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Abstract: Custom electronics tailored for ultrasonic applications with four ultrasonic transmit-receive
channels and a nominal 25 MHz single channel frequency were developed for ultrasound BAW and
SAW biosensor uses. The designed integrated microcontroller, supported by Python with a SciPy
library, and the developed system measured the time of flight (TOF) and other wave properties to
characterize the acoustic properties of a bulk of the liquid in a microchannel or acoustic properties of
biological species attached to an analytic surface in real time. The system can utilize both piezoelectric
and capacitive micromachined ultrasound transducers. The device demonstrated a linear response to
changes in water salinity. This response was primarily attributed to the time-of-flight (TOF) changes
related to the varying solution density. Furthermore, real-time DNA oligonucleotide-based inter-
actions between oligonucleotides immobilized on the device’s analytical area and oligonucleotides
attached to gold nanoparticles (Au NPs) in the solution were demonstrated. The biological interac-
tion led to an exponential decrease in the acoustic interfacial wave propagating across the interface
between the solution and the solid surface of the sensor, the TOF signal. This decrease was attributed
to the increase in the effective density of the solution in the vicinity of the sensor’s analytical area,
as Au NPs modified by oligonucleotides were binding to the analytical area. The utilization of Au
NPs in oligonucleotide surface binding yields a considerably stronger sensor signal than previously
observed in earlier CMUT-based TOF biosensor prototypes.

Keywords: CMUT; biosensor; SAW; BAW; ultrasound signal processing

1. Introduction

The ability to miniaturize the sensing devices through modern fabrication techniques
and integrate microfluidic environments on top of them allows for a complete lab-on-a-chip
(LOC) building. Such LOC systems unlock quick, cheap, and easy-to-use diagnostics for
various ailments available for patients without physical medical staff intervention and can
be performed at home.

The ultrasonic time-of-flight (TOF) measurement technique is a non-destructive method
that can be used for distance sensing as well as for measuring the elasticity and density of
materials. The technique involves sending an ultrasonic pulse through a material and mea-
suring the time it takes for the pulse to travel through the material [1–5]. This technique can
also be used for attenuation measurement, though the accuracy potential is less than that
of other ultrasonic techniques [6]. While the surface binding of proteins and DNA changes
the elasticity and viscosity of the interfacial media, it will also change the time-of-flight
signal [1,7–9]. However, TOF changes due to the biomolecule binding process would be
marginally small due to the similarity of the density and elasticity of the biomolecules and
the solution in which the process is happening. Direct detection would require an extremely
high resolution of TOF measurement, which is achievable only if acoustic waves with more
than 1 GHz frequency are used. This is technically challenging and expensive. Therefore,
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acoustic biosensing often utilizes the binding of additional heavy mass entities—typically
gold nanoparticles (Au NPs)—together with the biomolecules of interest onto the sensing
layer [10,11].

Acoustic TOF signal measurements for biological entity detection are relatively under-
researched, yet many other methods using acoustics have been demonstrated. A common
way of classifying acoustic biosensors is bulk acoustic wave (BAW) and surface acoustic
wave (SAW) devices. While BAW devices, which utilize the propagation of the acoustic
waves through the bulk of the liquid sample and, therefore, are simpler to implement,
SAW devices are particularly attractive for biosensing applications since they allow the
immobilization of biomolecules of interest onto the bioreceptor sensing layer and quantify
their concentration via specific changes in a selected parameter of acoustical wave [12].
Various SAW-based biosensor concepts have already been demonstrated [13]. An aptamer-
based leaky surface acoustic wave (LSAW) biosensor has been shown to detect MCF-7
breast cancer cells down to 32 cells/mL with minimal response to two other types of
cells [14]. A Lamb wave-based DNA biosensor for the detection of bacterial meningitis
with a detection limit of 84 mg/µL was developed using ZnO thin films [15].

