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A B S T R A C T

As the digital landscape expands rapidly due to technological advancements, cybersecurity concerns have
become more prevalent. Intrusion Detection Systems (IDSs), which are crucial for identifying unusual network
traffic indicative of malicious activity, have become a necessity. These systems can be either hardware or
software-based. However, traditional IDS models often fail to adequately protect data privacy and detect
complex, unique breaches, particularly within Wireless Sensor Networks (WSNs). To address these limitations,
this paper proposes a novel Stacked Convolutional Neural Network and Bidirectional Long Short Term Memory
(SCNN-Bi-LSTM) model for intrusion detection in WSNs. This model leverages Federated Learning (FL) to
enhance intrusion detection performance and safeguard privacy. The FL-based SCNN-Bi-LSTM model is unique
in its approach, allowing multiple sensor nodes to collaboratively train a central global model without revealing
private data, thereby alleviating privacy concerns. The deep learning methodology of the SCNN-Bi-LSTM
model effectively identifies sophisticated and previously unknown cyber threats by meticulously examining
both local and temporal linkages in network patterns. The model has been specifically designed to detect
and categorize different types of Denial of Service (DoS) attacks using specialized WSN-DS and CIC-IDS-2017
datasets. Compared to traditional Artificial Deep Neural Network (ADNN) models, our proposed FL-SCNN-Bi-
LSTM model demonstrated superior detection rates for complex and unknown attacks, significantly improving
IDS performance. The model achieved a notable classification accuracy of approximately 99.9% precision
and recall on both datasets, substantially reducing false positives and negatives. Our research underscores
the potential of federated learning and deep learning in enhancing the security and privacy of WSNs. The
proposed FL-SCNN-Bi-LSTM architecture not only facilitates the identification of complex cyber threats but
also exemplifies how deep learning techniques can be employed to bolster intrusion detection systems while
preserving user data privacy.
1. Introduction

Due to its numerous real-time applications in essential tactical
monitoring, battlegrounds, building security monitoring, monitoring
wildfires, and medical care, Wireless Sensor Networks (WSNs) have
grown in importance as a study area [1]. A WSN is composed of a
significant amount of independent nodes for sensors that are dispersed
throughout various study areas to collect vital information and col-
laboratively transfer the gathered information wirelessly to a more
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potent node known as the sink node or Base Station (BS) [2,3]. The
transportation of data over the network is facilitated by the appropriate
WSN protocols. Ensuring the security of WSNs from various risks is
of paramount importance. However, due to the limited resources of
WSNs, such as battery life, memory, and computing power, achieving
this objective presents a significant challenge [4]. Due to their limiting
characteristics, conventional safety precautions like encryption might
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not always be sufficient for such networks. Because of their open and
dispersed architecture and the constrained resources of their sensor
nodes, WSNs are extremely susceptible to assaults. Additionally, as
WSNs must often broadcast packets, sensor nodes can be arbitrarily
placed across the environment, making it simple for an adversarial
attacker to insert themselves into a WSN [5]. This open and distributed
nature of WSNs not only makes them indispensable for various ap-
plications but also highly vulnerable to cyberattacks. An intruder can
take control of a sensor node and use it to eavesdrop on conversations,
transmit misleading messages, alter the authenticity of the data, and
utilize network resources. The severity of these security challenges is
further amplified by the escalating complexity and sophistication of
modern malware. The 2017 Symantec Internet Security Threat Re-
port [6] highlighted a dramatic increase in zero-day attacks, with over
three billion instances reported in 2016 alone. Additionally, the Data
Breach Statistics of 2017 [7] noted that approximately nine billion data
records were compromised since 2013, indicating a significant shift in
the target of cybercriminals from individual users to larger entities such
as financial institutions. The Australian Cyber Security Centre’s 2017
report [8] further emphasizes the growing need for more advanced IDS,
in response to the varied sophistication of these attacks. A common
and serious assault on WSNs is the Denial of Service (DoS) attack,
which aims to cripple and interrupt the services they offer [9,10]. In
light of these increasingly sophisticated threats, an Intrusion Detection
System (IDS) becomes not just a tool but an essential component to
detect both known and new attacks, alerting sensor nodes in real-
time. The challenge, however, lies in the limited resources of WSNs,
implementing effective IDSs to prevent or mitigate these risks is a
formidable task [2,3].

When an intrusion takes place, IDS can identify suspicious or
anomalous activity and sound an alert. Because sensor nodes are often
created to be small, inexpensive, and lacking in hardware resources, im-
plementing IDSs for WSNs is more challenging than for other systems. A
dedicated dataset containing typical profiles and attacks in WSN is also
lacking, making it impossible to identify an attacker’s signature [2,3].
Given all of these obstacles, an IDS for WSNs must largely meet two
criteria: it must be extremely accurate in recognizing an intruder,
including unknown attacks, and it must also be computationally in-
expensive to assure low influence on the WSNs’ architecture [11]. In
this research, a specialized WSN dataset is built to characterize four
different forms of DoS assaults as well as the behavior under normal
conditions. Because they may be used to identify intrusions and draw
conclusions in certain network settings, Machine Learning (ML) tech-
niques can be employed to build a strong IDS [12]. The majority of the
time, putting into practice a successful custom IDS approach involves
several difficulties. Based on the system’s usability, capability, and
accuracy, the underlying implementation concerns may be divided into
many kinds of issues [13]. However, compared to earlier techniques
depending on handmade signatures, IDS based on anomaly detection
that use ML methodologies frequently have a greater False Positive Rate
(FPR). As a result, analyzing data and identifying real-time incursions
are difficult for ML anomaly-based systems. These systems’ learning
process requires high-dimensional training data to get around these
constraints, which makes it more difficult and time-consuming than
competing techniques [14].

The limitations of existing models in literature and the complexity
of intrusion detection in WSNs a hybrid FL-SCNN-Bi-LSTM algorithm is
investigated. The model’s strength lies in its ability to learn from both
local and temporal dependencies, enhancing its detection capabilities.
Furthermore, the model employs federated learning, allowing multiple
sensor nodes to collaboratively learn while preserving data privacy, a
crucial aspect in environments where sensitive information protection
is paramount. In building our model, we selected only strongly corre-
lated data features from both datasets to enhance the overall relevance
of the feature set. This refined feature selection process ensures the
2

model focuses on the most significant data features, thereby improving
detection performance. The proposed FL-SCNN-Bi-LSTM approach is
used to train the model, effectively leveraging deep learning to analyze
intrusion patterns. Under the privacy-preserving umbrella of Federated
Learning, the model utilizes the spatial data collection capabilities
of Convolutional Neural Networks and the temporal relationship cap-
turing abilities of Bidirectional LSTM. This unique combination of
methodologies enhances the model’s intrusion detection capabilities
while addressing issues related to data privacy and computational
resource constraints. Fig. 1 shows the suggested model’s fundamental
design, giving a graphic picture of our innovative strategy’s elements.
The findings of this investigation demonstrate the potential of our ap-
proach to deliver a reliable, effective, and privacy-preserving solution
for intrusion detection in WSNs.

1.1. Related work

Researchers have looked at intrusion detection systems using ma-
chine learning techniques in recent years, and they have provided reme-
dies to the issues and restrictions of traditional IDS approaches [15].
Different techniques for determining the data sample type have been
put forth in earlier works to categorize situations into normal and
anomalous groups. Therefore, the literature on the most well-known
IDS approaches is examined in this part. A hybrid network intrusion
detection system utilizing the XGBoost algorithm was proposed by
Dhaliwal et al. [16]. To benchmark their suggested strategy, they used
the NSL-KDD dataset, and they compared their outcomes to those of
other algorithms. The test results show that, in terms of classifica-
tion accuracy, XGBoost outperforms Random Forest, Support Vector
Machine (SVM), and Naive Bayes (NB). These findings demonstrate
that the XGboost model with the highest performance is one where
the parameter values are fixed. Amiri et al.’s [17] proposal for a
network intrusion detection system that combines the PSO and XGBoost
algorithms is known as PSO-XGBoost. In general, software-defined
networks may incorporate intelligent algorithms to distinguish between
usual and abnormal behavior in conventional networks [18]. For in-
stance, [19] presents a wide range of clever techniques that may be
applied to intrusion detection and the detection of distributed DDoS
assaults in S.D.Ns. Actually, by using several approaches, such as
neural network-based ones for classifying behaviors in SDNs like multi-
layered perception (MLP), SVM, evolutionary technique, fuzzy theory,
Bayesian Networks, and Decision Tree (DT) is discussed in [19], with a
breakdown of their advantages and disadvantages. In [20] introduces
a technique for stopping low traffic assaults with large flows. A DDoS
assault might come from any switch interface; hence the writers are
looking for vulnerable interfaces. In such assaults, the attacker may
be located in many subnets that are linked to various switches and
do not deliver the flow directly to the controller. As a result, there
is little data delivered to the various switches, making it impossible
for the controller to notice the assault. The classification of interface
flows is done first, and the judgment is determined using the Statistical
Probability Ratio Test (SPRT). Jankowski and Amanowicz [21] present
a technique for monitoring and spotting malicious activity utilizing
SDN characteristics.

