
SoftwareX 26 (2024) 101714

A
2

O

C
n
c
P
a

b

c

A

K
E
C
L
O

1

o
c
d
C
i
p
p
b

h
R

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

loudEdgeAssetOptimizer: Tool to optimize the Cloud-Edge computing
etwork resources at given requirements of processing delay, battery
apacity and cost
aulius Tervydis a,b,∗, Linas Svilainis a, Žilvinas Nakutis a, Alberto Rodríguez-Martínez c

Kaunas University of Technology, Studentu 50, LT-51368 Kaunas, Lithuania
Kaunas University of Applied Engineering Sciences, Tvirtoves al. 35, LT-50155 Kaunas, Lithuania
Communications Engineering Dept., UMH, Avda. Universidad S/N, 03202 Elche, Spain

R T I C L E I N F O

eywords:
dge
loud computing
oad balancing
ptimization

A B S T R A C T

CloudEdgeAssetsOptimizer is a software tool designed to evaluate and optimize the assets within a Cloud
and Edge computing network. Its primary purpose is to provide insights and estimations to ensure efficient
resource allocation and decision-making. The developed software simulates the queues in Cloud and Edge
devices, providing waiting times, battery consumption of Edge devices, and Servers’ load. With aforementioned
parameters available, valuable insights for decision-making can be obtained to optimize the network. Alter-
natively, automated optimization can be performed using the embedded functions. CloudEdgeAssetsOptimizer
aims to optimize the operational efficiency, enhance resource utilization, and ultimately improve the overall
system performance. CloudEdgeAssetsOptimizer functions utilize the queueing theory principles, therefore
it also enables users to explore and fine-tune the system parameters across diverse domains, including
telecommunication networks, transportation and manufacturing systems.

Current code version v.0.1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00475
Permanent link to Reproducible Capsule
Legal Code License MIT-0
Code versioning system used git
Software code languages, tools, and services used python 3.9.15
Compilation requirements, operating environments & dependencies numpy 1.24.1, pandas 1.5.2, scipy 1.10.0, matplotlib 3.6.2, PIL 9.4.0, tkinter 8.6
If available Link to developer documentation/manual
Support email for questions paulius.tervydis@ktu.lt

. Motivation and significance

Cloud computing is an attractive alternative when large amounts
f data have to be collected and processed: there is no need for the
omplicated hardware at the front-end devices [1,2]. However, large
ata streams are generated in addition to the bottleneck load of the
loud server. Furthermore, usually just a processing results are of the

nterest. Edge computing was proposed to solve this problem: data is
repossessed in close vicinity of the front-end device [3]. In such case,
rocessing can be done both on Edge and Cloud devices. The load
alancing of such network requires optimization [4]. Large research

∗ Corresponding author at: Kaunas University of Technology, Studentu 50, LT-51368 Kaunas, Lithuania.
E-mail address: paulius.tervydis@ktu.lt (Paulius Tervydis).

effort has been concentrated on communication issues: execution delay,
packet error rate, handovers and latency [4–6]. Software packages that
account all the intermediate network loads, network setup delays, er-
rors and latency or even node energy consumption are available [7–9].
The application that requires large processing resources is considered
here [10]. Only atomic tasks are considered [11]. In such case de-
lays introduced in communication network are negligible compared
to the processing time. It is assumed that Edge computing is run on
the autonomous devices, i.e. Edge computing consumes the battery
vailable online 1 April 2024
352-7110/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.softx.2024.101714
eceived 23 July 2023; Received in revised form 1 January 2024; Accepted 22 March 2024

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00475
mailto:paulius.tervydis@ktu.lt
mailto:paulius.tervydis@ktu.lt
https://doi.org/10.1016/j.softx.2024.101714
https://doi.org/10.1016/j.softx.2024.101714
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101714&domain=pdf
http://creativecommons.org/licenses/by/4.0/


SoftwareX 26 (2024) 101714Paulius Tervydis et al.
Table 1
Simulation software comparison.

