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Abstract

Asymptotically consistent estimators of a treatment effect under many potential confounders became possible with the latest ad-
vancements in doubly-robust causal inference models (e.g., Double ML). In this study, we propose SAFE-TH framework to esti-
mate and explain the heterogeneous treatment effect with partial dependence plots and report it under a reduced hypothesis space of
interest. We analyze a shift in accessibility to credit for small to medium enterprises (SMEs) during the first months of the COVID-
19 pandemic. Utilizing the proposed framework can improve the interpretability of CATE models by identifying and providing
confidence intervals for regions of heterogeneity.
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1. Introduction

Modern machine learning models are getting commonly adopted in policy making and decision support in econo-
metrics [3], social sciences [22], and healthcare applications [32]. The problem of policy optimization can rarely be
reduced to a prediction task. It requires counterfactual reasoning, e.g., “if we change X, the outcome Y will become n
units higher.” Thus, the problem includes a causal aspect.

Estimating a treatment effect or uplift in business applications is not trivial. Each entity can be either treated or
not, and the actual individual effect is never observed. Controlled settings of a randomized experiment with a defined
treatment policy are not typical for real-world observational data. For the latter case, one would need to estimate a
set of corrections that are not necessarily of interest to reduce the bias of a predictive machine learning model. For
example, the propensity score tries to predict the likelihood of treatment based on observational data.
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Recent advancements in interpretable machine learning (IML), interchangeably referenced as explainable artificial
intelligence (XAI), [2] help to gain insights into the purely predictive black-box estimators (e.g., gradient-boosted
trees, random forest, artificial neural networks). Such highly flexible models can provide a better fit for a potentially
complex heterogeneity of treatment effects. At the same time, IML provides tools to investigate models from a specific
point of interest: on the global (e.g., feature-wise) or data instance level. A rigorous form of causal inference is
not available for black-box models, but IML can inform a procedure for feature reduction towards a smaller space
of interest. Such a reduction opens an opportunity for linear treatment effect models that allow the construction of
confidence intervals. As well, the advances of XAI can address the challenges faced by Small and Medium-sized
Enterprises (SMEs) by providing insights into factors that determine their ability to access credit and by facilitating
the evaluation of large quantities of non-linear factors through state-of-the-art machine learning algorithms.

SMEs are crucial contributors to the global economy’s employment, innovation, and economic development [26].
Despite their importance, SMEs face daily challenges related to accessing credit and financial support, impeding their
ability to export [25], innovate [8], and remain competitive [14]. These challenges may include lender-specific issues,
such as the inability to properly evaluate opaque SMEs, macro-specific factors like market conditions, and individual
company-specific factors, such as limited collateral availability, business volatility, and financial literacy [6]. Although
the effect of individual factors has been studied using traditional modeling techniques, the evaluation of large quantities
of factors and the non-linear nature of the problem make the task complicated and require state-of-the-art machine
learning algorithms [12].

1.1. Related work

Estimators considering heterogeneity usually relate to conditional average treatment effect (CATE) models. CATE
inputs a set of confounders (features) to estimate the outcome. A new sub-domain emerged in causal research propos-
ing leveraging non-parametric or highly parameterized (deep learning) models in constructing CATE estimation. We
refer to [9] and [21] for a review of meta-learners – algorithms that do not restrict the choice of an ML model to
estimate CATE; and to a chain of work on the Double ML framework [11, 33, 16] that provides an unbiased treatment
effect estimation allowing a relaxed model choice. As well, there is extensive work on model-specific CATE estima-
tors: Gaussian processes [1], tree ensembles [4, 19], deep learning [20, 34, 38]. Interpretability of black-box CATE
models is present in econometric research [37], in healthcare applications [10, 27]. It was proposed by [5] to perform
rule mining using tree ensembles to obtain an interpretable CATE model. As well, Policytree [35] method proposes to
provide interpretation of estimated treatment effects by fitting a small decision tree.

