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NOMENCLATURE AND ABBREVIATIONS 

Ai Asymmetrical mode (where i = 0, 1, 2, …) 

Al Aluminium alloy 

CFRP  Carbon Fibre Reinforced Plastic 

CT  Chirplet Transform 

CWT  Continuous Wavelet Transform 

DC Dispersion Curves 

DI Damage Index 

DWT  Discrete Wavelet Transform 

EMD  Empirical Mode Decomposition 

EUSR  Embedded Ultrasonic Structural Radar  

FE  Finite Element Method 

FFT Fast Fourier Transform 

GFRP  Glass Fibre Reinforced Plastic 

GW  Guided Waves 

HHT  Hilbert Huang Transform 

HT  Hilbert Transform 

IDT  InterDigital Transducers 

IFFT Inverse Fast Fourier Transform 

IMF  Intrinsic Mode Functions 

LDR  Local Defect Resonance 

LDV  Lased Doppler Vibrometer 

MFC Macro-fibre composite transducer 

MP  Matching Pursuit 

MRD  Minimum Resolvable Distance 

MTMR  Multiple Transmitters Multiple Receivers 

NDT  Non-Destructive Testing 

PAA  Phased Addition Algorithm 

PVDF PolyVinyliDene Fluoride 

PZT  Lead (P) Zirconate (Z) Titanate (T) 

SAFE  Semi Analytical Finite Element 

SHi  Shear Horizontal mode (where i = 0, 1, 2, …) 

SHM Structural Health Monitoring 

Si  Symmetrical mode (where i = 0, 1, 2, …) 

SNR  Signal to Noise Ratio 

STD Standard deviation 

STFT Short Time Fourier Transform 

STMR  Single Transmitter Multiple Receivers 

TFR  Time Frequency Representation 

ToF Time of Flight 

WT Wavelet Transform 

WVD  Wigner Ville Distribution 
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INTRODUCTION 

Relevance of the work 

The integrity assessment is critical to maintain the safe, reliable and optimal 

performance of ageing in-service engineering structures (1). The use of 

non-destructive testing (NDT) techniques in the areas of nuclear and green energy, 

aerospace and civil infrastructure allows the structural integrity to be assessed, to 

estimate and prolong the expected life-cycle, to minimize the risk of catastrophic 

failures or any other unexpected incidents (2, 3, 4, 5, 6, 7). However, the conventional 

NDT techniques are not optimized in terms of periodicity, usually require disassembly 

(to have access to parts), are quite operator dependent, and are slow and costly, 

especially for large engineering structures (8). Various studies reveal that up to 27% 

of an aircraft life-cycle cost is spent on conventional inspection and repair routines (9). 

As an alternative for conventional NDT, a structural health monitoring (SHM) 

systems may be used, which provides an on-demand health inspection through 

embedded sensors (10, 11). It enables the periodic maintenance with condition-based 

maintenance to be changed, to minimize downtime and human involvement, to avoid 

dismounting parts and to ensure constant reliability and maintenance costs during the 

whole life-cycle of the structure (12). According to different sources, an effective 

SHM reduces the maintenance costs and inspection time from 30% to 40% (13, 14). 

One of the most promising inspection techniques for SHM in terms of sensitivity 

to damage and propagation range is ultrasonic guided waves (GW) (10, 15). The GW 

are sensitive to the change in elastic modulus of the material and possess minor 

amplitude damping, which enables large structures to be inspected using only a few 

measurement positions and to detect both surface and internal defects (16, 17, 18). 

GW based SHM provides fast, low-cost inspection with good spatial coverage and the 

ability to inspect structures under water, ground, coatings or insulation (19, 20, 21). 

Many studies have been carried out on the application of guided waves (GW) for 

damage detection in pipes (22, 23, 24, 25, 26, 27, 28, 29, 30), concrete structures (31, 

32, 33), steel strands (34, 35, 36, 37, 38), rails (39, 40, 41), pressure vessels (42, 43), 

metallic structures (44, 45), composites (46, 47, 48, 49, 50, 51) and other aircraft 

components (52, 53, 54).  

The application of GW in such a wide variety of areas, looking for different 

kinds of defects, shows huge potential for GW inspection, unfortunately there is still 

a lack of practical applications due to its complicated propagation physics. The GW 

possess multiple wave modes, each with different dispersive and directional 

properties. This leads to many distorted wave packets traveling in the structure with a 

different frequency and direction dependent velocities (55). Moreover, mode 

conversion occurs after the interaction of the GW with an object’s boundaries or with 

other reflectors, such as defects (18, 56). As a result, the signals captured from the 

structure are distorted and overlapped, while the damage-scattered components are 

concealed within. All these challenges require the development of an advanced signal 

analysis methods that would help to analyse, interpret and predict the complex 

behaviour of the GW and to extract the information about the presence of damage.  
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The current success of the SHM systems relies on the comparison between two 

system states, the current and the baseline (10, 57, 58). Typically, when the 

transducers are permanently attached to the surface of the structure, the initial time 

traces between all the possible transducer pairs are recorded and referred as baseline 

data. Then in order to detect the damage, the algebraic difference is calculated 

between the current time trace and the baseline, which represents the structure without 

the damage. As a result, the residual signal ideally should contain the information only 

about the damage (59, 60), removing all possible boundary reflections. From the NDT 

technique development point of view, this approach is not attractive due to difficulties 

in verification and calibration of the monitoring system. Moreover, such approach 

gives an indication about the presence of damage only, however, it does not say 

anything about the features (type, size, depth, location) of the defect. 

In order to verify that a certain type of defect has been detected, the appropriate 

database of the experiments on the reference samples with artificial defects possessing 

known parameters (size, depth, position) is required. Then the residual signal captured 

during the operational life of the structure can be compared to the residuals from the 

defective reference sample database, looking for the best match. However, 

considering the variety of possible defects and the fact that there are no two identical 

structures, such database of the reference experiments becomes very large, impractical 

and unreliable, especially for complex structures. Moreover, the defects are usually 

weak reflectors whereas the amplitude of the residual can be significantly affected by 

the environmental and operational conditions, such as temperature and loads (59, 61, 

62, 63). Therefore, currently the baseline comparison can only give an indication 

about the changes in the structure, but unfortunately cannot be used for reliable 

damage detection and feature extraction. This leads to the scientific hypothesis that 

special signal processing methods exist, which would allow the guided wave 

interaction within the analysed structure to be understood and to be able distinguish 

changes that are caused by the originating defects. 

 

Objective and tasks 

The objective of the thesis is to develop ultrasonic guided wave methods for 

structural health monitoring of plate-like structures, enabling the feature extraction of 

detected damage, and techniques for the validation of the monitoring system. 

In order to achieve the objectives, the following tasks were foreseen: 

1. To investigate and explain the mechanism of GW generation, and to develop 

mathematical methods to analyse and predict the spectral characteristics of 

separate GW mode packets. 

2. To develop and verify an analytical model that simplifies the analysis and 

interpretation of the complex propagation of GW in plate-like anisotropic 

structures. 

3. To create and validate the methods for GW phase velocity estimation in 

multimodal, overlapped signals captured by spatially distributed sensors, 

which can be used for the identification of unpredicted modes and modal 

decomposition purposes. 
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4. To propose and investigate methods for the detection of the delamination 

type defects and extraction of its features such as the size and the depth. 

5. To create and validate methods suitable for the verification and calibration 

of the monitoring system, without using the database of the reference 

samples, that describe different states of the damage. 

 

Scientific novelty 

1. The novel mathematical approach for GW data analysis was proposed, which 

allow the frequency response of GW modes on any structure under any 

excitation conditions to be analysed and predicted if input parameters are 

known. The method relates the frequency response of a single generated GW 

mode to the spatial particle velocity distribution at the excitation area, 

dimensions of the transducer and dispersive properties of the material. 

2. The analytical model was developed for the rapid analysis of the propagation 

of GW signals. The model allows the propagation of separate GW mode 

packets in the plate-like rectangular anisotropic structures to be analysed, to 

calculate the arrival times after multiple reflections at virtual receivers 

positioned anywhere on the object and to retrace the wave propagation paths 

at specific time intervals. 

3. The method for the GW phase velocity estimation was introduced, which is 

based on the phase spectrum method. The method requires only two 

time-series measured at different locations and enables the segment of the 

dispersion curve of the phase velocity to be reconstructed within the –20 dB 

level frequency bandwidth of the transducer, thus identify the unpredicted 

modes in the multimodal signals. 

4. The novel method was proposed for the detection and description of 

delamination type defects in composite structures. The method exploits the 

frequency sweep excitation and combines the set of analytically calculated 

dependencies to detect the damage and to extract its features, such as size 

and depth. 

5. The novel technique was proposed for the verification and calibration of the 

monitoring system, which is based on the non-destructive imitation of signal 

trapping behaviour within the delamination, which is commonly observed in 

the presence of such defect. The technique enables to get the similar response 

in terms of time-of-flight as the structural delamination type defects. 

 

Practical value of the work 

1. The proposed signal analysis methods can be used as a framework to predict 

the complex mechanism of guided wave generation, to analyse multi-modal 

propagation and to decompose the GW signals captured on plate-like 

anisotropic structures. 

2. The developed ultrasonic measurement methods can be used as a tool to 

detect and extract the size and depth of the delamination type defects situated 

across the path of permanently attached sensors. 
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3. The presented ideas related to the verification and calibration of SHM 

systems can be used as a basis for development of novel non-destructive 

structural defect imitation techniques, which can be further used to solve the 

issues related to the estimation of sensitivity to certain types of defects, 

minimum detectable defect size and etc. 

4. Most of the methods presented in this research are designed in a way not to 

be attached to the particular structure and exploits the dispersive properties 

of composite materials, which can be easily modified. Thus the proposed 

methods can be applied to different types of materials with different 

properties and other parameters. Only a few of the proposed methods rely on 

the geometrical shape of the investigated object. 

Some parts of this work were used in the reports of the following international 

projects: 

 European Union Framework Programme 7 (FP7) project (SME-2012-1-

315207) “In-situ Wireless Monitoring of on an Offshore Wind Turbine 

Blades Using Energy Harvesting Technology – Demonstration/ Wintur 

Demo”. 

 European Union Framework Programme 7 (FP7) project (SME-2011-1-

286989) “Demonstration of a Condition Monitoring System for Tidal 

Stream Generators / TidalSense Demo”. 

 European Social Fund (ESF) programme project (VP1-3.1-ŠMM-08-K-

01-015) “Micro sensors, Microprocessors and Microcontrollers for 

Mechatronic Systems / Go-Smart”. 

 

Approbation 

The scientific results obtained during the period of the dissertation were 

published in 7 publications: 4 articles were published in international journals referred 

in Thomson Reuters ISI Web of Science, while the other 3 publications were accepted 

to the reviewed proceedings of international conferences. The results were also 

presented in 15 international conferences held in Kaunas, Vilnius, Palanga, Singapore, 

Portoroz, Prague, Krakow, Lublin, Manchester, Dresden, Brussels and Munich. In 

2014-2016, a doctoral scholarship, provided by the research council of Lithuania, was 

received. In 2016, the research was granted an international student grant by the 

Committee for International Research and Education (CIRE) of the Acoustical 

Society of America (ASA). 

 

Results presented in defence of the thesis 

1. The excitability function estimation technique, which enables the frequency 

response of separate guided wave modes to be predicted, based on the 

material properties of the structure, size of source and type of excitation. 

2. The analytical model for analysis and interpretation of GW propagation in 

plate-like anisotropic structures, which provides the arrival times of separate 

wave packets after multiple reflections and enables wave propagation paths 

to be retraced.  
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3. Enhanced phase velocity estimation techniques, based on the phase spectrum 

method, which enables the accuracy of the conventional method to be 

improved and to effectively use it in SHM applications. 

4. The method to detect and evaluate the size and depth of delamination type 

defects in composite structures, based on the arrival time estimation and 

constructive/destructive interference of the A0 mode. 

5. The structural damage imitation technique, which enables the reproduction 

of the delamination type defect in terms of ToF of the “trapped” wave 

without intervention into the structure. 

 

Structure and coverage of the thesis 

The thesis consists of an introduction, six chapters, conclusions, list of 

references and authors scientific publications. Overall the dissertation is composed of 

152 pages, including 74 figures, 147 equations, 5 tables and 260 bibliographic 

references. The contents of the thesis are organized as follows: 

1. In the first chapter, the extensive review of available literature is presented, 

which reveals the existing gaps and open areas, where the new SHM methods 

and signal processing techniques are required. The current state of the art in 

different SHM areas, such as means of guided wave simulation, selective 

mode excitation, signal processing and damage detection is presented as well 

as the tasks of the research are anticipated. 

2. The second chapter presents the study on the source influence to the 

excitation of GW. The developed excitability function estimation technique 

is introduced, theoretically formulated and verified with the numerical 

simulations and experiments on glass fibre reinforced plastic (GFRP) and 

aluminium samples. 

3. The third chapter reveals the concept of the developed analytical model for 

analysis and interpretation of GW propagation in plate-like structures. The 

major benefits and limitations of the proposed technique are discussed, using 

the numerical finite element (FE) method as a reference. 

4. In the fourth chapter the developed guided wave phase velocity estimation 

technique is formulated, followed by numerical and experimental validation. 

The accuracy of the proposed technique is discussed, by comparing the 

extracted phase velocities of direct and reflected/converted modes with the 

theoretical predictions. 

5. The fifth chapter presents the method to detect and describe the delamination 

type damage in composite structures. The physics of general GW interaction 

with a delamination type defect is presented and the theoretical foundation 

of the proposed technique is introduced. The operation of developed method 

is verified detecting defects of different sizes situated at different depths. 

6. In the sixth chapter, the approach to non-destructively imitate the 

delamination type defect is briefly introduced. The adequacy of the proposed 

set-up in terms of ToF of the repetitive A0 mode transmissions is 

mathematically proved and demonstrated by numerical modelling on a 

GFRP composite sample. 
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1. STRUCTURAL HEALTH MONITORING OF COMPOSITES BY 

MEANS OF ULTRASONIC GUIDED WAVES 

1.1 Basic features of ultrasonic guided waves in plate-like structures 

This section introduces the main physical features of ultrasonic guided waves in 

plate-like structures and the most important challenges that currently complicates the 

development of GW based monitoring systems. Guided waves are the waves that 

propagate along the boundary of the structure, which has the thickness considerably 

lower than the wavelength λw. In general, the guided waves are the result of 

interference between the longitudinal and shear waves, which are reflecting back and 

forth and converting to each another inside the structure (64, 65). 

One of the types of the guided waves that propagate in a plate-like structure with 

stress-free boundaries are called Lamb waves (66). Both bulk and Lamb waves 

mathematically are governed by the same partial differential wave equations, however 

in the case of guided waves an additional boundary conditions must be satisfied. The 

formulation of the Lamb waves in the isotropic, homogenous plate can be derived 

from the general form of the Navier equation of motion (67, 68, 69): 

   ,...3,2,1,,,  jiufuu iijijjji
  (1.1.1) 

where ui and fi are the displacement and body force in the xi direction; ρ and µ are the 

density and the shear modulus; λ is the Lame constant (





21

2




 , where υ denotes the 

Poisson ratio). Using the Helmholtz decomposition (70) and the method of potentials, 

eq. 1.1.1 can be decomposed into two independent equations, which describe the 

longitudinal and the shear waves (14, 67, 69): 

,
1

2

2

2
L

2
3

2

2
1

2

tcxx 











 
 (1.1.2) 

,
1

2

2

2
T

2
3

2

2
1

2

tcxx 











 
 (1.1.3) 

where: 

            ,expcosAsinAexp 1323113 tkxipxpxtkxix    (1.1.4) 

            ,expcosBsinBexp 1323113 tkxiqxqxtkxix    (1.1.5) 

and ,2

2
L

2
2 k

c
p 


,2

2
T

2
2 k

c
q 


,

2

w


k where A1, A2, B1, B2 are the constants 

describing the boundary conditions; k, ω and λw are the wavenumber, circular 

frequency and wavelength of the wave respectively; cL and cT are the velocities of the 

longitudinal and shear wave (
 

,
21

)1(2
L








c




Tc ), x1 and x3 denotes the 

coordinate of along the length and across width of the free analysed plate respectively 

(x1 is the direction of wave propagation). If the term exp[i(kx1–ωt)] is omitted in 
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eq. 1.1.4 and eq. 1.1.5, according to the method of potentials the displacements u and 

the stresses σ can be written as (67, 69, 71): 

,
331
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dx
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(1.1.7) 

At this point the solution is divided into two separate sets: one for the symmetric 

mode (eq. 1.1.8) and another one for the antisymmetric mode (eq. 1.1.9) (67, 69, 72): 

 ,cos 32 pxA   ,sin 31 qxB  

   ,coscos 31321 qxqBpxikAuu   

   ,sinsin 31323 qxikBpxpAuw   

      ,sinsin2 31
22

3231 qxBqkpxikpA    

        ,coscos2cos 3132
2

32
22

33 qxikqBpxAppxApk    

(1.1.8) 

 ,sin 31 pxA  ,cos 32 qxB  

   ,sinsin 32311 qxqBpxikAuu   

   ,coscos 32313 qxikBpxpAuw   

      ,coscos2 32
22

3131 qxBqkpxikpA    

        .sinsin2sin 3231
2

31
22

33 qxikqBpxAppxApk    

(1.1.9) 

In the equations above, u describes the motion in the x1 direction (along wave 

propagation), while w deals with the motion in the x3 direction (across the  thickness). 

Since the guided waves propagate in the finite domain, the following traction free 

boundary conditions can be applied at both surfaces (14, 67, 69): 

,03331  at ,2/3 hdx   (1.1.10) 

where d and h are the full and the half thickness of the plate respectively. Then the 

general equation, describing the Lamb waves at the isotropic-homogenous plate can 

be written from eq. 1.1.6 as (69): 

   
  

  
   

,
cos2

cos2

sin2

sin
222

2

phppk

qhikq

phikp

qhqk











 (1.1.11) 

Considering the p and q values presented above and the definitions of the Lame 

constant ( 2
21

2 2
L 




 




 c ) and wave velocities (cL, cT), the Rayleigh-Lamb 

equations for the symmetric and antisymmetric modes can be obtained (69, 71, 73): 
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 
   

,
4

tan

tan
222

2

kq

qpk

ph

qh


  

 
 

 
.

4tan

tan
2

222

qpk

kq

ph

qh 
  (1.1.12) 

The last two equations above can be used to calculate the phase velocity (cp) of 

the guided waves in plate-like structures at the particular frequency-thickness (fd) 

product. The relation between phase and group velocity (cg) can be written as (66, 69): 
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Unlike the bulk waves, Lamb waves possess an infinite number of modes that 

can propagate in the structure. It means that for any frequency-thickness product (fd) 

there is an infinite number of wavenumbers k, which satisfy eq. 1.1.12. The most basic 

modes of the Lamb waves, which can propagate in the plate-like structures, are called 

symmetrical (Si), asymmetrical (Ai) and shear (SHi), where subscript (i = 0, 1…∞) 

denotes the order of the particular mode. Symmetrical and asymmetrical modes of the 

guided waves have both in-plane (x1) and out-of-plane (x3) displacements, while the 

shear mode is confined in one plane. The Si modes have dominant radial in-plane 

displacements, whereas the Ai modes have a dominant out-of-plane displacement. 

However, as the frequency-thickness product (fd) increases, the ratio between in-plane 

and out-of-plane-displacement changes within the same mode (see Fig. 1.1.1) (14, 

69). 

   
a) b) c) 

   
d) e) f) 

Fig. 1.1.1. The in-plane (u, solid line) and out-of-plane (w, dashed line) displacement profiles 

across the thickness of the aluminium plate (cT = 3.1 mm/µs; cL = 6.3 mm/µs) for the 

S0 (a, b, c) and A0 (d, e, f) modes at various frequency-thickness (fd) values (9, 67, 69) 

The results in the picture above (Fig. 1.1.1) show that the S0 mode has almost 

constant in-plane displacement at low frequencies, which becomes concentrated at the 
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centre of the plate as the (fd) increases (Fig. 1.1.1a, b, c). Similar observations can be 

made for the A0 mode, where the out-of-plane displacement starts to dominate at the 

outside surfaces at higher (fd) values (Fig. 1.1.1d, e, f). 

The shear mode of the guided waves possesses the particle vibration orthogonal 

to the direction of wave propagation (x2). The SHi modes can also be either 

symmetrical (shear-horizontal) or asymmetrical (shear-vertical). In the case of 

(u1 = u3 = 0), the general equation for the SHi mode can be written as (14, 70): 
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With the appropriate boundary conditions ( ,0
3

2 




x

u
x3 = 0) the solution to eq. 1.1.15 

can be written as (14): 
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where A is the constant, 
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Each mode of the Lamb wave propagates with different a velocity, which 

depends on frequency, thickness, density and elasticity of the material (14, 74). This 

phenomenon is called dispersion and for the symmetric and the antisymmetric modes 

can be described by eq. 1.1.12. The real part of the numerical solution of these 

Rayleigh-Lamb equations enables the dispersion curves (DC) to be obtained, which 

graphically describe the relationship between the phase and group velocity of the 

guided wave modes and the product of the frequency and thickness. To obtain the 

numerical solution of the Rayleigh-Lamb equations, various methods, such as 

semi-analytical finite element (SAFE) (75, 76, 77, 78), transfer matrix (79, 80, 81) or 

global matrix (82, 83) can be used. The example of the phase cp and group cg velocity 

dispersion curves for the traction-free aluminium plate are presented in Fig. 1.1.2. 

  
a) b) 

Fig. 1.1.2. The phase (a) and group (b) velocity dispersion curves for a traction-free 

aluminium plate with a thickness of 1 mm (dashed line – symmetric modes; solid line – 

antisymmetric modes; dash-dot line – shear horizontal modes) 
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Due to the dispersion the higher-frequency parts of the waveform travel at 

different a velocity compared to the lower-frequency parts (66, 84). Therefore, each 

dispersive wave can be decomposed into the set of individual waves, which travel at 

different a velocity compared to the overall wave. The phase velocity cp of the guided 

waves describe the speed of the individual waves within the single wave-packet, while 

the group velocity cg is the velocity of an envelope or an overall wave (14, 66). 

