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Abstract: In guided-wave-based damage-imaging algorithms, damage reconstruction typically in-
volves comparing the signals with and without a defect. However, in many cases, defect-free data
may not be available. Therefore, in this study, baseline and baseline-free approaches were used
for damage imaging, exploiting not only the amplitude of the signal as the feature but also five
additional features, namely, the amplitude of the sparse signal after deconvolution, the amplitude
of the coefficients at the excitation frequency from the re-assigned short-time Fourier transform,
the time of flight determined from cross-correlation, kurtosis in the time domain, and kurtosis in
the frequency domain. For this study, three different plates with different types of defects were
considered: a metallic plate with a notch-type artificial defect, a pultruded type of composite plate
with an impact defect, and a laminate composite plate with plexiglass serving as an added mass
damper artificial defect. The Reconstruction Algorithm for Probabilistic Inspection of Damage (the
RAPID algorithm) was used to characterize the defects on the three plates, and the defect parameters
were then quantified by creating an ellipse after thresholding.

Keywords: damage imaging; guided waves; structural health monitoring; RAPID; composites;
baseline-free

1. Introduction

Structural Health Monitoring (SHM) plays a critical role in ensuring the integrity and
safety of various large engineering structures, such as bridges, wind turbines, aerospace
components, etc. Guided-wave-based damage-imaging methods offer a promising ap-
proach for performing active SHM on large structures like aircrafts. Guided waves are
ultrasonic waves that propagate along thin plate-like structures, and they can efficiently
interact with defects, enabling the detection and localization of damage over a large area.

Compared to conventional Non-Destructive Testing (NDT) methods, guided-wave-
based imaging for SHM offers several advantages. Firstly, it provides a rapid and cost-
effective inspection process while reducing downtime. Secondly, it allows for the detection
of hidden defects that are not easily observable using traditional NDT methods. Addition-
ally, guided-wave-based imaging enables the continuous monitoring of large structural
areas during operation, facilitating early damage detection and preventive maintenance.
One of the key challenges in SHM is the inherent complexity and uniqueness of each struc-
ture due to their different material properties, defect characteristics, and environmental
conditions, rendering a one-size-fits-all approach ineffective.
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Several damage-imaging algorithms have been proposed in the literature for damage
evaluation, such as the delay-and-sum imaging method [1,2], the time reversal imaging
method [3,4], and the RAPID imaging method [5]. The Reconstruction Algorithm for Prob-
abilistic Inspection of Defects (RAPID) is a widely used approach in guided-wave-based
defect reconstruction algorithms, generally used for damage detection and localization. As
a damage index (feature), the conventional RAPID algorithm uses the Signal Difference
Coefficient (SDC), which is based on the Pearson’s correlation coefficient between the signal
with the defect and without the defect [6]. In summary, from the studies mentioned above
involving the RAPID algorithm, the following important drawbacks can be observed:

• Reconstruction is performed with only one type of feature for damage reconstruction,
i.e., the Pearson correlation coefficient;

• Reconstruction can be performed only when both the baseline data and defect data are
available because the SDC functions by comparing the defect-free data and defect data;

• This algorithm is generally used for the localization of a defect, and it is generally
sufficient in this task in most cases. But the quantification of the defect, such as with
respect to the length, orientation, and size of the damage areas, is usually ignored,
which limits the practical application of this algorithm.

Therefore, this research’s primary aim is to investigate and unlock the latent capabili-
ties of the RAPID algorithm, seeking to address the identified limitations, which leads us
to this study’s core objectives:

• Performing modifications to the RAPID algorithm to be able to perform damage
imaging with only baseline-free data;

• Exploring features other than Pearson’s correlation coefficient that can be used for the
RAPID algorithm;

• Devising a quantification method with which to determine the parameters of a defect.

Concerning the features, in total, six features were considered: the amplitude of the
signal, the amplitude of the sparse signal after deconvolution, the amplitude of the co-
efficients at the excitation frequency obtained using the Re-assigned Short-Time Fourier
Transform (RSTFT), Time of Flight (ToF) derived through cross-correlation, and kurtosis in
the frequency and time domains. After applying the RAPID algorithm, some quantitative
analyses were performed on the resulting images. Specifically, deconvolution was consid-
ered because it has been shown in various fields of study [7–11] to be useful for localizing
the energy of a signal in the time domain and for increasing the signal-to-noise ratio (SNR).
Also, the RSTFT was considered for the Time Frequency Representation (TFR) because it
has been shown [12] to be one of the best TFRs when compared to continuous wavelet
transform, Wigner Ville distribution, etc.