The authors have included a variety of modules, including one that
extracts traffic flow data, one that recognizes and interprets traffic
flows, and one that matches flows. In [22], The feature extraction
process involves the combination of two modules, which then forward
the result to a classifier. This classifier employs machine learning to
identify the type of flow within the data segment. The module, situated
on the Open Day Light controller, takes into account parameters such as
Source IP address, Destination IP address, Source port, Destination port,
and Protocol type to match the flow. For classification, we incorporate
a Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ).
The effectiveness of these networks is then evaluated by comparing
their False Positive (FP) and True Positive (TP) rates. This comparison

is based on the categorization time and the percentage of errors,
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Fig. 1. Proposed structure for training and testing of federated learning assisted deep learning model for network intrusion prediction.
providing a comprehensive assessment of their performance. The study
by Braga et al. in [23] presents a low overhead solution for detecting
DDoS assaults based on the properties of the flow. This method uses a
SOM neural network. It is utilized by the controller for NOX. The flows
are divided into regular and assault classes by the neural network once
it has been trained using the network’s traffic characteristics. The NOX
controller captures the characteristics of switch traffic flows while mon-
itoring multiple switches during predetermined time intervals. Each
incident is forwarded to a classifier module, where the neural network
decides whether or not an attack has taken place. The effectiveness
of neural networks in S-D-N security is examined in [24] since they
are frequently utilized for intrusion detection in SDNs. To identify
harmful assaults on a host, other algorithms like D.T., B.N., Naive Bayes
(NB), and C4.5 decision tree are also utilized in [25]. In reality, [25]
restricts the attacker’s access by banning its subnet by utilizing limiting
rules on the controller. A fuzzy logic-based decision-making strategy is
provided in [26]. A statistics collection module, a processing module,
and a decision module make up this design. On the controller, these
modules are implemented as Java programs. The NSL-KDD dataset
contains the following six properties, which may be utilized by a deep
neural network to identify abnormalities in [27]. (Time, Protocol Type,
SRC, DST, Bytes, Count, SRC) A comparison of conventional and DL
algorithms for anomaly identification is described in [28,29], and [30].
These tests show how deep learning algorithms may gather network
traffic information from numerous places and offer enhanced features.
In [31], a hybrid deep network is used to construct an IDS that uses
a recurrent neural network (RNN) and the Long Short-Term Memory
(LSTM) architecture. The KDD Cup 1999 dataset was used to train this
model, and it produced results for the categorization of assaults with
a tolerable level of accuracy. An auto-encoder network is created and
integrated as a module on the POX controller in [32] to identify DDoS
assaults.

The scientists opted to train the network using actual network traf-
fic, as opposed to other experiments that use predefined datasets. The
outcomes demonstrate that this strategy outperforms a shallow neural
network in terms of accuracy and detection rate. To produce SDN flow
rules and anomaly detection in [33], the RNN is combined with the
NSL-KDD dataset. Additionally, a unique dataset called CAIDA has been
employed in [34] for DDoS detection. Similar strategies were used
in [35–37]. In addition, the Generative Adversarial Network (GAN),
another deep learning technique, is employed in [38] to distinguish
between unauthorized and fraudulent WLAN transmissions. Although
these studies show that machine learning approaches are excellent at
detecting intrusions, they mostly focus on centralized, classical learning
techniques, which raise serious privacy and communication overhead
issues. Our research departs from these earlier investigations by using
a Federated Learning (FL)-based methodology. With the proposed FL-
based SCNN-Bi-LSTM model, the training process is distributed over
several sensor nodes without compromising data privacy, and com-
munication costs are minimized. By using deep learning approaches
to successfully identify sophisticated and previously unknown cyber
3

threats, the model also improves detection performance. Thus, our
method not only gets over some of the drawbacks present in these
prior efforts but also provides a more effective and private intrusion
detection method.

The FL in the spectrum of intrusion detection systems (IDS) has
not been investigated thoroughly. For instance, one research [1] sug-
gested utilizing stacked unsupervised FL in a generalized cross-silo
arrangement for a flow-based network intrusion detection system. This
technique, which demonstrates effectiveness even in non-IID data silos,
combines ensemble learning with a deep autoencoder and an energy
flow classifier. Another study [2] proposed a cooperative method for
exchanging cyber threat intelligence that makes use of FL to let several
organizations jointly develop, train, and test a dependable ML-based
network intrusion detection system. By enabling them to benefit from
the experience of others while protecting the privacy of their data,
this initiative considerably helps each organization. While novel, this
research has not completely realized the promise of fusing FL with
complex deep learning systems. By suggesting a Federated Learning-
based Stacked Convolutional Neural Network with Bidirectional Long
Short-Term Memory (FL-SCNN-Bi-LSTM), our study distinguishes itself
in this regard. In addition to protecting data privacy and minimiz-
ing communication costs, this model also captures geographical and
temporal interdependence in network patterns, making it possible to
quickly identify sophisticated and previously unknown cyber threats.
Additionally, when compared to conventional Artificial Deep Neural
Network (ADNN) models and even the FL-based IDS suggested in [1,2],
our proposed model has significantly increased accuracy for complex
and unidentified attacks, demonstrating the effectiveness of our method
for enhancing IDS performance. Table 1 shows the comparative study of
what our proposed model offers in terms of evaluation metrics against
recent papers proposed in the literature.

1.2. Contributions and paper organization

To improve the model’s global weights, the model uses a hybrid
deep neural network that combines the Stacked Convolutional Neural
Network (SCNN-1D) algorithm and one of the improvised versions of
recurrent neural network (Bi-LSTM). Federated learning is then used to
prevent data breaches, which is a major concern in the modern world.
The contributions of this work are listed below.

• Development of a Novel Hybrid Deep Learning Model: Introduce
a groundbreaking FL-SCNN-Bi-LSTM model that ingeniously com-
bines Convolutional Neural Networks (CNN), Bidirectional Long
Short-Term Memory (Bi-LSTM), and LSTM networks. This model
represents a significant leap in predictive analytics for cyberse-
curity, enhancing the capability to accurately identify diverse
network intrusions.

• Innovative Approach to Data Privacy in IDS: Propose a federated
learning framework for the FL-SCNN-Bi-LSTM model, enabling
cooperative model training among nodes without the exchange
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Table 1
Comparative Analysis of Different Techniques on Used Datasets.

Ref. Year Technique Summary Results Privacy
preserved

Centralized

[39] 2022 EECA-LSTM The work combines empirical
mode decomposition and
principal component analysis to
provide an improved empirical
component analysis for feature
selection. Utilizing LSTM, the
chosen properties help categorize
attack nodes.

Accuracy: 0.996
Recall: 0.996
Precision: 0.996
F1-Score: 0.995

✓ ×

[40] 2022 LSTM-KPCA In this study, an end-to-end
model for network attack
detection and classification based
on recurrent deep learning
models is proposed

Accuracy: 0.98
Precision: 0.91
Recall: 0.84

× ×

[41] 2023 Stacked unsupervised FL
using deep encoder

In a cross-silo context, the study
presents a versatile approach
using stacked unsupervised
federated learning for flow-based
NIDS, incorporating a deep
autoencoder, energy flow
classifier, and ensemble learning
for effective intrusion detection

Accuracy: 0.98
Recall: 0.88
Precision: 0.91
F1-Score: 0.90

✓ ×

[42] 2024 FL-MA This research significantly
advances the current state of the
art in IoT and WSN security by
synergistically harnessing the
potential of machine learning and
the Firefly Algorithm.

Accuracy: 0.992
Recall: 0.981
Precision: 0.995
F1-Score: 0.962

× ✓

Our Model 2024 FL-SCNN-Bi-LSTM Federated Learning assisted
Hybrid Stacked CNN model with
Bi-directional LSTM is proposed

Accuracy: 0.999
Recall: 0.999
Precision: 0.999
F1-Score: 0.999

✓ ✓
of sensitive raw data. This methodology marks a transformative
step in data privacy protection for Intrusion Detection Systems
(IDS), particularly vital in scenarios requiring high levels of data
confidentiality.

