
Alexandria Engineering Journal 88 (2024) 91–104

Available online 13 January 2024
1110-0168/© 2024 The Author(s). Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Intelligent path planning by an improved RRT algorithm with dual 
grid map 

Rui Zhang a, He Guo a,*, Darius Andriukaitis b, Yongbo Li c, Grzegorz Królczyk d, Zhixiong Li d,* 

a School of Automobile and Transportation, Tianjin University of Technology and Education, Tianjin 300222, China 
b Department of Electronics Engineering, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania 
c School of Aeronautics, Northwestern Polytechnical University, Xi’an, China 
d Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland   

A R T I C L E  I N F O   

Keywords: 
Bidirectional RRT 
Grid map 
A-star algorithm 
Obstacle avoidance algorithm 
Bezier curve 

A B S T R A C T   

This research addresses the limitations of existing autonomous vehicle path planning algorithms, notably their 
slow processing speeds and suboptimal route efficiency. We introduce an innovative path planning algorithm 
that synergizes the A* algorithm with the Rapidly-exploring Random Tree (RRT) approach. This hybrid model 
significantly enhances route timeliness and reliability, particularly in obstacle avoidance scenarios for driverless 
vehicles. Our methodology employs a ’two-level map’ approach, where a lower-resolution grid map is derived 
from a high-resolution map. Utilizing the A* algorithm on this framework, we ascertain a preliminary ’coarse 
path’ for the navigation target. The RRT algorithm, modified to reduce the traditional redundancy associated 
with random uniform sampling, is then applied for probabilistic sampling within this defined area. ovel aspect of 
our approach is the simultaneous generation of two trees, originating from both the start and end points, guided 
by a target-biased strategy and dual-direction theory. This method probabilistically expands towards the node of 
the opposite tree, thereby enhancing both the generation speed and trajectory viability. Further refinements are 
made through a pruning process, optimizing the path, and employing Bezier curves for smoothing, ensuring 
compliance with the dynamic constraints of Ackerman chassis vehicles. Comparative analysis in complex envi-
ronments demonstrates the superiority of our proposed algorithm. It outperforms traditional methods with a 400 
% increase in planning speed relative to the RRT-Connect algorithm, and a 30 % reduction in average path 
length. Additionally, the mean curvature of routes generated by our algorithm is 19 % lower than traditional 
routes, underscoring significant advancements in both the timeliness and viability of the planned routes.   

1. Introduction 

Path planning problems are pivotal in determining the level of in-
telligence in autonomous vehicles. The fundamental requirement of 
path planning is to swiftly identify a feasible and collision-avoiding 
route that allows an unmanned vehicle to smoothly transition from its 
starting area to the target point. Path planning issues are not limited to 
the transportation sector; with the advancement and development of 
robotics technology, these problems also have widespread practical 
applications and demands in industrial production, agriculture, security, 
and safety rescue domains [1–3]. Common path planning algorithms can 
generally be summarized into three categories: (3) graph-based algo-
rithms, such as the Dijkstra [4] and A* algorithms [5]; (2) bionics-based 
algorithms, like ant colony [6] and neural network algorithms; and 

sampling-based algorithms such as the RRT (Rapidly-exploring Random 
Tree) [7] and PRM (Probabilistic Roadmap) algorithms [8]. 

In the realm of sampling-based algorithms, the Rapidly-exploring 
Random Tree (RRT) stands out as a highly favored and prevalent plan-
ning methodology. Distinguished by its probabilistic completeness, the 
RRT algorithm offers a significant advantage over other planning 
methods in that it does not depend on pre-existing map data. Nonethe-
less, this algorithm is not without its challenges. It has been observed to 
exhibit certain limitations, including a relatively slow planning speed 
and the generation of routes that do not conform to the kinematic 
constraints of traditional vehicles. These issues highlight areas for po-
tential refinement and optimization in the algorithm’s application. 

Many scholars have made improvements to the problem of RRT al-
gorithm. The RRT-connect algorithm, an eminent enhancement of the 

* Corresponding authors. 
E-mail addresses: 936515285@qq.com (H. Guo), zhixiongli@cumt.edu.cn (Z. Li).  

Contents lists available at ScienceDirect 

Alexandria Engineering Journal 

journal homepage: www.elsevier.com/locate/aej 

https://doi.org/10.1016/j.aej.2023.12.044 
Received 12 October 2023; Received in revised form 23 November 2023; Accepted 21 December 2023   

mailto:936515285@qq.com
mailto:zhixiongli@cumt.edu.cn
www.sciencedirect.com/science/journal/11100168
https://www.elsevier.com/locate/aej
https://doi.org/10.1016/j.aej.2023.12.044
https://doi.org/10.1016/j.aej.2023.12.044
https://doi.org/10.1016/j.aej.2023.12.044
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2023.12.044&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Alexandria Engineering Journal 88 (2024) 91–104

92

RRT (Rapidly-exploring Random Trees) algorithm, was introduced by 
Kuffner et al. [9]. This innovative approach first utilized a dual-tree 
strategy to improve the RRT algorithm’s efficacy in linking the initial 
and target states. However, its generation speed and path quality in 
complex environments are still limited. Karaman et al. [10] proposed an 
advanced version of the RRT* algorithm, whose essence lies in dynam-
ically optimizing tree connections to enhance path quality, gradually 
converging to the optimum with algorithm iterations. Yet, this iterative 
approach significantly diminishes the RRT algorithm’s rapid charac-
teristic, and its high computational cost renders it impractical for 
real-time planning. Li et al. [11] addressed the excessive randomness of 
the RRT-connect algorithm by introducing a goal-biased strategy to the 
dual-tree structure of RRT-connect, thereby constraining the random-
ness of RRT growth and enhancing planning quality. However, this 
method intensifies computational load in complex maps, manifesting as 
prolonged algorithm execution time. Kun Hao, Yang et al. [12] proposed 
a method named Complex Environments Rapidly-exploring Random 
Tree, incorporating pre-allocated expansion nodes and vertex death 
mechanisms to surmount traditional algorithmic predicaments, pre-
venting entrapment in uneven terrains. Nonetheless, the generated 
paths did not account for vehicle dynamics, resulting in non-smooth 
trajectories, thus impeding practical application. Liu et al. [13] devel-
oped a TO-RRT algorithm for robotic arm pick-and-place scenarios, 
introducing potential fields and attractive step lengths, allowing 
scenario-specific step length adjustments for rapid algorithm conver-
gence. However, tailored for low-speed scenarios, this method also 
neglected path feasibility, leading to abrupt curvature changes. Zhang 
et al. [14] improved RRT’s capability to navigate narrow areas and 
enhance speed in open spaces by incorporating a target attraction force. 
However, its applicability is limited and may encounter unreachable 
target issues. Similar concepts were proposed by other scholars; Qureshi 
et al. [15] introduced a P-RRT* variant, implementing artificial poten-
tial fields to enhance the RRT* algorithm. Jeong et al. [16] devised 
Quick-RRT, accelerating convergence by expanding potential parent 
vertex sets and refining reconnection techniques. Qie et al. [17] opti-
mized sampling and tree growth mechanisms, combining UAV piloting 
modes and dynamics for efficient path planning, though such dynamics 
improvements are not universally applicable to most robots. Lathrop 
et al. [18] proposed a path planning algorithm based on Wasserstein 
metrics, demonstrating excellent performance in safety and confidence 
boundary considerations, albeit increasing computational burden. Gong 
et al. [19] designed a dual RRT optimization algorithm inspired by 
RRT-connect and RRT* to address formation shape generation issues but 
did not resolve high runtime concerns. Wu et al. [20] introduced 
Fast-RRT, incorporating a Fast-Sampling strategy to enhance search 
speed and stability significantly. Wang et al. [21] synthesized previous 
improvements, including goal-biased sampling and adaptive step size 
strategies, making notable progress in operational speed. Wang et al. 
[22] tailored the RRT algorithm for underground mine vehicles, 
employing vectorized maps to constrain kinematics, further improved 
by dynamic step sizes and steering angle constraints. Finally, Guo et al. 
[23] integrated a flight cost function into the RRT algorithm, con-
straining node expansion to meet safety requirements in flight. 