To assess the novel features of the RAPID algorithm, additional variables were intro-
duced during the experimental phase, thereby enhancing the complexity of this study. This
augmentation encompasses several aspects:

• The inclusion of three distinct specimen types;
• The introduction of varying defect types within each specimen;
• The deployment of diverse transducers to capture data for the different specimen

scenarios, facilitating comprehensive damage imaging.

This paper is organized as follows: Section 2 describes the material properties and
the experimental details for each plate. Section 3 describes the RAPID algorithm. In
Section 4, the six features used in this study are detailed, with an example provided for each
feature. Section 5 presents the results from the experiments conducted on the three different
plates, including the quantification of defect parameters estimated after thresholding using
the ellipse method. Finally, Section 6 concludes the paper by summarizing the findings,
discussing the implications, and outlining potential avenues for future research.
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2. Specimens Used in the Study

The first specimen is a metallic plate with a notch-type artificial defect, representing a
commonly encountered surface and subsurface flaw in metallic aircraft structures. Contact-
type angle wedge transducers were used to generate and measure the guided waves for this
plate. The second plate is a pultruded composite plate with a 12 J impact defect, simulating
the impact damage often observed in aerospace and automotive structures. Air-coupled
transducers were used to generate and measure the guided waves for this plate. Lastly, a
laminate composite plate with plexiglass was used as an added mass damper to simulate
a defect in the third specimen; here, Macro Fiber Composite (MFC) transducers were
used to generate guided waves. The chosen plates with their respective defects provide
a representative sample of the challenges encountered in real-world structural health
monitoring scenarios. Information on the specimens, material properties, transducers, and
defect parameters are tabulated in Table 1.

Table 1. Material and defect description.

Material and
Dimensions Transducer Used Elastic Properties Defect Type

and Parameters

Isotropic Aluminum
plate of 1050 grade.
500 × 500 × 2 mm3

Contact-type angle
wedge transducer

E = 71 GPa
ν = 0.33

ρ = 2705 kg/m3

Notch-type defect.
40 × 2 × 1 mm3

Orientation: 20◦

Quasi-isotropic
pultruded GFRP plate.
305 × 241 × 3.2 mm3

Non-contact-type
air-coupled
transducer

E = 10.5 GPa
ν = 0.36

ρ = 1342 kg/m3

12 J impact defect.
33 × 10 mm2

Quasi-isotropic
laminate GFRP plate.
2000 × 1000 × 4 mm3

Contact-type Macro
Fiber Composite

interdigitated
transducer

Described in
Section 2.3

Artificial defect.
Square-shaped

Plexiglass.
100 × 100 mm2

E = Young’s Modulus; ν = Poisson ratio; and ρ = Density.

2.1. Aluminum Plate

The aluminum plate, along with its notch defect, is shown in Figure 1, and the experi-
mental setup of the guided wave measurement system used to study the aluminum plate
is shown in the Figure 2.
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Figure 1. Aluminium-1050 plate along with the notch-type defect used for the study.

A pair of transducers (A413S SB at 650 kHz from Olympus) with an angle wedge
(ABWX-2001 from Olympus), mounted in a pitch–catch configuration, was used to generate
and receive guided wave signals. The width of the wedge is approximately 43 mm. The
pair of transducers was attached to a two-axis positioning system with a probe support
that allows for the rotation of the two angle beam transducers simultaneously at different
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angles (θ). At each θ, line scans of 161 points in steps of 1 mm were performed to collect
parallel-beam projection data (B-Scan) in the area of interest. The data were obtained in
a 360◦ range, with intervals of 10◦, corresponding to a total of 5796 scanning points. The
excitation source was a five-cycle sine burst modulated via a Hann window at 650 kHz.
Based on the properties of the dispersion curves in the aluminum plate and the angle beam
transducers, the angle of the transmitter was set to 30 degrees to propagate a dominant S0
mode into the plate, in accordance with Snell’s law. Similarly, the angle of the receiver was
set to 30 degrees, to receive signals sensitive to the S0 Lamb mode. The excitation signal
was generated using an arbitrary waveform generator (AFG 3102) and amplified using a
high-power RPR-4000 pulser–receiver instrument. An oscilloscope was used to acquire
the excitation signal through channel 1 from a pulse monitor access point located in the
pulser/receiver instrument (RPR-4000 from Ritec). The second transducer, acting as the
receiver, was connected to the receiver board to amplify and denoise the received signal
before acquisition through channel 2 of the oscilloscope. For further information about the
scanning system and the scanning parameters, we refer the reader to [13].
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2.2. Pultruded GFRP Plate

The second specimen is a pultruded composite GFRP plate made of an E-glass random
fiber reinforcement matrix and vinyl ester epoxy resin. The plate was extruded by roving
fibers along one direction. An artificial defect was created in the plate via an impact defect
with 12 J of energy. Pictures of the plate and the defect are shown in Figure 3a. A C-Scan
image of the defect captured via ultrasonic through transmission is shown in Figure 3b.

