
 

Kaunas University of Technology 

Faculty of Mechanical Engineering and Design 

Mathematical Modelling of Launching a Rocket via a 
Quadcopter 

Master’s Final Degree Project 

 

Arda Zumrutkaya 
Project author 

 

Assoc. Prof. Saulius Japertas 
Supervisor 

 

Kaunas, 2024 



 
 

 

Kaunas University of Technology 

Faculty of Mechanical Engineering and Design 

Mathematical Modelling of Launching a Rocket via a 
Quadcopter 

Masters’s Final Degree Project 

Aeronautical Engineering (6211EX024) 

 
Arda Zumrutkaya 
Project author 

 
Assoc. Prof. Saulius Japertas 
Supervisor 

 
Lect. Janina Jablonskytė 
Reviewer 

 

Kaunas, 2024 



 

 

Kaunas University of Technology 

Faculty of Mechanical Engineering and Design 

Arda Zumrutkaya 

Mathematical Modelling of Launching a Rocket via a 
Quadcopter 

Declaration of Academic Integrity 

I confirm the following:  

1. I have prepared the final degree project independently and honestly without any violations of the 
copyrights or other rights of others, following the provisions of the Law on Copyrights and Related 
Rights of the Republic of Lithuania, the Regulations on the Management and Transfer of Intellectual 
Property of Kaunas University of Technology (hereinafter – University) and the ethical requirements 
stipulated by the Code of Academic Ethics of the University;  

2. All the data and research results provided in the final degree project are correct and obtained 
legally; none of the parts of this project are plagiarised from any printed or electronic sources; all the 
quotations and references provided in the text of the final degree project are indicated in the list of 
references; 

3. I have not paid anyone any monetary funds for the final degree project or the parts thereof unless 
required by the law; 

4. I understand that in the case of any discovery of the fact of dishonesty or violation of any rights of 
others, the academic penalties will be imposed on me under the procedure applied at the University; 
I will be expelled from the University and my final degree project can be submitted to the Office of 
the Ombudsperson for Academic Ethics and Procedures in the examination of a possible violation of 
academic ethics. 

Arda Zumrutkaya 

Confirmed electronically 



 

 

Kaunas University of Technology 

Faculty of Mechanical Engineering and Design 

Task of the Master’s Final Degree Project  
Given to the student – Arda Zumrutkaya 

1. Topic of the project  
Mathematical Modelling of Launching a Rocket via a Quadcopter 

(In English) 
Raketos iš kvadrakopterio paleidimo matematinis modeliavimas 

(In Lithuanian) 
2. Aim and tasks of the project  

Aim: to create the mathematical model of a quadcopter during the launching of a rocket. 
Tasks: 
1. to analyse similar works of literature for quadcopter and rocket kinematics and dynamics, rocket 
physics, recoil effects, and mathematical model validation methods; 
2. to determine the methodology of the work, covering mathematical model development for both 
pre- and post-launch; 
3. to create a mathematical model of quadcopter behaviour before and after missile launch that 
includes both the quadcopter and the missile; 
4. to validate the mathematical model by the dichotomy method; 
5. to write the conclusions. 

3. Main requirements and conditions 

The quadcopter and rocket masses are set to be 4 kg and 1 kg respectively. The system is modelled 
when it is at 50 meters AGL. Normal air conditions without including aerodynamic effects are set 
for the model. The methodology converges when the 𝜐𝜐𝑟𝑟 ≈ 59.99 m/s within the specified bounds, 
validating the mathematical model. The bounds are set between 50 and 60 m/s. 

4. Additional requirements and conditions for the project, report and appendices  

Not applicable. 
 
1

 
Project author Arda Zumrutkaya    2023-09-15 
 (Name, Surname)    (Date) 

 
Supervisor Assoc. Prof. Saulius Japertas    2023-09-15 
 (Name, Surname)    (Date) 

 
Head of study 
field programs 

Assoc. Prof. Saulius Japertas    2023-09-15 
(Name, Surname)    (Date) 

 



 

Zumrutkaya, Arda. Mathematical Modelling of Launching a Rocket via a Quadcopter. Master's Final 
Degree Project / supervisor Assoc. Prof. Saulius Japertas; Faculty of Mechanical Engineering and 
Design, Kaunas University of Technology. 

Study field and area (study field group): Aeronautical Engineering (E14), Engineering Science. 

Keywords: quadcopter dynamics, mathematical modelling, dichotomy method, post-launch analyses. 

Kaunas, 2024. 53 pages. 

Summary 

In this study, a quadcopter’s mathematical model during a rocket launch is presented and analysed 
using MATLAB to explore the quadcopter's behaviour. The validation of the model is conducted 
through the dichotomy method. This comprehensive mathematical model covers pre- and post-launch 
scenarios, covering the kinematics, dynamics, and system linearisation. By employing MATLAB and 
the dichotomy method, the study simulates the quadcopter's behaviour, solving the nonlinear 
representations of the system. 

The research incorporates literature analyses on quadcopter and rocket dynamics, recoil effects, 
model validation, and methodological aspects, including the problem statement, mathematical model 
formulation, model validation employing the dichotomy method, and MATLAB implementation. 
While no direct studies cover the exact focus of this study, literature findings on quadcopter and 
rocket behaviour offer sufficient information to understand the kinematics and dynamics of the 
system and comprehend rocket behaviour post-launch. 

The mathematical model, formulated based on Newton-Euler equations and Newton’s laws of 
motion, captures pre- and post-launch kinematics and dynamics. It includes equations defining the 
system’s position and orientation in space, linear and angular velocity, total thrust, total moment, 
torque, rotational and translational acceleration, all linearised and presented in state space form. 

The model considers the quadcopter hovering at an altitude of 50 meters AGL during a rocket launch, 
with the rocket launched in the direction of the positive X-axis, producing a negative displacement 
of the quadcopter along the same axis and a downward pitch angle of 30°. Dependent variables 
include the quadcopter’s reaction force, velocity, and acceleration, while independent variables 
involve the quadcopter and rocket mass, system mass, gravitational acceleration, rocket launch 
altitude, and rocket launch velocities. 

Section 5 outlines the principles of the dichotomy method, detailing the setup of initial bounds and a 
convergence tolerance level. The bounds range between 50 and 60 m/s rocket velocities with 
increments of 0.5 m/s, with a tolerance level set at one millionth (0.000001). However, the minimum 
rocket launch velocity is approximately 𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚  ≈ 55 m/s, the model tests between 50 and 60 
m/s, observing successful convergence of both quadcopter velocity and acceleration equations around 
a 59.99 m/s rocket launch velocity. 

Furthermore, the study explores the quadcopter’s behaviour across various rocket launch velocities 
within a specific timeframe, providing data on velocity, acceleration, position trajectory, total energy, 
and more. It concludes by noting the absence of assessment regarding stability, control systems, or 



 

trajectory movement for both quadcopter and rocket pre- and post-launch. The methodology 
employed ensures a systematic validation of the system’s mathematical model, with success 
determined by root convergence for each bound. The generated MATLAB graphs illustrate the 
relationship between quadcopter velocity and acceleration for specific timeframes across different 
rocket launch velocities in the post-launch scenario. 
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Santrauka 

Šiame tyrime pateikiamas matematinis kvadrakopterio modelis raketos paleidimo metu ir 
analizuojama jo elgsena naudojant MATLAB. Modelio patvirtinimas atliekamas taikant dichotomijos 
metodą. Šis išsamus matematinis modelis aprašo scenarijus prieš raketos paleidimą ir po paleidimo, 
ir apima kinematiką, dinamiką ir sistemos linearizaciją. Taikant MATLAB ir dichotomijos metodą, 
tyrimas imituoja kvadrakopterio elgseną, sprendžiant netiesines sistemos reprezentacijas. 

Tyrimas apima literatūros analizę apie kvadrakopterių ir raketų dinamiką, atatrankos efektus, 
matematinių modelių korektiškumo patvirtinimą ir metodologinius aspektus, įskaitant problemos 
apibrėžimą, matematinio modelio formulavimą, modelio patvirtinimą naudojant dichotomijos metodą 
ir  įgyvendinimą MATLAB programoje. Nors trūksta mokslinių tyrimų apie raketos iš kvadrakopterio 
paleidimo matematinių modeliavimų, literatūros išvados apie kvadrakopterių ir raketų elgesį suteikia 
pakankamai informacijos, kad galima būtų suprasti sistemos kinematiką ir dinamiką bei raketų elgesį 
po paleidimo. 

Siūlomas matematinis modelis remisi Niutono-Eulerio lygtimis ir Niutono judėjimo dėsniais, fiksuoja 
kinematiką ir dinamiką prieš ir po raketos paleidimo. Šį modelį sudaro lygtys, apibrėžiančios sistemos 
padėtį ir orientaciją erdvėje, tiesinį ir kampinį greitį, bendrą trauką, bendrą momentą, sukimo 
momentą, sukimosi ir transliacijos pagreitį; visos lygtys yra tiesinės ir pateikiamas sistemos būsenos 
erdvės forma. 

Sukurtas matematinis modelis buvo patikrintas darant prielaidas, kad raketos paleidimo metu 
kvadrakopteris sklando 50 metrų AGL aukštyje, o raketa paleidžiama teigiamos X ašies kryptimi, 
todėl keturkopteris pasislenka neigiama kryptimi išilgai tos pačios ašies ir 30° nuolydžio kampu 
žemyn. Priklausomi kintamieji apima kvadrakopterio reakcijos jėgą, greitį ir pagreitį, o nepriklausomi 
kintamieji apima kvadrakopterio ir raketos mases, sistemos masę, gravitacinį pagreitį, raketos 
paleidimo aukštį ir raketos paleidimo greitį. 

Dichotomijos metodo principai yra aptariami 5 skyriuje. Šis metodas reikalauja nustatyti pradinį 
intervalą ir konvergencijos toleranciją. Intervalai nustatyti nuo 50 iki 60 m/s raketos greičių su 0,5 
m/s žingsniu, o tolerancijos lygis siekia vieną milijoninę dalį (0,000001). Pavyko apskaičiuoti 
mažiausią raketos paleidimo greitį, kuris apytiksliai yra 𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚  ≈ 55 m/s.  Modelio testavimas 
atliktas nuo 50 iki 60 m/s su 0,5 m/s padidėjimu, siekiant nustatyti dichotomijos metodo sėkmę. 
Kvadrakopterio greičio ir pagreičio lygtys konvergavo sėkmingai į maždaug 59,99 m/s raketos 
paleidimo greitį. 



 

Be to, tyrime tiriamas kvadrakopterio elgsena įvairiais raketų paleidimo greičiais per tam tikrą 
laikotarpį, pateikiant duomenis apie greitį, pagreitį, padėties trajektoriją, bendrą energiją ir kt. 

Tyrime pažymima, kad nebuvo išnagrinėtas kvadrakopterio ir raketos stabilumas, valdymo sistemų 
ar trajektorijos judėjimas tiek prieš, tiek po raketos paleidimo. Metodika siūlo sistemingą požiūrį į 
matematinio modelio teisingumo validavimą, o tyrimo sėkmė vertinama pagal kiekvienos ribos 
šaknies konvergenciją, kuri skaičiuojama kiekvienam intervalui. Sukurti MATLAB grafikai 
iliustruoja ryšį tarp kvdarakopterio greičio ir pagreičio tam tikru laikotarpiu, esant skirtingiems raketų 
paleidimo greičiams  po jų paleidimo. 
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Introduction 

Armed UAVs are becoming more dominant in modern combat [23,27,41]. These types of drones have 
attracted attention for their ability to conduct surveillance and launch attacks, granting them an 
advantage in modern combat. 

Recent developments in armed UAVs have sparked discussions around the idea that it may no longer 
be necessary to put soldiers in harm’s way, as UAVs can accomplish the same mission. UAVs have 
transformed modern combat and are a significant reason why countries continue to invest in this type 
of technology. Although this technology is not a new concept [21,34,39], UAVs have experienced 
significant technological improvements in recent years, making them even more valuable tools for 
military and law enforcement operations. 