In contrast to existing CATE interpretation methods, our approach includes a supportive stage for experts to identify
the treatment heterogeneity hypotheses of interest. For the decision support we leverage the performance of boosted,
but opaque, estimators by providing a global interpretation with confidence intervals (CI) using bootstrap method.
Bootstrap estimation of CI for a decision tree splitting parameters would be an unstable task due to the algorithm’s
sensitivity to changes in data subsets and general non-parametric design. We believe feature-wise global interpretation
methods (e.g., partial dependence plots) with CI, that applied to boosted models, can provide a wider view of the
backbone data generation process than the shallow models.

1.2. Contribution and paper’s outline

We propose a framework to search for a reduced hypothesis space of treatment heterogeneity using model-agnostic
interpretability methods – Supervised Assisted Feature Extraction for Treatment Heterogeneity (SAFE-TH). The par-
tial dependence (PD) plots estimated with CI from the learning model perspective provide substance to support an
expert’s reasoning behind a simplifying parametric feature transformation. The reduced heterogeneity hypotheses and
a measure of uncertainty provided by this method can be used to create interpretable treatment policies.

The remaining paper is organized as follows: Section 2 includes a description of the proposed framework and
supplementary procedures, as well as details of the SME’s dataset are presented; in section 3, we report the experiment
setup, validity, and results; section 4 discusses findings; and in section 5 conclusion is drawn.
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2. Method

This section describes the dataset used in this study and the proposed framework’s methods: Double ML, partial
dependence plots, and feature importance.

2.1. Data

For the study, we obtained a proprietary dataset of Lithuanian SMEs that applied for a loan between March 2019
and May 2020. We considered the Covid-19 shock to be introduced after 14 March 2020. 1, 807 applications collected
after that date were regarded as ”treated,” and 5, 188 applications before were assigned to a control group. We took a
target variable to indicate whether the application was rationed (rejected). Around 49% of the instances in the dataset
had a positive label, meaning those were rejected. Table 1 shows the twenty-eight features that were added to the
dataset, including six binary and five categorical.

Table 1. Description of Lithuanian SME dataset. Features with * are included for both current and previous years.

Feature name Description

return on assets* operating profit / total assets
current gross margin ratio (net sales - cost of goods sold) / net sales
current current ratio current assets current liabilities
current debt ratio total liabilities / total assets
Ext ovd amt 2years log10 of external overdue amount in EUR
Int Ovd Amt last2years log10 of internal overdue amount in EUR
SH Ext ovd amt 2years log10 of shareholders’ external overdue amount in EUR
SH Int Ovd Amt last2years log10 of shareholders’ internal overdue amount in EUR
rejections (binary) 1 if there was a rejection previously
diversity (binary) 1 if the fraction of male/female minority of shareholders greater than 0.1
had default shareholder (binary) 1 if one of the shareholders had a default
had default (binary) 1 if a company had a default
E-commerce (binary) 1 if a company has had e-commerce product
POS (binary) 1 if a company has used point of sales product
current asset turnover ratio net sales / total assets
current receivables turnover ratio net sales / accounts receivable
urban rural (categorical) 0-biggest city, 1-other towns, 2-rural area
current tangible assets ratio tangible assets / total assets
share of payment transactions incoming cash flow / net sales
change in sales (current net sales - previous net sales) / previous net sales
Nbr fin contracts how many credit contracts a company already had
debt share counter party balance amt / total liabilities
relationship duration length of a relationship duration with a bank in days
segmentation size of an enterprise (categorical) 0-micro, 1-small, 2-medium
Sector group (categorical) 0-Agriculture & Forestry & Fishing, 1-Commerce, 2-Construction,

3-Hotels & Restaurants, 4-Information & Communication, 5-Manufacturing,
6-Professional Services, 7-Real Estate, 8-Transportation

Legal form (categorical) 0-individual enterprise, 1-partnership, 2-private limited liability company
Product (categorical) 0-credit card, 1-investment financing, 2-leasing,

3-trade finance, 4-working capital financing

2.2. Double ML

The Double ML framework, as described by [11], is a method used to estimate causal effects in machine learning.
It involves modeling the relationship between confounding variables, treatment assignment, and outcome, and then
using optimization techniques to estimate the conditional average treatment effect. By fitting models for confounding
effects and treatment assignment, and combining them with weighted regression, the framework provides estimates of
individual treatment effects that can be used for causal inference. Double ML framework from [11] can be described
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in terms of a data generation process (1) following [31]. It consists of several components: G(X,W) – confounding or
prognostic effect; F(X,W) is a propensity score and T is either 0 or 1 in a binary treatment case; θ(X) – conditional
average treatment effect (CATE). X represents confounders – features that influence both outcome and treatment
effect. W are controls - the treatment effect does not depend on those features or is not of interest.

