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Santrauka 

Papildyta realybė 

Papildyta realybė yra inovatyvus kompiuterinės grafikos ir realaus pasaulio vaizdų 

panaudojimas, sukuriantis naują vaizdą. Papildyta realybė sklandžiai integruoja 

technologijas realiame pasaulyje, leisdama natūraliai naudotis naujausiomis 

technologijomis. 

Nonogramos 

Nonogramos, dar žinomos kaip Japoniški gryžiažodžiai, yra loginis galvosūkis. Norint 

išspręsti šį galvosūkį lentelės langeliai turi būti nuspalvinti arba palikti tušti 

priklausomai nuo skaičių, esančių lentelės šone ir viršuje, taip atskleidžiant paslėptą 

paveikslėlį. Šio tipo galvosūkiuose skaičiai parodo kiek vientisų užspalvintų langelių 

yra duotoje eilutėje arba stulpelyje.  

Darbo tikslas 

Šio darbo tikslas yra suprogramuoti ir palyginti nonogramų sprendimo algoritmus ir 

nustatyti, kuris iš jų yra tinkamesnis naudoti išmaniuosiuose telefonuose su Android 

operacine sistema. 
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Abstract 

Augmented reality 

Augmented reality (AR) is an innovative use of computer graphics in combination with 

real world data to create a new kind of video image. AR seamlessly integrates 

technology with the real world, allowing for a naturally enhanced computing. 

Nonogram 

Nonograms, also known as Paint by Numbers or Griddlers are logic puzzles in which 

cells in a grid have to be colored or left blank according to numbers given at the side of 

the grid to reveal a hidden picture. In this puzzle type, the numbers measure how many 

unbroken lines of filled-in squares there are in any given row or column.  

Aim 

Aim of this project is to implement and compare nonogram solution algorithms and find 

out which algorithm is suitable for mobile device running Android operating system. 
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1. Introduction 

1.2. Purpose 

1.2.1. Problem 

The purpose of this work is implement nonogram solving algorithms and compare 

speed and memory usage. Algorithms have to solve puzzles in reasonable speed. 

According to Jakob Nielsen [1], one second is about the limit for the user‟s flow of 

thought to stay uninterrupted, even though the user will notice the delay. Ten seconds is 

about the limit for keeping the user‟s attention focused on the dialog. For augmented 

reality this number is even smaller. Also we have to keep in mind memory usage, 

because there are limited resources on mobile devices. 

1.2.2. Nonograms 

Nonograms are a popular kind of puzzle whose name varies from country to country, 

including Paint by Numbers and Griddlers. The goal is to fill cells of a grid in a way 

that contiguous blocks of the same color satisfy the clues, or restrictions, of each line or 

column.  

According to Wikipedia [2], these kind of puzzles were created in 1987 by Non Ishida, 

a Japanese graphics editor, and Tetsuya Nishio, a professional Japanese puzzler, at the 

same time and with no relation whatsoever. Soon after, nonograms started appearing in 

Japanese puzzle magazines and later as electronic games. Today, magazines with 

nonogram puzzles are published in several countries and are available as electronic 

games in a variety of platforms. 

Ueda e Negao prove in [3] that the nonogram problem is NP-Complete. 

 

1.2.2.1. Black and white Nonograms 

In black and white nonograms the clues indicate the sequence of contiguous blocks of 

cells to be filled (e.g. the clue 3,1,2 indicates that there is a block of 3 contiguous cells, 

followed by a sequence of one or more empty cells, then a block of one cell filled, 

followed by another sequence of one or more empty cells, finally followed by a 

sequence of two filled cells in that row or column). Figure 1 shows an example of a 

black and white nonogram (unsolved, to the left, solved, to the right). 
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Figure 1 Black and white nonogram example (unsolved: left, solved: right) 

 

Known approaches to solving black and white nonograms are the depth-first search 

(bruteforce) one, the iterative one, the ILP one by Bosch [4] and a genetic algorithm by 

Wouter Wiggers [5]. 
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2. Analysis 

2.1. Nonograms 

In the previous chapter a brief description of nonograms was presented. In this one a 

more detailed explanation about nonograms is shown. 

Nonograms are a popular kind of puzzle, whose name varies from country to country, 

including Paint by Numbers and Griddlers. The goal is to fill cells of a grid in a way 

that contiguous blocks of the same color satisfy the clues, or restrictions, of each line or 

column.  

According to Wikipedia [2], this kind of puzzle was created in 1987 by Non Ishida, a 

Japanese graphics editor, and Tetsuya Nishio, a professional Japanese puzzler, at the 

same time and with no relation whatsoever. Soon after, nonograms started appearing in 

Japanese puzzle magazines and later as electronic games. Today, magazines with 

nonogram puzzles are published in several countries and are available as electronic 

games in a variety of platforms.  

The most common nonograms are black and white, but they exist also in colors. In fact, 

black and white nonograms are a specialization of colored nonograms, i.e., are two 

colored nonograms. 

Also there is a different kind of nonogram - called triddlers - in which cells are 

triangles. In this kind of puzzles we have three sets of clues instead of only two. These 

puzzles can also exist in multiple colors. 

Ueda e Negao proves in [3] that the nonogram problem is NP-Complete. 