Simulator Implementation Type Modeling Entities

iFogSim Java, based on
CloudSim

Event driven Network (link bandwidth,
delay, network usage),
Energy, Cost

Sensors, Actuators, Fog
devices and Data centers

FogTorch Java NA Network latency,
bandwidth

Things, Fog and Cloud

EdgeCloudSim Java, based on
CloudSim

Event driven Network (WAN and WLAN
link models), Mobility

Mobile client, Edge server,
Cloud

EdgeFog Cloud Python NA Cost Edge, Fog, Data store

EmuFog Java, MaxiNet Emulator Network latency,
Scalability, Cost

Fog nodes, Network
devices (routers)

FogBus Java NA Network latency and
usage, Scalability, Cost

IoT and Fog devices, Data
centers

MyiFogSim Java, based on
iFogSim/CloudSim

Event driven Network (link bandwidth,
delay, network usage),
Energy, Cost

Mobile devices (sensors,
actuators), Data centers

YAFS Python Event driven Network bandwidth,
Mobility, Scalability

Sensors, actuators, Fog and
Cloud

FogNetSim++ C++, based on
CloudNetSim++/
OMNET++

Network driven Network (packet drop,
retransmission, bandwidth,
BER), Mobility, Scalability,
Energy, Cost

Mobile devices, Fog and
Broker nodes, Base stations

CloudEdgeAsset
Optimizer

Python Analytical,
numerical
simulation

Load balancing, Energy,
Cost

Edge and Cloud devices

resources [12]. Cloud computing, in turn, is related to the server cost
and these resources also have a limit. Queue waiting time is increased
if processing requests arrive to Cloud server when it is close to its
limit. Then, routing at least part of the processing from Cloud to
a Edge device can reduce the waiting time in queue. On the other
hand, battery can be completely depleted if processing all the data
requests on Edge device. Software package described here is intended
to balance the aforementioned Edge and Cloud resources based on
queuing theory [13–15].

2. Edge-Fog-Cloud simulation software comparison

The simulation software allows researchers and practitioners to
model and analyze complex Edge–Fog–Cloud systems, providing valu-
able insights into their behavior and performance. This aids in the
design, development, and validation of novel approaches for Fog en-
vironments, offering a controlled environment for testing various sce-
narios. Additionally, simulations help in the selection of appropriate
resources and architectures, reducing the time and cost associated
with the physical implementations. There are many simulation soft-
ware options available for the Fog (Edge and Cloud) computing due
to the multifaceted nature of this technology and its wide range of
applications [16]. Detailed studies, surveys and comparisons of the
Fog computing simulation tools are presented in [16–18]. Table 1 is
provided for the purpose of comparing the simulation tool proposed
in this publication to the state-of-the-art Edge–Fog–Cloud computing
simulators.

Majority of state-of-the-art Edge–Fog–Cloud computing simulators
are of two types: (i) event driven, and (ii) network driven. An event
driven simulators focus on responding to the events that trigger the
state changes in a system, while a network-driven simulators are spe-
cialized for modeling the behavior of computer networks, with a pri-
mary focus on the data flow and interactions between nodes. These
two approaches are chosen based on the specific characteristics and re-
quirements of the system being simulated. Such computing simulations
generate a list of events or tasks and simulate data packet or data flow
transmission over a well-defined network.

The remaining paragraphs summarize the main differences of our

The detailed comparison of Cloud-Edge simulation software in [19]
highlights that simulation time may extend to tens of seconds, and this
duration escalates with an increase in the simulated number of Edge
and Cloud devices. The prolonged simulation time poses challenges,
particularly when seeking optimal solutions. In response to this con-
cern, our software may be potentialy usefull tool for the community,
offering swift estimations facilitated by integrated analytical models.
By prioritizing efficiency, our software aims to address the time-related
obstacles encountered in existing simulation tools, providing the com-
munity with a faster and more responsive solution for estimating
optimal configurations in Cloud-Edge scenarios.

The main driver to develop this software was our research project
[10], where Cloud data processing is used to solve the inverse solution
and the waiting time to get the results is significant. The main problem
was to find the optimal numbers of Edge devices and Cloud servers
which are required to meet the desired waiting time requirements for
a given rate of data processing requests. Therefore, our tool is not
evaluating the network delay as it was three to five orders smaller than
the data processing duration. It was another reason, why the analytical
or numerical simulation model type was selected for our software
instead of event or network driven types. Event based simulation model
was also developed to verify if the analytical model guarantees the
correct results. The comparison results are given in the first illustrative
example below. The analytical model performs numerical calculations
and provides the results much faster than an event driven model.

Another problem is that the majority of analyzed simulation tools
require experienced users to perform the modeling, because GUI is
missing, input and output data is provided in a form of CSV or XML
files. Therefore, the included GUI in our software proves useful for users
to set parameters and conduct simulations.

3. Software description

The CloudEdgeAssetsOptimizer is written in Python and can be
easily modified by users for their needs. The program code can be
downloaded from the GitHub.
2

software compared to the state-of-the-art counterparts.



SoftwareX 26 (2024) 101714Paulius Tervydis et al.
Fig. 1. Software architecture.

