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Abstract Underwater imagery (UI) is an important and sometimes the only tool for mapping 
hard-bottom habitats. With the development of new camera systems, from hand-held or simple 
“drop-down” cameras to ROV/AUV-mounted video systems, video data collection has increased 
considerably. However, the processing and analysing of vast amounts of imagery can become 
very labour-intensive, thus making it ineffective both time-wise and financially. This task could 
be simplified if the processes or their intermediate steps could be done automatically. Luckily, 
the rise of AI applications for automatic image analysis tasks in the last decade has empowered 
researchers with robust and effective tools. In this study, two ways to make UI analysis more 
efficient were tested with eight dominant visual features of the Southeastern Baltic reefs: 
1) the simplification of video processing and expert annotation efforts by skipping the video 
mosaicking step and reducing the number of frames analysed; 2) the application of semantic 
segmentation of UI using deep learning models. The results showed that the annotation of 
individual frames provides similar results compared to 2D mosaics; moreover, the reduction of 
frames by 2—3 times resulted in only minor differences from the baseline. Semantic segmen- 
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tation using the PSPNet model as the deep learning architecture was extensively evaluated, 
applying three variants of validation. The accuracy of segmentation, as measured by the 
intersection-over-union, was mediocre; however, estimates of visual coverage percentages 
were fair: the difference between the expert annotations and model-predicted segmentation 
was less than 6—8%, which could be considered an encouraging result. 
© 2023 Institute of Oceanology of the Polish Academy of Sciences. Production and host- 
ing by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

enewable energy installations, oil and gas drilling, mar- 
time shipping and fishing, ecosystem surveillance and bio- 
iversity conservation, aquaculture production, and a vari- 
ty of other uses are becoming more common and increasing 
he need for maritime space. The need for maritime space 
ecessitates integrated planning and management strate- 
ies based on sound scientific understanding and accurate 
eabed mapping ( Smith and Cardoso, 2020 ), with under- 
ater images ( Urra et al., 2021 ) being one of the most 
idely used seabed mapping materials. The main advan- 
age of underwater imagery is its cost-effectiveness and 
implicity, which allow for the rapid collection of large vol- 
mes of data with a variety of underwater cameras, from 

elatively simple handheld GoPros or “drop-down” cam- 
ras to more advanced ROV and AUV-mounted filming sys- 
ems. There are several applications and platforms designed 
r utilized for underwater imagery analysis, such as BI- 
GLE 2.0 ( Langenkämper et al., 2017 ), CPCe ( Kohler and 
ill, 2006 ), Image J ( Ferreira and Rasband, 2012 ), Photo- 
uad ( Trygonis and Sini, 2012 ), and broad-scale projects 
ngoing collecting huge amounts of video material, e.g., 
AREANO ( Buhl-Mortensen et al., 2015 ), yet only a 
mall part of the information is being extracted due to 
abour-intensive and time-consuming analysis procedures. 
 promising way to process large amounts of images is 
omputer-aided analysis, i.e., conversion of raw seabed 
ideo to 2D mosaics ( Casoli et al., 2021 ; Šaškov et al., 2015 ),
nnotation and image segmentation ( Martin-Abadal et al., 
018 ; Piechaud et al., 2019 ; Šiaulys et al., 2021 ), and quan-
ification of segmentation results ( Buškus et al., 2021 ). 
Automatic segmentation of underwater imagery, com- 

ared to other types of image analysis, is a relatively new 

nd challenging research direction. According to a survey 
 Gracias et al., 2017 ), the first publications on the seabed 
egmentation task (also termed seafloor classification) ap- 
eared 25 years ago and are still scarce, the common ground 
etween them being the use of “hand-crafted” image fea- 
ures and traditional machine learning algorithms, for ex- 
mple, random forest ( Rimavičius et al., 2018 ). Novel deep 
earning architectures of neural networks could be the en- 
bling technologies to replace image features and analyse 
mages more effectively, accurately, and quickly than ever 
efore. Initial efforts to apply deep learning to UI concern 
orals ( Alonso et al., 2019 ) and other broad categories such 
s fish, plants, divers, or stones ( Islam et al., 2020 ; Liu and
ang, 2020 ), mostly from independent photographs and with 
ittle preoccupation with the sea floor. Other studies have 

hown that seafloor videos could be converted into 2D mo- M

287 
aics (multiple frames that are stitched together into a sin- 
le still image), which can later be used for efficient vi- 
ual analysis ( Medelytė et al., 2022a ; Šaškov et al., 2015 )
ith applications of deep learning models ( Buškus et al., 
021 ). However, the mosaicking of seabed videos is a labour- 
ntensive process, requiring specific software and profes- 
ional knowledge ( Li et al., 2019 ), with some prerequisites 
or video material as well (stable distance from the seabed, 
omogeneous lighting, no fast-moving objects, etc.), which 
an be unachievable in rough open seas or very dynamic 
oastal areas. 
In this study, two ways of making UI analysis more effi- 

ient were tested on eight dominant visual features of the 
E Baltic reefs: 1) the simplification of video processing and 
xpert annotation effort by skipping the video mosaicking 
tep and reducing the frames analysed, and 2) the appli- 
ation of semantic segmentation of UI using deep learning 
odels for automatic estimates of seabed visual features. 
stimations were done both manually, by obtaining expert 
nnotations, and automatically, by training a deep learning 
onvolutional architecture on the annotated data. Experi- 
ents measure segmentation success and accuracy of au- 
omated visual coverage estimates through three types of 
alidation: two-fold cross-validation, leave one out valida- 
ion, and hold-out validation. 

