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A B S T R A C T

Industry 5.0 aims at establishing an inclusive, smart and sustainable production process that encourages human
creativity and expertise by leveraging enhanced automation and machine intelligence. Collaborative robotics,
or ‘‘cobotics’’,is a major enabling technology of Industry 5.0, which aspires at improving human dexterity
by elevating robots to extensions of human capabilities and, ultimately, even as team members. A pivotal
element that has the potential to operate as an interface for the teaming aspiration of Industry 5.0 is the
adoption of novel technologies such as virtual reality (VR), augmented reality (AR), mixed reality (MR) and
haptics, together known as ‘‘augmentation’’. Industry 5.0 also benefit from Digital Twins (DTs), which are
digital representations of a physical assets that serves as their counterpart — or twins. Another essential
component of Industry 5.0 is artificial intelligence (AI), which has the potential to create a more intelligent
and efficient manufacturing process. In this study, a systematic review of the state of the art is presented to
explore the synergies between cobots, DTs, augmentation, and Industry 5.0 for smart manufacturing. To the
best of the author’s knowledge, this is the first attempt in the literature to provide a comprehensive review of
the synergies between the various components of Industry 5.0. This work aims at increasing the global efforts
to realize the large variety of application possibilities offered by Industry 5.0 and to provide an up-to-date
reference as a stepping-stone for new research and development within this field.
1. Introduction

Robots have played an increasingly important role in industrial
revolutions, from early automation in Industry 3.0 to the intercon-
nected systems that enable collaborative human–robot teams in Indus-
try 4.0. While Industry 4.0 introduced human–robot collaboration on
production lines, Industry 5.0 aims to take this further by focusing
on human-centric processes that promote resilience, sustainability, and
closer symbiosis between human workers and robotic systems.

Whereas previous stages of industrial evolution focused heavily
on using robots to maximize productivity and accuracy, Industry 5.0
has a dual emphasis on beneficial coexistence and shared prosperity.
This involves not just enabling closer teamwork between humans and
machines, but prioritizing worker safety, skills development, creative
potential, and overall wellbeing alongside efficiency gains. Core goals
of Industry 5.0 include seamless information sharing between humans
and robots, adaptive production systems that can rapidly adjust to
changes or faults, and leveraging AI and automation to augment human
capabilities rather than replace jobs.

∗ Corresponding author at: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway.
E-mail address: filippo.sanfilippo@uia.no (F. Sanfilippo).

To achieve this, advanced sensor systems, internet-of-things con-
nectivity, cloud analytics, and control mechanisms that allow for more
flexible, resilient, and humans-in-the-loop decision making will be crit-
ical. By coupling these technologies with a focus on environmental and
social responsibility, the promise of Industry 5.0 is production ecosys-
tems where humans and intelligent machines can symbiotically enable
one another to achieve shared goals around productivity, quality, and
sustainability. The practical success of this next industrial evolution de-
pends on carefully defining the roles, capabilities, and responsibilities
of all players in these futuristic human–machine production teams.

In the following decades, the development of more advanced sensors
and control systems enabled robots to interact with each other in a
shared workspace. This led to the development of robot–robot sharing
workspace [1,2], in which multiple robots work together to perform a
task, coordinating their actions to achieve a common goal. For example,
robots may work together to assemble a product, or to transport
materials from one location to another.
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The next phase of evolution in robotics was the development of
Human–robot interaction (HRI) [3]. This was made possible by ad-
vances in sensor/control system technologies [4]. This has led to the
development of complex HRI in real time. However, even tough the
level of interaction gradually reached higher and higher levels, rela-
tively low levels of collaborative tasks were possible as limited forces
were shared between robots and humans.

Advances in machine learning have recently empowered HRC. In
HRC, a cognitive model is often constructed, which receives inputs from
the environment and from the user, elaborates and converts these into
information that the robots can utilize. Machine learning is a new way
to developing cognitive models and behavioral blocks that has great
potential in HRC [5,6]. Even tough HRC represents a step forward
towards a shared collaboration between humans and robots, it is still
limited in terms of solving new/unknown tasks that require a more
efficient teamwork to be solved.

In the recent times, the convergence of new technologies, such as
digital twins (DT), intrinsically safe robots (i.e., soft robots), and the
concept of human augmentation have the potential to unleash the full
potential of human–robot teaming (HRT).

Today, HRT is perceived as increasingly valuable across various
industries, including manufacturing, healthcare, logistics, and more.
This requires a major shift in the way that robots are integrated into
human-centric environments, and has the potential to revolutionize the
way that humans and robots interact and collaborate in the future. By
combining the strengths of both humans and robots, this technology
holds the promise to transform the way that work is performed and to
create new opportunities for innovation and growth.

1.1. Review of existing work

In recent years, the confluence of technological innovation and
industrial paradigm shifts, notably within the frameworks of Industry
4.0 and Industry 5.0, has spurred considerable interest in the field
of human–machine collaboration. This literature review synthesizes
insights from seven abstracts, each contributing to our understanding of
various facets of this dynamic intersection. The work presented [7–9]
revolves around the application of digital twin frameworks to en-
hance the design, construction, and control of human–machine cooper-
ative systems. [7], specifically delve into the implementation of digital
twins in the context of human–robot collaborative work environments,
emphasizing their role in mirroring physical systems for continuous
improvement and adaptability. [8] extends this exploration by inves-
tigating how digital twins address the complexities of collaborative
production systems, offering a ‘front-runner’ for validation and control
throughout the system’s life cycle. These abstracts collectively highlight
the evolving landscape of digital twin technologies and their potential
impact on human–robot collaboration. Moving to a broader perspec-
tive, [10] focuses on Industry 4.0 as an enabler of smart factories,
emphasizing the pivotal role of digital twins in supporting the entire
product lifecycle. The abstract sheds light on the challenges associated
with creating digital twins for human–robot collaboration, providing
a comprehensive review of different approaches and discussing their
functions and importance in collaborative scenarios. This adds depth
to the evolving narrative surrounding the integration of digital twins
in advanced manufacturing.

[11] introduces the paradigm shift to Industry 5.0, emphasizing
its core principles of human-centricity, sustainability, and resiliency.
This forward-looking perspective envisions a manufacturing era where
the well-being of humans is central to industrial systems. The paper
proposes a tri-dimensional system architecture for implementing In-
dustry 5.0, offering insights into its technical, reality, and application
dimensions. It also outlines key enablers, potential applications, and
challenges in realizing realistic Industry 5.0 scenarios, contributing to
the limited body of research on this emerging paradigm. The [12]
2

investigates the evolving dynamics of human–robot interaction in the
Table 1
Comparison of existing surveys.

Ref Year Industry 5.0 Digital twins HRC/HRT AI/ML/DL

[7] 2018 × ✓ ✓ ×
[13] 2020 × ✓ ✓ ×
[8] 2021 × ✓ ✓ ✓

[9] 2021 × ✓ ✓ ✓

[10] 2022 × ✓ ✓ ×
[11] 2022 ✓ ✓ ✓ ×
[12] 2023 ✓ × ✓ ×
Our study 2023 ✓ ✓ ✓ ✓

workplace, spurred by the advent of Industry 4.0 and Industry 5.0. The
scoping review scrutinizes the effect of robot design features on human
operators, revealing intricate many-to-many relationships. The find-
ings underscore the critical role of effective communication between
operators and robots, impacting teamwork and overall performance.
The identified research gaps in this abstract emphasize the need for
more comprehensive studies addressing human–robot interaction as a
system.

Table 1 provides the comparison of different surveys presented in
the literature in the context of different keywords i.e. Digital Twins,
Industry 5.0, HRC/HRI, AI/ML/DL.

In the existing body of literature, several discernible gaps emerge
with regard to the holistic understanding and application of Industry
5.0 components. Firstly, a comprehensive synthesis elucidating the
synergies between collaborative robotics (cobots), Digital Twins (DTs),
augmentation technologies, and artificial intelligence (AI) within the
context of Industry 5.0 for smart manufacturing is notably absent.
While previous works touch on individual aspects, there is a distinct
lack of an overarching review that systematically explores how these
components interplay to fulfill the objectives of Industry 5.0. Sec-
ondly, the exploration of Industry 5.0 dynamics has been somewhat
fragmented in the current literature. While certain abstracts delve
into specific elements such as human–robot collaboration or digital
twin technologies, there is a noticeable dearth of studies providing
an integrated examination of how cobots, DTs, augmentation tech-
nologies, and AI collectively contribute to the realization of Industry
5.0 objectives. The need for a more cohesive understanding of the
interactions and dependencies among these components remains unad-
dressed. Moreover, the identification of application possibilities within
the Industry 5.0 framework has been limited in existing research. Prior
works discuss these technologies in isolation, but there is a distinct lack
of exploration into the diverse application scenarios that arise from
the synergistic interaction of cobotics, DTs, augmentation, and AI. This
gap hampers the establishment of a comprehensive understanding of
the practical implications and potential use cases of these technologies
working in tandem.

Finally, the absence of a current and comprehensive reference for
future research within the domain of Industry 5.0 is notable. While
individual studies contribute insights into specific aspects, a compre-
hensive reference that researchers and practitioners can utilize as a
foundational resource for new developments within the field is lack-
ing. This gap emphasizes the need for an up-to-date and consolidated
reference that encapsulates the latest knowledge on the subject.

1.2. Contributions and paper organization

This work admirably fills critical gaps in the existing literature on
Industry 5.0, presenting a pioneering contribution that systematically
addresses the shortcomings identified in previous research. Firstly, it
provides a comprehensive synthesis by being the first in the literature
to explore and consolidate the synergies between collaborative robotics
(cobots), Digital Twins (DTs), augmentation technologies, and artificial
intelligence (AI) within the Industry 5.0 framework. This holistic exam-
ination offers a unified understanding of these components, rectifying
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the absence of a comprehensive review in the current literature. It
bridges the gap in the holistic exploration of Industry 5.0 dynamics.
While prior works touch on individual aspects, your paper offers a
systematic review that considers the collective impact of cobots, DTs,
augmentation technologies, and AI. This contribution provides a more
cohesive understanding of the interactions and dependencies among
these components, addressing the fragmented exploration in existing
research.

Moreover, this work significantly contributes to the identification of
application possibilities within the Industry 5.0 framework. By explor-
ing the synergies between cobotics, DTs, augmentation technologies,
and AI, your study goes beyond the isolated discussions of these tech-
nologies to identify specific applications and use cases. This fills a
distinct gap in the literature, providing insights into the practical
implications and potential scenarios arising from the collaborative
interaction of these technologies. Also, this work acts as a current
and comprehensive reference for future research within the domain
of Industry 5.0. The absence of such a foundational resource in the
existing literature is addressed by your work, providing valuable in-
sights for both researchers and practitioners. As the first attempt to
comprehensively review the synergies between various Industry 5.0
components, your paper serves as a timely and foundational resource,
paving the way for further exploration and development within this
dynamic field.

The rest of the review paper is organized as follows. Section 2 of
the paper delves into the various types of HRC, collaborative robots,
and the need for a digital twin to address the complexities of HRC. In
Section 3, the concept of Industry 5.0 is introduced, and the applica-
tions and enabling technologies of this paradigm shift are discussed.
The paper then moves onto Section 4, where digital twin-driven HRC
systems are examined, and the fundamentals of digital twin with the
HRC system are elaborated. In Section 5, the paper describes the state-
of-the-art hardware requirements for HRC, while in Section 6, the
use of artificial intelligence and machine learning in HRC systems is
explored. Finally, Section 8 discusses the challenges of implementing
HRC systems and concludes the paper.

2. Human Robot Collaboration (HRC)

2.1. Complexity in manufacturing system

A system is described as a grouping of several components working
together to accomplish a single objective [14]. A system’s components
generate and store a considerable amount of data. Throughout the
whole life cycle, the amount of this information grows, making it more
challenging for the observer to forecast the system’s future behavior.
As a result, the complexity of a system is influenced by the amount
of information and the predictability of interaction behavior. The in-
dustrial revolutions are described in Fig. 1. In this figure, three points
are highlighted for each industrial revolution which includes, enabling
technology, actors involved in the production process, and types of
tasks that can b solved. It is quite evident that the involvement of
humans with machines increases gradually, especially starting with HRI
in the Industry 4.0, then evolving into HRC [15], and finally trending
into HRT in the Industry 5.0:

1. The first industrial revolution, known as Industry 1.0, unfolded
in the 1780s. This period marked a significant shift in manufac-
turing as mechanized production powered by steam and water
became the norm. The behavior of the production system during
this era was remarkably predictable, owing to the simplicity and
transparency of its operations.

• Enabling technologies: steam engine
• Actors involved in the production process: single or multi-
3

ple one-task machine
• Types of tasks that can be solved: repetitive and specific
tasks

Industry 1.0 was characterized by the use of single or multi-
ple machines, each designed for a particular, often repetitive,
task. This revolution laid the foundation for modern indus-
try by introducing the concept of mechanization and powered
machinery.

2. Industry 2.0 emerged in the 1870s with the widespread use of
electrical power, which fueled the advent of mass production via
assembly lines. This revolution significantly boosted production
rates, but it also introduced elements of chaos and increased
complexity into the production systems.

• Enabling technologies: electric power
• Actors involved in the production process: assembly line
• Types of tasks that can be solved: repetitive and specific

tasks as mass production

Industry 2.0 revolutionized manufacturing by optimizing effi-
ciency through assembly line processes. However, this efficiency
came at the cost of increased complexity and the need for more
coordinated efforts.

3. The third industrial revolution, Industry 3.0, introduced com-
plexity by integrating electronics and information technology
into production processes. Caged robots, pre-programmed to
perform specific tasks, became commonplace. The incorporation
of computers facilitated better predictability of system behavior.

• Enabling technologies: industrial robots
• Actors involved in the production process: mostly single

robots
• Types of tasks that can be solved: pre-programmed/

repetitive tasks

Industry 3.0 ushered in an era of automation, where robots took
on repetitive tasks previously done by humans. The integration
of electronics and information technology made manufacturing
more efficient but also more intricate.

4. Industry 4.0, the current industrial revolution, is marked by the
complexity introduced by cyber–physical systems (CPS) commu-
nicating via the Internet of Things (IoT). Teams of sensorized
robots perform flexible tasks, and processing vast amounts of
sensor data is necessary to predict system behavior. This com-
plexity introduces an element of surprise that can have critical
implications.

• Enabling technologies: IoT and complex control systems
• Actors involved in the production process: teams of sen-

sorized robots
• Types of tasks that can be solved: flexible production

Industry 4.0 brings about the interconnectedness of machines
and systems, enabling dynamic and flexible production pro-
cesses. However, the complexity and the element of surprise
require advanced data processing and predictive capabilities to
maintain system reliability.