• Comprehensive Evaluation and Validation of the Model: Perform
an extensive evaluation of the FL-SCNN-Bi-LSTM model using
a variety of structured datasets relevant to intrusion detection
systems. This rigorous testing, which assesses crucial performance
indicators such as recall, accuracy, precision, and F1 score, vali-
dates the model’s robustness and effectiveness in detecting a wide
range of network intrusions.

Six subsections make up the remaining part of this document. In the
irst section, analytic and federated-based-DL approaches are used to
ssess existing methods for creating network intrusion detection mod-
ls. Section 2 goes into further detail on the approaches’ structure and
he incorporation of a hybrid DL model with privacy protection based
n federated learning. The properties of the input datasets utilized in
his analysis are outlined in Section 3 in brief. The findings produced
n datasets using the suggested approach are evaluated in Section 4.
he experimental technique, as well as the CNN and Bi-LSTM structure
raining utilizing federated learning. In Section 5, datasets employing
arious methodologies and the suggested technique are compared.

. Proposed method description

The overall design of the suggested system is thoroughly explained
n this section. Data normalization has been performed on the supplied
ntrusion datasets during preprocessing. The Min–Max Scaler is used to
nalyze the normalized data values in both datasets and calculate the
oefficient.

With the benefits of Principal Component Analysis (PCA) and the
4

mpirical mode decomposition technique, this framework efficiently
selects pertinent features in the CIC-IDS 2017 dataset, used for clas-
sifying different DDoS attacks. Initially containing 83 columns, PCA
reduces this to 43 features. PCA achieves this by creating a set of
principal components, which are eigenvector pairs, reducing the dimen-
sionality necessary for classifying incoming data. In the formulation of
the FL-SCNN-Bi-LSTM model for WSN intrusion detection, significant
emphasis was placed on data pre-processing and feature selection. This
process began with an in-depth examination of the dataset, identifying
attributes indicative of DoS attack behaviors, such as irregular traffic
volumes, abnormal packet sizes, and unusual transmission frequen-
cies. PCA was strategically employed to distill the dataset to its most
informative components, enhancing the focus on salient features for in-
trusion detection. This reduction in data complexity permitted quicker
processing times and streamlined analysis, enhancing the model’s com-
putational efficiency and accuracy in threat identification. Post-PCA
feature selection was pivotal in refining the model’s detection and
categorization of DoS attacks. By concentrating on the most informative
data aspects, the model became sensitive to subtle variations and
anomalies characteristic of sophisticated DoS attacks, improving its
discernment between normal network behavior and potential intru-
sions. This heightened sensitivity was crucial in reducing false negatives
and enhancing detection reliability. To sum up, the thorough method
of feature selection and data pre-processing – particularly using PCA
– was crucial in improving the FL-SCNN-Bi-LSTM model’s capacity
to identify DoS assaults in WSNs. This procedure enhanced the real-
world cybersecurity context’s accuracy, efficiency, and dependability
while also making a substantial contribution to the development of
intrusion detection techniques in WSNs [43]. After choosing pertinent
attributes, the suggested system was put through the proposed Model
(FL-SCNN-Bi-LSTM) classification of the attack nodes. Long-term se-
quence dependencies might be modeled by Bi-LSTM since it supports
processing even minor data without classification errors. Additionally,
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Fig. 2. Basic structure of stacked CNN.

Bi-LSTMs are capable of operating across a wide variety of variables,
including input-gate bias, output-gate bias, and learning rate. As a re-
sult, the suggested system can identify attacks more effectively because
of its efficient architecture.

2.1. Stacked-convolutional neural network (S-CNN)

A modified form of 2D CNNs called 1D-Convolutional Neural Net-
works (1D-CNNs) was developed recently [44]. The one-dimensional
(1-D CNN), which is often an artificial neural feed-forward network
made up of convolution layers and pooling layers, is one of the well-
known deep learning techniques. The basic architecture of CNN is given
in Fig. 2.

It is usual practice to process the input through layers, neurons,
and activation processes using the Rectified Linear Unit (ReLU). Non-
linearity is typically added using this form of activation. Overfitting is
typically avoided by using dropout layers and normalization (Scaling
Data) approaches. Under equal conditions (same design, network, and
hyperparameters), a 1D CNN is significantly less computationally chal-
lenging than a 2D CNN. The majority of 1D CNN applications, which
often use tiny topologies, generally use networks with 50 neurons or
less (with 1–2 hidden CNN layers), according to more recent studies.
Due to its lower progressing requirements, the miniature form of 1D
CNNs is especially well suited for low-cost and real-time applications
[45], especially on portable or mobile computers. For applications
like patient ECG, civil, time-series forecasting, high-power circuits,
power engines or motors, etc. that had weak labeling and strong signal
fluctuations, compact 1D CNNs fared better in the specialized study.
The primary distinction between 1D-CNN and 2D-CNN is that the latter
model uses 1D arrays as input vectors rather than the matrices that
5

are usually used in 2D-CNNs. The basic mathematical equations for
working CNN are given:

𝑥𝑙𝑜,𝑓 𝑙 = 𝑓

(

∑

𝑖𝑚
𝑥𝑙−1𝑖 ∗ 𝑘𝑙𝑖𝑜,𝑓 𝑙 + 𝑦𝑙

)

(1)

In Eq. (1), 𝑥𝑙𝑜,𝑓 𝑙 represents the output of the 𝑙th layer, where l is the
layer index. The function 𝑓 (.) is an activation function applied to the
sum of the convolution of input 𝑥𝑙−1𝑖 with the kernel 𝑘𝑙𝑖𝑜,𝑓 𝑙, and the bias
term 𝑦𝑙.

𝑥𝑙𝑜 = 𝑓

[

max

(

∑

𝑖𝑚
𝑥𝑙−1𝑖

)

+ 𝑦𝑙
]

(2)

Eq. (2) describes the max pooling operation in the 𝑙th layer. Here,
𝑥𝑙𝑜 is the output after applying the max pooling to the sum of the inputs
from the previous layer (𝑙−1), followed by the addition of the bias term
𝑦𝑙 and the application of the activation function 𝑓 (.).

𝑥𝑙𝑜 = 𝑓
(

𝑥𝑙−1𝑖 ∗ 𝑧𝑙𝑖𝑜 + 𝑦𝑙
)

(3)

Eq. (3) represents a convolution operation in the 𝑙th layer. The
output 𝑥𝑙𝑜 is obtained by convolving the input from the (𝑙 − 1)th layer,
𝑥𝑙−1𝑖 , with the kernel 𝑧𝑙𝑖𝑜, adding the bias 𝑦𝑙, and applying the activation
function 𝑓 (.).

In this framework, the number of filters F in each layer, and the
parameters y and z can be learned. The use of 1D convolutions in
CNNs allows for linear weighted summing of 1D arrays, leading to
computational efficiency. These operations are carried out concurrently
during both the forward and backpropagation processes, contributing
to the model’s overall performance in terms of both accuracy and
computational cost.

2.2. Bidirectional long short-term memory (Bi-LSTM)

The return loop of the RNN model, which is used to analyze time
series data, allows it to make good use of prior information. RNN,
however, has storage and information limits. Because it is ineffective
at learning long-term dependencies, the gradient disappears [45]. To
address the shortcomings of the RNN, the LSTM was developed. The
memory cells used to retain long-term historical data and the gate
mechanism that controls it form the basis of the LSTM structure, input-
gate 𝑖𝑡, forget-gate 𝑓𝑛, and output-gate 𝑜𝑛 are the three types of gates
found in a typical LSTM unit. In Fig. 3, these three gates are depicted.

In LSTM networks, each gate controls the state of the memory
cells by conducting operations involving point-wise multiplication and
sigmoid functions. The gates process the input data 𝑥𝑛 at the current
state and the output data ℎ𝑛−1 from the concealed state of the preceding
layer. The ‘forget gate’ decides what information should be retained or
discarded. It employs a sigmoid function to analyze both the current
input 𝑥𝑛 and the previously concealed state ℎ𝑛−1. The output of the
forget gate, denoted as 𝑓𝑛, varies between zero and one. A value close
to zero implies that the data will be discarded, while a value near one
indicates that the data will be retained. This mechanism is expressed
in the following equation:

𝑓𝑛 = 𝜎
(

𝑊 𝑓 ⋅
[

ℎ𝑛−1, 𝑥𝑛
]

+ 𝑏𝑓
)

(4)

Here, 𝑊 𝑓 represents the weight, and 𝑏𝑓 the bias associated with the
forget gate, while 𝜎 denotes the sigmoid activation function.