The recent trend of integrating various algorithms to leverage their 
strengths and mitigate their weaknesses has increasingly become a focal 
point of scholarly attention. Farzad et al. [24] enhanced the RRT algo-
rithm by amalgamating three renowned metaheuristic algorithms. This 
integration effectively utilized the characteristics of sampling methods 
and metaheuristic algorithms, resulting in faster route speeds and 
improved convergence times compared to the RRT* algorithm. How-
ever, the effectiveness of the metaheuristic algorithms depends on 
parameter tuning, making this improvement less robust and thus not the 
optimal strategy. Li et al. [25] proposed the PQ-RRT algorithm, a blend 
of the previously mentioned P-RRT and Q-RRT algorithms. This 
approach accelerates convergence while considering artificial potential 
fields but may also encounter local minima issues. Yang et al. [26] 

incorporated ant colony optimization into the expansion process of the 
random tree, progressively optimizing the planned path. Chen et al. [27] 
tackled semi-structured road autonomous vehicle problems by intro-
ducing a potential field-based RRT planner, enhancing the algorithm’s 
obstacle avoidance capabilities. The subsequent application of a Dijkstra 
optimizer balanced efficiency and precision, though the algorithm has 
certain limitations in applicability. 

Zammit [28] discussed the performance differences between the A* 
and RRT algorithms in unmanned aerial vehicle path planning, high-
lighting their suitability for different scenarios. The A* algorithm sur-
passes the RRT in both path length and computation time, with scenario 
complexity affecting the RRT’s efficiency. Ben and Kwame [29] devel-
oped the ORRT-A* algorithm, which leverages the A* algorithm to 
identify the shortest path in the RRT and employs strategies like goal 
bias and spline interpolation for path smoothing. 

Most of these improvements primarily focus on enhancing the RRT’s 
expansion directions, neglecting the impact of the sampling domain’s 
size on the RRT algorithm’s speed. REZA MASHAYEKHI and associates 
[30] introduced the Informed RRT* -Connect algorithm, advocating for 
the inefficiency of searching the entire space and suggesting an elliptical 
growth space for exploration, significantly enhancing the algorithm’s 
convergence efficiency. However, this elliptical growth space has 
limited improvements on complex maps. 

Drawing on the research experience of other scholars, this article 
proposes a path planning algorithm that combines A* algorithm and 
RRT algorithm. This algorithm adopts the dual map concept, first 
establishing two maps based on the real world data collected by sensors, 
with different resolutions. Then, on a rough map with lower resolution, 
the A-star algorithm is used for rapid planning to generate a guidance 
domain, limiting the sampling domain of the RRT algorithm to the 
guidance domain to accelerate path generation speed. At the same time, 
a dual tree strategy is adopted to generate a search tree at both the 
starting and ending points, and with a certain probability, one tree is 
directed towards the latest child node of the other tree, further 
improving the speed and availability of path generation. After gener-
ating the path, use pruning optimization to remove redundant points on 
the path, making it as concise as possible. Finally, use the Bezier curve 
for secondary optimization of the concise path to improve the smooth-
ness of the planned route. The contributions are given as follows.  

(1) Weighted fusion in high-resolution grid maps is employed to 
extract lower-resolution grid maps. The A* algorithm is then used 
for coarse path planning in these low-resolution maps. The region 
planned by the A* algorithm in the low-resolution map is pro-
jected onto the high-resolution map, which then serves as the 
designated planning area for the RRT algorithm.  

(2) To accelerate the convergence speed of the RRT algorithm within 
the defined restricted area, an improved biased tree strategy is 
proposed, based on the target bias strategy and dual-tree growth 
tactics. This ensures both the efficiency of the algorithm and the 
usability of the trajectory.  

(3) For optimizing the generated paths, a pruning method is used, 
followed by smoothing with bezier This process ensures that the 
path complies with the dynamic constraints of vehicles with 
Ackermann steering geometry. 

The remainder of this paper is structured as follows. Section 2 in-
troduces the relevant prerequisites pertinent to the algorithm discussed 
in this paper. Section 3 elucidates the proposed algorithm, providing an 
analysis of its principles. Section 4 presents simulation results, con-
ducting ablation experiments and comparing them with traditional 
methods and research conducted by other scholars. Finally, Section 5 
summarizes the main contributions of this study and discusses potential 
future research directions. 