5. Industry 5.0, the fifth industrial revolution, is still emerging as
a human-centric model for technological progress. Sometimes
called the ‘‘human-centered revolution’’, Industry 5.0 seeks to
blend advanced technologies with human-centric design prin-
ciples that focus on quality of life, sustainability, and societal
well-being. The goal is to promote inclusive innovation where
technology enhances humanity rather than replaces it. Humans
are placed at the center of this new paradigm as active partic-
ipants in technological advancement. Industry 5.0 emphasizes
creating a new social contract that is fair and inclusive for all
stakeholders in the production process. Key technologies like

digital twins, augmentation, and soft robotics will enable safer
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Fig. 1. Industrial revolution from Industry 1.0 to Industry 5.0.
and more collaborative human–robot interactions on production
lines. Teams of humans and intelligent machines will be able to
work together dynamically to perform novel or unfamiliar tasks
safely and effectively. The fusion of human creativity and tech-
nological capabilities is positioned as a more resilient, ethical,
and humanistic production model for the future.

• Enabling technologies: digital twins, augmentation, artifi-
cial intelligence, internet of everything (IoE) and
blockchain

• Actors involved in the production process: heterogeneous
teams of humans and robots

• Types of tasks that can be solved: new/unknown tasks

As factories become more connected and reliant on data-driven
decision-making, the amount and variety of data generated by manu-
facturing processes is growing at an unprecedented rate. This data must
be processed, analyzed, and acted upon in real time to ensure efficient
and effective production. This requires sophisticated algorithms and
software systems that can handle the complexity of processing and
analyzing large amounts of data in real time.

Additionally, the use of robotics and automation in Industry 5.0
factories is also increasing the complexity of manufacturing systems.
These technologies are becoming more advanced and capable of per-
forming a wider range of tasks [16], leading to the creation of complex,
interconnected systems that must be monitored and managed in real
time.
4

2.2. Collaborative robots (Cobots)

The transition of robots from caged robots to HRT has been a
gradual process, driven by advancements in technology and changing
attitudes towards robotics in the workplace, as seen in Fig. 2. Here is
a brief overview of the key stages of this transition:

• Caged Robots: In the early stages of industrial automation, robots
were confined within protective cages or enclosures. These phys-
ical barriers were designed to prevent any direct contact or
interaction between robots and human workers. The primary
objective of this approach was to ensure safety in the workplace,
as the robots employed during this period were limited in their ca-
pabilities and lacked the advanced safety mechanisms necessary
for safe coexistence with humans [17].

• Collision Avoidance: As technological advancements continued
to unfold, robots began to be equipped with a range of sensors
and cameras that enabled them to detect the presence of humans
in their vicinity. These sensors allowed robots to identify the
positions of nearby humans and respond appropriately to prevent
potential collisions or accidents. This marked a significant step
forward in enhancing safety in shared workspaces, as robots could
now slow down or stop their movements when a human was
nearby, reducing the risk of injuries and accidents [18].

• Human–Robot Interaction (HRI): Further progress in robotics
brought about breakthroughs in natural language processing and
speech recognition technologies. These developments enabled
robots to understand and respond to verbal commands and cues
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Fig. 2. Different types of shared workspace in HRC systems.
from humans. As a result, the communication gap between hu-
mans and robots began to narrow significantly. This phase ush-
ered in a new era of more interactive and responsive robot
behavior, making it easier for humans to work alongside and
instruct robots effectively [19].

• Human–Robot Collaboration (HRC): Recent advancements have
shifted the focus towards Human–Robot Collaboration (HRC).
In this phase, robots and humans actively collaborate on tasks,
often in close proximity. This collaborative approach necessitates
robots’ ability to interpret human intentions, cooperate effec-
tively, and ensure safety throughout the collaborative process.
HRC represents a profound shift from the earlier isolation of robot
functions to a mode where humans and robots work together as
complementary partners [20].

• Physical HRC (pHRC): The next stage in the evolution of robotics
is Physical Human–Robot Collaboration (pHRC). At this level,
robots are not only collaborating with humans but also physi-
cally interacting with them. This interaction may involve tasks
such as sharing tools, passing objects, or jointly manipulating
objects. Achieving successful pHRC requires the development of
highly advanced sensing and control systems that ensure safe
and efficient cooperation. This stage represents a deeper physical
integration between humans and robots, where their actions are
closely intertwined [21].

• Human–Robot Teaming (HRT): The pinnacle of robotics evolution
is Human–Robot Teaming (HRT). In this advanced stage, robots
are integrated into human teams as equal partners rather than
mere tools. HRT demands sophisticated AI and machine learn-
ing algorithms that enable robots to adapt to human behaviors,
preferences, and decision-making processes. These robots become
active, adaptive team members that work alongside humans to
achieve common goals. HRT marks a paradigm shift in the re-
lationship between humans and robots, where robots are not
just passive instruments but active contributors to collaborative
endeavors. This level of integration and teamwork represents the
cutting edge of robotics technology and opens up new horizons
for a wide range of applications across various industries [22].
5

Cobots, commonly known as collaborative robots, are designed to
work alongside human operators in shared workspaces. While they
often exhibit advanced industrial features, it is important to note that
the term ‘cobot’ encompasses a range of robotic systems with varying
degrees of sophistication. Unlike traditional industrial robots, cobots
are equipped with sophisticated sensors, software, and safety features
that allow them to work safely and effectively alongside humans with-
out the need for safety barriers or other protective measures [23]. A
robot built for human collaboration does not necessarily need to be
strictly different in design from typical industrial robots that adhere to
safety standard ISO EN 10 218 [24]. Fig. 3 shows a collaborative robot
sharing workspace with a human on the left and a conventional robot
working separately without collaboration on the right side.

Collaborative robots and other auxiliary equipment enhancing the
security of robotic workspaces are not intended to completely replace
existing technology. The industry’s range of robotic applications is
widened by robotic assistants, who also bring a number of significant
benefits [25]:

1. from a socioeconomic standpoint, the use of robots makes busi-
nesses more competitive relative to nations with extremely low
labor costs;

2. repeatable positioning accuracy and continuous operation allow
even small businesses to produce a product at a lower cost and
focus on client requests;

3. robots can speed up some processes and adapt to unique circum-
stances, which can enhance output;

4. reducing the amount of unpleasant, boring, and tiresome la-
bor relieves people of the burden that could otherwise lead to
occupational sickness;

5. the ergonomics of operations and the workload on workers are
related. A reduction in the number of occupational injuries may
result from improving the workplace;

6. Unsafe situations typically occur when safety regulations are
ignored, and procedures are oversimplified. The integration of
collaborative robots and safety-focused technology goes beyond
mere risk reduction; it establishes a robust framework for ensur-
ing a secure working environment.
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Fig. 3. HRC workspace sharing with human (on left) and conventional robot (on right).
Robot and laborer workspaces gradually become more integrated as
their level of cooperation increases, as seen in Fig. 2 [26].

2.3. Barriers of HRC

HRC involves the interaction and cooperation between humans and
robots to achieve a common goal. However, there are several barriers
that hinder the seamless collaboration between humans and robots in
terms of perception, actuation, and control. The main barriers are as
follows:

• Perception: Perception can be a significant barrier in HRC, as
robots and humans may perceive the environment differently.
Humans use sensory cues such as vision, hearing, touch, and
smell to understand their surroundings, while robots use sen-
sors and cameras to perceive the environment. The difference
in perception between robots and humans can lead to misinter-
pretation of the environment, making it challenging for humans
and robots to collaborate effectively. For example, a robot may
not be able to recognize subtle human gestures, facial expres-
sions, or vocal tones, which can lead to miscommunication and
misunderstandings.
Moreover, humans can easily adapt to changes in the environ-
ment, while robots need to be programmed to recognize and
respond to such changes. This can make it difficult for robots
to keep up with the unpredictable nature of human behavior,
which can further hinder effective collaboration. To overcome
the perception barrier in HRC, robots must be equipped with ad-
vanced sensors and algorithms that enable them to perceive and
interpret the environment accurately. Additionally, HRC should
involve training humans on how to interact with robots, as well
as training robots to recognize and respond to human behavior
appropriately.

• Actuation: Actuation can also be a significant barrier in HRC,
as robots and humans have different capabilities and limitations
when it comes to physical actions. Robots may be designed to
perform specific actions or movements, but they may not be able
to perform them in the same way that humans do. For example,
a robot may be able to lift heavy objects, but it may not be able
to handle delicate items with the same level of care that a human
can.
Additionally, robots may have limitations when it comes to mo-
bility, which can make it difficult for them to navigate complex
environments or perform tasks that require fine motor skills.
Robots may also be limited by their power source, as they may
6

need to be recharged or have their batteries replaced frequently.
On the other hand, humans may have physical limitations that
can impact their ability to collaborate effectively with robots. For
example, a human may not be able to lift heavy objects or perform
physically demanding tasks, which can limit their ability to work
alongside robots that are designed to perform such tasks.
Soft-body robots, which are robots with flexible and deformable
bodies, are being developed to overcome the actuation barrier
in HRC [27]. These robots are designed to mimic the movement
and flexibility of living organisms, enabling them to interact
with humans more naturally and effectively. Soft-body robots are
also equipped with sensors and algorithms that enable them to
perceive and interpret the environment accurately, allowing them
to navigate complex environments and perform tasks with greater
precision [28]. Additionally, the soft and flexible nature of these
robots makes them safer to work with, as they are less likely
to cause harm or damage to their human collaborators. As soft-
body robotics technology continues to advance, these robots have
the potential to revolutionize HRC, enabling new applications in
fields such as healthcare, manufacturing, and disaster response.

• Control: Control can be a significant barrier in HRC, as robots
and humans have different methods of controlling their actions
and movements. Robots are typically controlled through program-
ming or remote control, which can make it difficult for them to
respond quickly and adaptively to changes in the environment.
On the other hand, humans have the ability to adjust their actions
and movements in real-time based on their perception of the
environment, enabling them to respond quickly and adaptively
to changes.
Moreover, humans may have different preferences or approaches
when it comes to controlling robots, which can lead to mis-
communication or misunderstanding. For example, a human may
prefer to use a joystick to control a robot, while another human
may prefer to use voice commands. To overcome the control
barrier in HRC, robots must be designed to respond quickly and
adaptively to changes in the environment. This may involve de-
veloping algorithms that enable robots to adjust their movements
based on feedback from sensors or human collaborators.
Additionally, HRC should involve providing humans with a range
of control options, such as voice commands, gestures, or haptic
interfaces, to enable them to control robots in a way that feels nat-
ural and intuitive. This can involve developing new technologies
or interfaces that enable humans to communicate their intentions
to robots more effectively, such as brain–computer interfaces or
augmented reality displays. Overall, the key to overcoming the
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Fig. 4. Different types of HRC systems: (a) Safety Rated Monitored Stop; (b) Hand Guiding; (c) Speed and Separation; (d) Power and Force Limiting [30].
control barrier in HRC is to develop technologies and interfaces
that enable robots and humans to work together seamlessly and
effectively, with the ability to adapt to changes in the environ-
ment and respond to each other’s actions and movements in
real-time.

When the barriers are removed, it enables the utilization of machines
in challenging tasks that require the presence of human operators,
resulting in various advantages.

2.4. Types of HRC system

The safety requirements ISO EN 10 218 for robotics and robotic sys-
tems describe four basic types of HRC. It is required to use specialized
cobots with integrated sensors for specific sorts of cooperation. With
enhanced sensors and control, a typical robot can be used for other
purposes. The four different types of HRC systems are shown in Fig. 4
and presented below [29]:

1. Safety-rated-Monitored-Stop-based HRI systems mainly focus on
ensuring the safety of human operators. In these systems, safety
components and software are used to monitor the safety of the
HRI and to initiate a safe stop in the event of a safety concern.

2. Hand-guiding HRC refers to another mode of interaction in
which the human operator physically guides the robot’s move-
ment through the workspace. This mode of interaction is used
in various industrial and manufacturing applications to assist
robots in performing complex tasks or to train robots to perform
new tasks.

3. Speed and Separation-Monitoring HRC refer to the use of ad-
vanced monitoring systems to ensure safe interaction in indus-
trial and manufacturing settings. These systems monitor the
speed and separation between the human operator and the
robot to prevent accidents and ensure the safety of the human
operator. Speed and Separation Monitoring systems use various
technologies, such as sensors and cameras, to detect the presence
of a human operator in the workspace and to monitor the speed
and separation between the human operator and the robot. The
systems use algorithms to calculate the speed and separation
7

between the human operator and the robot and to determine if
a safety concern is present.

4. Power and Force Limiting HRC uses to limit the power and force
generated by robots in order to prevent accidents and ensure
the safety of human operators in industrial and manufacturing
settings. Power and Force Limiting systems are designed to
monitor the interaction between the human operator and the
robot and to limit the power and force generated by the robot in
real-time. This can be achieved through the use of sensors and
other technologies that can detect the presence and position of
the human operator, and through the use of algorithms that can
adjust the power and force generated by the robot in response
to these inputs.

2.5. Complexity in HRC system

HRC systems are complex systems that involve the integration
of various technologies, such as robotics, artificial intelligence (AI),
and human–computer interaction (HCI). These systems are designed
to work alongside humans in shared workspaces, with the goal of
increasing productivity and efficiency. However, the complexities arise
from the need to ensure safety, to provide effective communication and
collaboration between humans and robots, and to develop human-like
capabilities in robots such as perception, reasoning, and decision-
making. Ensuring safety in HRC systems is a major concern, as robots
can be equipped with powerful and potentially dangerous tools or ma-
chinery. Therefore, it is necessary to develop effective safety measures
to ensure that humans are not exposed to harm. The HRC workspace is
shown in Fig. 5.

Another challenge of HRC is the need to provide effective commu-
nication and collaboration between humans and robots. This involves
developing effective human–robot interfaces, such as natural language
processing and gesture recognition, to enable seamless communication.
Additionally, it is important to develop robots that are able to perceive
and respond to human gestures, and to understand the context in
which they are operating. This requires the development of cognitive
and decision-making capabilities in robots so that they can effectively
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Fig. 5. Human–robot collaborative workstation.
interact with humans in real-world environments. These complexi-
ties require interdisciplinary approaches, and ongoing research and
development to overcome, to achieve truly effective HRC [31].

2.6. Applications of HRC system

HRC can greatly benefit workers in industry by increasing efficiency
and productivity while reducing the risk of workplace injuries. By
partnering with robots, workers can delegate repetitive or dangerous
tasks to the robots, allowing them to focus on higher-value tasks that
require human skills and expertise [30]. For example, robots can be
used for tasks such as material handling, assembly, and quality control,
freeing up human workers to focus on more complex tasks such as
troubleshooting, problem-solving, and decision-making.

In addition to increasing efficiency, HRC can also improve the over-
all work environment by reducing the risk of workplace injuries [32].
Robots can perform tasks that are too dangerous or physically demand-
ing for human workers, such as working in hazardous environments or
handling heavy loads. This not only protects human workers, but also
helps to reduce workplace accidents and injuries, which can be costly
in terms of both human and financial resources [33].

Moreover, HRC can lead to the development of new and innova-
tive products and processes, as human workers and robots can share
their unique strengths and capabilities to solve problems and achieve
common goals. By working together, human workers and robots can
accomplish tasks that would be difficult or impossible to achieve in-
dependently, leading to greater innovation and competitiveness in
industry. Human Collaborative Robots can have different applications
and some of them are discussed below:

HRC has a wide range of applications in the automobile indus-
try, from assembly and manufacturing to quality control and inspec-
tion [34]. The use of HRC in this industry can increase efficiency,
reduce the risk of workplace injuries, and lead to the development of
new and innovative products.
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One example of an HRC system currently deployed in the automo-
bile industry is the collaborative robot, or ‘‘cobot’’. Cobots are designed
to work alongside human workers in shared workspaces, performing
tasks such as material handling, assembly, and quality control [35,36].
They are equipped with sensors and safety features, such as force
control, to ensure that they can work safely in close proximity to human
workers.

