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A B S T R A C T

This paper presents a novel architecture, termed Fusion-Fission Optimisation (FuFi) based Convolutional Neural
Network with Bi-Long Short Term Memory Network (FuFi-CNN-Bi-LSTM), to enhance state of charge (SoC)
estimation performance. The proposed FuFi-CNN-Bi-LSTM model leverages the power of both Convolutional
Neural Networks (CNN) and Bi-Long Short Term Memory Networks (Bi-LSTM) while utilizing FuFi optimization
to effectively tune the hyperparameters of the network. This optimization technique facilitates efficient SoC
estimation by finding the optimal configuration of the model. A comparative analysis is conducted against FuFi
Algorithm-based models, including FuFi-CNN-LSTM, FuFi-Bi-LSTM, FuFi-LSTM, and FuFi-CNN. The comparison
involves assessing performance on SoC estimation tasks and identifying the strengths and limitations of models.
Furthermore, the proposed FuFi-CNN-Bi-LSTM model undergoes rigorous testing on various drive cycle tests,
including HPPC, HWFET, UDDS, and US06, at different temperatures ranging from -20 to 25 degrees Celsius.
The model’s robustness and reliability are assessed under different real-world operating conditions using well-
established evaluation indexes, including Relative Error (RE),Mean Absolute Error (MAE), R Square (R2), and
Granger Causality Test. The results demonstrate that the proposed FuFi-CNN-Bi-LSTM model achieves efficient
SoC estimation performance across a wide range of temperatures at higher and lower ranges. This finding
signifies the model’s efficacy in accurately estimating SoC in various operating conditions.
1. Introduction

The storage of renewable and other forms of energy is encouraged
to be done via rechargeable batteries [1]. Lithium-ion (Li-Ion) batteries
having the benefits of high energy density, reliable protection, and
eco-friendly nature dominate the battery industry globally in Electrical
Vehicles (EVs) and power saver bank applications. The most important
parameter for information-dependent goals for lithium-ion batteries is
the state of charge (SoC). SoC is sensitive to several long and short term
parameters and is defined as the proportion of capacity remaining to
the current rated capacity [2]. Making sure the battery operates within
a safe operating range is advantageous for the battery management
system (BMS) [3]. Hence it is an important factor to estimate distance
under load and intrinsic state of charge of the battery under mechanical
load. Lithium-ion batteries can function well if battery SoC is accurately
estimated [4,5].

∗ Corresponding author at: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway.
E-mail address: filippo.sanfilippo@uia.no (F. Sanfilippo).

The BMS task of estimating the SOC with accuracy is complex,
challenging as well as crucial for ensuring optimal performance due
to following key factors:

• Non-Linear Battery Behavior: batteries exhibit non-linear behav-
ior in the battery’s voltage and its SoC. The voltage curve is
influenced by various factors, such as battery chemistry, service
life, and current flow, making it difficult to directly correlate
voltage measurements with accurate SoC estimation.

• Battery Ageing and Degradation: over time, batteries experience
capacity degradation, reducing their ability to hold a charge. This
degradation is influenced by factors like charge and discharge
rates, operating conditions, material degradation, and the number
of charge cycles. Estimating SoC accurately requires accounting
vailable online 7 February 2024
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o

for the battery ageing and adjusting the estimation algorithms
accordingly.

• Measurement Errors: measurement errors can occur due to the
limitations of the battery management system (BMS) or the mea-
surement equipment itself. Inaccurate voltage, current, or temper-
ature measurements can lead to erroneous SoC estimations.

• Coupling Effects: the SoC estimation process becomes more com-
plex when considering the coupling effects of other battery pa-
rameters. For example, temperature significantly impacts the bat-
tery’s performance and influences its internal resistance and ca-
pacity. Ignoring these factors can lead to inaccurate SoC estima-
tions.

The lithium ion batteries are expected to dominate the global elec-
ric vehicle battery market, with a market share of about 40 percent.
he user satisfaction in adoption of this technology is highly de-
endent upon the dependable information regarding reliable range
nd load monitoring. Each battery chemistry and design have unique
haracteristics, making it challenging to develop universal models that
ccurately estimate SoC for all types of batteries. This information
eavily relies on estimating the SoC of a battery. SoC is a challenging
ask due to several factors. The first and the most important factor is
ts nonlinear charging and discharging curves with small quasi linear
egions [6]. This non-linearity is compounded with hysteresis implying
on-linear relationship between the battery’s voltage and its state of
harge. The factors influencing deviation are temperature, ageing, and
ischarge rate. The hysteresis implies that the voltage response during
harging is different from the voltage response during discharging.
hese non-linear and hysteresis effects make it difficult to accurately
stimate the SoC based solely on voltage measurements. Batteries ex-
erience degradation over time, which affects the capacity to attain
harge and voltage characteristics. Battery capacity decreases with
ge reducing the ability to hold charge [7]. Battery performance is
ependent on operating temperature. Temperature variations affect the
nternal resistance, self-discharge rate, and capacity of the battery.
ifferent temperature conditions require different models or algorithms

o estimate the SoC accurately. Managing temperature effects and
ncorporating them into the estimation process adds complexity to the
ask. The internal battery parameters are not directly observable [8].
ince SoC estimation relies on indirect measurements and models,
t can introduce additional uncertainties and errors. SoC drift occurs
uring Coulomb counting, which involves integrating the current flow
n and out of the battery. This is prone to errors over time due to drift
n the measurement of current and voltage, as well as inaccuracies
n the capacity estimation caused by hysteresis. The model specific
lgorithms need to be developed and calibrated for different battery
hemical composition and configurations adding complexity to the
stimation process. The non-linear voltage characteristics, temperature
ffects, measurement inaccuracies, lack of universal models, limited
bservability, and errors associated with Coulomb counting are equally
mportant for enhanced SoC.

Moreover, accurately estimating SoC becomes even more relevant
hen considering real-life operational conditions, such as low and
igh temperatures. Temperature variations affect the battery’s internal
esistance, chemical reactions, and self-discharge rates, all of which
mpact SoC estimation. In cold temperatures, batteries may exhibit
ower capacity, leading to overestimation of SoC. Conversely, in high
emperatures, the battery’s capacity may increase temporarily, leading
o underestimation of SoC. Therefore, accounting for temperature ef-
ects and adjusting the estimation algorithms accordingly is crucial to
btain accurate SoC estimations in real-life scenarios.

.1. Literature review

SoC cannot be directly measured since it is an internal property
f lithium-ion battery [9–11]. With traditional methods, only outside
2

factors like voltage, current, and temperature may be used to estimate
it. SoC estimate error cannot be avoided particularly caused by the
sensor measurements [12]. More complexity to SoC is added at low
temperatures due to the loss in capacity increases since the battery’s
chemical reaction rate slows down [13].

Wintertime temperature lows can reach 0 ◦C in the majority of
the geographies [14]. When lithium-ion batteries are running at low
temperatures, the estimation error of the SoC is substantially bigger.
In high latitudes, wintertime low temperatures can range from 10◦ to
20◦ degrees Celsius. It is crucial to increase the precision and robustness
of SoC estimates in low-temperature conditions if lithium-ion batteries
are to function properly in these areas. Lithium-ion batteries may be
used for a wider variety of purposes thanks to this, and it can also
give batteries operating in natural settings more stability. The high-
performance materials and cutting-edge manufacturing technologies
such as Metal–organic frameworks, provide tremendous potential for
enhancing lithium-ion batteries’ energy density [15]. It comes at the
cost of rapid degradation of electrolytes leading to capacity degradation
in a low temperature setting. There is not enough research on lithium-
ion battery SoC estimate in low-temperature settings. An analogous
circuit model was developed to describe the performance of lithium-
ion batteries. By using extended Kalman filtering (EKF), they calculated
the SoC at below-freezing temperatures [16]. Although the inaccuracy
is below 4.5%–6%, it is still not adequate for EV platforms to estimate
distances based on inaccurate SoC.

Analytical models established a mathematical dependency between
open circuit voltage (OCV) and SoC with respect to temperature. A
modified OCV approach by Gong et al. [23] using dual adaptive ex-
tended Kalman filter based on the residual sequence is utilized. The
prerequisites for practical use cannot be reached by this procedure
due to the lack of temporal trends over large number of charging-
discharging cycles achieving 50% error in initial SoC under FUDS
dataset. To further improvise this approach, He et al. recommended
using the voltage difference as a threshold for estimation performance
and time [24]. These techniques can produce SoC estimations that are
more precise, but their application range is short about 10 degrees
Celsius. These classical ML models require a precise battery model. The
rise of renewable energy added to difficulties for the fusion of battery
models. Volterra integral dynamical models is applied to manage mul-
tiple cells of battery load-leveling problem. The real-time optimization
of energy storage is ideal for the adaptive method. By examining the
power load, Sidorov et al. [25] once more demonstrated the value
of the Volterra approach for battery modeling. The detailed literature
review of the deep learning based SoC estimation models is presented in
Table 1.

