
Citation: Strikuliene, O.; Sarkauskas,

K.K.; Gelsvartas, J.; Balasevicius, L.;

Baranauskas, V.; Derviniene, A. Path

Planning of Logistic Robot Using

Method of Vector Marks Tree

Generation. Mathematics 2024, 12, 73.

https://doi.org/10.3390/

math12010073

Academic Editors: Idilia Batchkova

and Elena Koleva

Received: 2 December 2023

Revised: 19 December 2023

Accepted: 22 December 2023

Published: 25 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Path Planning of Logistic Robot Using Method of Vector Marks
Tree Generation
Olga Strikuliene 1, Kastytis Kiprijonas Sarkauskas 2, Julius Gelsvartas 2, Leonas Balasevicius 2,
Virginijus Baranauskas 2,* and Alma Derviniene 3

1 Technology and Entrepreneurship Competence Center, Panevezys Faculty of Technologies and Business,
Kaunas University of Technology, Nemuno St. 33-218, LT-37164 Panevezys, Lithuania; olga.strikuliene@ktu.lt

2 Department of Automation, Faculty of Electrical and Electronics Engineering, Kaunas University of
Technology, Studentu St. 48-320, LT-51367 Kaunas, Lithuania; sarkauskaskastytis@gmail.com (K.K.S.);
julius.gelsvartas@gmail.com (J.G.); leonas.balasevicius@ktu.lt (L.B.)

3 Department of Electronics Engineering, Faculty of Electrical and Electronics Engineering, Kaunas University
of Technology, Studentu St. 48-213, LT-51367 Kaunas, Lithuania; alma.derviniene@ktu.lt

* Correspondence: virginijus.baranauskas@ktu.lt; Tel.: +370-37-300-291

Abstract: The authors of this article analyzed the problem of logistic robotics. This paper presents a
method for robot navigation in a known environment. The method consists of two steps. The first
step is to model the system, assign vector marks to the prominent edges of the virtual environment
map, and direct the robot to reach these marks. The second step is to enable the robot to execute a
specific task based on the given paths and deal with the local obstacles avoidance independently.
The identification of the prominent point, the computation of the vector mark, and optimal path
calculation are performed on the computer model using colored Petri nets in the software ‘Centaurus
CPN’. The proposed approach was extended to simulate the work of a logistic robot, which has
to take boxes and deliver them to certain places in storages. The experimental investigation has
shown that the simulated mobile robots with the proposed navigation system were efficiently moving
along the planned path. The analysis of the vector tree reveals that it takes 0.389 s to compute and
graphically represent it. The occupation of certain places in storages is visualized and shown in
experimental graphics.

Keywords: robot control; path planning; vector mark; logistic robot; vector tree

MSC: 93-08

1. Introduction

Path planning is an active research topic relevant to many robotic applications. A
broad range of algorithms has been developed to solve this problem. Therefore, comparing
different algorithms is challenging. A comprehensive comparison of different path planning
algorithms is presented in [1]. Another recent study categorizes path planning algorithms
into meta-heuristic and conventional categories [2]. The Kiva systems robotic logistics
system is used in Amazon’s logistics centers. The task of warehouse robots is to lift the
shelves of products and deliver them to the correct warehouse locations. The robots’
working area is separated from humans [3–5]. The Fetch company develops robots to
transport goods from one place to another. These robots can work alongside humans in the
same space and navigate in environments with dynamic moving obstacles [6].

The most important task of any path planning algorithm is to make sure that the robot
will not hit any obstacles when executing the planned path. Therefore, path planning is
often divided into two separate algorithms, namely local and global path planning. The
main responsibility of the global path planner is to find the path from the start location
to the goal while avoiding all known obstacles. The local planner calculates the robot

Mathematics 2024, 12, 73. https://doi.org/10.3390/math12010073 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12010073
https://doi.org/10.3390/math12010073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12010073
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12010073?type=check_update&version=1

Mathematics 2024, 12, 73 2 of 16

velocity commands that help the robot stay on the planned global path. Additionally,
the local planner uses the robot sensor information to avoid unexpected obstacles. When
the unexpected obstacle is avoided, the robot can return to the planned global path. The
robot operating system (ROS) has one of the most popular path planning architecture
implementations. This system is used in many robotic logistic tasks [7]. More recently,
this system has been improved and re-implemented in ROS2 [8]. This version places a
lot of emphasis on the definitions of behavioral navigation behavioral tree definitions.
These behavioral trees improve the performance of the overall system in challenging and
dynamic environments.

In this paper, a trajectory planning algorithm based on the generated unique vector
marks tree method is applied to the modeling of a control system for a logistic mobile robot.
The proposed method aims to find the shortest trajectory to the target point, considering
the dimensions of the mobile robot with the load. The logistics distribution system for
transported products assesses the occupancy of the racks and shelves and directs the
loads accordingly.

The subsequent content of this paper consists of: path planning algorithms are revised
in Section 2; Section 3 describes the vector marks tree-generated method and defines the
object of research; Section 4 presents the results of the research. The future work and
conclusions are summarized in Section 5.

2. Path Planning Algorithms

Path planning algorithms can be divided into four main categories, namely those
based on graph, potential field, optimization, and random search. A detailed review
of the path planning algorithm can be found in [9]. The choice of algorithm is highly
dependent on the planning stage of the path. Graph-based algorithms are mainly sued for
global path planning. Local path planning is usually implemented using potential fields of
search-based algorithms.

Environment maps are needed to plan the global path planning. These maps can
be created from building plans or by a robot driving in that environment. Simultaneous
localization and mapping (SLAM) are a group of algorithms that can be used to create
environment maps in real-time [10]. One of the most popular SLAM frameworks in recent
years has been described in [11]. For example, see Figure 1.

Mathematics 2024, 12, x FOR PEER REVIEW 2 of 16

The main responsibility of the global path planner is to find the path from the start location
to the goal while avoiding all known obstacles. The local planner calculates the robot ve-
locity commands that help the robot stay on the planned global path. Additionally, the
local planner uses the robot sensor information to avoid unexpected obstacles. When the
unexpected obstacle is avoided, the robot can return to the planned global path. The robot
operating system (ROS) has one of the most popular path planning architecture imple-
mentations. This system is used in many robotic logistic tasks [7]. More recently, this sys-
tem has been improved and re-implemented in ROS2 [8]. This version places a lot of em-
phasis on the definitions of behavioral navigation behavioral tree definitions. These be-
havioral trees improve the performance of the overall system in challenging and dynamic
environments.

In this paper, a trajectory planning algorithm based on the generated unique vector
marks tree method is applied to the modeling of a control system for a logistic mobile
robot. The proposed method aims to find the shortest trajectory to the target point, con-
sidering the dimensions of the mobile robot with the load. The logistics distribution sys-
tem for transported products assesses the occupancy of the racks and shelves and directs
the loads accordingly.

The subsequent content of this paper consists of: path planning algorithms are re-
vised in Section 2; Section 3 describes the vector marks tree-generated method and defines
the object of research; Section 4 presents the results of the research. The future work and
conclusions are summarized in Section 5.

2. Path Planning Algorithms
Path planning algorithms can be divided into four main categories, namely those

based on graph, potential field, optimization, and random search. A detailed review of the
path planning algorithm can be found in [9]. The choice of algorithm is highly dependent
on the planning stage of the path. Graph-based algorithms are mainly sued for global path
planning. Local path planning is usually implemented using potential fields of search-
based algorithms.