Typically for the S0 mode the lower-frequency parts move faster, so the trail of the 

waveform becomes contracted (see Fig. 1.1.3a). Conversely, the waveform of the A0 

mode becomes stretched-out, as the high frequency components move faster (see 

Fig. 1.1.3b). The results in Fig. 1.1.3 show that due to the dispersion the wave-packets 

become spread out in time domain and contracted in amplitude. Those factors limit 

the resolution and sensitivity to damage, especially in long range inspection. The 

intensity of the dispersion depends on the number of counts in the waveform. The 

waves with many cycles are less dispersive since the frequency spectra is quite 

narrow. However, if the waveform has only one or a few cycles it becomes highly 

dispersive due to the wide frequency band. For example, a continuous infinite 

harmonic wave is non-dispersive since its spectrum in the ideal case contains only one 

carrier frequency (66). However, if the signal duration is finite, it will be more or less 

dispersive. 

  
a) b) 

Fig. 1.1.3. The 1 MHz waveforms of 3 cycles after traveling 0.5 m in 1 mm thickness 

aluminium plate: the S0 mode (a) and the A0 mode (b) 

As the guided wave propagates in the material it encounters some obstacles, 

such as the defects or the waveguide boundaries. At the interface of the two medium, 

the ultrasonic wave undergoes reflection, refraction, scattering and mode conversion. 

The simplest case is a normal incidence to the planar boundary, when due to the 

difference in the acoustic impedances, there is a partial reflection and partial 

transmission. In addition to this, the waves that reflect from the medium with a lower 

acoustical impedance, will be reversed in phase (85). At the oblique incidence the part 

of the energy is refracted while the rest is reflected and converts into another mode. 

Wave scattering occurs in porous materials or at curved defects and causes loss in 

wave energy. The mechanism of the mode conversion and wave scattering can be 

described by Snell’s law, which relates the incidence angle and the wave velocity in 
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the medium (69, 86). The phenomenon of the mode conversion and scattering has 

received great interest from various researchers while developing new methods for 

the detection of voids (87), grooves (88), notches (49, 89, 90, 91), corrosion (92, 93) 

and delaminations (94, 95, 96). 

When the guided waves propagate in multi-layered laminated composite the 

symmetric and antisymmetric mode dispersion equations can be written as (97): 
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where Ciklm is the stiffness matrix; kx and kz are the wavenumber of x and z direction, 

x, z represents the wave propagation and the plate thickness direction respectively.  

The nature of the multi-layered anisotropic materials introduces such 

phenomena as reflection and refraction between the internal layers and the directional 

dependence of the wave velocity. It means that in the anisotropic composites there are 

no pure modes anymore, since the wave-front is not omnidirectional (98, 99). 

Moreover, the directional dependencies for the phase and the group velocities are 

different. The graphic representation of the directional dependence of the phase 

velocity 1/cp(θ) is called the slowness profile, where θ – is the angle of wave 

propagation (Fig. 1.1.4a) (14, 69). The slowness profile can be calculated by solving 

the Christoffel equation (69): 

  ,01k
2  miklmim ukkC  (1.1.19) 

where δim is Kronecker’s delta; kk and kl represents the wave-front propagation 

direction and um are the displacements. From Fig. 1.1.4a it follows that the group 

velocity vector gc


 is perpendicular to the tangent of the slowness profile, while the 

direction of the wave-vector k


 or the phase velocity vector pc


is different. The angle 

between the vectors gc


 and k


 is called the skew angle ϕ (97, 99). The plot of the 

group velocity cg(ψ), where ψ is the combination of θ and the skew angle ϕ, is called 
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the wave-front curve (Fig. 1.1.4b). The results in Fig. 1.1.4b show that in this case the 

wave-vector k


 is perpendicular to the tangent of the wave-front curve (97, 99). 

The analysis of the basic guided wave features shows that there are many factors 

that complicate the use of guided waves for non-destructive inspection, especially for 

multi-layered anisotropic composites. Since all the waves propagate at a different 

frequency and direction dependent velocities, after multiple reflections, scattering and 

mode conversions, the receiver captures the interfered and diffused ultrasonic field. 

Moreover, those features vary going from one structure to another and depend on the 

type of excitation. To illustrate the complexity of the problem, the example of a typical 

waveform captured from the rectangular anisotropic composite is presented in 

Fig. 1.1.5. To be able to analyse such signals and to detect the damage, there is a need 

for a deep understanding of the mechanism of guided wave generation, propagation 

and interaction with the medium as well as with the likely defects. 

  
a) b) 

Fig. 1.1.4. The relation between the wave vector and the group velocity vector: the slowness 

profile 1/cp(θ) (a) and the wave-front curve (b) (97, 99) 

 

Fig. 1.1.5. An example of the multimodal, dispersive and interfered waveform captured on 

4 mm thickness glass fibre reinforced plastic 

There are a few main trends in the field of guided wave inspection that attracts 

the most attention among various researchers. These are related to the most relevant 

problems and the current state of the art. Three major topics or trends can be outlined 

as follows: the investigations on the mechanism of guided wave generation and mode 

tuning to produce single mode signals and to make the analysis of the acquired 

waveforms easier (100, 101, 102); the development of guided wave mode 

decomposition methods to extract the information from the overlapped signals (103, 

104, 105); the investigations on the interaction between the guided waves and the 

defects, to detect the damage and to extract its features (106, 107, 108, 109). 
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1.2 Means of ultrasonic guided wave generation, mode selection and tuning 

The following chapter discusses the main issues that have to be addressed in 

order to properly select the GW mode for inspection as well as the existing means to 

generate it, supressing the displacements of the other modes. Additionally, an 

advantage of using multi-modal inspection over the single mode approach is 

considered and the existing gaps for new signal analysis methods in case of multimode 

inspection are revealed. Prior to development of any SHM technique, the appropriate 

mode should be considered, which satisfies the system requirements. In the ideal case 

the Lamb wave mode that most suits the defect detection should feature: no dispersion, 

low attenuation, high sensitivity to the damage, easy excitability and detectability 

(55). Some of these features, like dispersion, attenuation and sensitivity depend on the 

material under inspection, while the rest of them rely on the scheme of the excitation 

(110). As it was mentioned in Chapter 1.1, the dispersion can limit the spatial 

resolution, the sensitivity to the damage as well as the distance of propagation. The 

effect of dispersion can be reduced by using the narrow band tone-bursts for guided 

wave excitation. The relation between the frequency band [fmin, fmax] of the tone-burst, 

the central frequency f0 and the number of cycles n can be expressed as (110): 
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where k is the constant depending on the bandwidth being used. From the equation 

above it follows that when the number of cycles n increases, the bandwidth [fmin, fmax] 

reduces. However, the narrowband signals possess a long duration in the time domain 

and can overlap with other modes or structural reflections. For each guided wave 

mode there is the point on the dispersion curve, where the best compromise between 

the propagation distance, number of cycles, wavelength and resolution can be 

achieved. This can be determined by the minimum resolvable distance MRD (111): 
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where l and d are the wave propagation distance and the plate thickness; cmin, cmax are 

the minimum and maximum velocities through the distance l; c0 is the velocity at the 

central frequency; Tin is the initial time duration of the wave-packet. In general, the 

MRD value show the best possible spatial resolution for the particular frequency and 

propagation distance, which can be achieved if the number cycles are optimised in the 

input signal. For the fundamental modes A0 and S0 the MRD values varies at low 

frequencies and tends to monotonically reduce at higher frequencies. However even 

at low frequencies local minima can be found, which represents a good resolution 

point. Typically, the fundamental modes possess lower local MRD values and require 

less cycles to obtain a good resolution (55, 110, 111). 

The attenuation is another factor which has to be considered while selecting an 

appropriate guided wave mode for inspection. The guided waves are mainly 

attenuated due to (110, 112): dispersion, beam divergence, material damping, 
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scattering and leakage into the adjacent media. One of the most dominant among the 

abovementioned factors is the leakage of the acoustic energy into the surrounding 

media (30, 113). The leaking amount of energy is a function of frequency, which 

depends on the coupling between the modes in the structure and the bulk waves that 

can exist in the embedded media. For example, if the metal plate is surrounded by air, 

there will be no leakage due to the huge mismatch between the acoustic impedances 

of the two mediums. On the other hand, for metals submersed in water, the leakage 

losses can be significant for some of the modes (110). The bulk waves in the 

embedded media can only be excited if the phase velocity of the guided waves in the 

structure is above the bulk wave velocity in the surroundings (cp>cL or cp>cT). 

Otherwise if the phase velocity is less than the velocity of any bulk wave (cp<cL or 

cp<cT), there will be no leakage of wave energy (114). It should be considered, that 

the A0 mode is more attenuated, however, it has a shorter wavelength and is more 

sensitive to the delaminations, surface and sub-surface defects. In contrast, the S0 

mode is almost non-dispersive at low frequencies and is highly effective at detecting 

the damage anywhere in the thickness of the plate (14, 56). In most of the cases, it is 

preferred to excite a single mode of the guided waves, because it makes the analysis 

of the signals much easier (115). However, the generation of multiple modes at the 

same time makes the inspection system more versatile, since the different modes 

possess different properties. In the few following paragraphs, the approaches to excite 

the single desired mode of the guided waves will be reviewed. Subsequently the 

chapter is concluded with short discussion of the advantages of multi-mode excitation. 

Since the most suitable mode of the guided waves is selected for the inspection, 

it has to be excited in the structure by some means. The simplest solution is to apply 

the excitation force to the surface of the specimen, with the same direction as the 

dominant displacements of the preferred mode. In other words, the tangential force is 

used to excite the symmetrical modes Si, while the normal force is used for the 

asymmetrical one Ai. However, under such excitation conditions, multiple modes are 

generated anyway (116). The selective guided wave mode generation is usually 

achieved by using either simple piezoelectric lead zirconate titanate wafers (PZT), 

interdigital or phased array transducers (117, 118, 119, 120, 121). 

The basic piezoelectric wafers are usually made from the lead zirconium titanate 

(Pb(Zr–Ti)O3) or polyvinylidene fluoride films (PVDF). Although the PVDF 

transducers are thin, flexible and durable, the PZT patches are preferred. The major 

drawbacks of PVDF are the poor inverse piezoelectric effect and electromechanical 

coupling, large temperature dependency and limited applications at frequencies lower 

than 500 kHz (122, 123). The single mode excitation with the PZT wafers can be 

achieved by selecting the appropriate size of an element. For the PZT wafer the strain 

ε(x,t) and displacement u(x,t) wave solutions can be written as (100, 124): 
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where 
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a is the lateral width of the transducer; the notations S and A at the subscript or the 

superscript denotes the variables corresponding either to the symmetric or the 

asymmetric motion. From eq. 1.2.3 and eq. 1.2.4 it follows that the maxima of the 

function sin(ka) will occur, when ka=((2n–1)π)/2. It means that the function exceeds 

the maximum value when the width of the transducer 2a is equal to the odd multiple 

of half wavelengths λ/2. In the same fashion, the minima of the function sin(ka) occurs 

when ka = nπ or the width of the transducer is equal to the even number of half 

wavelengths λ/2. In such a way the selection of the size of PZT wafers enables the 

frequencies at which only the single mode is dominant to be found (124, 125, 126). 

However, the PZT wafers have a few disadvantages, which led the researchers to 

continue investigating the capabilities of single mode generation. Since the size of the 

PZT wafer depends on the wavelength, the set of the PZT patches are required to be 

tuned for different modes or at different frequencies. Moreover, the size of the PZT 

transducer should become quite large at lower frequencies, leading to poor surface 

conformability (123, 127). 

The other way to excite the single guided wave mode is to use interdigital 

transducers (IDT) (78, 115, 127, 128, 129, 130). Such kind of transducers consists of 

two sets of electrodes that are driven by an opposite phase electrical field. The top 

view of the conventional IDT transducer is presented in Fig. 1.2.1a. The main 

transducer parameters are: the quantity (n), the pitch (S), the width (W) and the length 

(L) of the electrode. The width of the electrode (W) sets the effective area of the 

transducer, while the length (L) influences the directivity. The other parameters, such 

as the number of electrodes (n) is related to the resolution and mode selectivity. In 

order to excite the single mode with the interdigital transducer, the pitch (S) between 

the electrodes must be equal to half the wavelength λ/2 of the desired mode (129). 

There are many approaches to design and improve the interdigital transducers. Salas 

and Cesnik (123) introduced sectorial IDT’s, which enables an angular scan of an 

object to be performed. Jin et al. (130) developed a double sided IDT with strong 

excitation efficiency and spatial focusing. Finally, Jeong et al. (127) designed and 

investigated a single element, paired IDT transducer, which is optimised for Rayleigh 

wave generation at 3 MHz on a 1.27 cm thickness aluminium plate. 
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Since the IDT transducers are quite robust, the more convenient approach is to 

use the phased arrays, or a pair of separately driven actuators. By selecting the 

appropriate distance between the elements, the displacements for the particular mode 

can be optimized (120). Grondel et al. (131) showed, that the predominant A0 mode 

can be efficiently generated by using dual elements and in-phase excitation (see 

Fig. 1.2.1b). He showed that the normal amplitude of the mode is a function of the 

inter-element distance p: 
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where a{m}(x1) is the normal amplitude of the mode along the x1 direction; N is the 

number of elements excited in phase. Using this approach both single A0 and single 

S0 modes can be generated, depending on the inter-element distance p, which is equal 

to two wavelengths of the desired mode 2λ. The pair of elements can also be mounted 

on the opposite surfaces of the specimen. In that case, depending on the poling 

direction, both pure A0 and S0 modes can be produced with the same configuration 

(see Fig. 1.2.1c). For the S0 mode out-of-phase generation is required, while the A0 

mode is efficiently generated using in-phase excitation (132). 

 
 

a) b) 

 
c) 

Fig. 1.2.1. The basic configuration of an IDT transducer (a) and the basic principle for 

generation of the single guided wave modes in case of one-side (b) and two-side (c) 

access (129, 131, 132) 

There is plenty of research focusing on single guided wave mode generation 

using either the phased arrays or separately driven actuators. Fromme et al. (133) used 

a ring shaped array to perform a circular B-scan imaging of the structure. 

Borigo et al. (134) investigated the omnidirectional single mode generation using the 
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annular arrays. Special attention was also made to the use of phased delays to control 

the mode selection (120, 135, 136).  

The single mode excitation techniques can be an attractive way to make the 

analysis of the acquired signals easier. However, it is only a partial and usually not 

sufficient solution, because other modes with significantly lower displacements are 

also excited. It means that with the methods described above it is possible to get one 

dominant mode, but most likely it will not be single in the entire structure. Moreover, 

after the mode conversion and multiple reflections, the interpretation of such results 

will be complicated anyway. The example of the simulated single S0 mode signal, 

after multiple reflections in the basic rectangular defect-free GFRP plate 

(70 mm × 670 mm) is presented in Fig. 1.2.2 (the mode conversion and the 

attenuation is neglected). From the results presented in Fig. 1.2.2 follows, that despite 

the use of a single mode excitation scheme, several wave-packets still exist due to 

omnidirectional wave propagation. The inclusion of the defects and mode conversion, 

would make the resulting signal even more complicated. Therefore, the methods to 

analyse such waveforms and to identify/trace wave-packets are required. 

 

Fig. 1.2.2. A simulated time representation of the S0 mode after propagation in a rectangular 

defect free GFRP plate with dimensions of 70 mm × 670 mm 

The single mode excitation can also be robust, since in all cases the sets of 

transducers are mandatory if excitation of various modes at different frequencies are 

required. In addition, at low frequencies, such actuators become bulky, as the 

inter-element distance depends on the wavelength. On the other hand, the multimode 

excitation makes the inspection system more versatile. As mentioned above, different 

modes possess different properties and each of them is more sensitive to a different 

kind of defect due to distinct displacement profiles. This leads to the conclusion that 

single-mode excitation might not always be the solution for the reliable monitoring 

system. The techniques for single mode excitation are mainly developed for 

simplification purposes. In order to have a both reliable and versatile SHM system, a 

multi-modal excitation might be used along with the sophisticated signal processing 

methods for analysis of guided wave generation and propagation. One of the most 

important factor in this case is to understand the mechanism that generates the guided 

waves within the structure and what parameters determine the spectral characteristics 

of each mode. This initial information is crucial for further analysis of the dynamical 

behaviour of GW and for the development of other signal processing methods, which 

rely on the initial data. 
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1.3 Existing numerical and analytical methods for the simulation of guided 

wave propagation 

Prior to the investigation of any structure or development of any NDT method 

it is essential to know and predict what kind of modes can propagate in the structure 

under certain excitation and how it interacts with structural features such as object 

boundaries and defects. This leads to the proper development of inspection 

techniques, based on the initial simulation data. The aim of this chapter is to review 

the existing numerical and analytical methods for simulation of guided wave 

propagation and to identify the needs for development of new methods adapted to the 

special requirements of SMH systems. There are few commonly available predictive 

modelling techniques for simulation and analysis of guided wave propagation in 

anisotropic plate-like structures. Two major groups can be outlined: methods for 

calculation of dispersion relations, which in general allows the type of modes and its 

corresponding velocities at particular frequency band to be identified and tools for 

simulation of guided wave propagation over long distances, which enables the 

complex dynamic guided wave behaviour to be calculated and analysed.  

The numerical solution of the Rayleigh-Lamb equations, which in general gives 

the dispersion relationship, can be obtained using either the transfer matrix (79, 80, 

81), global matrix (82, 83) or semi-analytical finite element (75, 76, 77, 78) methods. 

In the subsequent paragraphs the basics of each method will be reviewed followed by 

a short discussion about the existing merits and demerits. 

In the transfer matrix method, the multi-layered structure is condensed into a set 

of four equations that relates the boundary conditions of the first and the last interface 

eliminating the equations for the intermediate interfaces (82). Let’s consider a 

structure, which consist of N layers (Fig. 1.3.1a). The transfer matrix method assumes 

that in the case of an isotropic structure four waves exist at each layer: the direct 

longitudinal L+ and shear S+ propagating down from the upper interface and reflected 

longitudinal L– and shear S– coming up from the lower interface. In the case of an 

anisotropic structure, six partial waves exist: longitudinal (L+, L–), shear horizontal 

(SH+, SH–) and shear vertical (SV+, SV–). The superposition of these four to six partial 

waves can describe any field in the case of the linear system (137). Then the 

displacements uj-1 and stresses σj-1 on the upper surface (z=zj) of the jth layer can be 

expressed in the matrix form as (79, 81): 
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where positive and negative superscripts represent the wave propagation in z+ or z– 

directions; 
ip are the displacement polarization vectors (i – denotes ith partial wave, 

i = 1, 2, 3); T – represents transpose; Diag – denotes the diagonal matrix; hj is the 

thickness of the jth layer; kz is the wave vector; A is the wave amplitude vector. 
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Analogically for the bottom surface (z = zj) the displacements uj-1 and stresses σj-1 are 

formulated as (79, 81): 
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Combining eq.1.3.1 and eq.1.3.3 leads to the expression of the layer transfer matrix 

Bj, which relates the displacements and stresses at the top and bottom of the jth layer 

(79, 81): 
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The transfer matrix BJ for the whole structure can then be obtained by the 

multiplication of each layer’s transfer matrix Bj (81): 

,1 JjJ BBB  (1.3.6) 
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where BJ–1 – is the total transfer matrix for the top J–1 layers, capital indices indicate 

the total number of layers. From the formulation above it follows that the transfer 

matrix method condenses the dispersion equations of individual layers, thus the 

external boundary conditions are considered only (14). The major drawback of the 

transfer matrix method is that it becomes numerically unstable for the waves at 

oblique incidence above the critical angle and if the thickness of the plate or the 

frequency increases to infinity. In such case both matrices in eq. 1.3.5 have zero 

columns, thus become singular, which is the cause of the instability. There are some 

available approaches to solve the instability problem by reformulating the recursive 

algorithm with the calculation of the layer stiffness matrix (79, 81). However, the 

alternative methods, such as global matrix and SAFE, are mostly used instead.  

The global matrix method describes the whole system with the single matrix G, 

which consists of 4(n–1) equations (n – is the total number of layers) (82, 83, 138): 
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where D1hb, Dhtn – bottom and top half space matrices respectively, which denotes the 

acoustic loading conditions of the analysed multi-layered structure, Djt, Djb – top and 

bottom matrices of the jth layer, which describes the wave reflection and transmission 
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at the top and bottom of the considered layer. In this case the complete matrix G is 

used for the solution, instead of the recursive approach. The global matrix method 

enables different loading conditions to be simulated as well as the influence of the 

structural defects such as a kissing bond or delaminations. On the other hand, for some 

structures the matrix G can become quite bulky, leading to the slow solution. 