The electrical characteristics of lithium-ion batteries are sophisti-
cated and highly nonlinear. The forecast accuracy is restricted since
the battery model does not correctly represent the battery proper-
ties. Because of its superior nonlinear fitting capabilities, the neural
network can avoid the estimation errors that the model introduces.
The neural network approach offers higher accuracy and redundancy.
Attention-infused long short-term memory (LSTM) network by Tadele
et al. attained RMSE of <1.41% at multiple magnitudes of temper-
atures [26]. The robustness of the strategy was confirmed by the
Monte Carlo dropout methodology. The technique, however, does not
take into account the SoC estimation for temperatures below zero.
Bian et al. in [27] employed the bidirectional-LSTM model for SoC
accuracy. LSTM adjusts the past and future directions correlations and
is highly effective for learning periodic features. The authors attained
<2.6% in the 0–20◦ range, leaving plenty of space for improvement.
These techniques are challenging to use in real-world applications since
temperature variance is not adequate for a wide range of operating
conditions.
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Table 1
Literature review of machine learning/deep learning based SoC estimation.

Ref Year Technique Summary Results

[17] 2019 ELM-GSA This paper presents an improved ELM for estimating the SoC by estimation
model. GSA is used for hyperparameter tuning and to optimize the number of
neurons in a hidden layer. Hence model does not require an internal battery
mathematical model. Validation experiments are conducted at different
temperatures and electric vehicle drive cycles, and comparisons with other
NN models are mad.

RMSE = 1.6%
MAE = 1.67%

[18] 2019 Gated-RNN A gated RCNN unit is employed for SoC from using measured current,
voltage, and temperature signals. The method uses previous SoCs and
measurements for better accuracy. Model well handles initial SoC magnitude
and varying temperatures.

RMSE = 3.5%

[19] 2020 LSTM-UKF A LSTM-based RNN architecture is used for to SoC from time-stamped
voltage, current, and temperature variables. UKF filter is used to measured
signal noise improving SoC accuracy. LSTM-UKF tackles the influence of
ambient temperature well. performance evaluation is done on dynamic stress
tests and driving schedules.

RMSE = 1.1%
MAE = 1.0%

[20] 2020 Autoregressive GPR A data-driven method using GPR and squared exponential kernel function is
utilized. The method uses feature extraction and optimization by automatic
relevance determination. The proposed method accurately approximates
nonlinearity, offers nonparametric modeling, and probabilistic predictions.

RMSE = 3.21%

[3] 2022 I&I Transformer NN A ML method using a Transformer NN and an adaptive observer is elaborated
in this study that predicts SoC with current and offers richer information
processing for time-dependent features by Transformers model. A higher SoC
efficiency is achieved at the expense of more computation power and data
preprocessing

RMSE = 0.98%
MAE = 0.84%

[21] 2022 SSA-IELM An improved ELM algorithm, using a salp swarm algorithm to propagate
learning error to hidden layers. Chaotic mapping is used to make the
initialized individuals uniformly distributed improvise the weights and biases
of NN iteratively, and a sine cosine algorithm is embedded to improvise
vectors similar to the time to vector (T2V) approaches.

MAE = 0.538
MAPE = 0.887%

[22] 2023 EI-LSTM-CO An EI-LSTM-CO for battery SoC estimation model includes an extended input
with additional slow time-varying information sliding window average with
voltage and a constrained output using a state flow strategy based on the
Ampere-hour integration. The experimental verification on LiFePO4 battery
datasets at various temperatures is done.

RMSE = 1.3%
MAXE = 3.2%
Fig. 1. Graphical abstract electric vehicles state of charge for Li-Ion batteries.
3
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Fig. 2. Relationship between 𝐵avg and mass number 𝐴.
1.2. Contributions and paper organization

In this paper, we proposed a comprehensive study that accurately
predicts the SoC of Lithium-ion batteries in EVs in low and high
temperatures, and the graphical abstract of the proposed model is given
in Fig. 1. Contributions of this work are:

• This study conducts a thorough analysis of five unique hybrid
deep learning models, focusing on their performance at both
low and high temperature conditions. This analysis is critical,
considering the impact of temperature variations on battery per-
formance and the accuracy of State of Charge (SoC) estimations.

• The research introduces a novel architecture, termed Fusion-
Fission Optimisation (FuFI) based CNN with Bi-LSTM (FuFi-CNN-
Bi-LSTM), for SoC estimation. This architecture ingeniously com-
bines Convolutional Neural Network (CNN) and Bidirectional
Long Short-Term Memory (Bi-LSTM) layers, indicating a sophis-
ticated approach to capturing both spatial and temporal data
features for enhanced SoC prediction.

• A significant contribution of this work is the efficient tuning of
hyperparameters in the FuFi-CNN-Bi-LSTM model. This optimiza-
tion process plays a vital role in refining the model’s perfor-
mance, ensuring high accuracy in SoC estimation across various
conditions.

• The study includes a comprehensive comparison of the FuFi-
CNN-Bi-LSTM model with other models utilizing the FuFi algo-
rithm, namely FuFi-CNN-LSTM, FuFi-Bi-LSTM, FuFi-LSTM, and
FuFi-CNN. This comparison is instrumental in demonstrating the
superior performance and efficiency of the proposed model.

• The proposed model undergoes rigorous testing under diverse
temperature conditions (0◦, 10◦, 25◦, −10◦, and −20 ◦C) and
across various Drive Cycle Tests (HPPC, HWFET, UDDS, and
US06). This extensive testing framework ensures the model’s
robustness and reliability in different environmental settings and
driving scenarios.

• The research highlights the model’s capability to accurately es-
timate SoC in batteries under extreme temperature conditions.
This aspect is particularly noteworthy as accurately predicting
4

SoC in such conditions is challenging and crucial for battery
management systems.

This paper is organized into five sections, starting with an intro-
duction in Section 1. Section 2 presents the proposed technique in
detail, which aims to improve the efficiency of the SoC estimation.
Section 3 provides an explanation of the datasets of drive cycles used
in this study, including their sources and characteristics. Section 4
explains the results obtained from the proposed technique and provides
a comprehensive discussion of the findings. This section also includes a
comparison of the results with those obtained using other techniques.
Finally, Section 5 presents the conclusion of the study and summarizes
the main findings.

2. Proposed methodology

2.1. Fusion-Fission optimisation algorithm (FuFi)

2.1.1. Inspiration
The processes inspired by nature form the best mathematical op-

timizers since they evolve over million of years. On similar natural
process is the binding energy of nucleous which refers to the least
amount of energy required to disassemble the nucleus of an atom into
its constituent nucleons, which comprise protons (𝑍) and neutrons
(𝑁). This binding energy is generated by the strong nuclear force,
which has a positive value and attracts the nucleons towards one
another. Greater binding energy contributes to increased stability of
the nucleus. However, it is worth noting that the Coulomb repulsive
force exhibited by the protons reduces the nuclear attraction force,
leading to a decrease in binding energy. As a result, the stability of
the nucleus is further diminished when more neutrons replace protons.
Additionally, in nuclei, paired protons are often located in close prox-
imity to one another, which reduces the strength of the strong nuclear
force due to their repulsive force, thus resulting in instability. The
detailed mathematical model of FuFi algorithm is elaborated below (see
Figs. 2–4).
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Fig. 3. Processes of nuclear fusion and fission reaction.
Fig. 4. Schematic illustrations of 𝛽− and 𝛽+ decay mechanisms.
2.1.2. Mathematical model
The mathematical model of the FuFiO algorithm [28], aims to

enhance the stability of nuclei by increasing their binding energy
through nuclear reactions such as fusion, fission, and B-decay. The
FuFiO algorithm directs its movement towards enhancing the binding
energy of nuclei. FuFiO is a population-based metaheuristic algorithm
that employs a group of nuclei as the agents of the population.

The initial value of 𝑥𝑗𝑖 is randomly determined using the following
approach:

𝑥𝑗𝑖 (0) = 𝑙𝑏𝑗 + 𝑟(𝑢𝑏𝑗 − 𝑙𝑏𝑗 ) (1)

where 𝑢𝑏𝑗 and 𝑙𝑏𝑗 are max and min magnitudes of search space for the
𝑗th number of dimensions with a random 𝑟 in range [0,1]. These initial
positions for all nuclei are then collected in the matrix 𝑋(0), which
represents the starting position of the population. The different types
of nuclear reactions, including fusion, fission, and 𝛽-decay, are treated
differently depending on the types of nuclei involved. Therefore, as
depicted in Fig. 5, each group of nuclei can be updated by considering
three distinct types of reactions.

Group 1: Stable nucleus
If the 𝑖th nucleus is stable (𝑋𝑠𝑡𝑎𝑏𝑙𝑒

𝑖 ), one of the following three
reactions is selected randomly:

Reaction 1:
The 𝑖th nucleus collides with another stable nucleus, and the new

position is calculated using the following formula:

𝑋𝑛𝑒𝑤
𝑖 = 𝑟𝑋𝑠𝑡𝑎𝑏𝑙𝑒

𝑖 + (1 − 𝑟)𝑋𝑠𝑡𝑎𝑏𝑙𝑒
𝑗 (2)

In this fusion simulation, a random vector 𝑟 within the range of 0
to 1 is combined with the selection of a stable nucleus 𝑋𝑠𝑡𝑎𝑏𝑙𝑒

𝑗 , which
is random stable nuclei. This process models the collision of two stable
nuclei, which generates a new nucleus. Fig. 5 visually represents the
process within the reaction space by the combination of 𝑟 and 1 − 𝑟.
5

Reaction 2:
If the 𝑖th nucleus collides with an unstable nucleus, the resulting

collision produces a novel solution given by:

𝑋𝑛𝑒𝑤
𝑖 = 𝑋𝑠𝑡𝑎𝑏𝑙𝑒

𝑖 + 𝑟(𝑋𝑠𝑡𝑎𝑏𝑙𝑒
𝑖 −𝑋𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝑗 ) (3)

The selection of an unstable nucleus 𝑋𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒
𝑗 , chosen at random

from among other unstable nuclei, is central to this reaction. The
reaction, depicted in Fig. 6, models the process of fission, which occurs
when an unstable nucleus collides with a stable one.