Next, the ‘input gate’ determines which new information needs to
be added to the cell state. It also uses the sigmoid function, resulting in
values ranging from zero (unimportant) to one (important). The input
gate’s operation is described as:

𝑖𝑛 = 𝜎
(

𝑊𝑖 ⋅
[

ℎ𝑛−1, 𝑥𝑛
]

+ 𝑏𝑖
)

(5)

The tanh function then processes the current input 𝑥𝑛 and hidden
state ℎ𝑛−1, creating a vector of new candidate values, 𝐶𝑛, which could
be added to the state:

𝐶 = tanh
(

𝑊 ⋅
[

ℎ , 𝑥
]

+ 𝑏
)

(6)
𝑛 𝑐 𝑛−1 𝑛 𝑐
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Fig. 3. Basic structure of Bi-LSTM.
The cell state 𝐶𝑛 is updated by multiplying the old state 𝐶𝑛−1 by 𝑓𝑛,
and then adding the product of 𝑖𝑛 and 𝐶𝑛:

𝐶𝑛 =
(

𝑓𝑛 ⊙ 𝐶𝑛−1
)

+
(

𝑖𝑛 ⊙ 𝐶𝑛

)

(7)

In this equation, ⊙ signifies element-wise multiplication and 𝑡𝑎𝑛ℎ is
the hyperbolic tangent activation function.

Finally, the ‘output gate’ decides what the next hidden state ℎ𝑛
should be. It considers both the cell state and the output from the
previous layer:

𝑜𝑛 = 𝜎
(

𝑊𝑜 ⋅
[

ℎ𝑛−1, 𝑥𝑛
]

+ 𝑏𝑜
)

(8)

ℎ𝑛 = 𝑜𝑛 ⊙ tanh
(

𝐶𝑛
)

(9)

In these final equations, 𝑊𝑜 and 𝑏𝑜 are the weights and bias for the
output gate. The output gate uses the sigmoid function 𝜎 and the tanh
function to calculate the final output ℎ𝑛, which is the next hidden state.

In a nutshell, a standard LSTM network can only utilize the in-
formation it has already encountered in the sequence. In contrast,
the Bi-LSTM (Bidirectional Long Short-Term Memory) architecture in-
corporates two LSTM layers—one processing the input sequence for-
wards (forward LSTM) and the other processing it backward (backward
LSTM). The schematic diagram of Bi-LSTM is illustrated in Fig. 3. The
forward LSTM layer captures information from the past to the current
time step, while the backward LSTM layer gathers information from
the future to the current time step. Subsequently, the outputs from both
hidden layers at each time step are combined. This combination ensures
that the hidden state ℎ𝑛 at any given time n in the Bi-LSTM network en-
compasses information from both the forward and backward directions.
Symbolically, this is denoted by the sum of the output components from
both these directions. Owing to its ability to assimilate information
from both past and future contexts, the Bi-LSTM architecture is more
effective than traditional LSTM and RNN (Recurrent Neural Network)
models, particularly in tasks where the understanding of context in both
directions is crucial.

2.3. Stacked convolutional neural network with bidirectional long short-
term memory (SCNN-Bi-LSTM)

When dealing with large-scale, highly fluctuating data, the Stacked
Convolutional Neural Network (SCNN) serves as an effective tool for
extracting high-level characteristics from the input sequence. The SCNN
excels in identifying complex patterns within the data, thanks to the
6

hierarchical representation it generates. Each successive layer in the
SCNN builds upon the features discovered by its predecessor, thereby
enhancing the overall capability of the model to discern intricate in-
trusion patterns. Complementing the SCNN’s prowess in spatial feature
extraction is the Bidirectional Long Short-Term Memory (Bi-LSTM)
component. Bi-LSTM captures temporal dependencies in both forward
and backward directions through two distinct LSTM mechanisms: one
processes the data sequence from start to end, and the other from end
to start. This bidirectional processing grants each data point a com-
prehensive context, enabling the model to recognize the full spectrum
of temporal patterns within the data. Such capability is particularly
advantageous for detecting progressively evolving intrusions, like port
scanning attacks. The synergy between the SCNN and Bi-LSTM compo-
nents culminates in a powerful intrusion detection model. This model
is adept at identifying both temporal and spatial patterns of intrusion,
making it an ideal solution for Intrusion Detection Systems (IDS) in
IoT networks. Given IoT networks’ often constrained computational
resources, the SCNN-Bi-LSTM model stands out for its thorough fea-
ture analysis and computational efficiency. The CNN-BiLSTM model’s
architecture is outlined in Fig. 4.

2.4. Hyperparameters of SCNN-BiLSTM

The performance of deep neural networks, like the stacked CNN and
Bi-LSTM structure mentioned, is greatly influenced by their hyperpa-
rameters. The number of filters in each convolutional layer, their size,
their stride, their padding, and the learning rate are all hyperparame-
ters in this model that may be adjusted. For the model to perform at
its peak, these hyperparameters must be tuned successfully.

In the formulation of the FL-SCNN-Bi-LSTM model for enhancing
intrusion detection in Wireless Sensor Networks (WSNs), the selection
and fine-tuning of hyperparameters were approached with a metic-
ulous strategy, acknowledging their profound impact on the model’s
efficacy and efficiency. The hyperparameters, including the learning
rate, number of layers and neurons, activation functions, dropout rate,
and batch size, were carefully chosen based on empirical evidence and
deep learning expertise. For instance, the learning rate was calibrated
to a moderate level to balance rapid convergence with accuracy. The
architecture of the model was configured with an optimized number
of layers and neurons to effectively capture complex intrusion patterns
without falling into the trap of overfitting.

The rationale behind these selections hinged on achieving a har-
monious balance between the model’s complexity and its ability to
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Fig. 4. CNN-Bi-LSTM basic architecture.
generalize across various scenarios. Activation functions like ReLU were
chosen for their proven efficiency in deep learning contexts, while the
dropout rate was fine-tuned to mitigate overfitting by intermittently
deactivating neurons during the training phase.

These hyperparameters played a pivotal role in influencing the over-
all performance of the model. For example, the learning rate and batch
size significantly affected the speed and stability of the training process,
while structural parameters such as the number of layers and neurons
directly impacted the model’s learning capacity and generalizability.
The versatility of these hyperparameters allowed the model to adeptly
adapt to different operational environments within WSNs.

After extensive testing, we selected a filter size of 3, 64 filters
per convolutional layer, ‘‘same’’ padding, 200 units for the Bi-LSTM’s
hidden layers, and a learning rate of 0.01. This configuration demon-
strated the best balance between detecting intricate attack patterns and
avoiding overfitting, ensuring the model’s effective generalization to
new data and optimizing detection performance on our validation set.

This strategic approach ensured that the model was not only
equipped to handle standard detection challenges but was also capable
of adapting to a range of scenarios within the evolving domain of
network security, thereby solidifying its position as a significant con-
tribution to the field of intrusion detection in WSNs. The architecture
of the proposed model and a relative number of parameters used for
both datasets are given in Table 2:

2.5. Federated learning

The availability of sufficient training data is a crucial need for
Deep Neural Network (DNN) models to function superbly. By sending
7

data from dispersed devices to a centralized server, this data is often
used to build a global model. Exchanging data across many places
and organizations, however, can be challenging, if not impossible,
due to worries about data protection. Making efficient models with
multi-party data while protecting data privacy is made more difficult.
Federated Learning (FL) has been a possible remedy to these privacy
problems in recent years. In 2016, FL was initially proposed by McMa-
han et al. [46]. In essence, FL employs a distributed learning approach
to enable team training across many devices while reducing the danger
of data leaking. Due to the development of edge computing, edge
servers now have the processing capacity to perform extra computing
activities, resulting in a setting that is intrinsically FL-friendly. The FL
task eliminates the need to collect significant amounts of raw data
because each participant trains their local model individually using
local data. To a central server are just the model weights supplied. A
global model is finally produced after several rounds, removing any
possible privacy concerns. To decrease communication rounds, FedAvg,
the most used FL optimization strategy, requires the client to perform
multiple local epochs before talking with the central server. The sub-
mitted weights are combined using FedAvg. FedAvg has been further
enhanced by several research [47–49]. Implementing the FedAvg-based
synchronous technique is difficult, nevertheless, since edge nodes may
switch between servers [50,51], and edge servers may give up on
the training assignment at any time owing to network problems and
other difficulties. Asynchronous aggregation systems, where the central
server can update the global model before all clients have finished
their local compute duties, have been the subject of certain inves-
tigations [52–55]. Additionally, the properties and volume of data
may differ dramatically between devices due to the inherent statistical
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Table 2
Parameters’ information used for Proposed Model (SCNN-Bi-LSTM).