Because of their potential and rapidly advancing technology, the rising industry of UAVs has 
garnered a lot of attention in recent years. What sets UAVs apart from other systems is their capability 
to carry out operations without the need for close or onboard human involvement. 

UAVs can be classified according to their features and capabilities. These classifications are: 
– range and endurance; 
– size; 
– weight; 
– degree of autonomy; 
– altitude; or 
– a combination of these factors [47]. 

Table 1. UAV classification according to the US Department of Defence [47] 

Category Size Maximum gross 
take-off weight, lbs 

Normal operating 
altitude, ft 

Airspeed, knots 

Group 1 Small 0-20 <1,200 AGL <100 

Group 2 Medium 21-55 <3,500 AGL <250 

Group 3 Large <1,320 <18,000 MSL <250 

Group 4 Larger >1,320 <18,000 MSL Any airspeed 

Group 5 Largest >1,320 >18,000 MSL Any airspeed 

Furthermore, the applications of UAVs in military and law enforcement include: 
– reconnaissance, surveillance, and target acquisition; 
– close air support; 
– search and rescue; 
– cargo deployment; 
– firefighting; and 
– other various operations. 

“A quadcopter, also known as a quadrocopter, or quadrotor is a type of helicopter or multicopter 
equipped with four propellers” defined by [19]. This means that a quadcopter is a multi-helicopter 
driven by four rotors, positioned at the end of the symmetrical structure of the quadcopter in a square 
formation and distributed equally from the quadcopter’s COM. The propellers of the quadcopters are 
employed with narrow chord airfoils to create a lift. 
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These rotors, which are positioned at the end of each arm of the quadcopter, allow a quadcopter to 
hover without the need for forward airspeed. This unique feature enables them to maintain their 
position over a specific point in the sky. Moreover, quadcopters are highly manoeuvrable and can 
quickly change direction, making them an excellent choice for utilisation in modern combat scenarios. 
Their manoeuvrability makes them well-suited for RTSA and attacking enemy targets. 

Employing a quadcopter with a rocket launcher offers numerous advantages over using a helicopter 
for missions. Due to quadcopter's smaller size and reduced noise output, they are less noticeable than 
their conventional counterparts. Furthermore, their ability to operate in confined spaces makes them 
a practical choice for tactical combat scenarios. 

Considering the current circumstances, delving into the depths of this study is important to gain a 
more comprehensive understanding of its aim and purpose.  

The aim of this work is to create the mathematical model of a quadcopter during the launching of a 
rocket. 

There have been no published on this subject, therefore, it is crucial to thoroughly analyse any 
potential irregularities of quadcopter’s behaviour during the launch of a rocket and reach a clear and 
accurate understanding of the matter at hand. 

This is achieved through the following tasks: 
1. to analyse similar works of literature for quadcopter and rocket kinematics and dynamics, rocket 

physics, recoil effects, and mathematical model validation methods; 
2. to determine the methodology of the work, covering mathematical model development for both 

pre- and post-launch; 
3. to create a mathematical model of quadcopter behaviour before and after missile launch that 

includes both the quadcopter and the missile; 
4. to validate the mathematical model by the dichotomy method; 
5. to write the conclusions. 

It is important to note that this study does not assess the stability, control systems, or trajectory 
movements of either the quadcopter or rocket in the pre- and post-launch environments. 
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1. Literature review 

The study of a quadcopter’s dynamic mathematical modelling forms the foundation for understanding 
the complexity of launching rockets from a quadcopter. While there are no studies specifically on 
launching a rocket from a quadcopter, considerable research exists on related topics, such as 
quadcopter dynamics, and rocket physics. These studies explain the fundamental features of 
mathematical modelling of quadcopter dynamics as well as recoil effects acting on the quadcopter 
while launching a rocket from it. 

The further development of [14], [1] delves into a more detailed discussion on the modelling and 
control of the quadcopter. The literature specifically focuses on quadcopter altitude and attitude 
control. To achieve this, the literature derives the mathematical model from [14]. With this model, 
the authors are able to determine the best control methods for the quadcopter. The PD and PID control 
systems are discussed in this literature and compared for their effectiveness in controlling the 
quadcopter’s altitude and attitude. Overall, the literature provides a comprehensive analysis of the 
modelling as well as quadcopter control systems. Although quadcopter control systems are not 
examined in the current study, this literature provides highly useful mathematical modelling and 
altitude and attitude examination. 

[2] presents a complete analysis of structure movement characteristics in the event of launching a 
laser-guided short-range air defence rocket, analysing the impact of recoil, and resulting dumpings. 
To verify the structural model, a numerical simulation using MATLAB is conducted and the literature 
provides the vibrational characteristics of the system. Furthermore, the effects of a missile launch 
from a vehicle are presented. Overall, the literature provides a detailed insight into the recoil influence 
on a structure. 

[3] presents a mathematical model of a quadcopter and examines its behaviour under different 
configurations. The model presented in this literature is defined with a coordinate system of the 
quadcopter and its kinematics and dynamics using the Newton-Euler method while taking into 
account the dynamics of the rigid 6 DOF body. The literature provides a coordinate system that 
presents the inertial body of the quadcopter, and the body coordinate system, which has its origin at 
the centre of the quadcopter. This hybrid coordinate system in the literature simplifies the model and 
enables the derivation of the quadcopter’s dynamic model with respect to its coordinate. The derived 
equations are then implemented in a simulation to observe the behaviour of the quadcopter 
mathematical model in different conditions. 

The authors highlight that due to the complexity of the structural model and the insignificance of 
prediction performance, some effects are not included in the model derivation Despite these facts, the 
literature provides a comprehensive mathematical model for quadcopter behaviour and showcases its 
applicability through simulation and graphical representation. 

[4] presents the application of dynamic motion to analyse weapon and armament systems. The 
literature provides a depiction of a motion simulation that is conducted to study the movement of a 
shooter’s shoulder when launching a weapon. Furthermore, the literature provides a detailed analysis 
of graphs that illustrate velocity versus damping coefficients for two specific shock absorbers, 
examined in the literature. This literature aims to create a model that could help in determining the 
ideal damper characteristics based on various ammunition parameters and weapon configurations. 
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Overall, this literature holds a fundamental understanding of the dynamic motion of a shoulder-fired 
weapon and the effects are studied to evaluate the post-launch rocket and quadcopter behaviours. 

[5] presents challenges of obtaining continuous-time models for a small-size quadcopter’s dynamics 
through a predictor-based subspace identification method. The control structures considered in this 
literature are the inputs and outputs of a standard quadcopter control architecture. Furthermore, the 
literature focuses on a continuous-time algorithm that utilises Laguerre filters as an identification 
procedure for deriving the necessary models. Although the literature does not further discuss the 
control structure of a standard quadcopter control, it emphasizes the continuous-time model work for 
small-scale quadcopter dynamics. 

[6] presents a quadcopter mathematical model, considered as a second-order linear system. While the 
literature explicitly discusses the kinematics and dynamics of a quadcopter, it provides insight into 
two different methods that can be used to derive its dynamics: the Lagrangian equation and Newton’s 
laws of motion. However, the literature emphasises the control and stabilization of the quadcopter 
rather than its detailed kinematics and dynamics. As a result, the literature is carefully analysed for 
the current study to understand the kinematics and dynamics of the quadcopter. 

[7] presents modelling and control aspects of mini quadcopters. The literature primarily focuses on 
the design and control of a quadcopter and provides model analysis, considering the quadcopter’s 
dynamics and aerodynamical variations that arise due to its motion. The literature also examines the 
control and stability analysis, which are essential for manoeuvring a quadcopter safely and efficiently 
in the air. Overall, the literature provides a detailed and comprehensive analysis of mini quadcopter 
modelling and control, however, the current study does not cover the control of a quadcopter, the 
modelling in this literature is studied to analyse the fundamentals of the quadcopter’s dynamics. 

[8] presents a comprehensive survey on the mathematical modelling of quadcopters, providing the 
identification of parameters using the models outlined in the survey. It encompasses various models 
of quadcopters, including nonlinear models with respect to their body and inertial frames. The 
discussed models encompass a range of parameters such as length of arm, sum of mass, inertial 
matrix, coefficient of friction, thrust, and drag. The literature highlights that the parameters can be 
obtained experimentally, by calculation, or through a combination of both methods. 

Moreover, the literature discusses two different approaches to describe the dynamics of a quadcopter: 
Tait-Bryan angles and quaternions. It explains the advantages of using quaternions in terms of 
efficiency and singularity-free representation, which can significantly enhance the overall 
performance of the quadcopters. This literature offers a comprehensive overview of the mathematical 
modelling of quadcopters, beneficial for the current study. 

Dynamic inversion is employed in [9] to develop a controller ensuring stability and tracking for the 
quadcopter, considering its roll-pitch-yaw dynamics. While the literature does not extensively delve 
into the quadcopter’s kinematics and dynamics, it provides sufficient insight to comprehend the 
model structure for analysis in the current study. 

In the field of quadcopters, two notable models demonstrate their dynamics. The first model uses the 
Euler-Lagrange method to derive translational dynamics, while the second model employs the 
Newton-Euler method for rotational dynamics. The critical difference between these models lies in 
their utilisation of rotational matrices, extensively studied through simulations. The authors conclude 
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that while both models generate identical results for angular motions and elevation, they exhibit 
opposing behaviours in translational movements. This literature has been carefully examined to 
enhance the understanding of translational and rotational matrices in the current study [10]. 

[11] introduces the usage of the dichotomy (bisection) method. This methodology provides a 
numerical method for solving differential equations employing one variable. The literature describes 
an iterative process on how to determine the single parameter minimising root mean square error. 
This combination results in a highly accurate and efficient algorithm for solving differential 
equations. 

In addition to the theoretical analysis of the dichotomy method, this literature provides a flow chart 
illustrating the steps involved in utilizing the method for root estimation. Overall, this literature offers 
a valuable resource for understanding the dichotomy method, which is a powerful approach to solving 
differential equations employing one variable. 

[12] constructs a mathematical model for the quadcopter and presents a CAD model to estimate its 
physical properties such as mass and inertial properties. The literature utilises the 6 DOF quadcopter 
and incorporates the Newton-Euler approach for this purpose. However, it should be noted that a 
major limitation of this literature for the current study is its lack of comprehensive coverage of the 
quadcopter’s dynamics. 

[13] presents parameters significantly impacting the performance of the recoil system in the tank gun. 
The mathematical model is thoroughly developed, providing a recoil cycle for each launching. This 
enables theoretical simulation, prediction, and evaluation of the recoil system’s performance using 
MATLAB/Simulink. The model in this literature offers a comprehensive understanding of the 
complexities of the recoil system, crucial for optimizing the system. 

Additionally, the theoretical data is compared with actual data obtained from launching a tank gun in 
practice. This comparison enables a comprehensive analysis of both theoretical and real data, 
displaying a reliable match. 

Moreover, the literature focuses on analysing the force along the recoil distance, concluding the 
importance of spring stiffness. This analysis is critical in understanding the behaviour of the recoil 
system and optimizing its performance. Overall, this literature provides valuable insights into the 
complexities of the recoil system, studied for implementation into the recoil of rockets in the current 
study. 

[14] presents a quadcopter mathematical model, encompassing both its kinematics and dynamics. The 
quadcopter’s dynamic mathematical model is developed by considering thrust, moment, and the 
inertial matrix. The literature employs the Newton-Euler formulation to derive these elements. Before 
utilizing the quadcopter’s kinematics and dynamics, the literature introduces the axes of the inertial 
and body frame of the system. This approach aids in simulating the study to further analyse the 
quadcopter’s motion in space. Overall, this literature provides a detailed understanding of the 
quadcopter’s behaviour, studied in the current research to analyse and develop the quadcopter's state 
of motion. 

[15] presents the underlying theory of flight systems of guided rockets, involving nonlinear motion 
equations, modelling dynamics of aerodynamics, actuator, and measurement. This literature aims to 
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linearize a nonlinear system dynamic model to assist in framing stability and flight control design. 
Overall, this literature covers aspects of rocket motion that contribute to describing the rocket's 
motion in the current study. 