Materials 2023, 16, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 3. Pultruded GFRP specimen along with 12 J impact damage (a) and the ultrasonic air-cou-
pled through-transmission C-Scan image of the impact defect with −6 dB thresholding (b). 

The data for guided wave damage imaging were obtained using 300 kHz unfocused 
air-coupled transducers. At 300 kHz, the phase velocity of the A0 mode was 1424 m/s. So, 
according to Snell’s law, the transducers were kept at 14 degrees for the angle of incidence 
and reception. More details of this air-coupled transducer and its usage for guided waves 
are explained in [14]. These transducers were controlled using a guided wave measure-
ment system called “Ultralab” developed by the Kaunas University of Technology. The 
schema of the experimental setup is shown in the Figure 4. The B-Scan in this case was 
performed with 101 scan points with a 1 mm interval along the y direction. Then, the plate 
was rotated at a 1-degree angle, and a series of B-Scans were obtained in 360 degrees. This 
makes a total of 36,360 scanning points. 

 
Figure 4. Schematic of air-coupled guided waves used for collecting data in pultruded GFRP plate. 

2.3. Laminate GFRP Plate 
The third and final specimen is a laminate GFRP made of two types of materials: twill 

woven fabric WRE581T [0°,90°] and a biaxial bias stitched fabric XE905 [±45°]. The mate-
rial properties of the woven and bias fabric are given in Table 2. In total, the laminate 
GFRP specimen has six layers (woven, bias, and woven)s, with a total thickness of the plate 
of 4 mm. 

  

Figure 3. Pultruded GFRP specimen along with 12 J impact damage (a) and the ultrasonic air-coupled
through-transmission C-Scan image of the impact defect with −6 dB thresholding (b).



Materials 2023, 16, 7390 5 of 20

The image acquired using the ultrasonic through transmission C-Scan method shows
highly detailed information of the defect inside the plate. This plate specimen was previ-
ously used in a study [14] to compare the quantification of the impact defect between the
through-transmission method and guided wave tomography. However, as for the guided
wave tomography results in that article, only one feature, i.e., the amplitude of the signal,
was considered as the feature to be used in the reconstruction algorithm. The results from
the RAPID damage-imaging algorithm and the defects are quantified in Section 5.3.

The data for guided wave damage imaging were obtained using 300 kHz unfocused
air-coupled transducers. At 300 kHz, the phase velocity of the A0 mode was 1424 m/s. So,
according to Snell’s law, the transducers were kept at 14 degrees for the angle of incidence
and reception. More details of this air-coupled transducer and its usage for guided waves
are explained in [14]. These transducers were controlled using a guided wave measurement
system called “Ultralab” developed by the Kaunas University of Technology. The schema
of the experimental setup is shown in the Figure 4. The B-Scan in this case was performed
with 101 scan points with a 1 mm interval along the y direction. Then, the plate was rotated
at a 1-degree angle, and a series of B-Scans were obtained in 360 degrees. This makes a
total of 36,360 scanning points.
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2.3. Laminate GFRP Plate

The third and final specimen is a laminate GFRP made of two types of materials:
twill woven fabric WRE581T [0◦, 90◦] and a biaxial bias stitched fabric XE905 [±45◦]. The
material properties of the woven and bias fabric are given in Table 2. In total, the laminate
GFRP specimen has six layers (woven, bias, and woven)s, with a total thickness of the plate
of 4 mm.

Table 2. Properties of laminate GFRP plate.

Properties WRE581T XE905 Units

Volume fraction (Vf) 45 46 %
Young’s modulus (E1 = E2) 20.38 21.22 GPa
In-plane shear modulus (G12) 3.28 3.05 GPa
Interlaminar shear modulus (G23) 2.98 3.05 GPa
Poisson’s ratio (ν12 = ν23) 0.12 0.12 -
Density (ρ) 1778 1786 kg/m3

Ply weight 881 1364 g/m2

Structural thickness 0.5 0.75 mm
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The Macro Fiber Composite (MFC) transducer (M-2814-P1) with dimensions of 28× 14 mm
used in this study was produced by Smart Material GmbH (Dresden, Germany). An ex-
citation frequency of 80 kHz was used for the MFC transducers. A total of 30 of these
transducers were fixed on the GFRP plate in a circular array configuration. The transducers
were placed at 12◦ angle increments so that, in total, 30 fan beam projections could be
obtained, amounting to a total of 900 scanning points. The composite laminate used for
the study is shown in the Figure 5. Using the circular array arrangement, the data for the
experiment were acquired via the full matrix capture method using the 128 channel Dasel
data acquisition system (Dasel Sistemas, Spain). The defect induced in this experiment
was a piece of plexiglass with dimensions of 100 × 100 mm2 that was placed at the center
of the specimen, and a natural food product, honey, was used as viscoelastic couplant at
room temperature (21 ◦C). This way, a damping effect could be produced, which is like an
artificial defect for a guided-wave-based SHM configuration.
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Figure 5. Laminate GFRP specimen used in the study with MFC transducers attached. (On the
specimen, 28 mm width transducer, and 12 mm width transducer were placed alternately. But only
28 mm width transducers were considered in this study).