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

93

2. Background 

2.1. Problem description 

Similar to the approaches of other scholars [23,25,30], our research 
begins with a detailed elucidation of the definition of path planning. The 
essence of path planning is to identify the optimal route from a starting 
point to a destination within a given environment. Let the environment 
be denoted as S, represented by a set of coordinate points P. Within this 
environment, there exist obstacles Xobs ⊆ P, which are the spatial seg-
ments that cannot be traversed. The remaining area, defined as the 
feasible space Xfree ⊆ (P\Xobs), represents the traversable sections. We 
consider a starting point S ∈ P and a destination T ∈ P. The planned path 
σ is expressed as an ordered sequence of points from the starting point S 
to the destination T, i.e., σ = {p1,p2, ...,pn}, where p1 = S and pn = T. 
The path must adhere to constraint C. For instance, in autonomous 
vehicle path planning, the path should comply with vehicle dynamics, 
ensuring that the angle formed by any three points does not exceed the 
vehicle’s maximum steering angle θ. Let αi represent the angle formed 
by the points Pi, Pi+1, Pi+2, thus αi < θ, for all i ∈ {1,2,…,n − 2}, where 
αi = arccos(Pi→Pi+1 ⋅Pi+1→Pi+2

|Pi→Pi+1 ||Pi+1Pi+2 |
). The objective function, defined as the mini-

mum distance f(σ)=
∑n− 1

i=1 distance(Pi,Pi+1) is also established. 

2.2. Related work 

2.2.1. RRT algorithm 
Rapidly-exploring Random Tree (RRT) were first proposed by Steven 

M. LaValle in 1998. The RRT algorithm is a path planning method based 
on random sampling, designed specifically to solve robot motion plan-
ning problems under high-dimensional and nonlinear constraints. Its 
main advantages are simplicity, efficiency, and the ability to find 
feasible solutions in complex environments. 

xnew = xnear + s
xrand − xnear

‖ xrand − xnear ‖
2 − 1 

The generation process of new nodes can refer to Equation 2–1. 
Among them, x_ New represents a new node, x_ Near represents the 
closest tree node, while x_ Rand is a random point. The execution steps of 

the RRT algorithm are shown in Fig. 1, and Pseudocode in algorithm1. 

Algorithm 1. ：：RRT. 

. 
The efficacy of path planning is exemplified in Fig. 2, which illus-

trates the trajectory from the origin at coordinates {5, 35} to the 
destination at {190, 70}. An analysis of the path planning outcomes, 
utilizing the Rapidly-exploring Random Tree algorithm for autonomous 
vehicle navigation, reveals several limitations:  

1. Curvature Variability: The planned route exhibits abrupt changes in 
curvature. Occasionally, this manifests as acute angles between 
successive segments, which are incongruent with the requirements of 
autonomous vehicles for smooth, continuous trajectories. 

2. Unconstrained Sampling: The RRT algorithm, in its original formu-
lation, employs an unrestricted sampling strategy across the entire 
map. This approach results in a proliferation of sampling points, 

Fig. 1. the execution steps of RRT algorithm.  

Fig. 2. The efficacy of RRT algorithm.  

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

94

leading to variability in planning speed. The process oscillates be-
tween periods of rapid and slow progression, undermining the sta-
bility and efficiency of the path planning process.  

3. Path Quality Discrepancy: When compared to an ideal or optimal 
path, the quality of the path generated by the RRT algorithm is 
markedly inferior. The route is often encumbered with superfluous 
segments, contributing to an overall increase in path length and a 
reduction in practical utility. This divergence from optimal path 
characteristics highlights a significant area for improvement in the 
algorithm’s application to autonomous navigation. 

2.2.2. A* algorithm 
The A* algorithm, initially proposed by Hart, Nilsson, and Raphael in 

1968, has withstood the test of time, establishing itself as a foundational 
algorithm in the domains of pathfinding and graph traversal. Grounded 
in the principles of best-first search, the algorithm strikingly balances 
two pivotal aspects of algorithmic efficiency: completeness and opti-
mality. The effectiveness of the A* algorithm is primarily dependent on 
its heuristic function, f(n) = g(n) + h(n), where f(n) represents the total 
estimated cost of the path through the node n, g(n) denotes the actual 
cost from the start node to n, and h(n) signifies the estimated cost from n 
to the goal. This heuristic function is instrumental in estimating the costs 
from a given node to the goal, thereby guiding the search process to-
wards the most promising paths. The Pseudocode of the A* algorithm is 
in Algorithm 2. 

Algorithm 2. A*. 
. 

3. Design of Improved RRT Algorithm 

3.1. Establishment of double layer map and implementation of coarse 
path guided domain 

In pursuit of enhancing the efficiency of path planning while cir-
cumventing issues of dimensional catastrophe, it is imperative to 
construct a grid map utilizing pre-acquired map information prior to the 
initiation of path planning tasks by intelligent vehicles. Each grid unit 
encapsulates critical data, encompassing the locational coordinates of 
the current node and the associated traversal cost. Irrespective of the 

specific path planning algorithm employed, there exists an inverse 
relationship between the resolution of the grid map and the algorithm’s 
operational speed. Table 1 elucidates this correlation by presenting 
comparative data on the planning speeds achieved by various algo-
rithms across maps of differing resolutions. 

The results indicate that the A* algorithm, as a graph based search 
algorithm, has a negative correlation between its planning speed and 
map resolution, and increases exponentially with the expansion of map 
resolution. However, as a sampling based method, the RRT algorithm 
has a relatively small increase in planning speed compared to the A-star 
algorithm, although its relationship between planning speed and map 

Table 1 
Path planning speed of A* algorithm under three different resolutions.  

map resolution 100 * 100 300 * 300 900 * 900 

A* algorithm. 0.01 s 3.31 s 14 s 
RRT algorithm 0.02 s 0.5 s-20 s 1 s-60 s  

Fig. 3. Coarse sampling process.  

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

95

resolution is related. However, it also exhibits an unstable planning 
speed, which is determined by the unique infinite pure random method 
of the original RRT algorithm. The higher the resolution of the map, the 
more redundant nodes the sampling points may collect, If the range of 
RRT sampling can be limited, the redundant nodes collected can be 
significantly reduced, which will also stabilize the sampling time. 

However, in intelligent vehicle navigation problems, in order to 
accurately output the path planning of the intelligent vehicle and avoid 
small obstacles that are difficult to detect, it is often necessary to 
generate a planned route on a high-resolution map. Therefore, this 
article proposes a two-layer map structure. On the basis of pre obtained 
map information to construct a grid map, the high-resolution grid map is 
further extracted and subjected to coarse sampling. The coarse sampling 
method for constructing a low resolution grid coarse map is shown in  
Fig. 3. The original map is added to each map block according to the 
scale coefficient to obtain the average value of the corresponding block 
in the coarse map. 

The time cost of planning on a low-resolution grid map is very low. 
Remapping the paths planned on the low-resolution grid map back to 
the high-resolution grid map will form a restricted area, where the RRT 
planning algorithm is used to improve the running speed and stability of 
the path planning algorithm. This method can significantly improve the 
efficiency of path planning and reduce hardware resource requirements. 