In contrast to the matrix techniques, in the SAFE method the 2D cross-section 

of the analysed structure is meshed into the grid of points and the displacement field 

is expressed by nodal displacements with an interpolation function across the whole 

cross-section of the structure. The displacement distribution along the direction of 

wave propagation (z) is described by orthogonal functions eiξz, where ξ is the 

wavenumber (see Fig. 1.3.1b). The governing equation for the SAFE method can be 

written as (139):  

  ,2
3

2
21 UMUKKKf   i  (1.3.8) 

where f  and U  are the Fourier transform of the nodal force vector f and displacement 

vector U; K1, K2, and K3 are the matrices obtained from material properties; M is the 

mass matrix; ω is the angular frequency. The governing equations (eq. 1.3.8) of the 

SAFE method can be expressed as the first order Eigen system, which can be solved 

with respect to the wavenumber ξ at a certain frequency (76): 
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Consequently, the mth solution ξm of the Eigen system gives the wavenumber of mth 

resonance mode at the certain frequency. The phase and group velocities of mth mode 

at angular frequency ω are then expressed as (75): 
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The SAFE method is easily applicable to the geometries with complicated 

cross-sections (rails, spar, longeron etc.), unlike the conventional matrix techniques. 

On the other hand, since the method only takes into the account the cross-section of 

the material it can only be used for the structures uniform in the longitudinal direction. 

Moreover, the SAFE method experiences some issues with the mode sorting and 

differentiation in case multiple modes with similar velocities exist at the same 

frequency (140). Loveday et al. (141) addressed the latter issue and proposed to 

exploit modal orthogonality for sorting of guided wave modes in rails. Additionally, 

Mu and Rose (78) developed orthogonality for the multi-layered structures possessing 

any combination of elastic and viscoelastic materials. 

The methods described above are the most popular tools for the analysis of 

dispersion relationships of the GW. It gives the very important initial knowledge, in 

general what type of modes can propagate in the considered structure in the particular 

frequency band and under the certain excitation conditions. Moreover, some of those 

methods enables the in-plane and out-of-plane displacement profiles to be analysed, 
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even for the multi-layered structures. However, this initial knowledge is usually not 

sufficient for the complete understanding of the mechanism of the guided wave 

generation, long range propagation and interaction with the structural features. In 

order to have a full understanding of guided wave behaviour, the finite element (FE) 

(142), boundary element (143) or spectral element (144) methods are additionally 

used for the simulation of the dynamic behaviour of the GW.  

  

a) b) 

Fig. 1.3.1. A sketch of the multi-layered structure with four partial waves at jth layer for 

principle demonstration of the transfer matrix method (a) a mesh of the cross-section of an 

analysed structure and calculation of displacement field for principle demonstration of SAFE 

method (75, 81) 

The idea of the conventional finite element method lies on the approximate 

numerical solution of the governing equations of motion and associated boundary 

conditions. The solution is obtained by meshing the entire structure into the finite 

elements and calculating the values of the field variables at each node of the mesh. In 

the case of a 2D solid body under plane stress, the displacement vector having two 

components (degrees of freedom) is calculated as the field variable at each node of 

the finite element. The solutions for the non-nodal points within the element are then 

obtained using the interpolation of the elements nodal values. The general equation of 

motion in the matrix form, which is solved in the FE method, can be written as (142): 

        ,tFuKuCuM    (1.3.12) 

where [M], [C], and [K] are the mass, damping and stiffness matrices respectively; u 

is the displacement vector and its time derivatives. The dynamic solution of eq. 1.3.12 

can be obtained using different time integration methods, such as implicit Newmark 

or explicit Central difference (145). In order to obtain reliable results, the finite 

element method requires the proper selection of the time integration step Δt and size 

of the finite element le. If the time step Δt is too long, the higher frequency components 

are not resolved properly, while too small time step leads to a high computation time. 

For the Newmark time integration scheme, the best compromise between the accuracy 
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and calculation time is achieved when Δt is 20 points per cycle of the highest 

frequency of interest fmax (146): 

.
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1

maxf
t   

(1.3.13) 

Similarly, the size of the element le should be at least 10 ÷ 20 nodes per wavelength 

of the shortest wave λmin (147): 
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The finite element analysis can give a quite accurate dynamical representation 

of guided wave propagation. However, the high frequency 3D solutions require a fine 

mesh and small integration time step, which leads to a huge demand on computational 

resources and time. The following example gives an idea of this problem. Consider 

the guided wave propagation is simulated in the 10 cm × 1 cm 2D plate for the 

t = 50 µs, up to frequency fmax = 2 MHz (λmin = 2 mm). Then according to eq.1.3.13 

and eq.1.3.14 Δt = 0.025 µs and le = 0.1 mm. The meshed 2D structure will then have 

100,000 elements and 2,000 time integration steps. The real matrix equation for the 

2D case will be twice the number of elements, because of the degrees of freedom and 

it has to be solved 2,000 times to obtain the final result (146). In structural health 

monitoring applications, the wavelengths are small compared to the dimensions of the 

object, therefore it requires a high number of elements and degrees of freedom if the 

structure is discretized according to eq.1.3.14. If some defects are introduced within 

the structure, in some cases it requires even finer mesh at the sharp edges such as the 

tip of the crack. There are some available approaches to decrease the calculation time 

of the FE method. The most common and easiest way is to use the explicit time 

integration schemes, such as central difference method, which bypasses the inversion 

of the stiffness matrix [K] during the solution of eq. 1.3.12, thus provide a faster result. 

On the other hand, the explicit methods are conditionally stable and require small time 

integration steps to give reliable results. Implicit methods, such as Newmark, are 

unconditionally stable, because the solution in this case is based on the quantities 

calculated in the previous time step. However, the implicit methods are slow and 

require the computationally intensive stiffness matrix inversion (145). There are some 

existing hybrid methods that have the general purpose of obtaining the faster solution. 

In the hybrid methods the semi-infinite, uniform and defect free regions are calculated 

using the analytical solutions, while defective areas are described by FE (143, 148). 

For example, Terrien et al. (149) used a combination of the FE and a modal 

decomposition method to study Lamb wave interactions with micro defects. The 

authors proposed to calculate the modal decomposition of the wave before and after 

the defect, while the finite element mesh was used in the regions around the defects. 

Similarly, Benmeddour et al. (150) coupled the classic FE with SAFE method to study 

the interaction of guided waves with cracks in cylinders. The authors used a 

semi-infinite waveguide with arbitrary cross-section before and after the volume with 

the crack. A slightly different approach was used by Gravenkamp et al. (143) who 
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used a semi-analytical scaled boundary finite element method, which only requires 

the discretization of the object boundary with the surface finite elements. 

All the methods described above can give the substantial information required 

for a better understanding of the behaviour of GW. However, the FE models cannot 

provide very fast results directly with the information most important in SHM 

applications. For example, in the case of SHM it is important to extract the information 

about the propagation of separate mode packets, to analyse the time of flight (ToF) 

and interaction between modes as well as to retrace wave propagation paths. This 

information is essential in order to understand how the guided waves behave in the 

structure, which modes are passing the defective area, what the sample spatial 

coverage is etc. Therefore, there is still a gap for rapid models that would allow the 

propagation of each guided wave mode to be analysed separately, to determine the 

propagation paths and ToF of each wave after multiple reflections. Such tool would 

be beneficial for prompt analysis and modelling of various real time situations as well 

as for the mode decomposition and could be further used as an advisory instrument in 

real-world SHM systems. 

 

1.4 Techniques for time and frequency domain analysis and mode 

decomposition of ultrasonic guided waves 

Since the few chapters above were discussing a possible demand for tools to 

improve the understanding of the guided wave generation and propagation, this 

chapter deals with the review of the existing methods to decompose the guided wave 

signals and to extract the information about the damage from the data, which is 

measured at distinct positions on the object. The conventional solutions to the 

complicated guided wave signal analysis can be divided into three major groups: time 

domain, frequency domain and integrated time-frequency domain analysis. The 

techniques of integrated time-frequency domain representation (TFR), such as 

short-time Fourier transform (STFT) (151), two-dimensional fast Fourier transform 

(2D-FFT) (152), Hilbert transform (HT) (153), Hilbert-Huang transform (HHT) 

(154), Wigner-Ville distribution (WVD) (155), wavelet transform (WT) (156) and 

Chirplet transform (CT) (157) are currently dominant among others. The general 

purpose of such analysis is to represent a complicated, non-stationary signal in the 

time-frequency domain where the modes are separated and can be identified based on 

comparison with theoretical calculations. 

Most of the techniques mentioned above are more or less based on the discrete 

Fourier transform and hence suffers from its limitations, such as aliasing, leakage and 

Gibbs, or the edge effect. The 2D-FFT is one of the oldest approaches to analyse 

guided wave signals. It transforms the discrete amplitude-time measurements to the 

amplitude-wavenumber records at discrete frequencies (152). The 2D-FFT of the 

dataset u(x,t) can be expressed as (158): 

      ,,,  
 dxdtetxufkH kxtj    (1.4.1) 

where x is the direction of wave propagation; k is the wavenumber; ω = 2πf is the 

angular frequency; u(x,t) represents the displacements on the surface of the plate 
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u(x,t) = A(ω)ej(ωt-kx-θ); θ is the initial phase. The different Lamb wave modes possess 

different k and f values, that leads to different results of the H(k,f). Hence, it enables 

the guided wave modes to be identified by comparing the calculated H(k,f) with Lamb 

wave dispersion curves (158). On the other hand, the 2D-FFT requires a sufficient 

number of equally spaced waveforms that makes it unsuitable for SHM applications. 

In contrast, the other TFR’s, such as STFT, WT, CT, WVD or HHT uses only a single 

signal for time-frequency analysis (151). 

According to the equation of the discrete Fourier transform, the time 

representation of the signal x(t) is assumed to be a periodic and stationary function. If 

the function is non-stationary, the special methods, such as the STFT, are required to 

properly analyse the signals and to extract the frequency variation over time (71).  The 

basic idea of the STFT method relies on cutting the signal x(t) into short time segments 

with the sliding window. On each window position, the energy spectrum of the 

quasi-stationary signal can be calculated. As a result of this moving time window, the 

energy spectrum as a function of time can be obtained (159, 160). Mathematically, 

STFT can be expressed as (159): 

       




 ,2exp,  dfjtwxftSTFTx  (1.4.2) 

where x(t) is the time representation of the signal; w(τ–t) is the window function, 

centred at t; τ is the time variable. Since symmetrical and asymmetrical modes possess 

different time-frequency regularities, STFT can be used as one of the tools for guided 

wave signal analysis and mode decomposition. The major drawback of the STFT 

method is that it cannot provide a good time and frequency resolution at the same 

time, due to the Heisenberg’s uncertainty principle (161). To solve this limitation, 

Kotte et al. (162) proposed a differential reassignment method, which enables the 

background noise to be reduced, while preserving the edge information in STFT. 

Additionally, Hong et al. (163) introduced a dispersion based on STFT, where each 

time-frequency atom of STFT is rotated based on the dispersion properties of the 

particular wave, thus improving the time-frequency localization. Finally, Le 

Touze et al. (164) used time-varying filters to efficiently separate the non-linear 

guided wave modes. However, the conventional STFT is mainly suitable for the 

signals with well-defined frequencies and does not work so well on signals with 

fluctuations or discontinuities (165). 

In contrast to the fixed sliding window and sine approximation in the 

conventional STFT, the wavelet transform (WT) decomposes a signal into the wavelet 

components or atoms, which can be stretched, compressed or shifted (165). In WT the 

width of the sliding window is variable and depends on the frequency of the analysed 

signal. There are two common forms of WT, called continuous wavelet transform 

(CWT) and discrete wavelet transform (DWT). The CWT of a function x(t) can be 

written as the integral of the product of x(t) and the time translated and amplitude 

dilated mother wavelet (161, 166): 
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where a and b are the dilation or scale (compression/expansion) and the translation or 

the time shift respectively; ψ is the wavelet function or the mother wavelet. From 

eq. 1.4.3 it follows that the wavelet coefficients S(a,b) relies on the mother wavelet ψ. 

There are plenty of different available mother wavelets, however Gabor and Morlet 

are one of the most popular as they’re based on the Gaussian envelope and provides 

good time-frequency resolution. Since the mother wavelet is selected, wavelet atoms 

S(a,b) are obtained by dilation and translation of the mother wavelet. The Gabor and 

Morlet mother wavelets can be defined as (167, 168): 
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where ψG(t) and ψM(t) denotes the Gabor and Morlet mother wavelet respectively; 

γ modifies the width of the Gaussian envelope; ω is the angular frequency. The 

time-frequency resolution is determined from the duration Δt and the bandwidth Δf of 

the mother wavelet (169): 
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where  ̂  is the Fourier transform of ψ(t). According to eq. 1.4.6 and eq. 1.4.7, the 

Gabor wavelet has a higher time resolution, while the Morlet wavelet provides a better 

frequency resolution (168). In general, the CWT is computationally expensive, 

because it continuously translates and dilates the mother wavelet in time and 

frequency domain. For simplification, DWT can be employed, where the dilation a 

and translation b can be set as (170): 
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Then the mother wavelet is scaled in powers of 2 and translated at each level. Hence, 

the expression of the wavelet function can be written as (165, 170): 
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Finally, the DWT wavelet coefficients are expressed by (170): 
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WT as well as the other time-frequency representation methods, enables the 

amplitudes, frequency content, arrival time and other useful information about the 

guided waves to be extracted. There are plenty of applications of WT for damage 

detection in various structures. Liu et al. (167) used a CWT and Gabor mother wavelet 

to detect the radial cracks in pipes. Siqueira et al. (165) used a bandpass filtering along 

with DWT to increase the signal-to-noise ratio (SNR) and to detect the notch type 

defects in carbon steel pipes. Grabowska et al. (171) demonstrated the application of 

WT to detect fatigue cracks in aluminium rods. Rizzo et al. (172) used a combination 

of DWT and outlier analysis to detect notches in the multi wire steel-strand. Another 

application was demonstrated by Lee et al. (173), who used WT to detect the damage 

of various ratios in rock bolts. They demonstrated that the high frequency components 

appear when the defect ratio of the bolt increases.  

WT is a powerful and widely used tool for analysis and decomposition of 

non-stationary guided wave signals. The major drawback of using WT arises from the 

selection of the mother wavelet, which fits most for the analysed signal. This selection 

is essential, to obtain reliable results with adequate resolution. As there are plenty of 

available mother wavelet options (Daubechies, Haar, Morlet, Gabor, Cauchy, 

Harmonic, Laplace, Hermit etc.), the methodologies for selecting the appropriate one 

are still missing. Moreover, the use of one particular mother wavelet for signal 

decomposition leads to the limited effectiveness analysing dissimilar or non-fractal 

signals (159). 

CT is a combination of fast Fourier transform, STFT and WT. The 

time-frequency atom in this case is obtained by translating, scaling and shearing the 

time window function (157). Instead of three dimensions in WT, the CT is using five 

operations to represent the signal in the time-frequency domain. The general form of 

the CT for signal x(t) can be written as (155, 157, 174): 
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where Tt0 and Fω0 are the time and frequency shift operators; Ss is the scale operator; 

Qq and Pp are the frequency shear and the time shear operators respectively; g(t) and 
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G(ω) are the basis function and its Fourier transform; h(t) and H(ω) are the window 

function and its Fourier transform; * denotes the complex conjugate. 

In general, CT offers some advantages over the conventional STFT and WT, 

however it uses five-dimensional space, which is difficult to visualize. Therefore, 

usually two of five parameters are considered for TFR as in the conventional 

STFT (160). CT has been used in various fields by different researchers. For example, 

Yang et al. (175) used a polynomial chirplet transform for non-linear group delay 

estimation of the guided waves, while Hu (176) proposed an improved and inverse 

CT for detection of voltage harmonics. 

Wigner-Ville distribution (WVD) is the bilinear time-frequency representation, 

which also uses the Fourier transform (155, 159): 
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where x*(t) is the complex conjugate of x(t). In general, WVD measures the local 

time-frequency energy and does not use the time window. Hence it provides the best 

time-frequency resolution among other TFR’s. However, WVD can usually produce 

negative values and suffers from cross-interference. When the signal contains the sum 

of two components, WVD is expressed as (155): 

        ,,,RE2,, ,  tWVDtWVDtWVDtWVD yyxxyx   (1.4.13) 

where 2RE[WVDx,y(t,ω)] is the cross-term, which can cause overlapping and reduces 

time-frequency resolution. It means that if the signal contains two components 

x(t)+y(t), it will be decomposed into two separate components x(t), y(t) and the 

additional cross-term. The number of cross-terms is defined by (159): 
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where n is the number of signal components. A couple of solutions are available to 

overcome the limitations of the conventional WVD, like pseudo Wigner-Ville 

distribution (p-WVD), which calculates the convolution, between the conventional 

WVD and Gaussian window function. The other approach to remove the cross-terms 

is to use the Cohens class distribution, which smooths WVD with kernel function 

(Rihaczek, Choi-Williams, Born-Jordan etc.). However, the smoothed WVD is no 

longer sensitive to the sinusoids and Dirac impulses (177, 178). Recently, Chen et al. 

(155) proposed a Chirplet WVD, which removes the cross-term by transforming the 

non-linear and non-stationary signal into several intermittent mono-frequency signals. 

Pachori and Nishad (179) used a tunable Q-WT for cross-term suppression, which 

simultaneously designs the mother wavelet according to the quality factors Q. Despite 

some limitations, WVD still attracts plenty of attention in damage detection and signal 

processing due to its high time-frequency resolution. Zeng et al. (180) used laser 

imaging and WVD to detect a surface notch in aluminium plate. Tang et al. (181) 

proposed to use a combination of the Morlet wavelet de-noising, auto-terms 

windowing and WVD to detect the fault in wind turbines. Finally, Rodriguez et al. 
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(182) used WT and WVD to process the signals with coherent noise obtained from 

highly scattering materials. 

Another approach to decompose the guided wave signals was proposed by 

Mallat and Zhang (183), who introduced matching pursuits (MP). It is an iterative 

approximation algorithm, which seeks for the best match between the atom in the 

dictionary and the part of the waveform. In other words, the algorithm decomposes 

the complex, non-stationary signal into the elementary stationary functions and uses 

an atom dictionary instead of the single basis function (159). MP decomposition of 

the signal x(t) into m atoms can be summarized as follows (159, 184): 

 The dictionary D is defined, which contains all possible atoms: D={ki}, 

where ki belongs to the Hilbert space L2(R) (R is a set of real numbers); 

 The atom that fits the signal best x(t) is selected from the dictionary D (103): 
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 The best atom is subtracted from the signal x(t), leading to the residual (103): 
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 The steps described above are iteratively repeated until the defined residual 

tolerance or the maximum number of iterations is exceeded. 

The major advantage of the MP algorithm is that it can be fully automated and 

it does not require an additional post-processing to remove the cross-terms etc. On the 

other hand, MP strongly depends on the quality of the signals and on the selection of 

the right dictionary. The noise and selection of the wrong initial atoms can lead to 

increased computation time and unpredictable results (159). The Gabor and Chirplet 

functions are the most popular atoms, to construct the dictionary D. Analogically to 

eq. 1.4.3, the Gabor atoms can be defined as (103): 
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where t is the time centre of the atom. The Gabor atoms are stationary and possess 

symmetrical time domain representation due to the Gaussian envelope. Thus the 

Gabor atoms are not suitable for the dispersive and non-stationary wave analysis. To 

decompose such signals, Gaussian modulated Chirplet atoms can be used (184): 
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where cr is the chirp rate of the atom. Chirplet atoms are computationally efficient and 

can be used even for the guided wave mode classification. Xu et al. (184) found that 

the positive chirp rate (cr>0) corresponds to the S0 mode while negative (cr<0) chirp 

rate denotes the A0 mode. Hence MP is suitable in a wide variety of applications. Liu 

et al. (185) used a matching pursuit with Gabor atoms to detect the bearing vibration 
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and to extract the information about the damage. Similarly, Yang et al. (186) used a 

basis matching pursuit to post-process the data obtained from faulty rolling bearings. 

Finally, Yuemin et al. (187) applied MP to detect a 10 mm diameter hole in stainless 

steel pipe and compared the results with the reference data. 

Huang et al. (188) proposed another approach to decompose the guided wave 

data, which is based on the local properties of the signal and called Hilbert-Huang 

transform (HHT). This method uses empirical mode decomposition (EMD), which 

extracts a zero-mean signal harmonics, thus generating a finite set of intrinsic mode 

functions (IMF). The EMD decomposition of the signal x(t) into n IMF’s can be 

written as (71): 
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where ci(t) is the intrinsic mode function; rn(t) is the remaining signal. In general, HHT 

searches for the local maxima and local minima of the signal x(t). Then it connects all 

the local maxima and local minima with a cubic spline to obtain the upper and lower 

envelope. The mean of the upper and lower envelope m(t) is then subtracted from the 

signal x(t) and IMF candidate h1(t) is obtained (151): 

     .1 tmtxth    (1.4.20) 

h1(t) is considered as IMF if the number of zero crosses matches the number of 

extrema and the mean value of h1(t) is equal to zero. Once the correct IMF h1(t) is 

obtained, it is subtracted from the signal x(t) to obtain the residual. The whole 

procedure is then repeated, treating the residual as a new signal. The procedure is 

stopped when the required number of IMF is achieved or rn(t) becomes a monotonic 

function (189).  

Each IMF has its own frequency bandwidth going from high to low frequencies. 

The first IMF contains the highest frequency component of the signal, while the 

frequency of the subsequent IMFs decrease. For each of the IMF ci(t), the Hilbert 

transform can be calculated di(t). Then from eq. 1.4.19 follows (190): 
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The plot of the amplitudes of IMF analytical signals Ai(t) as a function of frequency 

and time represents a Hilbert spectrum (189, 191). HHT suffers from the edge effect 

and cannot accurately decompose the signals at the data ends. To avoid this problem, 

slope based methods were introduced, which partially solve the problem (192). 