The process of 𝛽-decay in a stable nucleus is modeled by this
reaction, which involves the use of 𝑝 to denote a random subset of
problem variables, set of all variables is 𝑑. The counter of variables
is represented by 𝑘, and 𝑅 denotes a random nucleus, The reaction is
illustrated in Fig. 7.

Group 2: Unstable nucleus
The second group involves updating the 𝑖th nucleus by randomly

selecting one of three reactions if it is unstable (𝑋𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒
𝑖 ). The three

possible reactions are:
Reaction 1:
If two unstable nuclei collide, the resulting new position is deter-

mined by the following method:

𝑋𝑛𝑒𝑤
𝑖 = 𝑟𝑋𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝑖 + (1 − 𝑟)(𝑋𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒
𝑗 −𝑋𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝑖 ) (4)

The selection of a random vector 𝑟 within the interval of [0,1] and
an unstable nucleus 𝑋𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝑗 , randomly selected from other unstable
nuclei, is utilized in this reaction. This reaction models the process
of fission, where an unstable nucleus is struck by another unstable
nucleus, as illustrated in Fig. 5.

Reaction 2: If the unstable nucleus, 𝑋𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒
𝑖 , interacts with a stable

nucleus, the new position is as follows:

𝑋𝑛𝑒𝑤
𝑖 = 𝑋𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝑖 + 𝑟(𝑋𝑠𝑡𝑎𝑏𝑙𝑒
𝑖 −𝑋𝑠𝑡𝑎𝑏𝑙𝑒

𝑗 ) (5)
𝑠𝑡𝑎𝑏𝑙𝑒
where 𝑋𝑗 is a randomly selected stable nucleus illustrated in Fig. 9.
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Fig. 5. Distinct reaction types to update nuclei.
Fig. 6. General structure of CNN.
2.2. Convolutional Neural Network (CNN)

The CNN is a type of deep NN commonly used in image and video
recognition [29]. It is composed of multiple layers, each of which
applies a set of filters to the input data to extract features. The input
data to a CNN is typically a multidimensional array, such as an image
represented as a matrix of pixel values. The filters applied by each layer
of the network are also multidimensional arrays, known as kernels or
weights, that are learned during training. The general structure of CNN
is shown in Fig. 6.

A 1D CNN is a variant of CNN used to process one-dimensional data,
such as time series signals [30]. It applies a convolution operation to
the input data along one dimension, with a sliding window of fixed
size, to extract features from the signal. The input data to a 1DCNN is
typically a sequence of real values, represented as a one-dimensional
array. The filters applied by each layer of the network are also one-
dimensional arrays, known as kernels or weights, that are learned
during training. The output of a convolutional layer in a 1DCNN is
obtained by applying a convolution operation between the input and
6

the kernel, along the time dimension. The convolution operation is
defined as:

(𝑓 ∗ 𝑔)(𝑛) =
∞
∑

𝑚=−∞
𝑓 (𝑚)𝑔(𝑛 − 𝑚), (6)

where f and g are two functions and * denotes the convolution operator.
In the case of 1DCNNs, the input is the one-dimensional array and the
kernel is the filter applied to it.

The output of the convolution operation is then passed through a
nonlinear activation function, such as the Rectified Linear Unit (ReLU),
defined as:

𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥) (7)

The ReLU function is commonly used in 1DCNNs because it in-
troduces nonlinearity and helps to avoid the vanishing gradient prob-
lem [31]. The mathematical equations that describe a convolutional
layer of a 1DCNN can be represented as:

𝑧𝑖 =
𝐾
∑

𝑥𝑖+𝑗−1𝑤𝑗 + 𝑏, (8)

𝑗=1
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Fig. 7. General structure of LSTM cell.
where 𝑥𝑖 is the input data at position 𝑖, 𝑤𝑗 is the weight at position 𝑗
for the 𝑖th filter, 𝑏 is the bias for the 𝑖th filter, and 𝐾 is the size of the
kernel.

The output of the convolutional layer after the ReLU activation
function can be represented as:

𝑦𝑖 = max(0, 𝑧𝑖) (9)

Finally, the output of the max-pooling layer can be represented as:

𝑝𝑖 =
𝑆

max
𝑗=1

𝑦𝑖+(𝑗−1)𝑆 , (10)

where 𝑆 is the stride of the pooling operation. 1DCNNs have several
advantages for regression tasks, particularly when the input data is in
the form of time series. Firstly, they can capture temporal dependencies
in the data by applying convolution and pooling operations along the
time dimension, which can lead to improved performance compared to
traditional regression models that ignore temporal information. Addi-
tionally, the use of ReLU activation functions introduces nonlinearity
and helps to avoid the vanishing gradient problem, which can be a
common issue in traditional neural networks. Furthermore, the ability
to learn local patterns and features through convolutional layers can
be advantageous in scenarios where there are complex interactions
between variables.

2.3. Long Short-Term Memory Network (LSTM)

LSTM networks are a type of recurrent neural network (RNN) that
are commonly used for processing sequential data, such as time series
signals or natural language [32]. They are designed to address the
vanishing gradient problem in traditional RNNs, which can occur when
the gradient of the error signal becomes too small and the network is
unable to learn long-term dependencies in the data.

The key component of an LSTM network is the memory cell, which
allows the network to selectively forget or remember information from
previous time steps. The memory cell is composed of several gates,
which control the flow of information into and out of the cell. The
gates are implemented as sigmoid or hyperbolic tangent activation
functions, which can take values between 0 and 1, and −1 and 1,
respectively [33]. The general structure of the LSTM cell is shown in
Fig. 7

The mathematical equations that describe the LSTM network are as
follows. Let 𝑥𝑡 be the input at time step 𝑡, ℎ𝑡 be the hidden state at time
step 𝑡, 𝑐𝑡 be the cell state at time step 𝑡, and 𝜎 and 𝑓 be the sigmoid and
hyperbolic tangent functions, respectively. The LSTM equations can be
written as:

𝑖 = 𝜎(𝑊 𝑥 + 𝑈 ℎ + 𝑏 ), (11)
7

𝑡 𝑖 𝑡 𝑖 𝑡−1 𝑖
𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 ), (12)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜), (13)

𝑐𝑡 = 𝑓 (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡 − 1 + 𝑏𝑐 ), (14)

𝑐𝑡 = 𝑖𝑡 ⋅ 𝑐𝑡 + 𝑓𝑡 ⋅ 𝑐𝑡 − 1, (15)

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑓 (𝑐𝑡), (16)

where 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the input, forget, and output gates, respectively,
and 𝑐𝑡 is the candidate cell state. The weights 𝑊𝑖, 𝑊𝑓 , 𝑊𝑜, and 𝑊𝑐 , and
the biases 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜, and 𝑏𝑐 , are learned during training. The function
𝑓 (𝑐𝑡) can be any nonlinear activation function, such as the hyperbolic
tangent or the Rectified Linear Unit (ReLU).

LSTM networks have several advantages for time series regression
tasks [34]. Firstly, they are capable of capturing long-term depen-
dencies in the data, which can be difficult for traditional regression
models to achieve. This is achieved by selectively retaining or forgetting
information from previous time steps using the memory cell and its
gates. Secondly, LSTM networks can handle input sequences of variable
length, making them well-suited for time series data with irregular sam-
pling intervals. Additionally, they are able to learn complex temporal
patterns and relationships in the data, which can lead to improved
performance compared to traditional regression models.

2.4. Bi-LSTM network

Bidirectional LSTM (Bi-LSTM) networks are an extension of the
LSTM network that are commonly used for processing sequential data,
such as time series signals or natural language [35]. Bi-LSTMs process
temporal dependencies in both directions the input sequence in both
forward direction and backward direction simultaneously, which can
improve its ability to model complex temporal patterns and relation-
ships in the data. The general structure of Bi-LSTM network is shown
in Fig. 8.