The A* algorithm, as a grid-based search algorithm, although its 
average planning speed cannot meet the planning requirements in 
complex and high-resolution scenes, it exhibits excellent performance in 
simple and low resolution scenarios. From the perspectives of path 
length and average curvature, the planned path quality is excellent. Due 
to the shortcomings of traditional RRT algorithm in terms of planning 
speed and path availability, in order to accelerate the planning speed of 
RRT algorithm, this article uses A-star algorithm to plan and establish 
coarse paths in low resolution grid maps, and uses the routes planned by 
A* algorithm as the restricted area of RRT algorithm. The specific pro-
cess is shown in Fig. 4. 

If you want to use the RRT algorithm to generate random points in a 
restricted area, first discuss whether the point to be generated is in the 
restricted area, and then discuss whether the point is in the obstacle. 

The algorithm in this article first generates random points on a high- 
resolution map, and then converts the coordinates of the random points 
in the high-resolution map to a low-resolution map for comparison, 
determining whether the two are equal to determine whether the 
generated points are in a restricted area. 

Set the coordinates of the generated random points on the real map 
as (x, y), the resolution of high-resolution maps as resolution, and the 
resolution of low-resolution maps as low_ Resolution: The length and 
width coordinates of a real map are Width and Height, respectively. The 
conversion formula for mapping random points from the real world to 
high-resolution raster maps is shown in equations 3–1 and 3–2. 

x_high = x*resolution/Width3 − 1  

y_high = y*resolution/Height3 − 2 

The formula for mapping from high-resolution raster maps to low- 
resolution maps is shown in equations 3–3 and 3–4. 

x_low = x_high*(low_resolution/high_resolution)3 − 3  

y_low = y_high*(low_resolution/high_resolution)3 − 4 

By applying the above formula, it is possible to quickly and effi-
ciently map the point coordinate positions generated from high- 
resolution images back to the low-resolution map, thereby quickly and 
efficiently checking whether the point coordinates are within the plan-
ned restricted area. 

Algorithm 3. Combined A* and RRT with Restricted Areas.   

Fig. 4. Dual Map Schematic.  

Fig. 5. The Search Process of Bidirectional RRT Algorithm.  

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

96

. 

This pseudocode outlines a process where the A* algorithm is 
initially used to establish a coarse path on a low-resolution map. This 
path is then used as a restricted area for the RRT algorithm applied on a 
high-resolution map. The algorithm includes steps for generating 
random points, converting these points between high and low resolu-
tions, and checking if they fall within the restricted area or an obstacle. 
The RRT continues until it reaches the goal or fails to find a path. 

3.2. Design of an improved bidirectional bias RRT algorithm 

The bidirectional RRT algorithm is mainly used to shorten search 
time, and its core idea is to generate two random trees simultaneously at 
the starting and ending points. The search process is shown in Fig. 5. 
Assuming there are two trees T1 and T2, after each round of random 
point generation, the two trees alternately grow towards that point until 
the distance between the new node of T1 and the new node of T2 is less 
than the pre-set threshold, and then stop growing. 

Although the bidirectional RRT algorithm has to some extent 
shortened the search time, the direction of growth in the restricted area 

Fig. 6. The search method of the bidirectional RRT algorithm proposed in this article.  

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

97

is still aimless and random, leading to blind search process. This article 
improves the search method of the bidirectional RRT algorithm, as 
shown in Fig. 6. During the tree growth stage, the newly generated node 
of another tree is directly used as the growth direction with a certain 
probability. The specific implementation method is as follows: 

(1)Set a threshold N, which can range from N ∈ {0,1, 2,…,9, 10}. 
(2)Set the value range of U and randomly generate values. 
(3)Compare the sizes of U and N. If U reaches the threshold, directly 

select the newly generated node from another tree as the growth di-
rection; On the contrary, traditional growth will continue in the direc-
tion of randomly generated points. 

It should be noted that the values of U and N directly affect the 
generation speed of the random tree, and appropriate values need to be 
selected based on different task objectives. The growth probability P of a 
new node in another tree_ Other is represented by equations 3–5, where 
U_ Range represents the range of U values, and N + 1 represents the 
number of values less than or equal to N. 

Pother = 1 − (N + 1)/(U_range+ 1)3 − 5 

The specific selection formula is shown in formulas 3–6: 

Nodes（rand） =

{
rand_point（）,&U ≤ N

choose_other_Tree_new,&U > N 3 − 6 

When selecting the latest node of another tree (T2) as the target 
node, the position of the new node in T1 tree is shown in equations 
3–7： 

P1new = P1near + step
P2new − P1near

‖ P2new − P1near ‖
3 − 7 

Due to the fact that the sampling points of the bidirectional RRT 
algorithm are within the restricted area planned by the A-star algorithm, 
the position of the generated points of the bidirectional RRT is restricted 

by the restricted area, and its blind scalability is constrained, therefore, 
selecting P2new point as the target point to expand towards it must have 
the following advantages compared to the initial point of T2 tree, that is, 
the module length of two points P2new − P1near must be less than ‖ P2start −

P1near ‖, as shown in equations 3–8: 

‖ P2new − P1near ‖<‖ P2start − P1near ‖ 3 − 8 

Compared to the greedy strategy used by some scholars to generate 
offset points based on the target endpoint, selecting the latest node of the 
spanning tree can make the path search speed faster, as shown in Fig. 6. 

3.3. Reoptimization of planning paths 

Although the use of guidance domain and bidirectional bias strategy 
can reduce the randomness of generated routes, most of the planned 
routes still do not meet the requirements of vehicle dynamics. Therefore, 

Fig. 7. Planned original path and pruned path.  

Fig. 8. Planned original path and pruned path.  

Fig. 9. Bezier curve optimization.  

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

98

we need to perform secondary optimization on the generated planning 
path adoption. 

Firstly, prune and optimize the planned route, and assume that some 
of the planned paths are as follows 

{p0, p1, p2, p3, p4, p5, p6, p7, p8, p9}

The pruning function starts from point p0 and proceeds to the next 
node to determine whether there is an intersection between point p0 and 
point p1 with a rectangular obstacle. If there is no intersection, it directly 
connects point p0 and point p2, and continues to determine whether the 
line intersects with the rectangle until a node that intersects with the 
rectangle is found. This point is set as a necessary point, and then 
pruning is continued based on this point. 