Y = θ(X) · T +G(X,W) + ϵ ,E[ϵ | X,W] = 0
T = F(X,W) + η ,E[η | X,W] = 0, E[η · ϵ | X,W] = 0 (1)

In a set of observed values, {(X,W, T, Y)}(i)n , treatment T is either prescribed or not, which leads to incomplete informa-
tion about its true effect for each case i. It was shown by [11] that under the unconfoundedness assumption for a set of
observed values (X,W, T, Y) the CATE θ can be estimated in a doubly-robust setting and be asymptotically consistent
in the case of being a constant or a low-dimensional linear function of X. The resulting optimization problem (2)
requires both fitted prognostic model Ĝ and propensity score model F̂.

θ̂ = argminθ∈Θ E


(Y − Ĝ(X,W)) − (T − F̂(X,W)) · θ(X)
2

(2)

It was proposed by [16] to use arbitrary models to fit θ̂. For a non-parametric estimation and in the case of a binary
treatment, the optimization problem can be rewritten as (3), which can be solved with a weighted regression.

θ̂ = argminθ E

(T − F̂(X,W))2


(Y − Ĝ(X,W))
(T − F̂(X,W)

− θ(X)


(3)

The resulting individual treatment effect (ITE) estimates are collected in a cross-validated manner. For each fold,
Ĝ and F̂ are fitted on the training subset, while the target ITE is calculated for a hold-out subset using those models.
Finally, estimates of ITE from each fold are collected to fit the CATE model θ̂. According to [11], if θ is a low-
dimensional parametric estimator, asymptotic confidence intervals for the parameters are allowed.

2.3. Partial dependence plots

Partial dependence (PD) plot [17] for a given estimator f̂ and a feature of interest xi is expressed as in (4), where
x−i stands for all other features except xi. With a prediction set of input vectors x( j) of size n, the PD-plot is estimated
with (5).

PD(xi) = Ex−i [ f̂ (xi, x−i)] (4)

PD(xi) =
1
n

n
j=1

f̂ (xi, x
( j)
−i ) (5)

Such a method estimates the dependence between the feature of interest and the outcome provided by a model f̂ .
Because the estimation of PD-plots relies on a prediction set, it can be unreliable in a less represented region of xi,
e.g., extreme edge values of xi. A learner-PD [28] method proposes point-wise confidence intervals for PD-plots. To

estimate the variance (6), several models f̂d are fitted on bootstrapped sub-samples of data. PD is an average of PDd

estimators over m refits.

V̂(PD(x)) =


1
m
+ c

· 1

m − 1

m
d=1


PDd(x) − PD(x)

2
(6)

A correction term c = n2
n1

is proposed by [29], where n1 and n2 correspond to sizes of train and test sets. This
term attempts to compensate for the fact that bootstrap refits share data across sub-samples and lead to a true variance
underestimation in a naive setting (c = 0). The learner-PD confidence intervals are estimated as in (7), where t1− α2
corresponds to a 1 − α2 quantile of t-distribution with m − 1 degrees of freedom.

CIPD(x)
=

PD(x) − t1− α2


V̂(PD(x)); PD(x) + t1− α2


V̂(PD(x))

 (7)
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2.4. Feature importance

Feature importance methods try to attribute each input variable according to some score. One of the methods is
Permutation Feature Importance (PFI) [7, 15]. PFI tests a feature’s ability to improve the model performance regarding
a chosen metric, e.g., mean square error or cross-entropy. The score of feature Xi is calculated as the difference between
a metric estimated over an original dataset and a modified dataset with randomly perturbed Xi. Another important
attribution method is SHapley Additve exPlanations (SHAP) [23]. SHAP works on a single instance of a dataset. It
uses a game-theory approach to ensure that all of the features in the input vector have an equal impact on the model’s
outcome. For each feature in the prediction set, the mean absolute SHAP value can be used to figure out the global-
level importance. Like PD-plot, SHAP quantifies the effect of a feature on the model’s outcome. That contrasts with
PFI, which indicates a contribution to performance and requires true labeling of the outcome. Both methods cannot
be regarded as reliable from a causal perspective if the model is under-fitted or the features are correlated.