Model name No. of
parameters

No. of layers No. of units/neurons No. of filters Activation

CNN-1D 3 3
Layer 1: 200

2 ReLULayer 2: 100
Layer 3: 50

Bi-LSTM 2 3
Layer 1: 200

N/A ReLULayer 2: 100
Layer 3: 50

MaxPooling Layer 1 Each for
CNN-1D layer

N/A 2 N/A
Fig. 5. Overview of the FL-based model for network intrusion detection.
heterogeneity of data. It is possible that not all participants’ data will
match the common global model as a consequence. In the field of FL
research, personalization techniques, which adjust the global model
to match particular data, have become more significant. The major-
ity of customization techniques [56] modify the global model using
client-specific local data. Transfer learning is a prime illustration [57].
Multi-task learning was used to FL by Smith et al. [58], where the
model is created through a succession of linked tasks. Hanzely et al.
suggested a gradient descent variation to integrate the local model with
the global model [59]. Fig. 5 illustrates the basic idea of the FL-based
IDS.

2.6. Federated learning-based stacked convolutional neural network with
bidirectional long short-term memory (FL-SCNN-Bi-LSTM)

When trained on inadequate data, deep neural networks (DNNs),
like our SCNN-Bi-LSTM model, run the danger of overfitting. Despite
having achieved low error rates during training, this overfitting might
cause the model to perform poorly on unobserved data. The traditional
approach to this issue is to gather data from many sources and transfer
it to a central server for model training. This strategy might, how-
ever, lead to significant communication overhead and privacy issues.
By dispersing the training process over many devices, each of which
holds a piece of the total data, federated learning (FL) addresses these
problems. This strategy offers the following benefits:
8

• Reducing privacy hazards and potential legal difficulties by elim-
inating the need to upload local data to a main server.

• Since they can learn from data spread over several devices, mod-
els taught through FL often perform better than local models.

• The model is trained cooperatively by several devices, maximiz-
ing the effectiveness of computing resources.

The cloud server chooses random clients to train models locally
through several transactions. Each chosen client receives the most re-
cent model from the server and updates locally using local information.
The users then input their model parameters, which represent the de-
viation between the starting parameters and the final values following
training. The server averages their contributions before adding them to
the global model.

We use an FL framework in the context of our study to improve the
performance of network intrusion categorization utilizing information
from numerous nodes. Our system’s fundamental structure consists of
one server and 𝑘 clients (𝐶1..., 𝐶𝑘) with limited computing capability
as can be seen in Fig. 5. All clients and the server share the same
global neural network architecture and learning objectives, and each
client keeps a local model that can be trained using their unique
input. The server chooses a subset of clients and provides them with
the most current global model parameters at the beginning of each
training round. The overview of the proposed hybrid model using the
FL technique is given in Fig. 6.



Ad Hoc Networks 155 (2024) 103407S.M.S. Bukhari et al.
Fig. 6. Overall procedure of the federated SCNN-Bi-LSTM based network intrusion detection scheme.
• The global model parameters are downloaded from the server to
each chosen client, who then locally trains their model with their
data.

• Following training, each client computes and communicates the
modifications to their model to the server.

• The changes are gathered by the server, averaged, and added to
the overall model.

• The global model is iterated over numerous rounds, with each
round possibly containing a different subset of clients, until it
converges to the ideal state.

Wireless communication is used between the clients and the server.
In the simplified system, we assume that the kinds and quantities of
data collected for each client are different. Each client’s computing
power is not comparable and each client’s communication delay with
the server is variable and clients will cease to function during the
training process. Also, it is considered that the global model and local
model are updated at the server end and client end, respectively. All
or a portion of the clients are chosen at the beginning of the training
phase, and the most recent global model parameters are distributed
to the clients. With gathered local data 𝐷𝑘, 𝐶𝑘 does optimization over
many iterations, such as adaptive moment estimation (Adam). Updated
local model parameters include:

𝑎𝑘𝑡+1 ← 𝑎𝑡 − 𝜂∇
(

𝑎𝑡
)

(10)

where 𝜂∇
(

𝑎𝑡
)

represents the batch gradient and 𝜂 represents the
learning rate. Then updates are transmitted to the server, where safe
aggregation is carried out:

𝑎𝑡+1 ← 𝑤𝑡 −
𝐾
∑

𝑘=1

𝑛𝑘
𝑛
𝑎𝑘𝑡+1 (11)

where 𝑛𝑘 = |

|

𝐷𝑘
|

|

, 𝑛 = |

|

𝐷1 ∪⋯ ∪𝐷𝑘
|

|

. The technique is then done once
more. The data that has been gathered from the various sensor nodes is
pre-processed and distributed to each client manually. When the global
model is integrated with the obtained model updates, a new global
model is produced and made available to source clients. Also can be
seen in Algorithm 1:

The suggested SCNN-Bi-LSTM model is used to show the general
federated learning process using pseudocode. The server initializes the
global model parameters to start the process. After startup, federated
learning starts in a new cycle. The server chooses a subset of clients
9

Algorithm 1 Federated Learning based SCNN-Bi-LSTM (FL-SCNN-Bi-
LSTM)

Procedure FL-SCNN-Bi-LSTM (Server, Clients)
Initialize global model parameters 𝜃
for each round 𝑡 do

Select a subset of clients 𝐶𝑡 to participate in training
for each client 𝑘 in 𝐶𝑡 in parallel do

Retrieve global model parameters 𝜃 from server
Update local model parameters by training on local data with
SCNN-Bi-LSTM
Compute and send model updates 𝛥𝜃𝑡 to the server

end for
Compute global model update 𝛥𝜃 = average(𝛥𝜃𝑡 for each k in 𝐶𝑡)
Update global model parameters 𝜃 = 𝜃 + 𝛥𝜃

end for
return Global model parameters 𝜃
End Procedure

to take part in the training process inside each cycle. The most recent
global model parameters are subsequently downloaded by these chosen
clients from the server. By using these parameters and training the
SCNN-Bi-LSTM model on their local data, each client then updates
the parameters of their unique local models. Each client calculates the
modifications made to their local model parameters, denoted by 𝜃𝑘,
when training is complete. Each client then transmits these calculated
changes, which constitute model updates, to the server. The server
calculates an average of all the updates after receiving them from all of
the participating clients. This averaged update () contains the cumula-
tive learning that was attained across all customers. The global model
parameters are subsequently modified by the server using this averaged
update, thereby incorporating the dispersed learning. With this update,
a learning round concludes, and the server moves on to the following
round of federated learning. With each round possibly including a new
selection of clients, this procedure is repeated repeatedly. The model
has successfully learned the underlying patterns in the dispersed data
when the global model parameters converge to an optimal state, which
occurs after repeated training. The final global model parameters are
returned by the server when training is complete, and these parameters
can be utilized to make predictions or conduct more research.
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Fig. 7. Correlation matrix for Dataset 1.
Given the statistical heterogeneity of the data across many devices,
we must take into account the possibility that the classic FL shared
global model may not fit all datasets. The centralized technique of
combining all the data into one model is likewise impacted by this
unpredictability. We have used a personalizing technique to address
this problem, dividing the model into local and global layers, and only
utilizing the global layers for FL. Then, identical global layers and
distinctive customization layers are made available to each FL member.
With its capacity to effectively manage highly dimensional training
data and recognize both well-known and novel cyberattacks, the pro-
posed FL-SCNN-Bi-LSTM model offers a substantial advancement in
intrusion detection approaches.

3. Dataset description and preprocessing

In this work, we used the SCNN-Bi-LSTM model to build a Federated
Learning (FL)-based Deep Learning (DL) intrusion detection system uti-
lizing two datasets: WSN-DS (Dataset 1) and CICISD-2017 (Dataset 2).
The goal was to assess how different factors affected the effectiveness
of intrusion detection systems. With the help of these datasets, we were
able to undertake a thorough investigation of network intrusion char-
acteristics and typical attack pathways for network intrusion detection.
10
Our model’s implementation of federated learning made it possible
to conduct effective, privacy-protecting collaborative training across
many devices. To undertake a thorough analysis of network intrusion
features and attack vectors that are often applied in network intrusion
detection, these two datasets were chosen. The datasets came from a
range of suppliers and included several variables that would help our
algorithm recognize network intrusions. Because it makes data analysis
easier and improves the precision and speed of these algorithms, data
pre-processing is a crucial step in the life cycle of Machine Learning
(ML) or Deep Learning (DL) algorithms. However, we ran into certain
issues with the obtained datasets, such as class imbalances and missing
information. We used a variety of pre-processing techniques to solve
these problems, making sure that our datasets were correctly cleaned
and structured before being fed into the model.