Fig. 2. Flow chart of the CloudEdgeAssetsOptimizer.

3.1. Software architecture

The high-level visualization of the software architecture is given
in Fig. 1.

The flow chart presented in Fig. 2 shows the data flow algorithm
and the relationship of different system’s components used by the
developed GUI program.

The application can be divided into two main components: the core
functions library and the user interface.

3.1.1. Core functions library
This is the core part of the CloudEdgeAssetsOptimizer, containing

the core functions that can be used to model single server and multi-
server queuing systems. It is designed to be reusable and independent
of the user interface. These functions also can be used to model and to
evaluate not only various Edge Cloud data processing systems. A user
can use these functions based on their functionalities. For example:

• qsystems.py: contains functions that utilize queuing theory
to simulate various single server and multi-server queuing sys-
tems. The ssqs function can be used to estimate parameters of
single server queuing systems. Function msqs can be used to
estimate parameters of various multi-server queuing systems. For
3



SoftwareX 26 (2024) 101714Paulius Tervydis et al.
Fig. 3. Example of a warning message.

the sake of simplicity, it is considered that all the servers in such
system are the same, and the arriving data processing requests
are equally distributed. Such assumptions make it easier to esti-
mate how the performance parameters depend on the number of
servers. Function msqsa can be used if multi-server system has
servers with different parameters and even if load between them
is not equally distributed. Therefore, this function is the most
versatile function in the library. Function msqs_ar_cr can be
used to estimate what arrival rate is critical to the given waiting
time. And function msqs_sn_cr can be used to estimate what
number of servers is needed to ensure specified waiting time when
arrival rate is given.
These functions are documented. Examples are given to guide
users on how to use the functions effectively in their own code.

• calculation.py: is used to estimate the simulated Cloud-
Edge system parameters. It is also used to verify and to give
recommendations, if system parameters are not valid. For ex-
ample, a warning message with possible problem solutions is
displayed if user entered number of Edge devices that makes the
system unstable for the provided 𝜆, 𝑃𝐸 and 𝑊𝑐𝑟 values (Fig. 3).
Such guidance is useful for a user if needed to estimate some
parameters manually.

• optimizer.py: is used to find optimal number of Edge devices
and Cloud VM servers that ensure that waiting time is bellow
critical, considering the rate of data processing requests, battery
time, load balancing and cost.
The optimal numbers of Edge devices 𝑁𝐸 and Cloud servers 𝑁𝐶
are found using the optimization model which is implemented
in the module by the following criteria: mean waiting time of
data processing in Edge devices and Cloud servers must be < 𝑊𝑐𝑟,
mean working battery time of Edge device must be > 𝑇𝐸 𝑏𝑎𝑡 𝑐𝑟, and
when maximum profit is achieved, considering device costs (𝐶𝐸 ,
𝐶𝐶 ), revenue for data processing (𝑟𝑝) and Cloud pricing strategy.
To guarantee the solution the calculations are performed for all
the possible 𝑁𝐸 and 𝑁𝐶 combinations.
The optimization is performed in the following steps:

1. Arrays of Edge device numbers 𝑁𝐸 ∈ [𝑁𝐸 𝑏𝑎𝑡 𝑐𝑟,… , 2𝑁𝐸𝑚𝑎𝑥]
and Cloud server numbers 𝑁𝐶 ∈ [0,… , 2𝑁𝐶𝑚𝑎𝑥] are gen-
erated. Maximum numbers 𝑁𝐸𝑚𝑎𝑥 and 𝑁𝐶𝑚𝑎𝑥 are esti-
mated using msqs_sn_cr() function, it calculates the
critical number of devices to ensure that waiting time is
bellow critical. The calculated 𝑁𝐸𝑚𝑎𝑥 and 𝑁𝐶𝑚𝑎𝑥 values
are multiplied by 2 to guarantee that all the possible
{𝑁𝐸 , 𝑁𝐶} combinations around 𝑁𝐸 𝑜𝑝𝑡 and 𝑁𝐶 𝑜𝑝𝑡 are esti-
mated. The minimum number of Edge devices is 𝑁𝐸 𝑏𝑎𝑡 𝑐𝑟 =
⌈𝜆𝐸𝑇𝑏𝑎𝑡 𝑐𝑟∕𝐵𝑝⌉ to ensure that the working time on battery
for an Edge device is > 𝑇𝑏𝑎𝑡 𝑐𝑟, here 𝐵𝑝 – battery per-
formance index – number of continuous data processing
cycles to discharge full battery.