Another example of an HRC system in the automobile industry is
the use of robots for painting and finishing operations. These robots are
equipped with advanced sensors and control systems that allow them
to work in close collaboration with human workers, applying paint and
other finishes to vehicles with precise control and high accuracy [37].

HRC systems are also used in the automobile industry for assembly
operations, where robots are used to perform repetitive and physically
demanding tasks, such as the assembly of car parts and components.
This not only increases efficiency and reduces the risk of workplace
injuries, but it also allows human workers to focus on higher-value
tasks, such as quality control and inspection. Overall, the use of HRC
in the automobile industry has the potential to revolutionize the way
that work is performed, by increasing efficiency, reducing the risk of
workplace injuries, and fostering innovation and competitiveness.

HRC in assembly line is a rapidly growing field in the manufacturing
industry, where robots and human workers are integrated to increase
efficiency and productivity. In assembly line operations, robots can per-
form repetitive and physically demanding tasks, while human workers
can handle tasks that require dexterity and problem-solving skills [38–
40]. The integration of human workers and robots [41] in the assembly
line allows for more efficient and effective use of resources, leading to
higher overall productivity.

Some examples of currently deployed HRC systems in assembly
line include KUKA’s HRC system, Universal Robots’ UR+ Platform, and
ABB’s YuMi. KUKA’s HRC system uses advanced sensor technology to
allow robots and human workers to work safely in close proximity.
Universal Robots’ UR+ Platform enables the integration of third-party
tools and accessories with its collaborative robots, allowing human
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Table 2
Overview of the literature for the industrial applications of HRC.

Application Ref. Summary

Disassembly

[42] This paper addresses sustainable manufacturing, a crucial aspect of sustainable development, by focusing on human–robot
collaborative disassembly (HRCD) and its contributions to economic, environmental, and social sustainability. The work presents a
detailed and systematic approach to implementing HRCD, integrating advanced technologies such as cyber–physical production
systems (CPPS) and artificial intelligence (AI). The approach encompasses five key aspects: perception, cognition, decision, execution,
and evolution, targeting the dynamics, uncertainties, and complexities in disassembly processes.

[43] This paper explores the role of robotics in the disassembly process, a critical first step in the remanufacturing, repair, and recycling
of products at the end of their life cycle. The complexities associated with the variety and condition of End-of-Life (EoL) products
necessitate a balance between productivity and flexibility in robotic disassembly. To address this, the paper proposes a
semi-automated approach using human–robot collaboration, which can adapt to the uncertainties in frequency, quantity, and quality
of EoL products.

[44] This paper introduces a comprehensive disassembly sequence planning (DSP) algorithm tailored for human–robot collaboration
(HRC) in disassembly processes, taking into account several critical factors such as limited resources and the safety of human
workers. The main objective of the algorithm is to optimize the distribution of disassembly tasks between human operators, robots,
and their collaborative efforts to minimize total disassembly time while adhering to resource and safety constraints.

[45] This paper addresses the growing importance of recycling end-of-life power batteries, driven by both performance benefits and
increased environmental awareness among consumers. It emphasizes that disassembly is a critical step in the recycling and
remanufacturing process of these batteries. To enhance the efficiency of this process, the paper introduces a human–robot
collaboration model designed to minimize completion time. The paper compares the performance of HPSO-QL with other
well-known metaheuristic algorithms across different scenarios. The results demonstrate the effectiveness and robustness of
HPSO-QL, establishing its superiority over existing algorithms in solving the HRCD-PBs problem. This advancement represents a
significant step forward in optimizing the disassembly process for end-of-life power batteries, contributing to more efficient and
sustainable recycling and remanufacturing practices.

Automotive

[46] Emerging automotive assembly technologies and methods used in manufacturing facilities are discussed in this study. In response to
this acknowledged impossibility for mass customization, concepts incorporating various new technologies into supporting both
automated and human-based assembly procedures are given and addressed. Future assembly lines must routinely use flexibility in
both system design and operation. A close loop method is discussed for this reason.

[47] The design of a robotic platform for sophisticated human–robot cooperation assembly is covered in this article, along with all the
technical methods that have been employed to make it easier for human operators to participate and be supported. Manual guidance
methods and innovative wearable gadgets that support multi-modal engagement as well as robot safety control features are examples
of enabling technology. Under a service-oriented architecture, wearable gadgets like smartwatches and augmented reality glasses are
employed to close the communication gap between operators and robots.

[48] Various layout configurations are described and assessed with an eye towards industrial application in a series of strategies for
designing hybrid workstations that concentrate on secure yet effective HRC. Two diverse automotive use cases are given as examples
to show the unique characteristics of lightweight and high-payload robots, as well as small and big size product assembly.

Food Industry

[49] The focus of the paper is on the impact of integrating collaborative robots into the food catering industry, showcased through a case
study on the end-of-line operations of a catering production system. It proposes a generalizable methodology to assess the technical
and economic feasibility of implementing such technology. This methodology is designed to aid food industry managers in analyzing
constraints that limit process automation and in evaluating the expected system performance in terms of throughput, ergonomics,
and economic benefits. The paper emphasizes the potential for collaborative robots to revolutionize automation in the food industry,
particularly in catering.

[50] This article delves into the transformation of the agri-food sector through the adoption of modern machinery, tools, and information
and communication technologies (ICTs), particularly focusing on Internet of Things (IoT) capabilities. This advancement has ushered
in the ‘Agri-Food 4.0’ era, characterized by automation, connectivity, digitalization, the use of renewable energies, and efficient
resource utilization.

Smart Manufacturing

[51] The work focuses on enhancing human–robot collaboration (HRC) in smart manufacturing by integrating sensing, cognition, and
prediction into robot controllers for real-time interaction in mixed environments. The goal is to develop Proactive Adaptive
Collaboration Intelligence (PACI) and switching logic for robots, enabling them to adapt their actions based on predefined plans and
knowledge. This involves improving robots’ decision-making for better situational awareness and smart reactions during varying
human–robot interactions, while ensuring safety and efficiency. The effectiveness of this approach, including its modularity and
flexibility, was demonstrated through simulations and tests with the e.DO robot in a controlled setting.

[52] This work delves into human–robot collaboration (HRC) in smart manufacturing, emphasizing the need for robots to use
commonsense knowledge (CSK) for effective support in dynamic environments. CSK allows robots to make more intuitive decisions,
aiding humans in complex tasks like paint spraying and assembly, thus enhancing safety and efficiency. The paper presents a novel
approach linking HRC with CSK, specifically focusing on improving human–robot co-assembly tasks. Evaluations using online
simulations and real-world experiments showed that CSK-based robot priorities improve HRC compared to simpler approaches.

[53] This paper addresses the need for new safety strategies in Human–Robot Collaboration (HRC) within the evolving manufacturing
industry, which aims to combine human flexibility and intelligence with robotic accuracy and strength. A key issue identified is the
lack of a clear safety strategy in existing HRC systems. To address this, the paper first establishes an extensive taxonomy of
human–robot relations, offering a clear classification for various robotic scenarios. Following this, it develops a comprehensive
action strategy tailored to different scenarios and roles of human stakeholders. A novel aspect of the approach is a dynamic HRC
layout, which considers the actual speed and distance between humans and robots.
workers and robots to work together on the assembly line. ABB’s
YuMi is a dual-arm collaborative robot designed for use in assembly
line operations, featuring built-in safety features to allow it to work
safely alongside human workers. These systems and others like them
demonstrate the growing trend of HRC in the assembly line and the
benefits it can bring to manufacturing operations.

Table 2 reports a synthetic overview of the relevant literature for
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the industrial applications of HRC discussed hereafter.
2.7. Digital twin to address the complexity

To cope with the increasing complexity related to the gradual
transition from Industry 4.0 to Industry 5.0, digital twin (DT) tech-
nology may offer a solution by creating a virtual representation of a
physical system, such as a robot or the entire production line, in real-
time [54]. DTs differ from static, three-dimensional models in that they
are continuously updated with data from numerous sources [55]. The
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digital twin allows for simulation and testing of different scenarios,
including HRI, without risking harm to the physical system or to the
human collaborators [13].

One of the primary benefits of using a digital twin in HRC is the
ability to test and optimize performance. The digital twin can be used
to evaluate different control algorithms and interaction strategies to
determine the best approach for HRC. This can help to improve the
efficiency and effectiveness of the collaboration and reduce the risk
of accidents or incidents. Another advantage of using digital twins in
HRC is the ability to anticipate and mitigate potential safety concerns.
For example, the digital twin can be used to simulate the behavior
of a robot in hazardous environments and to assess the potential
impact of that behavior on human collaborators. This can help to
identify potential hazards and develop strategies to minimize risks. The
use of digital twins also facilitates communication and coordination
between human and robot collaborators. The digital twin can provide
a shared visual representation of the physical system, which can help
to improve the understanding of the system and its behavior. This can
improve the accuracy of decision-making and reduce the likelihood of
misunderstandings or miscommunications between human and robot
collaborators.

Therefore, the use of digital twins in HRC offers several benefits that
can address the complexities of this type of collaboration. The tech-
nology can be used to optimize performance, anticipate and mitigate
safety concerns, and facilitate communication and coordination. By
leveraging the capabilities of digital twins, organizations can improve
the efficiency and effectiveness of HRC while reducing the risk of
incidents or accidents.

3. Industry 5.0

Industry 5.0 is a term used to describe the fifth industrial revolution,
which is expected to build upon the current trend of Industry 4.0.
The previous industrial revolutions brought about the use of steam,
electricity, computers and automation in manufacturing, and Industry
4.0 introduced digital technologies and the Internet of Things (IoT)
to the production process. Industry 5.0 is anticipated to combine ad-
vanced technologies such as robotics, artificial intelligence (AI), and
the IoT with human-centric design principles to create more efficient,
flexible, and sustainable production systems [56]. Industry 5.0 is an
integration of resilient, sustainable, and human-centric technologies,
organizational concepts, and management principles for designing and
managing cost-efficient, responsive, resilient, sustainable, and human-
centric value-adding systems at the levels of ecosystems, supply chains,
and manufacturing and logistics facilities, data-driven and dynamically
and structurally adaptable to changes in the demand and supply envi-
ronment to secure the provision of society with products and services in
a sustainable and human-centric way through the rapid rearrangement
and reallocation of its components and capabilities [57]. One of the
main drivers of Industry 5.0 is the need for greater collaboration be-
tween humans and machines. As machines become more advanced and
can perform more tasks, they will need to be designed to work seam-
lessly with human operators. In this way, machines can assist workers
in tasks that require precision, strength, or speed, while humans can
provide creativity, decision-making, and problem-solving skills [58].
Industry 5.0 also has the potential to greatly reduce waste and environ-
mental impact in the manufacturing process. Smart factories can use
data analytics to optimize production processes and reduce material
waste, while also implementing more sustainable energy sources and
reducing greenhouse gas emissions [56].

3.1. Applications in industry 5.0

The possibilities of Industry 5.0 are vast and diverse, as the inte-
gration of advanced technologies with human-centric design principles
can transform the manufacturing industry in a myriad of ways. In this
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section, we will explore some of the key applications of Industry 5.0,
including the use of smart factories [11], collaborative robots [59],
healthcare [60], cloud manufacturing, sustainable manufacturing [11],
predictive maintenance systems, and advanced data analytics. We will
discuss how these technologies can improve efficiency, safety, and
sustainability in manufacturing processes, and explore their potential
to drive innovation and growth in various industries (see Fig. 6).

3.1.1. Smart healthcare
The integration of Industry 5.0 in the healthcare sector can revo-

lutionize the way medical care is provided, making it more efficient,
accessible, and personalized. With advancements in robotics, artificial
intelligence (AI), and the Internet of Things (IoT), Industry 5.0 has
the potential to transform healthcare in several ways, such as reducing
medical errors, improving patient outcomes, and optimizing healthcare
delivery [61].

One of the primary applications of Industry 5.0 in healthcare is
the use of robotic assistants. Robots can assist healthcare providers in
tasks that require precision, such as surgical procedures or medication
delivery [62]. They can also take over routine tasks, such as monitoring
vital signs or cleaning, freeing up healthcare workers to focus on more
complex tasks that require human intervention. Robots can also be used
to provide care in remote or underserved areas, expanding access to
healthcare services.

Another application of Industry 5.0 in healthcare is the use of AI-
powered diagnostics and treatment. AI can analyze vast amounts of
medical data to identify patterns and predict outcomes, helping to
diagnose and treat patients more accurately and efficiently [63]. For
example, AI algorithms can analyze medical images such as X-rays, CT
scans, and Magnetic resonance imaging (MRI), to detect diseases or ab-
normalities that may be missed by human observers [64]. AI-powered
chatbots and virtual assistants can also provide patients with real-time
advice and support, making healthcare services more accessible.

The IoT can also play a significant role in healthcare, enabling the
collection of real-time patient data and facilitating remote monitoring
[65]. Wearable devices and smart sensors can track vital signs, such
as heart rate and blood pressure, and provide this information to
healthcare providers in real-time. This can improve the accuracy of
diagnoses and help detect health issues before they become serious,
allowing for more proactive and personalized treatment [66].

Another critical aspect of Industry 5.0 in healthcare is the appli-
cation of data analytics. With the vast amounts of data generated in
the healthcare sector, advanced data analytics can be used to iden-
tify trends, patterns, and outcomes, leading to better decision-making
and improved patient care. Predictive analytics can help healthcare
providers anticipate and prevent medical errors or complications, while
prescriptive analytics can suggest the best course of treatment for a
particular patient based on their medical history and other data points.

3.1.2. Cloud manufacturing
Cloud manufacturing is a term used to describe the use of cloud

computing technologies in the manufacturing process [67]. In Industry
5.0, cloud manufacturing has the potential to transform the manufac-
turing industry by enabling more efficient collaboration and resource-
sharing among businesses and manufacturers. Cloud manufacturing can
help to optimize production processes, reduce costs, and improve the
quality of products.

One of the key advantages of cloud manufacturing is that it allows
businesses to share resources and collaborate with one another more
efficiently. This can be particularly useful for small and medium-sized
businesses that may not have the resources to develop their own man-
ufacturing capabilities [68]. By leveraging cloud manufacturing, these
businesses can access a wider range of resources, including production
equipment, expertise, and logistics, allowing them to compete more
effectively in the market.
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Fig. 6. Applications in Industry 5.0.
Cloud manufacturing can also enable manufacturers to optimize
their production processes by providing real-time access to data and
analytics. Cloud-based platforms can collect and analyze data from dif-
ferent stages of the manufacturing process, such as production, supply
chain, and logistics, to identify areas of improvement and optimize
processes. This can lead to more efficient use of resources, reduced
waste, and higher quality products [69]. Another advantage of cloud
manufacturing is the ability to customize and personalize products at
scale. Cloud-based platforms can enable manufacturers to collect and
analyze customer data, allowing them to develop personalized products
and services that meet the specific needs of their customers. This can
be particularly useful in industries such as fashion or furniture, where
customers may want unique products that reflect their personal style
or preferences.