. Material and methods 

.1. Underwater imagery data 

nderwater videos were filmed in the coastal and offshore 
eefs of Lithuanian marine waters in the South-Eastern 
altic Sea at eight locations ( Figure 1 ). Underwater video 
lming was carried out 1 m above the seabed, at depths 
f 4—8 m in the coastal area and 30—40 m offshore. 
he underwater videos in the coastal area were collected 
y SCUBA divers with a handheld GoPro underwater cam- 
ra and “drop-down” type camera system equipped with 
n analog camera with 700 TV lines (TVL) resolution for 
ive view and a digital camera (Panasonic HX-A500) that 
ecorded the seabed at high resolution (1280 × 720 px). 
ffshore data was collected using an ROV-mounted Full HD 

1920 × 1080) resolution camera with a lighting system con- 
isting of 16 bright LEDs in 4 × 4 stations. In total, coastal 
ata consists of five 10 m transects: SM02-1, SM02-2, SM07- 
, SM07-2 and SM08; (the latter being divided into two seg- 
ents), while offshore data consists of two 30 s long video 
lips (DE01-1, DE01-2), which are accessible through the 
endeley cloud-based repository ( Medelytė et al., 2022b ). 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1 Underwater video sampling sites in South-Eastern Baltic Sea reefs. 
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the SE Baltic coastal and offshore reefs were selected for 
or the validation of models, additional video data from 

our transects was used: R05, DE06, I167 and N19. 
Ten video mosaics were created using a method devel- 

ped by Rzhanov and Mayer (2004) while following steps 
utlined by Šaškov et al. (2015) and Šiaulys et al. (2021) . 
he underwater mosaicking process is not always possible 
ue to difficult weather conditions in open seas, since the 
drop-down” camera is lifted by waves, resulting in an un- 
table camera distance from the bottom and thus com- 
licating the frame-to-frame pairwise registration process 
eeded for smooth mosaic construction. To address this is- 
ue, an experiment was carried out to test how the accu- 
acy of biological and geological feature extraction changes 
hen analysing mosaics and individual frames, i.e., whether 
t is possible to avoid the mosaicking step for accurate im- 
ge analysis by analysing only frames. The frames were se- 
ected in such a way that adjacent frames did not overlap 
ut were not too far apart ( Figure 2 ), resulting in 148 ex-
racted frames. 

.2. Extraction of frames 

or the frame sampling approach, experts assigned a spe- 
ific number of frames, typically 12—16, for each video 
ransect, and equally spaced frames of 960 × 540 size were 
xtracted using a command-line ffmpeg tool ( Tomar, 2006 ). 
dditionally, seeking to obtain better quality representative 
rames, a complex sampling strategy was introduced: 1) 
ach video frame was converted to a high-dimensional 
eature vector of 1280 elements by using ImageNet pre- 
288 
rained EfficientNet deep convolutional architecture 
 Tan and Le, 2019 ), the smallest and fastest Efficient- 
etB0 variant in the Python package image_embeddings. 
or example, DE01-2 video had 150 frames, and, after 
assing each frame through the model, we obtained a 
atrix of 150 × 1280 in size; 2) matrix obtained after 
onverting frames to embeddings was further processed 
sing sparse modelling for finding representative objects —
parse Modelling Representative Selection (SMRS) algorithm 

 Elhamifar et al., 2012 ), using the authors’ Python code. 
arameters used: alpha = 5, norm_type = 2, thrS = 0.99, 
hrP = 0.98, max_iter = 5000, step = 100. This algorithm tries 
o find frames that are the most representative in a math- 
matical sense. 3) A representative frame that is closest to 
he frames selected by simple sampling is selected. Being 
lose is defined here as smaller than 25% of the average 
istance between frames in simple sampling; 4) in a rare 
ase, when no closest representative frames are detected, 
ll frames around the corresponding frame ( ± average 
istance) from simple sampling are cut out into a smaller 
atrix, which is passed again to the SMRS algorithm, and 
teps 2—3 are repeated. 

.3. Manual annotation 

ll video mosaics and extracted frames of fixed size were 
nnotated by 3 experts by drawing closed polygons (striving 
or pixel-level accuracy) using the Labelbox manual pixel- 
ise segmentation tool ( Labelbox ). Dominant features of 



Oceanologia 66 (2024) 286—298 

Figure 2 An example of a 2D mosaic and separate frames from the same video transect. 

Figure 3 Annotated biological and geological features of SE Baltic coastal and offshore reefs. 
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nnotation (see Figure 3 ). Selected biological features 
ere red algae Furcellaria lumbricalis and Vertebrata 

ucoides , green algae Cladophora sp., blue mussel Mytilus 
dulis trossulus , geological features: boulders ( > 25 cm), 
obbles (6—25 cm), pebbles (0.2—6 cm), and sand ( < 0.2 
m) according to the Wentworth scale ( Wentworth, 1922 ). 
he summary of UI with mosaic sizes, number of frames, 
isual and modelled features is given in Table 1 . 

.4. Pre-processing of underwater imagery 

or the deep learning model with convolutional architec- 
ure, training and testing data were made by patching to- 
ether underwater images that were either in the form of 
arge mosaics or representative frames. This was done us- 
ng the sliding window principle. Training patches were aug- 
ented to maximize the amount of information available 
nd to provide a simple form of regularization. For evalua- 
ion, the transects were split in half to achieve 2-fold cross- 
alidation. 
Due to the limitations of the available computational 

esources, both mosaics and frames were sliced into over- 
apping 288 × 288-size patches. Overlap was the result of 
 sliding window or block processing idea with vertical and 
orizontal strides of 144 pixels. Due to the fact that mosaics 
ontained a lot of white pixels, as a result of the mosaicking 
rocess, only patches with a minimum of 70% non-white 
289 
ixels were considered as input images. Additionally, to 
ncrease the amount of training data, a few traditional 
ugmentation techniques, such as vertical and horizontal 
ip, and one marine-specific technique, removal of water 
cattering (RoWS) ( Chao and Wang, 2010 ), were used on the 
repared input image patches. 