2. Profit, revenue and cost that could be obtained by data pro-
cessing in such system is calculated using the model func-
tion in the module for each number pair of data processing

are the delay critical intensities of data processing requests
using msqs_ar_cr function of qsystems.py module.
If the number of devices is not sufficient to process or the
intensity is too big, then only a fraction of requests will be
processed.

3. Optimal 𝑁𝐸 and 𝑁𝐶 numbers that ensure all the criteria
are estimated according to the maximum profit from step
2.

Another optimization model that uses scipy.optimization toolbox
was developed to verify if the proposed optimization model pro-
vides correct results. The comparison revealed that the proposed
code runs almost 10 times faster and provide the same results.
The test code is given in this paper’s GitHub repository.

• graph.py: has functions to display optimization results in graph-
ical form. Such representation provide better insights about how
different parameters are related and their impact to the overall
system performance.

3.1.2. User interface
The graphical user interface (GUI) provides a convenient way for

users to interact with the core functions library without writing code
directly.

• main.py: this script is used to start the GUI of the main program.
The program is started by running the command in the terminal:
python main.py.

• gui.py: it contains the code for the main graphical user interface
(Fig. 4). The graphical user interface is made using standard
Tkinter module, therefore it should work with a typical Python
installation without additional GUI packages.

3.1.3. Dependencies
The application relies on these external dependencies: numpy and

pandas for data processing, pillow to show the data processing
network structure in the GUI, matplotlib to show graphical depen-
dencies of system parameters and tk (Tkinter) for the GUI.

3.2. Software functionalities

The core functions of this library can estimate such parameters of
single and multi-server systems: mean waiting time in queue, mean
waiting time (is a sum of processing time and waiting in queue), mean
number of entities in the system and queue, server utilization. These
parameters can be estimated as a function of: arrival rate, service
rate, mean service time and variation of service time. Supplementary
functions can be used and some of them are given in examples and
implemented in the gui script, that can evaluate system cost, battery
time and other parameters. By utilizing such functionality it is able
to perform multi-criteria evaluation of Cloud-Edge data processing
networks (Fig. 5).

For example, it is possible to estimate what are the optimal numbers
of Edge devices 𝑁𝐸 and Cloud servers 𝑁𝐶 required for data processing.
This estimation is based on factors such as arrival rate 𝜆 of data
processing requests, load balancing or distribution between Edge an
Cloud (estimated by 𝑃𝐸 and 𝑃𝐶 probabilities), processing capabilities
(mean time of data processing in Edge devices 𝑇𝐸 and Cloud servers
𝑇𝐶 ), and user demand for the waiting time 𝑊𝐸 and 𝑊𝐶 . By analyzing
these parameters, the software can determine the optimum number of
devices needed to handle the workload efficiently, without causing the
excessive waiting times or delays.

On the other hand, CloudEdgeAssetsOptimizer can estimate the
critical arrival rate 𝜆𝑐𝑟 of requests or tasks within the network. By
considering factors such as data processing performance requirements
4

devices from 𝑁𝐸 and 𝑁𝐶 arrays. The model estimates what (𝑊𝐸 , 𝑊𝐶 ) and data processing network capacity (𝑁𝐸 , 𝑁𝐶 , 𝑇𝐸 , 𝑇𝐶 )



SoftwareX 26 (2024) 101714Paulius Tervydis et al.
Fig. 4. The graphical user interface.

Fig. 5. Cloud and Edge data processing system.

and utilization of processing devices (𝜌𝐸 , 𝜌𝐶 ), the software can es-
timate what is the critical threshold of request arrival rate 𝜆𝑐𝑟. This
information allows the network administrators to ensure that the mean
waiting time for data processing remains below a critical threshold,
thus optimizing user experience and satisfaction.

Another important capability of the CloudEdgeAssetsOptimizer is
its ability to assess the performance of battery-powered Edge devices.
By considering the power consumption characteristics of these devices,
the software can estimate utilization of such device 𝜌𝐸 and if it will
operate for a specific duration without requiring a battery recharge.
This estimation is important for planning the deployment of Edge
devices and ensuring uninterrupted operation within the network.

Furthermore, CloudEdgeAssetsOptimizer takes into account eco-
nomical criteria when determining the optimal number of assets within
the network. It considers factors such as the cost of devices (𝐶 , 𝐶 ),

retinue and profit of service provider. By analyzing these factors, the
software can recommend the optimal number of assets that not only
meet the technical requirements but also provide the most cost-effective
solution. The CloudEdgeAssetsOptimizer goes beyond traditional anal-
ysis by considering different pricing strategies. Users can evaluate the
cost of the system under fixed pricing (reserved resources) or pricing
that depends on utilization 𝜌𝐶 . This capability provides valuable in-
sights for making the informed decisions about pricing strategies and
resource allocation.