2.5. Proposed framework

Similar to SAFE [18] (Supervised Assisted Feature Extraction), we propose to use PD to simplify continuous
features into a piece-wise constant space. The idea of hypothesis space reduction for the CATE model was discussed
in [36, 5]. If the new space is parametric, it leads to asymptotically normal parameter estimates and, thus, facilitates
the construction of confidence intervals. Such a method also helps to capture the heterogeneity of the treatment in an
interpretable manner. We propose an extension to SAFE: SAFE for treatment heterogeneity (SAFE-TH) that includes
four steps, as shown in Algorithm 1. The proposed method introduces extra control over the feature transformation as
it is supplied with variance estimation for PD-plots.

Algorithm 1 Procedure for Supervised Assisted Feature Extraction for Treatment Heterogeneity (SAFE-TH).
1) Fit a treatment heterogeneity effect estimator.
2) Select the essential features of the treatment effect model and build PD-plots.
3) Choose a feature of interest from a set of the most important ones and transform it into one-hot binned space

considering the information from the PD-plot.
4) Fit a new linear treatment heterogeneity effect model that only depends on a transformed interest feature and

reports each estimated parameter’s significance level and confidence interval.

3. Experiment and results

This section reports the experiment setup and results for each framework component. We tested the performance
of confidence intervals for Learner-PD and feature importance ranking based on the synthetic and semi-synthetic data
correspondingly. The final results include a description of the obtained piece-wise constant functions with asymptotic
and bootstrap confidence interval estimates on the real dataset.

3.1. Model selection

We tested the performance of several ML algorithms over our dataset, including Lasso, Random Forest, and Light-
GBM (Table 2). The characteristics were tested and found to be unrelated. The absolute value of Spearman’s correla-
tion for ordered and continuous features and Matthew’s coefficient for categorical features remained below 0.4, which
corresponds to a below moderate correlation level. The treatment effect in the Double ML setting is expected to be
linear regarding the prognostic effect and propensity score models. In the former case, we chose regressor versions of
the tested methods to work around this limitation instead of classifiers to eliminate a logistic non-linear link function.
We tuned greedily by fitting each of the models with a 5-fold cross-validation. We collected the mean value of average
precision and the area under the receiver operating characteristic curve (ROC AUC) to compare models. To estimate
both measures, we cut the output score to fit between 0 and 1. The number of estimators was limited to 250 for the
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Random Forest model and 300 for the LightGBM model. Furthermore, to prevent over-fitting and complex interac-
tions, we limited the maximum tree depth for the latter models to three, and the maximum number of leaves to eight.
The learning rate of LightGBM was tuned down to 0.095. We took the LightGBM model as the best base learner for
further experiments to fit our data well.

Table 2. Selection across possible models. Average CV score.

Model Average Precision ROC AUC

Lasso 0.570499 0.582207
Random Forest 0.763213 0.761838
LightGBM 0.796917 0.803652

3.2. Confidence intervals for learner-PD

We conducted a simulation study to empirically check the learner-PD method’s coverage of the confidence interval
(CI). With a data generation process (DGP) in (8) that mimics some of the qualities of our real dataset, 1, 000 synthetic
samples of size 7, 000 were generated. We estimated the CATE model with a 3-fold cross-fit using a Double ML
framework. According to a cross-validation setting, the CATE model is fitted to samples that combine the results of
all folds. For CATE PD variance estimation, we used a conservative correction term of c = 2/1 for a case of 3-fold
cross-validation, as the testing data for models Ĝ (prognostic) and F̂ (propensity score) corresponds to the training
data for θ̂ (CATE). We compared the average coverage and width of 90% CI depending on the number of bootstrap
model refits (2 to 25); see Figure 1. For each important feature, we measured how frequently the ground-truth PD
was within the learner-PD CI at five equidistant points within the box-plot whiskers for that feature. While the CI
estimated with the correction term c reached the target 90% coverage, the CI without correction remained close to the
82% threshold.