.5. Deep learning model for semantic 

egmentation 

n the experiments, we used a deep convolutional neu- 
al network with pyramid spatial pooling architecture —
he PSPNet model ( Zhao et al., 2017 ) — with ImageNet 
re-trained ResNet-34 ( He et al., 2016 ) as the backbone. 
he PSPNet architecture takes its name from the so-called 
yramid Pooling Module, which helps the model capture 
he global context within the segmented image, leading 
o more successful pixel annotations using global informa- 
ion present in the image ( Figure 4 ). In a nutshell, this
odule captures different resolutions of the feature map, 
rying to identify and preserve the most important fea- 
ures from the feature map (output from the backbone 
odel), combining both the downsampled, convoluted, and 
psampled features and the original feature map (obtained 
rom the backbone model) itself. The model was imple- 
ented using the Keras framework (version 2.3.1), run- 
ing on the Tensorflow backend (version 2.1.0), with the 
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Table 1 Summary of the underwater imagery. MP corresponds to the size of imagery in megapixels. The last 4 transects were 
only for a final hold-out validation. Modelled features were used for deep learning experiments. 

Transect Mosaic size Mosaic 
MP 

Frames Frames 
MP 

Modelled 
features 

Additional features 

SM02-1 3671 × 8285 8.20 16 8.29 Boulders Cladophora, Vertebrata, 
Cobbles, Pebbles, Sand 

SM02-2 4693 × 7307 8.36 14 7.26 Boulders Cladophora, Vertebrata, 
Cobbles, Pebbles, Sand 

SM07-1 2434 × 8774 9.04 16 8.29 Furcellaria, 
Boulder 

Cobbles, Pebbles, Sand 

SM07-2 5021 × 5107 7.06 12 6.22 Furcellaria, 
Boulder 

Cobbles, Pebbles, Sand 

SM08-1 4191 × 5379 6.64 12 6.22 Furcellaria, 
Boulder 

Cladophora, Vertebrata, 
Cobbles, Pebbles, Sand 

SM08-2 4745 × 5379 6.85 12 6.22 Furcellaria, 
Boulder 

Cladophora, Vertebrata, 
Cobbles, Pebbles, Sand 

DE01-1 1580 × 5480 5.17 11 5.70 Mytilus, 
Boulder 

Cobbles, Pebbles, Sand 

DE01-2 2434 × 8774 6.56 11 5.70 Mytilus, 
Boulder 

Cobbles, Pebbles, Sand 

DE06-1 1495 × 7087 6.87 10 5.18 Mytilus, 
Boulder 

Cobbles, Pebbles, Sand 

R05-1 1656 × 7113 7.11 9 4.67 Furcellaria, 
Boulder 

Cobbles, Pebbles, Sand 

I167 — — 15 7.78 Furcellaria, 
Boulder 

Cobbles, Pebbles, Sand 

N19 — — 10 5.18 Mytilus, 
Boulder 

Cobbles, Pebbles, Sand 

Figure 4 PSPNet model used for semantic segmentation. From Zhao et al. (2017) and Buškus et al. (2021) . 
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elp of the segmentation-models package (version 1.0.1) 
 Yakubovskiy, 2019 ). The models were trained for 50 epochs, 
ith a batch size of 8 image patches. 

.6. Evaluation of model-based semantic 

egmentation 

or training and testing the convolutional neural network 
odel, we employed 2D mosaics and representative tran- 
ect frames containing two biological and one geological 
eature ( F. lumbricalis, M. edulis trossulus , and Boulders). 
he semantic segmentation task here was solved separately 
or each feature in a detection fashion. After a summary 
f manual annotation, the semantic segmentation task was 
valuated by three types of validation schemes: 1) 2-fold 

ransect-stratified cross-validation where each transect was 

290 
plit in half and either all bottom parts or all top parts of
ransects were used for training; 2) leave one transect out 
alidation where a single transect is used for testing while 
raining on all the remaining transects; 3) hold-out valida- 
ion had additional unseen imagery with features of interest 
ollected and annotated as a way to stress-test the seman- 
ic segmentation task. 
Stratification by transect in a 2-fold CV means that each 

ransect is split in half -top and bottom parts — and training 
s performed on one part while testing on the other part. For 
xample, after training on all the bottom parts of mosaics 
or the first half of the corresponding frame set), testing 
s performed on all the top parts, and vice versa. Such a 
trategy guarantees that testing is performed on somewhat 
imilar imagery to the one the model was trained on. How- 
ver, the drawback is that smaller amounts of training data 
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Table 2 Average differences ( ± standard deviation) be- 
tween expert coverage estimations of 2D mosaics (base- 
line) and frames for biological and geological visual fea- 
tures from all samples. 