Moreover, HHT requires a sufficient sampling rate, which is at least 10 samples per 

cycle and cannot efficiently separate the mode if it exist only over a segment of 

time (190). 
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There are also some other not so common methods to analyse and decompose 

the guided wave signals, such as: adaptive optimal kernel method (193), Wigner 

higher order spectrum (194), auto-regressive moving average analysis (195), local 

mean decomposition (196) or the Teager energy separation algorithm (197). This 

basic review shows that various time and frequency analysis methods have been 

developed in the past few decades to decompose the complex guided wave signals 

and to extract the information about the damage. Unfortunately, almost all of them 

possess some resolution and cross-term issues. For example, STFT and WT use a 

pre-defined basis function, therefore such methods cannot be used for adaptive time 

frequency analysis and does not provide good time and frequency resolution 

simultaneously. WVD suffers from the cross-terms, while HHT has some issues with 

the signal edges and cannot separate the signals consisting of two or more non-

synchronous regular harmonics. Therefore, it has been shown that the best results are 

achieved when a combination of two or more methods is used. For example, WVD 

can be smoothed with the kernel function to avoid the cross-terms, whereas HHT uses 

a slope based method to reduce the data end effect. On the other hand, most of the 

methods described in this chapter are based on the analysis of the real part of the 

Fourier spectra. Schumacher et al. (198) proposed the analysis of the phase spectrum 

of the signals to accurately measure the phase velocity of guided waves. Later this 

approach was used by Prosser (199) to measure the phase velocity of the extensional 

and flexural modes on anisotropic graphite/epoxy plates. Analogically, Anastasi (200) 

measured phase velocities to assess the structural integrity of the aging wire 

insulation. The improvement and re-emerge of such phase spectrum examination 

methods, along with some a-priori analytical knowledge, could be further used for 

the precise wave velocity measurements and guided wave mode identification. 

Moreover, there are only a few attempts to combine a special transducer placement or 

special type of excitation, i.e. frequency sweep, along with guided wave signal 

processing. This leads to a conclusion that the existing methods still need to be 

improved or combined together to introduce accurate advanced techniques to 

distinguish the modes of guided waves from the multimodal signals. 

 

1.5 Existing approaches for detection, localisation and feature extraction of 

structural damage in plate-like structures 

The following chapter deals with the review of existing approaches to detect, 

localise and describe the damage in plate-like structures. Only the most common 

techniques are described and the demand for the implementation of new methods is 

considered. The simplest approach to detect the presence of damage in SHM relies on 

the baseline subtraction. The signal is introduced into the structure through the bonded 

transducer and captured with the receiver at a different location. If there is any damage 

in the structure, the guided waves will be reflected or scattered by it, thus some 

changes will appear somewhere within the signal. Subtracting this signal from the 

defect-free baseline will give the residual, which indicates the presence of damage. 

However, such approach only indicates the changes in the structure and suffers from 

the influence of the environmental and operational conditions, such as temperature, 

loads etc. Konstantinidis et al. (60) proposed to use a database of optimal baselines, 
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to compensate the changes of temperature and to improve the signal to a coherent 

noise ratio compared with the single baseline subtraction. The proposed optimal 

database consists of time traces recorded at discrete temperatures ΔT and mean square 

deviation is used to find the best match to the current time trace. Once the best match 

is found on the database, the signals are subtracted leaving the influence caused only 

by the structural changes. Alternatively, Lu and Michaels (62) introduced a baseline 

signal stretch method, which compensates the influence of the temperature by 

stretching the time axis of the single baseline. This method assumes that the changes 

in temperature mainly affect the arrival time of the wave packet. However, some 

investigations show that if the magnitude of the reflection from the defect is 

approximately –30 dB compared to the first arrival, then the temperature change of at 

least 10 °C can conceal the defect even if the compensation techniques are used (59, 

201). 

In contrast to the baseline subtraction, many authors have used a time-reversal 

acoustics for baseline-free damage detection. According to the concept of the time 

reversal acoustics, for a defect free structure the input signal should match the 

reconstructed signal, which is captured with the receiver at some location, reversed in 

time and reemitted back to the transmitter (202). In other words, the wave is 

introduced into the structure by applying the voltage VA(ω) for transducer A. The 

wave then propagates in the structure and sensor B captures the signal VB(ω). The 

signal VB(ω) is reversed in time and reemitted back to transducer A. Finally, 

transducer A receives the signal VBA(ω) and compares it with the original input VA(ω). 

For the defect free structure, the two signals VBA(t) and VA(t) should match in time 

domain, while any mismatch indicates some changes in the structure (47, 203). The 

match can be measured using the simple correlation function as follows (47): 
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where ai and bi are the sample values of the signals VA(t) and VBA(t) respectively. The 

measurement of signal match by using a correlation function is sensitive to the 

selection of the moving time window. Therefore, signals must be lined up according 

to some reference prior to any comparison. Moreover, the probability of detecting the 

damage depends on its position and possessing the normal spatial distribution. It 

means that the damage must lie somewhere across the pathway of the wave in order 

to have sufficient sensitivity (47). Furthermore, Gangadharan (204) showed that the 

notch type defects do not affect the shape of time reversed Lamb wave in metallic 

structures. Thus, the time-reversal cannot actually be used as a reference free 

technique for damage detection. 

The methods described above are commonly used for the detection of structural 

changes. Unfortunately, in order to localise the damage and to extract its features 

further signal analysis is required. In general, the defect localisation is mostly based 

on the certain transducer arrangement and measurement of the time-of-flight (ToF) of 

the reflection or the residual. The basic principle for damage localization in 1D space 
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is presented in Fig.1.5.1a. Suppose that the damage scattered signal xD(t) is obtained 

using a subtraction as follows (201): 

     ,BBD txtxtx healthdamage
  (1.5.2) 

where  txhealth
B  and  txdamage

B  represents the signals obtained from an undamaged and 

damaged state of the object. According to Fig.1.5.1a, the initial distance l0 and the 

arrival time T0 between the transmitter and the receiver are fixed and known. T1 

represents the time interval from the signal received by transducer B and the reflection 

obtained from the damage D. The value of x is unknown, but can be calculated using 

the simple following proportion (201): 
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In case of 2D space and N piezoelectric transducers, it is more convenient to 

create a defect map that shows an exact location of a flaw. Let’s assume that the 

transmitter, receiver and the flaw are located at the following coordinates: (xt,yt), 

(xr,yr), (xf,yf) (see Fig.1.5.1b). Then the receiver will capture the direct signal from the 

transmitter and the one scattered by the flaw. If only a single mode propagates in the 

structure, the group velocity cg of that mode can be estimated from the direct arrival 

between the transmitter and the receiver (205): 
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where ttr is the direct ToF between the transmitter and the receiver. Then, in case of 

an isotropic structure, the ToF of the signal going from transmitter to the receiver 

through the flaw can be estimated as (206): 

       
.

g

2
fr

2
fr

2
ft

2
ftf

tr
c

yyxxyyxx
t


  (1.5.5) 

If there are N piezoelectric transducers attached to the structure, the scattered signals 

will arrive at different time instances f
trt  for each transmitter-receiver pair, yielding 

the N(N−1)/2 different paths. Consequently, the received signals or the residuals for 

each transmitter-receiver pair can be time shifted by f
trt  and added to yield an average 

signal at the potential flaw location (206): 
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where rtr – is the residual signal of transducer pair (t-r) shifted by f
trt , w – is the 

windowing function. Finally, the defect map can be created by repeating this 

procedure at different imaging positions in a 2D plane. At the points where the 
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reflectors actually exist, the constructive interference possessing high amplitude will 

be obtained.  

There are plenty of available transducer configurations and imaging approaches, 

which are based on the idea described above. For example, Giurgiutiu et al. (207) and 

Purekar et al. (208) used a linear piezoelectric wafer active array and embedded 

ultrasonic structural radar (EUSR) method to detect the damage in thin-wall 

structures. The use of arrays offers some advantages over the conventional single 

transmitter-receiver measurements, such as sectorial steering and focusing of 

ultrasonic beam by an electronical sweep of the array elements. Thus, the large area 

of the sample can be examined with sufficient resolution. In the EUSR, one transducer 

is excited at a time and then switched to another to generate a virtual sweep beam. At 

the reception, all elements of the array are used to record a response from the structure. 

Because of the array spacing, the distances between the array elements and the target 

P will be different. For the mth element of the array, the distance to the target P will 

be shorter by: Δm(ϕ) = m(dcos(ϕ))/cg (207). Hence, if the array elements are fired with 

delays, the signals at target P(r,ϕ0) can be expressed as (209, 210): 
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where mr/1 represents the decay of oscillation due to wave radiation; r/cg is the time 

for the wave to travel from origin to the target; (r–rm)/cg is the time for the wave to 

travel from target P to the mth array element; Δm(ϕ) is the individual delay applied to 

array elements. In such way the beamforming with the array can be implemented by 

using different delays Δm(ϕ) in array excitation. If the target exists at the azimuth ϕ0 

and the distance R with respect to the array, the beam needs to be swept, until the 

azimuth of the wave ϕ = ϕ0. Eventually, at the reception all the received signals have 

to be synchronized using the reciprocal delays Δm(ϕ). The beamforming at the 

reception can be expressed as (207): 
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where A is the backscatter coefficient; mw  and '
mw  are the weight functions for the 

transmission and reception respectively. In general, to obtain the target direction the 

EUSR method uses an angle sweep and tracks for the maximum received energy 

ER(ϕ0) (210): 
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Once the target direction ϕ0 is obtained, the ToF to the target can be estimated by 

calculating the cross-correlation between the transmitted and received signals (207): 
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where τToF corresponds to τ where the cross-correlation function indicates the best 

coincidence. 

 
 

a) b) 

Fig. 1.5.1. The concept of damage localization in 1D (a) and 2D (b) case scenario (201, 205) 

A slightly different approach to localise the damage was used by 

Wilcox et al. (211) and Vishnuvardhan et al. (212), who used a circular 

omni-directional array along with the phased addition algorithm (PAA). The PAA is 

implemented in wavenumber k domain with the purpose of determining the angles of 

the reflected waves. To achieve this goal, the time domain signals are recorded for 

each transmitter receiver pair within the circular array to matrix T, where the columns 

represents the time domain signals for each of the receivers (T(t) = [T1, T2, … Tn]). 

Each column in matrix T is transferred to the frequency ω domain using the one 

dimensional Fourier transform to obtain the complex matrix S (S(ω) = [S1, S2, … Sn]). 

Eventually, the phased addition is performed for the matrix S in ω domain for all 

reconstruction angles θp, leading to the matrix A (A(ω,θp) = [A1, A2, … An]). Each 

element in the matrix A can be expressed mathematically as (213): 
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where Sj(f) is the complex spectra of the signal received by the jth receiver; xpj is the 

change in path related to the signal received by the jth transducer to be coherent with 

steering angle θp (213): 

 ,cos pjjpj Rx   (1.5.13) 

where Rj and Φj are the polar coordinates of the jth receiver. By knowing the slowness 

relationship, it is possible to compensate the effect of dispersion through interpolation 

of matrix A. The result of interpolation leads to matrix W (W(k,θp) = [W1, W2, … 

Wn]), consisting of spectra in k domain. The final image matrix E in polar domain 

(E(r,θp)=[E1, E2, … En])) is obtained by applying an inverse Fourier transform to the 

columns of matrix A. The results can be visualized by plotting the amplitudes with 
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corresponding polar position (213, 214). The PAA can be used as the imaging 

technique with any transducer configuration: single transmitter-multiple receivers 

(STMR), multiple transmitters-multiple receivers (MTMR) or linear arrays. The 

discretization of the imaging plane can be implemented using either a polar or 

Cartesian coordinate system. On the other hand, this algorithm has some 

shortcomings. The resolution of the PAA is poor in the near field, which is equal from 

2 to 3 diameters of the whole circular array set. In contrast, the larger array diameter 

gives an increased resolution at the far field, thus resulting in an increased area of the 

near field. Moreover, in order to localise the defects in anisotropic structures, the 

initial knowledge of the directional dependencies of the phase and group velocities is 

required (213). 

Kudela et al. (215) also used the same circular transducer arrangement, however 

the authors proposed the creation of a damage influence map, based on the match 

between the excitation and reflected signals. They assumed that the excitation signal 

and the signal reflected from the defects has some matching features. Therefore, the 

idea to arbitrary place the excitation signal on the received time series with some time 

shift and to measure the match was proposed. The time shift is then equal to the ToF 

from the transmitter to the receiver through the point of possible damage location. 

When the received signal contains the information about the damage, the measure of 

the match possesses significant values, which can be associated with coordinates of 

the imaging point (216). According to the proposed technique, the match between the 

two time series is mathematically expressed as (215): 
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where t0 and Δt* are the start and the width of the time window;    *
00TT ,ˆ tttStS 

is the windowed excitation signal;    *
00,R,R ,ˆ ttttStS kk  is the signal registered 

with the kth receiver, F(t) is the window function (Gauss, Hann etc.); G(x,y) = eα(d0P+dPk) 

is the function dependent on the attenuation; α is the attenuation coefficient; d0P and 

dPk represents the distances between the transmitter-imaging point and imaging 

point-receiver; Δt is the signal time shift, which depends on the x, y coordinates of the 

imaging point and the group velocities c0P and cPk. The final image is constructed from 

signals received by all sensors over each discrete point at the imaging plane (215):  
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where S is the area of the imaging plane; i = 1…N, j = 1…M, where N and M denotes 

the total number of nodes located on the imaging plane. It should be noted that the 

proposed measurement of the match works well for non-dispersive tone-burst type 

signals. In the case of dispersive modes, quality of the damage influence map is 

limited to the amount of the dispersion (216). Wandowski et al. (217) used the same 

idea described above, except the authors proposed to calculate the damage index (DI) 
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at the imaging points. The portion of the DI (PDIk) at the imaging point P is calculated 

for N transmitter-receiver pairs from the amplitude of the carrier frequency fc peak as 

follows (217): 
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where  fSi
ˆ is the frequency spectra of the signal at the carrier frequency fc. Then the 

normalized DI can be expressed as (217, 218): 
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In this case, the DI is calculated taking into the account the information related 

to the carrier frequency fc only. Michaels (206) used an extended approach along with 

the broadband excitation. After collecting the data, the authors propose to use the 

bandpass filters with various central frequencies to obtain an extra set of bandlimited 

signals for each transmitter-receiver pair. Each bandlimited signal is then subjected to 

the imaging techniques to generate the defect map at particular central frequency of 

the filter fm. Eventually, the individual images are fused, leading to the improved final 

image with minimized influence of the phasing artefacts, unwanted extra modes and 

other distortions, such as variation of temperature. The fusion is performed pixel by 

pixel taking the minimum pixel value from all of the corresponding images. 

Giridhara et al. (219) implemented a damage localization technique based on a 

radial segmentation and triangulation method. The authors used a circular STMR 

array and divided the area of the plate into the circumferential segments. Then the 

signals from neighbouring transducers are compared to rapidly determine the location 

of the damage with respect to the transmitter position. If the flaw is positioned along 

x axis (see Fig.1.5.2a), then the comparison between the sensor signals (S2 and S8; S2 

and S1; S1 and S8) will indicate some changes in the structure. If the signals from the 

sensors S2 and S8 match, it means that the damage lies in front of the sensor S1, 

otherwise the damage is located either on one side of sensor S1 or another (the damage 

is in the segment S1 and S2 or in the segment S1 and S8). The side of the damage is 

determined by measuring the ToF of the reflection from the flaw back to the sensor S2 

and sensor S8. The implementation of the procedure described above enables the 

segment where the damage is actually located to be determined (45). For exact damage 

positioning the triangulation method is used which requires the coordinates of the 

transmitter T(0,0) and two adjacent receivers Si(xi,yi), Si+1(xi+1,yi+1) within the selected 

segment as input data (see Fig.1.5.2b). According to this technique, the angle of the 

flaw θ in respect to the x axis can be determined using the relations (219): 
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Consequently, the radial distance rd between the transmitter T(0,0) and damage P(x,y) 

can be written as (219): 
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where ,222
iii dyxp  ,2

1
2

1
2

1   iii dyxq  di and di+1 are the total travel path from the 

transmitter through the flaw to the sensors Si and Si+1 respectively (di = rd + a, 

di+1 = rd + b, rd = x2 + y2); a and b are the distances of the sensors Si(xi,yi), Si+1(xi+1,yi+1) 

to the damage P (a2 = (x–xi)2 + (y–yi)2, b2 = (x–xi+1)2 + (y–yi+1)2). 

  
a) b) 

Fig. 1.5.2. The concept to determine the radial segment of the damage location (a) and the 

idea of exact damage positioning using the triangulation method (b) (219) 

The methods for damage detection and localisation described above are based 

on the linear reflection, transmission and scattering of ultrasonic guided waves. 

However, for the certain type of defects the contrast of the acoustical impedances 

might be not sufficient for the reliable defect detection. Recently Solodov (220) and 

Delrue (16) demonstrated that under the use of high energy Lamb wave excitation, 

the defects such as cracks or early stage closed delaminations possess “clapping” 

behaviour leading to the generation of the local nonlinear frequency harmonics. This 

led to the development of the nonlinear ultrasonic detection of delamination and crack 

type defects, which is based on analysis of the harmonics (2f, 3f, …) and subharmonics 

(f/2, f/3, …) resulting from the “clapping” behaviour. In order to provide maximum 

wave-defect interaction, Solodov used a concept of local defect resonance (LDR), 

which is based on the fact that the defects drop the local stiffness of the material. Thus 

the characteristic frequency f0 of the defect can be found which enhances the defect 

response. As the energy of excitation overcome the activation threshold and some 

generated nonlinear harmonics match the resonant frequency of the defect f0, the 

higher harmonics are solely generated in the defective area and the defect location and 

its shape can be clearly seen in the radiation pattern. Those higher order harmonics 

create the Chladni-type figures, which can be easily observed by using the laser 

vibrometry or thermosonic imaging (221, 222). The fundamental resonance frequency 

of the sub-surface delamination type defect can be calculated using the 

expression (220): 
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where a and D are the radius and the depth of the delamination; E is the Young’s 

modulus; σ is the Poisson ratio; ρ is the density.  

As it appears from the brief review above, there are numerous available 

techniques for damage detection and localisation. However, their success is strongly 

influenced by dispersion, environmental conditions and complicated multimodal 

propagation of the guided waves. Moreover, the defects are mostly weak reflectors, 

while the monitoring system tends to detect and locate them in a large structure using 

a small number of sensors. This leads to the low SNR which complicates the signal 

analysis and the estimation of the ToF. The reconstruction techniques, which are based 

on multiple measurements can be used as an attractive approach for the damage 

localisation, nevertheless it also requires sufficient measurement positions to provide 

the adequate resolution.  

Since the presence and location of damage can be determined with more or less 

accuracy, the damage feature extraction is even more complicated and open task. For 

example, Tua (223) et al. used HHT to detect the crack and to determine its size and 

orientation by analysing the energy spectrum at different transducer angles and spatial 

positions. The authors concluded that the angle of the crack can be determined from 

the analysis of the amplitude of the peak, reflected from the flaw, while the size can 

be evaluated analysing the spatial shift of the transducer at which the reflection peak 

vanishes from the spectrum. Similarly, Paget et al. (224) and Douka et al. (225) used 

wavelet coefficients to evaluate the size and the depth of the crack using the 

pre-described relationship between the defect parameters and coefficients of WT. 

Despite the few available approaches to extract the damage features, it is still a 

relatively new and open area. Hence new guided wave SHM techniques have to be 

developed to extract the size and the depth of the damage leading to the further 

estimation of the severity of damage and a prognosis of the life time of the structure. 

 

1.6 Brief review of the guided wave application on structural health 

monitoring of composite structures 

In this chapter, a brief review of the guided wave application on structural health 

monitoring of composites is presented. The aim of this review is to identify the 

possible guided wave application areas in the field of structural assessment of 

composites and to estimate the existing open questions, which can be addressed later 

in this research. The application of GW to the structural assessment of the composite 

materials has received significant attention during the past few years. On one hand the 

composite materials are light weight and provide good mechanical properties, but on 

the other the composites are susceptible to various defects that may occur both during 

manufacturing and the life cycle. Since the variety of available composites is limitless, 

some part of present research is focused on the analysis of the material properties, 

while the others deal with damage detection. Recently Baid et al. (226) measured a 

group velocity of GW in aluminium, woven composite and honeycomb sandwich 
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samples, and compared the results with the developed theoretical models. Similarly, 

Moreno et al. (227) demonstrated a simple technique to measure the phase velocity of 

guided waves in quasi-isotropic carbon fibre samples. The authors extracted the phase 

velocity from the time-distance measurements of the constant phase point in a 

received pulse. The phase and group velocity measurements in general can be used 

not only for the material characterization, but also for the mode decomposition if the 

dispersion relationships in the material are known in advance. Another work in the 

field of material characterization was accomplished by Sreekumar et al. (228), who 

investigated the attenuation of the A0 mode as a function of the amount of nanofillers. 

The authors concluded that the nanofillers affect the attenuation of guided waves 

especially at higher frequencies and the attenuation itself depends on the type of 

nanomaterials. It was also demonstrated that the attenuation was more significant in 

glass fibre reinforced plastic composites (GFRP) regardless of the amount of 

nanomaterials. Yu et al. (229) analysed the propagation of guided waves in 

functionally graded viscoelastic plates. They showed the viscous effect to the 

dispersion curves and attenuation of different GW modes.  