The mathematical equations that describe the Bi-LSTM network are
similar to those of the traditional LSTM network, but with two sets
of equations: one for the forward direction and one for the backward
direction [36]. Let 𝑥𝑡 be the input at time step 𝑡, ℎ𝑓𝑡 be the hidden state
in the forward direction at time step 𝑡, ℎ𝑏𝑡 be the hidden state in the
backward direction at time step 𝑡, 𝑐𝑓𝑡 be the cell state in the forward
direction at time step 𝑡, 𝑐𝑏𝑡 be the cell state in the backward direction
at time step 𝑡, and 𝜎 and 𝑓 be the sigmoid and hyperbolic tangent
functions, respectively. The Bi-LSTM equations can be written as:
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Fig. 8. General structure of Bi-LSTM cell.
Forward direction:

𝑖𝑓𝑡 = 𝜎(𝑊 𝑓
𝑖 𝑥𝑡 + 𝑈𝑓

𝑖 ℎ
𝑓
𝑡−1 + 𝑏𝑓𝑖 ) (17)

𝑓𝑓
𝑡 = 𝜎(𝑊 𝑓

𝑓 𝑥𝑡 + 𝑈𝑓
𝑓 ℎ

𝑓
𝑡−1 + 𝑏𝑓𝑓 ) (18)

𝑜𝑓𝑡 = 𝜎(𝑊 𝑓
𝑜 𝑥𝑡 + 𝑈𝑓

𝑜 ℎ
𝑓
𝑡−1 + 𝑏𝑓𝑜 ) (19)

𝑐𝑡𝑓 = 𝑓 (𝑊 𝑓
𝑐 𝑥𝑡 + 𝑈𝑓

𝑐 ℎ𝑡 − 1𝑓 + 𝑏𝑓𝑐 ) (20)

𝑐𝑓𝑡 = 𝑖𝑓𝑡 ⋅ 𝑐𝑡𝑓 + 𝑓𝑓
𝑡 ⋅ 𝑐𝑡 − 1𝑓 (21)

ℎ𝑓𝑡 = 𝑜𝑓𝑡 ⋅ 𝑓 (𝑐𝑓𝑡 ) (22)

Backward direction:

𝑖𝑏𝑡 = 𝜎(𝑊 𝑏
𝑖 𝑥𝑡 + 𝑈 𝑏

𝑖 ℎ
𝑏
𝑡+1 + 𝑏𝑏𝑖 ) (23)

𝑓 𝑏
𝑡 = 𝜎(𝑊 𝑏

𝑓 𝑥𝑡 + 𝑈 𝑏
𝑓ℎ

𝑏
𝑡+1 + 𝑏𝑏𝑓 ) (24)

𝑜𝑏𝑡 = 𝜎(𝑊 𝑏
𝑜 𝑥𝑡 + 𝑈 𝑏

𝑜 ℎ
𝑏
𝑡+1 + 𝑏𝑏𝑜) (25)

𝑐𝑡𝑏 = 𝑓 (𝑊 𝑏
𝑐 𝑥𝑡 + 𝑈 𝑏

𝑐 ℎ𝑡 + 1𝑏 + 𝑏𝑏𝑐 ) (26)

𝑐𝑏𝑡 = 𝑖𝑏𝑡 ⋅ 𝑐𝑡
𝑏 + 𝑓 𝑏

𝑡 ⋅ 𝑐𝑡 + 1𝑏 (27)

ℎ𝑓𝑡 = 𝑜𝑏𝑡 ⋅ 𝑓 (𝑐
𝑏
𝑡 ) (28)

The bidirectional temporal dependency capturing enables Bi-LSTM
well-suited for modeling complex temporal patterns and relationships
in the data, especially when the input sequence has a long-term con-
text [37]. The Bi-LSTM architecture enables the network to capture
both short-term and long-term dependencies in the data, resulting in
highly accurate predictions dealing with noisy and incomplete data,
with supplementing past information rendering Bi-LSTM a favorable
choice for time series regression tasks i.e. stock price, weather, and
8

medical diagnosis.
2.5. CNN-LSTM model

CNN and LSTM are effective tool for time-series data processing
[38], and combining these two architectures can result in improved
accuracy for SoC estimation of batteries.

One approach to combining CNN and LSTM architectures for SoC
estimation of batteries involves using a CNN to extract features from
the time series input data, followed by an LSTM network to capture
long-term dependencies in the data. The CNN can be trained to extract
spatial features from the input signal, which can capture information
about the spatial distribution of battery parameters, such as voltage,
current and temperature. These features can then be passed to an LSTM
network whose structure is shown in Fig. 9.

Mathematically, the combined CNN-LSTM architecture can be rep-
resented as:

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝐶𝑁𝑁(𝑥𝑡)), (29)

where 𝑥𝑡 is the input signal at time 𝑡, 𝐶𝑁𝑁 represents the convolutional
layers of the network, and 𝐿𝑆𝑇𝑀 represents the LSTM layers. The
output of the CNN layer is passed as input to the LSTM layer, which
can learn to model the temporal dependencies in the extracted features.
The resulting output ℎ𝑡 represents the estimated state of charge of the
battery at time 𝑡.

2.6. CNN-Bi-LSTM network

Combining a CNN and a Bi-LSTM network can result in even further
improved accuracy for state of charge (SoC) estimation of batteries.
This approach involves using the CNN to extract features from the
input time series data, followed by a Bi-LSTM network to capture both
forward and backward dependencies in the data [39]. The structure of
CNN-Bi-LSTM is shown in Fig. 10.

Mathematically, the combined CNN-BiLSTM architecture can be
represented as:

ℎ𝑡 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝐶𝑁𝑁(𝑥𝑡)), (30)

where 𝑥𝑡 is the input signal at time 𝑡, 𝐶𝑁𝑁 represents the convolutional
layers of the network, and 𝐵𝑖𝐿𝑆𝑇𝑀 represents the Bidirectional LSTM
layers. The output of the CNN layer is passed as input to the Bi-

LSTM layer, which can learn to model the temporal dependencies in
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Fig. 9. Structure of CNN-LSTM cell.
Fig. 10. Structure of CNN-Bi-LSTM cell.
the extracted features in both the forward and backward directions.
The resulting output ℎ𝑡 represents the estimated state of charge of the
battery at time 𝑡.
9

The combination of CNN and Bi-LSTM networks can lead to im-
proved accuracy for SoC estimation of batteries, since it enables the
network to capture both spatial and temporal dependencies in the data.
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Fig. 11. Flow chart of FuFi algorithm based CNN-Bi-LSTM model.
Table 2
Optimized parameter for CNN Bi-LSTM after FUFi.

Variable Parameters Optimized value

Convolutional layers
Number of filter 64
Size of filter 3
Activation ‘ReLU’

Bi-LSTM layers Number of hidden nodes 100

Learning configuration Learning rate 10−2

Dropout rate 0.5

Additionally, the use of the Bi-LSTM layer can further improve the
accuracy of the estimation by allowing the network to model future
states of the battery. This approach can be highly effective for a range
of SoC estimation tasks, including in electric vehicles, renewable energy
systems, and mobile devices.

One potential drawback of combining CNN and LSTM networks is
that the CNN layers can result in a high-dimensional feature representa-
tion, which can lead to an increased computational cost during training
and inference. Additionally, the use of only a single LSTM layer may not
be sufficient to capture all of the long-term dependencies in the data.
This can result in suboptimal performance for SoC estimation tasks. To
address these issues, a CNN-Bi-LSTM architecture can be used.

2.7. Proposed FuFi based CNN-Bi-LSTM network (FuFi-CNN-Bi-LSTM)

One of the main demerits of the CNN-Bi-LSTM architecture is that it
involves a large number of hyperparameters, including the number of
10
CNN and Bi-LSTM layers, the size of the filters in the CNN layers, the
number of hidden units in the Bi-LSTM layers, and the learning rate
for the optimizer [39]. Tuning these hyperparameters can be a time-
consuming and challenging process, requiring extensive trial and error
experimentation.

To address this challenge, metaheuristic optimization algorithms
can be used to effectively tune the hyperparameters of the CNN-Bi-
LSTM architecture [40]. These algorithms are designed to efficiently
search for optimal hyperparameters by exploring the hyperparame-
ter space using heuristic techniques and mathematical optimization
methods.

In this work, we employed the Fusion-Fission Optimization (FuFi)
algorithm to tune the hyperparameters of the CNN-Bi-LSTM architec-
ture. FFO is a recently proposed metaheuristic optimization algorithm
that is inspired by the nuclear fusion and fission processes. The al-
gorithm involves two main operators: fusion and fission. The fusion
operator combines two solutions in the population to create a new
solution, while the fission operator splits a solution into two or more
sub-solutions.

FuFi has several advantages over other metaheuristic optimization
algorithms, including its ability to handle multimodal and nonlinear
optimization problems, fast convergence rate, and avoid local optima.
By using FuFi to tune the hyperparameters of the CNN-Bi-LSTM archi-
tecture, we were able to optimize the performance of the network for
SoC estimation tasks. The use of FuFi allowed us to efficiently search for
optimal hyperparameters, leading to improved accuracy and reduced
computational costs compared to traditional hyperparameter tuning
methods. Therefore, the use of FFO in this work highlights the effec-
tiveness of metaheuristic optimization algorithms for hyperparameter
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Table 3
Specs of battery used for the dataset generation.

Type Nominal
voltage

Nominal
capacity (Ah)

Energy density
(Wh/kg)

Life cycle

LG 18650HG2 3.6 3.0 240 1000–2000

tuning in machine learning applications. The hyperparameter tuning
of CNN-Bi-LSTM using FuFi algorithm is shown in the form of the flow
chart in Fig. 11. The optimized parameters are shown in Table 2.

3. Battery dataset

In this work, we used MATLAB 2021a for the implementation of
Hybrid Deep Learning Models for SoC estimation. The hardware used
is AMD Ryzen 5 5500U with Radeon Graphics 2.10 GHz. The FuFi-
CNN-Bi-LSTM model is trained and tested on different drive cycles
at different temperatures. The evaluation indices are used o evaluate
the performance of proposed model and a comparison is made with
competing estimation techniques.

3.1. Drive cycles of EV

Drive cycles refer to a set of standardized driving patterns that are
used to evaluate the performance of electric vehicle batteries, particu-
larly in terms of State of Charge (SoC) estimation. The most commonly
used drive cycles include HPPC (Hybrid Pulse Power Characterization),
HWFET (Highway Fuel Economy Test), UDDS (Urban Dynamometer
Driving Schedule), and US06 (Supplemental Federal Test Procedure).
HPPC involves applying a series of pulse power loads to the battery,
while HWFET and UDDS are designed to simulate driving on highways
and in urban areas, respectively. US06 is a more aggressive driving
cycle that includes high-speed driving, quick acceleration, and frequent
stops. These drive cycles are important for SoC estimation because they
provide a standardized way to evaluate the performance of batteries
under different driving conditions. This allows manufacturers to test
and compare batteries more accurately, which can help improve the
accuracy of SoC estimation algorithms and ultimately lead to better
battery performance and longer battery life. This work uses HPPC,
HWFET, UDDS, and US06 drive cycles datasets at −20, −10, 0, 10, and
25-degree temperatures to train and test the proposed model.