The pruning function uses vector cross product to determine whether 
a line segment intersects with a rectangle, in order to determine whether 
it intersects with a rectangular obstacle. Firstly, set the coordinates of 
the two endpoints of the line segment (P1, P2) and the four vertices of 

the rectangle (A, B, C, D). Using formulas 3–9, calculate the intersection 
of line segment P1P2 and the four edges of the rectangle, that is, 
calculate the vector cross product cross_product of each edge separately 

cross_product = (P2.x–P1.x)*(B.y–A.y) − (P2.y − P1.y)*(B.x − A.x)3 − 9 

If the cross_product of line segment P1P2 and any edge vector is not 0, 
it indicates that the line segment intersects with the rectangle. If the 
cross_product of line segment P1P2 and all edges is 0, it means that the 
line segment does not intersect with the rectangle. 

As shown in Fig. 7, the required points are {p0, p2, p3, p7, p9}, 
respectively. Compared to the tree before pruning, the pruned tree re-
duces redundant nodes, making the route more direct and the distance 
shorter. Fig. 8 shows a comparison of planned paths using pruning al-
gorithms and those without pruning algorithms. Compared to the orig-
inal blue path, the pruned yellow path is more streamlined and has 
higher direct efficiency. 

Although the distance after pruning is shorter, the path has become 

Fig. 10. Planning the final effect.  

Fig. 11. Improved algorithm flowchart.  

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

99

Fig. 12. a Simple simulation scenario. b Simple simulation scenario.  

Fig. 13. results of each algorithm in ablation experiments (The algorithms from left to right and from top to bottom are (RRT, bias double RRT, bias double RRT with 
cut, complete algorithm). 

Fig. 14. Comparison of Planning Algorithms in Simple Scenarios.The left figure shows the actual path lengths of various algorithms in ablation experiments from left 
to right are the “ RRT, bias double RRT, bias double RRT with cut, complete algorithm”, The figure on the right shows the actual time planned by various algorithms 
in ablation experiments, from left to right “RRT, bias double RRT, bias double RRT with cut, complete algorithm”. 

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

100

basically composed of line segments, which is not smooth for vehicles 
relying on the Ackermann chassis. Therefore, the next step is to use 
Bessel curves for path optimization of the pruned route. Bezier curve is 
an interpolation equation with good local control characteristics, which 
is widely used in computer graphics and path planning. Its general 
representation in the two-dimensional plane is shown in equations 3–10, 
and its performance is shown in Fig. 9: 

B(t)=
∑n

i=0
(
n
i )Pi(1 − t)n− iti

=(
n
0)P0(1 − t)nt0+(

n
1)P1(1 − t)n− 1t1+…+(

n
n − 1)Pn− 1(1 − t)1tn− 13− 10 

In the equation, n represents the degree of the Bezier curve. Since 
using a third-order Bezier curve can effectively optimize the smoothness 
between the two line segments between the three points in the pruned 
path, the optimization effect of using a third-order Bezier curve is shown 
in Fig. 9. The comparison effect between the path using a Bezier curve 
(blue) and the path not using a Bezier curve (yellow) is shown in Fig. 10,  

Fig. 11 is the flowchart of the algorithm designed in this article. 
Fig. 11 summarizes the operational steps of the algorithm presented 

in this paper. To enhance path planning efficiency and improve route 
quality, we initially adopt the concept of a dual-map. This involves using 
the A* algorithm on a low-resolution map to guide the overall algorithm 
with a coarse path. Searching within this path reduces the randomness 
of route expansion, thereby increasing both speed and accuracy. The A* 
algorithm is chosen for its efficiency and quality of planning at low 
resolution. Subsequently, we apply an improved bidirectional biased 
tree algorithm for planning within this coarse path. The enhanced biased 
tree algorithm demonstrates excellent planning speed. Finally, path 
post-processing techniques like pruning and Bezier curves are used to 
refine the algorithmically planned paths, reducing their length and 
smoothing out any abrupt changes. 

4. Experimental results 

This article uses Python to simulate and validate the path planning 
algorithm proposed in this article. The processor of the verified device 
host is 12th Gen Intel (R) Core (TM) i7–12700 H, with a main frequency 
of 2.30 GHZ and a built-in memory of 40 GB. 

In order to accurately verify the planning ability of the algorithm 
proposed in this article in different scenarios, the experimental valida-
tion maps selected for simulation experiments in this article include two 
types: one is a simple obstacle scene, and the other is a complex obstacle 
scene. For a simple scenario as shown in Fig. 12.a, a resolution of 
150 * 200 is selected, with initial points {5, 35} and target points {190, 
70}. There are a total of four rectangular obstacles with varying sizes. 
For a complex scenario, as shown in Fig. 12.b, a resolution of 400 * 400 
is selected, with initial points (5, 35) and target points (390,195). There 
are a total of 20 rectangular obstacles with varying sizes. 

4.1. Ablation experiments 

To more clearly demonstrate the functionality of the various com-
ponents of the algorithm proposed in this paper, we have categorized the 
improvements suggested herein and conducted ablation experiments 
accordingly. The experiments were divided into three groups: Group (1) 
RRT, Group (2) bias-double-RRT, Group (3) bias-double-RRT+cut, and 
Group (4) Complete Algorithm. The experimental setting was based on 
the complex environment of Map B mentioned earlier. The planning 

Table 2 
Comparison of Algorithms in DIFFERENT Scenarios.   

Result Simple 
Map 

Complex 
Map 

RRT-Connect Average time (s) 0.15 2.54 
Average path 
length 

272 581 

Average path 
curvature 

0.15 0.125 

A* Algorithms Average time (s) 0.16 4.11 
Average path 
length 

216 471 

Average path 
curvature 

0.07 0.008 

GSRRT-Connect Average time (s) 0.05 0.33 
Average path 
length 

212 592 

Average path 
curvature 

0.06 0.049 

The algorithm proposed in 
this article 

Average time (s) 0.03 0.69 
Average path 
length 

204 463 

Average path 
curvature 

0.02 0.009  

Fig. 15. Comparison of Planning Algorithms in Simple Scenarios (The algorithms from left to right and from top to bottom are (RRT, bias double RRT, bias double 
RRT with cut, complete algorithm). 

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

101

results of each algorithm are illustrated in Fig. 13. 
The results demonstrate that, across multiple ablation experiments, 

the operational speeds of the algorithms were as follows: RRT: 8.7 s, 
bias-double-RRT: 0.24 s, Bias-double-RRT-withcut: 0.22 s, and the 
complete algorithm: 0.50 s. Concurrently, the path lengths generated by 
each algorithm were: RRT: 629 units, bias-double-RRT: 759 units, Bias- 
double-RRT-withcut: 613 units, and the complete algorithm: 509 units. 
Boxplot XX provides a visual representation of these algorithmic per-
formances across multiple runs.Fig. 14. 