Among the research, focusing on the structural assessment, significant attention 

has been paid to the ultrasonic health monitoring of the bonded joints, composite 

repairs, aerospace components and composites with impact damage and 

delaminations. Ren and colleagues (230) investigated the carbon fibre reinforced 

plastic (CFRP) skin and flange stinger joint with artificial defects using GW. The 

authors used an angle beam transducer in pitch-catch configuration and selected 

higher order modes that are mostly sensitive to disbond defects. The special 

effectiveness index was proposed for mode-frequency selection, based on the 

sensitivity and mode conversion features. Sherafat et al. (231) analysed almost the 

same structure, however they proposed to use non-contact measurements using the 

3D laser Doppler vibrometer (LDV). The authors compared the measurements in 

defect free and defective skin-stinger joints and analysed a reflection, transmission 

and scattering of the A0 and S0 modes. It was observed that a 10% increase in the 

transmission can be observed for the A0 mode at frequencies below 350 kHz, while 

for the S0 mode an increase of scattering by 60% can be noticed at the same frequency 

band in the presence of damage. Deng et al. (51) studied the propagation of GW in 

composite structures with a tapered adhesive layer. The authors demonstrated the 

influence of the thickness of the adhesive layer to the dispersive properties of GW. 

An interesting work was presented by Castaings et al. (232) who investigated a joint 

between a concrete block and composite plate. The authors analysed the dispersion 

relationship in such structure and selected a specific mode for inspection based on its 

through-thickness displacements. Then the changes of the dispersion relationship as a 

function of the bond quality is studied for that particular mode. A few years later 

Castaings et al. (233) presented research on the application of air-coupled ultrasonic 

inspection of high-pressure composite tanks made from carbon composite wound 

around a titanium liner. It was shown that the longitudinal mode has higher sensitivity 

to moisture content while the circumferential mode was more sensitive to 

micro-cracking. Therefore, the authors proposed to measure the amplitude of 
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longitudinal waves to indicate the moisture content and the arrival time of the 

circumferential mode to detect micro cracking. 

Some interesting research can be found on damage detection in adhesively 

bonded composite repairs. Caminero and colleagues (234) investigated the 

performance of the bonded repair in CFRP laminates under axial tensile loading and 

compared the Lamb wave measurements with digital image correlation. The authors 

demonstrated that the Lamb waves possess sufficient sensitivity in the propagation 

paths with high strains. Pavlopoulou et al. (235) monitored a helicopter stabilizer with 

a CFRP patch on top of the crack using GW. The sample was tested under bending 

fatigue along with the outlier and principal component analysis of Lamb waves. 

Habib et al. (236) compared a Lamb wave testing with a surface mounted crack sensor 

approach detecting the damage in carbon fibre samples with boron patches. The 

authors concluded that the Lamb wave SHM still requires optimization of the 

transducer placement for each sample, which is critical in order to reliably detect the 

damage. In this case it was proposed to attach the sensors at the low strain areas of the 

sample to avoid the transducer disbonding from the substrate. The authors also state, 

that the analysis of Lamb wave data is usually confusing and still requires an 

experienced operator as well as the development of some methods for damage 

quantification.  

Another group of authors demonstrated an effort in detecting the impact and 

delamination type damage in composites. For example, Staszewski et al. (237) studied 

a carbon/epoxy composite plate with a series of drop weight induced impact damage 

in a single position. The area of the defect was scanned using 3D LDV and the results 

demonstrated that at the position of the impact an increase in the out-of-plane 

component can be detected. Similarly, Sohn et al. (238) investigated a carbon 

composite sample with delamination using the 1D LDV, measuring the out-of-plane 

velocity field. Sohn noticed that the standing waves appear at the delamination so the 

special signal processing technique was proposed to isolate them from the rest of the 

wave field. Grondel et al. (239) performed research on a composite wingbox structure 

trying to detect the impact and disbond damage. The presence of defects and their 

growth in this case were detected by measuring the changes in the amplitude of S0, S1 

and A0, A1 modes. Rogge and colleagues (240) investigated the possibilities of 

determining the depth of delamination type defects by estimating the spatially 

dependent wavenumber values using the Fourier domain analysis. The local 

wavenumber values were extracted from the velocity field obtained using LDV and 

immersion scanning of the defective area. Su et al. (241) presented work which uses 

the artificial neural networks to locate the delaminations in carbon epoxy 

quasi-isotropic sample. The authors proposed an intelligent signal processing and 

pattern recognition package by which the digital damage fingerprints are constructed 

from wavelet transform and further used to train the neural network. Ramadas et al. 

(242) studied the possibilities of detecting the delamination type defects in 

quasi-isotropic laminates using air-coupled excitation of Lamb waves. In this work 

the transducers were adjusted to 18° to excite the A0 mode and the B-scan and D-scan 

images were created by moving both transducers over the delaminated area. Taking 
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into account the probe separation and the probe diameter, the width and length of the 

delamination was extracted from the measurements. 

The research described above mainly focuses on the detection of the presence 

of the defect or monitoring its growth during mechanical tests. In most cases, the 

location, size and other defect parameters are obtained by scanning the defective area. 

Since the contact scanning requires the special scanners and complicated set-ups, 

usually non-contact laser vibrometers or air-coupled ultrasonics are used to measure 

the velocity or displacement field. None of the work presented above are proposing 

some methods for damage feature extraction using permanently attached transducers 

without scanning. Another issue which unifies all the presented research is that none 

of them are discussing the problems related to the verification and calibration of the 

monitoring system. In real world environments, it is very important to prove and to 

be sure that a certain defect is detected, prior to making any decision based on that 

data. One of the possible ways to accomplish this is to have a large database of real 

world situations and compare them to those obtained during the operational life of the 

structure. However, such database is almost impossible to implement. Therefore, 

some methods can be created which would enable the experimental imitation of the 

influence of real defects without actually destroying the structure of the object. This 

is the task which is barely accomplished and artificial defect imitation maybe would 

never give the same response as the real defects, however it would definitely be a step 

towards more reliable and effective monitoring systems. Such tools could also be 

beneficial in the calibration of the monitoring system, since the development of any 

NDT technique requires evidence that it is sensitive to certain types and sizes of the 

defects. 

 

1.7 Conclusions of Chapter 1 and following tasks of the research 

1. Structural health monitoring based on ultrasonic guided waves can be used 

in a wide variety of applications, and offers many advantages over other 

existing techniques, such as sufficient propagation distance and sensitivity to 

defects of a different nature. However, advanced techniques are still required 

to deal with dispersion, mode conversion, multi-modal propagation and 

anisotropy of wave velocity. 

2. The provided survey demonstrated that there are some developments in the 

field of single GW mode excitation. However, usually this is not a sufficient 

solution because other modes possessing lower displacements are also 

excited and the set of transducers for different frequencies are required. The 

multi-mode approach offers a more versatile SHM systems, sensitive to 

multiple type of defects at the same time. On the other hand, the multi-modal 

systems accordingly require special methods to understand the wave 

generation and propagation. 

3. Research on existing methods for the simulation of guided wave propagation 

revealed, that despite the available advantages, the FE methods are relatively 

slow and cannot provide fast results directly with the information most 

desirable for SHM systems. Therefore, some development possibilities for 
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rapid analytical models, which would allow the analysis of the propagation 

of separate mode packets, to determine the paths and ToF’s were identified. 

4. The investigations on the available guided wave signal analysis and 

decomposition methods showed that the most reliable results are obtained 

when the combination of a few methods are used. Since methods based on 

analysis of the real part of the Fourier spectra has been widely investigated, 

there is still a lack of current work relying on the analysis of imaginary parts. 

Such methods have a potential in measuring a phase velocity of guided waves 

and along with some a-priori analytical knowledge and various excitation 

schemes could be further used for guided wave mode decomposition. 

5. The brief review of the existing means for damage localisation and feature 

extraction revealed that there are some reliable and widely investigated 

methods to locate damage using guided waves, mostly based on phased 

addition and triangulation, however there are almost no studies focusing on 

damage feature extraction using embedded transducers, which is very 

important for the prognosis of the life time of structures. 

6. The general review of the application of GW to SHM of composites 

demonstrated that the focus is mainly on the detection of the presence of 

damage, however there is no available research trying to create a framework 

suitable for verification and calibration of monitoring systems, without the 

introduction of destructive artificial defects. Such framework could be used 

as a reference-free and non-destructive basis to verify and calibrate distinct 

SHM systems in different real-world situations. 

 

According to the key findings in the review of literature the following tasks of 

the research were anticipated: 

1. To investigate and explain the mechanism of GW generation, and to develop 

mathematical methods to analyse and predict the spectral characteristics of 

separate GW mode packets. 

2. To develop and verify an analytical model that simplifies the analysis and 

interpretation of the complex propagation of GW in plate-like anisotropic 

structures. 

3. To create and validate the methods for GW phase velocity estimation in 

multimodal, overlapped signals captured by spatially distributed sensors, 

which can be used for the identification of unpredicted modes and modal 

decomposition purposes. 

4. To propose and investigate methods for the detection of the delamination 

type defects and extraction of its features such as the size and the depth. 

5. To create and validate methods suitable for the verification and calibration 

of the monitoring system, without using the database of the reference 

samples, that describe different states of the damage. 

In the above chapter, the current state of the art in the field of guided wave 

structural health monitoring was briefly presented. Each of the reviewed methods has 

its own advantages and drawbacks, which for the convenience of the reader are briefly 

summarized in table 1.7.1.
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Table 1.7.1. The summarized pros and cons of the currently used methods in different research areas related to the GW SHM 

Pros: Cons: Suggested solution: 

Techniques for selective guided wave mode excitation 

 Dominant GW mode can be generated by 

selecting either the size of the PZT wafer, the 

pitch between the electrodes of the IDT 

transducer or the inter-element distance of 

separately driven transducer array. 

 PZT wafers and arrays of separately driven 

actuators are relatively cheap and simple. 

 Separately driven actuators can be adjusted for 

selective GW excitation at various frequencies. 

 Enables the generation of one dominant mode, 

however, other modes are generated anyway. 

 The set of PZT patches or the IDT transducers 

are required for selective GW mode excitation 

at different frequencies and materials. 

 The SHM system becomes restricted to 

detection of the certain type of defects only. 

 At low frequencies, the PZT wafers and IDT 

transducers become bulky. 

 A multimodal excitation would make the SHM 

system more reliable and sensitive to a variety 

of defects. However, in such case the signal 

processing methods for analysis of guided 

wave generation and propagation are required. 

 Hence, the appropriate methods for GW signal 

analysis could be developed, which would 

allow the use of multi-modal signals and to 

avoid the selective GW excitation. 

Methods for simulation of guided wave propagation 

 The SAFE and matrix techniques enable the 

identification of modes which exist in the 

structure and to analyse the displacement 

profiles in the cross-section. 

 The FE technique enables the analysis of 

dynamical wave propagation and can be 

reliably used for verification purposes. 

 Transfer matrix method possess stability 

problems, while SAFE has mode sorting issues 

and is applicable only to uniform objects. 

 The reliable FE solution requires a fine mesh 

and integration time step which leads to a slow 

solution. Besides, the FE method provides a lot 

of surplus information in case of SHM.  

 For the proper analysis of GW propagation in 

SHM systems it is most important to estimate 

the ToF of separate modes and to retrace wave 

propagation paths. The conventional FE 

method cannot directly provide such 

information; hence rapid analytical models 

could be developed especially for SHM. 

Methods for time and frequency domain analysis 

 TFR methods enables to identify GW modes 

which are present in the structure, to estimate 

their magnitude, frequency content and to help 

detecting defects of different kinds. 

 Most of the methods cannot provide good time 

and frequency resolution simultaneously. 

 The WT and MP has difficulties in selecting 

the right mother wavelet and dictionary.  

 The WVD has cross-term problems, while 

HHT possess issues with signal ends. 

 As the most present methods are based on 

analysis of the real part of the signal spectrum, 

some decomposition techniques can still be 

proposed, which would be based on estimation 

of phase velocities of GW from the imaginary 

part of the Fourier spectrum. 

Approaches for defect detection and localisation 

 The reconstruction methods based on the 

constructive interference can be efficiently 

used both to detect and to localise the damage. 

 The existing image fusion and DI approach 

offers increased resolution of reconstructions. 

 The baseline subtraction or time reversal 

technique can indicate structural changes only. 

 The resolution of the mapping methods 

depends on the number of transducers. 

Besides, they do not estimate defect size and 

depth. 

 New guided wave SHM techniques can be 

developed which would allow the gap in 

damage size and depth estimation methods 

with embedded sensors to be filled. Such 

methods are crucial for the prognosis of the 

life-time of the structure. 
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2. METHOD TO PREDICT THE FREQUENCY RESPONSE OF GUIDED 

WAVES 

2.1 Motivation and demand of the proposed method 

Prior to the development of any reliable technique for signal processing and 

defect detection, the initial step is to understand the mechanism of the wave generation 

and to be able to predict the parameters of each guided wave mode upon its 

introduction into the structure. Hence, in the upcoming chapter, the main attention 

will be paid to the development of the methods to explain and predict the source 

influence on the excitation of different GW modes. 

The generation of GW is in general different compared to the bulk wave case. 

For the sake of better understanding, in the following paragraph the main differences 

between the nature of bulk and guided waves will be briefly discussed. Despite that 

both bulk and guided waves may be generated employing the same principle (for 

example angle-beam excitation), whether the bulk or guided wave is generated mainly 

depends on frequency. To excite the GW, the wavelength has to be greater than the 

thickness of the material, meanwhile the bulk waves in general are propagating in the 

infinite medium, where the boundaries have no influence on wave propagation. Due 

to this reason, in the case of bulk waves, mostly there is one or two desired 

non-dispersive waves (longitudinal or shear), propagating at constant phase velocity. 

In contrast, the GW is a superposition of longitudinal and shear waves, which reflects 

back and forth, and converts to other modes. At a given frequency, the result of such 

wave interaction may be either constructive, destructive or intermediate. As a 

consequence different GW modes are produced simultaneously, each having its own 

frequency-thickness dependent velocity and particle velocity vibration across the 

thickness of the sample. There are a few available techniques to produce the single 

desired mode of guided waves in the structure, which were briefly introduced in 

Chapter 1. However, in most cases, more than one mode is present in the structure at 

a time, thus the proper understanding of properties of each mode becomes critical for 

the development of high accuracy inspection systems and techniques. 

 

2.2 State of the art and theoretical formulation of proposed method 

One of the most important and versatile features, which can be used to describe 

the modes of guided waves, is the frequency response. The frequency response of 

guided wave modes depends both on the geometrical, structural properties of the 

investigated medium and the parameters of the source, such as size and type of 

excitation. For simplicity, in most theoretical models, it is presumed that the 

conditions are ideal possessing the uniform loading and continuous plane wave 

excitation. However, in reality, the transducers possess limited size and frequency 

bandwidth. Hence, the type of excitation determines the mode, which is introduced 

into the structure, whereas the amplitude of vibrations depend on the size-wavelength 

ratio of the source. 

There are several existing approaches to predict the source influence on guided 

wave generation, namely normal mode expansion and integral transform (69). These 
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techniques enable the partial differential equations to be solved, which were presented 

in Chapter 1, section 1.1 with appropriate symmetric and asymmetric boundary 

conditions and to obtain the mode excitability (response amplitude) as a function of 

frequency separately for each mode. Such excitability functions are commonly used 

to implement the single mode excitation (so called mode tuning), since they provide 

information about the response amplitude oscillation of particular modes at distinct 

frequencies. The application of the integral transform method was demonstrated by 

Giurgiutiu et al. (124), who used this technique to estimate the frequencies at which 

the desired modes can be either enhanced or suppressed using the piezoelectric wafers. 

Similarly, Grondel et al. (131) implemented a normal mode expansion method during 

the design of the comb transducer, which produces the single A0 mode. Finally, 

di Scalea et al. (243) calculated the response of rectangular piezoelectric sensors to 

different type of excitation fields. However, these excitability functions are mostly 

used during the design of so called single mode transducers. On the other hand, this 

function can be used as a tool to predict the frequency response of each mode and to 

explain the filtering phenomenon due to the source influence as well, which usually 

can be observed if the wideband excitation is applied. Such filtering phenomenon is 

usually neglected in most of the available GW signal processing methods. However, 

taking into the account the excitability function may significantly increase the 

reliability and accuracy of signal processing techniques. 

It can be proved that the magnitude spectrum of each guided wave mode U(f) 

can be described as a product of the spectrum of excitation pulse Uref(f) and 

excitability function H, which itself depends on type of excitation (particle velocity 

distribution on the surface of structure, u) and size of source (l): 

     .,,ref lufHfUfU   (2.2.1) 

Thus, the goal of this study, in contrast to the work done by others, is to develop a 

technique, which would allow the frequency response U(f) for each guided wave mode 

to be predicted upon its introduction into the structure under any type of excitation. 

For this purpose, the complete solution for the forced guided wave excitation will be 

proposed, which enables the excitability function H(f,u,l) to be estimated. The 

estimated excitability functions H will be used as the bandpass filter to describe the 

change of spectrum of excitation pulse for each mode. In this study the generation of 

GW with a surface mounted macro-fibre composite (MFC) transducer, subjected to 

the tone burst excitation and operating in d33 mode will be analysed (244). The 

working principle of the considered transducer is revealed in the reference cited 

above. In the remaining part of this section, the principle and routine of the proposed 

technique to predict the excitability function H(f,u,l) will be briefly revealed. 

The method proposed in this study is based on Fourier analysis of the particle 

velocity distribution (u) on the excitation surface at the initial instant of excitation. 

Such particle velocity distribution is related to the excitation force, which is required 

to introduce the desired mode into the structure. Let’s assume that the virtual MFC 

transducer is mounted on the surface of the sample and excites the A0 and S0 modes 

simultaneously. Consider that the spatial distribution of the particle velocity is like 

that presented on Fig. 2.2.1. Note, that the presented spatial distribution of particle 
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velocity was selected according to the working principle of the MFC transducer. 

Hence, it is presumed that the particle velocity at the excitation surface has to be 

exclusively concentrated at the edges of the transducer to introduce the A0 mode (Fig. 

2.2.1a). Similarly, the saw tooth like particle velocity distribution is required to excite 

the S0 mode (Fig.2.2.1b). Mathematically for the A0 and S0 modes it can be expressed 

as follows: 
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where z1 and z2 are the coordinates of the front and back edge of the MFC transducer; 

l=z2–z1 is the width of source. 

  
a) b) 

Fig. 2.2.1. The presumed spatial distribution of the particle velocity of the MFC transducer 

on the excitation surface: the vertical or normal component, which generates the A0 mode (a) 

and the longitudinal or tangential component, which produces the S0 mode (b) 

It can be proved that the spatial distribution of the particle velocity on the 

excitation surface at the initial instant of excitation surface actually depends on the 

structural properties of the material, which can be described by the phase velocity. As 

a consequence, for the non-dispersive wave the particle velocity distribution can be 

represented in the particle velocity-time domain as u(t), using the simple relation 

t=z/cp, where cp is the phase velocity. For the dispersive wave, the phase velocity is 

the function of frequency cp(f), hence the particle velocity distribution depends on the 

frequency as well (u(z/cp(f))).  

The excitability function at the given frequency fk can be expressed as the 

magnitude of the Fourier representation of particle velocity distribution u(z/cp(fk)). 

The same procedure can be repeated over the bandwidth of the transducer, to collect 

the whole set of magnitude values of excitability function: 
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where HA0(fk) and HS0(fk) are the analytical excitability functions for the A0 and S0 

modes; uA0 and uS0 are the particle velocity distributions for A0 and S0 modes at 

particular frequency fk; FT denotes the Fourier transform. According to eq. 2.2.4 and 

eq. 2.2.5 the excitability functions, which show the response amplitude oscillation 

versus frequency, can be obtained. The proposed method is not limited to particular 

geometries or types of materials and can be used to predict the excitability function 

on any structure, under any type of excitation. To get the proper results, the method 

requires the phase velocity dispersion curve of the analysed structure and the principle 

of operation of the investigated transducer (particle velocity distribution for the 

analysed mode) as input data. 

To illustrate the excitability function versus frequency, let’s consider the 4 mm 

thick glass fibre reinforced plastic (GFRP) plate as an investigated sample, with the 

material properties as follows: the Young’s modulus: Ex = 10 GPa, Ez = 35.7 GPa; the 

Poisson’s ratio: υxz = 0.325, υzx = 0.091, υyx = 0.35; Shear modulus: Gxz = 2.8 GPa; 

density: ρ = 1,800 kg/m3. Then the analytically obtained excitability functions for the 

A0 and S0 modes will look like that presented on Fig. 2.2.2a and Fig. 2.2.2b. Note, 

that the excitability functions were estimated considering the same particle velocity 

distribution as it was defined by eq. 2.2.2 and eq. 2.2.3. 

  
a) b) 

Fig. 2.2.2. The excitability functions on 4 mm thick GFRP plate for the A0 (a) and S0 (b) 

modes, calculated according to the vertical and longitudinal component of particle velocity 

The results presented in Fig. 2.2.2 indicate, that in both cases the response 

amplitude of excitability function oscillates with an increase of frequency. The zero 

values of the excitability function can be found at some frequency components, thus 
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the filtering phenomenon will be introduced, if the spectrum of broadband excitation 

signal overlap with the cut-off frequencies of excitability function. The periodicity of 

response amplitude oscillation is higher for the A0 mode, meaning that the modes 

possessing smaller wavelengths (i.e. A0) will likely be more distorted in comparison 

to the symmetrical S0 mode. These excitability curves can be used to enhance or 

supress the excitation of the desired mode. For example, at a frequency of 160 kHz, 

the response amplitude for the A0 mode is high, meanwhile the S0 mode will be 

supressed (see Fig. 2.2.2). However, as the relatively broadband excitation is usually 

used to drive the transducer, both modes will be generated anyway. Depending on the 

frequency and the bandwidth of the excitation pulse, it will be more or less distorted 

due to the influence of excitability function.  