3. RAPID

RAPID is a technique used for SHM applications that involves the estimation of
defect parameters in a structure using Bayesian inference. It is a statistical technique for
estimating the probability of an event based on prior knowledge and observed data. One of
the advantages of this technique over the tomography method is that the transducers need
not be arranged in a perfectly geometric shape like a circle or a rectangle. This method
can even be used with an irregular placement of the transducers, making it suitable for
monitoring complex geometrical structures. For this method using guided waves, a two-
dimensional Bayesian probability distribution function (probability heatmap) was created
between each transmitter and receiver path, as shown in Figure 6.
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This probability heatmap P(x,y) is a sum of the product of the Weighted Distribution
Function WDF(x,y) and a Damage Index (DI) for all transmitter and receiver pairs and can
mathematically be written as shown in Equation (1).

P(x, y) =
N

∑
i=1

N

∑
j=1

DIij ·WDFij(x, y) (1)

The WDF in the spatial domain was constructed using a mesh grid and the two focal
points representing the transmitter and receiver locations in the structure. The output of the
RAPID algorithm was an image of the structure with a probabilistic location of the defect.
In order to obtain this image, the mesh grid was used, and each point in the mesh grid
represents a pixel, which can be created using a geometrical function, as in Equation (2)

meshij(x, y) =
d1 + d2

d3
=

√
(x i − x)2 + (y i − y)2 +

√
(x j − x

)2
+ (y j − y

)2

√
(x j − xi

)2
+ (y j − yi

)2
(2)

where d1 is the Euclidean distance between the transmitter and the mesh grid pixel, d2 is the
Euclidean distance between the receiver and the mesh grid pixel, and d3 is the Euclidean
distance between the transmitter and the receiver. The result of this geometrical function
resembles an ellipse, as shown in Figure 6, and the size of the ellipse is controlled via the β
parameter using the Equation (3) called the WDF.

WDFij(x, y) =


β−meshij(x, y)

1− β
, i f β > meshij(x, y)

0, i f β ≤ meshij(x, y)
(3)

The scaling parameter β for this algorithm must be greater than 1, and, typically, for a
RAPID method from various sources, values of 1.001 and 1.05 are used [6,15] depending
on the distance of the transmitter–receiver path. The longer the path, the larger the value of
β that can be used. Now that the WDF has been created for each transmitter–receiver path,
this matrix needs to be multiplied by the DI, and then all the resulting matrices must be
summed in order to obtain an image of the defect. The DI for this method can be obtained
from different signal-processing algorithms, and DIs can be, for example, differential signal
amplitude, Time of Flight (ToF), etc. The variety of DI considered for this article is explained
in the following section.

4. Features for Reconstruction Algorithm

For tomographic reconstruction, the amplitude or phase is typically used for algo-
rithms in the medical field. But when it comes to guided waves, one can take advantage
of the different characteristics of the guided wave signals to obtain various types of DIs
(features). The guided waves are usually generated using sine burst in order to avoid
multiple wave trains when recording the signal. This way, the recorded signals are more
useful for different signal-processing approaches. In this study, the different features of
guided wave signals in the time and frequency domains are considered, and they are
explained in the following subsections.

4.1. Amplitude in Time Domain

One of the common features used for a reconstruction algorithm is the amplitude of
the signal. To obtain the maximum amplitude of the received signals, the envelope of the
signal is obtained using the Hilbert transform, and the maximum of the envelope is used
as one of the features. This is demonstrated below using a signal from the laminate GFRP
specimen (Figure 7).
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4.2. Deconvolution

Deconvolution is useful in the ultrasonic testing field for increasing the resolution
of images obtained from ultrasonic data and for increasing the SNR by denoising the
ultrasonic signal. Mathematically, an ultrasonic signal can be written as expressed in
Equation (4)

y(n) = (h ∗ x)(n) + w(n) (volts) (4)

where y(n) is the recorded signal with the ultrasonic sensor. The function y(n) is the sum
of the ambient noise w(n) and the convolution (the ∗ operator denotes the convolution
operation) between the excitation signal h(n) and the underlying system function x(n)
or sparse signal. Since the excitation signal and the measured signal are known, using
the deconvolution method, it is possible to remove the effect of the excitation signal
(impulse response) to obtain the sparse signal using an inverse operation. An example of
deconvolution for a guided wave signal is demonstrated below using an A-Scan from the
aluminum plate dataset (Figure 8).
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Since deconvolution is an inverse operation, solving for the sparse signal is conducted
via the iterative minimization of the L1 norm cost function. Such a minimization of the cost
function in mathematics is called an optimization problem. The reader is referred to [16]
for the deconvolution algorithm and the MATLAB code. The optimization formulation for
the deconvolution is given in Equation (5), as follows:
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argmin
x