[16] presents a detailed approach to achieve a comprehensive understanding of the kinematics and 
dynamics of moving objects. The author thoroughly illustrates the fundamental principles of 
kinematics and dynamics, including Newton’s laws of motion. This book showcases the author’s deep 
understanding of the subject fundamentals and provides structural knowledge that can be employed 
to better understand the dynamics of quadcopters in motion. Overall, the book is a valuable source in 
the field of kinematics and dynamics, offering a solid foundation for understanding quadcopter 
dynamic structures. 

[18] presents a dynamical model for a four-rotor VTOL quadcopter named X4-Flyer. The model 
considers the dynamics of the frame and motor, including the system aerodynamics and the rotational 
effects on the model. This literature also examines flight conditions, involving decoupling rigid body 
dynamics from motor dynamics and developing a backstepping separate control design for the 
coupled system. 

Moreover, the literature covers calculations and validations ensuring the definiteness of certain 
matrices and bounds. The authors note that although these theoretical bounds can be loosened in real 
scenarios, the study highlights the importance of choosing appropriate values for certain parameters 
to ensure the positive definiteness of the incorporated matrices. 

Overall, the literature provides a comprehensive analysis of the dynamic model proposed for the X4-
Flyer, considering various factors affecting the system’s performance. The fundamentals of this 
model are analysed to establish the current study. 

[19] presents the complex issues of hovering a quadcopter and examines three key aerodynamic 
effects influencing a quadcopter’s performance: its velocity, angle of attack, and frame design. The 
literature presents theoretical developments validated using trust test stand measurements and flight 
tests with the STARMAC quadcopter. It also covers modelling dynamics during the climb, including 
power and thrust calculations. This literature concludes that theoretical data exhibits a high degree of 
accuracy in relation to the experimental data, enhancing controller performance. This literature is 
analysed to understand the dynamics of the STARMAC quadcopter. 

[20] presents an investigation of the angular velocity of a quadcopter and its correlation with the rates 
of change. The literature provides an explicit representation of the angular velocity, describing it in 
terms of the rates of change and the frame’s moment of inertia. 

The Lagrange-d’Alembert equations of the quadcopter’s rotation and angular velocities are expressed 
in elemental form to delve deeper into its dynamics. Additionally, the literature utilises the 
conservation of linear and angular moments in a Newtonian setup to offer a better understanding of 
the quadcopter’s dynamics. 

Furthermore, the literature delves into Lie Group Theory and Differential Topology to develop a more 
advanced mathematical model of the quadcopter. This approach provides a more comprehensive 
understanding of the quadcopter’s motion and behaviour under different conditions. 
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[22] presents an evaluation of an AA missile for guidance purposes. This guide is based on the target's 
location and velocity in relation to a guided object. The literature thoroughly examines a mathematical 
model and design system of a missile, focusing on its development phase. However, it's important to 
note that the study primarily focuses on the mathematical model evaluation of the missile. It doesn’t 
provide a comprehensive analysis of the mathematical methods necessary to ensure the feasibility 
and compatibility of the missile with system objectives. Nonetheless, it establishes a useful approach 
for explaining rocket physics, which is necessary to understand the behaviour of the rocket in the 
current study. 

[24] presents a valuable resource for comprehending the frames of reference used in defining 
coordinate systems and frames for the quadcopter’s kinematics and dynamics. The body frame is a 
fixed reference frame linked to the physical structure of a quadcopter, while the inertial frame is fixed 
in relation to the Earth’s surface. Analysing the quadcopter's kinematics and dynamics using both the 
Euler-Lagrange and Newton-Euler methods, explores translational and rotational components that 
collectively represent the motion subsystem of the quadcopter. 

While the study emphasizes the importance of quadcopter kinematics and dynamics, its primary focus 
remains on analyses of the control and stability. Overall, this literature on quadcopters provides a 
comprehensive overview of kinematics and dynamics, which are sufficient to comprehend the current 
study. 

Effective modelling of the quadcopter’s kinematics and dynamics demands careful precision. Euler 
angles, involving three translational and three rotational axes, typically express rotations in 6 DOF. 
While this study primarily focuses on modelling quadcopter dynamics, it doesn't cover other 
aerodynamic effects, requiring additional experiments for comprehensive analysis. The literature 
linearises the nonlinear model specifically for hovering, employing a first-order Taylor expansion to 
approximate the nonlinear system. It offers sufficient information and understanding of the 
quadcopter's mathematical model for the current study [25]. 

[26] presents a study on the degrees of freedom in the modelling and simulation of quadcopters across 
various flight conditions. The authors developed a state space model encompassing longitudinal, 
lateral, and vertical operations, explaining quadcopter behaviour under diverse flight conditions. To 
ensure model accuracy, the literature employs the von Karman model for wind disturbances during 
flight, considering it more effective than the Dryden approach for wind gust modelling. 

Additionally, the study creates a CAD model in SolidWorks and simulates the quadcopter using 
MATLAB/Simulink. These methods enable the testing and validation of the state space model's 
accuracy in depicting quadcopter behaviour under varying flight conditions. While offering insights 
into developing more efficient quadcopters for diverse applications, the current study doesn't cover 
such cases. However, this literature’s mathematical model is analysed for potential implementation 
in the current study. 

[28] presents a comprehensive model utilising Euler-Newton and Lagrangian approaches to formulate 
the quadcopter's body dynamics. The model offers a highly nonlinear representation of the 
quadcopter’s system. However, the authors prioritize linear control methodologies, such as LQ and 
LQG methodologies, over exploring the system's kinematics and dynamics. While the control 
methodologies aren't studied in the current study, this literature provides a deep understanding of 
rigid body dynamics. 
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[29] presents a detailed mathematical model that explains the quadcopter dynamics. The model is 
constructed on Newton-Euler and Euler-Lagrange equations, which are used to study the linear and 
angular composition of the system independently. The literature also takes the drag force, which is 
generated by air resistance, into account to make the model concrete on a more realistic basis. 

The literature highlights the importance of constructing a prototype of a quadcopter to accomplish 
more reliable and realistic outcomes. Overall, this literature provides invaluable insight into the 
complex structure of the dynamics of a quadcopter and lays a basis for the current study. 

[30] presents the functions of dynamic simulation and experimental verification of short recoil-
operated weapons with a vertical sliding wedge breechblock. The literature discusses the method for 
setting up the motion equation for the automatic launching system, in which the Lagrange equation 
of the second kind is utilised, and the model is compared with the experimental data. It provides the 
calculation steps and results of the dynamics calculation, which are then compared with the 
experimental data. Overall, this literature presents a comprehensive mathematical model and 
experimental verification for short recoil-operated weapons, highlighting the challenges and 
limitations in achieving accurate predictions. 

[31] presents a guide to the subject of mathematical modelling, estimation, and control for quadcopter 
UAVs, emphasizing their manoeuvrability and the ability to move in 6 DOF. The literature further 
delves into the dynamic equations of the quadcopter’s thrust, moment, and aerodynamics to present 
a detailed understanding of the underlying principles governing these systems. Moreover, it employs 
the linearisation of the quadcopter's dynamics to derive a linear controller. Additionally, it discusses 
the use of derivatives of the outputs, providing insight into calculating velocity, acceleration, and 
other dynamic variables essential to comprehend the dynamics of the studied system. Overall, this 
literature provides a comprehensive and detailed overview of the current study. 

[32] presents a detailed design and analysis of an active rocket launcher intended for use in an attack 
helicopter. The literature focuses on the launcher’s dynamic model and controller design, aimed at 
achieving accurate launch angles and reducing the workload of the pilot. Furthermore, it introduces 
drag and thrust disturbances to the rocket launcher. This literature covers various aspects of the 
launcher’s design and analysis, including the mathematical models describing the launcher’s 
dynamics, the control algorithms regulating the launcher’s motion, and simulations testing and 
validating the launcher’s performance. Overall, the literature provides comprehensive detail in the 
design and analysis of an active rocket launcher tailored to the needs of an attack helicopter. The 
system used in the literature is examined thoroughly, considering the dynamics of the rocket launcher 
studied in the current study. 

[33] provides a comprehensive nonlinear dynamic model development of a quadcopter equipped with 
four rotors. The literature describes the model as a complex nonlinear system with differential 
equations in state space form, aiding in understanding the underlying dynamics of the quadcopter. 
The literature then describes the process of linearising the system around an equilibrium point to 
ensure the simplification of the nonlinear model. 

Furthermore, the literature highlights the importance of controlling the stability and robustness of the 
system, which are crucial factors in ensuring the safe and efficient operation of the quadcopter. It 
provides a comprehensive analysis of these factors, emphasising the challenges and complexities 
involved in designing and implementing an effective control system for the quadcopter. 
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However, in the current study, the control, stability, and analysis of the robustness of the quadcopter 
and rocket are not included. A nonlinear dynamic model for a quadcopter equipped with four rotors 
is an essential aspect to consider in the current study. 

[35] presents a mathematical model validation of a system. The literature introduces some 
fundamental elements of model validation to provide examples of planning, experiments, and 
validation comparisons. It emphasises that model validation must be carried out during the process 
of the model validation, rather than the actual validation criteria. The literature emphasises the 
importance of comparing results obtained from the model to experimentally obtained response 
measures to ensure the validity of the studied model. This process helps researchers to evaluate the 
accuracy of their models and make necessary modifications to improve their model’s effectiveness. 
Proper model validation is important to confirm that a mathematical model can be relied upon to 
make predictions and decisions with confidence. 

[36] presents the complexities of quadcopter dynamics and provides a quadcopter mathematical 
model. The primary focus of this literature is to determine the model parameters for the quadcopter 
and solve differential equations of the model. The values obtained through calculations are significant 
to ensure the desired aerodynamic properties and control of a quadcopter. This literature emphasises 
the importance of accurate calculation of parameters to ensure the optimal performance of the 
quadcopter. Overall, the literature presents a detailed analysis of quadcopter dynamics and provides 
valuable insights into the mathematical modelling of such systems. 

[38] presents a dynamic model of an X4-Flyer quadcopter weighing four kilograms with one kilogram 
of payload. The authors of this literature highlight that while simple quadrotor dynamic models are a 
good starting point, they do not capture the complexity of behaviour exhibited by quadcopters in the 
real world. To elaborate, a quadcopter in the real world experiences blade flapping effects and 
variable propeller inflow velocities, which have never been discussed in simple models. 

The authors argue that the development of quadcopter’s dynamic mathematical modelling behaviour 
is essential for good control and better design analysis. The literature suggests that future studies 
should consider the flapping dynamics of quadcopters to create more accurate models. However, this 
literature does not cover aspects of the current study. It is worth noting the propeller’s behaviour in 
the real world. 

[40] presents the complexity of modelling a quadcopter, delving into the various challenges to 
accurately represent its dynamics. The quadcopter in this literature is characterised as an 
underactuated aircraft featuring fixed four-pitch angle rotors. The model is utilised using a simplified 
Lagrange equation, allowing for a detailed study of the quadcopter’s simple dynamic features. The 
literature examines the use of rotors in the quadcopter to produce longitudinal, lateral, and yaw 
moments, along with thrust, moments, and inertia moments concerning the quadcopter’s features. 
Furthermore, this literature further explores the design of a PID control system for the quadcopter. 
However, the control system is not part of the current study; this literature is used to deeply investigate 
quadcopter dynamics. 

[42] presents a concept of DLSRRs released from a UAV at up to 20 km height and 700 m/s velocity. 
The literature examines theoretical and thermodynamic analysis, utilising various MATLAB codes 
to calculate the parameters and trajectories of the DLSRRs. Although this literature does not cover 
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the trajectory movement of both quadcopter and rocket in the post-launch environment, it explains 
the fundamentals of rocket physics. 

[43] presents a comprehensive physical and mathematical model of an accelerator-equipped short 
recoil-operated firearm. The proposed model takes into account the recoil process stages of the 
system, enabling the simulation and evaluation of how different design parameters affect recoil 
velocities. The mathematical model is obtained using Eulerian integration and simulated in 
MATLAB. The literature provides a detailed and accurate representation of the firearm’s action 
which helps to evaluate recoil force and stages acting on both quadcopter and rocket launcher in the 
current study. 