To illustrate the filtering effect due to such type of excitation and size of source, 

let’s consider that the transducer is driven by a tone-burst with a Gaussian envelope 

of 3 periods and central frequency of 80 kHz. Then the magnitude spectrum of the 

excitation pulse will look like that presented by a solid line on Fig. 2.2.3. The 

excitability function and its product with the magnitude spectrum of excitation pulse 

can also be seen on the same Fig. 2.2.3 (dash-dot and dashed lines respectively). It 

can be observed, that under such type of excitation and the size of source, some 

significant distortions are present in the spectrum of the A0 mode (Fig. 2.2.3a). In 

order to correctly interpret the guided wave propagation, mode interference and 

interaction with defects, the likely filtering effects has to be taken into the account, 

although in most research such filtering phenomenon is usually still neglected. 

  
a) b) 

Fig. 2.2.3. The influence of the excitability function to the frequency response of the guided 

waves for the asymmetric A0 (a) and symmetric S0 (b) modes (solid line – spectrum of the 

excitation pulse, dash-dot line – excitability function, dashed line – product of excitation 

pulse and excitability function) 

2.3 Validation of the proposed technique employing FE method 

The goal of this section is to validate the excitability function estimation 

technique presented above and to prove that the magnitude spectrum of each guided 
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wave mode present in the structure is a product of the frequency spectrum of the 

excitation pulse and the excitability function. For this purpose, the 3D finite element 

(FE) model of the transient wave propagation was employed for a complex shaped 

GFRP plate with dimensions of 800 mm × 70 mm × 4 mm. Then the frequency 

spectrum of the fundamental A0 and S0 modes were extracted from the FE simulation 

data and compared to the analytically predicted excitability functions. In a few 

upcoming paragraphs, the numerical model of the GFRP sample will be briefly 

described, followed by the procedure used to extract the spectrum of A0 and S0 modes. 

Description of the GFRP FE model. The graphic representation of the model 

used in FE simulations can be seen in Fig. 2.3.1a. The geometrical shape and 

dimensions of the simulated sample were deliberately selected to correspond to the 

real mock-up specimen, which will be used later for the experimental verification. In 

the numerical model, the operation of MFC (M-2814-P1) actuator, with an active area 

of 28 mm × 14 mm, working in the elongation d33 mode was simulated. The distance 

along z axis between the centre of the virtual transducer and the nearest end of the 

sample was set to 165 mm. The excitation area was aligned to the centre of the sample 

in respect to the x axis. The thin layer of wax (Young’s modulus: E = 1.81 GPa, 

Poisson’s ratio: υ = 0.49; density: ρ = 951 kg/m3) was used as a coupler between the 

specimen and the transducer. To simulate the operation of the MFC transducer in the 

elongation d33 mode, the active surface of the actuator was divided into two separate 

areas referred as: “zone A” and “zone B”, each with dimensions of 14 mm × 14 mm 

(see Fig. 2.3.1b). Then the excitation of guided waves was simulated by applying the 

monotonically increasing excitation force of the opposite phase to nodal points in 

“zone A” and “zone B” as illustrated in Fig. 2.3.1b. In such a way the waves generated 

in “zone A” propagate along the positive direction of the z axis, meanwhile the waves 

introduced in “zone B” propagates backwards. Under such type of excitation, typically 

both fundamental asymmetrical and symmetrical modes are generated. The waveform 

of the excitation force was a burst with a Gaussian envelope of 3 periods, a central 

frequency of 80 kHz and a bandwidth of 42.9 kHz at –6 dB. 

 
 

a) b) 

Fig. 2.3.1. The schematic view of the GFRP plate used in FE simulations (a), the principle of 

guided wave generation in FE model, simulating the d33 mode of MFC transducer (b) 

For transient simulation the Newmark time integration scheme was applied. The 

integration step in time domain was 0.625 µs, which is 1/20 of the period at 80 kHz 
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central frequency. The sample was meshed using SOLID64 elements, which has eight 

nodes each with three degrees of freedom. The average spatial size of the element was 

equal to 1 mm possessing 14 nodes per wavelength for the slowest A0 mode at 80 kHz 

frequency. The finite elements of the regular areas were created using the mapped 

mesh, whereas for the regions close to cut-outs the free sweep mesh was implemented. 

Material properties were selected to be the same as those presented in the previous 

section. The variable monitored in this study was a vertical (y) and longitudinal (z) 

component of particle velocity at the nodal points situated along the centreline of the 

sample. The B-scan image of vertical and longitudinal component of particle velocity 

can be seen on Fig. 2.3.2. 

  
a) b) 

Fig. 2.3.2. The simulated B-scan images of the vertical (a) and longitudinal (b) component of 

guided waves along the centreline of the GFRP sample 

At the end of the simulation routine, the frequency spectrum of fundamental A0 

and S0 modes, which are present in the structure was extracted from the B-scan data 

of vertical and longitudinal component of particle velocity. For this purpose, the 

B-scan data u(t,x) was transferred to the frequency-wavenumber domain u(f,ξ) using 

the 2DFFT. The frequency-wavenumber representation of the B-scan show the 

wavenumber DC for all modes available in the structure. As the fundamental A0 and 

S0 waves were the modes of interest, the appropriate DC were filtered from u(f,ξ), 

employing the Gaussian filter, which mathematically can be described by an equation: 

    
,,

2
0 fA

efF
 

  (2.3.1) 

where A is the coefficient which determines the width of the Gaussian filter along 

wavenumber axis;   kk bfaf 0 ; ak and bk are the coefficients of the linear 

equation; k = 1…K; K is the total number of linear points; f∈[ fk, fk+1]; fk, fk+1 defines 

the frequency bandwidth under investigation. The Gaussian filter was adjusted to fit 

the DC of each mode of interest, meaning that each mode was approximated by a set 

of linear segments in the frequency-wavenumber domain, which were selected 
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manually. As the consequence, the filtered A0 and S0 modes can be described by the 

equations: 

     ,,,,
00 AA  fFfufU   (2.3.2) 

     ,,,,
00 SS  fFfufU   

(2.3.3) 

where u(f,ξ) are the wavenumber dispersion curves obtained from the B-scan data 

using the 2D FFT approach; F(f, ξ) are the Gaussian filters for A0 and S0 modes. As 

the result of the filtering the wavenumber dispersion curves have been obtained 

separately for the A0 and S0 modes. Then the frequency spectra of these modes was 

calculated using the following expressions: 
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As the goal of this study is to compare the simulated spectrum of A0 and S0 

modes (UA0N(f), US0N(f)) with the analytically predicted excitability functions 

(UA0an(fk), US0an(fk)), in the following few paragraphs, their estimation will be briefly 

described. 

Estimation of the excitability functions for the considered problem. In order to 

estimate the excitability functions using the technique described in section 2.2.1, the 

spatial distribution of the particle velocity for the A0 and S0 modes has to be defined 

first. In this case it is presumed that the particle velocity of the vertical component (y) 

on the active area of the transducer at the first time instant of the modelling represents 

the excitation of A0 mode (see Fig. 2.3.3a). Similarly, the particle velocity of 

longitudinal component (z) at the first time instant may be used to describe the 

generation of the S0 mode (see Fig. 2.3.3b).  

The spatial particle velocity distributions presented in Fig. 2.3.3 were used in 

the calculation of the excitability functions. For the sake of better understanding, let’s 

denote such type of wave generation as “case A” excitation. The same material 

properties, described in the previous section, were used to define the DC for a 4 mm 

GFRP plate as well. The excitability functions in this case were estimated in a 

frequency band up to 200 kHz. Once the calculations were finished, the excitability 

functions UA0(fk) and US0(fk) were compared to the magnitude spectra of appropriate 

mode UA0N(f) and US0N(f), estimated by eq. 2.3.5 and eq. 2.3.7. The comparison of the 

analytical and numerical results can be seen in Fig. 2.3.4.  
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The results presented in Fig. 2.3.4 show a good agreement between the 

numerical calculations and analytical estimation. The results may lead to the 

conclusion, that the magnitude spectrum of each guided wave mode is actually the 

product of excitation pulse spectrum Uref(f) and the excitability function H(f,u,l), 

which itself depends on the properties of material, type of excitation and size of 

source. If at least one of the abovementioned parameters is changing, the spectrum of 

the mode present in the structure will vary as well. 

  
a) b) 

Fig. 2.3.3. The vertical (a) and longitudinal (b) component of particle velocity at the 

excitation surface at the first time instant of the modelling 

  
a) b) 

Fig. 2.3.4. The numerically estimated frequency spectra of the pure A0 (a) and S0 (b) mode 

on 4 mm GFRP sample (solid line) along with analytically predicted excitability functions 

(dashed line) 

To illustrate the influence of excitation type on the excitability function, another 

numerical experiment was carried out, retaining the same set-up, yet at different 

particle velocity distribution, which will be referred as “case B” excitation. In this 

numerical experiment, the particle velocity distribution was the only parameter which 
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has been changed in all the calculations (material properties and size of source were 

the same as in the previous case) (see Fig. 2.3.5). It means that the velocity distribution 

does not correspond to the working principle of MFC transducer anymore.  

The particle velocity distribution presented in Fig. 2.3.5 was simulated by 

applying the same phase excitation to “zone A” and “zone B” in the numerical model 

with the excitation force increasing towards the edge of each zone along the z axis. 

The comparison between the magnitude spectra of appropriate mode UA0N(f) and 

US0N(f) with the analytical excitability functions UA0(fk) and US0(fk) is presented in 

Fig. 2.3.6. The results demonstrate, that in both cases the spectrum of symmetrical S0 

mode remains unchanged, as the excitability function is relatively wideband (see 

Fig. 2.3.4b and Fig. 2.3.6b). Meanwhile the magnitude spectrum of the asymmetrical 

A0 mode has changed upon the change of type of excitation. It can be observed, that 

the excitability function is related to the wavelength of the guided waves, therefore 

the filter of the A0 mode has the more zero harmonics compared to S0 mode. 

  
a) b) 

Fig. 2.3.5. The vertical (a) and longitudinal (b) component of particle velocity at the 

excitation surface at first time instant of the modelling, referred to as “case B” excitation 

  
a) b) 

Fig. 2.3.6. The numerically estimated frequency spectra of the pure A0 (a) and S0 (b) mode 

on 4 mm GFRP sample (solid line) along with the excitability functions calculated 

considering the “case B” excitation (dashed line) 
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As it was mentioned previously, it can be proved, that the spectrum of each 

mode is a product of input signal spectrum Uref(f) and the excitability function H(f,u,l). 

To illustrate that, the product of input signal spectrum (Uref(f)) and the excitability 

function H in case of “case A” and “case B” excitation of A0 mode is calculated and 

then compared to the numerically estimated spectra of A0 mode, which were presented 

in Fig. 2.3.4a and Fig. 2.3.6a. The comparison was done for the A0 mode only, since 

the spectrum of S0 mode remains almost the same input for any of the investigated 

type of excitation. The results of comparison can be seen in Fig. 2.3.7. The left hand 

side of the figure show the results for “case A” excitation, meanwhile the right hand 

side is devoted for the “case B” excitation. 

  
a) b) 

Fig. 2.3.7. The comparison between numerically obtained spectrum of A0 mode for the 

case A (a) and case B (b) excitation with the product of input signal spectrum and 

appropriate analytically estimated excitability function 

 

2.4 Experimental verification on the anisotropic GFRP plate 

To further investigate the feasibility of proposed excitability function estimation 

technique, the experiments have been carried out on GFRP samples, possessing the 

same geometry, mechanical properties and sensor allocation, as described in 

section 2.3. The goal of this study was to compare the experimentally obtained 

frequency response of asymmetrical A0 mode with the analytically predicted 

excitability function. Thus, to fulfil the scope of the study, the experiments, which are 

described in the following paragraph were carried out. 

The MFC actuator of type M-2814-P1 was mounted on top of the sample, using 

a thin layer of wax for coupling as shown in Fig. 2.3.1. The actuator was driven with 

a 1 cycle, 50 V square pulse with a central frequency of 80 kHz, to generate multiple 

modes in wide frequency bandwidth. To collect the experimental data, the custom 

made low frequency thickness mode transducer (central frequency 240 kHz; 

bandwidth of the transducer at –6 dB level 340 kHz) was attached perpendicularly to 

the surface of the sample and scanned along the wave path of guided waves. The 

receiver was moving away from the transmitter up to 380 mm with a step increment 



60 

of 1 mm. The initial spacing between the actuator and sensor was equal to 5 mm. To 

get the reliable acoustic contact between the sensor and the specimen, the glass 

textolite protector with a contact area of 3 mm2 was used. The waveforms were 

recorded using a 25 MHz sampling frequency. The response signals were measured 8 

times and averaged to ensure better signal to noise ratio. In such way, the B-scan 

dataset of out-of-plane component was collected at the centreline of the sample. The 

experimental set-up is graphically illustrated at Fig. 2.4.1. 

 

Fig. 2.4.1. The experimental set-up for investigation of source influence on guided wave 

generation 

The experimentally obtained raw B-scan u(t,x) image of the out-of-plane 

component of guided waves is presented in Fig. 2.4.2a. Analogically, the 

frequency-wavenumber representation of the B-scan data u(f,ξ), showing the modes 

available in the structure can be seen in Fig. 2.4.2b. The results in Fig. 2.4.2a,b show 

that mainly two modes are present in the structure, while the A0 is a dominant one. 

  

a) b) 

Fig. 2.4.2. The experimental B-scan of the out-of-plane component of GW along the 4 mm 

thick GFRP sample (a), the frequency-wavenumber representation of the B-scan data (b) 
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To fulfil the scope of the experiment, the spectrum of the A0 mode was extracted 

from the frequency-wavenumber u(f,ξ) data (Fig. 2.4.2b) implementing the procedure, 

described in section 2.3. For the calculation of excitability function, it was presumed, 

that the loading distribution, required to introduce the A0 mode is the same as 

presented in Fig. 2.3.3a. Then the excitability function of the A0 mode UA0exp(f) was 

calculated according to eq. 2.2.4 in a frequency band up to 200 kHz, assuming that 

the material properties of the investigated GFRP sample are the same as it was listed 

in section 2.2. The comparison between the experimentally obtained spectrum of A0 

mode and the analytical excitability function HA0(fk) can be seen in Fig. 2.4.3. The 

results show quite a good agreement between the analytical predictions and 

experiments. Note, that in this case, the transducer was driven by a square pulse of 1 

cycle. It means that there might be additional zero harmonics in the frequency 

spectrum of the A0 mode, due to the type of input signal. This can be observed from 

Fig. 2.4.3 where a local minimum is present at the frequency slightly above 100 kHz. 

Thus, it is important to bear in mind that some distortions in the frequency spectrum 

of a particular mode might be caused by a type of input signal and not necessarily due 

to the source influence.  

 

Fig. 2.4.3. The comparison between the experimental spectrum of A0 mode and the 

analytical excitability function 

 

2.5 Experimental verification employing the linear array with variable 

aperture 

In previous sections, the excitability function estimation technique was 

introduced and verified. It was demonstrated with the numerical simulations and 

validated with experiments, that the type of excitation influences the spectrum of each 

GW mode. In this chapter, the influence of source size on the forced guided wave 

excitation will be demonstrated and validated as well. For this purpose, the 

experiments were carried out on 0.5 mm thick aluminium plate with dimensions of 

1,250 mm × 700 mm. The material with well-known properties was deliberately 

selected for this study, to simplify the analysis of GW signals. It was estimated, that 

for such type of material, only the fundamental modes (A0 and S0) exist in the 
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frequency band up to 3 MHz. To fulfil the scope of the study, the 2.25 MHz, 128 

elements phased array (Olympus 2.25L128-96x12-I3-P-2.5HY) was used as an 

actuator and attached to the surface of the plate using oil for acoustic coupling. The 

array was positioned along the centreline of the sample at a distance of 425 mm to the 

closest edge of the plate. In total four independent experiments were carried out 

(referred as experiment #1, experiment #2 and so on) to get the response from the 

structure at different actuator sizes. In the first experiment, only the single element of 

an array was excited. In each of the subsequent experiment, the active aperture of an 

array was incremented by adding one neighbouring array element to an active 

aperture. It means that in the second experiment, two array elements were excited at 

once and so on. In each of the experiments, the array was driven by a tone burst of 

1 cycle and 200 V with central frequency of 2.25 MHz. To collect the experimental 

data, the thickness mode transducer with a point type protector was attached 

perpendicularly to the surface of the plate and scanned along the wave path of the 

sample. The initial distance between the array and the receiver was equal to 100 mm, 

while in each case the receiver was scanned away from the transmitter up to 300 mm 

with step increment of 0.1 mm. All the waveforms were recorded using the 100 MHz 

sampling frequency and averaged 8 times. The experimental set-up and aperture 

configurations are presented in Fig. 2.5.1. 

 
a) 

 
b) 

Fig. 2.5.1. The experimental set-up for investigation of source size influence on guided wave 

mode spectrum (a) and the array aperture configurations used throughout experiments (b) 
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According to the datasheet of the array, the width of each element was equal to 

0.5 mm with an inter-element distance of 0.25 mm (pitch 0.75 mm). In such way, the 

active aperture in the experiment #1 was equal to 0.5 mm, while in each of the 

subsequent experiments – 1.25 mm, 2 mm and 2.75 mm. At the end of the 

experiments, in total four B-scan datasets were created, each at a different active 

aperture of the actuator. In this study, the S0 mode was selected as the mode of interest. 

Thus, the frequency spectrum was estimated from each of the B-scans (namely 

US0exp#1(f), US0exp#2(f), US0exp#3(f), US0exp#4(f)), employing the procedure described in 

section 2.3. In order to estimate the excitability functions, it was presumed, that the 

particle velocity is concentrated at the edges of each element. The example of the 

spatial particle velocity distribution in case four elements are excited at once 

(experiment #4) is presented in Fig. 2.5.2. The particle velocity distributions for other 

experiments were defined in the similar fashion, depending on how many elements 

were fired at the same time. In order to describe the phase velocities of the guided 

waves, the following material properties of an aluminium sample were defined: the 

Young’s modulus: 72 GPa, the Poisson’s ratio: 0.35, the density: 2,780 kg/m3. In total, 

four excitability functions (referred as HS0#1(fk), HS0#2(fk), HS0#3(fk), HS0#4(fk)) were 

estimated for each of the experiment. 

 

Fig. 2.5.2. The particle velocity distribution, which presumably excites the S0 mode in case 

the four array elements are fired at the same time 

The frequency spectrum (US0exp#1(f)) and the excitability function (HS0#1(fk)) of 

the S0 mode in case one single element is fired (experiment #1) can be seen in 

Fig. 2.5.3a. The results show, that there is no zero harmonics in the spectrum of S0 

mode, which are caused by the type of excitation or the size of source if only one array 

element is fired. The results for experiment #2 can be seen in Fig. 2.5.3b. In the latter 

picture, the solid line represents the spectrum of S0 mode (US0exp#2(f)) in case two 

elements are fired at the same time. The excitability function (HS0#2(fk)) is plotted in 

the dash-dot line, meanwhile the round-dot line is the product of: US0exp#1(f) and 

HS0#2(fk). The results for experiment #3 and experiment #4 are presented in a similar 
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fashion, where the dotted line represents: US0exp#1(f)·HS0#3(fk) and US0exp#1(f)·HS0#4(fk) 

respectively. The results in Fig. 2.5.3b–d demonstrate the influence of the source size 

to the frequency response of the S0 mode. It can be observed that the amount of zero 

values in the excitability function is related to the width of source. 

  
a) b) 

  
c) d) 

Fig. 2.5.3. The influence of the source size to the frequency spectrum of S0 mode on the 

0.5 mm aluminium sample in case the active aperture is: 0.5 mm (experiment #1) (a), 

1.25 mm (experiment #2) (b), 2 mm (experiment #3) (c) and 2.75 mm (experiment #4) (d) 

 

2.6 Conclusions of Chapter 2 

1. The source influence on the frequency response of guided waves was 

demonstrated and explained. It was shown with the numerical simulations 

and the experiments that the frequency response of each guided wave mode 

is a product of the spectrum of excitation pulse and the excitability function, 
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which itself depends on the type of excitation, material properties and size 

of source. 

2. The novel excitability function estimation technique based on Fourier 

analysis of particle velocity distribution on the excitation area was proposed, 

which enables the response amplitude as a function of frequency separately 

for each GW mode to be estimated. The performance of the proposed 

technique was demonstrated for the fundamental A0 and S0 modes only, 

however the method itself can be used to predict the excitability functions of 

other modes as well. 

3. The proposed technique can be applied to predict the frequency response of 

GW mode on any type of material (either isotropic structures, or 

multi-layered anisotropic composites) and under any type of excitation if the 

phase velocity dispersion curve and the particle velocity distribution of the 

wave source is known initially. The technique developed in this study can be 

further used as a tool to explain and predict differences in frequency 

bandwidths of each guided wave mode, which are excited using the same 

transducer. As the consequence, such tool may be beneficial in developing 

the high accuracy methods for guided wave signal analysis and mode 

decomposition. 