X1 = Poiss(0.5)
X2 = N(0.5, 1)
X3 = Bernoulli(0.3)
X4 = Discrete(P(0) = 0.35, P(1) = 0.25, P(2) = 0.22, P(3) = 0.18)
X5 = U(0, 1)
X6−10 = N(0, 1)
X11−15 = U(0, 1)
Y = θ(X) · T +G(X) + ϵy, ϵy ∼ N(0, 0.12)
T = Bernoulli(0.2)
G(X) = 0.5 − 0.02X1 + 0.001X2 + 0.1X3 − 0.02X5 · 1{X5 > 0.2}
θ(X) = 0.08 · 1{X1 = 0}

+ (−0.05 · 1{X2 ≤ 0.3} + 0.1 · 1{X2 > 0.55} + 0.03 · 1{X2 > 1})
+ 0.15 · 1{X4 = 3}
+ (−0.15X6 + ϵ6 · 1{X6 > 1})
ϵ6 ∼ N(0, 1)

(8)

3.3. Validation of feature importance

To validate the feature importance methods, we used a semi-synthetic dataset with the original features but artifi-
cially generated outcome and treatment effect, similar to [13], see (9). With the synthetic labels and treatment effects,
we aimed to mimic the features’ marginal behavior realistically. The Top-5 most important covariates of the treat-
ment effect model were collected over 100 simulations. To rank them by the importance level, we applied the mean
absolute SHAP, PFI, and split importance (calculated as the number of times a feature was used in a decision split of
a tree-based model). For the mean absolute SHAP score, we used a TreeSHAP [24] implementation that utilizes an
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Fig. 1. Average learner-PD confidence interval coverage (left) and width (right) depending on the number of bootstraps refits for the CATE model
for the fully synthetic DGP data.

inherent tree structure of a model to impute a background set. Also, for the PFI loss function, we took a negative mean
squared error weighted according to the propensity score of each sample. In Table 3, top-5 coverage corresponds to the
number of actually important features within the reported top-5; top correct reflects the number of correctly reported
consecutive features before the first appearance of a wrong one. Both mean absolute SHAP and weighted PFI returned
a median of 3 top-correct features, but SHAP demonstrated slightly better performance in terms of mean top-5 and
top-correct values. The split importance provided the worst results.

θ1(X) = 1{X1 > 0.2} · 0.05 · X1 + 1{X1 > 0.8} · ϵθ1 , ϵθ1 ∼ N(0, 0.22)
θ2(X) = 1{X2 = 3} · (−0.05) + 1{X2 = 4} · 0.1
θ3(X) = 1{X3 ≤ 0.2} · (X3 − 0.2) + 1{X3 > 0.65} · (X3 − 0.65) · 0.03
θ4(X) = 1{X4 = 1} · (−0.02) + 1{X4 ∈ [1, 6]} · 0.1 + 1{X4 > 6}
θ5(X) = 1{X5 ∈ [0.7, 0.9]} · 0.1 + 1{X5 > 0.9} · (−0.1 + ϵθ5 ), ϵθ5 ∼ N(0, 0.12)
θsynthetic =

∑5
i=1 θi(X)

G1(X) = 0.25 − 0.05X4
G2(X) = 1{X2 = 0} · (−0.1) + 1{X2 = 1} · 0.3 + 1{X2 = 3} · 0.1 + 1{X2 = 4} · 0.1
G3(X) = 1{X5 > 0.02} · 0.05
G4(X) = 1{X6 ≤ 0.7} · 0.01 · X6 + 1{X6 > 0.7} · 0.04 · (X6 − 0.7)
G5(X) = 0.15 X7
G6(X) = 1{X8 ≤ 3650} · (0.05 − X8 · 0.05/3650)
Gsynthetic =