[44] presents the quadcopter’s kinematics utilising a mathematical model that considers variables 
such as velocity and its vector in the body frame. However, the quadcopter’s dynamics are not 
examined explicitly in this literature. The primary focus of the study is on the development of a 
control algorithm and a self-stabilising control system for the quadcopter. Although the control 
algorithm and self-stabilising control system are not discussed in the current study, the fundamentals 
of kinematics through a mathematical model of the quadcopter are covered. 

[45] presents a linear model for a quadcopter and examines it in 3 DOF and 6 DOF state space models 
utilising the basics of Newtonian setup to gain a better understanding of the quadcopter’s dynamics. 
The literature emphasises the importance of state space models by simplifying the complexity of 
linearisation. This literature helps to understand the state space formation of quadcopter, examined in 
the current study. 

[46] presents a quadcopter model equipped with four rotors and implements a dynamical model for 
this system without including the aerodynamic effects. The model provides the inertia of a quadcopter 
frame in roll, pitch, and yaw which are represented in a 3 by 3 matrix. It is essential to analyse the 
system’s stability, especially concerning attitude stabilisation. The model’s primary focus is on the 
stabilisation of a quadcopter in a defined attitude, and this is analysed using the Lyapunov function, 
a critical function for analysing the stability of dynamical systems. The Lyapunov function is utilised 
to study the system’s properties by analysing the conservation of the energy of the system and its 
stability. In this case, the function is used to analyse the stability of a quadcopter in a defined attitude 
and to develop a control system that ensures the quadcopter’s stability during flight. Although further 
development in the literature is done mainly in the control and stability of the quadcopter, it covers a 
comprehensive dynamical analysis of the quadcopter. 

[48] presents a quadcopter’s kinematic and dynamic mathematical model. The literature employs a 
PID controller and simulates the model using MATLAB to evaluate the performance of the designed 
model. Concluding the effectiveness of the simulation, the literature illustrates the efficacy of the 
model and ensures that the model meets the desired specifications. 

[49] presents a focus on developing a quadcopter dynamic mathematical model to describe the 
behaviour of the quadcopter using the Newton-Euler method. The authors delve into the relationship 
between all variables involved and explain the kinematics of the system. They determine the position 
and orientation vectors as the elements of the inertial frame. The authors implement a Cartesian 
coordinate system and Euler angles to present these vectors. Additionally, they use rotational and 
transformation matrices to identify the correlation between linear and angular velocity, as these are 
the body frame elements. 
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Furthermore, the authors study the quadcopter dynamics and explain the relation between body 
forces, torques, and moments produced by each rotor. They then transform this fundamental state of 
the system into linear and nonlinear equations, which are essential for the system’s control and further 
development. The quadcopter dynamics described in the literature are extremely nonlinear and 
closely coupled. As a result, in order to simplify the mathematical model and decouple its dynamics, 
the authors linearize the system around an equilibrium point. 

The authors consider the translational equation of motion established from Newton's second law of 
motion to characterize the model's dynamics, which takes into account the quadcopter’s total forces 
acting on its body. These fundamental features of the literature satisfy the vital aspects of the current 
study. Overall, this literature provides a comprehensive mathematical model for quadcopter 
behaviour and demonstrates its applicability through simulation and graphical representation. 

[50] presents a comprehensive and detailed dynamical model of a small quadcopter. The dynamic 
model takes into account various variables, including position coordinates, angles, and moments of 
inertia. The literature further examines the stability and control method of a quadcopter, which is 
simulated using MATLAB/Simulink to model, simulate, and analyse the system dynamics. Through 
the simulation, the literature provides an analytical understanding of the behaviour of the quadcopter 
under various conditions, making the quadcopter possible to optimise its performance and control. 

In conclusion, while there is a direct study on rocket launchers from a quadcopter is lacking, prior 
studies on quadcopter’s kinematics and dynamics, as well as rocket physics, rocket motion, recoil 
studies, and related topics provide enough information to establish a solid base for the current study. 
Analysing findings from reviewed literature is critical in developing a comprehensive mathematical 
model to analyse the effects of a rocket launching on a quadcopter. 
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2. Methodology 

This study aims to mathematically model a quadcopter in the event of launching a rocket from it. The 
methodology employed is constructed around the system’s equations applying Newton-Euler 
equations and Newton’s laws of motion and interpreting results to confirm the model using the 
dichotomy method. 

Problem statement and objectives: This study centres on validating the mathematical model of a 
quadcopter describing its behaviour during a rocket launch. The primary objective of this study is to 
validate the accuracy of the developed model by employing the dichotomy method and interpreting 
the rocket's mass, acceleration, velocity, and other system characteristics to find the methodology's 
root values. 

Mathematical model formulation: The model relies on Newton-Euler and Newton’s laws of motion 
methods to derive its kinematic and dynamic equations, encompassing the quadcopter’s motion. 
These equations determine the system’s position, orientation, linear and angular velocities, thrust, 
torques, and accelerations in each axis, considering forces, moments, and inertial parameters. 

Model validation with dichotomy method: The study assesses the quadcopter’s behaviour by 
utilizing the dichotomy method in MATLAB. The code simulates the system’s behaviour by solving 
nonlinear equations and generating graphs for analysis. 

MATLAB implementation: The mathematical model is implemented into MATLAB, utilizing the 
dichotomy method to determine the quadcopter’s velocities and accelerations under different rocket 
launch velocities. The code simulates the system’s behaviour by solving nonlinear equations and 
generating graphs for analysis. 

Analysis and interpretation: Generated graphs illustrate the relationship between the quadcopter’s 
velocity and acceleration with varying rocket launch velocities. Interpretation involves analysing the 
plots for root approximation, interval contraction, convergence rate, and error reduction rate of the 
quadcopter's behaviour post-launch. 

Model validation: The study’s success is determined based on the root convergence calculated for 
each bound, confirming the model’s validity. Conclusions drawn from the analysis assess the 
mathematical model's accuracy and its capability to simulate the quadcopter’s behaviour during a 
rocket launch. 

Conclusions: This methodology systematically validates the correctness of the mathematical model 
by employing methods throughout model creation and analysis. This section aims to verify the 
model’s reliability in predicting the quadcopter’s behaviour in the post-launch environment. 
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3. Mathematical model of the system 

The system’s mathematical model offers a well-organized representation using mathematical 
equations, variables, and principles to describe the behaviour of a real-world or conceptual system. 
These models depict essential system characteristics, involving variables that represent its condition 
or parameters influencing system dynamics, often simplifying relationships into manageable 
representations. 

Mathematical models come in various forms such as analytical, numerical, or empirical and can be 
found in applications across diverse fields such as engineering, economics, and biology. They help in 
predicting system behaviour, optimizing designs, and understanding complex system relationships. 
However, developing an accurate mathematical model that accurately captures real-world 
complexities is a challenging task and requires validation for reliability. 

This study divides its modelling approach into two distinct sections. Subsection 3.1 examines the 
mathematical model of the pre-launch environment, treating the quadcopter and rocket as a unified 
structure, referred to as a system. It involves all factors affecting both the quadcopter and rocket prior 
to launch, considering their weight, linear and angular velocities, forces, torques, moments, etc. In 
this section, the aim is to create a comprehensive mathematical model that accurately predicts the 
system's behaviour pre-launch. 

In contrast, Subsection 3.2 focuses on the mathematical model of the post-launch environment. Here, 
the quadcopter and rocket are observed as separate objects after launching. The goal is to construct a 
model accurately predicting the quadcopter's behaviour post-launch, accounting for factors 
influencing its behaviour such as direction, reaction forces, velocities, accelerations due to the 
launch's reaction, etc., along the X-axis. This study considers launching a rocket from the quadcopter 
on the positive X-axis. The objective is to create a comprehensive model predicting the quadcopter's 
behaviour in the post-launch environment. 

3.1. Pre-launch mathematical model 

The system framework maintains a perfectly balanced and rigid structure, established within a 
Cartesian coordinate system where the equilibrium point aligns with the COM of the system. The 
diagram below, obtained from [26], illustrates the system’s orientation in both inertial (shown on the 
left) and body frame (shown on the right) frames, axes, and their corresponding Euler angles. 

 

Fig. 1. The illustration of the system’s inertial and body frame respectively [26] 
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3.1.1. The system kinematics 

The kinematics of a system refers to a fundamental aspect of mechanics that focuses on studying 
motion, excluding the forces that initiate it. In quadcopters, specific variables such as position, 
orientation, and linear and angular velocities play critical roles, significantly influencing the system's 
flight characteristics and performance. 

3.1.1.1. The position 

Position determination requires establishing two frames of reference: the inertial frame represented 
as 𝐸𝐸𝐼𝐼 and the body frame represented as 𝐸𝐸𝐵𝐵. The inertial frame provides a fixed point of reference, 
describing the system’s position and orientation as 𝐸𝐸𝐼𝐼 = [𝑥𝑥𝐺𝐺 𝑦𝑦𝐺𝐺 𝑧𝑧𝐺𝐺]𝑇𝑇. Conversely, the body frame 
is directly fixed to COM represented as 𝐸𝐸𝐵𝐵 = [𝑥𝑥𝐵𝐵 𝑦𝑦𝐵𝐵 𝑧𝑧𝐵𝐵]𝑇𝑇. 

3.1.1.2. The position vector (𝝃𝝃) 

A vector is used to represent the position of the system as an element of the inertial frame: 

𝜉𝜉 = [𝑥𝑥 𝑦𝑦 𝑧𝑧]𝑇𝑇 ∈ 𝐸𝐸𝐼𝐼 (1) 

If: 𝜉𝜉 – the position vector of the system being an element of the inertial frame; 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 – represent the 
longitudinal, lateral, and vertical position of the system respectively. 

3.1.1.3. The orientation vector (𝜼𝜼) 

A vector is used to represent the orientation of the system using Euler angles as an element of the 
inertial frame: 

𝜂𝜂 = [𝜙𝜙 𝜃𝜃 𝜓𝜓]𝑇𝑇 ∈ 𝐸𝐸𝐼𝐼 (2) 

If: 𝜂𝜂 – the orientation vector of the system is an element of the inertial frame; 𝜙𝜙, 𝜃𝜃, 𝜓𝜓 – represent the 
system’s roll, pitch, and yaw angles respectively. 

The rotation matrix (𝑅𝑅) from the body frame to the inertial frame using Euler angles is represented in 
Eq. (3). 

𝑅𝑅 = 𝑅𝑅𝑧𝑧(𝜓𝜓) × 𝑅𝑅𝑦𝑦(𝜃𝜃) × 𝑅𝑅𝑥𝑥(𝜙𝜙) (3) 

If: 𝑅𝑅𝑧𝑧(𝜓𝜓), 𝑅𝑅𝑦𝑦(𝜃𝜃), 𝑅𝑅𝑥𝑥(𝜙𝜙) – rotation matrices around the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes with angles of 𝜙𝜙, 𝜃𝜃, and 𝜓𝜓 
respectively. 

3.1.1.4. The linear velocity (𝝊𝝊) 

A vector is used to represent the linear velocity of the system as an element of the body frame: 

𝜐𝜐 = [𝑢𝑢 𝑣𝑣 𝑤𝑤]𝑇𝑇 ∈ 𝐸𝐸𝐵𝐵 (4) 

If: 𝜐𝜐 – the linear velocity of the system being an element of the body frame; 𝑢𝑢, 𝑣𝑣, 𝑤𝑤 – the linear 
velocity along the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes respectively. 
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3.1.1.5. The angular velocity (𝝎𝝎) 

A vector is used to represent the angular velocity of the system as an element of the body frame: 

𝜔𝜔 = [𝑝𝑝 𝑞𝑞 𝑟𝑟]𝑇𝑇 ∈ 𝐸𝐸𝐵𝐵 (5) 

If: 𝜔𝜔 – the angular velocity of the system being an element of the body frame; 𝑝𝑝, 𝑞𝑞, 𝑟𝑟 – the angular 
velocity around the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes respectively. 