Besides the piezoelectric SAW devices, microelectromechanical system (MEMS)-based
devices have been shown to be a suitable basis for film bulk acoustic resonator (FBAR) and
SAW-type biosensor construction [16]. Even though these devices are considered MEMS,
they still utilize piezoelectric materials to generate the waves. One type of mechanical
MEMS system is microcantilevers. A magnetically and optically actuated microcantilever
array-based biosensor was demonstrated for the detection of Hepatitis A and C viruses [17].
However, the need for the integration of an optical subsystem and an electric coil for data
readout makes such systems relatively unwieldy. Erdil et al. demonstrated a low-cost
disposable cantilever-based system for the detection of aflatoxin M1 (AFM1) [18]. The
designed system is capable of detecting a minimum of 14 µg of AFM1 with a limit of
detection of 4.63 µg. These values are too high to be transferred to biochemical molecule
detection applications. Furthermore, it relies on arduous sample preparation techniques
and specific magnetic nanoparticles, is not integrable with microfluidics, and is a single-
time-use device. Additionally, a cantilever-based MEMS device was designed for the
detection of the SARS-CoV-2 virus [19]. The proposal was based on a piezoelectric material
PZT-5A, and the device was only simulated not built. Another proposed piezoelectric
cantilever-based biosensor was designed for the detection of heavy metal ions, such as
manganese, lead, copper, and cadmium, in water samples [20]. Again, the device was
not built, only simulated, it relied on an additional container, holding the cantilever, and
the transducing functionalization layer was not defined. Other simulation-based MEMS
biosensors were also proposed [21–24].

Electrochemical MEMS-based biosensors were also manufactured and demonstrated [25,26].
They utilize a carbonized version of photoresist SU8 for the detection of lactic acid and a
cancer biomarker platelet-derived growth factor-BB. However, these devices use typical
MEMS production methods for the device geometry formation but do not utilize any
mechanical motion in the biosensor working principle.

Additionally, quartz crystal microbalance-based MEMS biosensors were also demon-
strated for the detection of an inflammation biomarker C-reactive protein and immunoglob-
ulin G [27,28], with detection limits of 1 ng/mL for both of the biomolecules.

The majority of other microcantilever-based biosensors work in gaseous environments,
detecting specific illness-related volatile organic compounds or other molecules, since typi-
cally liquid environments exhibit too much cantilever vibration dampening to make them
useful [29]. A specific MEMS-based device that generates acoustic waves mechanically
instead of piezoelectrically—a capacitive micromachined ultrasound transducer (CMUT)
was demonstrated to have some particular advantages in biosensing [30]. It was recently
shown by our group that bioanalytes can be detected by the measurement of the transverse
Scholte-type wave propagation delay between two CMUT interdigital transducers by using
convolutional neural networks for signal processing [31]. Since this type of signal process-
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ing imposes the intensive use of hardware resources, the need for dedicated electronics is
recognized. In this paper, the concept, design, and testing of a dedicated TOF electronics
system in the context of BAW and SAW modes of operation is presented.

2. Materials and Methods
2.1. The Concept and Structure of the Single PCB TOF Electronics

The time delay or TOF measurement of an interfacial acoustic wave utilizes the
pitch-catch acoustic measurement, where a short acoustic pulse is emitted by the sending
transducer and later captured by the receiving transducer. Due to the extensive signal
processing requirements, oversampling of the received acoustic signal was chosen. Working
frequency band of the sensor electronics was limited by the capability of a high-speed
low-power 8-bit analog to digital converter (ADC), providing 250 megasamples per second
conversion rate. As the data-processing algorithm required at least 5 times the oversampling
beyond the Nyquist criterion (10 samples per period instead of 2 are needed), the single-
channel nominal carrying frequency of the acoustic signal can be up to 25 MHz, while
the actual operating frequency is determined by the design of ultrasound transducers,
number of simultaneously used channels, and the measurement algorithm. Another
limitation is the real-time memory capacity of the chosen microcontroller. Therefore, a
Raspberry Pi 4 microcomputer was selected, providing adequate memory to capture up to
100 microseconds of the received signal at maximum sampling frequency.

The single-board electronics are illustrated in Figure 1. Only two of four channels
(two connectors for each transmit/receive phase) were employed in the work described
within this paper. The next two channels are dedicated as reference channels for calibration
and elimination of non-informative factors. Since the current work was tailored towards
proof of concept, we did not engage in calibration procedures. The receiver input can be
switched between up to 4 ultrasound transducer channels by a radio frequency switch.
Further, at the receiver side, the cascade of 20 dB low-noise and adjustable gain (up to
10 dB) amplifiers perform the preliminary signal conditioning of the received signal before
passing it to an ADC. The digital 8-bit signal is buffered by a field-programmable grid array
(FPGA) and then fetched by a microcontroller and stored in the microcontroller’s memory.