Environment maps are needed to plan the global path planning. These maps can be
created from building plans or by a robot driving in that environment. Simultaneous lo-
calization and mapping (SLAM) are a group of algorithms that can be used to create en-
vironment maps in real-time [10]. One of the most popular SLAM frameworks in recent
years has been described in [11]. For example, see Figure 1.

Figure 1. Example of a map created using Cartographer SLAM [11]. Figure 1. Example of a map created using Cartographer SLAM [11].

Environment maps are usually discretized before using graph-based path-planning
algorithms. The discretization step has to be selected according to the dimensions of the
robot. In this case, obstacles are marked as occupied cells on the discrete environment map.

Mathematics 2024, 12, 73 3 of 16

The robot is treated as a point object when performing global path planning. Because the
robot is not a point object, it can hit the obstacles when moving through the path planned
for the point object. To avoid this problem, obstacles are often inflated on the global map.
The inflation distance is selected according to the robot’s diameter. When planning the
path in the inflated environment map, the robot can always move from any free cell to all
of its neighboring free cells. Obstacle inflation guarantees that the robot will never hit an
obstacle when moving along a planned path [12]. The relative standard deviation of each
path’s distance (RD) mathematical computation formula follows [12]:

RD =

√
1

N·K ∑N·K
i=1 (Di − Dm)

2

Dm
(1)

where Di is the ith path’s distance in cells, Dm is the mean distance D of each path, K is
experiment’s ID, and N is the number of successive goals that the algorithm must produce
paths for. This metric checks the punctuality of the method concerning its produced paths.

Global path planning can be performed using the classical graph shortest path plan-
ning algorithms. However, the selected map cell size must not be too small. A* and Dijkstra
are some of the algorithms that are often used in global path planning (see Figure 2). The
Dijkstra algorithm is guaranteed to return an optimal path, but it often has to perform a
lot more computations. A*, on the other hand, uses heuristics to reduce the computation
requirements of the algorithm. Both algorithms can find the optimal path when the condi-
tions are right. The biggest disadvantage of both A* and Dijkstra is that planning has to
be performed from scratch when an unknown obstacle is detected. This can lead to high
computational loads when the robot operates in highly dynamic environments. D* Lite is a
more efficient version of A* that stores the intermittent planning results and can reuse this
information when a dynamic obstacle is detected. D* Lite has been successfully used for
global path planning [13].

Mathematics 2024, 12, x FOR PEER REVIEW 3 of 16

Environment maps are usually discretized before using graph-based path-planning
algorithms. The discretization step has to be selected according to the dimensions of the
robot. In this case, obstacles are marked as occupied cells on the discrete environment
map. The robot is treated as a point object when performing global path planning. Because
the robot is not a point object, it can hit the obstacles when moving through the path
planned for the point object. To avoid this problem, obstacles are often inflated on the
global map. The inflation distance is selected according to the robot’s diameter. When
planning the path in the inflated environment map, the robot can always move from any
free cell to all of its neighboring free cells. Obstacle inflation guarantees that the robot will
never hit an obstacle when moving along a planned path [12]. The relative standard devi-
ation of each path’s distance (RD) mathematical computation formula follows [12]:

𝑅𝐷 = ට 1𝑁 ∙ 𝐾 ∑ (𝐷௜ െ 𝐷௠)ଶே∙௄௜ୀଵ𝐷௠ (1)

where Di is the ith path’s distance in cells, Dm is the mean distance D of each path, K is
experiment’s ID, and N is the number of successive goals that the algorithm must produce
paths for. This metric checks the punctuality of the method concerning its produced paths.

Global path planning can be performed using the classical graph shortest path plan-
ning algorithms. However, the selected map cell size must not be too small. A* and Dijkstra
are some of the algorithms that are often used in global path planning (see Figure 2). The
Dijkstra algorithm is guaranteed to return an optimal path, but it often has to perform a
lot more computations. A*, on the other hand, uses heuristics to reduce the computation
requirements of the algorithm. Both algorithms can find the optimal path when the con-
ditions are right. The biggest disadvantage of both A* and Dijkstra is that planning has to
be performed from scratch when an unknown obstacle is detected. This can lead to high
computational loads when the robot operates in highly dynamic environments. D* Lite is
a more efficient version of A* that stores the intermittent planning results and can reuse
this information when a dynamic obstacle is detected. D* Lite has been successfully used
for global path planning [13].

Figure 2. Dijkstra and A* path-planning differences [14].

Local path planning converts the global path into velocity commands. These com-
mands are used to calculate the robot actuator velocities. When doing global path plan-
ning, the robot only has to select between four and eight possible actions in each cell. Local
path planning, on the other hand, works in a continuous space. This is because, in each
time step, the robot could drive at any desired speed. Local path planning is often per-
formed in a small window near the robot. This reduces the computational load when deal-
ing with a continuous action space. The size of the local path planning window is usually
chosen by taking the reaction time into account. This is performed so that the robot could

Figure 2. Dijkstra and A* path-planning differences [14].

Local path planning converts the global path into velocity commands. These com-
mands are used to calculate the robot actuator velocities. When doing global path planning,
the robot only has to select between four and eight possible actions in each cell. Local path
planning, on the other hand, works in a continuous space. This is because, in each time
step, the robot could drive at any desired speed. Local path planning is often performed in
a small window near the robot. This reduces the computational load when dealing with
a continuous action space. The size of the local path planning window is usually chosen
by taking the reaction time into account. This is performed so that the robot could avoid
dynamic obstacles that can appear in the robot environment. Additionally, planning the
local path always takes the robot’s footprint into account.

As already mentioned, robots can have a continuous velocity action space. It is
impractical to try to evaluate all possible robot velocities when doing local planning. One

Mathematics 2024, 12, 73 4 of 16

way to address this problem is to select a set of possible robot velocities and then check with
one who obtains the robot closest to its goal. It is also important to check that the selected
action will not cause the robot to hit any obstacles. One of the most popular algorithms
that uses this method is the dynamic window approach [15] (see Figure 3).

Mathematics 2024, 12, x FOR PEER REVIEW 4 of 16

avoid dynamic obstacles that can appear in the robot environment. Additionally, planning
the local path always takes the robot’s footprint into account.

As already mentioned, robots can have a continuous velocity action space. It is im-
practical to try to evaluate all possible robot velocities when doing local planning. One
way to address this problem is to select a set of possible robot velocities and then check
with one who obtains the robot closest to its goal. It is also important to check that the
selected action will not cause the robot to hit any obstacles. One of the most popular algo-
rithms that uses this method is the dynamic window approach [15] (see Figure 3).

Figure 3. Dynamic window algorithm for local path planning [16].

Optimization-based algorithms search for the optimal robot trajectory. It is very im-
portant to select a good optimization criterion for these algorithms. The goal function can
have one or more optimization criteria. For example, the criteria can be: trajectory length,
smoothness, distance to obstacles, execution time, or energy consumption. The choice of
algorithm parameters will determine how the optimized trajectory looks. Optimization-
based algorithms can generate very good trajectories because they operate in a continuous
space. The main disadvantage of optimization-based algorithms is that they usually have
many parameters that need to be tuned to obtain reasonable algorithm performance. An-
other problem is the possibility that the optimization algorithm becomes stuck in a local
minimum. Despite these problems, optimization-based algorithms are successfully used
for robot navigation [17]. Moreover, optimization-based algorithms can be applied when
controlling Ackerman drive robots [18].