The kinematic relationships between the derivative of position and linear velocity, and the derivative 
of orientation and angular velocity are represented in Eq. (6) and Eq. (7) respectively. 

�̇�𝜉 = 𝑹𝑹𝝊𝝊 ∈ 𝐸𝐸𝐼𝐼 (6) 

�̇�𝜂 = 𝑱𝑱𝝎𝝎 ∈ 𝐸𝐸𝐼𝐼 (7) 

If: �̇�𝜉 – the derivative of the position vector (𝜉𝜉), representing the linear velocity of the system in the 𝑥𝑥, 
𝑦𝑦, and 𝑧𝑧 axes; �̇�𝜂 – the derivative of the orientation vector (𝜂𝜂), representing the angular velocity of the 
system in the 𝜙𝜙, 𝜃𝜃, and 𝜓𝜓 angles. 

The transformation matrix of the system links the orientation vector (for roll and pitch angles) to the 
transformation matrix, showing how alterations in the roll and pitch angles impact the transformation 
between the orientation and transformation matrices for the system. Thus, the representation of the 
system's transformation matrix as in Eq. (8). 

𝐽𝐽 = �
1 0 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃
0 𝑐𝑐𝑐𝑐𝑠𝑠𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃
0 −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙 𝑐𝑐𝑐𝑐𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃

� (8) 

The system's rotation matrix uses Euler angles to describe the orientation of the body frame in relation 
to the inertial frame. It displays the system's conversion from body coordinates to inertial coordinates. 
The representation of the system's rotation matrix is in Eq. (9). 

𝑅𝑅 = �
cos 𝜃𝜃 cos𝜓𝜓 cos𝜓𝜓 sin𝜙𝜙 sin𝜃𝜃 − cos𝜙𝜙 sin𝜓𝜓 cos𝜙𝜙 cos𝜓𝜓 sin𝜃𝜃 + sin𝜙𝜙 sin𝜓𝜓
cos𝜙𝜙 sin𝜓𝜓 cos𝜙𝜙 cos𝜓𝜓 + sin𝜙𝜙 sin𝜃𝜃 sin𝜓𝜓 cos𝜙𝜙 sin𝜃𝜃 sin𝜓𝜓 − cos𝜓𝜓 sin𝜙𝜙
− sin𝜃𝜃 cos 𝜃𝜃 sin𝜙𝜙 cos𝜙𝜙 cos 𝜃𝜃

� (9) 

3.1.2. The system dynamics 

In a simplified scenario where aerodynamic effects are ignored and the system’s body frame is 
symmetric and rigid, the primary source of the lifting force and moments generated by the 
quadcopter’s four propellers is the thrust produced. This means that the propellers' rotational motion 
generates a force that propels the air downward, subsequently creating an upward force on the system. 
Moreover, the rotation of the propellers generates moments that contribute to the system’s stability 
in the air. 

3.1.2.1. Total thrust (𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) 

A rotor's force is proportional to the square of its rotating speed, also known as angular velocity. This 
relationship is based on fundamental aerodynamic principles and is typically expressed using a 
mathematical equation, shown in Eq. (10). 
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𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 = 𝑘𝑘𝑎𝑎 × 𝜔𝜔𝑖𝑖
2 (10) 

If: 𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 – the total thrust generated by four rotors of the quadcopter; 𝑘𝑘𝑎𝑎 – the aerodynamic force 
constant; 𝜔𝜔𝑖𝑖 – the rotational speed generated by each propeller. 

The total thrust (𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡) generated by all rotors can be expressed as in Eq. (11). 

𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 = 𝑘𝑘𝑎𝑎 × (𝜔𝜔1
2 + 𝜔𝜔2

2 + 𝜔𝜔3
2 + 𝜔𝜔42) (11) 

3.1.2.2. Total moment (𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) 

When the propellers generate moments, they produce torque, which influences the system’s rotation. 
Propellers create moments that are proportional to the square of their rotating speed, also known as 
angular velocity. This relationship is expressed as in Eq. (12). 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 𝑘𝑘𝑚𝑚 × 𝜔𝜔𝑖𝑖
2 (12) 

If: 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 – the total moment generated by four propellers of the quadcopter; 𝑘𝑘𝑚𝑚 the moment constant. 

The total moment can be expressed as in Eq. (13). 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 𝑘𝑘𝑚𝑚 × (𝜔𝜔1
2 + 𝜔𝜔2

2 + 𝜔𝜔3
2 + 𝜔𝜔42) (13) 

3.1.2.3. Torques (𝝉𝝉) 

The torques generated by propellers of the quadcopter are expressed in Eq. (14-16). 

𝜏𝜏𝜙𝜙 = 𝐿𝐿 × 𝑘𝑘𝑎𝑎 × [(𝜔𝜔2
2 + 𝜔𝜔3

2) − (𝜔𝜔1
2 + 𝜔𝜔42)] (14) 

𝜏𝜏𝜃𝜃 = 𝐿𝐿 × 𝑘𝑘𝑎𝑎 × [(𝜔𝜔1
2 + 𝜔𝜔2

2) − (𝜔𝜔3
2 + 𝜔𝜔42)] (15) 

𝜏𝜏𝜓𝜓 = 𝑘𝑘𝑚𝑚 × [(𝜔𝜔1
2 + 𝜔𝜔3

2) − (𝜔𝜔2
2 + 𝜔𝜔42)] (16) 

If: 𝜏𝜏𝜙𝜙, 𝜏𝜏𝜃𝜃, 𝜏𝜏𝜓𝜓 – the torques generated on roll, pitch, and yaw respectively; 𝐿𝐿 – the distance between 
the centre of the system and the quadcopter’s motor. 

3.1.2.4. The rotational motion 

The rotational motion equations are expressed in Eq. (17) by establishing the Newton-Euler method. 

𝐼𝐼 × �̈�𝜂 + 𝐼𝐼 × �̇�𝜂 = [𝜏𝜏𝜙𝜙 𝜏𝜏𝜃𝜃 𝜏𝜏𝜓𝜓]𝑇𝑇 (17) 

If: 𝐼𝐼 × �̈�𝜂 – refers to the torque of the system; 𝐼𝐼 × �̇�𝜂 – refers to the angular momentum of the system. 

3.1.2.5. The moment of inertia (𝝉𝝉) 

The quadcopter's propellers are arranged in a square formation, resulting in a symmetrical structure. 
Because of this structural type, the system's moment of inertia is expressed in Eq. (18). 

𝐼𝐼 = �
𝐼𝐼𝑥𝑥𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧𝑧𝑧

� (18) 
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If: 𝐼𝐼𝑥𝑥𝑥𝑥, 𝐼𝐼𝑦𝑦𝑦𝑦, 𝐼𝐼𝑧𝑧𝑧𝑧 – the moments of inertia around the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes respectively. 

The following equation can be obtained by implementing Eq. (18) into Eq. (17). 

�
𝐼𝐼𝑥𝑥𝑥𝑥�̈�𝜙
𝐼𝐼𝑦𝑦𝑦𝑦�̈�𝜃
𝐼𝐼𝑧𝑧𝑧𝑧�̈�𝜓

� + �
�̇�𝜃𝐼𝐼𝑧𝑧𝑧𝑧�̇�𝜓 − �̇�𝜓𝐼𝐼𝑦𝑦𝑦𝑦�̇�𝜃
�̇�𝜓𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝜙 − �̇�𝜙𝐼𝐼𝑧𝑧𝑧𝑧�̇�𝜓
�̇�𝜙𝐼𝐼𝑦𝑦𝑦𝑦�̇�𝜃 − �̇�𝜃𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝜙

� = �
𝜏𝜏𝜙𝜙
𝜏𝜏𝜃𝜃
𝜏𝜏𝜓𝜓
� (19) 

3.1.2.6. The rotational acceleration (�̈�𝝓, �̈�𝜽, �̈�𝝍) 

The rotational accelerations affecting roll, pitch, and yaw can be obtained by considering the 
relationship demonstrated in Eq. (19). 

�̈�𝜙 =
𝜏𝜏𝜙𝜙
𝐼𝐼𝑥𝑥𝑥𝑥

+
𝐼𝐼𝑦𝑦𝑦𝑦
𝐼𝐼𝑥𝑥𝑥𝑥

× �̇�𝜃�̇�𝜓 −
𝐼𝐼𝑧𝑧𝑧𝑧
𝐼𝐼𝑥𝑥𝑥𝑥

× �̇�𝜃�̇�𝜓 (20) 

�̈�𝜃 =
𝜏𝜏𝜃𝜃
𝐼𝐼𝑦𝑦𝑦𝑦

+
𝐼𝐼𝑧𝑧𝑧𝑧
𝐼𝐼𝑦𝑦𝑦𝑦

× �̇�𝜙�̇�𝜓 −
𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑦𝑦𝑦𝑦

× �̇�𝜙�̇�𝜓 (21) 

�̈�𝜓 =
𝜏𝜏𝜓𝜓
𝐼𝐼𝑧𝑧𝑧𝑧

+
𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑧𝑧𝑧𝑧

× �̇�𝜙�̇�𝜃 −
𝐼𝐼𝑦𝑦𝑦𝑦
𝐼𝐼𝑧𝑧𝑧𝑧

× �̇�𝜙�̇�𝜃 (22) 

3.1.2.7. The translational acceleration (�̈�𝒙, �̈�𝒚, �̈�𝒛) 

The dynamics of the system have a direct relationship with the acceleration of the rotational and 
translational motions, meaning that the dynamic equations must be in acceleration form. Therefore, 
Newton’s second law of motion, which refers to the acceleration of the system, can be used to derive 
the translational motion equation of the system. 

𝑚𝑚𝑟𝑟�̈�𝜉 = 𝑅𝑅 × 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 + [0 0 −𝑚𝑚𝑟𝑟𝑔𝑔]𝑇𝑇 (23) 

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = [0 0 𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡]𝑇𝑇 (24) 

If: 𝑚𝑚𝑟𝑟 – the mass of the system; �̈�𝜉 – translational acceleration; 𝑔𝑔 – the gravitational acceleration; 
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 – total force. 

The translational accelerations of the system can be obtained by implementing Eq. (24) into Eq. (23). 

�̈�𝑥 =
𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡
𝑚𝑚𝑟𝑟

× (cos𝜙𝜙 cos𝜓𝜓 sin𝜃𝜃 + sin𝜙𝜙 sin𝜓𝜓) (25) 

�̈�𝑦 =
𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡
𝑚𝑚𝑟𝑟

× (cos𝜙𝜙 sin𝜃𝜃 sin𝜓𝜓 − cos𝜓𝜓 sin𝜙𝜙) (26) 

�̈�𝑧 =
𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡
𝑚𝑚𝑟𝑟

× (cos𝜙𝜙 cos 𝜃𝜃) − 𝑔𝑔 (27) 
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3.1.2.8. Linearisation 

Because the observed dynamic state of the system is very nonlinear, the equations must be linearized 
at an equilibrium point where the system's 6 DOF state is stable. The linearisation of nonlinear 
equations contributes to the simplification and decoupling of the mathematical model's dynamics. 

The rotational acceleration of the system therefore can be expressed in Eq. (28-30). 

�̈�𝜙 =
𝜏𝜏𝜙𝜙
𝐼𝐼𝑥𝑥𝑥𝑥

 (28) 

�̈�𝜃 =
𝜏𝜏𝜃𝜃
𝐼𝐼𝑦𝑦𝑦𝑦

 (29) 

�̈�𝜓 =
𝜏𝜏𝜓𝜓
𝐼𝐼𝑧𝑧𝑧𝑧

 (30) 

The translational acceleration of the system furthermore can be expressed in Eq. (31-33). 