Feature All frames 1/2 frames 1/3 frames 

F. lumbricalis 4 ±2.8 3.9 ±2.2 5.5 ±3 
M. edulis trossulus 1.6 ±1.2 3.3 ±2.1 1.7 ±2.2 
Cladophora sp. 1.3 ±1 1.2 ±0.5 1.4 ±0.7 
V. fucoides 2.7 ±3.6 2.7 ±3.5 4.4 ±5.6 

Boulders 4.9 ±7.3 5.6 ±6.8 5.4 ±4.1 
Cobble 2.1 ±1.9 2.2 ±1.8 2.8 ±1.5 
Pebble 5.8 ±4.8 6 ±4.7 6.1 ±3.5 
Sand 2.8 ±3.7 2.8 ±2.5 3.7 ±6.1 
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from the baseline from 1.9 to 9.2%. 
50/50% split instead of a more common 80/20%) and the 
ount of feature instances (objects of interest) can differ 
o a large extent between the top and bottom parts of the 
ransect. 
The main benefit of the leave-one-out validation (LOO) 

trategy is the use of all available training data, but the 
rawback is the lack of stratification by transect, where 
n this strategy it is designed fully as the testing data. In 
his kind of validation model, usefulness can be fully inves- 
igated, but the testing data can differ from training due to 
isual differences between transects. 
Due to the selected transects for the testing split, the 

old-out validation strategy was the most challenging vali- 
ation. The transects were recorded at different times and 
sing different video recording equipment. Moreover, two 
f the four transects could not be stitched into mosaics 
ecause of poor image quality resulting from strong waves 
t the recording time. For those two challenging transects 
I167 and N19), only the selection of representative video 
rames was possible. 
The success of segmentation was determined by the in- 

ersection over union (IOU) metric, and estimates of visual 
overage were calculated. This is a common metric in se- 
antic image segmentation ( Elbode et al., 2020 ), measuring 
egmentation success by comparing the ground truth with 
he prediction mask (that is, annotated and predicted im- 
ge pixels), also known as the Jaccard index. The metric is 
efined as: 

OU = t rue posit ive 
t rue posit ive + fal se negat ive + fal se posit ive 

In addition, final prediction masks were used to estimate 
he visual coverage of the feature in question. The cover- 
ge itself was interpreted as a ratio between predicted or 
round truth masks (that is, ‘active’ pixels) with only rel- 
vant pixels (excluding white pixels), in the mosaic setting 
nd all pixels in the frame setting. 

. Results 

istinct benthic communities represented the sites cho- 
en for this study. Coastal sites (SM) were dominated by 
acroalgae, while offshore sites (DE) were dominated by 
ussels ( Figure 5 ). Three coastal sites were also differ- 
nt: The shallowest (4 m) SM02 site was dominated by 
he green algae Cladophora sp. (23.1 ±0.5%) and red al- 
ae V. fucoides (14.5 ±1.3%), with only a few thalli of 
. lumbricalis (0.1%). On the contrary, the SM08 site was 
ominated by F. lumbricalis (49.4 ±10.1%) with only a few 

ladophora sp. (3.1 ±3.2%) and V. fucoides (8.1 ±7.7%). At 
he SM07 site, only scarce patches of F. lumbricalis were 
resent (10.8 ±1.5%). The substrate in all sites was domi- 
ated by coarse sediments: boulders (32.4—75.1%), cobble 
2.8—16.8%), pebble (10.7—54.4%), while the sand fraction 
ad the lowest share (7.8 ±6.2%). 

.1. Comparison of manual expert annotations 

 comparison of 2D mosaic versus sampled frames with re- 
pect to expert-based manual annotations was done first. 
he possibility of sparsifying selected frames and using 
291 
ewer images is evaluated with respect to coverage esti- 
ates. The accuracy was measured as the absolute differ- 
nce from the mosaic coverage estimates (baseline) accord- 
ng to the following heuristic scale: 0—5% excellent, 5—10% 

ood, 10—20% moderate, > 20% bad. 
As explained in Section 2.1 , two methods for frame ex- 

raction from videos were used: simple and complex. For 
ach video transect, we estimated the differences in cov- 
rage estimations (both for biological and geological visual 
eatures) from the baseline (mosaics) for both methods. The 
airwise Wilcoxon signed-rank test showed that the simple 
ethod gives significantly lower baseline differences than 
he complex method (test statistic = 2.31 with continuity 
orrection applied, p-value = 0.01). Thus, to make further 
nalysis less complicated, only estimations of simple frame 
election are provided further in this subsection. 
The results have shown that, in general, the quality of 

isual evaluation does not suffer when analysing individual 
rames when comparing the differences between mosaics 
nd frames ( Table 2 ). Analysis of all frames had excellent 
ccuracy and differed less than 5% from the baseline, ex- 
ept pebble (5.8%, good accuracy); excellent accuracy was 
lso achieved from the analysis with a reduced number of 
rames, with the exception of boulders, which differed 5.4—
.6% from the baseline (good accuracy). 
The differences from the baseline F. lumbricalis cover- 

ge estimates from all frames ranged from 1.3 to 7.0% in 
ndividual mosaics, indicating excellent to good accuracy. 
he reduction of frames provided similar results ( Table 3 ). 
t is noticeable that in transects with lower coverage of 
. lumbricalis, a higher accuracy was reached: transects 
ith < 20% coverage maintained excellent accuracy even 
ith frame reduction, while transects with > 40% coverage 
howed lower but still good accuracy. 
The accuracy of boulder estimation from all frames was 

xcellent in 6 out of 8 transects; in the other two tran-
ects from SM02 site, experts significantly overestimated 
he boulder class, resulting in moderate and bad accura- 
ies ( Table 4 ). The reduction of analysed frames resulted 
n similar accuracy in all transects except SM08-1, where 
he analysis of 1/3 frames resulted in increased differences 
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Figure 5 The percentage coverage of biological ( Furcellaria lumbricalis, Vertebrata fucoides, Cladophora sp., Mytilus edulis 
trossulus ) and geological (boulders, cobbles, pebbles and sand) visual features at research sites. 