3.1. WSN-DS (dataset 1)

In Dataset 1, there are a total of 19 characteristics, including the tar-
get variable (Attack Type). There are a total of 3,74,661 data samples,
and none of the characteristic values were missing or null. Evaluation
of the interdependence of data features and how every attribute affects
the resultant feature are two examples of how feature association may
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Fig. 8. Correlation matrix for Dataset 2.
be useful. Fig. 7 shows the feature correlation between several char-
acteristics for Dataset 1. Except for ‘‘Join Message sent’’ and ‘‘TDMA
schedule message received’’, which show a positive link with the target
variable, all of the other characteristics that are accessible in Dataset 1
demonstrate a favorable negative connection with the target variable. A
low-cost monitoring service is required to create the dataset and gather
the necessary data from the transmitted and received packets within
WSN. On the other side, we must make sure that the network-related
data that is required to identify, categorize, and subsequently prevent
various potential assaults is gathered. Each sensor will participate in
the monitoring process in this study and should be able to monitor
a set of its neighbors to spread the monitoring workload across the
sensor nodes. Finding the right number of nodes for a sensor node
to keep an eye on to keep track of all network sensors was a hurdle.
The created dataset implements four different DoS attacks against the
LEACH protocol: blackhole, grayhole, flooding, and TDMA assaults. In
a black hole attack, the attacker influences the LEACH protocol by
identifying itself as a cluster head (CH) at the start of the round. Any
node that joined this CH during this round will thus forward the data
packets to it for transmission to the BS. Assuming the role of the CH,
the Blackhole attacker will keep dropping and not sending these data
packets to the BS. In a grayhole attack, which is a sort of DoS attack,
the attacker interferes with the LEACH protocol by posing as a CH for
11
other nodes. To prevent some packets from reaching the BS, the forged
CH drops some packets (selectively or arbitrarily) when it receives data
packets from other nodes. A DoS attack known as a flooding assault
involves the attacker having several effects on the LEACH protocol. This
study simulates flooding assaults by sending a large number of powerful
advertising C-H messages (𝐴𝐷𝑉𝐶𝐻). As a result, sensors will use more
energy and take longer to decide which CH to join when they get a
lot of ADV_CH notifications. To drain their energy, the perpetrator also
tries to deceive others into choosing it as a C-H, particularly those nodes
that are located far from it. Scheduling attacks take place when C-Hs
create TDMA schedules for the data transmission time slots during the
LEACH protocol’s setup phase. The attacker that assumes the role of a
C-H will provide each node with a certain period for data transmission.
This is accomplished by switching the TDMA schedule’s behavior from
broadcast to unicast. This alteration will result in packet collisions,
resulting in data loss. The correlation among data attributes available
in Dataset 1 (WSN-DS) is shown in Fig. 7.

3.2. CIC-IDS 2017 (Dataset 2)

There are 24,96,897 data records in CIC-IDS (Dataset 2), and none
of them have null values for any of the attributes. Since all characteris-
tics in this dataset have previously undergone a numerical translation,
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which is essential for deep learning algorithms, there are no category
features to be found. The data instances for Dataset 2 are resampled to
a minimum number of data values according to the machine and the
target value attains maximum contribution from all attacks to be on the
safe side. The link between the characteristics and various qualities is
also shown in Fig. 8. Regarding the goal variable ‘‘Label’’, all attributes
in Dataset 2 had positive values. Evaluations, however, reveal that
many of them lack diversity and traffic volume, are outdated and are
unworthy of trust. They also do not cover a lot of the known assaults.
To address these issues with the earlier datasets, a Canadian institute
developed the CIC-IDS-2017 dataset. It comprises several data formats
for assessing anomaly detection techniques. This dataset includes more
than 80 features related to the network traffic produced, including
all currently used protocols such as TTP, SSH, FTP, TTPS, and Email.
Additionally, it includes the most common threats identified by McAfee
in 2016. In contrast to NSL-KDD, this dataset assesses network traffic
based on variables such as time, both origin and destination addresses,
origin and destination ports, and protocol information. The data is quite
comparable to real-world data. As stated normalization is performed on
feature value values. It provides further information on the characteris-
tics of various assaults, and readers who are interested in specifics are
directed to [60] for more data. Additionally, [61] reports the quantity
and labels of assaults in this dataset. Fig. 8 shows the correlation matrix
that displays data properties with correlations of more than 0.2. The
correlation among different attributes available in Dataset 2 is given in
Fig. 8.

Normal data is given the first class and the label encoder is used
to gradually classify the other attacks, this is how attacks in the
WSN-DS dataset are converted to numerical classes. The CIC-IDS-2017
datasets follow the same procedure: the normal data (Benign) is the
first class, and the additional classes are numbered in order. In the
initial stage, we assess the algorithm’s performance and classification
during the training phase. This evaluation uses a 20% subset from both
datasets, which includes all types of attacks. Run the suggested model
on the training set for a predetermined number of iterations. These
iterations were chosen from a range of values that were tried during
the experiments.

4. Evaluation of proposed methodology on datasets

These metrics, which are widely used in the field of machine
learning, are selected to assess the proposed model in this paper:

• True positive: identifying an assault after it has occurred.
• False negative: detecting regular traffic when an actual assault has

occurred.
• False positive, often referred to as a false alarm, occurs when an

assault is detected when there has not been one.
• True negative: seeing typical traffic when regular traffic has

already been present.
• Sensitivity Measure: i.e. anomalies discovered (recall).

To evaluate the expected accuracy of the provided approach, the
pecificity (Precision), sensitivity (Recall), F1-score (harmonic mean of
recision and Recall), and accuracy score of the focused class are com-
uted. Accuracy, precision, recall, and F-1 measures are calculated in
achine learning (ML) and deep learning using the ‘‘(TP) True Positive,

TN) True Negative, (FN) False Negative, and (FP) False Positive’’ rate.
he projections are divided into optimistic and pessimistic predictions.
o analyze the efficacy of ML/DL classification models, we employed
our well-known performance assessment metrics: Accuracy, F1-score,
recision, and Recall. Machine learning professionals may characterize
ow well a classification model works by looking at a confusion matrix,
hich is a table. The confusion matrix, which is comprised of the
utcomes of four tests, is used to determine a classifier’s performance
atrices. All above-mentioned metrics can be defined for a given
ataset of size 𝑛 as:

ccuracy = 𝑇𝑃 + 𝑇𝑁 (12)
12

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 t
Accuracy: In network intrusion detection, Accuracy represents the pro-
portion of total predictions (both intrusion and non-intrusion) that the
FL-SCNN-Bi-LSTM model correctly identifies. High accuracy is crucial
as it reflects the model’s overall reliability in distinguishing between
normal network behavior and potential security threats.

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(13)

recision: Precision in network intrusion detection refers to the model’s
bility to correctly identify true intrusion attempts. It is the ratio of
orrectly predicted intrusion events to all events predicted as intru-
ions. This metric is significant as it reflects the model’s effectiveness
n minimizing false positives, ensuring normal network operations are
ot unjustly flagged as intrusions.

ecall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(14)

ecall: Recall, or the true positive rate, measures the model’s capac-
ty to identify all actual intrusion attempts. A high recall indicates
he model’s effectiveness at detecting intrusions, minimizing the risk
f overlooking genuine threats (false negatives), crucial for network
ntegrity and security.

1 Score = 2 × Precision × Recall
Precision + Recall (15)

1-Score: The F1-Score is a harmonic mean of Precision and Recall,
alancing these metrics. It is crucial in network intrusion detection as it
ncapsulates both precision in identifying true intrusions and the ability
o recall all actual intrusion events. A high F1 score indicates a robust
efense against network threats.

In Fig. 9, we present a consolidated view of the confusion matrices
hat delineate the predictive efficacy of our proposed model across two
istinct datasets, both under the influence of Federated Learning (FL)
nd in its absence. For Dataset 1, part (a) of the figure reveals the confu-
ion matrix results when FL is applied, showcasing the model’s ability to
iscern between different classes with a high degree of accuracy. This
s reflected in the number of true positives and negatives, as well as
he limited instances of false positives and negatives. Conversely, part
c) of the same figure offers a comparative perspective by illustrating
he model’s performance without the aid of FL, allowing us to evaluate
he impact of FL on the model’s predictive capabilities. Similarly, for
ataset 2, part (b) of Fig. 9 provides insights into the model’s classifica-

ion prowess when enhanced with FL, indicating the model’s robustness
n handling new data while maintaining precision. Part (d), in contrast,
howcases the model’s performance devoid of FL’s contribution, which
erves as an essential benchmark to gauge the incremental value added
y federated learning techniques. Collectively, these matrices serve
ot only as a testament to the model’s overall performance but also
nderscore the nuanced improvements that federated learning imparts
o the system’s ability to predict and classify data accurately within the
ontext of intrusion detection systems.