4. The proposed excitability function estimation technique was validated with 

the appropriate numerical simulations and experiments on the GFRP and 

aluminium samples. The numerical and experimental results showed a good 

agreement with the theoretical predictions. It was proved that the excitability 

function is related to the wavelength of the guided wave, therefore the A0 

mode always has more frequency zones with amplitudes close to zero at the 

same frequency band compared to the S0 mode. 
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3. ANALYTICAL MODEL FOR THE ANALYSIS OF THE GUIDED 

WAVE PROPAGATION IN THE OBJECTS WITH BOUNDARIES 

3.1 The idea and concept of the proposed model 

One of the major issues complicating the defect detection in SHM systems is 

distinguishing the wave propagation within the structure from the influence caused by 

damage or other sources. As the damage may produce unique wave propagation 

phenomenon, understanding wave propagation in a defect-free structure is of vital 

importance for the further signal processing and decision making. However, the GW 

signals even in the defect-free structures possess multimodal, dispersive and 

interferential behaviour, thus it is very easy to obtain the result similar to that 

presented in Chapter 1.1, Fig. 1.1.5. To be able to analyse and interpret such kind of 

data it is essential to know at least the arrival times and propagation paths of all 

possible modes that actually exist in the structure. Therefore, the analytical model was 

developed in this research with the general purpose of making the analysis of such 

complicated GW signals easier and faster compared to the existing solutions. The 

principal requirement for the model is to at least provide the rough values of the ToF 

and the map of propagation paths for separate GW mode packets, depending on the 

positions of virtual transmitters-receivers and bearing in mind the reflections from the 

object boundaries. Then by comparison of the experimental and the simulated data, 

possible GW modes can be identified according to the calculated ToF’s. Meanwhile 

the wavepath analysis may indicate the positions of the likely defects since the 

presence of the damage usually can be observed by monitoring the changes of the 

waveform at specific time segments. 

The model proposed in this study is based on the idea that instead of simulation 

of entire wave propagation, the positions of the wavefronts at discrete time instances 

are calculated only, according to the group velocity of the GW in the considered 

structure. In such a way, the transportation of the wave energy is considered, as it is 

assumed to be satisfactory to fulfil the principal requirement and makes the entire 

calculation routine significantly faster. The concept of the model is illustrated in 

Fig. 3.1.1. 

 

Fig. 3.1.1. The general idea of the proposed model: calculation of the wavefront positions at 

distinct time instances only (black solid line circle) instead of complete simulation of the 

wave propagation 
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In the remaining part of this section, the principle of the proposed model will be 

briefly revealed. The whole process of the calculation can be divided into the three 

main stages: pre-processing, solution and post-processing. This division was 

introduced for the sake of the process being clearer. In the stage of the pre-processing, 

the object, material and virtual transducers have to be defined. The object under 

investigation is always assumed to be a flat, uniform thickness, rectangular 2D plate, 

with the bottom left corner positioned at the origin of the coordinate system (see 

Fig. 3.1.2). The size of the plate is defined by the length xo and the width yo. The model 

can be used to simulate the wave propagation on any type of material, which is 

characterized providing either the phase velocity dispersion curve, or both the 

dispersion curve and the directional dependence of the group velocity (slowness 

profile). Such directional and dispersive wave relationships themselves contain the 

information about the stiffness of the material. The required amount of input 

information about the material depends on the task which is being solved. 

For the isotropic wave propagation, it is required to provide the dispersion curve 

of the phase velocity only, as the wave velocity is uniform in all directions and the 

slowness can be calculated using the well-known phase and group velocity 

relationship (see eq. 1.1.15 in Chapter 1.1). On the other hand, the anisotropic wave 

propagation possesses directional dependence of the wave velocity, so in general it 

may be required to know the dispersion curve of the phase velocity for each wave 

propagation angle. For the sake of simplicity, in case of anisotropic wave propagation, 

the proposed model requires the slowness profile cg(fc, αm) at the central frequency of 

the excitation signal fc and the dispersion curve of the phase velocity cp(ftr,αm) at 0° 

within the bandwidth of the excitation signal ftr. Then the phase velocity dispersion 

curves for the rest of the angles are automatically generated using the provided 

slowness profile in corporation with the known phase and group velocity 

relationships. 

The proposed model assumes that the wave front is generated from a single point 

within the object, which is described by the central coordinates (xe,ye), directivity 

pattern De(αe) and excitability function H(f,u,l). In general, the Lamb waves are 

usually generated at frequencies up to 250 kHz, possessing relatively large 

wavelengths (tens of millimetres and more). This means that in most cases the 

transmitters can be assumed as omnidirectional point sources (if the circumference of 

the source 2πa is less than one-half wavelength: 2πa/λ<0.5, where a – is the radius of 

the source (245)). On the other hand, the introduction of the directivity patterns De(αe) 

and the excitability function H(f,u,l) additionally enables the excitation of the GW to 

be simulated by directional transmitters with a certain size and type of operation as 

well. This might be beneficial for higher frequency applications (i.e. when 2πa/λ>3). 

The directivity pattern can be defined either by the trigonometrical or other 

mathematical function, which represents the wave energy as a function of angle α. 

The receivers in the proposed model are described by their central coordinates (xr,yr), 

orientation angle αr, the directivity pattern Dr(αr), the length l1 and the width l2. It was 

decided to include the length l1 and the width l2 of the receiver to implement the 

wavefront reception, which will be described later in this chapter. In general, the 

analytical model can contain an unlimited number of virtual transmitters and 
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receivers, however the calculations are performed in series for one 

transmitter-receiver pair at the time. The summarized initial input information 

required to describe the object, transmitter and receiver in the proposed model is 

illustrated in Fig. 3.1.2. 

The solution part of the proposed model itself consists of the four main stages: 

1) calculation of the wavefront positions at different time instances; 2) estimation of 

the reflections from the object boundaries; 3) implementation of the wavefront 

“reception”; 4) prediction of the expected output waveform captured with the virtual 

receiver. In the following paragraphs each stage of the solution part will be briefly 

described. 

 

Fig. 3.1.2. The initial information required for the analytical model to describe the object, the 

transmitter and the receiver 

Calculation of the wavefront positions at different time instances. The 

proposed model assumes that the wave is generated at the single point within the 

object and propagates in all directions. The pattern of the wavefront depends on the 

type of the considered material. The position of the wavefront at a discrete time 

instance can be described as a set of nodal points each defined by the coordinates 

(xf,yf) and the angle between the subsequent nodes Δα. Mathematically the coordinates 

of the wavefront position (xf,yf) at the time instance tk can be expressed by the 

following equations: 

      ,cos,, egf xtfctx mkmcmk    (3.1.1) 

      ,sin,, egf ytfcty mkmcmk    (3.1.2) 
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where cg(fc,αm) is the slowness profile of the group velocity of the analysed mode in 

the considered structure; tk is the discrete time instance at which wavefront position is 

being calculated; Δt is the step in time domain; tp and tg are the time instances, which 

denote the start and end of the calculation (tp is equal to zero by default); αm is the 

array of the wave front nodal angles; Δα is the angle between the subsequent 

wavefront nodes; xe and ye are the central coordinates of the transmitting point within 

the object. 
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The example of the calculated wavefront position at two distinct time instances 

t1 = 28.5 µs and t2 = 39.5 µs are illustrated in Fig. 3.1.3a and Fig. 3.1.3b. The 

calculation example is presented for the isotropic aluminium sample with dimensions 

of 400 mm × 200 mm. The value of the group velocity cg(fc,αm) was set to 1,769 m/s, 

which corresponds to the group velocity of the A0 mode on 1 mm thickness Al alloy 

2024-T6 plate (the density: ρ = 2,780 kg/m3, the Young’s modulus: E = 72 GPa, the 

Poisson’s ratio: υ = 0.35 (246)) at 100 kHz frequency. For the sake of better 

understanding, the background of Fig. 3.1.3a,b illustrates the solution of the same 

problem, obtained using the commercially available FE code. Such merging of the 

proposed and FE solutions has been presented to prove the adequacy of the developed 

model to the real world situations. Otherwise the FE code is not necessary for the 

model to work properly. 

Estimation of the reflections from the object boundaries. When the wavefront 

propagates at least to one of the object boundaries, the coordinates of the nodal points 

that appear to be outside the object are mirrored with respect to the particular boundary 

in order to simulate the wave propagation in the opposite direction (see Fig. 3.1.3c). 

In general, the model allows the reflection from the boundaries possessing different 

geometries to be calculated, however for simplification purposes in this case it is 

assumed that the object under investigation is a four-sided shape that is made up of 

two pairs of parallel lines and that has four right angles of 90°. In such case the 

reflections from the object boundaries can be estimated as: 

      ,0,, ,f,f,f  kmkmkm txmtxtx  (3.1.5) 

       ,,, o,fo,fo,f xtxmxtxxtx kmkmkm   (3.1.6) 

      ,0,, ,f,f,f  kmkmkm tymtyty  (3.1.7) 

       ,,, o,fo,fo,f ytymytyyty kmkmkm   (3.1.8) 

where xf,m(tk) and yf,m(tk) are the nodal points of the wavefront, which appear to be 

outside of the simulated object; tk is the discrete time instance at which wavefront 

position is being calculated; xo and yo are the length and the width of the object under 

analysis. At this point, the wave reflection coefficient can be introduced in eq. 3.1.5–

3.1.7, based on the surrounding medium of the sample. However, as the analysis of 

the wave amplitudes and their interference is not the primary task of the developed 

model, the reflection coefficients are excluded in the equations above. The principle 

of the estimation of wavefront reflection is illustrated in Fig. 3.1.3c. These results are 

again merged with the FE calculations on the same Al alloy 2024-T6 sample as in the 

previous case.  

Implementation of the wavefront “reception”. At the reception side the 

proposed model assumes that the virtual receiver is positioned somewhere within the 

object, at the coordinates (xr,yr). It has the pre-described length l1 and width l2. In case 

the nodal points of the wavefront crosses the area of the virtual receiver L (L = l1∙l2), 

the time instances tkj and the integral arbitrary amplitude values Ae(tkj) are saved to an 

array h0(t). The arbitrary amplitude Ae(tkj) represents the integral amplitude value of 

the wavefront received at the time instance tkj. It depends on the directivity pattern of 
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the transmitter-receiver (De(αe), Dr(αr)) and the amount of nodal points which appear 

to be within the area of the receiver at the particular time tkj. Thus, the array h0(t) can 

be mathematically expressed as a set of arbitrary amplitude values Ae(tkj) at distinct 

time instances tkj: 

      ,,..., ee0 Nj kk tAtAth   (3.1.9) 

where j = 1,…,N denotes the time instances, at which the wavefront is assumed to be 

captured by the virtual sensor (k≤j≤K). Using the wavefront reception approach 

described above, the arbitrary amplitude Ae(tkj) depends not only on the diffraction of 

the wave, but partially on the dimensions of the virtual receiver as well. However, this 

approach is assumed to be satisfactory if the ToF analysis is the main goal of the 

proposed model. The principle of the wavefront reception is illustrated in Fig. 3.1.3d. 

  
a) b) 

  
c) d) 

Fig. 3.1.3. A basic operational principle of the proposed model: calculated wavefront 

positions at different time instances t1 = 28.5 µs and t2 = 39.5 µs before the wavefront 

reflection (a,b); the illustration of the wavefront position at t3 = 77.5 µs after reflection from 

the object boundaries (c), the implementation of wavefront “reception” with virtual sensor at 

tk1 
= 117.5 µs (d) 

Prediction of the expected output waveform captured with the virtual receiver. 
In order to predict the waveform of a signal, passing through the medium, the impulse 

response of the system is required. For a non-dispersive wave propagation, the 
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function h0(t) can be used to describe a system impulse response, since it contains the 

information about the wave arrival times and amplitudes under relatively wideband 

excitation. For the dispersive wave propagation, the impulse response can be 

expressed as the inverse Fourier transform of the frequency response of the system 

H(ω), which itself can be written as (247): 

         
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where H(ω) is the frequency response; A(ω) is the magnitude function; θ(ω) is the 

phase angle per unit distance; α(ω) is the attenuation function; cp(ω) is the phase 

velocity; x is the propagation distance. Once the wavefront propagation times tkj are 

known, the propagation distances xkj used in eq. 3.1.10 can be calculated using simple 

relation xkj = tkj∙cg(fc, αm), where cg(fc, αm) is the group velocity of the GW at central 

frequency fc and the corresponding wavefront reception angle αm. The variable cp(ω) 

in eq. 3.1.10 (cp(ω) = cp(ftr,αm)) denotes the dispersion curve of the phase velocity, 

which is related to the group velocity cg(ω) by eq. 1.1.15, presented in Chapter 1. Then 

the output signal ukj(tkj) for the particular received wavefront in the case of linear 

system can be calculated as a convolution of the input signal uref(t) and the systems 

impulse response. In case of non-dispersive and dispersive wave propagation, the 

output signal can be expressed using the following equations: 

     ,0ref
nd

thtutu
jj kk   (3.1.11) 

     ,IFFTref
d


jjj kkk Htutu   (3.1.12) 

where   denotes the convolution, which is an integral that expresses the amount of 

overlap between the two functions as one is shifted over another; IFFT defines the 

inverse Fourier transform; subscripts “nd” and “d” denotes the non-dispersive and 

dispersive wave propagation. Taking into account the values of an arbitrary 

amplitudes Ae(tkj), the final output signal of the virtual receiver can be constructed as: 

     .r  
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jjj
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kekk tAtutu  
(3.1.13) 

Using the abovementioned expressions, the proposed model enables the output of the 

virtual receiver to be predicted for different kind of structures, depending on the 

amount of dispersion, dimensions of an object and parameters of the virtual 

transducers. If filtering due to the size and the type of operation of the transmitter is 

taken into the account, the Fourier spectra of an input signal FFT(uref(t)) is multiplied 

by the excitability function H(f,u,l) and the filtered input signal is obtained uref(t) 

employing the inverse Fourier transform. At the end of the solution stage, all the 

necessary data is saved to an array M, which contains the wavefront positions at each 

time instance and the corresponding angles of the wavefront nodal points αm: 

    ,,,,,, ff mmkmkk ttt  YXM   (3.1.14) 
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where Xf(tk,αm) and Yf(tk,αm) are the wavefront position matrices. Such approach 

enables the results of the solution to be analysed by different means, without repeating 

the calculation routine over and over. 

At the post-processing stage of the proposed model, the ToF of the separate GW 

modes can be analysed once the tkj values are known from the array h0(t). Moreover, 

the likely output waveform of the virtual receiver ur(t) can be estimated from 

eq. 3.1.11 or eq. 3.1.12. Finally, since the angles of the wavefront nodal points αm are 

known at each time instance tk, the wave propagation paths at specific time intervals 

can be reconstructed. To sum up the main features of the proposed model can be 

outlined as follows: 

 analysis of the ToF of the separate particular mode; 

 calculation the wave propagation paths at specific time intervals; 

 estimation of the likely output waveform of the virtual receiver. 

It may seem that some of the features mentioned above can be easily estimated 

using other modelling methods such as the commercially available FE. However, the 

key point is that the model, provided in this research, enables the ToF of each mode 

to be analysed separately in real time, while the FE is slow and computationally 

expensive especially for large structures. 

The current version of the model is limited to flat and rectangular structures. On 

the other hand, it can be used both for multi-layered, anisotropic and isotropic 

materials. It is noteworthy that the proposed model is highly customizable, since 

various parameters can be modified by the user. Hence, it is able to represent diverse 

real world situations and may act as a complimentary tool for the analysis of the 

complicated GW data. Currently, the main limitations of the developed model rely on 

the assumptions that: 

 the object under investigation is a four-sided shape that is made up of two 

pairs of parallel lines and that has four right angles of 90°; 

 at the normal or the oblique incidence of the wave neither the reflection 

coefficients nor mode conversion is considered; 

 all modes of the GW are generated with the same efficiency and the arbitrary 

amplitude values Ae(tkj) depends on the directivity of the virtual transducers 

only. 

Most of the abovementioned limitations were deliberately included in the proposed 

model in order to make it faster rather than precisely accurate. Regardless of all 

limitations it is an open source implementation, so many improvements can still be 

introduced at different stages of the solution. 

 

3.2 Validation of the model employing FE method 

In this chapter, the operation of the previously described model is validated and 

demonstrated employing the FE method. The aim of this research is to compare the 

performance of both FE and analytical techniques in terms of computational time and 

estimation of the ToF for different modes. In order to achieve the objectives, both the 

FE and analytical techniques will be employed to solve the same problem of transient 

wave propagation in isotropic and anisotropic plate-like structures. The few 
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paragraphs below will briefly introduce the initial set-ups of FE and analytical models 

followed by the comparison of their performance. In this study, a propagation of the 

A0 mode on an isotropic aluminium alloy 2024-T6 and anisotropic GFRP plates is 

considered. 

Description of the FE model. As it was discussed in Chapter 1, the GW are the 

waves that require the boundary to propagate since it can be expressed as the result of 

interference between the longitudinal and shear waves. To obtain the correct dynamic 

solution of the dispersive wave propagation in 2D using the FE, the problem has to be 

either the plane-strain if the strain εz is normal to the xy plane and the shear strains γxz, 

γyz are equal to zero or the plane-stress if the normal stress σz and shear stresses τxz, τyz 

perpendicular to the xy plane are equal to zero (248). In other words, the plane-strain 

approximation assumes that the object is long in z direction and the loads act in the xy 

plane, so the cross-section of an object is considered only. In contrast, the plane-stress 

approximation assumes that the dimensions in z direction are small compared to the 

x, y dimensions, which in general means that the object is thin. In this case it was 

assumed that the plate is thin in z direction, so the problem is a plane-stress one. 

To fulfil the scope of this study a 2D linear structural mechanics FE models are 

employed for an aluminium alloy (Al) 2024-T6 and anisotropic GFRP plates with 

dimensions of xo = 400 mm, yo = 200 mm. As the plane-stress solution requires the 

virtual thickness of an object, it was set equal to 1 mm for both cases. The plates in 

both cases were considered lossless. Throughout the simulations, a2D structural solid 

plane42 finite elements were used, which has four nodes each with two degrees of 

freedom (translations in the nodal x and y directions). The spatial size of the element 

was equal to 1 mm for the Al sample and 0.5 mm for the GFRP. This corresponds to 

the 10 and 14 nodes per wavelength respectively if the slowest A0 mode at 100 kHz 

central frequency is considered. The spatial size of an element was set within the 

required ranges (λmin/10≤le≤ λmin/20) according to eq. 1.3.14 presented in Chapter 1.3. 

The material properties used for the Al sample were the same as presented in 

the previous section 3.1. Meanwhile the properties of the GFRP plate for the 2D 

plane-stress problem were extracted from the stiffness matrix presented in Chapter 2. 

The excitation signal for both samples was a Gaussian envelope tone burst of 3 cycles 

and a central frequency of 100 kHz. Bandwidth of the excitation pulse at –6 dB level 

was equal to 53.8 kHz. The generation of the A0 mode was performed by applying the 

normal out-of-plane nodal displacements at the xy plane. The excitation point was a 

single node located at the coordinates xe = 100 mm, ye = 100 mm. The integration step 

in time domain was 0.5 µs for both cases, which is 1/20 of the period at 100 kHz 

central frequency. The variable monitored in this study was a vertical displacement 

(z) at the surface of the specimen. For the ToF comparison a single node is selected at 

the coordinates xr = 300 mm, yr = 100 mm to represent the displacements at the 

location of the virtual receiver. The simulation included an implicit algorithm for 

solving the transient wave propagation. 

Description of the analytical model. The analytical models used in this study 

were also described as a 2D rectangular Al and GFRP plates defined at the xy plane 

with dimensions of xo = 400 mm, yo = 200 mm. The material properties of an isotropic 

aluminium sample were defined by introducing the dispersion curve of the phase 
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velocity cp(ftr,αm). Meanwhile, both slowness profile of the group velocity cg(fc, αm) 

and the dispersion curve of the phase velocity cp(ftr,αm) at 0° angle were defined to 

describe the anisotropic structure of the GFRP. Since the propagation of the A0 mode 

is considered in this study, the dispersion curves and slowness profiles were defined 

in each structure for A0 mode only (see Fig. 3.2.1).  The complete sketch of the model 

used in this study is presented in Fig. 3.2.2. 

  

a) b) 

Fig. 3.2.1. The phase velocity dispersion curves for A0 mode in a traction-free aluminium 

and GFRP plates with a thickness of 1 mm at an angle αm=0° (a), the slowness profile of the 

group velocity for A0 mode propagating on aluminium (dashed line) and GFRP (solid line) 

samples (b) 

 

Fig. 3.2.2. The sketch of the model examined in this study with some initial input details 

The wavefront in the analytical model was generated from one discrete point 

within the object, located at the same coordinates (xe = 100 mm, ye = 100 mm) as in 

the FE problem. The transmitter assumed to be an omnidirectional point source, as the 

dimensions of it is vanishing compared to the wavelength of the slowest A0 mode. It 

was driven by the same Gaussian envelope tone burst of 3 cycles and a central 

frequency of 100 kHz as in the case of the FE model. Due to the assumptions made 

about the size and the directivity of the transmitter, no excitability function H(f,u,l) 

was used at the transmission side. To implement the process of the wave “reception”, 

the virtual receiver with dimensions of l1 = l2 = 1 mm was centred at the coordinates 
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xr = 300 mm, yr = 100 mm. The dimensions of the virtual receiver were set equal to 

the size of one element in the FE model. It was done deliberately to minimize the 

likely errors due to the time integration scheme used at the reception side in the 

analytical model. The directivity pattern of the receiver Dr(αr) was neglected as well.  

Comparison of the simulation results. The performance comparison of FE and 

analytical models is presented in this section. The purpose of it is to compare both 

models in terms of time delay between the estimated arrival of separate wave packets 

and the amount of time required for both techniques to solve the same task. In the 

following study, the FE model was used as a reference. The simulation results for the 

isotropic aluminium alloy 2024-T6 and GFRP samples are presented in Fig. 3.2.3 and 

Fig. 3.2.4 respectively.  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3.2.3. The analytical and numerical calculations on the aluminium alloy 2024-T6 sample 

for the A0 mode: time instances indicating the arrival of the wave packets (a), analytically 

predicted output of the virtual receiver for dispersion-free (b) and dispersive (c) wave 

propagation, the numerically calculated displacements using the FE method (d) 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 3.2.4. The analytical and numerical calculations on the GFRP sample for the A0 mode: 

time instances indicating the arrival of the wave packets (a), analytically predicted output of 

the virtual receiver for dispersion-free (b) and dispersive (c) wave propagation, the 

numerically calculated displacements using the FE method (d) 

Each of the abovementioned figures (Fig. 3.2.3 and Fig. 3.2.4) consists of four 

subplots, where the three of them (a–c) represents the analytical calculations, 

meanwhile the last one is the result of the FE simulation. The first subplot in each 

figure (Fig. 3.2.3a, Fig. 3.2.4a) represents the analytically calculated array h0(t), 

which indicates the time instances tki of the wavefront arrival and the corresponding 

integral arbitrary amplitude values Ae(tki). The predicted outputs of the virtual receiver 

are presented in the second and the third subplots (Fig. 3.2.3b,c and Fig. 3.2.4b,c). 