Path-planning algorithms are similar to optimization-based algorithms. These algo-
rithms create a monotonic function that decreases the movement towards the target loca-
tion. Path planning is then performed by performing a decent gradient on this function.
As with optimization-based algorithms, local minima are often a source of concern for
these algorithms. Many different methods are proposed to help avoid these issues [19]. A
detailed review of different local path planning algorithms can also be found in [20]. In
recent years, learning-based approaches have also become popular [21]. These methods
can achieve even higher performances when combined with modern deep neural network
approaches [22]. Neural network training is often based on error minimization methods.
The error that the network is trained to minimize can be chosen according to the problem
to be solved and the type of neural network. One error function widely used for training
neural networks is the sum squared error. The sum of squared errors is suitable for solving
regression problems. The cumulative squared error is obtained by summing the errors in
all the outputs of the network, for the entire data sample: 𝐸(𝑤) = ଵଶ ∑ ∑ ሼ𝑦௞(𝑥௡, 𝑤) െ 𝑡௞௡ሽଶ௖௞ୀଵே௡ୀଵ , (2)

Figure 3. Dynamic window algorithm for local path planning [16].

Optimization-based algorithms search for the optimal robot trajectory. It is very
important to select a good optimization criterion for these algorithms. The goal function can
have one or more optimization criteria. For example, the criteria can be: trajectory length,
smoothness, distance to obstacles, execution time, or energy consumption. The choice of
algorithm parameters will determine how the optimized trajectory looks. Optimization-
based algorithms can generate very good trajectories because they operate in a continuous
space. The main disadvantage of optimization-based algorithms is that they usually
have many parameters that need to be tuned to obtain reasonable algorithm performance.
Another problem is the possibility that the optimization algorithm becomes stuck in a local
minimum. Despite these problems, optimization-based algorithms are successfully used
for robot navigation [17]. Moreover, optimization-based algorithms can be applied when
controlling Ackerman drive robots [18].

Path-planning algorithms are similar to optimization-based algorithms. These al-
gorithms create a monotonic function that decreases the movement towards the target
location. Path planning is then performed by performing a decent gradient on this function.
As with optimization-based algorithms, local minima are often a source of concern for
these algorithms. Many different methods are proposed to help avoid these issues [19]. A
detailed review of different local path planning algorithms can also be found in [20]. In
recent years, learning-based approaches have also become popular [21]. These methods
can achieve even higher performances when combined with modern deep neural network
approaches [22]. Neural network training is often based on error minimization methods.
The error that the network is trained to minimize can be chosen according to the problem
to be solved and the type of neural network. One error function widely used for training
neural networks is the sum squared error. The sum of squared errors is suitable for solving
regression problems. The cumulative squared error is obtained by summing the errors in
all the outputs of the network, for the entire data sample:

E(w) =
1
2∑N

n=1 ∑c
k=1

{
yk(xn, w)− tn

k

}2
, (2)

where N is the number of input vectors, c represents the number of outputs of the network,
k is kth output of the network, calculated as a function of the nth input vector xn and weight
vector w.

Mathematics 2024, 12, 73 5 of 16

Path planning can also be performed for several robots simultaneously. In this case,
the goal is to plan a joint plan to make sure that robots will not be obstacles to each other.
These plans can also help avoid congestions. These plans can consider the robot waiting
time. Simultaneous path planning is often used in logistics to find a common plan for all
robots operating in a warehouse [23]. The researchers [24] also proposed a path planning
method based on neural network training, which allows one to achieve a level of accuracy
close to 90%. Such planning approaches can produce very good results, but their practical
implementation is often very difficult. Simultaneously planning a path for a robotic fleet is
even more computationally expansive than the other methods discussed so far. Another
big problem is the re-planning that is needed when unexpected situations arise.

3. Vector Mark Generation Method and Research Object

This paper presents a method for finding the shortest path for mobile robots using
vector marks. Vector marks are derived from the scanned outlines of the environment
around the robots. The supervision system controls the robots’ movement by tracking
each one separately and calculating the optimal route. The vector marks help estimate
the movement trajectory of the mobile robot. In order to describe the properties of vector
marks, the authors describe “visibility”—a point pd is visible from point p0, if there exists a
line segment connecting these points and all points on this line belong S f ree:

∀p ∈ l(p0, pd) ∈ S f ree, (3)

where l(p0, pd)—means the line connecting points p0 and pd. Before analyzing the scanned
data, we need to check the contour of scanned obstacles for any changes, gaps, or breaks.
These are called salient points and they indicate important abnormalities. We can find
them by looking for places where the gradient direction suddenly changes. To do this, we
only need to measure the tangential angles at the points we are interested in, instead of
computing the exact gradient at every point. The research in this article is focused on the
detection of salient points, where the shape of obstacles changes [25]. Figure 4 shows the
algorithm of vector mark generation.

The length of the vector mark is an important factor. This length influences the weight
coefficient of the mark, which is calculated from the end of the mark to the target point. The
length of the mark is also included in the calculation of the weight coefficient of a vector
mark. Lengthening the mark may lead to a situation where the mark falls into a static
obstruction zone. That is, the distance between two static obstacles is less than the specified
length of the vector mark. In order to avoid this situation, the algorithm that recalculates
the length of the vector mark is adjusted. Using the heuristic relationship between the
size of the vector mark l and the length of the jump ∆l at the point of rupture found in the
scanner contour, the proposed algorithm is used:

l =
{

2 ∗ g, i f ∆l ≥ 4 ∗ g
0.25 ∗ ∆l

, (4)

where g is the scanner distance and ∆l is length of a radar beam jump for aesthesia.
The shortest path between two points is known to be a straight line. However, there

are not always no obstacles between the goal and the current position points.
In this case, the optimal path is a polygonal path approximated by the shortest distance

between the robot’s current position and the target point. If the target point is obstructed
by an obstacle, there is at least one point at the vertex of the polygonal path that allows the
robot to bypass this obstacle. Obviously, there may be cases where one new point will not
be sufficient to overcome the obstacle. The path through these vertices will, in the general
case, be far from the shortest path. A more accurate approximation is therefore needed.

Mathematics 2024, 12, 73 6 of 16

Authors use criteria λ to select the vector, which can lead to the target point in the
shortest path, from visible vectors k:

λ =
k

min
n=1

(Wn + ∥pnv − pr∥+ ∥pnh − pnv∥)n ∈ ℜ, (5)

where Wn is the weight coefficient of the n-th vector mark; pnv is the visible vector mark
point; pr is the robot position; pnh is the apex of the vector mark.

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 16

in the general case, be far from the shortest path. A more accurate approximation is there-
fore needed.

Authors use criteria λ to select the vector, which can lead to the target point in the
shortest path, from visible vectors k:

()nvnhrnvn

k

n
ppppW −+−+=

=1
minλ ∈n ℜ , (5)

where nW is the weight coefficient of the n-th vector mark; nvp is the visible vector mark
point; rp is the robot position; nhp is the apex of the vector mark.

Figure 4. Algorithm of vector mark generation.