4. Illustrative examples

To illustrate how the proposed package can be applied in the multi-
criteria problems, two practical examples are presented. Examples are
aimed to show how different functions and methods can be used to
5

𝐸 𝐶



SoftwareX 26 (2024) 101714Paulius Tervydis et al.

t

c
F

Fig. 6. Python code to solve the task of Example 1.

asses and to optimize usage of data processing resources. The first
example demonstrates usage of core functions, that are the basis of
the CloudEdgeAssetsOptimizer. This may be useful if a user wants
to write their own code. The second example illustrates how to use
the CloudEdgeAssetsOptimizer in the graphical user interface. The
third example demonstrates how to estimate Cloud-Edge networks with
different topologies and node interconnections.

4.1. Example 1: Finding maximum arrival rate for given system and per-
formance requirements

Consider a data processing system with 𝑁𝐶 = 10 Cloud servers.
Mean data processing time 𝑇𝐶 = 100 s. What is maximum arrival
rate of data processing requests per hour 𝜆𝑐𝑟 if critical mean waiting
ime 𝑊𝑐𝑟 = 300 s? Estimate how the 𝜆𝑐𝑟 depends on the distribution

of processing time, when: (a) processing time is constant — standard
deviation 𝑠𝑡𝑑(𝑇𝐶 ) = 0 s, (b) standard deviation of processing time
𝑠𝑡𝑑(𝑇𝐶 ) = 50 s, (c) processing time is exponentially distributed —
standard deviation 𝑠𝑡𝑑(𝑇𝐶 ) = 𝑚𝑒𝑎𝑛(𝑇𝐶 ) = 100 s.

To solve this task the multi-server msqs model can be used from the
ore functions library. The Python code listing with answers is given in

How the mean waiting time depends on arrival rate for different
distributions of 𝑇𝐶 is given in Fig. 7.

The results in Fig. 7. show that the mean waiting time is a function
of arrival rate. It also depends on the distribution of processing (service)
time. In all three cases the mean data processing time is the same, but
the higher variance of service times the greater mean waiting time.
Such arrival rate and waiting time dependency is very important if
it is required to ensure quality of service. For the given example if
it is necessary to ensure that the mean waiting time 𝑊 < 𝑊𝑐𝑟 =
300 s, the critical arrival rate should be in the range 𝜆 < 𝜆𝑐𝑟 =
[240..288] req./h. This arrival rate can be managed by load balanc-
ing, by limiting number of users or by increasing number of servers.
Such multi-criteria optimization principle is also implemented in the
CloudEdgeAssetsOptimizer.

The x markers in the Fig. 7 show the results obtained by the
event driven model developed with SimEvents toolbox using Matlab
Simulink. The model code is also given in this papers GitHub repository.
It was developed to prove that the analytical model provides the same
6

ig. 6. results as the state-of-the-art simulation software.



SoftwareX 26 (2024) 101714Paulius Tervydis et al.
Fig. 7. Waiting time as a function of arrival rate.

4.2. Example 2: Optimization of assets in Cloud-Edge computing network

Consider that data processing system has Edge devices and Cloud
VM servers. Arrival rate of requests 𝜆 = 1000 req./h. Mean processing
time in an Edge device is 𝑇𝐸 = 200 s. Mean processing time in a
Cloud server is 𝑇𝐶 = 100 s. It is required that the mean waiting time
for data processing result must be less than 𝑊𝑐𝑟 = 240 s. Cost for
Edge device 𝐶𝐸 = 0.5 Eur/h. Cost for server 𝐶𝐶 = 0.15 Eur/h, if ‘‘ded-
icated capacity’’ pricing option is used. Revenue per processed request
𝑟𝑝 = 0.1 Eur. Battery of Edge devices should last for at least 𝑇𝑏𝑎𝑡 𝑐𝑟 = 8 h.
It is determined that fully charged battery is discharged per 𝐵𝑝 = 400
continuous processing cycles. Energy consumption is related to Edge
devices utilization. It is required to find the optimal numbers of Edge
𝑁𝐸𝑜𝑝𝑡 devices of and of Cloud servers 𝑁𝐶𝑜𝑝𝑡 for maximum profit, when
𝑃𝐸 = 0.2.

This example will also illustrate the usage of the CloudEdgeAsse-
tOptimizer’s GUI. The parameters are entered in the parameter entries
on the left side of GUI window as shown in Fig. 8.