1
2
‖y− Hx‖2

2 + λ‖x‖1 (5)

Here, y is the measured guided wave signal, H is the known excitation signal, and x is
the sparse signal to be identified using deconvolution. The regularization parameter λ and
the number of iterations determine how sparse the signal can be. Generally, the λ value is
greater than zero. Due to the fact that guided waves can have low SNRs and dispersion
due to frequency or changes in material properties, the value of λ and the number of
iterations for deconvolution need to be determined in a trial-and-error manner. There are
robust deconvolution algorithms such as “SALSA” [17] where parameters such as λ and
the number of iterations can be determined in a robust way.

4.3. Reassigned Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) is a commonly used method for time-
frequency analysis that involves dividing a signal into short-time segments and applying
a Fourier transform to each segment. The STFT provides a good trade-off between time
and frequency resolution but suffers from limitations such as the Heisenberg uncertainty
principle and spectral leakage. The “spectrogram” is an extension of the STFT that dis-
plays the time-varying spectral content of a signal as a 2D image. The Spectrogram has
better time resolution than the STFT but still suffers from the uncertainty principle and
resolution limitations.

The Reassigned Short-Time Fourier Transform (RSTFT) is a post-processing technique
that improves the time and frequency resolution of the STFT and spectrogram via assigning
each time-frequency point to a new location in the time-frequency plane based on its
instantaneous frequency and group delay, making it one of the best methods to use for
guided wave signals [12], and the code for the RSTFT is available in [18]. An example of
a comparison between normal STFT and RSTFT is demonstrated below using an A-Scan
from the aluminum plate dataset (Figure 9). For this demonstration, for both the STFT and
RSTFT algorithms, a window of 121 samples and an overlap of 120 samples were used.
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Figure 9. Demonstration of difference between STFT (a) and RSTFT (b) using a signal.

It is evident from the Figure 9 that the RSTFT performs better than the STFT in terms of
localizing the frequencies of the guided waves. After performing the RSTFT, the coefficients
along the time axis are extracted at the excitation frequency, and then the maximum
amplitude of the coefficients is considered as the feature, and an example of this is shown
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in Figure 10. The results from RAPID damage imaging using the RSTFT are discussed in
Section 5.
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Figure 10. Time domain signal from Al-1050 dataset (a) and the RSTFT coefficients at excitation
frequency of 650 kHz, (b) where the maximum amplitude of the coefficients is taken as the feature for
damage imaging.

4.4. Time of Flight Using Cross-Correlation

Time of Flight (ToF) can be measured in different ways, such as through cross-
correlation, using the envelope from the Hilbert transform [19], and via the zero-crossing
technique [20], from the coefficients of the continuous wavelet transform [13]. In this study,
cross-correlation was used to determine the ToF as it is one of the simplest and widely used
methods for ToF. Cross-correlation was performed between the excitation signal and the
measured signal using the MATLAB function “xcorr”. A demonstration of this method
using the aluminum dataset is shown in Figure 11.
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The resulting coefficients are twice the length of the original signal. So, ignoring the
first half of the coefficients will yield coefficients with the same length of the measured
signal, which is then plotted vs time. The time index of the envelope maximum of the
coefficients will provide the ToF.

4.5. Kurtosis in Time and Frequency Domains

Kurtosis is a statistical measure that quantifies the degree to which a probability
distribution’s tails differ relative to the standard Gaussian distribution. In the context of
guided wave signals, kurtosis can be used to analyze the shape of the signal in the time
and frequency domains. The kurtosis measure is used to assess the non-Gaussian behavior
of the received signals, helping to detect and characterize potential defects in the structure.
Change in the shape of the received signal envelope, caused by the presence of defects or
damage in the path of guided waves, manifests as a variation in the kurtosis value.

In the time domain, a low kurtosis value indicates a flatter distribution, which corre-
sponds to a signal with a wider envelope, and a high kurtosis value indicates a peaked
distribution, which corresponds to a signal with a narrow envelope. In general, a change in
kurtosis value can indicate the presence of defects or damage in the path of the guided waves
in the structure, as these can cause a change in the shape of the signal envelope. Similarly,
the kurtosis metric can be applied in the frequency domain as well. However, in the case of
the frequency domain, a change in the shape of the frequency spectrum is evaluated.