�̈�𝑥 = −𝑔𝑔𝜃𝜃 (31) 

�̈�𝑦 = 𝑔𝑔𝜙𝜙 (32) 

�̈�𝑧 = 𝑔𝑔 −
𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡
𝑚𝑚𝑟𝑟

 (33) 

Furthermore, the representation of the inertial state of the system is as follows: 

𝑄𝑄 = [𝑥𝑥 �̇�𝑥 𝜙𝜙 �̇�𝜙 𝑦𝑦 �̇�𝑦 𝜃𝜃 �̇�𝜃 𝑧𝑧 �̇�𝑧 𝜓𝜓 �̇�𝜓]𝑇𝑇 (34) 

If: 𝑄𝑄 – the state vector of the system; 𝑥𝑥, �̇�𝑥 – the longitudinal position and velocity of the system along 
the X-axis respectively; 𝑦𝑦, �̇�𝑦 –the lateral position and velocity of the system along the Y-axis 
respectively; 𝑧𝑧, �̇�𝑧 –the vertical position and velocity of the system along the Z-axis respectively; 𝜙𝜙, �̇�𝜙 
–the roll angle and angular velocity of the system about the longitudinal axis respectively; 𝜃𝜃, �̇�𝜃 –the 
pitch angle and angular velocity of the system about the lateral axis respectively; 𝜓𝜓, �̇�𝜓 –the yaw angle 
and angular velocity of the system about the vertical axis respectively.  

The linear dynamic model’s state space is represented in Eq. (35). 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 (35) 

If: �̇�𝑥 – the first derivative of the state vector; 𝐴𝐴 – system matrix; 𝑥𝑥 –the state vector; 𝐵𝐵 – input vector; 
𝑢𝑢 – input or control vector. 

Therefore, the state space form can be represented as: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�̇�𝑥
�̈�𝑥
�̇�𝜙
�̈�𝜙
�̇�𝑦
�̈�𝑦
�̇�𝜃
�̈�𝜃
�̇�𝑧
�̈�𝑧
�̇�𝜓
�̈�𝜓⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −𝑔𝑔 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 𝑔𝑔 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥
�̇�𝑥
𝜙𝜙
�̇�𝜙
𝑦𝑦
�̇�𝑦
𝜃𝜃
�̇�𝜃
𝑧𝑧
�̇�𝑧
𝜓𝜓
�̇�𝜓⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0
0 0 0 0
0 0 0 0

0
1
𝐼𝐼𝑥𝑥𝑥𝑥

0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0
1
𝐼𝐼𝑦𝑦𝑦𝑦

0

0 0 0 0
1
𝑚𝑚𝑟𝑟

0 0 0

0 0 0 0

0 0 0
1
𝐼𝐼𝑧𝑧𝑧𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡
𝜏𝜏𝜙𝜙
𝜏𝜏𝜃𝜃
𝜏𝜏𝜓𝜓

� 

3.2. Post-launch mathematical model 

Understanding the dynamics of the quadcopter and rocket system in the post-launch environment 
requires a thorough consideration of Newton’s third law of motion, which entitles “for every action 
(force) in nature there is an equal and opposite reaction” defined by [17]. This law plays a critical 
role in this section, as it directly influences the conservation of energy within the system. 

As highlighted in Section 3, in this section, the quadcopter and rocket are no longer considered as a 
single structure because they are no longer attached. Instead, they are analysed as distinct entities, 
aiming to create a mathematical model that accurately predicts the behaviour of the quadcopter in the 
post-launch environment. 

The initial state of the post-launch environment can be described as a conservation of energy. 

𝜀𝜀𝑞𝑞 = 𝜀𝜀𝑟𝑟 (36) 

If: 𝜀𝜀𝑞𝑞 – the total energy of the quadcopter in the post-launch environment; 𝜀𝜀𝑟𝑟 – the total energy of the 
rocket in the post-launch environment. 

3.2.1. Newton’s conservation of energy 

The rocket initiates its thrust instantaneously in the first stage of launching. In this stage, the drag loss 
is negligible. The velocity gained from the rocket’s propulsion is neglected. Therefore, the total 
kinetic and potential energy of both quadcopter and rocket are represented in Eq. (37), employed from 
Eq. (36). 

𝑚𝑚𝑞𝑞 × �𝑔𝑔ℎ0 +
�𝜐𝜐0𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟�

2

2
� = 𝑚𝑚𝑟𝑟 × �𝑔𝑔ℎ0 +

�𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
2

2
� (37) 

If: 𝑚𝑚𝑞𝑞 – the quadcopter mass; ℎ0 – launch altitude; 𝜐𝜐0𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟  – the initial velocity of the quadcopter 
initiated by rocket launch; 𝑚𝑚𝑟𝑟 – the rocket mass; 𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  – the launch velocity of the rocket. 
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The initial velocity of the quadcopter therefore is employed from Eq. (37). 

𝜐𝜐0𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝑚𝑚𝑟𝑟

𝑚𝑚𝑞𝑞
�2𝑔𝑔ℎ0 + 𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 � − 2𝑔𝑔ℎ0 (38) 

3.2.2. Quadcopter kinematics 

Due to the impact exerted on the quadcopter triggered by the rocket launch, the quadcopter’s 
kinematics must be redefined. Therefore, the new linear (𝜐𝜐′) and angular (𝜔𝜔′) velocities, and 
kinematic relationships (�̇�𝜉′, �̇�𝜂′) are represented in the following equations. 

𝜐𝜐′ = [𝑢𝑢′ 𝑣𝑣′ 𝑤𝑤′]𝑇𝑇 ∈ 𝐸𝐸𝐵𝐵 (39) 

𝜔𝜔′ = [𝑝𝑝′ 𝑞𝑞′ 𝑟𝑟′]𝑇𝑇 ∈ 𝐸𝐸𝐵𝐵 (40) 

𝜉𝜉′̇ = 𝑹𝑹𝝊𝝊′ ∈ 𝐸𝐸𝐼𝐼 , �
�̇�𝑥′
�̇�𝑦′
�̇�𝑧′
� = 𝑹𝑹 × �

𝑢𝑢′
𝑣𝑣′
𝑤𝑤′
� (41) 

𝜂𝜂′̇ = 𝑱𝑱𝝎𝝎′ ∈ 𝐸𝐸𝐼𝐼 , �
𝜙𝜙′̇

�̇�𝜃′
�̇�𝜓′
� = 𝑱𝑱 × �

𝑝𝑝′
𝑞𝑞′
𝑟𝑟′
� (42) 

As discussed in Section 3, this study assumes the rocket is launched from the quadcopter along the 
positive X-axis and focuses on analysing the quadcopter’s behaviour specifically along this axis. The 
first assumption applies to the direction of the rocket, presumed to be launched along the positive X-
axis. Consequently, the reaction force exerted on the quadcopter is expected to be in the negative X-
axis direction. The second assumption considers the reaction force moment experienced by the 
quadcopter during the rocket's launch, resulting in a downward pitch moment affecting the 
quadcopter. 

3.2.3. The rotational acceleration (𝝓𝝓′̈ , 𝜽𝜽′̈ , 𝝍𝝍′̈ ) 

The new rotational accelerations (𝜙𝜙′̈ , 𝜃𝜃′̈ , 𝜓𝜓′̈ ) acting on roll, pitch, and yaw can be obtained considering 
the relationships in Eq. (20-22). 

𝜙𝜙′̈ =
𝜏𝜏𝜙𝜙′
𝐼𝐼𝑥𝑥𝑥𝑥

+
𝐼𝐼𝑦𝑦𝑦𝑦
𝐼𝐼𝑥𝑥𝑥𝑥

× 𝜃𝜃′̇ 𝜓𝜓′̇ −
𝐼𝐼𝑧𝑧𝑧𝑧
𝐼𝐼𝑥𝑥𝑥𝑥

× 𝜃𝜃′̇ 𝜓𝜓′̇  (43) 

𝜃𝜃′̈ =
𝜏𝜏𝜃𝜃′
𝐼𝐼𝑦𝑦𝑦𝑦

+
𝐼𝐼𝑧𝑧𝑧𝑧
𝐼𝐼𝑦𝑦𝑦𝑦

× 𝜙𝜙′̇ 𝜓𝜓′̇ −
𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑦𝑦𝑦𝑦

× 𝜙𝜙′̇ 𝜓𝜓′̇  (44) 

𝜓𝜓′̈ =
𝜏𝜏𝜓𝜓′
𝐼𝐼𝑧𝑧𝑧𝑧

+
𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑧𝑧𝑧𝑧

× 𝜙𝜙′̇ 𝜃𝜃′̇ −
𝐼𝐼𝑦𝑦𝑦𝑦
𝐼𝐼𝑧𝑧𝑧𝑧

× 𝜙𝜙′̇ 𝜃𝜃′̇  (45) 
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3.2.4. The translational acceleration (𝒙𝒙′̈ , 𝒚𝒚′̈ , 𝒛𝒛′̈) 

The state of the total force in Eq. 24 should be redefined since we have obtained a new force, named 
reaction force (𝐹𝐹𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑟𝑟) resulting negative direction in the X-axis of the quadcopter. Therefore, 
Newton’s second law of motion can be redefined in Eq. (43). 

𝑚𝑚𝑞𝑞𝜉𝜉′̈ = 𝑅𝑅 × 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡′ + [0 0 −𝑚𝑚𝑞𝑞𝑔𝑔]𝑇𝑇 (46) 

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡′ = [−𝐹𝐹𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑟𝑟 0 𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡]𝑇𝑇 (47) 

The new translational accelerations (𝑥𝑥′̈ , 𝑦𝑦′̈ , 𝑧𝑧′̈) of the quadcopter can be obtained by implementing 
Eq. (47) into Eq. (46). 

𝑥𝑥′̈ =
1
𝑚𝑚𝑞𝑞

× [𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡(cos𝜙𝜙 cos𝜓𝜓 sin𝜃𝜃 + sin𝜙𝜙 sin𝜓𝜓) − 𝐹𝐹𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑟𝑟(cos𝜃𝜃 cos𝜓𝜓)] (48) 

𝑦𝑦′̈ =
1
𝑚𝑚𝑞𝑞

× [𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡(cos𝜙𝜙 sin 𝜃𝜃 sin𝜓𝜓 − cos𝜓𝜓 sin𝜙𝜙) − 𝐹𝐹𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑟𝑟(cos𝜙𝜙 sin𝜓𝜓)] (49) 

𝑧𝑧′̈ =
1
𝑚𝑚𝑞𝑞

× [𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡(cos𝜙𝜙 cos𝜃𝜃) + 𝐹𝐹𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑟𝑟(sin𝜃𝜃)] − 𝑔𝑔 (50) 

3.3. General boundary conditions 

The created model is validated under the following boundary conditions shown in Table 2. The model 
does not evaluate other variables such as aerodynamic effects and control systems in these specific 
analyses. 

Table 2. The system’s boundary conditions 

Parameters Values Units 

Air pressure  101.325 kPa 

Temperature 20 °C 

Air density 1.204 kg/m3 

Gravitational acceleration 9.81 m/s2 

Wind speed 0 m/s 
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4. Calculations 

Through the application of Newton’s third law of motion, the model is able to capture the complexity 
of the post-launch model between the quadcopter and rocket. It is important to note that the 
parameters for this numerical experiment were chosen freely, and there might be different results if 
these parameters were chosen differently. In the specific scenario where the quadcopter hovers 50 
metres AGL during the launch of the rocket, Newton’s third law enables to identification of the 
reaction forces, ultimately contributing to an accurate portrayal of the quadcopter’s behaviour in the 
post-launch environment. 

4.1. Dependent variables 

The system’s parameter assumptions are shown in Table 3. 

Table 3. The system’s parameters during the launch 

Parameters Values Units 

Quadcopter’s mass, 𝑚𝑚𝑞𝑞 4 kg 

Rocket’s mass, 𝑚𝑚𝑟𝑟 1 kg 

System’s mass, 𝑚𝑚𝑟𝑟 5 kg 

Gravitational acceleration, 𝑔𝑔 9.81 m/s2 

Launch altitude, ℎ0 50 m 

When a rocket is launched from a quadcopter at an altitude of 50 metres, the reaction force of the 
rocket’s propulsion generates an equal and opposite reaction exerted upon the quadcopter. 
Consequently, the quadcopter experiences a momentary downward tilt or rotation about its axis. This 
sudden change in force distribution and the COM results in a downward pitch angle (𝜃𝜃) set at 30°. 

After determining the initial conditions and parameters of the quadcopter and rocket system, the 
position and orientation as well as values of kinematics of the quadcopter in the post-launch 
environment can be determined using Eq. (1-2) and Eq. (39-42) respectively. 