Sensor excitation (transmission) signal is synthesized by the FPGA, according to the
specification determined by the microcontroller’s code. A four-channel digital pulser,
driven by the FPGA, directly outputs bipolar ±35 V pulses to up to 4 transmitting ultra-
sound transducers. The frequency and the burst length of each excitation signal can be
controlled separately.

The rest of the electronics is dedicated to satisfying the power requirements of the
appropriate elements. The 5 V power supply provided by the microcontroller is used to
power several DC-to-DC energy converters. There is a step-down converter to provide
3.3 V for logic circuits and four boost converters to maintain bipolar power supplies of
±5.5 V, ±5 V, ±12 V, and ±35 V, supplemented by linear regulators for analog components.
There is also a boost converter providing 0 V–125 V regulated DC voltage for CMUT bias.

2.2. Signal Processing and Analysis

The microcontroller controls and synchronizations transmit and receive circuits. The
digital signal processing and measurement algorithm can be custom-designed and flexibly
adapted since Python with SciPy library utilization is supported. During the testing and
experiments described in this paper, a simple pulse amplitude tracking algorithm was
used [32]. As the digital signal processing algorithm can operate outside of the real-time
process, the practical limitations of the algorithm complexity are only due to the available
program memory.
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2.3. CMUT-Based TOF Measurement Channel

The production of capacitive micromachined ultrasonic transducers involved wafer
bonding technology of silicon wafers. In the initial step, thermal oxidation was performed
on the highly doped (less than 0.01 Ωcm) background 4-inch silicon wafers to deposit a
300 nm thick silicon dioxide (SiO2) layer. CMUT cavity pattern was defined on the silicon
dioxide surface by the lithography process, followed by etching in a buffered oxide etch
(BOE) solution (Figure 2a,b). The depth of these cavities, defining the vacuum gap size
of the electrostatic structure, was controlled by the etching time. In the subsequent step,
silicon wafers were fusion bonded to silicon-on-insulator (SOI) wafers with a 1 ± 0.5 µm
thick monocrystalline silicon device layer separated from the handle wafer by a 2000 nm
thick buried oxide layer (BOX, Figure 2c). In the following step, the protecting 250 nm
thick silicon nitride film (Figure 2d) was deposited, and then handle wafer was removed by
chemical–mechanical polishing (CMP) and wet etching in a heated tetramethylammonium
hydroxide (TMAH) solution (Figure 2e), thus releasing the membranes. In the second
photolithography step, pattern for structure separation was defined, and deep reactive
ion etch (DRIE) was performed (Figure 2f). In the third photolithography step, openings
for the bottom ground electrode were created, and the backside protective silicon nitride
layer was removed (Figure 2g). The fourth lithography step employed the lift-off process,
facilitating the metallization of the top electrodes to increase the conductivity. The metal
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stack consisted of 25 nm titanium, 100 nm copper, and 75 nm gold. In the fifth lithography
step, the metallization of the contact pads was carried out, also employing the lift-off
process (Figure 2h). A passivation silicon nitride layer, protecting the surface conductors
from short-circuiting by the conductive liquids or other external factors, was formed
by plasma-enhanced chemical vapor deposition (PECVD) (Figure 2i). Finally, the last
photolithography step was performed to open contact pads using reactive ion etching (RIE)
(Figure 2j).
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Figure 2. Main microfabrication steps of CMUTs: (a) thermal oxidation; (b) formation of vacuum
cavities; (c) wafer bonding; (d) protective silicon nitride layer deposition; (e) removal of the carrier
wafer; (f) deep reactive ion etching; (g) opening of the bottom electrode; (h) formation of the top
electrode and metallization of contact pads; (i) formation of a protective silicon nitride layer; (j) RIE
for top and bottom electrode contact pad openings.

An interdigital CMUT device has been used during the experiments with interfacial
waves. Arranging of the finger pairs enabled two-phase excitation and reception of the
acoustic waves, as described in many earlier publications [30,31,33]. The layout of the
interdigital CMUT device pair is shown in Figure 3. Here, p is the IDT period—distance
between finger pairs—p1 is distance between sub-finger pairs, W is the finger length or
aperture width, Gp is the length of the square area of the biological interaction site, and
L is the distance between the transmitter and the receiver. Detailed parameters of the
microfabricated IDT CMUT device are given in Table 1.
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Table 1. Microfabricated IDT CMUT device parameters.