Having the parameters it is possible to calculate system performance
describing parameters by pressing ‘‘Calculate’’ button. The results are
presented in the ‘‘Results’’ tab on the right side of GUI window. Opti-
mization is performed by pressing ‘‘Optimize’’ button. The optimization
results and the list of parameters that the software is evaluating are
presented in Fig. 9.

The optimization is made according multiple criteria: waiting time,
battery time, optimum number of data processing devices and maxi-
mum profit. For the given example, one of the main requirements was
that the mean waiting time should be less than 240 s. The optimizer
managed to find combination that meets this and other requirements.

Graphical representation of system cost and profit estimation can be
reviewed by pressing ‘‘Graph’’ button. Fig. 10. shows the 3-D surface
and contour plots that can be used to investigate how profit depends
on the number 𝑁𝐸 of Edge devices and on the number 𝑁𝐶 of Cloud
VM servers.

The program also show the slices that are marked by dashed lines
along the optimum in the contour plot. For example, how the cost,
revenue and profit depend on the 𝑁𝐶 is shown in Fig. 11.

The software can estimate how such system performance parameters

Fig. 8. Parameter entries in the CloudEdgeAssetOptimizer’s GUI window.

4.3. Example 3: Simulation of Cloud-Edge network topology

To simulate a network, it is necessary to understand how net-
work nodes are interconnected and how data flows are created and
transmitted across the network. For example, in the provided network
structure (Fig. 12), data flows are initiated by reading data from
sensors. The data then undergoes processing, which can be executed
by either Edge devices or Cloud servers. The simulation can be utilized
to estimate how network performance depends on the distribution of
data flows between Edge and Cloud processing devices. Additionally,
it aids in determining the number of devices needed to meet waiting
time requirements, estimating costs, and exploring various scenarios.
7

depend on any other parameter that is in GUI window.



SoftwareX 26 (2024) 101714Paulius Tervydis et al.
Fig. 9. Optimization results.

Fig. 10. Optimal numbers of 𝑁𝐸𝑜𝑝𝑡 and 𝑁𝐶𝑜𝑝𝑡, when 𝑃𝐸 = 0.2.

Fig. 11. Cost, revenue and profit vs 𝑁𝐶 .

The separate network.py module was developed to define net-
work nodes as distinct object classes and to leverage the same queuing
systems models employed in other examples within the CloudEdgeAs-
setsOptimizer package.

All network node classes inherit from the general Node class, in-
corporating specific changes that pertain to individual network node
features. Further details can be found in the comment lines within
the network.py file. The subsequent code block (Fig. 13) includes
an example demonstrating how to create network nodes and how to
interconnect them.

To simulate the entire network topology illustrated in Fig. 12, it
is essential to incorporate additional components such as Edge gate-
ways, Edge devices, Cloud servers, sub-networks, and establish their
interconnections. The complete code, along with detailed instructions
on how to achieve this simulation and the corresponding results, is
available on GitHub. When the code is executed, the results for each
network node can be visualized. Each connection and network node
can be assigned unique parameters. By fine-tuning network, equipment,
and data flow parameters, users can identify the optimal configuration
tailored to specific requirements. If a new parameter is required, the
open-source code can be modified accordingly.

5. Impact

The developed software can be used to optimize the usage or
distribution of Cloud-Edge data processing network assets. It may be
useful tool to do multi-criteria evaluation or to ensure quality of service.
Multiple parameters are evaluated to meet the requirements of waiting
time, battery time, capacity pricing options. The core functions of the
developed software are based on queuing theory, therefore can be used
to evaluate systems where queuing occurs.
8



SoftwareX 26 (2024) 101714Paulius Tervydis et al.
Fig. 12. Topology of simulated Cloud-Edge network.

Fig. 13. Python code fragment to simulate a network topology.

6. Conclusions

In this paper, the CloudEdgeAssetOptimizer software is proposed,
an open-source Python toolkit that can be used to estimate and to opti-
mize Cloud-Edge computing network resources. The toolkit implements
reusable core functions and graphical user interface. The core functions
can be used for other project where estimation on minimization of
waiting times in queues is crucial. The developed GUI is user friendly,
default parameters are already provided, if wrong parameters are en-
tered it explains what and how to correct. More advanced users may
adjust or add additional functionalities.

The developed software can be enhanced by incorporating addi-
tional Cloud pricing scenarios, enabling users to make more precise
evaluations based on specific pricing models offered by particular Cloud
service providers. This enhancement would provide a more accurate
cost estimation for different deployment strategies.