Cloud manufacturing can also improve supply chain management
by enabling real-time communication and collaboration among manu-
facturers, suppliers, and distributors. By sharing data and resources on
a cloud-based platform, businesses can improve their coordination and
reduce lead times, resulting in faster delivery and lower costs.

3.1.3. Sustainable manufacturing
Sustainable manufacturing is a key application of Industry 5.0,

as it focuses on integrating advanced technologies with sustainable
principles and practices. Sustainable manufacturing aims to minimize
the negative environmental impacts of manufacturing processes, while
also improving efficiency and reducing costs [70]. By leveraging ad-
vanced technologies, such as AI, IoT, and data analytics, sustainable
manufacturing can enable manufacturers to achieve their sustainability
goals while also enhancing their competitive advantage.

One of the primary applications of sustainable manufacturing in
Industry 5.0 is the use of predictive maintenance systems. Predictive
maintenance uses data analytics and machine learning to monitor
equipment and identify potential issues before they occur, allowing
for proactive maintenance and reducing the likelihood of unexpected
downtime. This can not only improve efficiency and productivity but
also reduce waste and emissions by minimizing the need for reactive
maintenance. Another application of sustainable manufacturing is the
use of advanced analytics to optimize energy and resource use. By
analyzing data from sensors and other sources, manufacturers can iden-
tify areas of inefficiency and waste and develop strategies to improve
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energy and resource efficiency. This can lead to reduced costs and emis-
sions while also improving the overall sustainability of manufacturing
processes [71].

The Internet of Things (IoT) can also play a significant role in
sustainable manufacturing. By connecting sensors and devices across
the manufacturing process, manufacturers can collect real-time data on
energy use, water consumption, and other sustainability metrics [72].
This can enable them to identify areas of waste and inefficiency and
make data-driven decisions to optimize resource use.

Two important applications are predictive maintenance systems and
remanufacturing processes. Predictive maintenance uses data analyt-
ics and machine learning to monitor equipment and identify main-
tenance needs before issues occur, enabling proactivity and waste
reduction [73]. Remanufacturing involves taking products at the end
of their lifecycle and restoring them to like-new condition through
replacement of worn parts and rigorous cleaning. This extends product
value and saves costs over new materials and production.

3.1.4. Human cyber–physical systems
Industry 5.0 emphasizes Human Cyber–Physical Systems (HCPS), in-

tegrating the sophisticated capabilities of cyber–physical systems (CPS)
with design principles centered around human experiences [74]. HCPS
aims to enable humans and machines to work together more seamlessly
and efficiently, improving the overall performance of manufacturing
processes.

The integration of humans into the manufacturing process is a
crucial component of Industry 5.0, as it allows for greater flexibility
and adaptability in the face of changing customer needs and mar-
ket demands. HCPS enables humans to work alongside robots and
other machines, taking advantage of their respective strengths and
capabilities to optimize the manufacturing process [75].

One key application of HCPS is the use of augmented reality (AR)
and virtual reality (VR) technologies to enable more immersive and
interactive human–machine interfaces. This can enhance the ability of
humans to work effectively with machines, allowing them to better
understand and control the manufacturing process. For example, work-
ers can use AR to visualize the internal workings of machines, identify
potential issues and make adjustments in real-time [76].

HCPS can also enable more efficient collaboration and communi-
cation among workers and machines. For example, workers can use
natural language processing (NLP) and voice recognition technologies
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Fig. 7. Enabling technologies in Industry 5.0.
to communicate with machines, making it easier to control and adjust
manufacturing processes. This can improve the efficiency of the manu-
facturing process, reducing the time and resources required to achieve
optimal performance.

3.2. Enabling technologies

One of the key aspects of Industry 5.0 is the use of enabling tech-
nologies, which play a critical role in enhancing human–machine col-
laboration and improving overall productivity. Enabling technologies
are those technologies that facilitate the implementation of Industry
5.0. From artificial intelligence and robotics to the Internet of Things
and 5G connectivity, a range of cutting-edge technologies are driving
the evolution of Industry 5.0. In this section, we will explore some of
the key enabling technologies that underpin Industry 5.0 and the ways
in which they are transforming the manufacturing landscape. Fig. 7
shows the enabling technologies of industry 5.0.

3.2.1. Edge computing
Edge computing is a technology that has gained significant attention

in recent years, and its impact is expected to be felt across a wide range
of industries, including Industry 5.0. Industry 5.0 refers to the fifth
industrial revolution, which is focused on the integration of humans
and machines in the workplace.

Edge computing is a distributed computing model that involves
processing and analyzing data closer to the source, rather than rely-
ing solely on centralized cloud servers [77]. This approach reduces
latency, bandwidth requirements, and security risks, and enables real-
time decision-making. In Industry 5.0, edge computing technology can
be used to improve the efficiency, productivity, and safety of manufac-
turing processes. For example, edge computing can be used to collect
and process data from sensors and other devices on the factory floor,
and then use that data to optimize production, reduce downtime, and
improve product quality. In addition, edge computing can be used to
improve worker safety by enabling real-time monitoring of workers
and equipment [78]. For example, sensors can be used to monitor
the location, movement, and vital signs of workers, and to detect
potentially hazardous situations such as the presence of hazardous
gases or the overheating of machinery.

Edge computing can also be used to improve product quality by
enabling real-time monitoring of product performance and detecting
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issues early in the production process. This can help to reduce the cost
of quality control and increase customer satisfaction. One of the key
benefits of edge computing technology in Industry 5.0 is its ability
to enable more efficient and autonomous decision-making [79]. By
processing data closer to the source, edge computing can enable real-
time analysis and decision-making, which can improve the speed and
accuracy of production processes. For example, edge computing can be
used to enable predictive maintenance, where equipment is serviced
before it fails, reducing downtime and improving efficiency.

Another benefit of edge computing technology in Industry 5.0 is
its ability to enable more personalized and customized products. By
analyzing data from sensors and other devices, edge computing can
enable more precise control over the production process, which can
be used to produce products that better meet the needs of individual
customers.

3.2.2. Digital twins
Digital twins are virtual representations of physical assets or systems

that are created using real-time data, machine learning algorithms, and
advanced analytics [7]. These digital replicas enable engineers and
operators to monitor, control, and optimize physical systems in real
time. The concept of digital twins has been around for a while, but
with the advent of Industry 4.0 and 5.0, their importance has increased
significantly.

Industry 5.0 is the next phase of the industrial revolution that is
focused on HRC and teaming especially in manufacturing systems [56].
In this era, digital twins play a critical role in enabling seamless
collaboration between humans and robots. By creating a virtual replica
of a physical system or process, engineers and operators can test and
optimize the system before it is implemented in the real world. This
reduces the risk of errors and helps to identify potential issues before
they become a problem.

One of the key benefits of digital twins in Industry 5.0 is their
ability to facilitate HRC/T. With a digital twin, engineers can model
and simulate the interaction between humans and robots in a virtual
environment, allowing them to optimize the system for maximum
efficiency and safety. For example, engineers can use digital twins to
design and test collaborative robots that can work alongside human
workers in a factory without posing a risk to their safety.

Digital twins also enable better teaming between humans and
robots. By creating a digital twin of a physical system or process,
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engineers can provide real-time data and insights to both humans and
robots, allowing them to work together more effectively. This can lead
to improved productivity, reduced downtime, and increased safety.

In addition to enabling HRC and teaming, digital twins have several
other benefits in Industry 5.0. For example, they can help to reduce
maintenance costs by identifying potential issues before they become a
problem, and they can improve overall system efficiency by optimizing
the system in real time. They can also provide valuable insights into
the performance of a system, enabling engineers and operators to make
data-driven decisions.

3.2.3. Internet of everything
The Internet of Everything (IoE) technology is a powerful concept

that is expected to revolutionize various aspects of our lives, including
the way we work, communicate, and interact with the world around
us. IoE is an evolution of the Internet of Things (IoT), which refers to
the connectivity of devices and objects to the internet. However, IoE
expands the concept to include people, processes, and data, creating a
network that connects everything and everyone [80].

Industry 5.0, also known as the ‘‘Human-Centered Industry’’, is the
next step in the evolution of manufacturing and industry. It involves
combining the strengths of humans and machines to create a more
productive, efficient, and sustainable manufacturing environment. IoE
is expected to play a crucial role in enabling Industry 5.0 by providing
a seamless and interconnected platform for various devices, machines,
and humans to collaborate and communicate.

IoE technology is expected to transform various industries in In-
dustry 5.0, including manufacturing, logistics, and supply chain man-
agement. For example, in manufacturing, IoE technology can be used
to optimize the production process, reduce downtime, and improve
quality control. By connecting various sensors and machines, IoE tech-
nology can provide real-time data on the performance of each machine,
allowing operators to identify and fix any issues quickly. IoE can also be
used to improve worker safety by monitoring the conditions of the work
environment and alerting workers in case of any potential hazards.

In logistics and supply chain management, IoE technology can be
used to optimize the movement of goods, reduce delivery times, and
improve supply chain visibility. By connecting various sensors, RFID
tags, and other devices, IoE technology can provide real-time data on
the location, status, and condition of goods. This data can be used to
identify and address any potential issues, such as delays or damage to
goods, before they become major problems.

Another key aspect of IoE technology is its ability to enable intelli-
gent decision-making. By connecting various data sources, IoEtechnol-
ogy can provide a holistic view of the manufacturing process or the
supply chain. This data can be used to identify patterns and trends,
which can be used to make informed decisions that improve efficiency,
reduce costs, and enhance the overall customer experience.

However, the widespread adoption of IoE technology in Industry
5.0 is not without its challenges. One of the biggest challenges is data
security and privacy. With so much data being generated and shared
between various devices and machines, there is a risk of sensitive
information being compromised. Therefore, robust data security and
privacy measures must be put in place to protect against cyber-attacks
and data breaches.

Another challenge is the need for interoperability between various
devices and systems. IoE technology involves connecting a wide range
of devices and machines, many of which may have been developed
by different manufacturers using different standards and protocols.
Therefore, there is a need for standardization and interoperability to
ensure that devices can communicate and work seamlessly together.

4. Digital twin driven HRC system

Digital twin technology is a key component of Industry 5.0, which
involves the creation of virtual replicas of physical objects and pro-
13
cesses. One application of digital twin technology in Industry 5.0 is
in the context of HRC, where virtual representations of robots and
their environments can be used to optimize and enhance the interaction
between humans and robots. In this section, we will explore the concept
of digital twin-driven HRC and the ways in which it is transforming the
manufacturing landscape.

4.1. Digital twin/digital thread/digital shadow

‘‘Digital Twin’’, ‘‘Digital Thread’’, and ‘‘Digital Shadow’’, are terms
used in the field of digitalization and Industry 5.0. These terms describe
the use of digital technologies to capture, store, and analyze data
related to physical objects and processes. The differences between the
three terms are explained in the following:

• Digital Thread: A digital thread is a continuous, secure chain of
data that follows a product or component throughout its life cycle,
from design to end of life. It provides a complete view of all the
data related to a product and its interactions with other products
and systems [81].

• Digital Shadow: A digital shadow refers to a real-time, digital
representation of a physical object that updates as the object
changes. It is a real-time digital replica of a physical asset, al-
lowing the tracking of its location, status, and other attributes in
real time [82].

• Digital Twin: A digital twin is a virtual representation of a
physical asset that can be used to simulate, analyze, and optimize
its performance, behavior, and interactions with its environ-
ment [83].

It is a digital replica of a physical object that is used for monitor-
ing, control, and optimization purposes. In summary, a digital thread
provides a complete history of an object, a digital shadow tracks the
real-time status of an object, and a digital twin provides a virtual
representation of an object for simulation and analysis purposes.

4.2. Potential of DT and HRC

Digital twin-based HRC (DT-HRC) is a cutting-edge technology that
leverages the principles of digital twins to enable effective collaboration
between humans and robots. In DT-HRC, digital twins are used to
modeling and simulate HRI’s, allowing engineers and researchers to
analyze, optimize, and improve the performance and safety of HRC
systems [84]. Fig. 8 depicts an abstract illustration of a robot’s digital
twin model. In the scenario shown, sensors are used to collect the state
of the physical system (robot) and transfer it to the digital model (a
virtual copy of the robot).

By using sensors to read motor speed, angle, orientation, ON/OFF
state, and compute the optimal parameters with an efficient control
scheme and fault assessment for the real system, a digital twin or virtual
model can precisely recreate the state and movement of a robotic arm
as they occur in the physical or real world.

DT-HRC systems typically consist of several key components, in-
cluding human and robot models, simulation and visualization tools,
and control algorithms. Human models are created by capturing the
anatomy, kinematics, and dynamics of the human body, while robot
models represent the physical characteristics, capabilities, and con-
straints of the robot. Simulation and visualization tools allow users
to test and validate the HRI in virtual environments, and control
algorithms enable real-time interaction between the human and the
robot.

Digital twin technology has the potential to greatly enhance the use
of cobots in manufacturing [85]. A digital twin is a virtual representa-
tion of a physical system, including the robot and its environment. By
creating a digital twin of a cobot, manufacturers can simulate and an-
alyze the robot’s behavior in a virtual environment before deploying it
in the real world. This allows for greater precision in the programming
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Fig. 8. Abstract representation of digital twin.
of the cobot’s movements and can help to optimize its performance and
efficiency. Additionally, a digital twin allows for continuous monitoring
and analysis of the cobot’s operation in real-time [86]. This can help
to identify potential issues and improve the overall performance of the
system. Furthermore, by integrating the digital twin with other systems
such as manufacturing management software, manufacturers can gain
a more comprehensive understanding of the entire manufacturing pro-
cess and make data-driven decisions to improve efficiency and reduce
costs.

The benefits of DT-HRC are numerous and far-reaching. By pro-
viding a virtual representation of the human–robot system, DT-HRC
enables designers and engineers to test and optimize the system’s per-
formance and safety before deployment. This can significantly reduce
the development time and costs associated with HRC systems. Further-
more, DT-HRC allows for the analysis of HRI’s in real-time, enabling
researchers to study and understand the cognitive, physiological, and
behavioral factors that influence HRI’s.

4.3. Phases of DT-HRC system

The phases of Digital Twin-based HRC refer to the steps involved in
the creation, deployment, and ongoing management of a digital twin
for a HRC system (Fig. 9).