Size Name of the Parameter

80 µm Single membrane length

30 µm Single membrane width

200 µm IDT period (“pitch”), p

50 µm Distance between sub-fingers, p1

3 mm Aperture width, W

10 mm Biological interaction site width, Gp

13.7 mm Distance between transmitter and receiver, L

20 Number of finger pairs

7.5 MHz Resonance frequency

The Agilent 4395A network analyzer was employed for the bare CMUT chip test-
ing and served as a reference channel for measuring frequency spectra in the one-port
impedance analyzer mode. The 86 V bias voltage was maintained by the Agilent N5752A.
Measured impedance magnitude spectra for the single IDT channel of the CMUT in the air
and immersion are shown in Figure 4. It can be seen that CMUT exhibits resonance close to
7.5 MHz when operated in air and nearly 3.8 MHz when immersed in water.
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2.4. Interfacial Acoustic Wave Measurement Setup

Since the surface immobilization of the biological samples and analytes is the main
method of acoustic biosensing [13,14,31], we continued testing the electronics by connecting
them with the CMUT chip (see Figures 5 and 6). The experimental setup for the inter-
facial waves delays experiment consisted of a custom 3D-printed microfluidic chamber,
analyte, and waste reservoirs, a peristaltic pump for pumping the analyte into the mi-
crochannel, a custom signal generation and acquisition electronics board with Raspberry
Pi microcomputer, and a laptop with custom MatLab software for data analysis. Figure 7
shows the schematic diagram illustrating the main connections between the elements
of the experimental setup, while Figure 5 shows the real-life setup. Figure 6 is a more
detailed illustration of the microfluidic chamber. The chamber was 3D-printed using stere-
olithographic Anycubic printer with UV-clear photosensitive resin. The dimensions of
the microfluidic chamber and the microchannel are given in Table 2. The two parts of the
chamber, the top and bottom, had tightening screws positioned around the microchannel
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casing edges. Inlet and outlet ports were positioned upwards from the microchannel
ends (see Figure 5a). The water-tight seal was manufactured from a custom PDMS gasket
placed between the top of the microfluidic chamber and the surface of the CMUT chip
(Figure 5a). The electrical connections were established by spring pins friction-fitted in the
microfluidic chamber walls directly contacting the contact pads on the IDT CMUT chip
(see Figure 5b,c). Figure 5b shows the connection pins before and after clamping the two
sides of the microfluidic chamber. Figure 5d shows the interdigital CMUT chip when the
top of the microfluidic chamber is open, and transmit and receive structures with the gold
analyte area in between are visible.
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seal between the top part of the chamber and CMUT surface; the microchannel is directly above
the CMUT interdigital transmit and receive structures with the gold analyte area in between;
(b) connection pins before and after clamping the two sides of the microfluidic chamber; (c) pins for
connections to top and bottom electrode of the CMUT contact pads friction fitted into the chamber
walls; (d) interdigital CMUT chip when top of the microfluidic chamber is open; transmit and receive
structures with the gold analyte area in between are visible.
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Table 2. Dimensions of the microfluidic chamber and the microchannel.