 

2.2. Black and white Nonograms 

In black and white nonograms the clues indicate the sequence of contiguous blocks of 

cells to be filled (e.g. the clue 3, 1, 2 indicates that there is a block of 3 contiguous cells, 

followed by a sequence of one or more empty cells, then a block of one cell filled, 

followed by another sequence of one or more empty cells, finally followed by a 

sequence of two filled cells in that row or column). Figure 1 shows an example of a 

black and white nonogram (unsolved, to the left, solved, to the right). 

In order to solve this kind of puzzle it is necessary to determine which cells will be 

filled (black) and which will be empty (white). Determining which cells will be empty 

is as important as determining which will be filled because the former will help 
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delimiting the solutions for the blocks of each line or column. Simpler puzzles, like the 

one shown in figure 2.10, can usually be solved by applying the following methods to 

each line at a time. 

Known approaches to solving black and white nonograms are the depth-first search 

(brute force) one, the iterative one, the ILP one by Bosch [4] and a genetic algorithm by 

Wouter Wiggers [5]. 

Simpler puzzles, like the one shown in Figure 2, can usually be solved by applying the 

following methods to each line at a time. 

 

 

Figure 2 Black and white nonogram 

 

2.2.1. Simple boxes 

At the beginning of the solution, when there are no filled cells, for each block 

Bi bbb ,...,{ 1  in each row, the space available )( ibS  for it is determined, assuming that 

the remaining blocks are moved closer to the extremities of the grid as possible 

(previous blocks to the left and subsequent block to the right). ib  represents a set of 

filled cells in sequence (vector). The value for )( ibS can be calculated using equation 





B

ik

ki bTBLbS )(1)(    

L represents the size of the line, B represents the number of blocks on the line and )( ibT  

represents the size of ib . 
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It is also possible to know for each block what is the potential first cell that can 

occupied through equation  

1),1)(]1[{]1[ 11   ibTbb iii  

]1[ib  is block‟s ib  first cell position in the grid. 

Within this set of cells it is possible to determine which subset is actually filled by 

analyzing the extremities of the solution, i.e., sliding the block as far to the left as 

possible and then as far to the right as possible and checking which cells are common to 

both solutions. In this way, equation 

)()(2)( iii bSbtsT   

gives the size of this sub-block, where )( isT  is the size of the sub-block is  that can be 

determined for block ib  

In the same way, it is possible to obtain the first cell (consequently the remaining) of 

this sub-block through equation  

0)(),()(]1[]1[  iiiii sTbTbSbs  

]1[is is the position of the first cell of sub-block is . 

 

Figure 3 Example for the method Simple boxes in black and white nonograms 

 

As an example, for the 10th line of the puzzle shown in Figure 2, L = 10, B = 2, 

7)( 1 bT  and 1)( 2 bT . Therefore the space available for the first block is 

811210)( 1 bS and 271210)( 2 bS . The leftmost indexes each can 

occupy are 1]1[1 b  and 9171]1[2 b . 

As for the sub-blocks of cells that can be filled at this point, 6872)( 1 sT  and 

 0212)( 2 sT , i.e., it is not possible to fill, for now, any cell in respect to the 

second block, but it is possible to fill six cells with respect to the first one. It is yet to 

determine the starting cell of the first and second sub-blocks: 2781]1[1 s , i.e., it 

is possible to fill, at this point, cells 2 through 7 of that line. 
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Figure 3, from line 10 of the puzzle shown in Figure 2, exemplifies this method for a 

size 10 line with two blocks of sizes 7 and 1. 

2.2.2. Simple spaces 

This method consists of determining spaces by searching for cells that are out of range 

of any possible blocks of boxes. For example, considering a row of ten cells with boxes 

in the fourth and ninth cell and with clues of 3 and 1, the block bound to the clue 3 will 

spread through the fourth cell and clue 1 will be at the ninth cell. 

 

 
Figure 4 Simple spaces example on white and black nonogram 

 

First, the clue 1 is complete and there will be a space at each side of the bound block. 

Second, the clue 3 can only spread somewhere between the second cell and the sixth 

cell, because it always has to include the fourth cell; however, this may leave cells that 

may not be boxes in any case, i.e. the first and the seventh. 

Note: In this example all blocks are accounted for; this is not always the case. The 

player must be careful for there may be clues or blocks that are not bound to each other 

yet. 

2.2.3. Forcing 

In this method, the significance of the spaces will be shown. A space placed somewhere 

in the middle of an uncompleted row may force a large block to one side or the other. 

Also, a gap that is too small for any possible block may be filled with spaces. 

 

 
Figure 5 Forcing spaces example on white and black nonogram 

 

For example, considering a row of ten cells with spaces in the fifth and seventh cells 

and with clues of 3 and 2: 

 the clue of 3 would be forced to the left, because it could not fit anywhere else. 

 the empty gap on the sixth cell is too small to accommodate clues like 2 or 3 and 

may be filled with spaces. 

http://en.wikipedia.org/wiki/File:Paint_by_numbers_-_Solving_-_Example3.png
http://en.wikipedia.org/wiki/File:Paint_by_numbers_-_Solving_-_Example4.png
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 finally, the clue of 2 will spread through the ninth cell according to 

method Simple Boxes above. 

2.2.4. Glue 

Sometimes, there is a box near the border that is not farther from the border than the 

length of the first clue. In this case, the first clue will spread through that box and will 

be forced outward from the border. 

 

 
Figure 6 Glue example on white and black nonogram 

 

For example, considering a row of ten cells with a box in the third cell and with a clue 

of 5, the clue of 5 will spread through the third cell and will continue to the fifth cell 

because of the border. 