Additionally, more advanced algorithms for load dynamics estima-
tion could be implemented. This improvement could be utilized for
dynamic resource allocation in response to changing data processing
demands, ensuring optimal performance even under dynamic load
conditions.

Furthermore, a more comprehensive energy consumption estima-
tion model could be integrated to assess power usage across Edge

devices and Cloud servers. This implementation would enable the eval-
uation of energy consumption under different conditions and resource
allocation strategies.

Moreover, integrating more detailed network latency estimation ca-
pabilities, which consider network geographical distribution and com-
munication delays, would enable users to estimate various networking
and load distribution scenarios, thereby enhancing responsiveness and
user experience.

CRediT authorship contribution statement

Paulius Tervydis: Methodology, Software, Writing – original draft,
Visualization. Linas Svilainis: Conceptualization, Project administra-
tion, Supervision, Writing – review & editing. Žilvinas Nakutis: Con-
ceptualization, Methodology, Writing – review & editing. Alberto
Rodríguez-Martínez: Formal analysis, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
there are no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this
paper.
9



SoftwareX 26 (2024) 101714Paulius Tervydis et al.
Data availability

All the data are provided in the GitHub repository.

Acknowledgments

This project has received funding from European Regional Devel-
opment Fund (project No. 01.2.2-LMT-K-718-03-0026) under grant
agreement with the Research Council of Lithuania (LMTLT).

References

[1] Ampatzidis Y, Partel V, Costa L. Agroview: Cloud-based application to process,
analyze and visualize UAV-collected data for precision agriculture applications
utilizing artificial intelligence. Comput Electron Agric 2020;174:105457. http:
//dx.doi.org/10.1016/j.compag.2020.105457.

[2] Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, et al. A view
of cloud computing. Commun ACM 2010;53(4):50–8. http://dx.doi.org/10.1145/
1721654.1721672.

[3] Shi WS, Cao J, Zhang Q, Li YHZ, Xu LY. Edge computing: Vision and challenges.
IEEE Internet Things J 2016;3(5):637–46. http://dx.doi.org/10.1109/JIOT.2016.
2579198.

[4] Mattia GP, Beraldi R. P2PFaaS: A framework for faas peer-to-peer scheduling
and load balancing in Fog and Edge computing. SoftwareX 2023;21:101290.
http://dx.doi.org/10.1016/j.softx.2022.101290.

[5] Malik AW, Qayyum T, Rahman AU, Khan MA, Khalid O, Khan SU. XFogSim:
A distributed fog resource management framework for sustainable IoT ser-
vices. IEEE Trans Sustain Comput 2021;6(4):691–702. http://dx.doi.org/10.
1109/TSUSC.2020.3025021.

[6] Qayyum T, Malik AW, Khan Khattak MA, Khalid O, Khan SU. FogNetSim++: A
toolkit for modeling and simulation of distributed fog environment. IEEE Access
2018;6. http://dx.doi.org/10.1109/ACCESS.2018.2877696, 63570-6383.

[7] Sonmez C, Ozgovde A, Ersoy C. EdgeCloudSim: An environment for performance
evaluation of edge computing systems. Trans Emerg Telecommun Technol
2018;29(11):e3493. http://dx.doi.org/10.1002/ett.3493.

[8] Gupta H, Dastjerdi AV, Ghosh SK, Buyya R. IFogSim: A toolkit for modeling
and simulation of resource management techniques in the internet of things,
edge and fog computing environments. Softw Pract Exper 2017;47(9):1275–96.
http://dx.doi.org/10.1002/spe.2509.

[9] Li ZH, Xie T, He GN. MEC-sim: An extensible simulator for mobile edge
computing system. In: 2021 Chinese control conference. 2021, p. 6729–35.
http://dx.doi.org/10.23919/CCC52363.2021.9549353.

[10] Svilainis L, Nakutis Z, Tervydis P, Chaziachmetovas A, Aleksandrovas A. Resource
tradeoff analysis of plant physiological status sensor with cloud connectivity.
In: 2021 11th IEEE international conference on intelligent data acquisition and
advanced computing systems: technology and applications. 2021, p. 241–6.
http://dx.doi.org/10.1109/IDAACS53288.2021.9660944.

[11] Sadatdiynov K, Cui LZ, Zhang L, Huang JZ, Salloum S, Mahmud MS. A review of
optimization methods for computation offloading in edge computing networks.
Digit Commun Netw 2022;9(2):450–61. http://dx.doi.org/10.1016/j.dcan.2022.
03.003.