Table 3 Seabed visual coverage estimates (in %) of F. lumbricalis from the analysis of mosaics, all frames, half of frames and 
one third of frames. Note: � — differences from the mosaics (baseline). 

Furcellaria transects Mosaic All frames � 1/2 frames � 1/3 frames �

Coverage, % 

SM07-1 9.7 8.4 1.3 8.9 0.8 7.3 2.4 
SM07-2 11.8 10.0 1.9 7.9 3.9 8.4 3.5 
SM08-1 42.2 47.8 —5.6 47.6 —5.4 50.1 —7.9 
SM08-2 56.6 49.5 7.0 51.1 5.4 48.4 8.2 

Table 4 The coverage (%) of boulders from the analysis of mosaics, all frames, half of frames and one-third of frames. Note: 
� — differences from the mosaics (baseline). 

Boulder transects Mosaic All frames � 1/2 frames � 1/3 frames �

Coverage, % 

SM02-1 38.6 50.5 —11.9 50.6 —12.1 44.5 —5.9 
SM02-2 35.5 55.8 —20.3 55.3 —19.8 48.8 —13.3 
SM07-1 34.7 35.0 —0.2 32.4 2.4 29.7 5.1 
SM07-2 32.6 32.4 0.2 31.8 0.8 34.7 —2.1 
SM08-1 74.8 77.4 —2.7 80.0 —5.3 70.4 4.3 
SM08-2 75.3 77.2 —1.9 74.4 0.9 84.5 —9.2 
DE01-1 35.4 37.4 —2.0 37.5 —2.1 36.8 —1.4 
DE01-2 29.4 29.8 —0.4 27.8 1.6 31.4 —2.0 

3

T
v
r
w
c
c
p
t

m
u
e
e

f
0
t
t
m

.2. Two-fold transect-stratified cross-validation 

he segmentation success for the F. lumbricalis feature was 
ery good, with the resulting IOU score in the 0.611—0.839 
ange ( Table 5 ). Interestingly, the IOU score using frames 
as often higher than using mosaic, by 0.035 overall. Suc- 
essful segmentation also resulted in accurate seabed visual 
overage estimates ( Table 6 ), where the estimate from ex- 
ert annotations was 28.81%, the prediction of the model 
rained in mosaics was 28.57%, and the predictions from 
292 
odels trained on frames were 27.55% and 27.92%. Individ- 
ally, for separate transects, the difference between expert 
stimates on mosaic and models trained on frames did not 
xceed 8.5 percentage points. 
The segmentation success for the M. edulis trossulus 

eature was moderate, with the resulting IOU score in the 
.560—0.699 range ( Table 5 ). Frames performed similarly 
o mosaic with overall differences of —0.051 and 0.005 in 
he IOU score, but a simple sampling of frames provided 
ore accurate coverage estimates. Poorer segmentation 
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Table 5 Segmentation performance, as measured by IOU score, using 2-fold and LOO validation for F. lumbricalis, M. edulis 
trossulus and boulders features in mosaic imagery or selected representative video frames (by simple or complex sampling). 

Mosaic Simple Complex 
IOU � IOU � IOU 

Feature Transect 2-fold LOO 2-fold LOO 2-fold LOO 

Furcellaria 
lumbricalis 

SM07-1 0.703 0.694 —0.015 —0.021 0.016 —0.043 
SM07-2 0.839 0.799 0.046 0.035 0.030 0.070 
SM08-1 0.661 0.628 —0.104 —0.127 —0.050 —0.099 
SM08-2 0.726 0.665 0.000 —0.047 0.028 —0.039 
Totals: 0.711 0.664 —0.035 —0.077 —0.035 —0.054 

Mytilus edulis 
trossulus 

DE01-1 0.671 0.486 —0.028 —0.113 0.064 —0.006 
DE01-2 0.560 0.600 —0.061 0.003 —0.050 0.005 
Totals: 0.613 0.549 —0.051 0.005 0.005 0.010 

Boulders DE01-1 0.670 0.551 —0.063 —0.112 0.012 —0.082 
DE01-2 0.649 0.601 —0.085 —0.074 —0.024 0.028 
SM07-1 0.582 0.566 —0.064 —0.024 0.060 0.022 
SM07-2 0.517 0.434 —0.111 —0.178 0.039 —0.015 
SM02-1 0.344 0.430 —0.256 —0.183 —0.091 —0.052 
SM02-2 0.297 0.279 —0.325 —0.264 —0.057 —0.117 
SM08-1 0.806 0.785 —0.016 —0.042 0.041 0.018 
SM08-2 0.790 0.776 —0.046 —0.057 0.014 —0.006 
Totals: 0.598 0.578 —0.108 —0.102 —0.003 —0.025 

Table 6 Seabed visual coverage estimates, as measured in percentages, using 2-fold and LOO validation for F. lumbricalis, 
M. edulis trossulus and boulders features in mosaic imagery or selected representative video frames (by simple or complex 
sampling). Abbreviations: GT (ground-truth) — results of expert annotations; � DL — difference of model-based predictions 
(DL) from mosaic-wise ground-truth annotations (GT—DL). 