Note: This method may also work in the middle of a row, further away from the 

borders. 

 

 
Figure 7 Glue example on white and black nonogram 

 

 A space may act as a border, if the first clue is forced to the right of that space. 

 The first clue may also be preceded by some other clues, if all the clues are 

already bound to the left of the forcing space. 

 

2.2.5. Joining and splitting 

Boxes closer to each other may be sometimes joined together into one block or split by 

a space into several blocks. When there are two blocks with an empty cell between, this 

cell: 

 will be a space if joining the two blocks by a box would produce a too large 

block; 

 will be a box if splitting the two blocks by a space would produce a too small 

block that does not have enough free cells remaining. 

http://en.wikipedia.org/wiki/File:Paint_by_numbers_-_Solving_-_Example5.png
http://en.wikipedia.org/wiki/File:Paint_by_numbers_-_Solving_-_Example6.png
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For example, considering a row of fifteen cells with boxes in the third, fourth, sixth, 

seventh, eleventh and thirteenth cell and with clues of 5, 2 and 2: 

 

 
Figure 8 Joining and splitting example on white and black nonogram 

 

 the clue of 5 will join the first two blocks by a box into one large block, because 

a space would produce a block of only 4 boxes that is not enough there; 

 and the clues of 2 will split the last two blocks by a space, because a box would 

produce a block of 3 continuous boxes, which is not allowed there. 

 Note: The illustration picture also shows how the clues of 2 will be further 

completed. This is, however, not part of the Joining and splitting technique, but 

the Glue technique described above. 

2.2.6. Mercury 

Mercury is a special case of Simple spaces technique. Its name comes from the 

way mercury pulls back from the sides of a container. 

 

 
Figure 9Mercury example on white and black nonogram 

 

If there is a box in a row that is in the same distance from the border as the length of the 

first clue, the first cell will be a space. This is because the first clue would not fit to the 

left of the box. It will have to spread through that box, leaving the first cell behind. 

Furthermore, when the box is actually a block of more boxes to the right, there will be 

more spaces at the beginning of the row, determined by using this method several times. 

 

2.2.7. Contradictions 

Some more difficult puzzles may also require advanced reasoning. When all simple 

methods above are exhausted, searching for contradictions may help. It is wise to use a 

http://en.wikipedia.org/wiki/File:Paint_by_numbers_-_Solving_-_Example7.png
http://en.wikipedia.org/wiki/File:Paint_by_numbers_-_Solving_-_Example8.png
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pencil (or other color) for that in order to be able to undo the last changes. The 

procedure includes: 

1) Trying an empty cell to be a box (or then a space). 

2) Using all available methods to solve as much as possible. 

3) If an error is found, the tried cell will not be the box for sure. It will be a space 

(or a box, if space was tried). 

 

 

Figure 10 Contradiction example on white and black nonogram 

 

In this example a box is tried in the first row, which leads to a space at the beginning of 

that row. The space then forces a box in the first column, which glues to a block of three 

boxes in the fourth row. However, that is wrong because the third column does not 

allow any boxes there, which leads to a conclusion that the tried cell must not be a box, 

so it must be a space. 

The problem of this method is that there is no quick way to tell which empty cell to try 

first. Usually only a few cells lead to any progress, and the other cells lead to dead ends. 

Most worthy cells to start with may be: 

 cells that have many non-empty neighbors; 

 cells that are close to the borders or close to the blocks of spaces; 

 cells that are within rows that consist of more non-empty cells. 

 

2.3. Approaches to solving Nonograms 

In the previous section was explained how simpler puzzles can be solved by looking at 

each line at a time and applying one or more methods to color cells or mark them as 

spaces. For more complex puzzles we can reach a state where we cannot fill more 

unknown cells by applying those methods. At that point we have to try and guess a 

value (color or space) for a cell and then reapply the aforementioned methods to try to 

http://en.wikipedia.org/wiki/File:Paint_by_numbers_-_Solving_-_Example9.png
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reach a solution or a contradiction. Eventually we will reach another state where another 

guess must be made to continue to try to solve the puzzle, and so on. If a contradiction 

is reached, then the value we chose for a determined cell is wrong. In black and white 

puzzles this means that the cell will have the opposite value (empty if the chosen value 

was filled, filled otherwise). These more complex puzzles are usually difficult to solve 

by a human. 

2.3.1. Depth-first search (brute-force) 

This approach tries all possible combinations for the set of blocks of each line. For 

example, for a size 10 line, belonging to a black and white nonogram, with two blocks 

of sizes 5 and 1, we would have 10 possibilities only for that line, as shown in Figure 

11. 

 

Figure 11 Depth-first search all possibilities for a row 

 

 

2.3.2.  Constraint programming 

Constraint programming is a programming paradigm wherein relations between 

variables are stated in the form of constraints. Constraints differ from the common 

primitives of imperative programming languages in that they do not specify a step or 

sequence of steps to execute, but rather the properties of a solution to be found. More 

information about constraint programming will be in Analysis section. 

2.4. Constraints 

A constraint is simply a logical relation among several unknowns (or variables), each 

taking a value in a given domain. A constraint thus restricts the possible values that 

http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Imperative_programming
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variables can take, it represents some partial information about the variables of interest. 