The ablation experiments reveal that each module of the algorithm 
presented in this paper performs as anticipated. The bi-directional 
biasing approach to the RRT tree generation, in comparison to the 
original RRT algorithm, demonstrates superior operational speed, with a 
reduction in planning time by 3600 %. However, this expansion method 

resulted in excessive growth of the tree, leading to path lengths that 
were even longer than those produced by the original RRT algorithm. 
The pruning strategy proposed in this paper effectively reduces the 
length of the generated path without compromising operational speed. 
Yet, the randomness inherent in this approach still led to overly 
extended paths. The incorporation of a dual-grid map concept in the 
algorithm addressed this issue, reducing the path length by 30 % 
compared to the versions without the dual-grid map concept. 

4.2. Simulation comparison 

To demonstrate the superiority of the algorithm presented in this 
paper, we compared it with several established methods, including the 
classic RRT-connect algorithm, the A* algorithm, and the newly 

Fig. 16. Comparison of Planning Algorithms in Complex Scenarios (The algorithms from left to right and from top to bottom are (RRT, bias double RRT, bias double 
RRT with cut, complete algorithm). 

Fig. 17. Comparison of Path Length and Planning Time of Different Algorithms in Simple Scenarios (The left figure shows the running time of various algorithms in 
Simple scenarios (from left to right are the ” RRT-connect algorithm, A * algorithm, GSRRT-connect algorithm, and the algorithm proposed in this article” The figure 
on the right shows the actual path lengths planned by various algorithms in Simple scenarios, from left to right “RRT connect algorithm, A * algorithm, GSRRT 
connect algorithm, algorithm proposed in this article”). 

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

102

published GSRRT-Connect algorithm from other researchers in 2023 
[11]. We conducted repeated sampling in both simple and complex 
scenarios 100 times and calculated the average values for each metric.  
Table 2 shows the average parameters for each algorithm after 100 tests. 

Figs. 15 and 16 illustrate the comparisons of various planning al-
gorithms in simple and complex scenarios, respectively. In the planning 
graph of the RRT-Connect algorithm, the green and red points denote 
the generation locations of random points for the two trees of the RRT- 
Connect, and the yellow line represents the generated path. In the A* 
algorithm’s graph, the yellow color signifies that the generated path is 
always consistent. In the GSRRT-Connect graph, yellow indicates the 
generation location of random points for tree 1, red for tree 2, and the 
yellow line denotes the generated path. In the planning graph of the 
algorithm proposed in this paper, yellow represents the generation 
location of random points for tree 1, red for tree 2, and the yellow line 
signifies the generated path. 

Firstly, an analysis of the average planning time in the table reveals 
notable trends. In both simple and complex scenarios, the RRT-Connect 
algorithm exhibits the longest average planning time, with 0.15 s in 
simple scenes and 2.54 s in complex ones. The A* algorithm takes 0.16 s 
in simple maps, while the GSRRT-Connect shows high computational 
efficiency in both settings, taking only 0.05 s in simple maps and 0.33 s 
in complex ones. The algorithm proposed in this paper records the 
shortest average time in simple maps at 0.03 s, and 0.69 s in complex 
maps. 

Secondly, the average planning lengths in the table were analyzed. In 
simple environments, the RRT-Connect algorithm’s average planning 
length is 272, and 581 in complex scenes. The A* algorithm plans for 
216 in simple maps and 471 in complex ones. The GSRRT-Connect ’s 
planning lengths are 212 in simple scenarios and the longest at 592 in 
complex ones. The algorithm introduced in this paper outperforms all 
others in both simple and complex scenarios, with planning lengths of 
204 and 463, respectively. This represents a substantial lead over 
competing algorithms, with approximately a 29 % improvement over 
advanced peer algorithms and about a 30 % improvement over RRT- 
connect. 

Lastly, the curvature of the planned paths in the table was evaluated. 
Among all tested algorithms, the one proposed in this article achieved 
the most optimal average curvature, with 0.02 in simple scenarios and 
0.009 in complex ones. The A* algorithm’s average curvature is 0.07 in 

Fig. 18. Comparison of Path Length and Planning Time of Different Algorithms in Complex Scenarios (The left figure shows the running time of various algorithms in 
complex scenarios (from left to right are the ” RRT-connect algorithm, A * algorithm, GSRRT-connect algorithm, and the algorithm proposed in this article” The 
figure on the right shows the actual path lengths planned by various algorithms in complex scenarios, from left to right “RRT connect algorithm, A * algorithm, 
GSRRT connect algorithm, algorithm proposed in this article”). 

Fig. 19. Real vehicle verification scenario.  

Fig. 20. Structural diagram of experimental vehicle.  

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

103

simple scenarios and 0.008 in complex ones. The GSRRT-Connect al-
gorithm’s average curvature is less optimal than both the A* algorithm 
and the one presented in this paper, with 0.06 in simple scenarios and 
0.049 in complex ones. The RRT-connect algorithm has the poorest 
average curvature, with 0.15 in simple scenarios and 0.125 in complex 
ones. 

Figs. 17 and 18 presents box plots illustrating the performance of 
various algorithms in repeated experiments. A comprehensive analysis 
of the table and figure reveals that in simple environments, the algo-
rithm proposed in this paper outperforms both RRT-Connect and A* 
algorithms in terms of planning speed and route length. Its planning 
time and quality are comparable to the GSRRT-Connect algorithm. In 
complex environments, the runtime of our proposed algorithm signifi-
cantly surpasses that of the RRT-Connect and A* algorithms, and is 
slightly inferior to the GSRRT-Connect algorithm. However, in terms of 
the quality of the planned route, our algorithm substantially out-
performs all four, including the GSRRT-Connect algorithm, demon-
strating a clear lead in complex scenario planning. 

4.3. Real vehicle verification 

In addition to the simulation experiments mentioned above, this 
article also designed real vehicle experiments to verify the effectiveness 
of the algorithm in practical engineering. The actual vehicle adopts an 
intelligent car with Ackermann structure, as shown in Fig. 20. The 
components of the intelligent car include a 7-inch display, LiDAR, Xavier 
motherboard, depth camera, and Ackermann structure steering gear. 

The overall structure of the autonomous driving system is shown in  
Fig. 21 and consists of four parts: perception module, localization 
module, planning module, and control module. The algorithms pro-
posed in this paper are deployed within the control module’s Move_Base 
framework. The perception module and Odometry localization module 
transmit vehicle location and map information to the planning module. 
The algorithm in this article will complete all planning in the planner. 
Firstly, high-resolution map information will be converted into low- 
resolution map information. Then, the A * algorithm will be used for 
planning in the low-resolution map. Then, the improved bidirectional 
offset tree algorithm will be used for planning in the area output by the A 
* algorithm. Finally, the path will be provided to the pure tracking al-
gorithm through path post-processing technology. Finally, output the 
speed command to the vehicle controller to achieve autonomous driving 
of the vehicle. 