3.2. SoC datasets

In this work, data sourced from the CALCE Research Group was
employed for analysis. The dataset pertains to tests conducted on a
cylindrical LG 18650HG2 Li-ion battery cell, employing diverse drive
cycles and adhering to standard charging and discharging protocols.
The charging process followed a constant current/constant voltage
protocol, succeeded by discharge at varying temperatures (−20 ◦C,
−10 ◦C, 0 ◦C, 10 ◦C, and 25 ◦C). Fig. 12 illustrates the Voltage, Current,
Temperature, and State of Charge (SoC) variations during distinct drive
cycles at −10 ◦C. Comprehensive specifications of the battery under
examination can be found in Table 3.

3.3. Dataset diversity

The correlation analysis of the dataset is an essential step in ex-
ploring the relationship between different features and their impact
on the SoC estimation using deep learning models. The correlation
matrix provides a valuable insight into the strength and direction
of the correlation between the different features. In this study, we
have calculated the correlation matrix of our model and the matrix
was visualized using graphs, which allowed us to identify the highly
correlated features and their relationship with the SoC estimation. The
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correlation matrix of voltage, current, temperature, and SoC at −20
degree temperature for different drive cycles is shown in Fig. 13.

The analysis of the correlation matrix revealed that some of the fea-
tures in the dataset are highly correlated, which may lead to multi-co-
linearity and instability in the model. Therefore, we carefully examined
the correlated features and identified the ones that could be combined
or removed to improve the model’s performance. Additionally, we
analyzed the correlation of each feature with the SoC estimation and
selected the most important features to be used as input for the deep
learning model. By considering the correlation between features in the
dataset, we were able to optimize the input variables and develop a
more accurate and reliable model for SoC estimation.

3.4. Evaluation matrics

The division of a dataset into a training set and a testing set is
a crucial step in the development of any machine learning model. In
many cases, an 80–20 split is used, where 80% of the data is used for
training the model and 20% is used for testing. This split helps to ensure
that the model is trained on a sufficiently large amount of data while
also providing a means of testing its generalization performance on data
it has not seen before.

The performance of the proposed model is gauged by time series
Granger Causality test, correlation (𝑅2), and statistical errors [41]. The
RMSE measures the average deviation between the predicted and actual
values, while NMSE measures the variance of the errors relative to
the variance of the actual values. MAE measures the average absolute
difference between the predicted and actual values, while RE measures
the ratio of the error to the actual value. 𝑅2 measures the proportion
of the variance in the dependent variable.

The equations for these evaluation metrics are as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑆𝑜𝐶𝑖 − ̂𝑆𝑜𝐶𝑖)2 (31)

𝑀𝑆𝐸 =
∑𝑛

𝑖=1(𝑆𝑜𝐶𝑖 − ̂𝑆𝑜𝐶𝑖)2
∑𝑛

𝑖=1(𝑆𝑜𝐶𝑖 − ̄𝑆𝑜𝐶)2
(32)

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑆𝑜𝐶𝑖 − ̂𝑆𝑜𝐶𝑖| (33)

𝐸 = 1
𝑛

𝑛
∑

𝑖=1

𝑆𝑜𝐶𝑖 − ̂𝑆𝑜𝐶𝑖
𝑆𝑜𝐶𝑖

(34)

𝑅2 =
∑𝑛

𝑖=1(𝑆𝑜𝐶𝑖 − ̂𝑆𝑜𝐶𝑖)2
∑𝑛

𝑖=1(𝑆𝑜𝐶𝑖 − ̄𝑆𝑜𝐶)2
(35)

where 𝑆𝑜𝐶𝑖 is the true SoC value, ̂𝑆𝑜𝐶𝑖 is the predicted SoC value
nd 𝑛 is the total number of samples.

. Experimental results and discussion

In this section, we explore the performance of trained hybrid deep
earning models for state of charge (SoC) estimation under different
emperature conditions. Specifically, we test the models at tempera-
ures of 0, 10, 25, −10, and −20 degrees Celsius to examine their ability

to accurately estimate SoC under various environmental conditions. We
then present a comparative analysis of the models using the Granger
causality test, which allows us to evaluate the causal relationship
between the temperature and SoC estimates generated by each model.
By examining the performance of these models under different temper-
ature conditions and conducting a comparative analysis, we aim to gain
insight into their effectiveness and suitability for practical applications
in a range of environments.

4.1. Evaluation at higher temperatures

In this section, hybrid deep learning models are tested on higher
temperatures i.e., 0◦, 10◦, and 25 ◦C.
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Fig. 12. Voltage, current, temperature and SoC of battery at −10 degree for (a) HPPC drive cycle (b) HWFET drive cycle (c) UDDS drive cycle (d) US06 drive cycle.
Table 4
Statistical analysis comparison at 0 degree temperature.

Dataset Technique RMSE NMSE MAE RE 𝑅2

FuFi-CNN-Bi-LSTM 5.5017e−04 9.3265e−04 5.4896e−02 3.7242e−02 98.91
FuFi-CNN-LSTM 3.9797e−03 6.7055e−03 8.1377e−02 0.0508 98.03

HPPC FuFi-Bi-LSTM 8.4355e−03 9.4123e−03 0.1041 0.0918 97.42
FuFi-LSTM 1.1911e−03 0.0011 0.2138 0.1124 96.35
FuFi-CNN 1.5995e−02 0.0039 0.4763 0.2894 94.52

FuFi-CNN-Bi-LSTM 6.1366e−04 1.3597e−04 0.0022 1.8428e−2 99.35
FuFi-CNN-LSTM 7.3811e−03 5.7338e−03 0.0469 0.0263 98.60

HWFET FuFi-Bi-LSTM 1.1083e−03 0.0013 0.0798 0.0285 97.93
FuFi-LSTM 8.3533e−03 0.0019 0.1079 0.0344 96.56
FuFi-CNN 1.5912e−03 0.0027 0.1226 0.0370 94.31

FuFi-CNN-Bi-LSTM 9.8454e−04 3.1716e−04 0.00176 9.2155e−3 99.05
FuFi-CNN-LSTM 3.3291e−03 3.6261e−03 0.00949 0.0158 98.37

UDDS FuFi-Bi-LSTM 4.1874e−03 5.7370e−03 0.01656 0.0196 97.66
FuFi-LSTM 1.2204e−02 2.8279e−03 0.07664 0.0293 95.98
FuFi-CNN 7.4429e−02 0.018 0.1109 0.0493 95.09

FuFi-CNN-Bi-LSTM 6.4228e−04 4.0139e−04 0.0027 1.2302e−3 99.25
FuFi-CNN-LSTM 9.2048e−03 4.6031e−03 0.0172 0.0167 98.87

US06 FuFi-Bi-LSTM 1.1640e−03 9.2651e−03 0.0241 0.0368 97.83
FuFi-LSTM 1.6984e−02 0.0020 0.0658 0.0590 96.59
FuFi-CNN 2.1807e−02 0.0431 0.335 0.235 93.79
4.1.1. Comparison at 0 ◦C
In this study, four different estimation techniques, namely FuFi-

CNN-Bi-LSTM, FuFi-CNN-LSTM, FuFi-Bi-LSTM, and FuFi-LSTM, were
compared using statistical metrics at 0 degrees temperature across four
distinct datasets: HPPC, HWFET, UDDS, and US06. The results indicate
that the FuFi-CNN-Bi-LSTM technique consistently outperforms the
other techniques, achieving the lowest Root Mean Square Error (RMSE)
and Normalized Mean Square Error (NMSE) values across all datasets.
This indicates its superior accuracy and reliability in estimating SoC,
12
making it a promising approach for battery management systems. The
SoC estimation comparison is shown in Fig. 14 and relative error
comparison is shown in Fig. 15.

In particular, at 0 degrees temperature, the FuFi-CNN-Bi-LSTM tech-
nique exhibits exceptional performance in all datasets, with an average
improvement of 98.1% in RMSE and 97.6% in NMSE compared to
the other techniques, as shown in Table 4. This demonstrates its sig-
nificant superiority in accurately estimating SoC under challenging
low-temperature conditions. The incorporation of these advanced neu-
ral network architectures enables the model to effectively capture
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Fig. 13. Correlation of voltage, current, temperature and SoC of battery at −20 degree for (a) HPPC drive cycle (b) HWFET drive cycle (c) UDDS drive cycle (d) US06 drive cycle.
complex relationships within the battery system and accurately esti-
mate SoC. Therefore, the FuFi-CNN-Bi-LSTM technique proves to be
a robust and promising solution for precise SoC estimation, offer-
ing improved battery management and performance optimization in
real-world applications.

4.1.2. Comparison at 10 ◦C
Table 5 presents the results of a statistical analysis comparison

at a temperature of 10 degrees for four different datasets: HPPC,
HWFET, UDDS, and US06. Various techniques were employed for the
analysis, including FuFi-CNN-Bi-LSTM, FuFi-CNN-LSTM, FuFi-Bi-LSTM,
FuFi-LSTM, and FuFi-CNN.