For instance, the circle is inside the square relates two objects without precisely 

specifying their positions, i.e., their coordinates. Now, one may move the square or the 

circle and he or she is still able to maintain the relation between these two objects. Also, 

one may want to add another object, say a triangle, and to introduce another constraint, 

say the square is to the left of the triangle. From the user (human) point of view, 

everything remains absolutely transparent. Constraints naturally meet several properties: 

1) constraints may specify partial information, i.e. constraint need not uniquely 

specify the values of its variables; 

2) constraints are non-directional, typically a constraint on (say) two variables X; Y 

can be used to infer a constraint on X given a constraint on Y and vice versa; 

3) constraints are declarative, i.e. they specify what relationship must hold without 

specifying a computational procedure to enforce that relationship; 

4) constraints are additive, i.e. the order of imposition of constraints does not 

matter, all that matters at the end is that the conjunction of constraints is in 

effect; 

5) constraints are rarely independent, typically constraints in the constraint store 

share variables. 

Constraints arise naturally in most areas of human endeavor. The three angles of a 

triangle sum to 180 degrees, the sum of the currents floating into a node must equal 

zero, the position of the scroller in the window scrollbar must reflect the visible part of 

the underlying document, these are some examples of constraints which appear in the 

real world. Thus, constraints are a natural medium for people to express problems in 

many fields. 

I use CHOCO constraint programming library, which helps me to implement algorithm 

efficiently. 

2.4.1. Constraints programming 

Constraint programming is the study of computational systems based on constraints. 

The idea of constraint programming is to solve problems by stating constraints 

(conditions, properties) which must be satisfied by the solution.  

Work in this area can be tracked back to research in Artificial Intelligence and 

Computer Graphics in the sixties and seventies. Only in the last decade, however, has 

there emerged a growing realization that these ideas provide the basis for a powerful 
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approach to programming, modeling and problem solving and that different efforts to 

exploit these ideas can be united under a common conceptual and practical framework, 

constraint programming. 

2.4.2. Modeling with Constraint programming 

The formulation and the resolution of combinatorial problems are the two main goals of 

the constraint programming domain. This is an essential way to solve many interesting 

industrial problems such as scheduling, planning or design of timetables, puzzles. The 

main interest of constraint programming is to propose to the user to model a problem 

without being interested in the way the problem is solved. 

2.4.3. The constraint satisfaction problem  

Constraint programming allows solving combinatorial problems modeled by a 

Constraint Satisfaction Problem (CSP). Formally, a CSP is defined by a triplet (X, D, 

and C): 

 Variables: X = {X1 , X2 , . . . , Xn } is the set of variables of the problem. 

 Domains: D is a function which associates to each variable Xi  its domain D(Xi ), 

i.e. the set of possible values that can be assigned to Xi . The domain of a 

variable is usually a finite set of integers: D(Xi ) ⊂ Z (integer variable). But a 

domain can also be continuous (D(Xi ) ⊆ R for a real variable) or made of 

discrete set values (D(Xi ) ⊆ P(Z) for a set variable). 

 Constraints: },...,,{ 21 mCCCC  is the set of constraints. A constraint jC  is a 

relation defined on a subset XXXXX j

n

jjj
j  },...,,{ 21  of variables which 

restricts the possible tuples of values ),...,( 1 jn
vv  for these variables: 

)).(...)()((),...,( 211

j

n

jj

jn jj XDXDXDCvv   

Such a relation can be defined explicitly (ex: )})0,1(),1,0{(),( 21 XX  or 

implicitly (ex: 121  XX ). 

Solving a CSP is to find a tuple )(),...,( 1 XDvvv n  on the set of variables which 

satisfies all the constraints:  

}.,...,1{,),...,( 1 mjCvvv jn j   

For optimization problems, one needs to define an objective function RXDf )(: . An 

optimal solution is then a solution tuple of the CSP that minimizes (or maximizes) 

function f. 
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2.5. Depth-first search 

Solving the Japanese nonogram using a depth first search algorithm is very straight 

forward. One takes the first row of the puzzle and generates all the different positions 

for that row. In Figure 12 this is done for the first row of that puzzle.  

 

 

Figure 12 Results of Depth-first search 

 

When all the possible positions for the first row have been generated the second row 

generates a new position and the process starts all over again until all possible solutions 

of the nonogram have been generated. It is called a depth first search because all the 

possible positions for the first row are generated first. The different rows in the puzzle 

together create a solution. Each different solution is then checked for correctness using 

the columns of the puzzle as a reference. When every column of the Japanese puzzle is 

correct the puzzle is solved. This is because each generated position of a row is already 

correct. In Figure 13 this process is shown for the different positions of the first row.  
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Figure 13 Solution`s verification 

 

The third solution in Figure 13 is the correct one. The solution of the puzzle in Figure 

13 is found quickly because the positions of the other rows were already correct. The 

depth first search algorithm searches for the correct solution of the puzzle and returns 

the correct one if it exists and the number of checks that were necessary to find it. A 

check is defined as the process of evaluating a proposed solution of the puzzle. Because 

the steps the depth first search algorithm takes are irreversible and the state space is 

finite (there are only a finite number of permutations of the rows) a solution will be 

found if it exists. Although the method of generating the state space during the depth 

first search and the evaluation function are both very fast the overall performance of this 

algorithm is very poor. This is because there are so many possible states that need to be 

checked. 