Mosaic Simple Complex 

GT � DL � DL � DL 

Feature Transect 2-fold LOO 2-fold LOO 2-fold LOO 

Furcellaria lumbricalis SM07-1 9.75 0.31 —0.23 0.74 0.48 1.10 2.09 
SM07-2 11.91 0.86 1.26 2.66 3.11 1.45 2.89 
SM08-1 43.15 —0.68 —17.88 —5.89 —9.17 —5.19 —8.46 
SM08-2 57.48 0.41 13.07 8.41 6.82 6.82 4.42 
Totals: 28.81 0.24 —0.75 1.26 0.16 0.89 0.22 

Mytilus edulis trossulus DE01-1 22.83 0.76 9.92 3.62 7.59 7.07 11.18 
DE01-2 18.11 0.20 —0.82 1.86 —1.14 4.78 1.73 
Totals: 20.19 0.44 3.91 2.46 2.94 5.64 6.17 

Boulders DE01-1 29.65 4.09 7.87 —0.28 2.60 3.91 1.76 
DE01-2 35.60 2.62 5.73 1.49 2.14 4.44 0.18 
SM07-1 34.95 0.55 4.47 1.99 1.05 10.72 9.88 
SM07-2 32.82 9.36 13.74 3.28 5.76 15.30 16.00 
SM02-1 38.80 10.42 —4.85 —24.13 —24.14 3.76 —4.53 
SM02-2 35.40 8.57 13.56 —22.95 —11.66 10.78 6.15 
SM08-1 76.41 —3.59 —0.86 —6.59 —3.30 —0.53 —1.30 
SM08-2 76.55 —2.70 3.86 —7.70 —5.17 2.01 2.57 
Totals: 44.37 3.99 5.23 —7.72 —5.02 6.42 3.77 
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ccuracy did not noticeably affect seabed visual cover- 
ge estimates ( Table 6 ), where the estimate of expert 
nnotations was 20.19%, prediction from model trained on 
osaics was 19.75% and predictions from models trained on 
rames were 17.73% and 14.55%. Individually, for separate 
ransects, the difference between the expert estimate on 
293 
he mosaic and the model trained on frames (from simple 
ampling) did not exceed 4 percentage points. 
The segmentation success of the boulder feature was 

ery varied, with much better results for simple frame sam- 
ling than using mosaics, with the resulting IOU score in 
he range 0.297—0.837 range ( Table 5 ). Simple sampling 
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Table 7 Segmentation performance, as measured by IOU score, using hold-out validation for F. lumbricalis, M. edulis trossulus 
and boulders features in mosaic imagery or selected representative video frames by simple sampling. 

Mosaic Frames 

Feature Transect IOU IOU � IOU 

Furcellaria lumbricalis R05-1 0.259 0.258 0.001 
I167 — 0.824 —

Mytilus edulis trossulus DE06-1 0.061 0.075 —0.014 
N19 — 0.441 —

Boulders R05-1 0.161 0.349 —0.188 
DE06-1 0.148 0.345 —0.197 
I167 — 0.453 —
N19 — 0.143 —
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rovided the best segmentation accuracy overall, with an 
OU score of 0.706. We suspect that such differences in 
OU could be due to many objects in boulder class having 
oor visibility in the SM02_1 and SM02_2 mosaics, which also 
esulted in significant differences from expert annotations 
hen using deep learning model predictions. The visual cov- 
rage estimates were markedly affected ( Table 6 ), espe- 
ially for SM02 and SM07 transects, where the overall esti- 
ate of the expert annotations was 44.37%, the prediction 
f the model trained on mosaics was 40.38% (underestimate 
f ∼4 percentage points), and the predictions from mod- 
ls trained on frames were 52.09% (overestimate of ∼7.7 
ercentage points) using simple and 37.95% (underestimate 
f ∼6.4 percentage points) using complex frame sampling. 
xcluding too large overestimates of visual coverage using 
imple sampling of SM02 frames and underestimates using 
omplex sampling of SM07-2 frames individually for sepa- 
ate transects, the difference between the expert estimate 
n the mosaic and model predictions did not exceed 11 per- 
entage points. 

.3. Leave one transect out validation 

he segmentation success for the F. lumbricalis feature was 
ery good, with the resulting IOU score in the 0.628—0.799 
ange ( Table 5 ). The IOU score was again higher for the F.
umbricalis feature using simple and complex frames sam- 
ling than using mosaic (overall by 0.077 and 0.054 respec- 
ively). Successful segmentation also resulted in accurate 
eabed visual coverage estimates ( Table 6 ), where the es- 
imate from expert annotations was 28.81%, the prediction 
f the model trained in mosaics was 29.56%, and predictions 
rom models trained on frames were 28.65% and 28.59%. In- 
ividually, for separate transects, the difference between 
he expert estimate on the mosaic and the model trained 
n frames did not exceed 9.2 percentage points. 
The segmentation success for the M. edulis trossulus 

eature was moderate, with the resulting IOU score in the 
.486—0.600 range ( Table 5 ). Frames performed similarly to 
osaic, with overall differences of 0.005 and 0.01 in the IOU 

core, but mosaic provided slightly more accurate coverage 
stimates. Poorer segmentation accuracy did not noticeably 
ffect seabed visual coverage estimates ( Table 6 ), where 
he estimate of expert annotations was 20.19%, prediction 
rom model trained on mosaics was 16.28% and predictions 
294 
rom models trained on frames were 17.25% and 14.02%. In- 
ividually, for separate transects, the difference between 
xpert estimates on mosaic and models trained on frames 
id not exceed 11.2 percentage points. 
The segmentation success of the boulder feature was 

ery varied, with much better results for simple frame 
ampling than using mosaics, with the resulting IOU score 
n the 0.279—0.833 range ( Table 5 ). Simple sampling pro- 
ided the best segmentation accuracy overall, with an IOU 

core of 0.680. Similarly, for 2-fold CV results, we hypothe- 
ize that significant discrepancies in IOU may be related to 
he low visibility of several boulder-class objects in SM02- 
 and SM02-2 mosaics, which also led to large differences 
etween expert annotations and deep learning model pre- 
ictions. The visual coverage estimates were markedly af- 
ected ( Table 6 ), especially for SM02 and SM07 transects, 
here the overall estimate from expert annotations was 
4.37%, the prediction from model trained in mosaics was 
9.13% (underestimate of ∼5.2 percentage points), and the 
redictions from models trained on frames were 49.38% 

overestimate of ∼5 percentage points) using simple and 
0.60% (underestimate of ∼3.8 percentage points) using 
omplex frame sampling. Excluding too large overestimates 
f visual coverage using simple sampling of SM02 frames and 
nderestimates using complex sampling of SM07-2 frames 
ndividually for separate transects, the difference between 
he expert estimate on the mosaic and model predictions 
id not exceed 16 percentage points. 