A demonstration of kurtosis in the time and frequency domains is shown in Figure 12.
The kurtosis value does not change when the amplitudes are scaled. So, in the demonstra-
tion, the amplitudes have been normalized to visualize the data in a better way.
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5. Results
5.1. Sinogram Pre-Processing

In this context, a sinogram is a matrix of features organized in such a way that each
row corresponds to the features extracted from signals in a B-scan projection, while each
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column signifies the features from subsequent angles in the projections. Now that the
features have been extracted from the signals of the three different plates, it is essential
to pre-process the data before using them in the damage reconstruction algorithm. In the
case of the aluminum plate and the pultruded GFRP plate, the baseline data (data without
defects) are not available. In order to eliminate the structural noise surrounding the defect,
the sinogram was pre-processed with a few steps, as follows. Firstly, the sinogram was
normalized to the range of 0 to 1 so that the highest amplitude in the sinogram represents
the defect. Then, the mean value of the sinogram was subtracted, and then the values
below 0 in the sinogram were replaced with 0. Then, the sinogram was again normalized
to the range of 0 to 1. This way, the value 0 represents the base of the plate, and the
values above 0 will mostly represent a defect in the plate. To illustrate the impact of pre-
processing, an example is shown in Figure 13. It showcases a comparison between the
results obtained without pre-processing and with pre-processing using the sinogram and
the damage reconstruction based on the aluminum dataset, specifically focusing on the
kurtosis feature in the time domain.
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Figure 13. This comparison (a,b) shows the difference between no pre-processing of the sinogram
and its RAPID damage image reconstruction vs. the RAPID damage image reconstruction after
pre-processing of the sinogram.

5.2. Aluminum Plate
5.2.1. Presentation of the Results

The sinograms of the six features of the aluminum plate are shown in Figure 14. Using
these sinograms, the RAPID algorithm was run using a β value of 1.005, and a grid size
of 1 mm was used to acquire a much finer resolution of the image after reconstruction.
After normalization, the resulting reconstructed image was then thresholded using a
−6 dB method for quantifying the image, and the final defect image is shown in Figure 15.
This specimen was previously used by Dario et al. [13] to study the application of a
tomographic reconstruction algorithm with different features using guided waves. The
authors concluded that only the approximate parameters of a notch-type defect, i.e., the
length and orientation of the defect, were observed. So, in the current study, to improve the
accuracy of determining the parameters of the defect, features such as those discussed in
Section 4 were used for the RAPID algorithm and to quantify the defect.
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Figure 15. RAPID result of notch type defect from different features of an aluminum plate after−6 dB
thresholding. The green ellipse was used to obtain the length, width, and orientation.

The sinograms and the reconstructed images are presented with a custom colorbar
scale, where values close to 0 are displayed in gray to imitate areas of the aluminum plate
where there is no possibility for a defect. The intensity of the defect is represented using a
color range from red to yellow. The quantitative green ellipses for the defect were derived
by utilizing the “regionprops” function in MATLAB. This function enables the calculation of
various parameters associated with a defect, including the major axis length, minor axis
length, and orientation of the ellipse. These parameters directly correspond to estimates
of the length, width, and angle of the notch-type artificial defect present in the aluminum
plate. The estimates of the defect are tabulated in Table 3.
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Table 3. Quantitative estimates of notch parameters in Al-1050 specimen obtained from RAPID
damage-imaging algorithm.

Feature
Notch Width (mm) Notch Length (mm) Orientation (Degrees)

Real Estimate Abs Error Real Estimate Abs Error Real Estimate Abs Error

Amplitude 2 33.99 31.99 40 40.51 0.51 20 15.7 4.3

Deconvolution 2 41.61 39.61 40 45.46 5.46 20 13.8 6.2

RSTFT 2 38.49 36.49 40 45.13 5.13 20 14.7 5.3

Time of flight 2 25.19 23.19 40 39.8 0.2 20 17 3

Time kurtosis 2 21.49 19.49 40 42.86 2.86 20 20.8 0.8

Frequency kurtosis 2 27.42 25.42 40 37.85 2.15 20 20.2 0.2

5.2.2. Discussion

In a real-world scenario, a notch defect indicates a crack, and it would be possible
to determine the length and the orientation of such a crack. Determining the width of
a crack is highly dependent on the width of the angle wedge transducer. The width of
the angle wedge transducer determines the beamwidth of the guided waves emitted and
received. In this case, the width of the angle wedge transducer is 43 mm, which is quite
large for identifying the width of the notch. So, in this study, the length of the notch
defect was determined using the ToF feature, with a least absolute error of 0.2 mm, and the
orientation of the defect was determined using the Kurtosis from the FFT spectrum, with a
least absolute error of 0.2 degrees.