2.6. Backtracking 

The simplest algorithm for solving puzzles is backtracking, which traverses the search 

graph in a depth-first manner. It is often assumed that the variables are examined in a 

fixed ordering. The backtracking algorithm maintains and operates on a partial solution 
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that denotes a state in the algorithm‟s search space. Backtracking has three phases: a 

forward phase in which the next variable in the ordering is selected and called current; a 

phase in which current partial solution is extended by assigning a consistent value to the 

current variable, if one exists; and a backward phase in which, when no consistent value 

exists for the current variable, focus returns to the variable prior to the current variable.  

 

Backtracking 

Input: A constraint network R and an ordering of the variables },...,{ 1 nxxd  . 

Output: Either a solution if one exists or a decision that the network is inconsistent. 

1) (Initialize) cur = 0 

2) (Step forward) If curx  is the last variable the all variables have value 

assignments – exist with this solution. Otherwise cur = cur + 1. Set curcur DD ' . 

3) (Choose a value) Select a value '

curDa  that is consistent with all previously 

instantiated variables: 

a) If 0' curD  ( curx  is a dead-end), go to step 4. 

b) Select a from '

curD  and remove it from '

curD . 

c) For each constraint defined on 1x  through curx  test whether it is violated by 

1cura


 and 0curx . If it is, go to step 3a. 

d) Instantiate axcur   and go to step 1. 

4) (Backtrack step) If curx  is the first variable, exit with “inconsistent”. Otherwise, 

set 1 curcur . Go to step 2. 

 

 

Figure 14 describes a basic backtracking algorithm. In addition to its fixed value 

domain iD , each variable ix maintains a mutable value domain '

iD  such that ii DD ' . 

'

iD  holds the subset of iD  that has not yet been examined under the current 

instantiation. Initially, all variables are uninstantiated. 

We denote by ia


 the subtuple of consecutive values ),...,( 1 iaa  for a given ordering of 

the variables ixx ,...,1 . We denote by a


an arbitrary subtuple of values. Step 3c in 

algorithm (Figure 14) is implemented by performing consistency checks between 

Figure 14 Backtracking algorithm 
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axcur   and all past assignments ii ax  , curi 1 . The algorithm tests whether the 

tuple 1cura


, if extended by axcur   is consistent. If the constraints are binary, the 

algorithm tests whether the pairs ),( axax curii   are allowed by the binary 

constraints curiR , . Because consistency checking is performed frequently, a count of the 

number of consistency checks is a common measure of the overall costs of the 

algorithm. 

Backtracking usually suffers from thrashing, namely, rediscovering the same 

inconsistencies and same partial successes during search. Efficient cures for such 

behavior in all cases are unlikely, since the problem is NP hard. However, there are 

some simple heuristics that can provide convenient remedies in a large number of cases. 

Some of these heuristics involve limited exploration of the future search so as to 

increase the chance of a good current decision, while others involve a limited amount of 

learning, which entails exploiting information already collected during search. 

2.7. Other methods 

In this section other methods for solving nonograms, implemented and tested on 

personal computers, will be reviewed. 

2.7.1. Genetic algorithms 

A genetic algorithm uses biological-derived techniques such as inheritance, natural 

selection, recombination and mutation.  

 

 

Figure 15 Example of genetic algorithm 

 

The genetic algorithm that is used to solve nonograms works with the three operators: 

selection, crossover and mutation [6]. The functioning of theese three is shown in 

Figure 15. These operators  work on the date sets of the algorithm, which are also called 
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chromosome. Another important part of the algorithm is the fitness function. This 

function calculates the fitness of a chromosome using the genes of the chromosome. 

The goal of a genetic algorithm is to optimize this fitness function and find individual 

that has the „best“ fitness value. More information about genetic algorithms can be 

found in [7]. 

The performance of the genetic algorithm was measured by everaging the number of 

avaluations of the first three succesful runs. The results of the performace tests are 

favoring the genetic algorithm. If we compare 10x10 sized nonogram, the depth-firsts 

search algorithms much more avaluations compared to genetic algorithm. However, the 

depth first search algorithm outperforms the genetic algorithm when solving small 

nonograms. Also there are situations when genetic algorithms get stuck. This is possible 

to avoid by detecting that the population of the genetic algorithm no longer evolves [5]. 

 

2.7.2. Backtracking modifications 

There are modifications and heuristics for simple depth-first search backtracking 

algorithms, that helps to solve different nonograms faster.  

Backjumping is one of the primary tools for redusing backtracking„s unfortunate 

tendency to rediscover the same dead-ends [8]. We can sinesse rediscovering the same 

deadends by identifying the culprit variable responsible for the dead-end and then 

jumping back immediatly to reinstantiate the culprit variable, instead of repeatedly 

instantiating the chronologically previous variable. Identification of a coulprit variable 

in backtracking is based on the notion of conflict sets [8]. 

There also is the Gashnick„s backjumping [9]. This type of backjumping records some 

information while generating next backtracking step and uses this information to 

determine the dead-end„s culprit variable. The algorithm uses a marking technique 

whereby each variable maintais a pointer to the latest predesesor found incompatible 

with any of the variable„s values.  

These backtracking modifcations helps to solve some nongrams faster, but with other 

puzzles it can be even slower, because overall nonograms solution is NP complexity. 
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2.7.3. Results 

Accordint to Jan Wolter survey [10], fastest algorithms are written in C programming 

language and tested on Unix operating system. In Table 1 is shown two fastest 

nonogram solving algoritms. Tests were done with 5000 nonogram, size of 30x30. 

Those two algorithms solved most of those puzzles in inpressive time – 1 second or 

less. 