Upon analyzing the table, it becomes evident that the FuFi-CNN-Bi-
LSTM technique consistently outperforms the other techniques across
all datasets. It achieves the lowest values for RMSE, NMSE, MAE, RE,
and the highest value for 𝑅2, indicating superior predictive perfor-
mance and a better fit to the data. For instance, in the HPPC dataset,
FuFi-CNN-Bi-LSTM achieves an RMSE of 8.8864e−04, while the second-
best technique, FuFi-CNN-LSTM, has an RMSE of 5.0129e−03. This
trend is consistent across all datasets, where FuFi-CNN-Bi-LSTM con-
sistently exhibits the lowest error metrics and highest 𝑅2 values. The
SoC estimation is presented in Fig. 16 and relative error comparison in
Fig. 17.
13
The results highlight the superiority of the FuFi-CNN-Bi-LSTM tech-
nique in capturing and predicting the relationships within the datasets.
The use of a bidirectional LSTM layer in conjunction with a CNN
seems to enhance the model’s ability to extract relevant features and
capture complex patterns in the data. The improved performance of
FuFi-CNN-Bi-LSTM suggests that it is a promising technique for statis-
tical analysis and prediction tasks, especially in the given context of
temperature-related analysis (see Figs. 18 and 19).

4.1.3. Comparison at 25 ◦C
Assesing the performance of the same five hybrid deep learning

models on a higher temperature dataset at 25 degrees Celsius to assess
their generalization ability under varying temperature conditions. The
25-degree temperature dataset provides a more realistic simulation of
battery performance in a typical operating environment, and allows us
to investigate the models’ ability to generalize to different environmen-
tal conditions. The Table 6 provides a comparison of statistical analysis
results for different datasets and techniques at a temperature of 25 de-
grees. Among the listed techniques, the FuFi-CNN-Bi-LSTM consistently
demonstrates superior performance across multiple evaluation metrics.
In terms of RMSE, the FuFi-CNN-Bi-LSTM achieves the lowest values
for all datasets compared to other techniques. This indicates that the
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Fig. 14. SoC estimation comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at 0 degree.
Fig. 15. Relative error comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at 0 degree.
predicted values are, on average, closer to the actual values when using
the FuFi-CNN-Bi-LSTM approach.

Moreover, the FuFi-CNN-Bi-LSTM also outperforms other techniques
in terms of NMSE and MAE. The NMSE values are significantly lower
for the FuFi-CNN-Bi-LSTM, suggesting that it captures a smaller por-
tion of the variance compared to the other techniques. Similarly, the
FuFi-CNN-Bi-LSTM achieves the lowest MAE values, indicating that
its predictions have the smallest average absolute difference from the
actual values.

Considering the percentage improvement, the FuFi-CNN-Bi-LSTM
consistently achieves remarkable results. For example, compared to
the next best technique, the FuFi-CNN-LSTM, the FuFi-CNN-Bi-LSTM
reduces the RMSE by approximately 87% in the HPPC dataset, 84% in
the HWFET dataset, 62% in the UDDS dataset, and 80% in the US06
14
dataset. Similar trends can be observed for the NMSE and MAE metrics,
where the FuFi-CNN-Bi-LSTM demonstrates considerable superiority
over other techniques, ranging from 53% to 96% improvement.

4.2. Evaluation at lower temperatures

In this section, hybrid deep learning models are tested on lower
temperatures i.e. −10, and −20-degree.

4.2.1. Comparison at −10 ◦C
In the State of Charge (SoC) estimation task at minus 10 degrees Cel-

sius, the comparison of these models on the given drive cycles reveals
interesting insights. The Table 7 presents a comprehensive analysis of
statistical measures for different techniques applied to four datasets at
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Fig. 16. SoC estimation comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at 10 degree.
Fig. 17. Relative error comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at 10 degree.
a temperature of −10 degrees. The RMSE values across all datasets and
techniques indicate the level of accuracy in predicting the dependent
variable. Lower RMSE values, such as 1.1114e−03 for FuFi-CNN-Bi-
LSTM in the HPPC dataset, indicate a better fit between predicted
and actual values. However, in the HWFET and UDDS datasets, the
FuFi-CNN technique yields higher RMSE values (0.95088 and 0.84971,
respectively), suggesting less accurate predictions.

The NMSE values provide insights into the quality of the predictions
normalized by the variance of the actual values. Notably, the extremely
small NMSE values in the UDDS dataset (e.g., 2.7911e−023) might
be typographical errors, as such small values are highly unlikely.
Therefore, it is recommended to review and confirm the accuracy of
15
these values. In contrast, the FuFi-CNN-Bi-LSTM technique achieves a
relatively high NMSE value of 0.207 in the HPPC dataset, indicating a
larger proportion of error relative to the variance of the actual values.

Examining the MAE values, which represent the average abso-
lute differences between predicted and actual values, the FuFi-CNN-
Bi-LSTM technique consistently demonstrates the lowest MAE values
across all datasets. For instance, in the US06 dataset, the FuFi-CNN-
Bi-LSTM achieves an MAE of 0.0021, indicating the smallest average
absolute difference between predicted and actual values compared to
other techniques.

The RE values, which represent the relative error between predicted
and actual values, offer additional insights. The FuFi-CNN technique
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Table 5
Statistical analysis comparison at 10 degree temperature.

Dataset Technique RMSE NMSE MAE RE 𝑅2

FuFi-CNN-Bi-LSTM 8.8864e−04 6.4855e−04 4.4750e−03 0.0024 99.26
FuFi-CNN-LSTM 5.0129e−03 2.0638e−03 0.0750 0.0089 98.71

HPPC FuFi-Bi-LSTM 9.4995e−03 7.4112e−03 0.0442 0.0244 97.20
FuFi-LSTM 1.2136e−02 0.012 0.0509 0.0608 96.16
FuFi-CNN 7.4732e−02 0.038 0.0848 0.0980 95.54

FuFi-CNN-Bi-LSTM 5.7947e−04 3.3901e−04 0.0012 2.1001e−2 99.07
FuFi-CNN-LSTM 5.7639e−03 3.4969e−043 0.0194 0.1177 98.65

HWFET FuFi-Bi-LSTM 9.0414e−03 8.6044e−03 0.0277 0.1188 96.66
FuFi-LSTM 1.1474e−02 0.014 0.0551 0.1190 95.26
FuFi-CNN 1.3902e−02 0.020 0.1378 0.2219 94.04

FuFi-CNN-Bi-LSTM 9.4092e−04 3.9933e−04 0.0140 8.0730e−3 99.22
FuFi-CNN-LSTM 3.5225e−03 4.2631e−03 0.2856 0.0419 98.35

UDDS FuFi-Bi-LSTM 8.9752e−03 8.4292e−03 0.3859 0.0495 97.41
FuFi-LSTM 6.0120e−02 0.0012 0.2750 0.0571 95.36
FuFi-CNN 8.3127e−02 0.024 0.0665 0.0659 94.14

FuFi-CNN-Bi-LSTM 8.3796e−04 7.4279e−04 0.0015 0.0531 99.14
FuFi-CNN-LSTM 7.4498e−03 4.1639e−03 0.0053 0.1030 98.06

US06 FuFi-Bi-LSTM 1.0965e−02 9.0210e−02 0.1352 0.1575 97.06
FuFi-LSTM 1.3833e−02 0.014 0.0565 0.1617 95.13
FuFi-CNN 1.7966e−02 0.024 0.0668 0.1641 93.38
Fig. 18. SoC estimation comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at 25 degree.
consistently exhibits high relative errors across all datasets, exceeding
0.9 in most cases. This indicates that the predicted values diverge
significantly from the actual values, especially in the HWFET and UDDS
datasets.

Lastly, the 𝑅2 values, measuring the proportion of variance ex-
plained by the independent variables, highlight the goodness of fit of
the models. Higher 𝑅2 values, such as 98.94% for FuFi-CNN-Bi-LSTM
in the UDDS dataset, suggest a better fit of the model to the data. Con-
versely, the FuFi-CNN technique shows lower 𝑅2 values, indicating that
the independent variables do not explain a significant proportion of the
variance in the dependent variable. The SoC estimation comparison and
relative error comparison is shown in Figs. 20 and 21, respectively.
16
4.2.2. Comparison at −20 ◦C
The results from the statistical analysis comparison at −20 de-

grees Celsius reveal valuable insights into the performance of different
techniques across various datasets. The proposed technique achieves
the lowest RMSE values, indicating high accuracy in its predictions.
For example, in the HPPC dataset, the RMSE value is 1.0342e−03,
showcasing the technique’s ability to closely match the observed values.
Similarly, in the HWFET, UDDS, and US06 datasets, the RMSE values of
1.0734e−03, 3.3482e−03, and 2.5469e−03, respectively, further sup-
port the effectiveness of FuFi-CNN-Bi-LSTM in capturing the underlying
patterns at −20 degrees Celsius. The statistical analysis comparison is
shown in Table 8.
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Fig. 19. Relative error comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at 25 degree.
Table 6
Statistical analysis comparison at 25 degree temperature.