5.3. Pultruded GFRP Plate
5.3.1. Display of Results

The sinogram data of the pultruded GFRP plate underwent the same processing steps
as discussed in Section 5.1, following the methodology employed for the aluminum plate.
For the RAPID reconstruction algorithm, a β value of 1.005 and a mesh size of 1 mm
were used. Subsequently, the ellipse estimation procedure was applied to determine the
defect size. In this case, the orientation of the defect holds less significance, as impact
damage in composites is typically characterized by the debonding of matrix fibers and
delamination effects rather than the notch or crack-type defects observed in metallic plates.
Figure 16 displays the sinograms obtained from the six features, and Figure 17 displays the
corresponding defect reconstructions.
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which, in turn, represents the lack of a defect.
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Figure 17. RAPID result of impact type defect from different features in pultruded GFRP specimen
after −6 dB thresholding. The green ellipse was used to obtain the length and the width of the defect.

To represent the GFRP plate color, values close to 0 were assigned a green color in the
figures. Finally, the quantitative results were tabulated in Table 4.

Table 4. Quantitative estimates of the impact defect in pultruded GFRP specimen obtained from
RAPID damage-imaging algorithm.

Feature Width (mm)
(X Length)

Height (mm)
(Y Length)

Amplitude 32.53 35.49

Deconvolution 37.28 40.71

RSTFT 39.07 43.02

Time of flight 23.66 31.03

Time kurtosis 23.28 28.44

Frequency kurtosis 30.87 33.41

5.3.2. Discussion

In the case of the pultruded GFRP specimen, there are no baseline data (data without a
defect). Since only data with defects were available, the sinogram pre-processing was very
useful for isolating information about the defect. Moreover, to attain another perspective
about the defect, a through-transmission C-Scan was obtained using the same air-coupled
transducers at 300 kHz, as shown previously in Figure 3. It should be noted that in the
bulk wave through-transmission method, the ultrasonic waves propagate perpendicular to
the plate, resulting in a C-Scan image with better resolution. The C-Scan image shows that
the impact defect appears more elliptical. However, in the case of guided wave damage
reconstruction, the ultrasonic waves propagate inside the plate parallel to its thickness. At
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the same excitation frequency, such guided wave methods cannot achieve the same level of
high-resolution imaging as the through transmission method at 300 kHz.

Guided waves are generated in the plate structures in circular wavefronts, dispersing
the energy in different directions rather than focusing it in one point like in the bulk wave
method. Despite this limitation, guided wave damage imaging offers advantages such as
rapid coverage of large areas and suitability for single-sided access to a specimen. In guided
wave damage imaging, the RAPID algorithm produced a defect image that appeared more
circular compared to the through-transmission thickness method. This can be attributed to
the fact that guided wave wavefronts are highly sensitive to even the smallest variations in
the guided medium.

Hence, in the case of guided-wave-based damage-imaging methods, the length and
width of the impact defect were quantified but not compared with the through transmission
method, as shown previously in Table 4. The sinograms of the pultruded GFRP sample
appear visually noisier due to the air-coupled transducers used to obtain the data. So, to
determine the sinogram with the best SNR, an evaluator called the “Perception-based Image
Quality Evaluator” (PIQE) tool available in MATLAB’s image-processing toolbox was
employed to analyze the sinograms in block-wise pieces. This evaluator is an unsupervised
model capable of quantifying images without relying on any trained data [21].

In summary, this tool provides a quantified score in the range of 0–100, representing the
image’s noise level. A score of 0 indicates good image quality, while a score of 100 indicates
poor image quality. This tool also generates a noise mask for the sinograms. Figure 18
displays the PIQE evaluator’s score and noise mask for each sinogram. Visually, the
sinograms obtained from the deconvolution, ToF, kurtosis on time, and FFT features appear
grainy (noisy) in comparison to the sinograms obtained from the energy amplitude and
RSTFT, which exhibit a higher signal-to-noise ratio. The PIQE score reflects this observation,
as the quantified scores for energy amplitude and RSTFT are low in comparison to the
other features, and this trend was supported when using the PIQE masks as well.
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Figure 18. Sinograms of pultruded GFRP specimen from different features. The PIQE mask is
overlayed on top of the sinograms in cyan, and the PIQE score is given in the title of each sinogram.

5.4. Laminate GFRP Plate

In SHM, particularly when utilizing guided waves, a common approach involves
comparing baseline signals (data without defects) with signals acquired after a specific
time or multiple loading/unloading cycles of the structure. By making this comparison,
any changes in the signals can indicate the presence of defects or degradation of elastic
properties. In the case of the laminate GFRP specimen, baseline data are available; this dif-
fers from the case for the previous two specimens, where baseline data were not accessible.
In those cases, the sinogram pre-processing proved useful in isolating information about
the defects. However, with the laminate GFRP data, the concept of differential imaging
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can be employed to obtain an image of a defect. The differential damage imaging in the
laminate GFRP was demonstrated using the energy amplitude feature.