 

Table 1 Two fastest nonogram solving algorithms (30x30 puzzles) 

Solver Percent solved in under 

a second 

Percent solved in under 

0.1 second 

Jan Wolter's pbnsolve Program 96.4% 81% 

Kuang-che Wu„s Naughty 94.9% 87% 
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3. Project 

Nonogram Solver is an augmented reality system, which uses augmented reality to 

provide nonogram solution. All user has to do is point mobile device at nonogram, take 

picture and solution is displayed.  

Nonogram solver can detect nonogram objects (numerals, grid), solve nonogram and 

show augmented solution for user (Figure 16). 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

3.1. The purpose of the system 

Mobile phones, which were not long ago “brick-like” devices limited to phone calls, 

have evolved into smart phones, with increased storage, communication and 

computational resources. After analyzing worldwide smart phones market, we 

concluded that smart phones with Android OS become more and more popular.  

According to Gartner analysis [11] in Figure 17 Android OS made an impressive 

1200% gain in devices shipped, and shot them all the way from 3.5% to 25.5% market 

share. 

Figure 16 Principle of nonogram solver (left: unsolved nonogram, right: solved nonogram) 
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Figure 17 Worldwide smart phones sales in 2009-2010 

In 2011 according to Millennial Android operating system reached 50 % of market 

share of smartphones operating systems (Figure 18). 

 

Figure 18 Market share of smartphones operating systems 
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Because of such rapid mobile phones evolution, augmented reality finds its way into 

smart phones market, transforming it into interactive personal digital assistants (PDA). 

Furthermore 14 out of 20 the most popular smartphones run on Android operating 

system (Figure 19). 

 

Figure 19 The most popular smartphones 

 

That is why “Nonogram solver” was created for smartphones with Android OS. 
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3.2. Similar nonograms products 

Nonogram (Dmitry Mikhailenko) – simple application for solving given puzzle. Can 

randomly generate nonograms. Application cannot solve nonograms, only check 

answer. 

 

Figure 20 Dmitry Mikhailenko application„s demonstration 

 

 

Nonogram (Shcheglov Maksym) – application, which allows users to solve predefined 

nonograms. Nonogram size varies from 5x5 to 10x15, threre are leaderboard table, 

multiple undos, puzzles saving for later. Application cannot solve nonograms, only 

check answer. 

 

Figure 21 Shcheglov Maksym application's demonstration 
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Nonogram Nexus (Shai Shapira) - application, which allows users to solve predefined 

nonograms. Can randomly generate nonograms, maximus size is 999x999. pplication 

cannot solve nonograms, only check answer. 

 

Figure 22 Shai Shapira application's demonstration 

 

 

PIX Nonogram (RedRabbit Interactive) – application has predefined list of 

nonograms, which user can solve. This list gets regular updates. Application cannot 

solve nonograms, only check answer. 

 

 

Figure 23 RedRabbit interactive application's demonstration 
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Nonogram 30x30 (cosotto) – has 100 predefined 30x30 size nonograms. Allows users 

to solve them and check answer. Application cannot solve nonograms, only check 

answer. Requires internet connection. 

 

Figure 24 Cosotto application's demonstration 

 

Pixler – Nonogram Puzzle (Melvin Apps) – application, having predefined set of 

nonogram. Size varies from 5x5 to 20x20. Has colored nonograms and can randomly 

generate solvable puzzles. 

 

Figure 25 Melvin Apps application's demonstration 
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Table 2 Comparison of nonogram application 

Author Supported phones Price Size Solve puzzle 

Dmitry Mikhailenko Most Android Phone Free 0.54 MB No 

Shcheglov Maksym Most Android Phone Free 1.42 MB No 

Shai Shapira Most Android Phone Free 0.2 MB No 

RedRabbit Interactive Most Android Phone $1.99 0.83 MB No 

cosotto Most Android Phone Free 0.81 MB No 

Melvin Apps Most Android Phone $1.29 0.34 MB No 

 

3.3. Similar AR products 

Layar - first AR system designed for Android OS.  It displays real time digital 

information on top of reality in the camera screen of the mobile phone. While looking 

through the phone‟s camera lens, a user can see houses for sale, popular bars and shops, 

tourist information of the area, play a live game, etc. 

 

Figure 26 Layar demonstration 

WikiTude Drive - first augmented reality turn-by-turn navigation application for 

Android smart phones. Application uses phone‟s camera and GPS receiver in tandem, 

layering selected route over a live view of what‟s ahead of the car.  
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Figure 27 WikiTude Drive demonstration 

TagWhat - basically a social networking application that uses augmented reality. It lets 

users to tag whatever they see in front of them using tag feature. People visiting those 

tagged places will see the details while pointing android phone to places in front. 

 

Figure 28 TagWhat demonstration 

Space InvadAR – a vision based game that uses AR. While pointing camera towards a 

high resolution image, application loads the game. 
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Figure 29 Space InvadAR demonstration 

Sudoku grab – Sudoku puzzles solver. User just needs to point phone‟s camera to 

Sudoku puzzle and it gets solved. Solution is overlaid on real world Sudoku puzzle. 