The vector is defined by its end point, which is also the origin of the vector. The vec-
tor’s length is equal to the given size, so that it can be used to locate other features of the
current scene, such as gaps in the wall or door, by generating new vectors from end of it.
This method helps to detect gaps and holes on parallel planes. Let the robot size be as the
material point. Let the obstacle (see Figure 5) between the robot’s current position “A” and
the target “D” be a fragment of a circle. From the target point “D”, a tangent to the obstacle
is drawn and the new vertex “C” is fixed on this tangent. Thus, the path does not cross the
obstacle. Obviously, this path is not the shortest path from “A” to “D”. On the tangent,
from point “C”, a vector mark is formed at the point of contact “K”, pointing to the target
“D”. Another tangent to the obstacle (point of contact “B”) is drawn from the current robot
position “A” until it crosses the vector mark “CK”. When the robot passes point “B” at a
fixed distance h along this tangent from point “F”, a new tangent to the obstacle (point of
contact “L”) is drawn. The robot moves along the new tangent. This process is repeated

Figure 4. Algorithm of vector mark generation.

The vector is defined by its end point, which is also the origin of the vector. The
vector’s length is equal to the given size, so that it can be used to locate other features of
the current scene, such as gaps in the wall or door, by generating new vectors from end of
it. This method helps to detect gaps and holes on parallel planes. Let the robot size be as
the material point. Let the obstacle (see Figure 5) between the robot’s current position “A”
and the target “D” be a fragment of a circle. From the target point “D”, a tangent to the
obstacle is drawn and the new vertex “C” is fixed on this tangent. Thus, the path does not
cross the obstacle. Obviously, this path is not the shortest path from “A” to “D”. On the
tangent, from point “C”, a vector mark is formed at the point of contact “K”, pointing to the
target “D”. Another tangent to the obstacle (point of contact “B”) is drawn from the current
robot position “A” until it crosses the vector mark “CK”. When the robot passes point
“B” at a fixed distance h along this tangent from point “F”, a new tangent to the obstacle
(point of contact “L”) is drawn. The robot moves along the new tangent. This process is

Mathematics 2024, 12, 73 7 of 16

repeated until the robot’s path is aligned with the tangent “CK”. The result of this process
is a polygonal path that more accurately approximates the optimal path.

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 16

until the robot’s path is aligned with the tangent “CK”. The result of this process is a po-
lygonal path that more accurately approximates the optimal path.

Figure 5. Approximated path and vector mark.

The accuracy of the approximation depends on the value of h. All tangents drawn
from the current robot position intersect with the vector “CK”. In other words, the vector
“CK” is visible from the robot’s current position and is a vector mark. The length of the
mark must be at least as long as the distance “EK”, otherwise the robot at point “A” will
not see the vector mark. The total length of the vector mark must be long enough to form
the tag, and at least long enough for the end of the mark to be visible. A path consisting
of tangent fragments is obviously shorter than a polygonal path.

Evidently, the robot’s path is close to the shortest path if the robot’s movement step
h is not too large. If the lengths of several different paths are similar and correspond to the
shortest required path, the criterion for selecting the visible vector mark is quite simple.
Figure 6 shows the case of a known environment, where a circular obstacle is avoided in
a virtual environment by estimating the dimensions of the virtual robot.

For the environment depicted in Figure 6, the target point is denoted by “T” and the
robot’s current position is denoted by “R”. A global search is performed for the path be-
tween the points “R” and “T”. A tree of the vector is formed from the goal point. The first
generation of vector marks V1 and V2 is formed.

Figure 6. Path of the robot.

Continuing further scanning from the end point of the vector mark V1, at the point of
contact of the obstacle, a vector mark V3 of known length is formed, equal to the length of
the vector mark V1. The next point of contact of the obstacle is found, where a vector mark

Figure 5. Approximated path and vector mark.

The accuracy of the approximation depends on the value of h. All tangents drawn
from the current robot position intersect with the vector “CK”. In other words, the vector
“CK” is visible from the robot’s current position and is a vector mark. The length of the
mark must be at least as long as the distance “EK”, otherwise the robot at point “A” will
not see the vector mark. The total length of the vector mark must be long enough to form
the tag, and at least long enough for the end of the mark to be visible. A path consisting of
tangent fragments is obviously shorter than a polygonal path.

Evidently, the robot’s path is close to the shortest path if the robot’s movement step h
is not too large. If the lengths of several different paths are similar and correspond to the
shortest required path, the criterion for selecting the visible vector mark is quite simple.
Figure 6 shows the case of a known environment, where a circular obstacle is avoided in a
virtual environment by estimating the dimensions of the virtual robot.

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 16

until the robot’s path is aligned with the tangent “CK”. The result of this process is a po-
lygonal path that more accurately approximates the optimal path.

Figure 5. Approximated path and vector mark.

The accuracy of the approximation depends on the value of h. All tangents drawn
from the current robot position intersect with the vector “CK”. In other words, the vector
“CK” is visible from the robot’s current position and is a vector mark. The length of the
mark must be at least as long as the distance “EK”, otherwise the robot at point “A” will
not see the vector mark. The total length of the vector mark must be long enough to form
the tag, and at least long enough for the end of the mark to be visible. A path consisting
of tangent fragments is obviously shorter than a polygonal path.

Evidently, the robot’s path is close to the shortest path if the robot’s movement step
h is not too large. If the lengths of several different paths are similar and correspond to the
shortest required path, the criterion for selecting the visible vector mark is quite simple.
Figure 6 shows the case of a known environment, where a circular obstacle is avoided in
a virtual environment by estimating the dimensions of the virtual robot.

For the environment depicted in Figure 6, the target point is denoted by “T” and the
robot’s current position is denoted by “R”. A global search is performed for the path be-
tween the points “R” and “T”. A tree of the vector is formed from the goal point. The first
generation of vector marks V1 and V2 is formed.

Figure 6. Path of the robot.

Continuing further scanning from the end point of the vector mark V1, at the point of
contact of the obstacle, a vector mark V3 of known length is formed, equal to the length of
the vector mark V1. The next point of contact of the obstacle is found, where a vector mark

Figure 6. Path of the robot.

For the environment depicted in Figure 6, the target point is denoted by “T” and
the robot’s current position is denoted by “R”. A global search is performed for the path
between the points “R” and “T”. A tree of the vector is formed from the goal point. The
first generation of vector marks V1 and V2 is formed.

Mathematics 2024, 12, 73 8 of 16

Continuing further scanning from the end point of the vector mark V1, at the point of
contact of the obstacle, a vector mark V3 of known length is formed, equal to the length
of the vector mark V1. The next point of contact of the obstacle is found, where a vector
mark V4 is being formed. In this way, vector marks are formed at the points of contact of
a circular static obstacle. In the case shown in Figure 6, the dimensions of the simulated
virtual robot are known. Thus, the robot has to go from point “R” to the goal point “T”
and then it has to bypass a round static obstacle. In the simulated case, a trajectory is
constructed in the virtual space based on the vector tree and the robot’s dimensions. As can
be seen in Figure 6, the virtual robot smoothly avoids the obstacle and follows the shortest
possible path according to the generated trajectory. Figure 6 shows how the approximation
of the path depicted in Figure 5 is implemented in the software.