.1. Evaluation results for WSN-DS (Dataset 1)

This section evaluated each ML/DL model’s ability to predict the
etwork intrusion detection outcomes utilizing all available datasets
nd characteristics. All prediction models were trained on the whole
ataset, comprising 80% training and 20% testing subsets. The pro-
osed model (FL-SCNN-Bi-LSTM) for Dataset 1 has the maximum accu-
acy (0.99%), F1-Score (0.99%), Precision (0.99%), and Recall (0.99%),
ccording to the categorization results shown in Table 3. Other clas-
ifiers, including CNN-Bi-LSTM, KNN, SVM, RF (Random Forest), NN
Neural Network), and LightGBM, also performed well and provided
igh prediction accuracy. The suggested model worked effectively also
nsuring data privacy with the provided dataset.

The confusion matrices for the proposed model applied to Dataset 1
re depicted in Fig. 9. Part (a) of the figure shows the results when the
L technique is utilized, while part (c) presents the outcomes without
he use of FL. Each matrix provides a detailed account of the model’s
redictive accuracy by displaying the number of correct predictions and
he instances of misclassification.
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Fig. 9. Confusion matrices illustrating the performance of the proposed model: (a) with Federated Learning (FL) applied on Dataset 1, (b) with FL applied on Dataset 2, located
in the top row from left to right, respectively. The bottom row shows (c) without FL applied on Dataset 1 and (d) without FL applied on Dataset 2, from left to right. Each matrix
provides insights into the accuracy and misclassification rates for different configurations.
Table 3
Evaluation results generated on dataset 1.

Metrics Proposed model with
FL (FL-SCNN-Bi-LSTM)

Proposed model without
FL (SCNN-Bi-LSTM)

KNN RF SVM NN LGBM classifier

Accuracy 0.997 0.995 0.984 0.961 0.85 0.89 0.982
F1-Score 0.996 0.994 0.96 0.967 0.83 0.894 0.928
Precision 0.998 0.995 0.964 0.969 0.852 0.89 0.912
Recall 0.996 0.994 0.958 0.961 0.851 0.9 0.95
Table 4
Evaluation results generated on dataset 2.

Metrics Proposed model with
FL (FL-SCNN-Bi-LSTM)

Proposed model without
FL (SCNN-Bi-LSTM)

KNN RF SVM NN LGBM classifier

Accuracy 0.9993 0.9990 0.984 0.961 0.850 0.890 0.982
F1-Score 0.9993 0.9990 0.960 0.967 0.830 0.894 0.928
Precision 0.9993 0.9990 0.964 0.969 0.852 0.890 0.912
Recall 0.9992 0.9991 0.958 0.961 0.851 0.900 0.950
4.2. Evaluation results on CIC-IDS-2017 (Dataset 2)

The suggested model (FL-SCNN-Bi-LSTM) for Dataset 2 achieved
the greatest accuracy of 0.999%, F1-Score with 0.999%, precision of
0.999%, and Recall with 0.999%, according to the evaluation criteria
used to assess the proposed model’s correctness as given in Table 4. On
Dataset 2, other classifiers like KNN (K-nearest Neighbors), RF (Random
Forest), NN (Neural Network), LightGBM, and SVM (Support Vector
Machine) did very well. The suggested model worked quite well on the
provided dataset.

The effectiveness of our model on Dataset 2 can also be assessed
through the confusion matrices presented in Fig. 9. Part (b) of the figure
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illustrates the model’s performance with the implementation of the FL
technique, while part (d) shows the outcomes when the model operates
without FL. The confusion matrices detail how accurately the model
predicted the target variables, highlighting both correct predictions and
misclassifications.

5. Comparative analysis

Comparing our suggested model to other FL-based models in the
literature is essential for measuring our results given the surge in the
popularity of FL for ensuring data privacy in a variety of applications.
Our Federated Learning-based Stacked Convolutional Neural Network
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Table 5
Comparative Analysis of different techniques with proposed model.

Dataset Base proposed technique Proposed model
evaluated metrics (%)
without FL

Proposed model
evaluated metrics (%)
with FL

WSN-DS (Dataset 1) SCNN-Bi-LSTM

Accuracy = 0.995 Accuracy = 0.997
F1-Score = 0.994 F1-Score = 0.996
Precision = 0.995 Precision = 0.998
Recall = 0.994 Recall = 0.996

CIC-IDS2017 (Dataset 2) SCNN-Bi-LSTM

Accuracy = 0.9990 Accuracy = 0.9993
F1-Score = 0.9990 F1-Score = 0.9993
Precision = 0.9990 Precision = 0.9993
Recall = 0.9991 Recall = 0.9992
with Bidirectional Long Short-Term Memory (FL-SCNN-Bi-LSTM) ar-
chitecture shines out even among these sophisticated models. Unlike
existing FL-based approaches, our method makes use of deep learning,
particularly SCNN and Bi-LSTM, to offer improved detection accuracy.
As a result, our technology can better detect network intrusion sce-
narios while simultaneously ensuring privacy by keeping data on local
devices. The comparison between our suggested technique and the
previous FL-based investigations is shown in Table 1. Even though FL
has improved intrusion detection technologies, our method shows a
modest advantage in terms of accuracy across the datasets studied.
This improved performance demonstrates the potency of our suggested
FL-SCNN-Bi-LSTM model, especially when combined with the strong
privacy safeguards offered by our FL architecture. Therefore, our study
points towards an approach that is promising for the development of
intrusion detection systems that prioritize data privacy and detection
performance while integrating FL and deep learning. Also in Table 5,
overall relative results are shown together with comparison analysis,
both with and without federated learning. We use base models and our
recommended FL-based model to analyze the results of the evaluation
on two separate datasets.

5.1. Comparative analysis for WSN-DS (Dataset 1)

Excluding Federated Learning (FL), the suggested model’s perfor-
mance on Dataset 1 was characterized by an accuracy of 0.995, a
sensitivity of 0.994, a specificity of 0.995, and an F1-Score of 0.994.
Interestingly, the implementation of Federated Learning (FL) improved
all these parameters. Post-FL implementation, the model demonstrated
an accuracy of 0.997, a sensitivity of 0.998, a specificity equal to 0.996,
and an F1-Score of 0.996. These variations are discernible in the bar
chart shown in Fig. 10(a) for Dataset 1 and in Fig. 10(b) for Dataset
2. The improved outcomes with FL usage imply that this learning
strategy may be especially helpful in enhancing the functionality of the
proposed model on Dataset 1.

5.2. Comparative analysis for CIC-IDS 2017 (Dataset 2)

On Dataset 2, our suggested model performed impressively. The
model achieved an accuracy of 0.9993, a sensitivity of 0.9993, a
specificity of 0.9992, and an F1-Score of 0.9993 specifically when using
the Federated Learning (FL) approach. The accuracy, sensitivity, speci-
ficity, and F1-Score of the model without FL were all marginally lower
than those of the model with FL, at 0.9990, 0.9990, 0.9991, and 0.9990,
respectively. Despite being small, FL’s performance improvement is
considerable, demonstrating the benefits of using this cutting-edge
machine-learning method. Due to FL’s capacity to learn from decentral-
ized data while preserving anonymity, it is feasible that its application
helps create a model that is more reliable and efficient. This feature
of FL may allow the model to detect a greater variety of intrusion
patterns across many networks, enhancing the performance metrics in
general. Both when using Federated Learning (FL) and when using the
14

base model without FL, a similar trend in assessment measures can be
seen in both datasets. The methodology suggested in this study, which
uses several network intrusion datasets, produces an average score for
the datasets of 0.99% across all assessment measures. The similarity of
the findings achieved using various datasets emphasizes the consistency
of the model’s performance. Despite the small discrepancies in metrics
between FL and non-FL approaches, FL is still the better option due
to its added advantages. FL offers a formidable tool to prevent future
data breaches – a significant worldwide concern – while enhancing
performance and ensuring data privacy.