Size Name of the Parameter

80 µm Chamber width

30 µm Chamber length

200 µm Chamber height

50 µm Microchannel width

3 mm Microchannel length

10 mm Microchannel height

2.5. Au NPs and Oligonucleotides

Au NPs, 20 nm in diameter, stabilized with citrate buffer (Sigma Aldrich, St. Louis, MO,
USA), were functionalized with thiolated oligonucleotides for subsequent binding onto
gold surface of the custom-made CMUT-based biosensor in the microfluidic chamber, as
described in Figure 6. DNA oligonucleotides (IDT) were custom-synthesized with such se-
quences: 5′-ATGGCAACTATACGCGCTAG-3′ (linker 1), 5′-AAACGACTCTAGCGCGTATA-
3′ (linker 2), 5′-AAGTCAGTTATACGCGCTAG-3′ (non-matching linker 1), 5′-ACACTAAAC
TAGCGCGTATA-3′ (non-matching linker 2), 5′-AGTCGTTT/3ThioMC3-D/-3′ (3’-thiolated
1), 5′-GTTGCCAT/3ThioMC3-D/(3′-thiolated 2). “/3ThioMC3-D/” denotes 3′ modifi-
cation of a protected thiolic group on a 6-carbon alkane spacer. Linker 1 and linker 2
oligonucleotides are partially complementary with each other. Additionally, 3′-thiolated
1 oligonucleotide is fully complementary to linker 1, and 3′-thiolated 2 oligonucleotide is
fully complementary to linker 2. The non-matching linkers 1 and 2 are complementary to
thiolated oligonucleotides in the same fashion, but they are not complementary to each
other. Before use, the thiolated oligonucleotides were deprotected using TCEP (Sigma
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Aldrich) by adding 100× TCEP concentration to the oligonucleotide solution suspended in
TE buffer and incubating for 2 h at room temperature. One set of 100 µL of Au NPs was
functionalized with the deprotected 3′-thiolated 1 oligonucleotides, and a separate set of
100 µL of Au NPs was functionalized with the deprotected 3′-thiolated 2 oligonucleotides.

Two sets of Au NPs functionalized with either 3′-thiolated 1 or 3′-thiolated 2 oligonu-
cleotides were mixed together. Separately, either matching linkers 1 and 2 were mixed
together, or non-matching linkers 1 and 2 were mixed together and incubated for 10 min.
Finally, either the matching or non-matching linkers were introduced into the Au NP mix-
ture, mixed with the pipette, and 2 µL of the mixture was deposited onto the Nanodrop one
C spectrophotometer pedestal. The measurements were started immediately, and sample
absorption was recorded every 5 s for 180 s for each sample.

2.6. SAW Change by Au NP Surface Binding through DNA Oligonucleotide Interaction

The gold analyte area on the CMUT transceiver chip was functionalized with 3′-
thiolated 1 oligonucleotide by introducing into the microfluidic chamber 2 mL 500 nM
oligonucleotides suspended in 1xTE buffer. The system circulated the oligonucleotides
through the chamber for 10 min using the peristaltic pump. After that, the surface and the
system were washed with a 1× TE buffer twice using the same method for 10 min each
time. Afterward, either hybridized linker 1 and linker 2 oligonucleotides or non-matching
set of linker 1 and linker 2 were introduced to the system to bind to the 3′-thiolated
1 oligonucleotides already present on the gold analyte surface and circulated in the system
for 10 min. The system was again washed twice with a 1× TE buffer. Finally, a set of Au
NPs functionalized with 3′-thiolated 2 oligonucleotides were prepared, as described in
the previous section, introduced into the system via the same method, and circulated for
10 min.

2.7. The Bulk Acoustic Wave Experiment

Initial testing of the TOF algorithm was performed by monitoring the bulk acoustic
waves during the water/saline mixing process. A cylindrical 62 mm length cell with
2.5 mm inner diameter was fabricated to fit the piezoelectric ultrasound transducers with
conical concentrators, designed for 1 MHz operation frequency, as shown in Figure 8. The
entire volume of the liquid in this case was 300 µL. A single frame of the TOF measurement
is shown in the Results section (Figure 9 in the time domain and Figure 10 in the frequency
domain). This frame was captured during the steady-state phase of the saline mixing
experiment with 178 g/L (see also Figure 11 in the Results section).
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3. Results
3.1. The Bulk Acoustic Wave Experiments

The longitudinal acoustic wave traveling through the bulk of the water has the earliest
time of arrival, while the rest of the received waves with larger amplitudes are attributable to
the non-informative, highly dispersive waveguide modes, related to the multiple reflections
of the acoustic waves from the sidewalls of the measurement cell and corresponding
interferences. In the frequency domain, one can note a slight high-frequency shift of
the bulk longitudinal wave power spectrum with respect to the power spectrum of the
excitation signal, which can be the result of interactions between the ultrasonic waves and
the propagation medium. However, this phenomenon was not explored any further in this
work. The power spectrum of the guided modes is noisy, but it can still be identified as
approximately centered at the same frequency as the excitation.