𝜉𝜉′ = [0 0 50]𝑇𝑇(𝑚𝑚) (51) 

𝜂𝜂′ = [0 −30 0]𝑇𝑇(°) (52) 

𝜐𝜐′ = ��𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2

4
− 735.75 0 0�

𝑇𝑇

(𝑚𝑚/𝑠𝑠) (53) 

𝜔𝜔′ = [0 0 0]𝑇𝑇(𝑟𝑟𝑎𝑎𝑟𝑟/𝑠𝑠) (54) 

𝜉𝜉′̇ = �
�̇�𝑥′
�̇�𝑦′
�̇�𝑧′
� = �

0.87 0 −0.50
0 1 0

0.50 0 0.87
�×

⎣
⎢
⎢
⎢
⎡�𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2

4
− 735.75

0
0 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.87 × �𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2

4
− 735.75

0

0.50 × �𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2

4
− 735.75

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (𝑚𝑚/𝑠𝑠) (55) 
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𝜂𝜂′̇ = �
𝜙𝜙′̇

�̇�𝜃′
�̇�𝜓′
� = �

1 0 0.50
0 1 0
0 0 0.87

� × �
0
0
0
� = �

0
0
0
� (𝑟𝑟𝑎𝑎𝑟𝑟/𝑠𝑠) (56) 

It should be noted that the study does not check the specifications of the quadcopter's motors, thus 
the angular velocities (𝜔𝜔′) are excluded. 

Because the quadcopter is hovering at an altitude of 50 meters AGL, the thrust force created by each 
motor equals gravitational force (𝐹𝐹𝐺𝐺), shown in Eq (57). 

𝐹𝐹𝐺𝐺 = 𝐹𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 (57) 

Therefore, the total force matrix (𝐹𝐹′𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡) is represented in Eq. (58) 

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡′ = [−𝑚𝑚𝑞𝑞�̇�𝑥′ 0 𝑚𝑚𝑞𝑞𝑔𝑔]𝑇𝑇 = �−3.48 × �𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2

4
− 735.75 0 39.24�

𝑇𝑇

(𝑁𝑁) (58) 

The quadcopter possesses a square formation of rotors, therefore it has a symmetrical structure, as 
previously stated. Due to its structure type, it results in symmetrical values for three axes. Hence, the 
moment of inertia is presented in Eq. (59). 

𝐼𝐼𝑥𝑥𝑥𝑥 = 𝐼𝐼𝑦𝑦𝑦𝑦 = 𝐼𝐼𝑧𝑧𝑧𝑧 =
𝑚𝑚𝑞𝑞

12
× (𝑎𝑎2 + 𝑏𝑏2) (59) 

The quadcopter is assumed to have a 0.3 by 0.3 metre formation. As a result, the (𝑎𝑎) and (𝑏𝑏) in Eq. 
(59) can be redefined as 0.3 metres and 0.3 metres respectively. 

𝐼𝐼 = �
0.06 0 0

0 0.06 0
0 0 0.06

� (𝑘𝑘𝑔𝑔 ∙ 𝑚𝑚2) (60) 

The new rotational accelerations of the quadcopter values cannot be obtained due to the unknown 
angular velocity of each motor. 

The new translational accelerations of the quadcopter values can be obtained by utilising Eq. (48-50). 

𝑥𝑥′̈ = −4.91 − 0.75 × �𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2

4
− 735.75 (𝑚𝑚/𝑠𝑠2) (61) 

𝑦𝑦′̈ = 0 (𝑚𝑚/𝑠𝑠2) (62) 

𝑧𝑧′̈ = 0.46 × �𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2

4
− 735.75 − 1.31 (𝑚𝑚/𝑠𝑠2) (63) 

4.2. Independent variables 

Table 3 shows the independent variables, not dependent on any other factors to determine their value. 
In addition to these variables, the launch velocity of the rocket (𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) can be defined as an 
independent variable.  
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Determining system boundary conditions is crucial for determining the values where the study can 
be examined. To compute the minimum launch velocity of the rocket, Eq. (38) is set to 0. 

�1
4
�2 × 9.81 × 50 + 𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 � − 2 × 9.81 × 50 = 0, 𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚  ≈ 55 𝑚𝑚/𝑠𝑠 

Consequently, the following statements can be made: 
1. the minimum launch velocity of the rocket is not less than 55 m/s; 
2. the gross weight of the system is 5 kg; 
3. the rocket weight is 1 kg. 

The rocket used in this study has been designed to maintain a lightweight, weighing a kilogram. This 
has been done to minimize the complexity of system calculations, primarily due to hardware 
constraints. 
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5. Dichotomy method 

The dichotomy method, also known as the bisection method [37], is a simple numerical method for 
finding roots or solutions to nonlinear equations. In the context of this study, the method is applied 
to solve specific equations related to the behaviour and dynamics of the quadcopter in the post-launch 
environment. 

The dichotomy method is one of numerous numerical approaches used to solve nonlinear equations, 
including the Golden Ratio method, the Fibonacci method, and Nonlinear Regression. Despite its 
simplicity, the dichotomy approach can deliver correct findings for a wide range of nonlinear systems. 

The principle of this method is to narrow down a range of a nonlinear equation where a root or 
solution might exist to determine an approximate solution to a function 𝑓𝑓(𝑥𝑥) = 0. It starts with two 
initial points [𝑎𝑎, 𝑏𝑏], a lower and upper bound, where the root is expected to lie. At least one real root 
or solution 𝑥𝑥0 exists within the lower and upper bound when the function is equal to zero, 𝑓𝑓(𝑥𝑥) = 0. 
Until the 𝑓𝑓(𝑥𝑥0) = 0, the method divides the intervals 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑟𝑟 into halves to determine which 
subinterval holds the root. 

 

Fig. 2. Dichotomy method concept [11] 

By iterating through the method and determining the bounds, a root or solution to a function can be 
concluded. In this study, the method is employed to determine the root value of the launch velocity 
of the rocket, to determine the behaviour of the quadcopter in the post-launch environment, allowing 
us to understand how velocities and accelerations of the quadcopter changes under each rocket 
velocities along the X-axis. 

This method requires setting initial bounds and a tolerance level for convergence, ensuring the 
accuracy of the solution of the function. It is a fundamental tool in numerical analysis, allowing us to 
understand the system’s behaviour through computational approaches.  

In this case, the tolerance level is set to one millionth (0.000001), and the initial intervals [𝑎𝑎, 𝑏𝑏], which 
is the rocket’s initial velocity, is set to be 50 and 60 m/s. In Subsection 4.2, the minimum launch 
velocity of the rocket has been calculated and the value is 𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚  ≈ 55 m/s, however, the model 
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is tested between 50 and 60 m/s with increments of 0.5 m/s to determine if the dichotomy approach 
is successful for this model. 

5.1. The velocity function of the quadcopter 

The velocity function of the quadcopter is employed from Eq. 55. Therefore, the following function 
delivers the quadcopter’s velocity function of time. 

𝑓𝑓�𝑥𝑥′̇ � = 0.87 × �𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2

4
− 735.75 (𝑚𝑚/𝑠𝑠)  (64) 

The method has converged to 𝑥𝑥0 = 59.99 m/s within the specified tolerance and intervals. Since the 
dichotomy method aims to find a value of 𝑥𝑥0 such that the function 𝑓𝑓(𝑥𝑥0) ≅ 0, the results suggest 
that the function evaluated at 𝑥𝑥0 = 59.99 m/s is approximately equal to 0 based on the specified 
tolerance. The method has succeeded in providing an approximate solution within the interval and 
tolerance within 24 iterations. 

However, the function’s convergence rate is 0, which typically indicates the method is not converging 
or converging extremely slow. Several factors might affect the convergence rate such as interval 
selection, function behaviour, algorithm sensitivity, or method limitations. 

Examining these factors can provide following assumptions: 
– the method has converged to a root value, which means determined bounds were established 

correctly. This eliminates the interval selection factor; 
– the function might have a complex behaviour, such as high-order roots, which might pose 

challenges for convergence. The number of iterations can be increased; 
– algorithm parameters and the method limitation might affect the convergence rate of the 

function. 

These assumptions could be thoroughly examined by adjusting method intervals or the algorithm of 
the method to converge the function to a better conclusion; however, due to the hardware utilised to 
calculate these functions, the additional studies could not be computed. 

The graph of root approximation against iteration in Fig. 3 illustrates how the approximation of the 
root changes with each iteration. As the iteration continues, the value approaches a true root value, 
which, in this case, is 𝑥𝑥0 = 59.99 m/s. 

The graph of interval contraction in Fig. 4 illustrates how the size of the interval changes with each 
iteration. The interval size drops towards the root, which is ideal. 

The graph of convergence rate against iteration in Fig. 5 illustrates how fast the method converges 
towards the root. Ideally, the convergence rate should approach a value close to 0.5 for effective 
convergence. 

The graph of the error reduction rate against iteration in Fig. 6 illustrates how the error between the 
estimated root and actual root reduces with each iteration. A decreasing trend indicates the method is 
converging. 
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Fig. 3. Root approximation vs. iteration (velocity) 

 

Fig. 4. Interval contraction (velocity) 

 

Fig. 5. Convergence rate vs. iteration (velocity) 

 

Fig. 6. Error reduction rate vs. iteration (velocity) 

Furthermore, the trend between the quadcopter velocity and the rocket launch velocity is illustrated 
in Fig. 7, and values are shown in Table 4. 
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Fig. 7. Quadcopter velocity against rocket launch velocity in m/s 

Table 4. Corresponding rocket velocities to quadcopter velocities in each iteration 

Iteration no. Rocket launch velocity, m/s Quadcopter velocity, m/s 

1 55.00000 3.93909 

2 57.50000 8.29072 

3 58.75000 9.80983 

4 59.37500 10.49776 

5 59.68750 10.82790 

6 59.84375 10.98988 

7 59.92188 11.07014 

8 59.96094 11.11009 

9 59.98047 11.13002 

10 59.99023 11.13998 

11 59.99512 11.14495 

12 59.99756 11.14744 

13 59.99878 11.14868 

14 59.99939 11.14930 

15 59.99969 11.14961 

16 59.99985 11.14977 

17 59.99992 11.14985 

18 59.99996 11.14989 
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19 59.99998 11.14991 

20 59.99999 11.14992 

21 60.00000 11.14992 

22 60.00000 11.14992 

23 60.00000 11.14992 

24 60.00000 11.14992 

As the values shown in Table 4, rocket launch velocity has a significant impact on the quadcopter’s 
velocity. The quadcopter’s velocity is directly affected by the rocket’s velocity, presenting a relation 
between these two variables. The quadcopter’s velocity furthermore exhibits an increase 
corresponding to higher rocket launch velocity. 

The following illustration presents the quadcopter’s displacement over time for different rocket 
velocities and values are shown in Table 5. 

 

Fig. 8. Quadcopter position over time for different rocket velocities 

Table 5. Quadcopter displacement (𝛿𝛿𝑥𝑥) values of each rocket launch velocity at specific times 

Time, s Quadcopter displacement (𝜹𝜹𝒙𝒙), m 

𝝊𝝊𝟎𝟎𝒕𝒕𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓𝒕𝒕, 
m/s 

55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 0.4 0.5 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 

2 1.6 2.0 2.4 2.7 3.0 3.3 3.6 3.8 4.0 4.2 4.4 

3 3.5 4.6 5.4 6.2 6.8 7.4 8.0 8.6 9.1 9.5 10.0 

4 6.3 8.1 9.7 11.0 12.2 13.2 14.3 15.2 16.1 17.0 17.8 
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5 9.8 12.7 15.1 17.2 19.0 20.7 22.3 23.8 25.2 26.6 27.8 

6 14.2 18.3 21.7 24.7 27.4 29.8 32.1 34.3 36.3 38.2 40.1 

7 19.3 25.0 29.6 33.6 37.3 40.6 43.7 46.6 49.4 52.1 54.6 

8 25.2 32.6 38.7 43.9 48.7 53.0 57.1 60.9 64.6 68.0 71.3 

9 31.9 41.3 48.9 55.6 61.6 67.1 72.3 77.1 81.7 86.1 90.3 

10 39.4 51.0 60.4 68.7 76.1 82.9 89.3 95.2 100.9 106.3 111.5 

Fig. 8 illustrates the trajectory of the quadcopter over time under different rocket launch velocities at 
specific time ranges. This analysis helps us to depict how the quadcopter moves through space when 
it is subjected to different rocket launch velocity values. There is a direct impact of changing the 
rocket velocities on the quadcopter’s displacement, showcasing the quadcopter’s movement and 
position. 