The analysis is based on a storage room where boxes of fastening details arrive stacked
on pallets. They are then to be removed to the appropriate shelves. There are several rows
of the double-sided racking with a gap of 2800 mm between them. The storage room is
depicted in Figure 7.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 16

V4 is being formed. In this way, vector marks are formed at the points of contact of a cir-
cular static obstacle. In the case shown in Figure 6, the dimensions of the simulated virtual
robot are known. Thus, the robot has to go from point “R” to the goal point “T” and then
it has to bypass a round static obstacle. In the simulated case, a trajectory is constructed
in the virtual space based on the vector tree and the robot’s dimensions. As can be seen in
Figure 6, the virtual robot smoothly avoids the obstacle and follows the shortest possible
path according to the generated trajectory. Figure 6 shows how the approximation of the
path depicted in Figure 5 is implemented in the software.

The analysis is based on a storage room where boxes of fastening details arrive
stacked on pallets. They are then to be removed to the appropriate shelves. There are sev-
eral rows of the double-sided racking with a gap of 2800 mm between them. The storage
room is depicted in Figure 7.

The minimum height at which the box can be picked/placed is 200 mm, and the max-
imum height is 2000 mm. The dimensions of the robot chassis are 800 mm × 1000 mm.
Figure 7 shows that the space between the racks is 2080 mm, so that two mobile robots
can pass.

Figure 7. Storage room.

4. Experimental Research
The software ‘CentaurusCPNV16’ is capable of solving mobile robot path planning

tasks [25]. However, the authors of this paper do not solve collisions between dynamic
objects here. Collisions with a static environment are analyzed and taken into account.

A model of the room designed for the experimental studies is shown in Figure 8.
The model has a yellow area for people; four pallets for the storage of boxes (4 blue

squares); the boxes are placed in 16 racks (8 gray areas, each consisting of 2 racks). Two
loading points are allocated for the mobile robot. They are marked with black squares in
racks 1–2 and racks 9–10. The gaps between the racks are designed to allow a 1 m wide
robot to pass through them.

Figure 7. Storage room.

The minimum height at which the box can be picked/placed is 200 mm, and the
maximum height is 2000 mm. The dimensions of the robot chassis are 800 mm × 1000 mm.
Figure 7 shows that the space between the racks is 2080 mm, so that two mobile robots
can pass.

4. Experimental Research

The software ‘CentaurusCPNV16’ is capable of solving mobile robot path planning
tasks [25]. However, the authors of this paper do not solve collisions between dynamic
objects here. Collisions with a static environment are analyzed and taken into account.

A model of the room designed for the experimental studies is shown in Figure 8.

Mathematics 2024, 12, 73 9 of 16
Mathematics 2024, 12, x FOR PEER REVIEW 9 of 16

Figure 8. The model of the room.

The robot has to pick up the boxes from the pallets to transport and place them in the
racks. Each rack can hold 60 boxes. The layout of the rack is shown in Figure 9. Figure 9
shows a general view of the rack, where the blue area indicates the available spaces. Each
rack consists of 10 vertical shelves with six levels, which is the situation of the removal of
boxes from the pallet to the selves of rack 1. The red color indicates the already occupied
spaces, with boxes placed on three floors.

Figure 9. Rack layout and occupancy of the shelves.

The vector tree is formed by specifying its coordinates, the length of the vector mark,
the radar distance insensitivity, and the radar angle of view (see Table 1).

Table 1. Parameters of the vector tree generation.

Parameter Value
X target 7.5
Y target 22.5
Corbel 4.0

Distance gap of radar 1.0
Max generation 100.0

Minimal visible chord 1.0
View angle of radar (grad) 330.0

For the robot to transport the boxes and place them on the shelves, its trajectories
need to be modeled. Based on the methodologies described above, a vector tree must be
generated at the target point corresponding to the coordinates of the center of each vertical
shelf of the rack. Based on this tree, the trajectory of the robot from the current location to
the target point is calculated. In addition, the calculation of this trajectory considers the
robot’s dimensions.

Figure 8. The model of the room.

The model has a yellow area for people; four pallets for the storage of boxes (4 blue
squares); the boxes are placed in 16 racks (8 gray areas, each consisting of 2 racks). Two
loading points are allocated for the mobile robot. They are marked with black squares in
racks 1–2 and racks 9–10. The gaps between the racks are designed to allow a 1 m wide
robot to pass through them.

The robot has to pick up the boxes from the pallets to transport and place them in the
racks. Each rack can hold 60 boxes. The layout of the rack is shown in Figure 9. Figure 9
shows a general view of the rack, where the blue area indicates the available spaces. Each
rack consists of 10 vertical shelves with six levels, which is the situation of the removal of
boxes from the pallet to the selves of rack 1. The red color indicates the already occupied
spaces, with boxes placed on three floors.

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 16

Figure 8. The model of the room.

The robot has to pick up the boxes from the pallets to transport and place them in the
racks. Each rack can hold 60 boxes. The layout of the rack is shown in Figure 9. Figure 9
shows a general view of the rack, where the blue area indicates the available spaces. Each
rack consists of 10 vertical shelves with six levels, which is the situation of the removal of
boxes from the pallet to the selves of rack 1. The red color indicates the already occupied
spaces, with boxes placed on three floors.

Figure 9. Rack layout and occupancy of the shelves.

The vector tree is formed by specifying its coordinates, the length of the vector mark,
the radar distance insensitivity, and the radar angle of view (see Table 1).

Table 1. Parameters of the vector tree generation.

Parameter Value
X target 7.5
Y target 22.5
Corbel 4.0

Distance gap of radar 1.0
Max generation 100.0

Minimal visible chord 1.0
View angle of radar (grad) 330.0

For the robot to transport the boxes and place them on the shelves, its trajectories
need to be modeled. Based on the methodologies described above, a vector tree must be
generated at the target point corresponding to the coordinates of the center of each vertical
shelf of the rack. Based on this tree, the trajectory of the robot from the current location to
the target point is calculated. In addition, the calculation of this trajectory considers the
robot’s dimensions.

Figure 9. Rack layout and occupancy of the shelves.

The vector tree is formed by specifying its coordinates, the length of the vector mark,
the radar distance insensitivity, and the radar angle of view (see Table 1).

Table 1. Parameters of the vector tree generation.

Parameter Value

X target 7.5
Y target 22.5
Corbel 4.0

Distance gap of radar 1.0
Max generation 100.0

Minimal visible chord 1.0
View angle of radar (grad) 330.0

Mathematics 2024, 12, 73 10 of 16

For the robot to transport the boxes and place them on the shelves, its trajectories
need to be modeled. Based on the methodologies described above, a vector tree must be
generated at the target point corresponding to the coordinates of the center of each vertical
shelf of the rack. Based on this tree, the trajectory of the robot from the current location to
the target point is calculated. In addition, the calculation of this trajectory considers the
robot’s dimensions.

According to this concept, two different vector tree systems can be used for a given
system configuration:

- For delivering a load to the racks (160 vector trees);
- For arriving at the pick-up area from the place of delivery (4 vector trees).

The loads must not only be delivered to the racks but also unloaded, i.e., the reverse
action must be undertaken by creating vector trees for the unloading process. In this
situation, the question is whether to form databases of all possible vector trees, which
would be selected for functionality based on the coordinates of the destination point, or to
generate the required tree each time based on the coordinates of the destination.

The second case is more efficient as it does not require the creation and maintenance of
a vector tree database. It is also necessary to consider that the preparation of the database
takes additional time.

For the given room configuration (see Figure 8), the time required to generate a vector
tree with modern computer technology is minimal. For example, the analysis of the vector
tree shown in Figures 10 and 11 reveals that it takes 0.389 s to compute and graphically
represent it.