The scenario for actual vehicle verification in this article is shown in 
Fig. 19. A total of 5 obstacles were selected and the map was created 
using the G-mapping algorithm using LiDAR. Deploy the algorithm in 
this article to the ROS system for global path planning, and select Pure as 
the local path planner for the car_ Permit tracking algorithm. The overall 
actual vehicle experiment process has been visualized by Rviz and 
shown in Fig. 22. The algorithm proposed in this article has shown 
excellent navigation performance in actual obstacle avoidance sce-
narios, which can meet the global navigation requirements of Acker-
mann structured cars. 

Fig. 22. Real vehicle path planning process.  

Fig. 21. Real vehicle path planning process.  

R. Zhang et al.                                                                                                                                                                                                                                   



Alexandria Engineering Journal 88 (2024) 91–104

104

5. Conclusion and outlook 

This article aims to propose a path planning algorithm that combines 
the A-star algorithm with the Rapidly-exploring Random Tree (RRT), 
and analyzes the existing RRT algorithm and other improved methods. 
Firstly, using the "dual layer map" method, a low resolution coarse map 
based on a high-resolution grid map is established, and the initial coarse 
path is obtained using the A-star algorithm in the low resolution coarse 
map. Remap this path back into a high-resolution grid map as a 
restricted domain and use an improved RRT spanning tree and target 
bias strategy within that region. With a certain probability, use the latest 
tree node of the other party to expand the bidirectional RRT algorithm 
for sampling to accelerate path generation speed. Finally, the generated 
path is smoothed through pruning and Bessel curve smoothing to meet 
the dynamic constraints of Ackermann chassis vehicles. 

In this paper, the effectiveness of the proposed improvements to our 
algorithm was first analyzed through ablation experiments in a simu-
lated environment, confirming the efficacy of our methods. The intro-
duction of the dual-map concept significantly enhances the quality of 
path planning. Additionally, the modified biased bidirectional tree 
method substantially increases the speed of path generation. The pro-
posed pruning strategy and Bezier curve optimization further align the 
paths with vehicle dynamics constraints. The algorithm was then 
benchmarked against classic algorithms such as the RRT, RRT-Connect, 
and A* algorithm, demonstrating superior performance across various 
map types. Notably, in complex maps, it achieved an average speed 
increase of 1800 % and a 40 % reduction in path length compared to the 
RRT algorithm. Furthermore, when compared with the latest research 
by peers, our algorithm showed comparable capabilities in simple maps 
and achieved a 30 % reduction in path length in complex scenarios at 
equivalent planning speeds. Ultimately, the proposed algorithm was 
deployed on a ROS-powered intelligent vehicle and successfully 
executed path planning tasks, demonstrating its feasibility in vehicles 
with Ackermann steering dynamics. In summary, this algorithm can be 
applied to unmanned vehicles, indoor robots, industrial production and 
other fields. 

Despite the algorithm’s outstanding performance relative to classical 
approaches, challenges persist in real-world applications. Optimal 
parameterization for transitioning between high-precision and coarse 
maps still requires significant trial and error. Future research will 
explore machine learning methods to identify optimal transition pat-
terns. Additionally, there is potential for further optimization in the 
growth step length of the RRT algorithm. Developing an adaptive 
approach for determining the algorithm’s step length will be a primary 
focus in subsequent research. 

Acknowledgments 

This work was supported by the Educational Commission Project of 
Tianjin, China, under grant (No. 2020KJ120). 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] Juan Du, Peng Zheng, Zhongyu Xie, Yu Yang, Hongxia Chu, Gaobo Yu. Research on 
path planning algorithm based on security patrol robot, in: Proceedings of the 2016 
IEEE International Conference on Mechatronics and Automation, pp. 1030–1035, 
IEEE, 2016. 

[2] Stefania Pellegrinelli, Andrea Orlandini, Nicola Pedrocchi, Alessandro Umbrico, 
Tullio Tolio, Motion planning and scheduling for human and industrial-robot 
collaboration, CIRP Ann. 66 (1) (2017) 1–4. 

[3] C. Santos, Luís Filipe N. Santos E.J. Solteiro Pires António Valente Pedro Costa 
Sandro Magalhães. Path planning for ground robots in agriculture: A short review, 
in: Proceedings of the 2020 IEEE International Conference on Autonomous Robot 
Systems and Competitions (ICARSC), pp. 61–66. IEEE, 2020. 

[4] Masato Noto, Hiroaki Sato, A method for the shortest path search by extended 
Dijkstra algorithm, in: Smc 2000 Conference Proceedings. 2000 IEEE International 
Conference on Systems, Man and Cybernetics. ’cybernetics Evolving to Systems, 
Humans, Organizations, and Their Complex Interactions’(cat. no. 0, vol. 3, pp. 
2316–2320. IEEE, 2000. 

[5] Frantǐsek Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek, 
Tomáš. Fico, Ladislav Jurǐsica, Path planning with modified a star algorithm for a 
mobile robot, Procedia Eng. 96 (2014) 59–69. 

[6] Jianhua Liu, Jianguo Yang, Huaping Liu, Xingjun Tian, Meng Gao, An improved 
ant colony algorithm for robot path planning, Soft Comput. 21 (2017) 5829–5839. 

[7] Steven M. LaValle, J.Kuffner James, B.R. Donald, Rapidly-exploring random trees: 
Progress and prospects, Algorithm Comput. Robot.: N. Dir. 5 (2001) 293–308. 

[8] Gildardo Sanchez, J.-C. Latombe Using a PRM planner to compare centralized and 
decoupled planning for multi-robot systems, in: Proceedings 2002 IEEE 
international conference on robotics and automation (Cat. No. 02CH37292), vol. 2, 
pp. 2112–2119. IEEE, 2002. 

[9] James J. Kuffner, M.La.Valle Steven. RRT-connect: An efficient approach to single- 
query path planning, in: Proceedings 2000 ICRA. Millennium Conference. IEEE 
International Conference on Robotics and Automation. Symposia Proceedings (Cat. 
No. 00CH37065), vol. 2, pp. 995–1001. IEEE, 2000. 

[10] Sertac Karaman, Emilio Frazzoli, Sampling-based algorithms for optimal motion 
planning, Int. J. Robot. Res. 30 (7) (2011) 846–894. 