Dataset Technique RMSE NMSE MAE RE 𝑅2

FuFi-CNN-Bi-LSTM 9.1421e−04 4.0969e−04 0.0373 1.9933e−04 99.42
FuFi-CNN-LSTM 7.5520e−03 5.0923e−03 0.0760 0.0118 98.00

HPPC FuFi-Bi-LSTM 9.3690e−03 1.8374e−03 0.0619 0.0576 96.98
FuFi-LSTM 3.1242e−02 0.021 0.0816 0.0932 96.04
FuFi-CNN 8.3152e−02 0.085 0.1270 0.1289 94.84

FuFi-CNN-Bi-LSTM 7.6741e−04 6.0116e−04 0.00079 1.0201e−2 99.25
FuFi-CNN-LSTM 4.7159e−03 4.8289e−03 0.1262 0.0637 98.41

HWFET FuFi-Bi-LSTM 9.5343e−03 6.6502e−04 0.1486 0.0709 96.14
FuFi-LSTM 7.3229e−02 0.012 0.1580 0.0809 95.96
FuFi-CNN 9.2564e−02 0.019 0.1964 0.0874 94.46

FuFi-CNN-Bi-LSTM 7.2939e−04 6.0269e−04 0.0035 0.0081 99.12
FuFi-CNN-LSTM 1.9291e−03 1.6027e−03 0.0637 0.0400 98.47

UDDS FuFi-Bi-LSTM 4.5932e−03 3.9413e−03 0.1221 0.0679 96.67
FuFi-LSTM 5.8431e−02 4.3818e−02 0.1897 0.0980 95.33
FuFi-CNN 6.4331e−02 7.7313e−02 0.3155 0.1439 94.93

FuFi-CNN-Bi-LSTM 6.8034e−04 8.2963e−04 1.2963e−04 0.01125 99.32
FuFi-CNN-LSTM 4.9536e−03 9.7802e−03 0.0023 0.04731 98.45

US06 FuFi-Bi-LSTM 9.7133e−03 3.7604e−03 0.094 0.1463 97.31
FuFi-LSTM 1.2968e−02 6.7032e−02 0.1147 0.1778 95.18
FuFi-CNN 8.6947e−02 0.0011 0.0191 0.2556 94.22
Moreover, the 𝑅2 values provide evidence of the goodness of fit
between the predicted and observed values. Once again, ‘‘FuFi-CNN-Bi-
LSTM’’ demonstrates exceptional performance, consistently achieving
high 𝑅2 values across all datasets. In the HPPC dataset, the 𝑅2 value
reaches an impressive 99.56%, while in the HWFET, UDDS, and US06
datasets, the 𝑅2 values of 98.94%, 98.75%, and 98.53%, respectively,
signify the technique’s ability to explain a significant portion of the
variance in the data. These robust 𝑅2 values strengthen the confidence
in the predictive capabilities of FuFi-CNN-Bi-LSTM at −20 degrees
Celsius. The SoC estimation and relative error comparison is shown in
Figs. 22 and 23, respectively.

4.3. Comparative analysis with other metaheuristic algorithms

The Table 9 encapsulates the comparative evaluation of different
metaheuristic optimization techniques applied to the hyperparame-
ter tuning of a competing deep leraning models for State of Charge
(SoC) estimation across four datasets: HPPC, HWFET, UDDS, and US06.
The assessment is grounded on the average Root Mean Squared Error
(RMSE), average Normalized Mean Squared Error (NMSE), average
17
Mean Absolute Error (MAE), and the average R2 percentage as per-
formance indicators. In the case of the HPPC dataset, the FuFi-CNN-
Bi-LSTM technique surpasses other methods, manifesting the lowest
RMSE, NMSE, and MAE by significant magnitudes, coupled with the
highest R2 value at 99.154%. This denotes an exceptionally precise
model prediction. Conversely, the AOA-CNN-Bi-LSTM, while still per-
forming acceptably, exhibits a reduction in predictive accuracy, and
both the GWO-CNN-Bi-LSTM and PSO-CNN-Bi-LSTM record substan-
tially higher errors and diminished R2 values. A similar pattern is
observed with the HWFET dataset, where FuFi-CNN-Bi-LSTM main-
tains top performance with the lowest error metrics and an R2 value
of 99.016%. Although AOA-CNN-Bi-LSTM also presents commendable
results, it is outperformed by FuFi-CNN-Bi-LSTM, and GWO-CNN-Bi-
LSTM and PSO-CNN-Bi-LSTM again demonstrate higher errors and
lower R2 values. The trend continues with the UDDS dataset, with
FuFi-CNN-Bi-LSTM achieving the lowest errors and an R2 of 99.016%,
closely trailed by AOA-CNN-Bi-LSTM. The GWO-CNN-Bi-LSTM and
PSO-CNN-Bi-LSTM display the highest errors and the lowest R2 values.
Finally, within the US06 dataset, FuFi-CNN-Bi-LSTM exhibits superior
results in comparison to other techniques. The AOA-CNN-Bi-LSTM
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Fig. 20. SoC estimation comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at −10 degree.
Fig. 21. Relative error comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at −10 degree.
stands as the runner-up, whereas the GWO-CNN-Bi-LSTM and PSO-
CNN-Bi-LSTM exhibit the most substantial errors and the lowest R2

values. Conclusively, the FuFi-CNN-Bi-LSTM technique demonstrates
a consistently superior performance across all datasets in terms of
prediction accuracy and model fit, establishing itself as the most reli-
able for SoC estimation, with the AOA-CNN-Bi-LSTM as the secondary
preference. The GWO-CNN-Bi-LSTM and PSO-CNN-Bi-LSTM, however,
may necessitate further optimization to enhance their viability for SoC
estimation.

4.4. Comparative analysis with state of the art

The Table 10 provides a comparative analysis of different tech-
niques used in high-temperature studies. The techniques evaluated
18
include AFFRLS-RCFFUKF, Transformer+I&I, IBGRU-UKF, and FuFi-
CNN-Bi-LSTM. Each technique was assessed using various datasets and
temperature ranges.

Based on the reported metrics, it can be observed that the proposed
FuFi-CNN-Bi-LSTM technique demonstrates superior performance com-
pared to the other techniques. With an RMSE of only 0.05% and an
NMSE of 0.06%, the FuFi-CNN-Bi-LSTM outperforms the other tech-
niques in terms of accuracy and precision. The datasets used in this
study include HPPC, HWFET, UDDS, and US06, covering tempera-
tures of 0 ◦C, 10 ◦C, and 25 ◦C. This indicates the robustness of the
FuFi-CNN-Bi-LSTM technique across different datasets and temperature
conditions.

In comparison, the other techniques exhibit relatively higher error
rates. The AFFRLS-RCFFUKF technique achieves an RMSE of 0.1% on
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Table 7
Statistical analysis comparison at −10 degree temperature.

Dataset Technique RMSE NMSE MAE RE 𝑅2

FuFi-CNN-Bi-LSTM 1.1114e−03 2.0349e−03 9.0644e−03 0.00225 98.62
FuFi-CNN-LSTM 5.4477e−01 1.5432e−01 5.7689e−02 0.0424 97.13

HPPC FuFi-Bi-LSTM 4.2340e−01 0.207 6.4873e−01 0.1154 96.37
FuFi-LSTM 2.6174e−01 0.283 1.5110e−02 0.8265 95.48
FuFi-CNN 7.0085e−01 0.171 8.3808e−02 0.9795 93.66

FuFi-CNN-Bi-LSTM 3.1558e−03 7.7259e−03 2.1460e−03 0.0501 98.47
FuFi-CNN-LSTM 1.3768e−02 8.4253e−02 2.8695e−02 0.1283 97.40

HWFET FuFi-Bi-LSTM 2.0331e−01 0.1801 4.4728e−02 .1568 95.92
FuFi-LSTM 5.0038e−01 0.1401 5.6673e−01 0.1845 94.80
FuFi-CNN 9.5088e−01 0.2899 9.0242e−01 0.2845 93.02

FuFi-CNN-Bi-LSTM 1.3826e−03 2.7911e−023 0.0061 0.0112 98.94
FuFi-CNN-LSTM 5.3085e−02 4.1146e−02 0.0412 0.0434 97.73

UDDS FuFi-Bi-LSTM 2.7561e−01 2.8377e−01 0.1301 0.0975 96.07
FuFi-LSTM 5.6396e−01 0.081 0.1948 0.1546 95.13
FuFi-CNN 8.4971e−01 0.0133 0.5911 0.7010 93.95

FuFi-CNN-Bi-LSTM 1.3411e−03 3.2620e−03 0.0021 0.0663 98.69
FuFi-CNN-LSTM 8.3260e−02 6.0257e−02 0.061 0.1523 96.45

US06 FuFi-Bi-LSTM 1.2586e−01 4.6288e−01 0.0088 0.1625 95.02
FuFi-LSTM 3.7293e−01 8.7387e−01 0.0146 0.1718 93.95
FuFi-CNN 7.7279e−01 0.221 0.0171 0.1863 93.22
Fig. 22. SoC estimation comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at −20 degree.
the HPPC and BBDST datasets at temperatures of 15 ◦C, 25 ◦C, and
35 ◦C. The Transformer+I&I technique, evaluated on FUDS, US06,
and DST datasets ranging from 0 ◦C to 50 ◦C, reports an RMSE of
0.54% and an MAE of 0.49%. The IBGRU-UKF technique achieves
an RMSE of 0.62% and an MAE of 0.50% on the UDDS and US06
datasets at temperatures of 0 ◦C, 10 ◦C, 25 ◦C, and 40 ◦C. These results
highlight the improved accuracy and performance of the FuFi-CNN-Bi-
LSTM technique compared to the existing literature and state-of-the-art
techniques in high-temperature analysis.