∑6
i=1 Gi(X) + 0.22

Ysynthetic = 1{θsynthetic · T +Gsynthetic + ϵy > 0.4}, ϵy ∼ N(0, 0.12)

(9)

In (9) X1 corresponds to ‘current tangible assets ratio’ , X2 to ‘Product‘ , X3 to ‘current gross margin ratio’ , X4 to
‘Nbr fin contracts’ , X5 to ‘debt share’ , X6 to ‘current debt ratio’ , X7 to ‘rejections’ , X8 to ‘relationship duration’.
Exposure to Covid-19 shock T remained identical to the real dataset. Ysynthetic was intentionally transformed into a
binary variable to imitate the original label.

Table 3. Comparison of feature importance methods over semi-synthetic data. Average over 100 simulations.

Importance mean top-5 coverage mean top correct median top correct

Mean Abs SHAP 3.55 3.30 3
PFI 3.29 2.92 3
Split 2.53 1.80 2

3.4. Obtained results from real-life datasets

We fitted a Double ML framework with a LighGBM regressor for the prognostic model, the same type of re-
gressor for the CATE model, and the LightGBM classifier for the propensity score model. A 3-fold cross-fit was
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Fig. 2. Learner-PD plots for the top four most important features with 90% CI; y-axis represents the estimated average model prediction conditioning
on the value of the feature of interest; grey lines show PD for each refit.

used. According to the mean absolute SHAP of the CATE model, the first four most important features were ‘cur-
rent tangible assets ratio’, ‘Nbr fin contracts’, ‘Product’, ‘current gross margin ratio’. The learner-PD plots of over
20 refits with correction in Figure 2 provided insights to perform feature binning. Table 4 reports the significance
of the piece-wise constant function for each feature as a single confounder of the CATE model. In the latter set-
ting, prognostic and propensity score models remained the same, but the CATE model was fitted with weighted least
squares corresponding to the binned dummy variables without intercept. We collected estimates of each naive and
bootstrapped constant with 20 refits and correction (c = 2). The areas with lower variance in the PD plots inherently
provided more significant constant estimates. For the naive method, we used a double-sided Z-test with a null hy-
pothesis that the estimated value differs from zero. In case of the bootstrap estimation, we used the same hypothesis
for a t-test. A p-value of the Jarque–Bera test was also reported to support the normality assumption of the values’
distribution across bootstrapped refits.

Table 4. Findings for CATE heterogeneity over reduced hypothesis space. Top-4 important features with (0.05, 0.95) confidence interval quantiles.
P > stands for a p-value of a corresponding test.

Naive Bootstrap

Feature Bin Value P > | Z | Asymptotic CI Value P > | t | P > JB Bootstrap CI

current tangible assets ratio ≤0.2 0.010 0.583 [-0.020, 0.041] 0.008 0.055 0.700 [-0.035, 0.050]
(0.2, 0.9] 0.110 < 0.001 [ 0.083, 0.138] 0.108 <0.001 0.754 [ 0.080, 0.136]
> 0.9 -0.129 0.268 [-0.319, 0.062] -0.105 <0.001 0.366 [-0.385, 0.175]

Nbr fin contracts ≤0.5 0.015 0.455 [-0.018, 0.048] 0.013 0.003 0.969 [-0.030, 0.056]
(0.5, 6.5] 0.100 < 0.001 [ 0.070, 0.129] 0.099 <0.001 0.814 [ 0.058, 0.140]
> 6.5 0.011 0.723 [-0.040, 0.063] 0.001 0.851 0.862 [-0.071, 0.074]

Product {0,1,2} 0.037 0.013 [ 0.012, 0.061] 0.036 <0.001 0.961 [ 0.000, 0.072]
{3} -0.069 0.121 [-0.142, 0.004] -0.069 <0.001 0.858 [-0.163, 0.025]
{4} 0.173 < 0.001 [ 0.130, 0.217] 0.174 <0.001 0.766 [ 0.093, 0.254]

current gross margin ratio ≤ 0.0 -0.057 0.473 [-0.189, 0.074] -0.018 0.223 0.845 [-0.178, 0.141]
(0.0, 0.8] 0.062 < 0.001 [ 0.041, 0.084] 0.058 <0.001 0.889 [ 0.031, 0.085]
>0.8 0.091 0.073 [ 0.007, 0.174] 0.107 <0.001 0.487 [ 0.009, 0.205]