[11] Yechen Li, Shaochun Ma, Navigation of apple tree pruning robot based on 
improved RRT-connect algorithm, Agriculture 13 (8) (2023) 1495. 

[12] Kun Hao, Yang Yang, Li Zhisheng, Liu Yonglei, Zhao Xiaofang, CERRT: a mobile 
robot path planning algorithm based on RRT in complex environments, Appl. Sci. 
13 (17) (2023) 9666. 

[13] Cheng Liu, Qingchun Feng, Zuoliang Tang, Xiangyu Wang, Jinping Geng, Lijia Xu, 
Motion planning of the citrus-picking manipulator based on the TO-RRT algorithm, 
Agriculture 12 (5) (2022) 581. 

[14] Zhen Zhang, Defeng Wu, Jiadong Gu, Fusheng Li, A path-planning strategy for 
unmanned surface vehicles based on an adaptive hybrid dynamic stepsize and 
target attractive force-RRT algorithm, J. Mar. Sci. Eng. 7 (5) (2019) 132. 

[15] Ahmed Hussain Qureshi, Yasar Ayaz, Potential functions based sampling heuristic 
for optimal path planning, Auton. Robots 40 (2016) 1079–1093. 

[16] In-Bae Jeong, Seung-Jae Lee, Jong-Hwan Kim, Quick-RRT*: Triangular inequality- 
based implementation of RRT* with improved initial solution and convergence 
rate, Expert Syst. Appl. 123 (2019) 82–90. 

[17] Tianqi Qie, Weida Wang, Chao Yang, Ying Li, Wenjie Liu, Changle Xiang, A path 
planning algorithm for autonomous flying vehicles in cross-country environments 
with a novel TF-RRT* method, Green Energy Intell. Transp. 1 (3) (2022) 100026. 

[18] Paul Lathrop, Boardman Beth, Sonia Martínez, Distributionally safe path planning: 
wasserstein safe RRT, IEEE Robot. Autom. Lett. 7 (1) (2021) 430–437. 

[19] Tianhao Gong, Yang Yu, Jianhui Song, Path planning for multiple unmanned 
vehicles (MUVs) formation shape generation based on dual RRT optimization, 
Actuators 11 (7) (2022) 190 (MDPI). 

[20] Zhenping Wu, Zhijun Meng, Wenlong Zhao, Zhe Wu, Fast-RRT: a RRT-based 
optimal path finding method, Appl. Sci. 11 (24) (2021) 11777. 

[21] Lina Wang, Xin Yang, Zeling Chen, Binrui Wang, Application of the improved 
rapidly exploring random tree algorithm to an insect-like mobile robot in a narrow 
environment, Biomimetics 8 (4) (2023) 374. 

[22] Hao Wang, Guoqing Li, Jie Hou, Lianyun Chen, Nailian Hu, A path planning 
method for underground intelligent vehicles based on an improved RRT* 
algorithm, Electronics 11 (3) (2022) 294. 

[23] Yicong Guo, Xiaoxiong Liu, Xuhang Liu, Yue Yang, Weiguo Zhang, FC-RRT*: An 
improved path planning algorithm for UAV in 3D complex environment, ISPRS Int. 
J. Geo-Inf. 11 (2) (2022) 112. 

[24] Farzad Kiani, Amir Seyyedabbasi, Royal Aliyev, Murat Ugur Gulle, 
Hasan Basyildiz, M.Ahmed Shah, Adapted-RRT: novel hybrid method to solve 
three-dimensional path planning problem using sampling and metaheuristic-based 
algorithms, Neural Comput. Appl. 33 (22) (2021) 15569–15599. 

[25] Yanjie Li, Wu Wei, Yong Gao, Dongliang Wang, Zhun Fan, PQ-RRT*: an improved 
path planning algorithm for mobile robots, Expert Syst. Appl. 152 (2020) 113425. 

[26] Fan Yang, Xi Fang, Fei Gao, Xianjin Zhou, Hao Li, Hongbin Jin, Yu Song, Obstacle 
avoidance path planning for UAV based on improved RRT algorithm, Discret. Dyn. 
Nat. Soc. 2022 (2022) 1–9. 

[27] Ruinan Chen, Jie Hu, Wencai Xu, An RRT-Dijkstra-based path planning strategy for 
autonomous vehicles, Appl. Sci. 12 (23) (2022) 11982. 

[28] Christian Zammit, Erik-Jan Van Kampen, Comparison of a* and rrt in real–time 3d 
path planning of uavs, Aiaa scitech 2020 Forum (2020) 0861. 

[29] Ben Beklisi Kwame Ayawli, Xue Mei, Moquan Shen, Albert Yaw Appiah, 
Frimpong Kyeremeh, Optimized RRT-A* path planning method for mobile robots 
in partially known environment, Inf. Technol. Control 48 (2) (2019) 179–194. 

[30] Reza Mashayekhi, Mohd Yamani Idna Idris, Mohammad Hossein Anisi, 
Ismail Ahmedy, Ihsan Ali, Informed RRT*-connect: an asymptotically optimal 
single-query path planning method, IEEE Access 8 (2020) 19842–19852. 

R. Zhang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref1
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref1
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref1
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref2
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref2
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref2
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref3
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref3
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref4
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref4
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref5
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref5
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref6
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref6
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref7
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref7
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref7
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref8
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref8
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref8
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref9
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref9
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref9
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref10
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref10
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref11
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref11
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref11
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref12
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref12
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref12
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref13
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref13
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref14
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref14
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref14
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref15
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref15
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref16
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref16
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref16
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref17
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref17
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref17
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref18
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref18
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref18
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref19
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref19
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref19
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref19
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref20
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref20
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref21
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref21
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref21
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref22
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref22
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref23
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref23
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref24
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref24
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref24
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref25
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref25
http://refhub.elsevier.com/S1110-0168(23)01137-7/sbref25

	Intelligent path planning by an improved RRT algorithm with dual grid map
	1 Introduction
	2 Background
	2.1 Problem description
	2.2 Related work
	2.2.1 RRT algorithm
	2.2.2 A∗ algorithm


	3 Design of Improved RRT Algorithm
	3.1 Establishment of double layer map and implementation of coarse path guided domain
	3.2 Design of an improved bidirectional bias RRT algorithm
	3.3 Reoptimization of planning paths

	4 Experimental results
	4.1 Ablation experiments
	4.2 Simulation comparison
	4.3 Real vehicle verification

	5 Conclusion and outlook
	Acknowledgments
	Declaration of Competing Interest
	References


