, 2 mmol, 1 eq) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1 g, 4.5
mmol, 2.2 eq) in 40 ml of anhydrous solvent mixture of tetrahydrofuran (THF) and toluene (1:1)
was purged with argon for 10 min. Afterwards, sodium hydroxide (1.2 g, 30.3 mmol, 15 eq) and
PdCl2(PPh3)2 (0.7 g, 1 mmol, 0.5 eq) were added, and the reaction mixture was heated under reflux
under argon atmosphere for 23 h. After the reaction mixture was cooled to room temperature, it was
filtered, and solvent was evaporated in vacuo. The crude product was purified by column chromatogra-
phy (THF/n-hexane; 8:17 v/v) to obtain 4 as a pale yellow solid. Yield 0.94 g (89.5%). 1H NMR (400
MHz, DMSO-d6) δ 7.18 (d, J = 8.2 Hz, 4H), 7.05 (s, 2H), 6.59 (d, J = 8.2 Hz, 4H), 6.39 (s, 2H), 5.03 (s, 4H),
3.58 (s, 6H), 2.32 (d, J = 12.8 Hz, 2H), 2.22 (d, J = 12.8 Hz, 2H), 1.39 (s, 6H), 1.32 (s, 6H). 13C NMR (101
MHz, DMSO) δ 156.46, 149.21, 147.92, 144.56, 130.39, 130.32, 126.46, 123.54, 113.87, 107.12, 59.66, 58.08,
56.21, 42.99, 31.94, 30.90.
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Figure 1. Chemical structures of the synthesized hole-transporting materials V1476 and V1481.
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2.2.3. 5,5ʹ-Bis/{4[(4-methoxyphenyl)etenyl]amino}phenyl/-6,6′-dimethoxy-3,3,3′,3′-tetramethyl-1,1′-
spirobisindane (V1476)

To a solution of 4 (0.6 g, 1.2 mmol, 1 eq) in THF (5 ml + volume of the Dean–Stark trap), (+/−)cam-
phor-10-sulfonic acid (0.27 g, 1.2 mmol, 1 eq) was added, and the reaction mixture was heated under
reflux for 20 min. Afterwards, 2,2-bis(4-methoxyphenyl)acetaldehyde (1.8 g, 6.9 mmol, 6 eq) was
added, and heating under reflux was continued with the removal of water using a Dean–Stark trap
for 40 min. After cooling down, the reaction mixture was poured into 15-fold excess of ethanol. The
obtained precipitate was filtered off and washed with water and ethanol. The crude product was
purified by column chromatography (THF/n-hexane; 6.5:18.5 v/v) to obtain V1476 as a yellow solid.
Yield 1.05 g (61.8%). 1H NMR (400 MHz, DMSO-d6) δ 7.41 (d, J = 8.0 Hz, 4H), 7.09 (s, 2H), 7.00 (d, J = 8.0
Hz, 4H), 6.94–6.83 (m, 16H), 6.64 (d, J = 8.6 Hz, 8H), 6.42 (s, 2H), 6.38 (d, J = 8.6 Hz, 8H), 5.71 (s, 4H), 3.81
(s, 12H), 3.68 (s, 12H), 3.57 (s, 6H), 2.31 (d, J = 12.6 Hz, 2H), 2.24 (d, J = 12.6 Hz, 2H), 1.37 (s, 6H), 1.32 (s,
6H). 13C NMR (101 MHz, DMSO) δ 159.24, 158.90, 156.49, 150.14, 144.67, 134.06, 132.38, 130.79, 130.60,
129.52, 128.80, 126.59, 116.22, 114.46, 113.55, 107.09, 59.53, 58.24, 56.18, 55.75, 55.49, 43.03, 31.93, 30.84.
Anal. calcd for C99H94N2O10: C, 80.79; H, 6.44; N, 1.9; found: C, 80.55; H, 6.49; N, 1.9. C99H94N2O10
[M+] exact mass = 1470.69, MS (ESI) = 1472.10.