1. Modeling Phase: In the modeling phase, a number of models are
created, including models of the robot, its environment, and the
human operator. These models may be created using a variety of
simulation tools and techniques, such as computer-aided design
(CAD) software, physics-based simulations, and machine learn-
ing algorithms. The models of the robot and its environment are
created to accurately represent the physical system, including its
mechanical structure, actuators, sensors, and other components.
The model of the human operator is created to represent the
human operator’s physical characteristics, such as their height,
weight, and reach, as well as their cognitive abilities, such as
their reaction time and decision-making processes. Once the
models are created, they are integrated into the digital twin
of the HRC system. The digital twin is then used to simulate
the behavior of the physical system, including the interaction
between the human operator and the robot.
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2. Simulation Phase: In the simulation phase, the digital twin is
used to simulate the behavior of the HRC system, including the
interaction between the human operator and the robot. This
includes simulating the movement of the robot, the response
of the robot to the human operator’s actions, and the impact
of the environment on the performance of the system. The
simulation phase allows engineers and designers to test differ-
ent configurations of the HRC system, including different robot
designs, control algorithms, and HRC strategies. The results of
these simulations can be used to make modifications to the
physical system, or to the digital twin, in order to optimize the
performance of the HRC system.

3. Deployment Phase: During the deployment phase, a number of
tasks are performed, including the installation of sensors and
other technologies for monitoring the performance of the HRC
system. These sensors may include cameras, force sensors, and
position sensors, among others. The data collected from these
sensors is used to continuously update the digital twin, ensuring
that it remains an accurate representation of the physical system.
In addition to the installation of sensors, the deployment phase
may also involve the implementation of control algorithms and
other technologies to optimize the performance of the HRC sys-
tem. This may include the development of algorithms to control
the movement of the robot, to monitor the performance of the
human operator, and to respond to changes in the environment.
Once the deployment phase is complete, the HRC system is ready
to be put into operation, with the digital twin serving as a tool
for continuous monitoring and optimization of the system.

4. Monitoring Phase: The monitoring phase of Digital Twin-based
HRC refers to the process of using the digital twin to contin-
uously monitor the performance of the physical HRC system.
This phase is critical for ensuring the safety and efficiency of the
HRC system, as it allows engineers and designers to detect and
address issues before they become major problems. In the moni-
toring phase, the digital twin is used to track and analyze various
parameters of the HRC system, including the performance of the
robot, the behavior of the human operator, and the impact of
the environment on the system. This data is collected in real-
time from the sensors and other technologies installed during
the deployment phase. The monitoring phase may also involve

the use of predictive analytics and machine learning algorithms
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Fig. 9. DT HRC phases.
to analyze the data collected from the HRC system. These algo-
rithms can be used to identify trends and patterns in the data,
and to predict potential issues before they occur. The results of
the monitoring phase can be used to make modifications to the
physical system, or to the digital twin, in order to optimize the
performance of the HRC system. This may include modifying the
control algorithms, adjusting the placement of sensors and other
technologies, or modifying the design of the robot.

5. Optimization Phase: The optimization phase of Digital Twin-
based HRC refers to the process of using the data collected
during the monitoring phase to optimize the performance of the
physical HRC system. This phase involves the analysis of the data
collected from the digital twin, the identification of areas for im-
provement, and the implementation of changes to the system to
enhance its safety, efficiency, and effectiveness. In the optimiza-
tion phase, engineers and designers may use various techniques,
such as predictive analytics, machine learning algorithms, and
simulation models, to analyze the data collected from the HRC
system. They may identify trends, patterns, and potential issues
that could impact the performance of the system, and use this
information to inform the design and implementation of modifi-
cations. The modifications made during the optimization phase
may include changes to the control algorithms, adjustments
to the placement of sensors and other technologies, modifica-
tions to the design of the robot, and improvements to the HRC
workflows and processes.

4.4. Fundamental blocks of DT-HRC system

A physical environment, a digital space, data communications, and
linkages are some of the parts that make up a digital twin system.
Some of them – such as the digital and physical spaces – are key
aspects, but the demands placed on secondary elements – such as data
communications and connections – depend on what is expected of a DT
system. The fundamental blocks of Digital Twin-based HRC are:

1. Digital Twin Model: This is a digital representation of the phys-
ical HRC system. The digital twin model includes all the com-
ponents of the physical system, including the robot, the human
operator, and the environment in which the collaboration takes
place.
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2. Sensors and Monitoring Technologies: These technologies are
used to collect data from the physical HRC system in real-time.
The data collected from sensors and monitoring technologies
is used to populate the digital twin model and to monitor the
performance of the system.

3. Predictive Analytics and Machine Learning Algorithms: These
algorithms are used to analyze the data collected from the HRC
system in order to identify trends, patterns, and potential issues.
They can also be used to make predictions about the future
behavior of the system, and to optimize its performance.

4. Simulation Models: These models are used to simulate the per-
formance of the physical HRC system in a virtual environment.
Simulation models allow engineers and designers to test and
evaluate different design configurations, control algorithms, and
human–robot interfaces before implementing them in the phys-
ical system.

5. Control Algorithms: These algorithms are used to control the
behavior of the robot in the HRC system. The control algorithms
can be modified based on the data collected from the digital twin
model and the results of the simulation models.

6. Human–Robot Interfaces: These interfaces are used to facilitate
communication and collaboration between the human operator
and the robot. The interfaces may include physical controls,
visual displays, and audio feedback, and can be optimized based
on the data collected from the digital twin model and the results
of the simulation models.

4.5. Software for DT-HRC

The design of digital twins of industrial robots can be done using
both open-source and commercial software. Open-source software is
free and can be modified and distributed by anyone, while commercial
software is proprietary and must be purchased. Open-source software
such as Coppeliasim [87], Unity3D [88] and ROS/Gazebo [89] provides
a cost-effective solution for creating digital twins of industrial robots
and are popular for their flexibility and customizable features. How-
ever, open-source software may not have the same level of technical
support and features as commercial software. Commercial software
such as PTC ThingWorx [90], GE Predix [91], MATLAB [92] and
Microsoft Azure Digital Twins offer a more comprehensive solution for
digital twin design [93], and typically have advanced features such
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as real-time data visualization, predictive analytics, and collaboration
tools. Commercial software is generally more expensive than open-
source software, but it also provides a higher level of technical support
and can offer a quicker path to deployment. The choice between open-
source and commercial software will depend on the specific needs
and budget of the organization, as well as the requirements of the
digital twin project. Both types of software have their advantages and
disadvantages, and the best choice will depend on the unique needs
of each organization and also depends on the focus, i.e., physical
simulation, process, production.

Open-source cloud platforms offer a cost-effective and flexible so-
lution for the design of digital twins of industrial robots [94]. These
platforms provide a range of tools and services for creating, deploying,
and managing digital twins, and are based on open-source technologies
such as Linux, Docker, and Kubernetes. Some popular open-source
cloud platforms for digital twin design of industrial robots include
Eclipse IoT, Node-RED, OpenFog, and OpenMUC. These open-source
cloud platforms provide a cost-effective solution for creating digi-
tal twins of industrial robots and can be customized and extended
to meet the specific needs of each organization. However, organi-
zations using open-source cloud platforms may need to invest more
time and resources in developing and maintaining their digital twin
infrastructure [95].

MATLAB and ROS are both commonly used tools for human mod-
eling in virtual environments. MATLAB is a high-level language and
interactive environment for numerical computation, visualization, and
programming. It can be used for human modeling in virtual environ-
ments by using its toolboxes for computer vision, robotics, and machine
learning [96] . For example, the Computer Vision Toolbox in MATLAB
can be used for processing and analyzing human body and hand track-
ing data, and the Robotics System Toolbox can be used for creating
and controlling virtual human models in a simulated environment
[40]. ROS (Robot Operating System) is an open-source framework for
developing and deploying robot software. It provides a large number
of libraries and tools for robot control, navigation, and perception, and
can be used for human modeling in virtual environments by integrating
with human body and hand tracking libraries [97]. For example, ROS
packages such as OpenPose and OpenCV can be used for human body
tracking, and ROS packages such as MoveIt can be used for controlling
virtual human models in a simulated environment [42].

ROS (Robot Operating System) and Gazebo are open-source soft-
ware widely used in the research community for robotics work due
to their flexibility, modularity, and powerful tools for simulation and
experimentation. ROS is a framework for building and managing robot
software systems. It provides a suite of libraries, tools, and conven-
tions for creating complex robot applications. ROS supports a wide
range of robotic platforms, including mobile robots, manipulators, and
drones. Gazebo is a multi-robot simulator for outdoor and indoor
environments. It provides a realistic and customizable simulation envi-
ronment for robots, including sensors, actuators, and physics. Gazebo
enables researchers to test their algorithms and controllers in a virtual
environment before deploying them on a real robot.

Together, ROS and Gazebo provide a powerful and flexible platform
for robotics research. They enable researchers to design and test robotic
systems in a virtual environment before deploying them on real robots,
which can save time and reduce costs. Furthermore, their open-source
nature has led to a large and growing community of developers who
contribute to the systems and share their code, which can accelerate
the development of new robotics applications.

Due to their effectiveness and flexibility, ROS and Gazebo have a
growing community with the potential to become the de facto stan-
dard in the robotics industry. Many companies and organizations have
already adopted ROS and Gazebo for their robotics research and devel-
opment, including Toyota, Amazon, and NASA. The use of open-source
software in the industry is also increasing, and ROS and Gazebo’s open-
source nature may make them particularly attractive to companies
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looking to build and deploy robotics applications.
The adoption of open-source and commercial software tools for the
production of Digital Twin-HRC (DT-HRC) can offer several benefits
and drawbacks, which can have significant implications for the overall
performance and cost-effectiveness of the system.

Benefits of Open-Source Software Tools:

1. Cost-effective: Open-source software tools are usually free to
use, which can greatly reduce the cost of developing DT-HRC
systems.

2. Customizable: Open-source software tools are often highly cus-
tomizable, which can be beneficial for developing DT-HRC sys-
tems that meet specific requirements.

3. Collaborative: The open-source community provides a platform
for collaboration and knowledge-sharing, which can help accel-
erate the development of DT-HRC systems.

4. Extensible: Open-source software tools often provide extensible
APIs and plugins, which can help to add new functionality and
features to the DT-HRC systems.

Drawbacks of Open-Source Software Tools:

1. Lack of Support: Open-source software tools may not provide the
same level of technical support and maintenance as commercial
software tools.

2. Quality: The quality of open-source software tools can be vari-
able, as it depends on the contributions of the community, which
may be limited in scope and resources.

3. Compatibility: Open-source software tools may not be compat-
ible with proprietary systems and tools, which can limit the
integration and deployment of DT-HRC systems.

Benefits of Commercial Software Tools:

1. Technical Support: Commercial software tools usually provide
technical support and maintenance, which can help to resolve
any issues that arise during the development and deployment of
DT-HRC systems.

2. Quality: Commercial software tools are typically of higher qual-
ity, as they are developed and maintained by professional teams
with access to significant resources.

3. Integration: Commercial software tools are often compatible
with proprietary systems and tools, which can help to facilitate
the integration and deployment of DT-HRC systems.

Drawbacks of Commercial Software Tools:

(1) Cost: Commercial software tools are often expensive to pur-
chase and maintain, which can significantly increase the cost of
developing DT-HRC systems.

(2) Inflexibility: Commercial software tools may not be as flexi-
ble or customizable as open-source software tools, which can
limit the ability to develop DT-HRC systems that meet specific
requirements.

Fig. 10 shows a summary of the suggested strategy to import Human
Model in ROS. In MakeHuman, the human model can be exported in
a variety of file formats, including OBJ, COLLADA, and FBX. The OBJ
format is a popular choice for exporting models to ROS, as it is a simple,
text-based format that is easy to parse and convert.

4.6. Benefits of DT-HRC system

Digital twin based HRC (DT-HRC) systems offer a range of benefits,

including:
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Fig. 10. Process of creating a human model for visualization in RViz.
Fig. 11. The robot joint in HRC is traded off between safety and speed for the benefit of both production and a safe HRC.
1. Improved safety: DT-HRC systems allow for real-time monitoring
and control of HRI’s, reducing the risk of accidents and injury.
This is achieved through the use of safety-rated monitored stops,
power and force limiting, and other safety features that are
built into the digital twin. The level of safety and trust in a
collaborative setting, on the other hand, is determined by the
programmer who programs the robot. In the HRC environment,
one difficulty is the trade-off between robot velocity and safety.
Fig. 11 illustrates this trade-off. The higher the pace of the robot,
the faster a task may be completed, however this results in less
trust and increased risk for the operator. It is possible to figure
out the best way to ensure safety while reducing task cycle time
using the DT.

2. Collision Tests: This enables the testing of different scenarios
and configurations to assess the risk of collisions and prevent
accidents before the system is deployed in a real-world setting.
Additionally, DT-HRC systems can monitor HRI’s in real time,
providing real-time feedback and control over the system to re-
duce the risk of collisions. By incorporating safety features such
as safety-rated monitored stops and power and force limiting,
DT-HRC systems can significantly improve the safety of HRI’s
and enhance the reliability and effectiveness of collision testing.

3. Increased flexibility: DT-HRC systems provide a flexible platform
for HRC, allowing for the integration of new technologies, the
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addition of new tasks, and the adaptation of the system to
changing requirements.

4. Ergonomic Analysis: This enables designers and engineers to
optimize the design of the robot to reduce the risk of repetitive
strain injuries and other types of work-related musculoskeletal
disorders. DT-HRC systems can also provide real-time feedback
on the human body’s movements, allowing for the identification
and correction of any ergonomic issues that may arise during
HRI’s. By incorporating human models into the digital twin,
DT-HRC systems can provide an accurate representation of the
human body, improving the accuracy of ergonomic analysis and
reducing the risk of work-related injuries [98].

5. Control of Robots: Developing efficient robot control algorithms
involves significant human effort in robotic applications [99].
DT-HRC enables designers and engineers to optimize the robot’s
control program and test different scenarios in a simulated en-
vironment before deploying the robot in a real-world setting.
DT-HRC systems can also monitor the robot’s performance in
real-time and provide real-time feedback, allowing for the iden-
tification and correction of any control issues that may arise
during HRI’s. By incorporating human models into the digital
twin, DT-HRC systems can also take into account the human’s
movements and actions, allowing for the development of more
efficient and safe control programs. The use of DT-HRC systems
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Table 3
Overview of literature for the benefits of DT-HRC.

Application Ref. Summary

Safety

[100] For flexible robotized warehouses, this research suggests a ToM-based human intention estimation system. Using generalized Voronoi
diagram-based path planning, this observes human motion, or worker motion, and validates it in relation to the goal locations. The
proposed hidden Markov model framework then processes these data in order to estimate worker intentions in an online manner
that can adapt to changing circumstances. Experiments were conducted with a worker using Microsoft Hololens augmented reality
glasses in a real-world laboratory warehouse to evaluate the proposed intention estimation.

[101] A robot system can predict the planned activities of human workers in an HRC environment by classifying standing postures from
standing-pressure photographs, according to the current study. In order to achieve this, it investigates deep learning based on
standing-posture recognition and a way of fusing many recognition algorithms for HRC. Ten experimental subjects stood on a
pressure-sensing floor that was covered in thin-film pressure sensors in order to collect data on pressure distribution. Each
participant provided the pressure data for nine different standing positions. Seven classification methods were used to differentiate
between the human standing positions.

[102] This article suggests a kinematic control technique that upholds safety while preserving the robot’s highest degree of production.
The (potentially redundant) robot’s final motion is produced by an optimization-based real-time method, where safety is viewed as a
difficult constraint to satisfy. A dual-arm concept robot with seven degrees of freedom (DOF) per arm executing a manipulation task
is used to empirically evaluate the methodology.