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 16

According to this concept, two different vector tree systems can be used for a given
system configuration:
- For delivering a load to the racks (160 vector trees);
- For arriving at the pick-up area from the place of delivery (4 vector trees).

The loads must not only be delivered to the racks but also unloaded, i.e., the reverse
action must be undertaken by creating vector trees for the unloading process. In this situ-
ation, the question is whether to form databases of all possible vector trees, which would
be selected for functionality based on the coordinates of the destination point, or to gen-
erate the required tree each time based on the coordinates of the destination.

The second case is more efficient as it does not require the creation and maintenance
of a vector tree database. It is also necessary to consider that the preparation of the data-
base takes additional time.

For the given room configuration (see Figure 8), the time required to generate a vector
tree with modern computer technology is minimal. For example, the analysis of the vector
tree shown in Figures 10 and 11 reveals that it takes 0.389 s to compute and graphically
represent it.

Figure 10. Maximum length of vectors limited by distances to obstacles (target point x = 7.5; y = 22.5).

Figure 11. Minimum length of the vector (target point x = 7.5; y = 22.5. Condition: the length of the
vector is assumed to be 1 cm).

Figures 12–17 show how the generated vector mark trees and the generated robot
trajectories from different starting positions appear in different vector tree parameters

Figure 10. Maximum length of vectors limited by distances to obstacles (target point x = 7.5; y = 22.5).

Figures 12–17 show how the generated vector mark trees and the generated robot
trajectories from different starting positions appear in different vector tree parameters (vec-
tor tag length, viewing angle, robot radius, and robot starting positions). The parameters,
which can be changed, are shown in Table 2.

In this case (see Figure 13), the robot’s path is shorter than that obtained using the
minimum vector length (shown in Figure 12).

In this case, (see Figure 15), the robot’s path is shorter than that obtained using the
minimum vector length (see in Figure 14).

The experimental simulations and testing showed that, when generating vector trees,
it is advisable to use the maximum length of the vector. This results in a shorter path for
the robot to reach the goal. It can be seen in Figures 12 and 14. In these cases, more vector
marks are formed, but the calculated trajectory of the robot is 8.5 proc. longer.

In this case, (see Figure 17), the robot’s path is the same as the minimum vector length
(shown in Figure 16).

Mathematics 2024, 12, 73 11 of 16

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 16

According to this concept, two different vector tree systems can be used for a given
system configuration:
- For delivering a load to the racks (160 vector trees);
- For arriving at the pick-up area from the place of delivery (4 vector trees).

The loads must not only be delivered to the racks but also unloaded, i.e., the reverse
action must be undertaken by creating vector trees for the unloading process. In this situ-
ation, the question is whether to form databases of all possible vector trees, which would
be selected for functionality based on the coordinates of the destination point, or to gen-
erate the required tree each time based on the coordinates of the destination.

The second case is more efficient as it does not require the creation and maintenance
of a vector tree database. It is also necessary to consider that the preparation of the data-
base takes additional time.

For the given room configuration (see Figure 8), the time required to generate a vector
tree with modern computer technology is minimal. For example, the analysis of the vector
tree shown in Figures 10 and 11 reveals that it takes 0.389 s to compute and graphically
represent it.

Figure 10. Maximum length of vectors limited by distances to obstacles (target point x = 7.5; y = 22.5).

Figure 11. Minimum length of the vector (target point x = 7.5; y = 22.5. Condition: the length of the
vector is assumed to be 1 cm).

Figures 12–17 show how the generated vector mark trees and the generated robot
trajectories from different starting positions appear in different vector tree parameters

Figure 11. Minimum length of the vector (target point x = 7.5; y = 22.5. Condition: the length of the
vector is assumed to be 1 cm).

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 16

(vector tag length, viewing angle, robot radius, and robot starting positions). The param-
eters, which can be changed, are shown in Table 2.

Table 2. Parameters of the trace calculation.

Parameter Value
X target 7.5
Y target 22.5

Tolerance X 0.1
Tolerance Y 0.1

X robot 45.0
Y robot 1.0

Robot‘s radius 1.0

In this case (see Figure 13), the robot’s path is shorter than that obtained using the
minimum vector length (shown in Figure 12).

Figure 12. Minimum length of the vector (robot location coordinates x = 45; y = 1, target point coor-
dinates x = 7.5; y = 22.5).

Figure 13. Maximum vector length (robot location coordinates x = 45; y = 1, target point coordinates
x = 7.5; y = 22.5).

In this case, (see Figure 15), the robot’s path is shorter than that obtained using the
minimum vector length (see in Figure 14).

Figure 12. Minimum length of the vector (robot location coordinates x = 45; y = 1, target point
coordinates x = 7.5; y = 22.5).

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 16

(vector tag length, viewing angle, robot radius, and robot starting positions). The param-
eters, which can be changed, are shown in Table 2.

Table 2. Parameters of the trace calculation.

Parameter Value
X target 7.5
Y target 22.5

Tolerance X 0.1
Tolerance Y 0.1

X robot 45.0
Y robot 1.0

Robot‘s radius 1.0

In this case (see Figure 13), the robot’s path is shorter than that obtained using the
minimum vector length (shown in Figure 12).

Figure 12. Minimum length of the vector (robot location coordinates x = 45; y = 1, target point coor-
dinates x = 7.5; y = 22.5).

Figure 13. Maximum vector length (robot location coordinates x = 45; y = 1, target point coordinates
x = 7.5; y = 22.5).

In this case, (see Figure 15), the robot’s path is shorter than that obtained using the
minimum vector length (see in Figure 14).

Figure 13. Maximum vector length (robot location coordinates x = 45; y = 1, target point coordinates
x = 7.5; y = 22.5).

Mathematics 2024, 12, 73 12 of 16Mathematics 2024, 12, x FOR PEER REVIEW 12 of 16

Figure 14. Minimum length of the vector (robot location coordinates x = 45; y = 4, target point coor-
dinates x = 7.5; y = 22.5).

The experimental simulations and testing showed that, when generating vector trees,
it is advisable to use the maximum length of the vector. This results in a shorter path for
the robot to reach the goal. It can be seen in Figure 12 and Figure 14. In these cases, more
vector marks are formed, but the calculated trajectory of the robot is 8.5 proc. longer.

Figure 15. Maximum vector length (robot location coordinates x = 45; y = 4, target point coordinates
x = 7.5; y = 22.5).

In this case, (see Figure 17), the robot’s path is the same as the minimum vector length
(shown in Figure 16).

Using the maximum length of vector marks enables us to calculate the shorter path
to the target point. During the testing simulations, the authors used limiting parameters:
view of angle radar, different target point coordinates, different initial coordinates of the
robot, and the length of the vector. A simulation-based control system for a logistic robot
has been developed to simulate and represent the filling of storage shelves with boxes of
a given size. The movement of logistic robots is not attached to any physical restrictions
(such as tracks).

Figure 14. Minimum length of the vector (robot location coordinates x = 45; y = 4, target point
coordinates x = 7.5; y = 22.5).

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 16

Figure 14. Minimum length of the vector (robot location coordinates x = 45; y = 4, target point coor-
dinates x = 7.5; y = 22.5).

The experimental simulations and testing showed that, when generating vector trees,
it is advisable to use the maximum length of the vector. This results in a shorter path for
the robot to reach the goal. It can be seen in Figure 12 and Figure 14. In these cases, more
vector marks are formed, but the calculated trajectory of the robot is 8.5 proc. longer.