In this case, both the sinograms from the dataset without the defect and the dataset
with the defect were normalized from zero to one, as shown in Figure 19, and for the
case of the sinogram with the defect, the presence of the defect was very subtle and not
easy to identify. On the left side of the sinogram, a plot is shown, where each colored line
represents the amplitude of the features from one projection at a particular angle. Since the
plexiglass defect is in the center of the transducer circle, the transducers from 12 to 19 show
slightly lower amplitudes.
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Figure 19. Sinogram of data without defect (a) and with defect (b) from energy amplitude feature in
laminate GFRP sample. To the left of the sinogram is the plot with all the projections. Each colored
line represents a feature from each particular projection.

Then, the RAPID algorithm was executed for both the datasets, as shown in Figure 20.
In these images, the presence of the defect is even more difficult to identify, but upon
performing differential image and −3 dB thresholding, the defect could be identified and
then quantified using the ellipse method. The width (x axis) and the length (y axis) of
the defect were found to be 115.18 mm and 123.18 mm, respectively, while the original
dimensions of the defect were 100 × 100 mm2.
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Figure 20. Laminate GFRP. RAPID result for data without defect (a) and with defect (b) and the
differential image after −3 dB thresholding (c). In the case of (b,c), the location of the defect is
indicated by the black square in the middle. In the case of (c), the ellipse estimated after thresholding
is depicted in blue.

6. Conclusions

This study represents a significant advancement in assessing the efficacy of the RAPID
algorithm with diverse features such as Damage Indices (DIs) across various damage
scenarios and sample types. It serves as a critical step in comprehensively evaluating this
algorithm’s performance. To achieve this, diverse features were extracted and analyzed
from guided wave signals originating from three distinct specimens: aluminum, pultruded
GFRP, and laminated GFRP. The extracted features were the amplitude of the sparse signal,
the amplitude of the coefficients at the excitation frequency from the RSTFT, the ToF
obtained from cross-correlation, kurtosis in the time domain, and kurtosis in the frequency
domain. Subsequently, the RAPID algorithm was employed to assess damage-imaging
performance using these features.

In case of the notch-type defect in the aluminum plate, it was observed that the ToF
feature provided a more accurate estimation of defect length, while the kurtosis feature
extracted from the FFT spectrum yielded a superior estimation of defect orientation. In
cases where the actual dimensions of damage are unknown, such as the case for the second
specimen (pultruded GFRP), evaluators like PIQE can be employed to evaluate the quality
of feature sinograms. The authors recommend using the ToF feature only in cases where
the distance between the transducer and the receiver is the same, i.e., in the case of the first
two methods in this study, where the parallel beam guided waves were employed to collect
the data. The other features can be tested for different situations. As demonstrated in this
study, it is necessary to explore different features, as the RAPID algorithm can perform
better with different features. But it is not possible to conclude that one feature is the
best feature for this specific material (for example, laminate GFRP, pultruded GFRP, etc.).
Such a decision can only be made by considering the type of the defect and many other
parameters for a real-world problem. But the proposed approach presented in this study
can be implemented to evaluate relevant features for damage imaging in different kinds
of materials.

The practical usage of the methodology proposed in this study depends on the specific
application. When conducting damage inspections with guided waves, whether during
the annual inspection of aircraft to detect subsurface cracks or in the manual inspection of
wind turbines for assessing impact defects like those caused by bird or lightning strikes,
one can employ the parallel-beam guided wave inspection method. As illustrated for the
first two specimens in this study, this approach enables the evaluation of structure using
the baseline-free RAPID algorithm. Moreover, in the first two specimens, the quantities
of scanning points were 5796 and 36,360, respectively, which are relatively large when
compared to the 900 coarse scanning points for the laminate GFRP specimen. This can
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be challenging with respect to implementing a baseline-free methodology in some cases
because the difference in amplitude between the defect-free and defect specimen may not be
significant enough to differentiate between the two situations. So, for SHM configurations
like the third specimen in this study, a differential-imaging-based RAPID method becomes
much more suitable.

The methodologies employed in this investigation were executed within an ex situ
laboratory setting and by considering artificial defect conditions. Presently, another exami-
nation is in progress, focusing on the application of these methodologies to an aircraft wing
structure constructed from carbon fiber composite material. Notably, this wing specimen
presents a heightened level of complexity due to factors such as asymmetrical sensor place-
ment and the presence of structural stiffeners. The outcomes of this ongoing research will
be published in a forthcoming scientific article.
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