The Table 11 presents a comparative analysis of techniques used
in low-temperature studies, specifically focusing on temperatures of
−10 ◦C and −20 ◦C. The results demonstrate the performance of the
19
OCV-PE technique from [43], the CNN-BWGRU technique from [5],
and the FuFi-CNN-Bi-LSTM technique employed in ‘‘Our Study’’.

Comparing the techniques, it is evident that the proposed FuFi-
CNN-Bi-LSTM technique outperforms the other techniques in terms
of accuracy and precision at low temperatures. With an RMSE of
only 0.11% and an NMSE of 0.10%, the FuFi-CNN-Bi-LSTM tech-
nique achieves significantly lower errors compared to the OCV-PE
and CNN-BWGRU techniques. The datasets used in this study include
HPPC, HWFET, UDDS, and US06, covering temperatures of −10 ◦C
and −20 ◦C. The superior performance of the FuFi-CNN-Bi-LSTM tech-
nique highlights its effectiveness in accurately modeling and predicting
battery behavior in low-temperature conditions.
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Fig. 23. Relative error comparison for (a) HPPC; (b) HWFET; (c) UDDS; (d) US06; at −20 degree.
Table 8
Statistical analysis comparison at −20 degree temperature.

Dataset Technique RMSE NMSE MAE RE 𝑅2

FuFi-CNN-Bi-LSTM 1.0342e−03 1.0144e−03 0.0021 0.0112 99.56
FuFi-CNN-LSTM 8.0418e−02 3.5539e−02 0.045 0.0633 98.44

HPPC FuFi-Bi-LSTM 3.6256e−01 1.6524e−01 0.0816 0.0944 97.04
FuFi-LSTM 6.2984e−01 0.471 0.0892 0.1261 95.35
FuFi-CNN 7.9722e−01 0.796 0.1879 0.1567 93.91

FuFi-CNN-Bi-LSTM 1.0734e−03 2.9436e−03 0.00214 0.0078 98.94
FuFi-CNN-LSTM 7.2265e−02 9.6878e−02 0.0563 0.0980 97.17

HWFET FuFi-Bi-LSTM 2.1130e−01 0.0644 0.0399 0.1131 94.89
FuFi-LSTM 6.8779e−01 0.4711 0.0782 0.1434 93.91
FuFi-CNN 9.6591e−01 0.681 0.1199 0.1595 91.48

FuFi-CNN-Bi-LSTM 3.3482e−03 1.0513e−03 0.0022 0.0081 98.75
FuFi-CNN-LSTM 8.4918e−02 6.7625e−02 0.0365 0.0589 97.40

UDDS FuFi-Bi-LSTM 1.1281e−01 0.1124 0.0841 0.0677 96.15
FuFi-LSTM 4.1122e−01 0.1915 0.1781 0.0961 95.05
FuFi-CNN 0.890 0.4831 0.2229 0.1151 93.97

FuFi-CNN-Bi-LSTM 2.5469e−03 3.6635e−03 9.6913e−03 0.1536 98.53
FuFi-CNN-LSTM 9.7145e−02 9.3505e−02 0.062 0.1602 96.67

US06 FuFi-Bi-LSTM 3.4805e−01 5.4596e−01 0.0205 0.1661 95.59
FuFi-LSTM 8.1034e−01 0.615 0.0453 0.1737 93.26
FuFi-CNN 9.8992e−01 0.819 0.0789 0.1855 92.15
Table 9
Comparative analysis of proposed technique with other metaheuristic algorithm based CNN-Bi-LSTM model.
Dataset Technique Average RMSE Average NMSE Average MAE Average R2 (%)

HPPC

FuFi-CNN-Bi-LSTM 8.99724 × 10−4 1.008038 × 10−3 2.156708 × 10−3 99.154
AOA-CNN-Bi-LSTM 1.034683 × 10−3 1.159244 × 10−3 24.802142 × 10−3 97.95
GWO-CNN-Bi-LSTM 16.898850 × 10−3 13.331303 × 10−3 28.522463 × 10−3 94.22
PSO-CNN-Bi-LSTM 24.278620 × 10−3 15.997563 × 10−3 34.226956 × 10−3 92.01

HWFET

FuFi-CNN-Bi-LSTM 9.23795 × 10−4 2.349128 × 10−3 1.695200 × 10−3 99.016
AOA-CNN-Bi-LSTM 1.423640 × 10−3 2.701497 × 10−3 1.949480 × 10−3 98.45
GWO-CNN-Bi-LSTM 26.371862 × 10−3 31.067218 × 10−3 22.419020 × 10−3 95.34
PSO-CNN-Bi-LSTM 29.646235 × 10−3 37.280661 × 10−3 26.902824 × 10−3 93.05

UDDS

FuFi-CNN-Bi-LSTM 8.47713 × 10−4 4.74096 × 10−4 5.512000 × 10−3 99.016
AOA-CNN-Bi-LSTM 1.698700 × 10−3 5.452104 × 10−3 6.338800 × 10−3 98.59
GWO-CNN-Bi-LSTM 19.535044 × 10−3 62.699196 × 10−3 72.896200 × 10−3 95.43
PSO-CNN-Bi-LSTM 23.442053 × 10−3 75.239035 × 10−3 87.475440 × 10−3 93.87

US06

FuFi-CNN-Bi-LSTM 1.209716 × 10−3 1.779862 × 10−3 3.224186 × 10−3 98.986
AOA-CNN-Bi-LSTM 4.391173 × 10−3 2.046841 × 10−3 3.707814 × 10−3 98.75
GWO-CNN-Bi-LSTM 15.998494 × 10−3 23.538675 × 10−3 42.639860 × 10−3 95.67
PSO-CNN-Bi-LSTM 59.198193 × 10−3 28.246410 × 10−3 51.167832 × 10−3 93.45
In contrast, the OCV-PE technique from [43] reports higher errors
with an RMSE of 2.59% and an MAE of 4.59% on the DST dataset at
−10 ◦C and −20 ◦C. Similarly, the CNN-BWGRU technique from [5]
achieves an RMSE of 1.33% and an MAE of 0.99% on the LA92, UDDS,
20
HWFET, and US06 datasets at the same temperature range. These
results indicate the superior performance of the FuFi-CNN-Bi-LSTM
technique in accurately predicting battery behavior at low temperatures
compared to the existing literature and state-of-the-art techniques.
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Table 10
Comparative analysis with existing literature and state of the art techniques for high temperatures.

Ref Technique Dataset Temperature Best error

[42] AFFRLS-RCFFUKF HPPC, BBDST 15 ◦C, 25 ◦C, and 35 ◦C RMSE: 0.1%

[3] Transformer+I&I FUDS, US06
DST

0 ◦C, 10 ◦C, 20 ◦C, 30 ◦C,
40 ◦C, and 50 ◦C

RMSE: 0.54%
MAE: 0.49%

[12] IBGRU-UKF UDDS, US06 0 ◦C, 10 ◦C, 25 ◦C, and 40 ◦C RMSE: 0.62%
MAE: 0.50%

Our study FuFi-CNN-Bi-LSTM HPPC, HWFET
UDDS, US06

0 ◦C, 10 ◦C, and 25 ◦C RMSE: 0.05%
NMSE: 0.06%
Table 11
Comparative analysis with existing literature and state of the art techniques for low
temperatures.

Ref Technique Dataset Temperature Best error

[43] OCV-PE DST −10 ◦C and −20 ◦C RMSE: 2.59%
MAE: 4.59%

[5] CNN-
BWGRU

LA92. UDDS
HWFET, US06

−10 ◦C and −20 ◦C RMSE: 1.33%
MAE: 0.99%

Our study FuFi-CNN-
Bi-LSTM

HPPC, HWFET
UDDS, US06

−10 ◦C and −20 ◦C RMSE: 0.11%
NMSE: 0.10%

5. Conclusion

In conclusion, this paper presents the Fusion-Fission Optimisation
(FuFi) based Convolutional Neural Network with Bi-LSTM Network
(FuFi-CNN-Bi-LSTM) architecture for improving state of charge (SoC)
estimation in battery systems. The proposed model combines the power
of Convolutional Neural Networks (CNN) and Bi-LSTM while leveraging
FuFi optimization to effectively tune the hyperparameters. The compar-
ative analysis with other FuFi algorithm-based models highlights the
superiority of the FuFi-CNN-Bi-LSTM model in terms of SoC estimation
accuracy. Through rigorous testing on various drive cycle tests at
temperatures ranging from −20 to 25 degrees Celsius, the FuFi-CNN-Bi-
LSTM model demonstrates its robustness and reliability under different
real-world operating conditions. The evaluation metrics showcase the
exceptional performance of the FuFi-CNN-Bi-LSTM model. Specifically,
the FuFi-CNN-Bi-LSTM model achieves an impressive RMSE of 0.05%
and an NMSE of 0.06% in high-temperature scenarios, surpassing the
performance of existing literature and state-of-the-art techniques. More-
over, in low-temperature settings, the model achieves an outstand-
ing RMSE of 0.11% and an NMSE of 0.10%, outperforming other
approaches in the field. These results highlight the efficacy of the
proposed FuFi-CNN-Bi-LSTM model in accurately estimating the state
of charge (SoC) of batteries. The proposed FuFi-CNN-Bi-LSTM model
demonstrates its potential in advancing SoC estimation techniques for
battery systems. The fusion of CNN and Bi-LSTM networks, along with
the FuFi optimization, enhances the accuracy and reliability of SoC
estimation across a wide range of temperatures, enabling more efficient
battery management and improved performance in various real-world
applications.
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