2.2.4. 5,5ʹ-Bis(3-aminophenyl)-6,6′-dimethoxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane (5)

A mixture of 3 (0.7 g, 1.4 mmol, 1 eq) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (0.7 g,
3.1 mmol, 2.2 eq) in 28 ml of anhydrous solvent mixture of THF and toluene (1:1) was purged with
argon for 10 min. Afterwards, sodium hydroxide (0.9 g, 21.2 mmol, 15 eq) and PdCl2(PPh3)2 (0.5 g, 0.7
mmol, 0.5 eq) were added, and the solution was heated under reflux under argon atmosphere for 22 h.
After cooling down, the reaction mixture was filtered and solvent was evaporated in vacuo. The crude
product was purified by column chromatography (THF/n-hexane; 2:3 v/v) to obtain 5 as a pale yellow
solid. Yield 0.68 g (93.2%). 1H NMR (400 MHz, DMSO-d6) δ 7.08 (s, 2H), 7.03 (t, J = 7.6 Hz, 2H), 6.69 (s,
2H), 6.62 (d, J = 7.4 Hz, 2H), 6.52 (d, J = 7.4 Hz, 2H), 6.44 (s, 2H), 5.03 (s, 4H), 3.59 (s, 6H), 2.34 (d, J =
13.0 Hz, 2H), 2.26 (d, J = 13.0 Hz, 2H), 1.41 (s, 6H), 1.34 (s, 6H). 13C NMR (101 MHz, DMSO) δ 156.55,
150.14, 148.69, 144.47, 139.85, 130.75, 128.74, 124.09, 117.69, 115.55, 112.82, 107.15, 59.57, 58.19, 56.25,
43.02, 31.94, 30.87.

2.2.5. 5,5ʹ-Bis/{3[(4-methoxyphenyl)etenyl]amino}phenyl/-6,6′-dimethoxy-3,3,3′,3′-tetramethyl-1,1′-
spirobisindane (V1481)

To a solution of 5 (0.6 g, 1.2 mmol, 1 eq) in THF (5 ml + volume of the Dean–Stark trap), (+/−)cam-
phor-10-sulfonic acid (0.27 g, 1.2 mmol, 1 eq) was added, and the reaction mixture was heated
under reflux for 20 min. Afterwards, 2,2-bis(4-methoxyphenyl)acetaldehyde (1.8 g, 6.9 mmol, 6 eq)
was added, and heating under reflux was continued with the removal of water using a Dean–Stark
trap for 40 min. After cooling down, the reaction mixture was poured into 15-fold excess of ethanol.
The formed precipitate was filtered off and washed with water and ethanol. The crude product was
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Figure 2. Synthesis route towards the target hole-transporting materials V1476 and V1481.
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purified by column chromatography (THF/n-hexane; 6.5:18.5 v/v) to obtain V1481 as a yellow solid.
Yield 1.08 g (63.3%). 1H NMR (400 MHz, DMSO-d6) δ 7.32 (t, J = 7.8 Hz, 2H), 7.16–7.03 (m, 6H),
6.97–6.81 (m, 18H), 6.63 (d, J = 8.4 Hz, 8H), 6.46–6.30 (m, 10H), 5.73 (s, 4H), 3.78 (s, 12H), 3.67 (s, 12H),
3.52 (s, 6H), 2.29 (d, J = 12.8 Hz, 2H), 2.17 (d, J = 12.8 Hz, 2H), 1.34 (s, 6H), 1.27 (s, 6H). 13C NMR
(101 MHz, DMSO) δ 159.20, 158.85, 156.42, 150.63, 145.68, 144.68, 140.27, 134.08, 132.39, 130.68, 130.59,
129.77, 128.75, 126.77, 118.07, 114.46, 113.54, 107.34, 59.46, 58.29, 56.23, 55.72, 55.47, 43.01, 31.88, 30.80.
Anal. calcd for C99H94N2O10: C, 80.79; H, 6.44; N, 1.9; found: C, 80.59; H, 6.48; N, 1.9. C99H94N2O10
[M+] exact mass = 1470.69, MS (ESI) = 1472.18.