Task planning

[40] It is suggested and integrated inside the Robot Operating System (ROS) framework to use an intelligent decision-making approach
that permits the assignment of human–robot tasks. The suggested approach makes it possible to assign sequential tasks to a robot
and a human in distinct workplaces. In order to raise the level of automation in manual or even hybrid assembly lines, the
emphasis is instead placed on the coexistence of humans and robots during the performance of sequential tasks. A human interacts
with a robot using body motions for controlling and directing purposes. The suggested framework is used to a scenario involving an
automotive industry’s manual assembly lines. The construction of a hydraulic pump is the main focus of an early design for a hybrid
assembly cell.

[103] The innovative idea put out in this paper is that a manufacturing cell’s production resources will be automatically planned and
coordinated by a digital twin created from a digital product description. In contrast to the general services provided by the
manufacturing cell, which make few assumptions about the type of product that will be constructed, the digital product description
is created by collaboration between an OEM designer and automated services provided by possible manufacturers.

[104] In this study, we introduce a cyber–physical testbed designed to let a team of humans and robots work together on a shared task in
a common area. A typical HRC situation, tabletop manipulation, can be implemented on the testbed. The testbed combines aspects
from the real and virtual worlds. In this study, we present the conclusions we reached after investigating task planning and
execution for human–robot teams and putting them into practice.

Testing and training

[105] The usage of a virtual reality digital twin of a physical layout is discussed in this research as a way to better understand how
people respond to both predictable and unanticipated robot motions. The usefulness of the Virtual Reality environment is examined
and validated using a variety of recognized measures as well as a newly created Kinetic Energy Ratio metric. It is hoped that virtual
reality digital twins would let future factories safely deploy human–robot collaborative tactics.

[106] The proposed approach first maps the DTs of industrial robots to actual robots so that users can see them in their AR glasses. To
synchronize the status of the robots in the twin, a multi-robot communication mechanism is being created and implemented in the
meantime. The robot motion planning also incorporates a reinforcement learning method to swap out the standard kinematics-based
robot movement with appropriate target placements.
can significantly improve the reliability and safety of the control
program and enhance the overall performance of the robot.

Furthermore, the detailed summary of the literature on benefits of
T-HRC is shown in Table 3.

.7. Control methods of HRC

Over time, there have been significant changes in how humans
nd robots interact. They began with straightforward physical interac-
ions utilizing simple devices like a mouse or keyboard, progressing to
he usage of touch screens as interactive interfaces later on. Thanks
o their increasing autonomy and the development of new software
nd hardware capabilities over the past few years, robots have be-
un to communicate with humans without difficulty using gestures or
oice [107].

As robots become more intelligent coworkers, their interactions
ith people have gradually transformed to more closely mirror human–
uman interactions [108]. Robot control techniques have been im-
acted by this progression as well. Additionally, the incorporation of
ybrid teams into industrial manufacturing processes has raised the
emand for more effective interfaces. There are several methods for
ontrolling robots for HRC, including:

1. Task-level control: This method involves controlling robots to
perform specific tasks, such as grasping and moving objects,
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based on predefined rules and conditions [109].
2. Motion control: This method involves controlling robots to plan
and execute safe and efficient motions to achieve a desired task,
taking into account the presence and movements of humans in
the workspace [110].

3. Imitation learning: This method involves controlling robots to
learn from human demonstrations, either through kinesthetic
teaching or by observing human actions in the environment
[111].

4. Reinforcement learning: This method involves controlling robots
to learn from trial-and-error by receiving rewards or penalties for
actions, which are used to improve their performance over time
[112].

5. Natural language programming: This method involves control-
ling robots using natural language instructions, such as spoken
or written commands, to perform tasks in a more intuitive and
user-friendly way [113].

6. Model Predictive Control (MPC): This method involves con-
trolling robots to continuously optimize their actions based on
a predictive model of the environment, taking into account
constraints and goals. This allows for real-time adaptation to
changes in the workspace [114].

7. Hybrid Position/Force Control: This method involves controlling
robots to use both position control, to ensure safe and precise
motion, and force control, to respond to unexpected contact or
interactions with humans [115].

8. Shared Autonomy: This method involves programming robots

to perform tasks in collaboration with humans, allowing both
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parties to share control and contribute their unique abilities and
expertise [116].

9. Human-Aware Motion Planning: This method involves control-
ling robots to take into account human comfort, safety, and
preferences when planning their motions and actions. This helps
to ensure that humans feel comfortable and safe when working
with the robot [117].

10. Multi-Agent Systems: This method involves controlling multiple
robots to work together in a coordinated manner, allowing for
more complex and efficient HRC scenarios [118].

5. State of the art hardware for HRC systems

The success of HRC also depends on the quality and type of hard-
ware used to build the robots. In this review, we will discuss the current
state of the art hardware for HRC.

5.1. Manipulators

Manipulators, also known as robotic arms, are the most commonly
used hardware for HRC. They are designed to assist human operators in
performing tasks that are physically demanding, dangerous, or repet-
itive. Manipulators are versatile tools that can be used in a variety
of applications, ranging from manufacturing and assembly to material
handling and inspection. In this section, we will discuss the current
state of manipulators for HRC in detail.

1. Actuation system: The actuation system is a crucial component
in robotic manipulators that facilitates movement by converting
electrical or mechanical signals. It consists of various elements
such as the motor, transmission system, and the end-effector,
which connects the robot to the object it is manipulating. Two
main types of actuators used in robotic manipulators are rigid
and soft actuators. Rigid actuators, typically made of hard mate-
rials, deliver high force and precision in their movements. Elec-
tric motors, hydraulic, and pneumatic actuators are some com-
mon examples of rigid actuators used in robotic manipulators.
In contrast, soft actuators, made of compliant and deformable
materials, have lower stiffness and are more versatile in their
movements. Examples of soft actuators include pneumatic artifi-
cial muscles, dielectric elastomer actuators, and shape-memory
alloys. These soft actuators are becoming increasingly popular
in robotic manipulators because they can mimic human muscles’
movements, enabling natural and safe interactions with humans.
Ultimately, the selection of rigid or soft actuators depends on the
specific application’s requirements.

2. Degrees of freedom: The degrees of freedom (DoF) of a manip-
ulator refers to the number of independent directions in which
it can move. The current state of manipulators for HRC includes
high degrees of freedom, ranging from 6 to 12 DoF, which allow
for greater flexibility and precision in task performance.

3. Precision: Precision is a critical factor in HRC, as it directly
affects the quality of the task being performed. The current
state of manipulators for HRC includes high precision, with
repeatability in the order of tens of micrometers, which allows
for accurate and consistent task performance.

4. Safety features: Safety is a key concern in HRC, as the presence
of human operators in close proximity to the robot increases the
risk of injury. The current state of manipulators for HRC includes
improved safety features, such as torque sensors and obstacle
detection systems, which allow the robot to respond to changes
in its environment and avoid potential hazards.

5. Collaborative capabilities: Collaborative capabilities refer to the
ability of the manipulator to interact and respond to the human
operator in real-time. The current state of manipulators for HRC
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includes the development of collaborative robots, also known
as cobots, which have been designed specifically for interaction
with human operators. Cobots have been equipped with safety
features and advanced control algorithms that allow for a safer
and more natural interaction between the human and the robot.

There are several types of manipulators that can be used in HRC,
each with its own strengths and weaknesses. Some of the most common
manipulators used in HRC include:

1. Articulated manipulators: Articulated manipulators, also known
as robotic arms, are the most commonly used type of manipu-
lator in HRC. They consist of several joints, allowing for a wide
range of motion and flexibility [119].

2. SCARA (Selective Compliance Assembly Robot Arm) manipu-
lators: SCARA manipulators are specialized manipulators that
are commonly used in assembly and pick-and-place applications.
They are known for their high precision and speed, making them
ideal for tasks that require repetitive movements [120].

3. Parallel manipulators: Parallel manipulators consist of several
parallel links that are connected to a fixed base. They are known
for their high rigidity, making them ideal for heavy-duty tasks
[121].

4. Mobile Robots: Mobile robots, equipped with wheels or tracks
for locomotion, are pivotal in HRC for their ability to navigate
and interact in diverse and dynamic environments. These robots
often incorporate advanced sensing and navigation systems, en-
abling them to adapt to changing surroundings and collaborate
with humans across various tasks. Their mobility makes them
suitable for scenarios where tasks are spread across different lo-
cations or involve navigating through cluttered spaces, offering
a flexible and versatile solution [122].

5. AGVs: AGVs represent a specialized category of mobile robots
designed for the efficient transport of materials within indus-
trial settings. These vehicles follow predefined paths or respond
to environmental cues, enhancing their precision and reliabil-
ity in material handling tasks. AGVs are particularly prevalent
in manufacturing and logistics, contributing to the automation
of material transport processes. The integration of AGVs in
HRC scenarios emphasizes their role in streamlining workflows
and collaborating with human operators to optimize operational
efficiency [123].

5.2. Wearables

Wearable technology (Wearables) is an emerging technology that
provides more immersive experiences when interacting with technol-
ogy, be it wristwatches, headsets or glasses. Wearable technology is
increasingly being used in HRC (HRC) to enhance the interaction
between humans and robots. The state-of-the-art wearables for HRC
include:

1. Exosuits: Exosuits are wearable robots that provide mechanical
assistance to the wearer. They are commonly used in HRC to
augment human strength and endurance, allowing the human
operator to perform tasks that would otherwise be too physically
demanding [124].

2. Virtual Reality (VR) Head-Mounted Displays (HMDs): VR HMDs
are used to provide the human operator with a virtual environ-
ment that they can interact with. In HRC, VR HMDs can be used
to provide the operator with a sense of presence and enhance
their ability to collaborate with the robot [125].

3. Augmented Reality (AR) Head-Mounted Displays (HMDs): AR
HMDs are used to display information and graphics in the
wearer’s field of view. In HRC, AR HMDs can be used to provide
the human operator with information about the task, such as
instructions and real-time feedback, as well as to enhance their

ability to collaborate with the robot [126].
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Fig. 12. HRC Framework for Wearable Sensors.
4. Gesture-Tracking Devices: Gesture-tracking devices, such as
gloves and hand-held controllers, are used to detect the move-
ments and gestures of the human operator. In HRC, gesture-
tracking devices can be used to provide the robot with informa-
tion about the operator’s intentions and movements, allowing it
to respond to their actions and collaborate with them [127].

5. Wearable Sensors: Wearable sensors, such as accelerometers and
gyroscopes, are used to detect the movements and position of the
human operator. In HRC, wearable sensors can be used to pro-
vide the robot with information about the operator’s movements,
allowing it to respond to their actions and collaborate with them
[128].

The wearable sensors based framework for HRC system is presented
in Fig. 12. As, Wearable technology is highly useful in enhancing the
interaction between humans and robots in HRC (HRC) as it provides
real-time information about the human operator’s movements and in-
tentions. This information allows the robot to respond to their actions,
avoid potential hazards and augment their strength and endurance.
The use of wearables such as exosuits, VR/AR head-mounted displays,
gesture-tracking devices, and wearable sensors enhances the ability of
the human operator to collaborate with the robot and perform tasks
more efficiently. In conclusion, wearables play a crucial role in HRC
by providing a new level of interaction between humans and robots,
making the collaboration more effective and safe.

5.3. Sensors

In HRC, sensors play a critical role in ensuring the safety and
accuracy of the task being performed. The state-of-the-art sensors for
HRC include:

1. Force/Torque Sensors: Force/torque sensors are used to detect
the force and torque being applied by the robot, allowing it
to respond to changes in its environment and avoid potential
hazards. These sensors provide real-time feedback to the robot’s
control system, allowing it to adjust its movements accordingly.

2. Vision Sensors: Vision sensors, such as cameras and lidars, are
used to provide the robot with a visual representation of its
20
environment. They allow the robot to detect obstacles, track hu-
man operators, and perform tasks that require visual recognition,
such as inspection and assembly.

3. Proximity Sensors: Proximity sensors, such as infrared sensors
and ultrasonic sensors, are used to detect the presence of objects
and humans in the vicinity of the robot. These sensors are critical
for ensuring the safety of the human operator, as they allow
the robot to respond to changes in its environment and avoid
potential hazards.

4. Tactile Sensors: Tactile sensors, also known as touch sensors, are
used to detect physical contact with objects and humans. These
sensors provide the robot with a sense of touch, allowing it to
respond to physical interactions and perform tasks that require
a delicate touch, such as material handling and manipulation.

5. Motion Sensors: Motion sensors, such as accelerometers and
gyroscopes, are used to detect the motion of the robot and its
environment. These sensors provide the robot with information
about its orientation and movements, allowing it to respond to
changes in its environment and maintain its stability.

5.4. Human–robot interfaces

Human–robot interfaces (HRIs) are the methods and technologies
that enable humans and robots to communicate and interact with
each other. HRIs are critical in HRC (HRC) as they allow the human
operator to control the robot and provide it with information about its
environment. The following are some of the key components of HRIs
in HRC:

1. Input Devices: Input devices are the methods by which hu-
mans can communicate their intentions and actions to the robot.
Examples of input devices in HRC include buttons, joysticks,
keyboards, and gesture-tracking devices.

2. Output Devices: Output devices are the methods by which the
robot communicates its status and information to the human
operator. Examples of output devices in HRC include displays,
lights, audio, and haptic feedback.

3. Human–Machine Interfaces (HMIs): HMIs are the graphical in-
terfaces that enable humans to interact with the robot. HMIs can
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be as simple as a few buttons or as complex as a full-fledged
graphical user interface.

4. Robotics Operating Systems (ROSs): ROSs are the underlying
software systems that manage the communication between the
human operator and the robot. ROSs provide the necessary
infrastructure for HRC, including the ability to transmit and
receive information, manage sensor data, and control the robot’s
movements.

5. Natural Language Processing (NLP): NLP is the technology that
allows the human operator to communicate with the robot using
natural language, such as speech or text. NLP enables the human
operator to interact with the robot in a more intuitive and
user-friendly manner.

In conclusion, the current state of hardware for HRC is constantly
volving, with a focus on improving safety, precision, and the quality of
RI. However, there is still much room for improvement, particularly in

he areas of safety, usability, and cost-effectiveness. As HRC continues
o gain popularity, it is likely that we will see further advancements in
he hardware used for this field.

. Artificial intelligence and machine learning

The key learning mechanisms used by the publications reviewed
n this study are briefly discussed in the section that follows. The
ajority of machine learning (ML) and its applications are based on

he three methodologies that have been outlined. Following a brief
ntroduction, examples of several HRC applications in industry that
ave been documented in literature are used to survey various learning
ethodologies.

.1. Supervised learning

Supervised learning is a type of machine learning where the al-
orithm trains on a labeled dataset, consisting of input/features and
heir corresponding outputs. The goal of the algorithm is to learn
he mapping between inputs and outputs in order to make accurate
redictions on new, unseen data. This is achieved by minimizing the
ifference between the predictions made by the algorithm and the
ctual outputs in the training data [129].