5.3. Strategies for model scalability and integration with emerging technolo-
gies

In the rapidly evolving landscape of network security and machine
learning, the scalability of models and their integration with emerging
technologies stand as pivotal factors determining their long-term suc-
cess and applicability. This subsection delves into the various strategic
approaches we have employed to ensure that our model not only
meets the current demands of cybersecurity but is also primed for
future advancements. By exploring both horizontal and vertical scaling
methods, as well as the potential for integration with cutting-edge
technologies such as IoT and cloud computing, we lay the groundwork
for a model that is robust, adaptable, and forward-looking.

• Vertical Scaling (Enhancing Computational Power): We pro-
pose enhancing the computational power of individual nodes
through hardware upgrades, such as faster processors or increased
memory capacity. Additionally, software-level optimizations, in-
cluding model quantization, are used to streamline the computa-
tional demands of the model. These optimizations aim to maintain
high performance while minimizing the hardware requirements.

• Distributed Computing Techniques: For efficient handling of
large-scale data, our model utilizes distributed computing frame-
works like Apache Spark or Hadoop. These technologies enable
the splitting and parallel processing of data across a cluster of
machines. We employ data parallelism for distributing data seg-
ments across different nodes and model parallelism for dividing
the model itself for simultaneous processing on multiple nodes.

• IoT Integration: Recognizing the expansive nature of IoT net-
works, our model is designed to be deployed on IoT devices
directly. We focus on creating lightweight versions of the model
that are optimized for the limited computational resources typical
of IoT devices. Integration with IoT platforms allows for real-time
data analysis, enhancing responsiveness and efficiency in dynamic
environments.

• Cloud Computing Integration: We leverage cloud computing to
offload intensive computational tasks, especially for model train-
ing and complex data analysis. By utilizing cloud-based services,
the model can be scaled dynamically based on the workload, en-
suring consistent performance. Additionally, our model is adapted
for deployment as a cloud service, facilitating regular updates and

maintenance through a centralized platform.
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Fig. 10. (a) Comparative analysis for Dataset 1 (b) Comparative analysis for Dataset 2.
• Use of Containers and Microservices: To enhance the porta-
bility and flexibility of our model, we utilize containerization
technologies like Docker. This allows for the deployment of the
model across diverse environments with consistent performance.
Furthermore, a microservices architecture is adopted, segmenting
different functionalities of the model into independently scalable
services. This approach ensures that each aspect of the model can
be scaled according to its specific demands.

• Adaptive Algorithms: In response to the dynamic nature of net-
work environments, our model incorporates adaptive algorithms
that can adjust to changes in data patterns and network con-
ditions. Online learning techniques are utilized to continuously
update the model with new data, ensuring that the model remains
effective against the latest security threats.

• Horizontal Scaling (Adding Nodes): To accommodate the grow-
ing volume of data in larger networks, our approach involves
increasing the number of nodes within the federated learning
framework. This strategy allows for the parallel processing of data
across multiple devices or servers, enhancing the model’s ability
to handle extensive datasets without a bottleneck in processing
capacity.

5.4. Limitations and challenges

While the FL-SCNN-Bi-LSTM model offers significant advancements
in the field of intrusion detection within Wireless Sensor Networks
(WSNs), it is imperative to thoroughly acknowledge and understand
its potential limitations and the challenges that might arise. These
considerations are crucial for a balanced and comprehensive view of
the model’s applicability and potential areas for future enhancement.

• Scalability in Large Network Environments: As the deploy-
ment scale of the model increases, particularly in extensive and
complex network environments, scalability becomes a critical
concern. The model must be capable of handling increased data
loads and maintaining performance without incurring prohibitive
computational costs. This aspect is particularly challenging in
scenarios where network architectures and traffic patterns vary
significantly from those in the model’s initial testing and config-
uration.

• Adaptability to Different Network Types: The current testing
of our model primarily focuses on specific network architectures,
which raises questions about its adaptability to a broader range of
network environments. Understanding and ensuring the model’s
effectiveness across various architectures is essential, especially
considering the diverse nature of modern network systems.

• Performance Under Fluctuating Network Conditions: Network
environments are often dynamic, with varying conditions such
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as traffic fluctuations and congestion. These factors can signifi-
cantly impact the model’s ability to detect intrusions accurately.
Comprehensive testing under a variety of operational scenarios
is necessary to evaluate the model’s robustness and reliability in
real-world conditions.

• Dependency on Data Quality: The model’s performance is heav-
ily reliant on the quality of data used for training and testing.
In scenarios where the data is noisy, incomplete, or otherwise
compromised, the model’s accuracy and effectiveness could be ad-
versely affected. This emphasizes the importance of implementing
rigorous data quality management and preprocessing methods.

• Ability to Detect Evolving Cyber Threats: Given the rapidly
changing landscape of cybersecurity threats, the model’s capa-
bility to continuously adapt and identify new types of intrusions
is of paramount importance. Ongoing research and development
efforts are required to ensure the model remains effective against
novel and sophisticated cyber threats.

• Real-time Data Processing Limitations: In high-traffic scenarios
and environments with limited computational resources, such
as edge devices in IoT networks, the model faces challenges in
processing data in real time. This results in latency issues and
necessitates further optimization to ensure timely and accurate
intrusion detection.

• Challenges with Training on Live Data Streams: Live data
streams, characterized by their unpredictability and variability,
present significant challenges in maintaining consistent model
performance. The model requires continuous updates and adap-
tations to these evolving data patterns, which can be resource-
intensive and require sophisticated algorithms.

• Strategies for Addressing These Challenges: To mitigate these
limitations, we propose the implementation of algorithmic opti-
mizations and the utilization of cloud and edge computing re-
sources to enhance computational efficiency. Additionally, adap-
tive learning techniques and real-time data preprocessing meth-
ods are suggested to address issues related to data variability
and quality. For continuous model updates, online learning and
incremental learning techniques are recommended to adapt to
new data patterns without the need for complete retraining.

These detailed insights into the limitations and challenges of our
model are intended to guide future research and development ef-
forts, enhancing its real-time data processing capabilities and overall
effectiveness in diverse and dynamic network environments.

Conclusion

In this article, we propose a classification technique for multiple
Intrusion Detection System (IDS) datasets using a stacked CNN and Bi-
LSTM hybrid deep learning model based on Federated Learning (FL).
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We tested the FL-SCNN-Bi-LSTM algorithm on WSN-DS and CIC-IDS-
2017 structured datasets to predict various network attacks. These
datasets, sourced from online repositories and real-time sources, were
used to analyze the threats and associated risk factors of network
intrusion. We employed feature selection and data normalization as
pre-processing techniques, and the classifier was then applied to the
pre-processed datasets to create the FL-SCNN-Bi-LSTM. To evaluate the
models’ accuracy, we conducted assessments using efficiency calcu-
lations. We compared our proposed methods with popular classifiers
including the SCNN-Bi-LSTM base model, SVM, LightGBM Classifier,
KNN, and DNN. Our proposed approach consistently delivered superior
classification accuracy, averaging 99.97% for Dataset 1 and 99.93%
for Dataset 2. When compared to the base model and other classifiers,
our approach showed a significant improvement in accuracy, indicating
an increase of approximately 2%–3% in some cases. This improve-
ment, although seemingly small, can have a substantial impact in the
field of network intrusion detection, where even a slight increase in
accuracy can lead to the detection of thousands of additional intru-
sion attempts. Looking ahead, we recognize that the field of network
intrusion detection is rapidly evolving, and our methodology must
adapt to stay effective. Future research could explore more advanced
feature selection methods to further refine the model’s ability to de-
tect complex intrusion patterns. Optimizing the model for efficiency,
particularly in real-time detection scenarios, is another vital area of
focus. Addressing computational time constraints is essential for the
model’s performance in environments where quick response is critical.
Enhancing data privacy measures during the federated learning pro-
cess remains a priority, ensuring robust security of data. Additionally,
adapting the model for scalability to larger and more complex networks
and ensuring its adaptability to new types of network threats are
essential for maintaining relevance in the ever-changing landscape of
network security. Integrating this model with existing security systems
could offer a more comprehensive defense strategy. Extensive real-
world testing and deployment will be crucial in assessing the model’s
efficacy in diverse network environments. The integrity and security of
contemporary network systems, as well as the maintenance of strong
defenses against complex network attacks, depend on the ongoing
improvement and adaption of techniques such as FL-SCNN-Bi-LSTM. In
conclusion, even if the current model marks a significant advancement
in network intrusion detection, the effectiveness of predictive classifiers
will continue to rise with the ongoing development of novel feature
selection strategies, optimization approaches, and data privacy tech-
nologies. Such continuous improvements will guarantee this method’s
continued importance in the intrusion detection space, providing a
strong and dependable defense against network attacks.
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