Understanding this behaviour assists in designing navigation algorithms or control systems. The 
illustration of displacement and values shown in Table 5 provide insights into managing and 
predicting the quadcopter’s position influenced by different rocket launch velocities. 

The following illustration presents the quadcopter velocity over time for different rocket launch 
velocities and values are shown in Table 6. 

 

Fig. 9. Quadcopter velocity over time for different rocket velocities 

Table 6. Quadcopter velocity �𝜐𝜐0𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥� values of each rocket launch velocity at specific times 

Time, s Quadcopter velocity �𝝊𝝊𝟎𝟎𝒒𝒒𝒕𝒕𝒕𝒕𝒒𝒒𝒓𝒓𝒕𝒕𝒒𝒒𝒕𝒕𝒓𝒓𝒕𝒕𝒙𝒙�, m/s 

𝝊𝝊𝟎𝟎𝒕𝒕𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓𝒕𝒕, 
m/s 

55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 
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0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

2 1.6 2.0 2.4 2.7 3.0 3.3 3.6 3.8 4.0 4.2 4.5 

3 2.4 3.1 3.6 4.1 4.6 5.0 5.3 5.7 6.0 6.4 6.7 

4 3.1 4.1 4.8 5.5 6.1 6.6 7.1 7.6 8.1 8.5 8.9 

5 3.9 5.1 6.0 6.9 7.6 8.3 8.9 9.5 10.1 10.6 11.1 

6 4.7 6.1 7.2 8.2 9.1 9.9 10.7 11.4 12.1 12.7 13.4 

7 5.5 7.1 8.5 9.6 10.6 11.6 12.5 13.3 14.1 14.9 15.6 

8 6.3 8.1 9.7 11.0 12.2 13.3 14.3 15.2 16.1 17.0 17.8 

9 7.1 9.2 10.9 12.3 13.7 14.9 16.0 17.1 18.1 19.1 20.0 

10 7.9 10.2 12.1 13.7 15.2 16.6 17.8 19.0 20.2 21.2 22.3 

Fig. 9 illustrates how the quadcopter’s velocity changes over time when it is subjected to different 
rocket velocities, providing a comprehensive understanding of the dynamic behaviour of the 
quadcopter under different rocket launch velocities.  

An increasing trend in the quadcopter’s velocity against a specific time range can be observed in 
Table 6. This allows us to examine the velocity changes corresponding to the rocket launch velocities 
with respect to a specific time range, concluding the effect in the change of quadcopter’s motion. 

The following illustration presents the quadcopter’s total energy over time for different rocket 
velocities and values are shown in Table 7. 

 

Fig. 10. Total energy over time for different rocket velocities 
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Table 7. Total energy �𝜀𝜀𝑞𝑞𝑥𝑥� values of each rocket launch velocity at specific times 

Time, s Energy �𝜺𝜺𝒒𝒒𝒙𝒙�, joules 

𝝊𝝊𝟎𝟎𝒕𝒕𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓𝒕𝒕, 
m/s 

55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 

0 490.5 490.5 490.5 490.5 490.5 490.5 490.5 490.5 490.5 490.5 490.5 

1 490.8 491.0 491.2 491.4 491.7 491.9 492.1 492.3 492.5 492.8 493.0 

2 491.7 492.6 493.4 494.3 495.1 496.0 496.9 497.7 498.6 499.5 500.4 

3 493.3 495.2 497.1 499.0 500.9 502.8 504.8 506.8 508.8 510.8 512.8 

4 495.5 498.8 502.2 505.6 509.0 512.5 515.9 519.5 523.0 526.6 530.2 

5 498.2 503.5 508.7 514.0 519.4 524.8 530.3 535.8 541.3 546.9 552.5 

6 501.6 509.2 516.7 524.4 532.1 539.9 547.7 555.7 563.7 571.7 579.8 

7 508.9 521.2 533.7 546.3 559.0 571.8 584.8 597.8 611.0 624.2 637.6 

8 510.3 523.7 537.2 550.7 564.5 578.3 592.3 606.3 620.5 634.9 649.3 

9 515.6 532.5 549.5 566.8 584.1 601.6 619.3 637.1 655.1 673.2 691.5 

10 521.5 542.3 563.4 584.6 606.1 627.7 649.5 671.5 693.7 716.1 738.6 

Total energy changes are estimated from the quadcopter's kinetic and potential energies while 
hovering at an altitude of 50 meters AGL. Fig. 10 illustrates how the total energy of the quadcopter 
changes over time under different rocket launch velocities at specific time ranges. This analysis helps 
us understand the overall energy state of the quadcopter during flight which is crucial for energy 
efficient design or control systems. 

Understanding energy changes in the quadcopter is crucial for evaluating system performance, 
efficiency, and potential limitations under different operational conditions.  

Other variables such as aerodynamic effects and control systems are not considered in these specific 
analyses. These effects can significantly influence the observed relationship between the quadcopter 
and the rocket. More comprehensive analyses considering these variables, simulations, or empirical 
studies might be necessary to fully understand the complex relationship between rocket launch 
velocity and quadcopter behaviour. 

5.2. The acceleration function of the quadcopter 

The translational acceleration function of the quadcopter is employed from Eq. 61. Therefore, the 
following function delivers the quadcopter’s acceleration function of time. 

𝑓𝑓�𝑥𝑥′̈ � = −4.91 − 0.75 × �𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2

4
− 735.75 (𝑚𝑚/𝑠𝑠2) (65) 

The method has converged to 𝑥𝑥0 = 59.99 m/s within the specified tolerance and intervals. The 
method has succeeded in providing an approximate solution within the interval and tolerance within 
24 iterations. 



44 

However, this function’s convergence rate is also 0, which, as mentioned in Subsection 5.1, typically 
indicates the method is neither converging nor converging extremely slow. The assumptions could 
be thoroughly examined by adjusting method intervals or the algorithm of the method to converge 
the function to a better conclusion; however, due to the hardware utilised to calculate these functions, 
the additional studies could not be computed. 

The graph of root approximation against iteration in Fig. 11 illustrates how the approximation of the 
root changes with each iteration. As the iteration continues, the value approaches a true root value, 
which, in this case, is 𝑥𝑥0 = 59.99 m/s. 

The graph of interval contraction in Fig. 12 illustrates how the size of the interval changes with each 
iteration. The interval size drops towards the root, which is ideal. 

The graph of convergence rate against iteration in Fig. 13 illustrates how fast the method converges 
towards the root. Ideally, the convergence rate should approach a value close to 0.5 for effective 
convergence. 

The graph of the error reduction rate against iteration in Fig. 14 illustrates how the error between the 
estimated root and actual root reduces with each iteration. A decreasing trend indicates the method is 
converging. 

 

Fig. 11. Root approximation vs. iteration 
(acceleration) 

 

Fig. 12. Interval contraction (acceleration) 
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Fig. 13. Convergence rate vs. iteration 
(acceleration) 

 

Fig. 14. Error reduction rate vs. iteration 
(acceleration) 

Furthermore, the trend between the quadcopter’s acceleration and the rocket’s velocity is illustrated 
in Fig. 15, and values are shown in Table 8. 

 

Fig. 15. Quadcopter acceleration against rocket launch velocity in m/s2 

Table 8. Corresponding rocket velocities to quadcopter accelerations in each iteration 

Iteration no. Rocket launch velocity, m/s Quadcopter accelerations, m/s2 

1 55.00000 -8.30577 

2 57.50000 -12.05717 

3 58.75000 -13.36675 
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4 59.37500 -13.95979 

5 59.68750 -14.24439 

6 59.84375 -14.38404 

7 59.92188 -14.45322 

8 59.96094 -14.48766 

9 59.98047 -14.50485 

10 59.99023 -14.51343 

11 59.99512 -14.51772 

12 59.99756 -14.51986 

13 59.99878 -14.52093 

14 59.99939 -14.52147 

15 59.99969 -14.52174 

16 59.99985 -14.52187 

17 59.99992 -14.52194 

18 59.99996 -14.52197 

19 59.99998 -14.52199 

20 59.99999 -14.52200 

21 60.00000 -14.52200 

22 60.00000 -14.52200 

23 60.00000 -14.52200 

24 60.00000 -14.52200 

A linear and steady acceleration is shown in Fig. 16 and Table 9. The result is that the quadcopter is 
subjected to a constant increase in velocity, indicating a constant acceleration. The quadcopter’s 
acceleration is calculated using Eq. (65). This equation suggests that the quadcopter’s acceleration 
remains constant regardless of changes in the rocket launch velocities. 

Other variables such as aerodynamic effects and control systems are not considered in these specific 
analyses. These effects can significantly influence the observed relationship between the quadcopter 
and the rocket. More comprehensive analyses considering these variables, simulations, or empirical 
studies might be necessary to fully understand the complex relationship between rocket launch 
velocity and quadcopter behaviour. 
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Fig. 16. Quadcopter acceleration over time for different rocket velocities 

Table 9. Acceleration �𝑎𝑎𝑞𝑞𝑥𝑥� values of each rocket launch velocity at specific times 

Time, s Acceleration �𝒕𝒕𝒒𝒒𝒙𝒙�, m/s2 

𝝊𝝊𝟎𝟎𝒕𝒕𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓𝒕𝒕, 
m/s 

55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 

0 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

1 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

2 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

3 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

4 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

5 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

6 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

7 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

8 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

9 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 

10 0.8 1.0 1.2 1.4 1.5 1.7 1.8 1.9 2.0 2.1 2.2 
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Conclusions 

1. A mathematical model of quadcopter in pre- and post-launch environments was created. The 
mathematical model includes equations defining the system’s position and orientation in space, 
linear and angular velocity, total thrust, total moment, torque, rotational and translational 
acceleration, and recoil evaluation, all linearized and presented in state space form. 

2. The developed mathematical model was verified by assuming that the quadcopter flying at an 
altitude of 50 metres AGL, with a downward pitch angle of 30°. Dependent variables and 
independent variables were presented. Dependent variables include the quadcopter’s reaction 
force, velocity, and acceleration, while independent variables involve the quadcopter and rocket 
mass, system mass, gravitational acceleration, rocket launch altitude, and rocket launch velocities. 

3. The model’s validity was affirmed by successfully determining the convergence of calculated 
velocities when �𝑓𝑓�𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �, 𝜐𝜐0𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 � = [0,   59.99 𝑚𝑚/𝑠𝑠]. 

4. The model analysis allows us to determine the mathematical model’s accuracy and capability to 
simulate the quadcopter’s behaviour during a rocket launch.  

5. The model simulation illustrated the quadcopter’s position, energy, velocity, and acceleration 
over time for different rocket launch velocities, and the numerical values of such simulation were 
presented. Understanding the behaviour of the quadcopter for different rocket launch velocities 
helps to determine the navigation algorithms and/or control systems for the quadcopter. 

6. To ensure a systematic validation of the system’s mathematical model the dichotomy 
methodology was used. The success is determined by root convergence for each bound. The 
generated MATLAB graphs illustrate the relationship between quadcopter velocity and 
acceleration for specific timeframes across different rocket launch velocities in the post-launch 
scenario. 

7. Other variables such as aerodynamic effects and control systems are not considered in these 
specific analyses. These effects can significantly influence the observed relationship between the 
quadcopter and the rocket. More comprehensive analyses considering these variables, 
simulations, or empirical studies might be necessary to fully understand the complex relationship 
between rocket launch velocity and quadcopter behaviour. 

8. Real experiments should be conducted to verify the accuracy of the model so that the model can 
be trusted and based on it, real drones that shoot rockets can be created. 
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