Convolutional neural networks (CNN) [101,130], decision trees
131], k-nearest neighbors [132], and recurrent neural networks (RNN)
re examples of common supervised learning techniques used in digital
wins. Data labeling can be an expensive operation in real life. To pro-
uce a model with high prediction accuracy, the majority of supervised
earning algorithms need a significant amount of labeled data during
he training phase. In general, more data are required to give useful
onclusions the more complicated the design is. The choice of feature
ectors and the precision of labeling affect the outcomes of supervised
earning algorithms.

.2. Unsupervised learning

Unsupervised learning is a type of machine learning where the
lgorithm trains on an unlabeled dataset, meaning that the desired
utputs or ‘‘labels’’ are not known. The goal of unsupervised learning
s to identify patterns or structures in the data without the guidance
f labeled outputs. This is useful for exploring and understanding
omplex datasets, as well as for dimensionality reduction and data
isualization [133].

Principle-component-analysis (PCA) [134,135], k-means [136],
enerative adversarial network (GAN) [137], and autoencoders [138]
re all clustering algorithms that use unlabeled data at the training
tage and are therefore considered to be a form of unsupervised learn-
ng. The fact that the number of clusters is frequently unknown a priori
resents one of the difficulties in employing unsupervised learning
echniques. Euclidean, cosine, and Gaussian distance are the three
etrics used in clustering algorithms to evaluate similarity, but it is
ot always clear which one is the best fit for a particular task.
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6.3. Reinforcement learning

Reinforcement learning is a type of machine learning where an
agent learns to make decisions by performing actions in an environment
and receiving feedback in the form of rewards or penalties. The goal of
the agent is to maximize its cumulative reward over time. In reinforce-
ment learning, the learning process is driven by trial-and-error, where
the agent learns from its experiences and improves its decision-making
strategy over time [139].

To improve the process of making decisions for conveyor systems,
box sorting, and other DT scenarios, researchers have implemented
algorithms of reinforcement-learning such as Q-learning [140], deep
q-learning [141,142]. The accuracy of data logging and the selection
of reward structures typically have a significant impact on the effec-
tiveness of a reinforcement learning system. During training, logging
to the wrong references could corrupt the data and cause the system to
crash.

6.4. Applications of AI/ML in HRC systems

The goal of HRC is realized by the human and robot agents hav-
ing good communication. Through the exchange of forces, there is
explicit and intentional physical involvement in physical HRC. In order
to anticipate human intents, the robot measures these pressures and
modifies its speed, trajectory, and movements accordingly. No deliber-
ate physical contact is made during contactless collaboration; instead,
communication for task coordination is accomplished through direct
methods like gestures and vocal commands as well as indirect methods
like human motion intention prediction [143].

For direct communication, there are numerous input channels, or
modalities, including eye contact, gestures, vocal commands, and facial
expressions [144]. Communication is more dependable and the system
as a whole is more robust when there are complementary input modes
that are human-derived. These inputs provide the robot with signals
for the task at hand, allowing it to learn it more quickly or correct
itself. For improved HRC and Human prediction, multi-modal fusion
has been investigated [145,146]. In a collaborative situation, semantics
(labeling items in the robot environment) is a useful input for the
robot [147].

1. Hand Gestures: Due to the fact that hand gestures are a common
and natural way for people to express themselves and can be
distinguished from human poses, they are a powerful and ef-
fective form of input from the human operator for a robot in
an industrial setting [148]. For a straightforward collaborative
assembly activity, the study [149] employing the hand gesture-
based robot program builder software MEGURU exceeded the
usage of the conventional teach pendant in terms of command
simplicity and operating time. The classification of gestures in
HRC according to utility is shown in [150]. A framework of
the modules needed for the detection and recognition of human
gestures is presented in the surveys [151,152].
Hand gesture recognition has been done using neural networks
[153,154], neurofuzzy inference system-based classifiers [155],
and [156] scenarios built for HRC. Gesture mapping is the last
phase, in which gestures are identified, converted into instruc-
tions or feedback, and then communicated to the robot.

2. Voice Command: In the process of learning by demonstration, a
human operator performs a task or activity, which the robot then
observes and imitates. Natural language commands, according to
researchers in [145], would significantly boost the effectiveness
of the order to the robot since they are intuitive for the opera-
tor while also being able to include complex instructions and
parameterizations.
Using sequence-to-sequence learning, researchers created a
novel bidirectional mapping between human motion and natural
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language [145]. Mater Motor Map was used to represent the
motion of the entire human body in joint space (MMM). The
mapping could produce semantically rich and syntactically ac-
curate descriptions of motions that were seen in people, as well
as produce distinct motions from descriptions in plain language.
Researchers [157] created a semantic multimodal translator for
the H2020 FourByThree project that merged gesture- and voice-
based requests through a ‘‘fusion engine’’ to provide trustworthy
instructions for a cooperative deburring operation. The authors
of [158] demonstrated that speech and gesture inputs together
had a greater detection rate (91%) than each of the modes alone
(56% gesture and 83% voice). HMMs were used to recognize
gestures, and SVM was used in the fusion engine to combine
modes and categorize inputs.

3. Gaze: When a robot and a human partner are working together
on a job, the robot may use clues from the human partner’s gaze
to help predict their intentions and take turns. This technique is
known as visual focus of attention (VFOA). Due to the high cost,
intrusive nature, and general lack of natural engagement with
eye tracking equipment, it is challenging to detect and analyze
eye movements. A method for recognizing gaze is through head
posture detection and interpretation using machine vision; for
instance, HMMs are used to interpret gaze in a specific situ-
ation [159]. A dynamic mapping of gaze used previous head
postures.
While the robot’s gaze can be utilized as an input to facilitate
collaboration, the opposite was investigated by employing a re-
inforcement learning (RL) framework based on neural networks
to control the robot’s gaze in a busy environment where many
people are speaking [160].

4. AR/VR: Virtual Reality (VR) and Augmented Reality (AR) tech-
nologies have shown great promise in enhancing the control
of robots in Human–Robot Collaboration (HRC). In VR-based
control, a human operator can wear a VR headset that provides
them with a 3D virtual environment [161]. This environment
can be used to simulate the manufacturing process, allowing the
operator to interact with the robots in a natural and intuitive
way. The operator can manipulate objects in the virtual environ-
ment, and the movements are transferred to the real-world robot
in real-time. AR-based control, on the other hand, involves the
use of cameras and sensors that track the operator’s movements
and provide them with visual feedback through an AR headset.
The technology can also be used to overlay useful information,
such as instructions, machine settings, and other relevant data,
onto the real-world environment. VR/AR-based control of robots
in HRC can improve the operator’s situational awareness, en-
hance their ability to control the robot, and reduce the need for
complex programming or manual input [162]. This can improve
the efficiency and effectiveness of the manufacturing process
while reducing the risk of errors or accidents.

7. Integrated synergy of digital twin, collaborative robots, aug-
mentation and AI in industry 5.0

The exploration of integrative synergies in Industry 5.0, as high-
lighted in the paper, presents a groundbreaking shift in manufacturing
paradigms. This shift is not merely technological but fundamentally
human-centric, intertwining advanced digital capabilities with a pro-
found respect for human skills, creativity, and ethical considerations.

• Deepening Human–Machine Collaboration The evolution of man-
ufacturing in the Industry 5.0 era is characterized by a nuanced
synergy between humans and machines. Unlike previous indus-
trial phases where machines often replaced human labor, Industry
5.0 envisions a collaborative ecosystem. In this setting, machines,
especially collaborative robots (cobots), are designed not just to
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execute tasks but to augment human capabilities. This collabo-
ration goes beyond physical assistance; it encompasses cognitive
and creative synergies where human decision-making is enhanced
by AI’s analytical prowess. This interplay significantly uplifts the
production process, making it not only more efficient but also
more intuitive and adaptable to human needs and creativity.

• Elevating the Role of Humans in Technological Narratives A cen-
tral tenet of Industry 5.0 is its emphasis on human involvement
and experience in technological narratives. The approach diverges
from viewing technology as a standalone driver of progress to
seeing it as a tool that must serve and enhance human potential.
In this context, humans are not passive recipients of technological
innovation but active participants and shapers of technological
ecosystems. This human-centric focus ensures that technological
advancements align with enhancing the quality of life, work
satisfaction, and overall wellbeing, thereby fostering an inclusive
and sustainable industrial future.

• Bridging Digital and Physical Realms through Digital Twins Dig-
ital twins represent a cornerstone technology in realizing these
synergies. By creating dynamic virtual models of physical sys-
tems, digital twins enable a deep understanding of complex man-
ufacturing processes. This understanding is crucial for optimizing
human–robot interactions, facilitating predictive maintenance,
and enhancing overall system resilience. Digital twins serve as
a bridge between the digital and physical worlds, offering a
platform where human workers can interact with complex data
and simulations in a user-friendly manner, thus democratizing
access to advanced technological insights.

• Sustainable and Ethical Considerations The integrative approach
of Industry 5.0 also firmly embeds sustainability and ethics into
the manufacturing process. By leveraging smart technologies and
AI, this new industrial model seeks to minimize environmen-
tal impacts, promote resource efficiency, and support circular
economy principles. This approach extends beyond environmen-
tal considerations to encompass ethical manufacturing practices,
ensuring fair labor practices and prioritizing the wellbeing of
workers. Such an approach not only aligns with global sustain-
ability goals but also enhances the social license to operate for
businesses in a world increasingly conscious of environmental and
ethical issues.

• Dynamic Adaptability to Emerging Challenges The dynamic na-
ture of Industry 5.0, underpinned by its integrative synergies,
positions the manufacturing sector to rapidly adapt to changing
global challenges, market demands, and consumer preferences.
This adaptability is essential in an era of rapid technological
change and global uncertainties. The fusion of human creativity
with machine efficiency creates a manufacturing landscape that is
not only resilient but also capable of innovating and responding
to new challenges and opportunities with agility.

8. Discussion and future directions

Smart manufacturing involves the integration of advanced tech-
nologies to optimize the manufacturing process. Digital twin, HRC,
and machine learning are key technologies in industry 5.0 that can
contribute to the realization of smart manufacturing. When these tech-
nologies are combined, they create a powerful synergy that can enhance
manufacturing operations in a number of ways.

Digital twin technology involves the creation of a virtual replica of
a physical product, system, or process. This technology allows manu-
facturers to simulate and optimize the performance of their products
and processes in a virtual environment. By creating a digital twin
of a manufacturing system, manufacturers can monitor and control
the system’s performance, predict potential issues, and optimize the

system’s efficiency. In addition, digital twin technology can be used to
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create virtual models of products, which can be used for testing and
validation before physical prototypes are produced.

HRC involves the integration of robots into the manufacturing
process, while working alongside human workers. This collaboration
can enhance the efficiency, safety, and quality of manufacturing op-
erations. Robots can handle repetitive and dangerous tasks, freeing
up human workers to focus on more complex and creative tasks. In
addition, robots can work in hazardous environments, reducing the risk
of workplace injuries. HRC can also increase productivity, as robots can
work continuously without the need for breaks.

Industry 5.0 is a manufacturing paradigm that emphasizes the inte-
gration of advanced technologies with human workers. This paradigm
aims to enhance the capabilities of human workers, while leverag-
ing the power of advanced technologies. Industry 5.0 emphasizes the
importance of human skills, such as creativity, problem-solving, and
decision-making, in the manufacturing process. This paradigm involves
the use of advanced technologies, such as robotics, artificial intelli-
gence, and the Internet of Things (IoT), to enhance the productivity,
quality, and efficiency of manufacturing operations.

Machine learning is a subset of artificial intelligence that involves
the development of algorithms that can learn from data and improve
their performance over time. Machine learning can be used in the man-
ufacturing process to optimize operations, reduce waste, and improve
quality. Machine learning algorithms can analyze data from sensors and
other sources to identify patterns and anomalies in the manufacturing
process. This information can be used to optimize the performance of
machines, predict maintenance needs, and reduce downtime.

The synergy of these technologies in smart manufacturing can pro-
duce a number of benefits. By using digital twin technology, manu-
facturers can simulate and optimize their processes before they are
implemented, reducing the risk of costly mistakes. HRC can enhance the
efficiency and safety of manufacturing operations, while Industry 5.0
can leverage the skills and expertise of human workers to improve the
performance of advanced technologies. Machine learning can optimize
the manufacturing process by identifying patterns and anomalies that
can be used to improve efficiency and quality.

8.1. Benefits

The synergy of the digital twin, HRC, and machine learning in
industry 5.0 can offer numerous benefits to smart manufacturing. Here
are some ways in which this synergy can be useful:

1. Optimize Manufacturing Operations: By using digital twin tech-
nology, manufacturers can simulate and optimize their processes
before they are implemented. This allows them to identify poten-
tial issues, and test different scenarios without risking the costly
mistakes that might occur in a physical environment. This can
help manufacturers improve the efficiency and productivity of
their processes, and minimize errors and rework.

2. Improve Quality: Machine learning algorithms can be used to
analyze data from sensors and other sources to identify patterns
and anomalies in the manufacturing process. This information
can be used to optimize the performance of machines, predict
maintenance needs, and reduce downtime. The use of digital
twin technology can also help manufacturers identify potential
quality issues early on, allowing them to take corrective actions
to prevent defects and improve overall product quality.

3. Enhance Safety: HRC can help reduce the risk of workplace
injuries by allowing robots to handle repetitive and hazardous
tasks. This can free up human workers to focus on more complex
and creative tasks that require human expertise. By integrating
safety protocols and sensors, robots can work safely alongside
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human workers, reducing the risk of accidents and injuries.
4. Improve Productivity: By combining the power of advanced
technologies with the skills and expertise of human workers,
Industry 5.0 can help manufacturers improve their productivity.
Human workers can leverage their skills in creativity, problem-
solving, and decision-making to work alongside robots and op-
timize manufacturing operations. This can increase throughput,
reduce lead times, and lower costs.

5. Predictive Maintenance: The use of machine learning algorithms
in conjunction with sensors can help predict when maintenance
will be required for machines. This can help to reduce downtime
and improve the efficiency of the manufacturing process. The
information obtained from predictive maintenance can be used
to optimize the performance of machines, predict maintenance
needs, and reduce downtime.

6. Continuous Improvement: The combination of digital twin tech-
nology, Industry 5.0, and machine learning can help manufac-
turers achieve continuous improvement in their manufacturing
processes. By analyzing data from sensors and other sources,
machine learning algorithms can identify areas of the process
that can be optimized. These optimizations can then be im-
plemented in the digital twin, and the resulting improvements
can be tested and validated before they are implemented in the
physical manufacturing process.

8.2. Challenges

While the synergy of digital twin, HRC, and machine learning in
industry 5.0 offers many benefits for smart manufacturing, there are
also some challenges that need to be addressed. Here are some of
the challenges that manufacturers may face when implementing these
technologies:

1. Data Security: The use of digital twin technology, machine learn-
ing, and Industry 5.0 involves the collection and storage of large
amounts of sensitive data. Manufacturers must ensure that the
data is properly secured and protected from unauthorized access
or cyber-attacks.

2. Integration: Integrating these technologies with existing manu-
facturing processes and systems can be challenging. This may
require significant changes to the manufacturing processes, hard-
ware, and software.