3. Results and discussion
3.1. Synthesis
The overall synthesis procedure for the preparation of new HTMs V1476 and V1481 is depicted in
figure 2. A readily available low-cost bisphenol A is used as a starting compound. In the simple
initial cyclization step, bisphenol A was heated in methanesulfonic acid. Next, spirobisindane (1) was
alkylated using iodomethane and a base in dimethylformamide as a solvent at room temperature.
The intermediate product 2 was then brominated using N-bromosuccinimide, eliminating the need for
aggressive bromine. To obtain enamines, an amino group was introduced into the molecule through
an aqueous/THF/toluene twofold Suzuki cross-coupling procedure to yield precursors 4 and 5 with
different benzene substitutions at the para and meta positions. Subsequently, the aminated precursors
were condensed with the commercially available reagent 2,2-bis(4-methoxyphenyl)acetaldehyde in the
presence of camphor sulfonic acid to produce the target products V1476 and V1481. Water was the
only by-product, which was removed from the reaction mixture using a Dean–Stark trap. The chemical
structures of the synthesized compounds were confirmed based on the 1H NMR, mass spectrometry,
and elemental analysis data (electronic supplementary material, figures S1 and S2). It should be noted
that attempts to synthesize the target analogue with the amino group at the ortho position failed.
Presumably, steric hindrance prevented the formation of such an enamine derivative.

3.2. Thermal and optical properties
The thermal characteristics of the HTMs were evaluated by thermogravimetric analysis (TGA) (figure
3a) and differential scanning calorimetry (DSC) (figure 3b) measurements. Understanding these
characteristics is crucial, especially in the context of processing temperatures, as they can potentially
impact the long-term stability of SCs. TGA has revealed that V1476 exhibits higher thermal stability
with a decomposition temperature (Tdec) of 403°C at 5% weight loss than meta-substituted HTM V1481
(Tdec = 389°C). Notably, both synthesized enamines possess higher Tdec than that of spiro-OMeTAD
(Tdec = 288°C) [23]. The DSC measurements were employed to identify the thermal changes in the new
HTMs. The results have demonstrated that the new compounds are entirely non-crystalline with only
a glass transition temperature (Tg) recorded (V1476 Tg = 167°C and V1481 Tg = 157°C). Interestingly,
Tg of both synthesized HTMs are higher than that of spiro-OMeTAD (Tg = 124°C), indicating that
the spirobisindane-based HTMs are likely to possess better morphological stability. Furthermore, it is
worth noting that spiro-OMeTAD is not fully amorphous; it has a crystallization temperature and a
melting point, factors that can compromise the long-term stability of SCs [23].

The ultraviolet–visible (UV–Vis) absorption spectra of spirobisindane-based HTMs were recorded
in THF solutions and are depicted in figure 4a. Two major absorption peaks at approximately 265
and 360 nm are present in the spectra of both HTMs. The absorption peak at 265 nm corresponds to
the localized π–π* transitions originating from the central spirobisindane scaffold. The more intensive
delocalization of the different conjugated substituents (meta and para) gives rise to longer wavelength
peaks and indicates conjugated π–π* and n–π* transitions. The significant changes in molecular
geometry of the synthesized molecules upon excitation have been proven by the presence of peaks
at 500 nm, showing markedly large Stokes shifts of approximately 150 nm, in the photoluminescence
spectra of both compounds. The optical gaps (Eg) of new HTMs were calculated from the crossing
of absorption and photoluminescence spectra of thin films (figure 4b) to be similar for both HTMs
at approximately 3 eV (table 1). Notably, no shift in absorption can be observed in the spectra of
the same compounds in solution in comparison with the ones of those acting as thin films. This one
more advantageous property of the novel HTMs is likely attributed to their stereostructure. These
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compounds do not form aggregates in the layers, which is the usual form for use of such materials in
SCs [36].