.4. Stress testing with hold-out validation 

he segmentation success for the F. lumbricalis feature 
as poor for the R05-1 and excellent for the I167 tran- 
ect ( Table 7 ). Despite such different results, seabed visual 
overage estimates were of acceptable accuracy ( Table 8 ), 
eviating from ground-truth expert annotations by 6.7 per- 
entage points for mosaic and just 3.4 or 0.93 percentage 
oints for frames. Surprisingly, the frames outperformed the 
osaic for the R05-1 transect. For comparison, the differ- 
nce between expert annotations of mosaic and frames was 
.7 percentage points. 
The segmentation success for the M. edulis trossulus 

eature was unacceptable for the DE06-1 and mediocre for 
he N19 transect ( Table 7 ). Due to the low visual coverage
n the DE06-1 transect ( Table 8 ), where experts estimated 
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Table 8 Seabed visual coverage estimates, as measured in percentages, using hold-out validation for F. lumbricalis, M. edulis 
trossulus and boulders features in mosaic imagery or selected representative video frames by simple sampling. Abbreviations: 
GT (ground-truth) — results of expert annotations; DL (deep learning) — results of model-based predictions; � — difference 
from mosaic-wise ground-truth annotations (GT—DL). In case a mosaic was not available frame-based GT annotations were 
used. 

Mosaic Frames 

Feature Transect GT � DL GT � GT DL � DL 

Furcellaria 
lumbricalis 

R05-1 10.18 6.70 8.48 1.70 6.78 3.40 
I167 — — 40.46 — 39.53 0.93 

Mytilus edulis 
trossulus 

DE06-1 7.76 7.24 8.40 —0.64 0.66 7.11 
N19 — — 33.82 — 25.59 8.23 

Boulders R05-1 16.19 —51.23 32.13 —15.94 83.68 —67.49 
DE06-1 24.84 17.59 24.62 0.22 15.40 9.44 
I167 — — 44.59 — 50.30 —5.71 
N19 — — 51.09 — 32.13 18.96 
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24% in absolute difference. 
.76% in mosaics and 8.4% in frames (with a small over- 
stimate of 0.64 percentage points), differences of ∼7 
ercentage points are too large in this case. Basically, this 
eans that the model could not predict lower amounts 
f M. edulis trossulus feature objects in the DE06-1 tran- 
ect when trained on DE01-2 and DE01-1 transects, which 
ad higher amounts. Meanwhile, the more successfully 
egmented N19 transect frames with higher amounts of 
ytilus features had a seabed visual coverage estimate 
f 33.82% by experts and a 25.59% underestimate by the 
odel ( Table 8 ), where the difference of ∼8 percentage 
oints can be seen as a good result. 
The segmentation success of the boulder feature was 

oor regardless of the transect but, interestingly, much bet- 
er for frames than for mosaics ( Table 7 ). However, the vi- 
ual coverage for the R05-1 transect was unacceptably over- 
stimated ( Table 8 ), with the differences between the ex- 
ert and the model being too large. Meanwhile, other tran- 
ects showed better results, with the largest difference be- 
ng ∼19 percentage points. 

. Discussion 

ur results have shown that in general, coverage estima- 
ions from mosaics and frames were very similar for all eight 
eatures, thus providing a few opportunities for more ef- 
ective UI analysis. Using a set of representative frames 
rom an underwater video may considerably reduce the time 
equired for preprocessing raw data since mosaicking of 
eabed imagery can be labour-intensive and requires spe- 
ific software or algorithms and professional knowledge, 
espite existing tools such as AutoStitch, APAP, and SPHP 
 Li et al., 2019 ). The most time-consuming step of mosaick- 
ng is manual registration of consecutive frames if auto- 
atic pair-wise registration of these frames is unsuccessful. 
his is often the case for Baltic Sea UI which is usually of 
imited quality (high turbidity, camera motion due to waves, 
otion of features, changing lighting, etc.). Also, the re- 
uirement of irregular manual intervention to mosaicking 
rocess makes a fully automated video analysis very com- 
licated. Frames-based approach with a decreased num- 
er of analysed frames also provides a reasonable option 
295 
o reduce the efforts needed for UI annotation, consider- 
ng that a single 100 m video transect, depending on the 
rift, can result in 100—150 individual frames. However, this 
pproach has some implicit limitations. While the frame- 
ased analysis may well substitute mosaicking for features 
hat require coverage estimation (such as underwater veg- 
tation, colonial fauna, and substrate types), this approach 
s less successful in estimating the number of individual or- 
anisms, especially if they are rare and scarce or moving 
uring the video. We noticed that some individuals can be 
ounted twice if they are partially annotated in two adja- 
ent frames, or cannot be counted at all if they are located 
etween adjacent frames ( Figure 6 ). Furthermore, reducing 
he number of frames analysed in this case may lead to sig- 
ificant overestimations or underestimations, depending on 
hether or not a rare feature occurs in the analysed set of 
rames. 
Surprisingly, complex sampling did not provide a clear 