Figure 15. Maximum vector length (robot location coordinates x = 45; y = 4, target point coordinates
x = 7.5; y = 22.5).

In this case, (see Figure 17), the robot’s path is the same as the minimum vector length
(shown in Figure 16).

Using the maximum length of vector marks enables us to calculate the shorter path
to the target point. During the testing simulations, the authors used limiting parameters:
view of angle radar, different target point coordinates, different initial coordinates of the
robot, and the length of the vector. A simulation-based control system for a logistic robot
has been developed to simulate and represent the filling of storage shelves with boxes of
a given size. The movement of logistic robots is not attached to any physical restrictions
(such as tracks).

Figure 15. Maximum vector length (robot location coordinates x = 45; y = 4, target point coordinates
x = 7.5; y = 22.5).

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 16

Figure 16. Minimum length of the vector (robot location coordinates x = 1; y = 1, target point coor-
dinates x = 7.5; y = 22.5).

Figure 17. Maximum vector length (robot location coordinates x = 1; y = 1, target point coordinates
x = 7.5; y = 22.5).

Discussion
The performance checking of the proposed algorithm and comparison with other re-

searchers’ works was performed. The experimental simulation results of the proposed
method were compared with results obtained using the neural network field (NNF) and
fuzzy logic methods, which are commonly used in a 2D environment. The experimental
results are presented in Figure 18. Figure 18b shows that the path formed by the proposed
algorithm in this paper was slightly shorter than the path obtained by the NNF, presented
in Figure 18a [24]. Meanwhile Figure 18c [26] shows an example of navigation based on
fuzzy logic, Figure 18d shows the experimental testing of the proposed algorithm. Fur-
thermore, it is obvious that the proposed method showed better results (the path length
is shorter) compared with fuzzy logic.

The authors can state that the proposed method of navigation is capable of bypassing
obstacles of various shapes, avoids falling into local minima, and calculates the shortest
possible path to the target point, as shown in Figure 18d.

Figure 16. Minimum length of the vector (robot location coordinates x = 1; y = 1, target point
coordinates x = 7.5; y = 22.5).

Mathematics 2024, 12, 73 13 of 16

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 16

Figure 16. Minimum length of the vector (robot location coordinates x = 1; y = 1, target point coor-
dinates x = 7.5; y = 22.5).

Figure 17. Maximum vector length (robot location coordinates x = 1; y = 1, target point coordinates
x = 7.5; y = 22.5).

Discussion
The performance checking of the proposed algorithm and comparison with other re-

searchers’ works was performed. The experimental simulation results of the proposed
method were compared with results obtained using the neural network field (NNF) and
fuzzy logic methods, which are commonly used in a 2D environment. The experimental
results are presented in Figure 18. Figure 18b shows that the path formed by the proposed
algorithm in this paper was slightly shorter than the path obtained by the NNF, presented
in Figure 18a [24]. Meanwhile Figure 18c [26] shows an example of navigation based on
fuzzy logic, Figure 18d shows the experimental testing of the proposed algorithm. Fur-
thermore, it is obvious that the proposed method showed better results (the path length
is shorter) compared with fuzzy logic.

The authors can state that the proposed method of navigation is capable of bypassing
obstacles of various shapes, avoids falling into local minima, and calculates the shortest
possible path to the target point, as shown in Figure 18d.

Figure 17. Maximum vector length (robot location coordinates x = 1; y = 1, target point coordinates
x = 7.5; y = 22.5).

Table 2. Parameters of the trace calculation.

Parameter Value

X target 7.5
Y target 22.5

Tolerance X 0.1
Tolerance Y 0.1

X robot 45.0
Y robot 1.0

Robot‘s radius 1.0

Using the maximum length of vector marks enables us to calculate the shorter path
to the target point. During the testing simulations, the authors used limiting parameters:
view of angle radar, different target point coordinates, different initial coordinates of the
robot, and the length of the vector. A simulation-based control system for a logistic robot
has been developed to simulate and represent the filling of storage shelves with boxes of
a given size. The movement of logistic robots is not attached to any physical restrictions
(such as tracks).

Discussion

The performance checking of the proposed algorithm and comparison with other
researchers’ works was performed. The experimental simulation results of the proposed
method were compared with results obtained using the neural network field (NNF) and
fuzzy logic methods, which are commonly used in a 2D environment. The experimental
results are presented in Figure 18. Figure 18b shows that the path formed by the proposed
algorithm in this paper was slightly shorter than the path obtained by the NNF, presented in
Figure 18a [24]. Meanwhile Figure 18c [26] shows an example of navigation based on fuzzy
logic, Figure 18d shows the experimental testing of the proposed algorithm. Furthermore,
it is obvious that the proposed method showed better results (the path length is shorter)
compared with fuzzy logic.

The authors can state that the proposed method of navigation is capable of bypassing
obstacles of various shapes, avoids falling into local minima, and calculates the shortest
possible path to the target point, as shown in Figure 18d.

Mathematics 2024, 12, 73 14 of 16Mathematics 2024, 12, x FOR PEER REVIEW 14 of 16

Figure 18. Experimental testing and verification. (a) NNF example; (b) proposed algorithm; (c)
fuzzy logic example; (d) proposed algorithm

5. Future Work and Conclusions
Further investigations and experimental testing of the proposed system are related

to the ensuring stability of the calculated trajectory and positioning of the mobile robot.
At any time, the robot might deviate from its planned trajectory, so the localization algo-
rithm must be used to correct any deviations.

The algorithm of salient point’s detection, vector mark estimation, and optimal path
calculation is presented and is realized using colored Petri nets. Experimental investiga-
tions, using different modeling parameters, have shown that the usage of the maximum
possible vector mark length enables the calculation of 8.5 percentages shorted path. The
limitation of the radar view angle enables to avoid duplicating of salient points detection.
The proposed approach was extended to simulate the work of a logistic robot, which has
to take boxes and deliver them to storages.

Our experimental investigation showed that the proposed navigation algorithm is
able to find the shortest path in the known 2D environment and avoids falling into local
minima in various shapes of the environment. The occupation of certain places in storage
is visualized and shown in experimental graphics.

Author Contributions: Conceptualization, K.K.S., V.B., and O.S.; methodology, K.K.S., V.B., and
O.S.; software, K.K.S.; validation, J.G., L.B., and A.D.; formal analysis, L.B. and A.D.; investigation,
K.K.S., J.G., V.B., and O.S.; resources, O.S.; data curation, V.B.; writing—original draft preparation,
K.K.S., J.G., L.B., V.B., O.S., and A.D.; writing—review and editing, K.K.S., J.G., L.B., V.B., O.S., and

Figure 18. Experimental testing and verification. (a) NNF example; (b) proposed algorithm; (c) fuzzy
logic example; (d) proposed algorithm.

5. Future Work and Conclusions

Further investigations and experimental testing of the proposed system are related to
the ensuring stability of the calculated trajectory and positioning of the mobile robot. At
any time, the robot might deviate from its planned trajectory, so the localization algorithm
must be used to correct any deviations.

The algorithm of salient point’s detection, vector mark estimation, and optimal path
calculation is presented and is realized using colored Petri nets. Experimental investigations,
using different modeling parameters, have shown that the usage of the maximum possible
vector mark length enables the calculation of 8.5 percentages shorted path. The limitation of
the radar view angle enables to avoid duplicating of salient points detection. The proposed
approach was extended to simulate the work of a logistic robot, which has to take boxes
and deliver them to storages.