Since the concentration of a NaCl solution is related linearly to the mass density of
the solution (at constant temperature), the relationship between the concentration and the
speed of sound is also linear. This establishes a reliable and easily verifiable testbed. The cell
had two ports for liquid introduction and removal. The experiment was carried out in two
steps. In the first step, 150 mL of distilled water was introduced, monitoring the initial TOF
isoline. After two minutes, 150 µL of saline solution with a particular NaCl concentration
was introduced, and a decrease in the TOF signal, reflecting a gradual increase in the
solution density, was observed. The mixing was driven solely by the diffusion process,
i.e., no active agitation, except for the ultrasonic waves themselves, was used. After the
mixing process was complete (after approximately the fifth minute of the experiment), the
final solution concentration had half of the initial saline concentration. An exception to the
aforementioned protocol is the case of the fully saturated saline solution, where the entire
volume of the cell was filled with the 357 g/L NaCl solution to have the bottom line of the
measurable TOF value. The results of this experiment are illustrated in Figure 11.

For the cross-verification of the measurement results, the steady-state TOF values were
compared to the earlier published saline concentration and speed of sound data [34,35].
For an adequate comparison, we converted our measured steady-state TOF values to the
speed of sound values, using 62 mm as the travel distance. The comparison is illustrated
in Figure 12. The slight discrepancy of the measured values at high concentrations can
be attributed to uncontrolled factors, such as temperature or precise composition of the
saline solutions.
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Testing was continued by connecting the measurement cell, containing the CMUT
chip and the microchannel (Figure 7). The transverse acoustic waves were excited by
emitting a single period, 10 Vpp pulses of 3.8 MHz with the transmitting IDT and received
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by the receiving IDT within the same chip. The bias voltage was kept at 85 V for both
transmit and receive transducers. The distance between both IDTs through the analytical
area was 10 mm (see Figure 3 and Table 1). The single frame of the TOF measurement is
illustrated in Figure 13. It was captured while the microchannel was filled with distilled
water, and the analytical area had no modification. Assuming the rated distance of 0.01 m
between the IDTs and the first measured zero-crossing at 6.76 µs, the measured speed of the
transverse wave was calculated to be 1479 m/s. This corresponds well to the data available
from the previous research [30,33]. Here, the application of CMUTs has specific benefits
because of their ability to produce short pulse excitations. While shortening excitation
pulses will decrease the amplitude of the received signal, it will also create the potential for
better definition.
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3.2. DNA Oligonucleotide Interactions

The biochemical interaction of DNA oligonucleotide hybridization was tested by
reacting thiolated oligonucleotide-coated Au NPs with linker oligonucleotides, as described
in the Materials and Methods section. The results are depicted in Figure 14. The matching
linker oligonucleotides would hybridize with thiolated oligonucleotide-coated Au NPs,
bringing NPs together, crosslinking, and changing the average sphere size in Mie scattering
and, therefore, light absorption at specific wavelengths. Initially, non-crosslinked 20 nm size
Au NPs have the highest absorption value at 510 nm. When the matching oligonucleotides
are introduced, they crosslink the Au NPs, bringing them together and changing the
absorption. This manifests as decreased absorption at the initial 510 nm wavelength (blue
line values in the figure) and increased absorption at a selected 620 nm wavelength (red
line values). Considering the crosslinked NPs come in different sizes, the shifted absorption
peak from 510 nm to higher values becomes broader, yet 620 nm was chosen for monitoring
as it was the highest value. If, however, the experiment is repeated with non-matching
linker oligonucleotides introduced instead of the linker oligonucleotides, no change in
absorption over time is observed for either 510 nm wavelength (yellow line) or 620 nm
(green line), indicating a stable NP suspension and no hybridization of the complementary
non-matching linker oligonucleotides. This result, taken in contrast with the previous linker
oligonucleotide experiment, indicates that the Au NP crosslinking and the subsequent
absorption change due to NPs coming into proximity is oligonucleotide induced and not
due to any other factors.
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DNA oligonucleotides. Blue line indicates absorption at 510 nm wavelength, and red line indicates
absorption at 620 nm when matching linker oligonucleotides are introduced into the two set thiolated
oligonucleotide-coated Au NP solution. Yellow line indicates absorption at 510 nm wavelength, and
green line indicates absorption at 620 nm when non-matching linker oligonucleotides are introduced
into the two-set thiolated oligonucleotide-coated Au NP solution.