Furthermore, contact angle (θ) measurements were carried out to assess the hydrophobicity of
the HTMs (electronic supplementary material, figure S3). No obvious difference in θ values between
the films of the synthesized spirobisindane-based enamines V1476, V1481 and that of spiro-OMeTAD
can be observed, implying that their surface hydrophobicity is almost the same. Therefore, it may be
assumed that the device stability should be similar.

3.3. Theoretical calculations
Software Gaussian 16 was used to determine the most probable molecular conformation using quantum
chemistry methods. DFT Cam-B3LYP method and 6-31G(d) basis set (supplemented with polarization
functions (d)) were used for ground-state optimization [37]. Due to the large volume of molecular
structures, solvation effects were not considered in all cases. The three most probable molecular
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Table 1. Parameters of electronic excitations (transition energy ∆En and corresponding oscillator strength fn) simulated using
semiempirical TD method (for singlets).

compound ∆E1(S0→S1) (eV) f1 ∆E2(S0→S2) (eV) f2 ∆E3(S0→S3) (eV) f3

V1476a 3.71 0.289 3.83 0.522 3.96 1.612

V1481a 3.84 0.266 3.85 0.904 4.14 0.428

V1481b 3.83 0.469 3.85 0.687 4.11 0.343
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conformations are presented in figure 5. Total molecular symmetry is absent. Substituents are oriented
in a chaotic manner resulting in a vast array of different conformers. All structures depicted in figure
5 were derived using the grad optimization technique, ensuring convergence of all parameters such as
Maximum Force, RMS Force, Maximum Displacement and RMS Displacement.

Electronic excitations of fully optimized structures were simulated using the semiempirical TD
method (for singlets). Table 1 presents the parameters of electronic excitations (transition energies

(a)

(b)

Figure 5. Most stable conformations of V1476 and V1481 obtained after ground-state energy optimization. B3LYP/6-31G(d).
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Figure 6. (a) Photoemission in air spectra of the charge transporting layers. (b) Electric field dependencies of the hole-drift mobility in
V1476 and V1481. (c) Photocurrent XTOF transients of holes in V1476. (d) Photocurrent XTOF transients of holes in V1481.
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∆E1(S0→S1), ∆E2(S0→S2), ∆E3(S0→S3) and corresponding oscillator strengths f1, f2, f3) for all structures.
The population of low-lying excited molecular states S1 and S2 was achieved through partially allowed
transitions S0→Sn, n = 1, 2 (oscillator strengths fn > 0.2). The experimental absorption spectra of both
solutions and thin films, as depicted in figure 4, exhibit excellent agreement with simulated spectra.
Electronic supplementary material, figure S4, represents the molecular orbitals of V1476 and V1481
which are involved in ‘spectroscopic’ transitions (population of ‘spectroscopic’ states S1, S2). In all
instances, the predominant and most significant electron jump of the CT transition (π–π*) type occurs
between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). Electronic supplementary material, table S1, lists the spatial distributions of electron density
for the HOMO-1, HOMO, LUMO and LUMO+1 of each compound, while transition parameters
between molecular orbitals (MOs) related to the population of ‘spectroscopic’ state are detailed in
table 1. Based on such simulations, it can be argued that the central core fragment (two pentarings
oriented at an angle of about 80° instead of perpendicular) does not participate in CT excitations, and
the molecular charge redistribution is provided between substituents only. In all cases, the orientation
of the substituents (relative to each other) is not ideal, but the presence of many phenyl moieties
associated with the single bond (each with no significant rotational barrier) creates the possibility of
quite effective partially allowed charge redistribution.