3. High Initial Investment: The initial investment required to imple-
ment these technologies can be significant. This can be a major
hurdle for small and medium-sized manufacturers who may not
have the financial resources to make such investments.

4. Skill Gaps: The successful implementation of these technologies
requires skilled professionals who can operate and maintain the
systems. However, there is a shortage of skilled workers in these
areas, and the cost of hiring and training such personnel can be
high.

5. Standardization: As these technologies are still relatively new,
there is a lack of standardization in terms of data formats,
protocols, and interfaces. This can make it difficult to integrate
different systems and technologies.

6. Ethical Considerations: The use of robotics in the workplace
raises ethical considerations, such as job displacement, and the
need to protect human workers from accidents and injuries.
These issues must be addressed to ensure that the implementa-
tion of these technologies is socially responsible.

7. Resistance to Change: The introduction of new technologies can
meet resistance from workers who are used to traditional ways
of working. Workers may feel threatened by the prospect of
automation and may require significant training to adapt to the

new technologies.
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8.2.1. Data security
In the context of Industry 5.0, the challenge of data security is mul-

tifaceted, given the extensive collection, transmission, and storage of
sensitive information associated with digital twin technology, human–
robot collaboration (HRC), and machine learning. The sheer volume
of data, encompassing proprietary manufacturing processes, product
designs, and operational parameters, presents a substantial risk if not
adequately protected. Unauthorized access, cyber-attacks, and breaches
could lead to severe consequences, including intellectual property theft
and operational disruptions.

The solution to this challenge involves a comprehensive and proac-
tive approach. Robust encryption mechanisms must be implemented to
safeguard data both in transit and at rest, complemented by strict access
controls that restrict data access to authorized personnel based on their
roles. Network security measures, including firewalls and intrusion
detection systems, are critical to monitor and secure communication
channels. Regular security audits and vulnerability assessments are
imperative, accompanied by timely application of security patches and
updates. Employee training on cybersecurity best practices is vital,
emphasizing secure password management and recognition of phishing
attempts. Additionally, having a well-defined incident response plan
ensures a swift and effective response in case of a security breach.
Data backups, secure third-party collaborations, regulatory compliance,
continuous monitoring, and fostering a security culture within the
organization further contribute to a robust data security framework.
Embracing these measures collectively establishes a resilient defense
against potential threats and aligns with the evolving landscape of
technological advancements and regulatory requirements.

8.2.2. Integration
The integration challenge in the Industry 5.0 landscape arises from

the necessity to harmonize digital twin technology, human–robot col-
laboration (HRC), and machine learning with existing manufacturing
processes and systems. This complexity stems from the diverse nature
of these technologies, each with its unique requirements and interfaces.
The risk lies in the potential disruption of established workflows and
the need for substantial changes in hardware, software, and operational
procedures. The solution to the integration challenge demands a metic-
ulous and phased approach. First and foremost, manufacturers should
develop a well-thought-out integration plan that outlines the step-by-
step incorporation of new technologies. Collaboration with technology
providers and experts is essential to ensure a seamless integration
process. This might involve the deployment of modular solutions that
allow incremental changes, reducing the overall impact on operations.

Moreover, organizations should invest in comprehensive training
programs for their workforce to facilitate a smooth transition. Train-
ing initiatives should encompass both technical aspects, ensuring that
employees can operate new technologies effectively, and soft skills
to manage the cultural shift associated with technological adoption.
Continuous communication and feedback loops between management
and employees are crucial to address concerns and facilitate a collabo-
rative approach to change. Considering the potential financial burden
of integrating these technologies, manufacturers can explore phased
implementation strategies to manage costs. This involves prioritiz-
ing critical components and gradually expanding integration efforts
over time. Government incentives and funding opportunities may also
alleviate the financial strain, particularly for smaller manufacturers.
Ultimately, successful integration requires a holistic perspective that
considers not only the technical aspects but also the organizational
culture and human factors. By strategically planning, collaborating with
experts, investing in training, and adopting a phased implementation
approach, manufacturers can overcome the integration challenge and
unlock the full potential of Industry 5.0 technologies.

8.2.3. High initial investment
The high initial investment required for the implementation of dig-
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ital twin technology, human–robot collaboration (HRC), and machine
learning in Industry 5.0 poses a significant hurdle for manufacturers,
especially for small and medium-sized enterprises (SMEs) with limited
financial resources. The comprehensive nature of these technologies,
involving hardware, software, training, and infrastructure upgrades,
can strain budgets and deter potential adopters. To address this chal-
lenge, manufacturers can explore several strategic approaches. Firstly,
careful financial planning and analysis are essential. This includes
conducting a thorough cost–benefit analysis to identify areas where the
initial investment can yield the most significant returns. Prioritizing
technology adoption based on immediate business needs and long-
term strategic goals allows for a phased implementation, reducing the
immediate financial burden.

Collaboration with government agencies, industry consortia, and
research institutions can provide access to funding, grants, and in-
centives aimed at promoting the adoption of advanced manufacturing
technologies. Governments often recognize the importance of techno-
logical innovation in boosting economic growth and may offer financial
support to organizations embracing Industry 5.0 initiatives. Addition-
ally, manufacturers can consider alternative financing models, such
as leasing or partnerships with technology providers. Leasing allows
organizations to access the latest technologies without the burden
of outright purchases, spreading costs over time. Partnerships with
technology vendors can involve shared investments, with the vendor
having a stake in the successful implementation of their solutions.
Furthermore, fostering a culture of innovation within the organization
can encourage employees to contribute ideas for cost-saving measures
and efficiency improvements. Incentivizing innovation and efficiency
gains can result in creative solutions that reduce the overall financial
impact of adopting Industry 5.0 technologies.

8.2.4. Skill gaps
The challenge of skills gaps in the context of implementing digi-

tal twin technology, human–robot collaboration (HRC), and machine
learning within Industry 5.0 is a critical concern. The successful de-
ployment of these technologies necessitates a workforce equipped with
specialized skills in data science, artificial intelligence, robotics, and
advanced manufacturing. However, there is a notable shortage of pro-
fessionals with expertise in these areas, presenting a barrier to effective
implementation. To address the skills gaps challenge, proactive mea-
sures are essential. First and foremost, organizations should invest
in comprehensive training programs for existing employees. This in-
cludes upskilling initiatives to enhance the proficiency of the current
workforce in emerging technologies. Collaborating with educational
institutions and training providers can facilitate tailored programs that
align with the specific needs of the industry.

In addition to upskilling, organizations should focus on attract-
ing new talent with the required expertise. This involves reevaluat-
ing recruitment strategies to identify candidates with backgrounds in
data science, artificial intelligence, and robotics. Offering competitive
salaries, benefits, and a stimulating work environment can make man-
ufacturing industries more appealing to skilled professionals. Further-
more, fostering a culture of continuous learning within the organization
is crucial. Encouraging employees to engage in ongoing professional
development, attend workshops, and pursue relevant certifications en-
sures that the workforce remains adaptable to evolving technological
landscapes. Partnerships with academic institutions, research orga-
nizations, and industry consortia can facilitate the development of
specialized training programs. These partnerships not only provide
access to a pool of skilled individuals but also contribute to the overall
growth and development of the industry.

8.2.5. Standardization
The challenge of standardization in the integration of digital twin

technology, human–robot collaboration (HRC), and machine learning
within Industry 5.0 is a pivotal concern. The lack of uniformity in
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data formats, communication protocols, and interfaces hinders interop-
erability between various systems and technologies. This fragmentation
can lead to inefficiencies, increased development complexity, and ob-
stacles in achieving seamless connectivity across the manufacturing
ecosystem. To overcome the standardization challenge, industry stake-
holders must collectively work towards establishing common frame-
works and guidelines. Engaging in collaborative efforts with industry
associations, standardization bodies, and technology consortiums can
pave the way for the development of universally accepted standards.
These standards should address data formats, communication protocols,
and interfaces, ensuring compatibility and ease of integration between
different technologies and systems.

Furthermore, industry leaders and organizations can actively par-
ticipate in the standardization process. Sharing insights, best practices,
and lessons learned from practical implementations contribute to the
formulation of standards that are both practical and effective. Advocat-
ing for the adoption of these standards within the industry helps create
a common language for technology integration. The establishment of
open standards encourages innovation and competition while miti-
gating the risks associated with proprietary solutions. Manufacturers
should prioritize technologies that adhere to or contribute to estab-
lished standards, fostering an ecosystem where diverse solutions can
seamlessly coexist. Continuous monitoring and adaptation are essential
as technology evolves. Regular reviews and updates of standards ensure
they remain relevant and effective in addressing emerging challenges.
As technologies advance, industry stakeholders should actively con-
tribute to the evolution of standards, ensuring they keep pace with the
dynamic nature of the Industry 5.0 landscape.

8.2.6. Ethical considerations
In the era of Industry 5.0, the seamless integration of digital twin

technology, human–robot collaboration (HRC), and machine learn-
ing brings forth a set of ethical considerations that demand careful
navigation. The foremost challenge revolves around the potential job
displacement caused by increased automation. This raises concerns
about job insecurity and economic disparities. Simultaneously, the de-
ployment of robots and autonomous systems introduces safety risks in
the workplace, necessitating thoughtful strategies to prevent accidents
and injuries. To address these challenges, organizations must invest
in reskilling programs, ensuring employees acquire competencies that
complement and enhance automated processes. Additionally, stringent
safety protocols and risk assessments are paramount to safeguard hu-
man workers. Another ethical concern arises from the extensive use
of data in Industry 5.0, prompting questions about privacy, consent,
and responsible data handling. Robust data governance frameworks
and privacy policies are essential, emphasizing transparency in data
collection, storage, and usage. Employing anonymization and encryp-
tion techniques ensures the ethical treatment of sensitive information,
aligning with data protection regulations such as GDPR.

In terms of social responsibility, organizations must consider the
broader societal impact of their actions. This involves addressing wor-
ries related to income inequality, access to opportunities, and the
ethical deployment of advanced technologies in different communities.
Adopting ethical frameworks prioritizing fairness, transparency, and
accountability is crucial. Engaging with local communities and seek-
ing diverse stakeholder input ensures that technological deployment
aligns with societal values and needs. Transparency and explainabil-
ity in decision-making processes of machine learning systems present
another challenge. The opacity of advanced algorithms raises con-
cerns about accountability. Therefore, prioritizing explainable AI mod-
els and transparent practices in algorithmic decision-making enhances
accountability and builds trust among employees and the public.

8.2.7. Resistance to change
A significant challenge in the implementation of digital twin tech-
25

nology, human–robot collaboration (HRC), and machine learning
within Industry 5.0 is the resistance to change that often manifests
among the workforce. The introduction of these new technologies
disrupts familiar workflows, instilling apprehension and fear of job
displacement among employees. To address this challenge, organi-
zations need a multifaceted approach to change management. Clear
and inclusive communication is paramount, elucidating the rationale
behind the technological shift, outlining the associated benefits, and
assuring employees of the support mechanisms in place. Actively in-
volving employees in decision-making and seeking their input fosters
a sense of ownership and diminishes resistance. Additionally, compre-
hensive training programs are essential to equip the workforce with
the necessary skills, addressing concerns related to unfamiliarity and
uncertainties about adaptation. A focus on not just technical aspects but
also the broader implications of the changes helps bridge the skills gap
and mitigate resistance. The organizational culture plays a pivotal role,
and leadership must cultivate an environment that values innovation,
experimentation, and staying at the forefront of technological advance-
ments. By implementing changes gradually, through phased strategies,
and incorporating feedback mechanisms, organizations can create an
environment where employees feel empowered, valued, and motivated
to embrace the transformative technologies associated with Industry
5.0.

8.3. Future directions

This paper provides a strong foundation for advancing research and
exploration into the possibilities and application areas of Industry 5.0
technologies. However, there remain open questions and challenges
that warrant further investigation. On the data security front, future
work can involve designing comprehensive governance frameworks
addressing the volume and velocity of data associated with digital
twins, cobots, and AI systems. Encryption mechanisms tailored for
manufacturing data need to be developed, along with access controls,
employee training, and prompt security updates. Additionally, over-
coming integration complexities across legacy equipment, emerging
modular solutions, proprietary systems, and standardized protocols
requires a concerted focus. Research into plug-and-play architectures,
extensible APIs, and adaptable interfaces can aid integration. Collabo-
ration with industrial consortia is key for harmonizing standards central
to interoperability.

Regarding the skills gap, nuanced workforce development initia-
tives through public–private partnerships are imperative. Navigating
job transitions and advancing digital/technical literacy via immer-
sive training environments can alleviate displacement risks and widen
talent pools. Supporting reskilling/upskilling needs of incumbent work-
forces is equally essential. Moreover, ethical dimensions regarding
human–AI trust, algorithmic accountability, and collaborative auton-
omy necessitate further analysis. As machine intelligence intensifies,
maintaining holistic wellbeing of human partners emerges as a priority.
Exploring the adjustable autonomy spectrum and human-centered ML
can unlock symbiotic potentials. Additionally, emerging capabilities in
augmented environments, wearable interfaces, and visualization tech-
nologies present promising opportunities. Virtual simulations, digital
workflows, multi-modal interactions, and AR/VR spaces can elevate
human creativity and oversight across production cycles. Capitalizing
on these areas can smoothen Industry 5.0 transformations.

9. Conclusions

In this work, a systematic review was presented which explores the
synergies between collaborative robots, digital twins, augmentation,
and industry 5.0 for smart manufacturing. To the best of the author’s
knowledge, this is the first attempt in the literature to give a full
overview of the symbiosis between Industry 5.0’s different components.

First, a detailed review was outlined on HRC which includes the

complexities of manufacturing, collaborative robots, barriers of HRC
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systems, the complexity of HRC systems, and how digital twin will
address these complexities. After that, industry 5.0 was discussed in
detail. A detailed review was presented of applications in Industry 5.0
and enabling technologies of Industry 5.0. In the next step, a review
was discussed on the digital twin-driven HRC system with phases,
fundamental blocks, and software for digital twin-based HRC systems.
Also, a review of the control methods of HRC was given.

Successively, a state-of-the-art review was presented on the hard-
ware requirements for the accomplishment of HRC systems. These
hardware requirements include manipulators, wearables, sensors, and
human–robot interfaces. After that, a detailed review of artificial intelli-
gence and machine learning in HRC was provided. Finally, a discussion
on the benefits and challenges was provided. In particular, the potential
benefits of these technologies include improved efficiency, produc-
tivity, and cooperation, as well as an increased product quality and
personalized customization. Nevertheless, implementing Industry 5.0
poses difficulties, such as the need for upskilling and reskilling of the
workforce, cybersecurity issues, and ethical questions related to the use
of AI and robotics. Overall, the human-centered approach of Industry
5.0 presents a potential route towards a sustainable and inclusive
manufacturing future. Future research may expand on the insights
offered in this analysis to better investigate the possibilities of Industry
5.0 and solve the challenges that may occur during its implementation.
This study aims at broadening worldwide efforts to realize the wide
range of application possibilities given by Industry 5.0, as well as to
provide an up-to-date reference as a cornerstone for future research and
development in this domain.
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