[12] Abner M, Wong PKY, Cheng JCP. Battery lifespan enhancement strategies for
edge computing-enabled wireless bluetooth mesh sensor network for structural
health monitoring. Autom Constr 2022;140:104355. http://dx.doi.org/10.1016/
j.autcon.2022.104355.

[13] Urgaonkar R, Wang SQ, He T, Zafer M, Chan K, Leung KK. Dynamic service mi-
gration and workload scheduling in edge-clouds. Perform Eval 2015;91:205–28.
http://dx.doi.org/10.1016/j.peva.2015.06.013.

[14] Afolalu SA, Ikumapayi OM, Abdulkareem A, Emetere ME, Adejumo O. A short
review on queuing theory as a deterministic tool in sustainable telecommunica-
tion system. Mater Today Proc 2021;44(1):2884–8. http://dx.doi.org/10.1016/j.
matpr.2021.01.092.

[15] Wu GW, Xu ZQ, Zhang H, Shen SG, Yu S. Multi-agent DRL for joint completion
delay and energy consumption with queuing theory in MEC-based IIoT. J Parallel
Distrib Comput 2023;176:80–94. http://dx.doi.org/10.1016/j.jpdc.2023.02.008.

[16] Gill M, Singh D. A comprehensive study of simulation frameworks and research
directions in fog computing. Comput Sci Rev 2021;40:100391. http://dx.doi.org/
10.1016/j.cosrev.2021.100391.

[17] Markus A, Kertesz A. A survey and taxonomy of simulation environments
modelling fog computing. Simul Model Pract Theory 2020;101:102042. http:
//dx.doi.org/10.1016/j.simpat.2019.102042.

[18] Margariti SV, Dimakopoulos VV, Tsoumanis G. Modeling and simulation tools for
fog computing—A comprehensive survey from a cost perspective. Future Internet.
2020;12(5):89. http://dx.doi.org/10.3390/fi12050089.

[19] Abreu DP, Velasquez K, Curado M, Monteiro E. A comparative analysis of simula-
tors for the cloud to fog continuum. Simul Model Pract Theory 2020;101:102029.
http://dx.doi.org/10.1016/j.simpat.2019.102029.
10

http://dx.doi.org/10.1016/j.compag.2020.105457
http://dx.doi.org/10.1016/j.compag.2020.105457
http://dx.doi.org/10.1016/j.compag.2020.105457
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1016/j.softx.2022.101290
http://dx.doi.org/10.1109/TSUSC.2020.3025021
http://dx.doi.org/10.1109/TSUSC.2020.3025021
http://dx.doi.org/10.1109/TSUSC.2020.3025021
http://dx.doi.org/10.1109/ACCESS.2018.2877696
http://dx.doi.org/10.1002/ett.3493
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.23919/CCC52363.2021.9549353
http://dx.doi.org/10.1109/IDAACS53288.2021.9660944
http://dx.doi.org/10.1016/j.dcan.2022.03.003
http://dx.doi.org/10.1016/j.dcan.2022.03.003
http://dx.doi.org/10.1016/j.dcan.2022.03.003
http://dx.doi.org/10.1016/j.autcon.2022.104355
http://dx.doi.org/10.1016/j.autcon.2022.104355
http://dx.doi.org/10.1016/j.autcon.2022.104355
http://dx.doi.org/10.1016/j.peva.2015.06.013
http://dx.doi.org/10.1016/j.matpr.2021.01.092
http://dx.doi.org/10.1016/j.matpr.2021.01.092
http://dx.doi.org/10.1016/j.matpr.2021.01.092
http://dx.doi.org/10.1016/j.jpdc.2023.02.008
http://dx.doi.org/10.1016/j.cosrev.2021.100391
http://dx.doi.org/10.1016/j.cosrev.2021.100391
http://dx.doi.org/10.1016/j.cosrev.2021.100391
http://dx.doi.org/10.1016/j.simpat.2019.102042
http://dx.doi.org/10.1016/j.simpat.2019.102042
http://dx.doi.org/10.1016/j.simpat.2019.102042
http://dx.doi.org/10.3390/fi12050089
http://dx.doi.org/10.1016/j.simpat.2019.102029

	CloudEdgeAssetOptimizer: Tool to optimize the Cloud-Edge computing network resources at given requirements of processing delay, battery capacity and cost
	Motivation and significance
	Edge-Fog-Cloud simulation software comparison
	Software description
	Software architecture
	Core functions library
	User interface
	Dependencies

	Software functionalities

	Illustrative examples
	Example 1: Finding maximum arrival rate for given system and performance requirements
	Example 2: Optimization of assets in Cloud-Edge computing network
	Example 3: Simulation of Cloud-Edge network topology

	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