3.4. Photoelectric properties
The HOMO energy level of the material stands out as one of the most important parameters when
selecting HTMs for device applications. To assess the compatibility of the HOMO energy levels of
the spirobisindane-based HTMs for application in SCs, the solid-state ionization potential (Ip) was
measured through the electron photoemission in air of thin films (PESA) method. The experimental
results are presented in figure 6a. Ip values for V1476 and V1481 are 5.34 and 5.3 eV, respectively. They
are in the same range as the preferred Ip values (4.9–5.5 eV) of HTMs used in antimony-based and
triple-cation-based perovskite SCs [34,38,39]. The LUMO energy level was determined by calculating
Eea (electron affinity, table 2) from the interaction of absorption and emission spectra of solid films after
determination of the optical bandgap (Eg).

Another essential characteristic for an effective charge-transporting material is its charge carrier
mobility, determining the speed at which electrons or holes move in the device. Normally, hole-mobi-
lity values at zero field are 10−4 cm2 V s−1 and higher values are desired for SCs. Xerographic time of
flight (XTOF) measurements were employed to measure the charge mobility of the newly developed
HTM layers. Experimental data illustrating the dependence of hole-drift mobility on electric field
strength are depicted in figure 6b. The relationship between hole drift mobility and electric field
strength is characterized by a Bässler-type dependence, which is typical for organic HTMs in most
cases [40]. The zero-field hole drift mobility of V1476, almost reaching 1 × 10−5 cm2 V s−1, is higher
than the hole drift mobility of meta-substituted HTM V1481 which is 2 × 10−6 cm2 V s−1. Meanwhile,
the mobility values at strong electric fields are approximately 10−4 and 10−5 cm2 V−1 s−1 for V1476 and
V1481, respectively. Both materials are characterized by Gaussian charge transport: the transit time tt
was determined by the kink on the curve of the dU/dt transient in linear scale (insets in figure 6c,d).
This indicates that the molecules pack closely ensuring efficient charge transfer in the layers of these

Table 2. Thermal, optical and photophysical properties of V1476 and V1481.

Compound Tg (°C)a Tdec (°C)a λabs (nm)b λem (nm)b IP (eV)c Eg (eV)d Eea (eV)e µ0 (cm2 V−1 s−1)
f

V1476 167 403 265, 355 502 5.34 3.02 2.32 9.0 × 10−6

V1481 157 389 260, 335, 365 502 5.30 3.07 2.23 2.6 × 10−6

aGlass transition (Tg) and decomposition (Tdec) temperatures determined through DSC and TGA, respectively (10℃ min−1, N2
atmosphere).
bAbsorption and emission spectra were recorded for THF solutions with a concentration of10−4 M.
cIonization energies of the films were measured using photoemission of electrons in air (PESA) method.
dThe optical bandgap (Eg) was estimated from the intersection of absorption and emission spectra of solid films.
eElectron affinity (Eea) was calculated as the difference IP – Eg.
fMobility value at zero field strength.
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materials. In the V1481 material, at weaker electric fields, the signal kinetics (figure 6d) show slight hole
trapping, which may be related to a less ordered packing of the molecules. This is also in accordance
with the lower Tg of V1481 compared with that of V1476.

Table 2 summarizes the thermal, optical and photoelectrical properties of the spirobisindane-based
HTMs.

4. Conclusions
In this work, two novel spirobisindane-based enamines were designed and synthesized from commer-
cially available starting materials. Following a comprehensive assessment of their thermal, optical
and photophysical properties, and a comparative analysis with those of the HTMs utilized in SCs
reported in the scientific literature, it is evident that compounds V1476 and V1481 emerge as prom-
ising candidates for applications in organic or hybrid electronics. The synthesized materials exhibit
noteworthy thermal and electrochemical stability, possess suitable energy levels and demonstrate
sufficiently high drift carrier mobility, reaching 10−4 cm2 V−1 s−1 (V1476) at strong electric fields. These
characteristics position them favourably as HTMs for use in perovskite SCs and antimony selenide
SCs. The experimental findings were complemented by the DFT Cam-B3LYP method. It has been
determined that, in the three most probable molecular conformations, the central core fragment does
not participate in charge transfer excitations, and the molecular charge redistribution occurs solely
between substituents.
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