4. Discussion

In this study, we introduce a novel framework aimed at exploring a narrowed-down hypothesis space of treatment
heterogeneity by leveraging model-agnostic interpretability techniques. Specifically, we employ partial dependence
(PD) plots, accompanied by confidence intervals derived from the learning model’s perspective, to substantiate an
expert’s rationale behind employing a simplified parametric feature transformation. The utilization of this approach
offers two key advantages. Firstly, it facilitates the identification of reduced heterogeneity hypotheses, thereby en-



	 Kyrylo Medianovskyi  et al. / Procedia Computer Science 225 (2023) 2163–2172� 2171
K. Medianovskyi et al. / Procedia Computer Science 00 (2023) 000–000 9

abling a more focused analysis of treatment effects. Secondly, it provides a measure of uncertainty that enhances the
interpretability of the obtained results.

Based on the modeling results, as demonstrated in Table 4 and Figure 2, it is evident that the importance and
confidence intervals for individual features are not equally distributed across all feature values. The uncertainty in
PD-plots corresponds to the uncertainty in the piece-wise constant hypothesis space because the PD-plot shows how
the average predicted value of the target variable changes as the input variables are varied. The piece-wise constant
hypothesis space determines the regions of the input space where the model assumes a constant value for the target
variable. Therefore, the uncertainty in the PD-plot reflects the uncertainty in the model’s decision rules and the regions
of the input space where the model’s assumptions hold. Consequently, these reduced heterogeneity hypotheses and
the associated uncertainty measure can be effectively utilized to formulate treatment policies that are comprehensible
and explainable to domain experts.

By applying the framework for the case of access to credit for SMEs and creating individual bins for highlighted
features, it is evident that practical implications exist. All displayed confounders contain value regions of higher and
lower uncertainty. Specifically, it is exacerbated at extremes. Throughout most values (bin [0.2–0.9]), the current
tangible asset ratio demonstrates a relatively low impact on the model’s prediction. A slight upward trend indicates
that companies with higher values were more likely to be credited rationed during times of uncertainty. At high feature
values (bin [>0.9]), the effect of a higher current tangible asset ratio starts to impact a company’s ability to access
credit positively. Though the average effect is positive, the result is inconclusive, as the CI are wide and indicate both
positive and negative impacts on overall credit accessibility during times of uncertainty. Findings for the current gross
margin ratio (similar to the current tangible assets ratio) suggest that the model is relatively well able to estimate
the impact on the model’s outcome for center values (bin [0.0–0.8]) while decreasing in certainty for tail values.
These findings suggest that even if the contribution of a feature is important, the extent might not be uniform across
actual feature values. Based on the provided insights, a practical use of the proposed framework could be applied in
real world decision making, where feature values with narrow CI would provide conclusive insights, while wider CI
would indicate higher uncertainty and require further evaluation.

5. Conclusion

The speed and efficiency of modern supervised ML models under the hood of Double ML provide an opportunity
to estimate a treatment effect with many control and confounding features. The proposed SAFE-TH framework helps
to leverage the interpretability methods for heterogeneous treatment effect estimators and allocate a smaller piecewise
constant hypothesis space for the features of interest. The reported significance of each binning threshold over the
given confounder helps to provide interpretable treatment policies.

The provided estimation of bootstrapped PD point-wise CI does not inform a spread in the data. While the percentile
CI method could help, that would require at least 100 model recalculations over bootstrapped samples. Despite that,
the resulting bootstrap CI of heterogeneity coefficients is trustworthy due to their asymptotic normality. The first three
months of the pandemic were chosen as a treatment period for SMEs. This study was limited in data to observe further
possible effects through time, including the consecutive supportive measures.

Future work might extend the treatment effect estimation with non-linearity for the outcome model proposed
by [30], specifically to use a logistic link function in the case of a binary dependent variable. As well, the frame-
work might include methods to search for feature interactions.
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