Our experimental investigation showed that the proposed navigation algorithm is
able to find the shortest path in the known 2D environment and avoids falling into local
minima in various shapes of the environment. The occupation of certain places in storage
is visualized and shown in experimental graphics.

Author Contributions: Conceptualization, K.K.S., V.B. and O.S.; methodology, K.K.S., V.B. and O.S.;
software, K.K.S.; validation, J.G., L.B. and A.D.; formal analysis, L.B. and A.D.; investigation, K.K.S.,
J.G., V.B. and O.S.; resources, O.S.; data curation, V.B.; writing—original draft preparation, K.K.S.,
J.G., L.B., V.B., O.S. and A.D.; writing—review and editing, K.K.S., J.G., L.B., V.B., O.S. and A.D.;

Mathematics 2024, 12, 73 15 of 16

visualization, V.B.; supervision, L.B. and K.K.S.; project administration, O.S. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors received specific funding for this study from the competition of research
projects for the development of the KTU research groups (PP32/1807).

Data Availability Statement: Data are contained within the article.

Acknowledgments: Authors thank Stanislovas Kęstutis Bartkevičius for his support during the
experimental testing of the proposed system.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Patle, B.K.; Babu, L.G.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile

robot. Def. Technol. 2019, 15, 582–606. [CrossRef]
2. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A comparative review on mobile robot path planning: Classical or meta-heuristic

methods? Annu. Rev. Control 2020, 50, 233–252. [CrossRef]
3. Mountz, M.C.; Wurma, P.R. Method and System for Retrieving Inventory Items. U.S. Patent 7894933, 22 February 2011.
4. Raffaello, D.; Mansfield, P.K.; Mountz, M.C.; Polic, D.; Dingle, P.R. Method and System for Transporting Inventory Items. U.S.

Patent 8280547, 2 October 2012.
5. Raffaello, D. Guest editorial: A revolution in the warehouse: A retrospective on kiva systems and the grand challenges ahead.

IEEE Trans. Autom. Sci. Eng. 2012, 9, 638–639.
6. Wise, M. Fetch and freight: Standard platforms for service robot applications. In Workshop on Autonomous Mobile Service Robots;

Fetch Robotics Inc.: San Jose, CA, USA, 2016; Available online: http://docs.fetchrobotics.com/FetchAndFreight2016.pdf (accessed
on 18 October 2022).

7. Marder-Eppstein, E.; Berger, E.; Foote, T.; Gerkey, B.; Konolige, K. The office marathon: Robust navigation in an indoor office
environment. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA,
3–7 May 2010.

8. Macenski, S.; Plaza Mart’in, F.J.; White, R.; Clavero, J.G. The marathon 2: A navigation system. In Proceedings of the 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020.

9. González, D. A review of motion planning techniques for automated vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1135–1145.
[CrossRef]

10. Khairuddin, A.R.; Talib, M.S.; Haron, H. Review on simultaneous localization and mapping (SLAM). In Proceedings of
the 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia,
27–29 November 2015.

11. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016.

12. Tsardoulias, E.G. A review of global path planning methods for occupancy grid maps regardless of obstacle density. J. Intell.
Robot. Syst. 2016, 84, 829–858. [CrossRef]

13. Belanová, D.; Mach, M.; Sinčák, P.; Yoshida, K. Path planning on robot based on D Lite algorithm. In Proceedings of the 2018
World Symposium on Digital Intelligence for Systems and Machines (DISA), Kosice, Slovakia, 23–25 August 2018.

14. Zhu, Z.; Xie, J.; Wang, Z. Global dynamic path planning based on fusion of A* algorithm and dynamic window approach
introduction to A*. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019.

15. Seder, M.; Petrovic, I. Dynamic window based approach to mobile robot motion control in the presence of moving obstacles. In
Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007.

16. Li, Y.; Zhu, Q. Local path planning based on improved dynamic window approach. In Proceedings of the 40th Chinese Control
Conference, Shanghai, China, 26–28 July 2021.

17. Rösmann, C.; Hoffmann, F.; Bertram, T. Planning of multiple robot trajectories in distinctive topologies. In Proceedings of the
2015 European Conference on Mobile Robots (ECMR), Lincoln, UK, 2–4 September 2015.

18. Rösmann, C.; Hoffmann, F.; Bertram, T. Kinodynamic trajectory optimization and control for car-like robots. In Proceed-
ings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017.

19. Magid, E.; Lavrenov, R.; Khasianov, A. Modified spline-based path planning for autonomous ground vehicle. In Proceedings of the
14th International Conference on Informatics in Control, Automation and Robotic (ICINCO 2017), Madrid, Spain, 26–28 July 2017.

20. Amer, N.H.; Zamzuri, H.; Hudha, K.; Kadir, Z.A. Modelling and control strategies in path tracking control for autonomous
ground vehicles: A review of state of the art and challenges. J. Intell. Robot. Syst. 2017, 86, 225–254. [CrossRef]

21. Sun, W.; Chen, X.; Zhang, X.; Dai, G.; Chang, P.; He, X. A multi-feature learning model with enhanced local attention for vehicle
re-identification. Comput. Mater. Contin. 2021, 69, 3549–3561. [CrossRef]

22. Sun, W.; Zhang, G.; Zhang, X.; Zhang, X.; Ge, N. Fine-grained vehicle type classification using lightweight convolutional neural
network with feature optimization and joint learning strategy. Multimed. Tools Appl. 2021, 80, 30803–30816. [CrossRef]

https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.1016/j.arcontrol.2020.10.001
http://docs.fetchrobotics.com/FetchAndFreight2016.pdf
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1007/s10846-016-0362-z
https://doi.org/10.1007/s10846-016-0442-0
https://doi.org/10.32604/cmc.2021.021627
https://doi.org/10.1007/s11042-020-09171-3

Mathematics 2024, 12, 73 16 of 16

23. Digani, V.; Sabattini, L.; Secchi, C.; Fantuzzi, C. Ensemble coordination approach in multi-AGV systems applied to industrial
warehouses. IEEE Trans. Autom. Sci. Eng. 2015, 12, 922–934. [CrossRef]

24. Chen, Y.; Cheng, C.; Zhang, Y.; Li, X.; Sun, L. A neural network-based navigation approach for autonomous mobile robot systems.
Appl. Sci. 2022, 12, 7796. [CrossRef]

25. Bartkevicius, S.; Fiodorova, O.; Knys, A.; Derviniene, A.; Dervinis, G.; Raudonis, V.; Lipnickas, A.; Baranauskas, V.; Sarkauskas,
K.; Balasevicius, L. Mobile robots navigation modeling in known 2D environment based on Petri nets. Intell. Autom. Soft Comput.
2018, 24, 241–248. [CrossRef]

26. Tao, Z.; Haodong, L.; Songyi, D. Multi-robot Path Planning Based on Improved Artificial Potential Field and Fuzzy Inference
System. J. Intell. Fuzzy Syst. 2020, 39, 7621–7637.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TASE.2015.2446614
https://doi.org/10.3390/app12157796
https://doi.org/10.1080/10798587.2016.1264695

	Introduction
	Path Planning Algorithms
	Vector Mark Generation Method and Research Object
	Experimental Research
	Future Work and Conclusions
	References