 

Figure 30 Sudoku Grab example 
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Table 3 Comparison of augmented reality application 

 Invadar TagWhat Wikitude Drive Layar Sudoku Grab 

Supported 

phones 

HTC 

Desire, 

Nexus 1 

Most of 

mobile 

devices 

with 

Android 

OS 

HTC Motorola 

Droid 

Samsung galaxy, 

Huawei RBM2, 

Nexus 1 

Most of 

mobile 

devices 

with 

Android 

OS 

Most of 

mobile 

devices with 

Android OS 

Price $25 Free Free Free + 

paid 

layers 

$1 

Size 3 MB 0.6 MB 2 MB 2 MB 1 MB 

Release 

date 

2010 08 

08 

2010 09 13 2009 10 28 2009 10 

29 

201015 
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3.4. Nonogram solver implementation 

3.4.1. Use cases 

This chapter provides Nonogram Solver use cases‟ description. 

System use cases are displayed in use case diagram (Figure 31) 

 

Figure 31. System„s use case diagram 

 

 

1. USE CASE: Recognize unsolved nonogram 

 

User/Actor name:  User 

Description: Recognizes supplied nonogram and converts it to format recognized by 

the system. In this case matrix will be used. 

Conditions before:  No nonogram was supplied as input data. 

Invoke conditions:  User starts nonogram solving by pressing „START‟ button. System 

begins nonogram search. 

Conditions after:  Nonogram solving can be initiated. 
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2. USE CASE: Solve nonogram 

 

User/Actor name:  User 

Description: Solves supplied nonogram with one of nonogram solution algorithms. 

Conditions before:  User starts nonogram solving by pressing „START‟ button. 

Invoke conditions:  Nonogram was recognized in video feed or picture. 

Conditions after:  Solution can be displayed for user. 

 

3. USE CASE: Display nonogram solution 

 

User/Actor name:  User 

Description: Augments video feed or picture with nonogram solution. 

Conditions before:  Nonogram was solved. 

Invoke conditions:  Nonogram solution was prepared for displaying. 

Conditions after:  Results can be saved. 

 

4. USE CASE: Manage system 

 

User/Actor name:  User 

Description: User can view help, solving logs. When nonogram solving is in progress 

user can terminate it. 

Conditions before:  None. 

Invoke conditions:  User selects one of following actions: view help, show logs, 

terminate solving. 

Conditions after:  None. 
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3.4.2. Functions 

Basic functional requirements list for Nonogram Solver: 

1. System should recognize nonogram grids with different dimensions. 

2. System should recognize numerals 1, 2, 3, 4, 5, 6, 7, 8 and 9. 

3. System should display ■ (Square) symbol for filled squares. 

4. System should notify user if there is no objects to recognize. 

5. System should recognize objects from pictures. 

6. System should allow solving process termination. 

 

In the following tables each requirement is specified. 

 

Table 4 Functional requirement no. 1 detailed description 

Requirement number: 1 Requirement type: 1 Use case number: 1 

Description: System should recognize nonograms with different dimensions 

Rationale: To be able solve different level nonograms. 

Source: Andrej Ušaniov 

Fit criterion: Different dimensions of nonograms will be recognized. 

Customer satisfaction: 5 Customer dissatisfaction: 2  

Dependencies: All requirements using nonograms structure 

and dimensions 

Conflicts: None 

Supporting materials: None 

History: Created March 10
th

, 2011 

 

Table 5 Functional requirement no. 2 detailed description 

Requirement number: 2 Requirement type: 1 Use case number: 1 

Description: System should recognize numerals 1, 2, 3, 4, 5, 6, 7, 8 and 9 

Rationale: Nonogram puzzle consist of 1, 2, 3, 4, 5, 6, 7, 8, 9 numerals. So they should be 

recognized by the system. 

Source: Andrej Ušaniov 

Fit criterion: 1, 2, 3, 4, 5, 6, 7, 8, 9 numerals will be recognized and used by the system. 

Numbers will be recognized from video or photo. 

Customer satisfaction: 3 Customer dissatisfaction: 2  

Dependencies: All requirements where recognized 

nonogram data is used. 

Conflicts: None 

Supporting materials: None 

History: Created March 10
th

, 2011 
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Table 6 Functional requirement no. 3 detailed description 

Requirement number: 3 Requirement type: 1 Use case number: 3 

Description: System should display ■ (Black Square) symbol for filled squares 

Rationale: Nonogram solution should be visible to the user. 

Source: Andrej Ušaniov 

Fit criterion: Nonogram solution will be displayed as ■ (Black Square) symbols. 

Customer satisfaction: 5 Customer dissatisfaction: 1  

Dependencies: None Conflicts: None 

Supporting materials: None 

History: Created March 10
th

, 2011 

 

Table 7 Functional requirement no. 4 detailed description 

Requirement number: 4 Requirement type: 1 Use case number: 1, 2 

Description: System should notify user if there is no objects to recognize 

Rationale: User should be informed in case there is no data feed or data feed is faulty 

Source: Andrej Ušaniov 

Fit criterion: System will notify user if there is no objects to recognize by displaying warning 

window. 

Customer satisfaction: 4 Customer dissatisfaction: 2  

Dependencies: All requirements using input data 

(nonograms) 

Conflicts: None 

Supporting materials: None 

History: Created March 10
th

, 2011 

 

Table 8 Functional requirement no. 5 detailed description 

Requirement number: 5 Requirement type: 1 Use case number: 1 

Description: System should recognize objects from pictures 

Rationale: There may be a need to use earlier saved picture of nonogram for solving 

Source: Andrej Ušaniov 

Fit criterion: System will recognize objects from earlier saved pictures of nonograms. 

Nonogram will be saved in text file. 