dvantage over simple sampling, with semantic segmenta- 
ion performance always inferior (resulting in lower IOU val- 
es) and coverage estimations depending on the class ana- 
yzed (only with marginally better results for F. lumbricalis 
nd boulder classes). Due to poorer segmentation results 
nd negligible differences in coverage estimates, the intro- 
uced complex sampling cannot be recommended since it 
equires a large computational overhead while not provid- 
ng better results. One of the reasons why complex sampling 
ailed could be the high dimensionality of EfficientNet em- 
eddings applied to short video segments, creating a curse 
f dimensionality challenge ( Moghaddam et al., 2020 ) for 
he underlying SMRS algorithm. 
Semantic segmentation gave moderate accuracy, as mea- 

ured by the IOU score, but seabed coverage estimates ob- 
ained from predicted segmentations were overall quite ac- 
urate. Based on leave-one-out and two-fold transect strati- 
ed validations, the total absolute differences between ex- 
ert annotations and model results were less than 6% and 
%, respectively, which is quite impressive considering the 
ften higher variability of intra- and interobserver classifi- 
ation ( Beijbom et al., 2015 ; Reeves et al., 2007 ). However,
ome individual transects resulted in high biases of up to 
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Figure 6 Double annotation of European flounder Platichthys flesus in two adjacent frames (top picture, DE01-1 transect) and 
misannotation of moon jelly Aurelia aurita between adjacent frames (bottom picture, SE07-1 transect). 

Figure 7 The performance of deep learning models for the boulder class based on IOU scores from worst (left) to best (right) in 
SM02-1, SM07-1, DE01-2 and SM08-2 transects respectively. 
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The validation of the boulder class gave somewhat un- 
xpected results. The best IOU scores were for SM08 tran- 
ects where boulders were mostly overgrown by macroalgae 
. lumbricalis and with hardly visible outlines, while tran- 
ects with relatively easily outlined boulders gave lower IOU 

cores ( Figure 7 ). This could be explained by the substrate 
references of different macroalgae species. For example, 
s stated by Bučas et al. (2007) , in Lithuanian coastal reefs, 
erennial red algae F. lumbricalis (the dominant feature of 
M08 transects) prefer the most stable substrate — boul- 
ers, while green algae Cladophora sp. (the dominant fea- 
ure of SM02 transects) can overgrow both boulders and cob- 
les. This could suggest that during substrate classification, 
he model considers epibenthos and tends to assign over- 
296 
rown substrate to the boulder class rather than to cobble, 
hereas, in transects with scarce vegetation (SM07) or veg- 
tation both on boulders and cobbles (SM02), the classifica- 
ion is less accurate. On the other hand, model results from 

he frame analysis were more accurate than from mosaics, 
howing that the framing approach is not only more effec- 
ive for the annotation of UI but also more suitable for deep 
earning models. 

Stress tests with hold-out validation, which were based 
n additionally annotated challenging test data, resulted 
n even worse model performance, with differences be- 
ween experts and the model exceeding 50% for some 
ransects. This could be explained by intentionally se- 
ecting videos with different image quality for the test 
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ataset. For example, I167 and N19 sites were filmed with 
 “drop-down” video system with noticeable wave action, 
hile the light environment and image sharpness in R05-1, 
ediment composition, and colour palette in DE06-1 were 
lso different. This emphasizes the importance of having 
 training dataset with a variety of filming equipment and 
nvironmental conditions. This seems especially important 
or the very dynamic environment of Lithuanian coastal 
eefs, which are under the influence of plume from the 
uronian Lagoon ( Vaičiūtė et al., 2012 ), regular upwelling 
vents ( Dabuleviciene et al., 2018 ), waves and currents, not 
o mention different cloudiness, all of which can determine 
ifferent lighting, water colour, transparency/turbidity, 
amera motion, and other parameters that can influence 
he results of visual analysis. 

. Conclusions 

ur study has shown that seabed coverage estimations 
rom video mosaics and individual frames provided sim- 
lar results, suggesting that the mosaicking step, often 
sed for UI analysis, could be skipped if an approximate 
stimate of biological and geological features is suffi- 
ient. Moreover, results indicated that even a two- or 
hree-fold decrease in the frames analysed still resulted 
n relatively accurate coverage estimates for most of 
he features. In general, coverage estimates from auto- 
atic segmentation with deep learning models gave very 
romising seabed coverage estimation results for all visual 
lasses, despite moderate IOU scores. Frame-based results 
ere often slightly worse than mosaic-based results, but 
hese differences seem to be negligible. When comparing 
eabed visual coverage estimates from expert annotated 
osaics with the estimates from model-based segmen- 
ation predictions, absolute differences did not exceed 
1% in 2-fold transect-stratified cross-validation, 16% in 
he leave-one-transect-out validation scheme, and 19% 

n challenging hold-out validation overall. Interestingly, 
he largest differences were consistently obtained for the 
oulder feature, which had large percentages of objects, 
esulting in large visual coverage. Judging from observed 
iases differing with respect to the validation scheme, we 
ould advise having more varied imagery, both in record- 
ng equipment and environmental conditions. Therefore, 
ontrary to coverage estimates from expert annotation of 
rames recommendations, we do not recommend reducing 
he number of selected frames if the goal is to prepare 
nderwater imagery for deep learning model training. 
inally, this study has laid a solid stepping stone towards 
utomatic recognition and estimation of SE Baltic hard 
ottom features from UI, which in the future could consid- 
rably facilitate reef monitoring and environmental status 
ssessment. 
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