With Au NPs and the oligonucleotide biochemical interaction system established, the
experiment was transferred to the microfluidic chamber with one of the sets of Au NPs
replaced by the CMUT chip’s gold analyte area, as described in the Materials and Methods
section. The setup was used to detect changes in the TOF signal when observing SAWs. The
data are given in Figure 15. The TOF signal was observed for 150 s. The signal decreases
from 6.8 µs to 5.5 µs (a difference of 1.1 µs) on the full saturation of Au NP immobilization
onto the surface via oligonucleotide hybridization. The curve reaches saturation levels in
70 s. The noise level is relatively high, yet manageable for the detection of bound analytes,
because the TOF measurement resolution, which is 80 ns in this case (relative to 25 MHz
sampling frequency), is sufficient. As a reference to our previous research [31], resolution
improvement can be achieved if more sophistication is put into signal processing. Notably,
in the current work, only the simple tracking of the envelope of the received pulse for
the signal processing was used. There, bovine serum albumin protein was adsorbed onto
the surface non-specifically and yielded a 16 ns TOF difference, while the neural network
algorithm was involved in the signal processing. The discrepancy in signal strength is
attributable to the use of Au NPs in this research, as they increase the average medium
density above the gold surface and, therefore, improve the signal.
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4. Discussion and Conclusions

The designed custom electronics and the accompanying microfluidic devices have
demonstrated the ability to interrogate liquid bulk properties as well as its use in SAW
biosensor applications with the ability to measure propagation delay (time-of-flight—TOF)
of the acoustic signal and potentially other properties of acoustic waves since the received
signal is oversampled at a high resolution. The four-channel version demonstrated an 80 ns
TOF resolution. However, the resolution can be enhanced with higher sampling frequencies,
reaching up to 250 MHz for the single-channel configuration. The electronics are compatible
with various types of ultrasound transducers and can be easily adjusted for advanced
acoustic analysis with corresponding firmware modifications. The four-channel transmitter
is controlled by an FPGA capable of synthesizing a wide range of frequencies and excitation
patterns. Additionally, the integrated microcontroller can efficiently run relatively complex
data processing algorithms over the data received from those four channels. The TOF
response was linear with a sensitivity of at least 11 g/L NaCl concentration in the bulk wave
propagation delay experiment. The DNA oligonucleotide interactions immobilizing the Au
NPs onto the surface demonstrated a significant response in the TOF signal, indicating its
use for biochemical interactions. The utilization of heavy Au NPs improves the biochemical
signal in the CMUT-based biosensor.

The proposed approach of acoustic wave propagation delay measurement in biosens-
ing stands out from conventional biosensing methods and applications, which are mostly
related to the frequency and phase responses [36]. The popularity of these methods is
due to the marginally small changes to the acoustically important properties, such as the
mass density, viscosity, and elasticity (compressibility) of analyte solutions during specific
biological interactions. For example [37], phase loop locking systems are used to detect
resonance changes during biotin-streptavidin binding, and recent reviews of acoustic wave
measurements in biosensing applications [38] indicate only a few cases where the attenua-
tion and phase delay of the transmitted acoustic waves are measured. Additionally, the
full control over the transmit pattern and oversampling of the received acoustic waves
is often considered to be an overkill for compact and low-priced devices (as biosensors
are supposed to be) since electronics for transmit wave synthesis and received wave sam-
pling are considered pricey and energy demanding. Most of the research on acoustic
biosensing is related to the development of sensing principles and is still dependent on
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the use of expensive laboratory equipment [15,16,39–41]. In the current work, the concept
of stand-alone, single-board, miniature, and low-cost electronics was demonstrated as a
proof of concept for future acoustic wave biosensors, eliminating functional complexity
and providing highly flexible opportunities for the biosensor user.

By simplifying functionality and offering unparalleled flexibility of use, demonstrated
advancement will move the development of acoustic biosensors to a new step in the
future. Particularly noteworthy is the compact, multichannel nature, which has significant
potential for the enhancement of the efficiency and accuracy in detecting and identifying
DNA of viruses and infectious agents. Multiple boards can be combined within one
detection system for the parallel processing of many samples for more complex DNA
analysis, ensuring robustness and lowering costs.
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