Customer satisfaction: 4 Customer dissatisfaction: 2  

Dependencies: All requirements using input data 

(nonograms) 

Conflicts: None 

Supporting materials: None 

History: Created March 10
th

, 2011 
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Table 9 Functional requirement no. 6 detailed description 

Requirement number: 6 Requirement type: 1 Use case number: 4 

Description: System should allow solving process termination 

Rationale: If nonogram solving takes too much time (or other reasons), there should be an 

opportunity to terminate it. 

Source: Andrej Ušaniov 

Fit criterion: System will allow nonogram solving termination by pressing <Cancel> button. 

Customer satisfaction: 4 Customer dissatisfaction: 2  

Dependencies: None Conflicts: None 

Supporting materials: None 

History: Created March 10
th

, 2011 
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3.5. Architecture 

 

Nonogram solver has 4 basic packages (Figure 32). 

 

Figure 32. Packages of Nonogram solver 

Recognition 

Package is used for images recognition. Nonogram is split into different parts then these 

parts are converted to useful data for nonogram solving and augmentation. 

Solving 

Package is responsible for nonogram solving 

Augmentation 

Package is responsible for picture augmentation 

GUI 

Package is responsible for all graphic windows used in the system, such as Main 

Window, Help, and Settings. Also it saves results and statistics information of the 

application 
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4. Research 

During master‟s study course augmented reality system “Nonogram solver” was 

implemented with one nonogram solving algorithm: depth-first search. To increase 

solving performance Constraint programming approach was used. 

4.1. Problem 

Algorithms have to solve puzzles in reasonable speed. According to Jakob Nielsen [1], 

one second is about the limit for the user‟s flow of thought to stay uninterrupted, even 

though the user will notice the delay. Ten seconds is about the limit for keeping the 

user‟s attention focused on the dialog. For augmented reality this number is even 

smaller. Also we have to keep in mind memory usage, because there are limited 

resources on mobile devices.  

4.2. Goals 

Goals for nonogram solving algorithms analysis and implementation: 

1) Implement nonogram solving algorithms; 

2) Measure solution time for implemented algorithms; 

3) Compare solution time; 

4) Suggest method for faster nonogram solution; 

4.3. Suggested implementation 

To increase speed of solution, Constraint programming approach was selected. This 

methodology should increase solution speed with bigger than 15x15 size puzzles. In 

chapter 2.4 is explained how this algorithm works. 

Because we have limited resources in smartphones, other solution can be sending 

nonogram to the serve, solving it and getting answer, as in Figure 33.  

 

 

Figure 33 Nonogram's solution on the server 
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5. Experimentation 

5.1. Nonograms for experimentation 

 

 

Figure 34 7x7 nonogram "Heart" 

 

 

 

Figure 35 15x15 nonogram "Clutter" 

 

 

 

Figure 36 20x20 nonogram "Football player" 
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Figure 37 20x20 nonogram "Parrot" 

 

 

 

Figure 38 25x25 nonogram "Clutter 2" 
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Figure 39 30x30 nonogram "Cat" 

 

 

5.2. Result 

Testing was done with 5 different dimensions nonograms. Exemplary nonograms are 

shown in Figure 34, Figure 35, Figure 36, Figure 37, Figure 38 Figure 39.  

Software was tested on Sony Ericsson Xperia X10 smartphone (384 MB of RAM and 1 

GHz CPU) and personal computer (4 GB of RAM and 3.2 GHz CPU).  

In Chart 1 and Chart 2 are displayed execution times of both algorithms on smartphone 

and PC. As we can see “Constraint programming” (CP) implementation‟s time is 

gradually increasing according to a size of puzzle. Opposite situation is with 

“Backtracking” implementation, where solving time increases very fast, and 20x20 

nonogram is a limit for this implementation.  

 



49 

 

 

 

Chart 1 Algorithms execution times on Personal Computer 

 

 

Chart 2 Algorithms execution times on Mobile device 

 

Also we can see, that time for solving same size nonograms can be completely different. 

In this case, two different 20x20 nonograms are solved in 3300 and 164800 

milliseconds on smartphone, that‟s because of possible paths, that algorithm can take. 

As we can see in Chart 1 and Chart 2 execution times on smartphone and PC differs 

significantly because of computational power of devices. For best outcome both 

nonogram solving algorithms should be combined and all computation should be moved 

to remote server. 
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Chart 3 Algorithms memory usage 

 

In Chart 3 are displayed memory usages of both algorithms on smartphone. “Constraint 

programming” implementation uses more memory than “Backtracking” implementation 

with every type of nonogram, because each time we have to initialize DFA 

(deterministic finite automaton) variable. Memory usage difference varies from 5 to 10 

times. 
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6. Conclusions 

1. Analysis of the literature shows, that nonograms solution is NP-complete 

problem and different nonograms of the same size can have very different 

solution times. 

2. Experiment shown, that backtracking depth-first search algorithm is faster than 

Constraint programming implementation with nonograms which are less than 

20x20 size. 

3. To get best performance both algorithms should be used – backtracking 

implementation for small nonograms and Constraint programming for 20x20 

size and bigger nonograms. 

4. After evaluation and analysis moving all computation to remote server is 

suggested.  
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8. Acronyms 

AR – augmented reality 

HCI – human-computer interaction 

NP - non-deterministic polynomial-time 

PDA – personal digital assistant 

OS – operating system 

GUI – graphical user interface 

CSP – constraint satisfaction problem 

CP – constraint programming 

DFA - deterministic finite automaton 

PC – personal computer 

  