The second subplot (Fig. 3.2.3b, Fig. 3.2.4b) was obtained using eq. 3.1.11, which 

describes the likely output of the virtual receiver in case dispersion is neglected. 
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Meanwhile the third subplot (Fig. 3.2.3c, Fig. 3.2.4c) is based on eq. 3.1.12, which 

takes into the account the dispersion of the phase velocity. The wavefront propagation 

paths at specific time intervals are illustrated at Fig. 3.2.5 (the selected peaks for path 

representation are numbered at Fig. 3.2.3a and Fig. 3.2.4a left of the appropriate bar).  

 

Fig. 3.2.5. The analytically calculated wave propagation paths of the A0 mode at different 

time instances on the rectangular 400 mm × 200 mm sample 

In order to quantitatively estimate a match between the analytical and numerical 

calculations, a short time cross-correlation function was used as the measure of 

similarity. This technique employs the comparison of two waveforms in a short time 

segments in which the signals can be assumed as quasi-stationary and the lag can be 

estimated separately for each reflection. Let’s assume that there are two waveforms 

ura(t) and urn(t), which describe the analytically and numerically calculated output 

waveforms of the virtual receiver respectively (Fig.3.2.3c, Fig.3.2.4c represents the 

ura(t), meanwhile Fig.3.2.3d, Fig.3.2.4d – urn(t)). Then the similarity of the shape of 

two waveforms over time can be compared by calculating the maximum value of the 

normalized cross-correlation function at each window position (249): 
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where urnw(t,τ) = urn(t)∙uw(t–τ), uraw(t,τ) = ura(t)∙uw(t–τ) describes windowed waveforms 

obtained from numerical and analytical simulations respectively; τ = 0 ÷ (tm–Δτ) is the 

shift of the time window; tm is the total duration of the analysed signal; Δτ is the width 

of the time window; uw(t) is the window function. This technique returns the single 

maximum value of the cross-correlation function at each window position, which is 

normalized at zero lag. In this case the width of the time window was set equal to 

5 periods of the excitation signal (the duration of one cycle is 10 µs at 100 kHz). The 

maximum value of the cross-correlation function within the window itself represents 

the best similarity between the shape of two discrete time series, while its lag, relative 

to the centre of the window function uw(t), indicates how much the waveforms ura(t) 

and urn(t) are delayed to each other. It means that the lag value can be used to estimate 

how precisely the arrival of the wave packets in the analytical model ura(t) matches 

with numerical calculations urn(t). In order to avoid the influence of noise and signals 

with small amplitudes, the result calculated with eq. 3.2.1 was additionally multiplied 

by the window function w(t), which is expressed as: 
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where xr(τ) represents the raw, unscaled short time cross-correlation. The match 

between the analytical and numerical calculations obtained using eq. 3.2.1 and 

eq. 3.2.3 is presented in Fig. 3.2.6. The left hand side of the figure represents the 

results for the aluminium sample, while the right hand side is devoted to the results 

from the GFRP sample. The results, presented in Fig. 3.2.6 indicate the four 

significant maximum values in each case, which in general indicates the wave packets 

possessing the best match (see the boxed time intervals in Fig. 3.2.6). For the 

aluminium sample, the good coincidence is obtained for the direct wave packet 

(Fig. 3.2.4: 1st interval), top/bottom reflections (Fig. 3.2.4: 2nd interval) and few 

multipath (Fig. 3.2.4: 4th and 5th intervals) wave packets. In addition, for the GFRP 

sample the good match for the left/right reflections is obtained as well.  

In order to estimate the delay between the waveforms ura(t) and urn(t), the lag of 

the correlation maximum was measured at the positions indicating the best match. 

Therefore, in each case, four delay values were estimated. The time delay between the 

arrival times for different wave packets are summarized in Table 3.2.1. The “minus” 

sign in front of the delay value indicates that the analytically obtained arrival of the 

wave packet is delayed in respect of the numerical result. The accuracy of ToF in the 

proposed model depends on how precisely the slowness profile of the group velocity 

cg(fc, αm) and the phase velocity dispersion curve cp(ftr,αm) is known initially. For the 

isotropic wave propagation, it is sufficient to know the phase velocity dispersion 

curve, since the slowness profile is uniform and can be calculated using the phase and 

group velocity relationships, presented earlier. On the other hand, for the anisotropic 

wave propagation, the phase velocity dispersion curve for each wave propagation 

angle must be known for the precise ToF estimation, which makes the solution of such 
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problem a non-trivial one. However, the a-priori knowledge says that for most 

composites, despite of fibre orientation, the character of dispersion curve does not 

change much, especially at the low frequencies. The major changes are observed at 

the slope of the curve rather than in the shape of it. It means that if the dispersion 

curve of the phase velocity at 0° and the group velocities at all angles are known, the 

curve itself can be shifted vertically according to the phase-group velocity relationship 

to obtain the curve for non-zero propagation angle. Still, it is worth mentioning, that 

this is the assumption made in the model to reduce the amount of required input data 

required. Any error in defining the dispersion curve or the slowness will further 

introduce an error in ToF estimation. 

  
a) b) 

Fig. 3.2.6. The result of the short time cross-correlation between the analytical ura(t) and 

numerical urn(t) waveforms on the aluminium (a) and GFRP (b) sample 

Table 3.2.1. The estimated mismatch of the wave packet arrival time between the 

analytical and numerical calculations for the aluminium and GFRP samples 

A0 mode, aluminium sample A0 mode, GFRP sample 

Wave 

packet 

Correlation 

coefficient 

Window 

position, 

(µs) 

Time 

delay, 

(µs) 

Wave 

packet 

Correlation 

coefficient 

Window 

position, 

(µs) 

Time 

delay, 

(µs) 

Direct 0.95 100.5 –6.5 Direct 0.97 155.5 8 

Top/bottom 0.95 155.5 –3 Top/bottom 0.96 245.5 –6 

Multipath 

(2 skips) 
0.88 235.5 –9.5 

Left/right 

end 
0.89 310.5 10.5 

Multipath 

(3 skips) 
0.88 385.5 –8.5 

Multipath 

(2 skips) 
0.94 370.5 5 

Finally, the performance of both analytical and FE approaches is compared in 

terms of the solution time. The FE solution was implemented using the ANSYS® 

implicit software (version 12.0), while for the analytical calculations the Matlab® 

environment (version 2013a, 8.1.0.604) was used. In all cases calculations were 

performed using the Intel® core i7-2700K computer with 32GB of random access 

memory. The time required for the solution was measured from the moment the 
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problem is submitted to the complete return of the result. The study demonstrated that 

the numerical FE solution of the transient wave propagation in the aluminium sample 

takes roughly 27 minutes to complete. Meanwhile for the anisotropic GFRP plate 98 

min are required to finish the task. Obviously, such solution time estimation is very 

rough. Moreover, the solution time of the FE method strongly relies on the density of 

the mesh, which is related to the type of problem and physical properties of the 

material. In contrast, the duration of the analytical solution is invariant to the type of 

the material. Hence, the result can be expected roughly in 10 seconds in either case, 

which is a tremendous improvement in terms of the solution time. 

 

3.3 Experimental verification on the anisotropic GFRP plate 

In this section, the ability of the analytical model to predict the propagation of 

the Lamb waves is experimentally verified. For this purpose, the experimental 

waveforms are compared to the analytically calculated in-plane and out-of-plane 

displacements of the A0 and S0 modes. The experiments have been carried out in a 

pitch-catch configuration on the 6-ply GFRP plate [biaxial: 0° and 90° / bias: ±45° / 

biaxial: 0° and 90°]S with dimensions xo = 2,000 mm, yo = 1,000 mm and 4 mm 

thickness (see Fig. 3.3.1). 

 

Fig. 3.3.1. The schematic diagram of the experiments for validation of the analytical model 

The Lamb waves were generated using the MFC transducer centred at the 

coordinates xe = 500 mm, ye = 250 mm. It was bonded to the surface of the specimen 

using a thin layer of gasket maker. The emitter was excited by a 3 cycle square pulse 

with a central frequency of 50 kHz. According to the dispersion relationship, at this 

region the fundamental A0 and S0 modes exist in the structure. During the experiments 

two independent measurements were taken at different receiver positions. In the first 

measurement, the receiver was positioned along the wavepath in front of the 

transmitter at the coordinates xr = 1,500 mm, yr = 250 mm. The actuator-sensor 

distance was fixed to 1,000 mm. In the further experiment the same receiver was 

rotated by 45° counter clockwise and centred at the coordinates xr = 1,000 mm, 

yr = 750 mm. According to the Pythagorean theorem in this case the actuator-sensor 

distance was equal to 707 mm. The transmitter itself remained unmoved during both 
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measurements. For the reception of the GW the round shape thickness mode receiver 

with a contact area of 10 mm and central frequency of 240 kHz was used (bandwidth 

of the transducer at –6 dB level is 340 kHz). To ensure better signal to noise ratio 

averaging by 8 times was used. The experiments were performed using the low 

frequency ultrasonic measurement system “Ultralab”. The set-up of experiments is 

presented in Fig. 3.3.1. 

The parameters of the analytical model were set to correspond to the 

experimental set-up. The dispersion curves of the phase velocity cp(ftr,αm) for the A0 

and S0 modes at αm = 0° and αm = 45° propagation angles are presented in Fig. 3.3.2a. 

Meanwhile the slowness profiles cg(fc, αm) for each mode can be observed from 

Fig. 3.3.2b. The directivity pattern of the MFC transmitter was estimated according to 

the a-priori knowledge and described by the following equation: 
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Since the contact area of the receiver is comparable to the wavelength of the slowest 

A0 mode, the omnidirectional directivity was used at the reception side. The 

comparison of the simulation and experimental data is presented in Fig. 3.3.3 for the 

1st measurement and in Fig. 3.3.3 for the 2nd measurement. The results in Fig. 3.3.3 

indicate that at the time range up to 740 µs the wave packets of S0 mode can be 

observed only. The two wave packets of A0 mode arrives approximately at 755 µs and 

868 µs. Therefore, it is partly overlapped and distorted by the multipath reflections of 

the S0 mode arriving at 743 µs and 842 µs. In the case of the second measurement 

(Fig. 3.3.4), the wave packet of the A0 mode at 534 µs is overlapped with multipath 

reflection of S0 mode, therefore it is barely observable in experiment. 

 
 

a) b) 

Fig. 3.3.2. The phase velocity dispersion curves for A0 and S0 modes in GFRP plate at 0° and 

45° wave propagation angle (a), the slowness profile of the group velocity for A0 (dashed 

line) and S0 (solid line) modes in the same structure (b) 
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a) 

 
b) 

Fig. 3.3.3. The experimental waveform (a) versus the analytical prediction (b) on GFRP plate 

in case the receiver is positioned at xr = 1,500 mm, yr = 250 mm (corresponds to 0° wave 

propagation) 

 
a) 

 
b) 

Fig. 3.3.4. The experimental waveform (a) versus the analytical prediction (b) on GFRP plate 

in case the receiver is positioned at xr = 1,500 mm, yr = 250 mm (corresponds to 45° wave 

propagation) 

 

3.4 Conclusions of Chapter 3 

1. The analytical model, which enables the better understanding, analysis and 

interpretation of the propagation of GW in plate-like structures has been 

developed. The proposed model allows the propagation of separate GW 
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mode packets in flat, rectangular structures with uniform thickness to be 

analysed, to calculate the arrival times of the wave packets after multiple 

reflections at a virtual receiver positioned anywhere on the object and to 

retrace the wave propagation paths at specific time intervals. 

2. The proposed model was validated with the appropriate numerical 

simulations and experimental tests. The numerical and experimental results 

showed a good agreement with the analytical calculations both in isotropic 

aluminium and anisotropic GFRP samples. Also, the short time 

cross-correlation was employed to measure the match. The results 

demonstrated, that a good coincidence is obtained equally in terms of shape 

of the waveform and arrival times of wave packets after multiple reflections. 

3. Some results in the research indicated that the major factor influencing the 

reliability of the analytical predictions is the initial knowledge of the wave 

velocity. In the perfect case scenario, the dispersion curves at each wave 

propagation angle would be beneficial for the model to work precisely. 

However, it was demonstrated that the slowness profile of the group velocity 

and the dispersion curve at 0° wave propagation angle may be sufficient to 

get the desired confidence of the model. 

4. Compared to conventional FE model, the main advantage of the analytical 

technique is to significantly reduce the amount of time required to solve the 

transient wave propagation problem. Thus, it can be used as a real time tool. 
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4. GUIDED WAVE MODE IDENTIFICATION BASED ON PHASE 

VELOCITY ESTIMATION 

4.1 Motivation and idea of the method for phase velocity estimation 

The analytical model presented in the previous chapter demonstrated a great 

potential as the tool for GW signal analysis and mode identification. However, the 

study revealed that the accuracy of the solution strongly depends on how precisely the 

dispersion relationships are known initially, which is the fundamental characteristic 

of Lamb waves. In general, the thicknesses and material properties may vary going 

from one specimen to another, so it is crucial to estimate the actual velocities of GW 

modes to provide the proper analysis with certain confidence. Besides, the effects of 

mode conversion or interaction with the defect are not currently included in the 

proposed model, while various converted and reflected wave packets might appear 

within the experimental signals, which has to be further identified. Thus, the 

knowledge of actual velocity of the certain wave packet could provide a double 

benefit. On one hand it can give a more accurate velocity values for the analytical 

model, which itself would deliver a more reliable results in distinguishing the wave 

propagation within the structure from influence caused by damage. On the other hand, 

it could be used as a complimentary method to identify the unpredicted modes of GW 

in experimental signals, which might be a result of mode conversion and scattering in 

the presence of the defect. This leads to the demand of the methods to experimentally 

measure the velocities of separate GW mode packets. 

If the wave packet of a single mode can be resolved separately from others, the 

conventional time-of-flight methods, such as zero-crossing or cross-correlation, might 

be used to evaluate the phase or group velocities (250). However, these methods are 

not accurate if the analysed signals are dispersive. For example, the zero-crossing 

method suffers from the phase uncertainty, especially at large propagation distances, 

as it become impossible to follow the same zero-crossing point of the elongating wave 

packet. Similarly, the conventional cross-correlation technique is not applicable to the 

signals, which consist of a number of dispersed and overlapped wave packets as well 

(251, 252). Besides, for dispersive waves it is required to estimate the velocity values 

at a variety of frequencies, so the time-frequency methods are often used as an 

alternative. Pialucha et al. (253) proposed to calculate the phase velocity from the 

maxima of amplitude spectrum of the signal reflected several times by the boundaries 

of the sample. However, the use of such approach is impracticable for complex 

structures, as it requires the edge reflected signals. In the low frequencies the 

resonance spectrum method (254) may be used to measure the phase velocities, which 

is based on the idea that the resonance occurs when the condition 2L = λn is satisfied 

(where L is length of beam; λ is the wavelength; n is the harmonic number). Using the 

frequency sweep excitation, the phase velocity values cp at the resonant frequencies fn 

of the sample may be estimated according to the expression (254): 

.
2

p

L

nc
fn   (4.1.1) 
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The abovementioned method is applicable at low frequencies only and requires high 

energy Lamb wave excitation to extract the natural frequencies of the structure. 

Another alternative is to use the two-dimensional FFT, which transfers the 

time-distance measurement to the frequency-wavenumber records at discrete 

frequencies, so the velocities of individual Lamb wave modes can be measured even 

if the time record is superimposed by multiple wave packets (152). However, the 

resolution 2D-FFT depends on the amount of time records measured at discrete 

distances. Therefore, this method is not applicable to the structural health monitoring 

systems, where a set of transducers are attached to permanent positions and point 

scanning devices with fine spatial step are not used.  

In this study, the novel method to reconstruct the dispersion curve in a band of 

transducer, analysing the phase spectrum of the time series is proposed. The method 

exploits the sweep over excitation frequencies and uses a modified version of the 

phase spectrum method, which was initially proposed by Sachse (255) and later used 

by Schumacher (198). In the initial version of the phase spectrum method, the authors 

proposed to reconstruct the dispersion relationship in the whole bandwidth at once, 

using a wideband laser excitation. However, if the conventional contact transducers 

are used, the reconstruction bandwidth is certainly limited due to the type of 

excitation, vibration mode and size of the transducer. It means that in case of contact 

excitation of the GW, the frequency spectrum of the wave packet is limited and some 

frequency components are even absent. This makes it impracticable to use the 

conventional phase spectrum method to estimate the dispersion relationship directly. 

The method, proposed in this study is based on the idea that the transducer is driven 

by a square pulse at various central frequencies within its band and the phase velocities 

are reconstructed only at local maximum components of the Fourier spectra. In other 

words, this approach reconstructs the velocity values at the harmonics of the signal 

introduced by a square pulse. Changing the excitation frequency enables some 

intermediate velocity values to be collected, therefore the dispersion curve at wide 

band may be estimated and the likely errors due to the low values of some frequency 

components can be avoided. The algorithm of the proposed method can be 

summarized by the following steps: 

1. The transducer is driven by a square pulse at a central frequency of f1 and the 

waveforms ur1f1(t) and ur2f1(t) are registered with receivers r1 and r2, each 

positioned at a distances d1 and d2 from the source (see Fig. 4.1.1a for 

example). 

2. The waveforms ur1f1(t) and ur2f1(t) are windowed using the tapered cosine 

window w(t) to isolate the wave packets of particular mode (see Fig 4.1.1b): 

     ,
1111 frwfr twtutu        ,

1212 frwfr twtutu   (4.1.2) 

where ur1f1w(t) and ur2f1w(t) represent the windowed versions of the 

waveforms ur1f1(t) and ur2f1(t) respectively. 

3. Each waveform, ur1f1w(t) and ur2f1w(t), is shifted in the time domain by –tm1 

and –tm2, to avoid the uncertainties in the phase unwrapping procedure. The 

waveforms are commonly shifted according to the centroid of signal (256), 
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but in case of moderate dispersion and propagation distance the time shift 

according to the maximum value of the Hilbert envelope is satisfactory as 

well: 

   ,
11111 mwfrsfr ttutu     ,

21212 mwfrsfr ttutu   (4.1.3) 
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where HT denotes the Hilbert transform; tm1 and tm2 are the time instances, 

which corresponds to the maximum of Hilbert envelope. The shift in time 

domain is illustrated in Fig. 4.1.2a. 

  
a) b) 

Fig. 4.1.1. The example of waveform registered with receivers r1 and r2 at distances d1 and 

d2 (a), the illustration of waveform windowing to isolate the wave packet of single mode (b) 

4. The complex frequency spectra of each time-shifted waveform ur1f1s(t) and 

ur2f1s(t) is obtained employing the Fourier transform: 

    ,FFT sfrfr 1111
tujfU       ,FFT sfrfr 1212

tujfU   (4.1.4) 

where FFT represents the fast Fourier transform. 

5. The change in phase Δϕ(f) between two waveforms, ur1f1s(t) and ur2f1s(t), is 

estimated for a given frequency band f (see Fig 4.1.2b):  

      ,
1211 frfr fff    (4.1.5) 
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Note that the phases αr1f1(f) and αr2f1(f) are calculated in a range of –π…π 

radians. If the true phase of the particular frequency is less than –π radians it 

will be represented below the π radians. It means that some discontinuities 

will appear in case the phase goes beyond the ±π radian limit. Therefore, the 

phases αr1f1(f) and αr2f1(f) has to be unwrapped. 
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6. The phase velocity as a function of frequency is calculated at particular 

frequencies fk,f1 using a modified version of the phase spectrum method: 

 
   ,2

2

2111

1
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 (4.1.6) 

where fk,f1 are the frequencies that corresponds to the local maxima of the 

Fourier spectra |Ur1f1(jf)|; d is the separation distance between the receivers 

r1 and r2 (d = d2 – d1). The frequency selection for phase velocity estimation 

is illustrated in Fig. 4.1.2c. 

  
a) b) 

 
c) 

Fig. 4.1.2. The illustration of the shift of waveform in time domain to the maximum value of 

the Hilbert envelope (a), the phase spectra of the waveforms registered at distances d1 and d2 

(b), the normalized magnitude spectra of the waveform captured with receiver r1 with the 

local maximum frequency values (circle markers), at which the phase velocity values are 

estimated (square markers) (dashed line represents the theoretical DC) (c) 

7. The intermediate values of the phase velocities at other frequencies are 

obtained by changing the excitation frequency to f2 and repeating the whole 
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routine described above. The final result is obtained by combining the 

calculations at different excitation frequencies f1… fm: 

        ....,,, f,pf,pf,pp 21 mkkk fcfcfcfc   (4.1.7) 

where m is the number of excitation frequencies used to drive the emitter. 

The method presented above is applicable to flat structures with uniform 

thicknesses, which can be multi-layered, anisotropic or isotropic. In contrast to the 

conventional phase spectrum method, it provides better accuracy of velocity 

estimation and enables errors to be avoided, which are caused by the low values of 

some frequency components in the spectrum of analysed wave packet. 

 

4.2 Experimental validation of the proposed method 

In this chapter, the proposed phase velocity estimation method is validated with 

the appropriate experiments. For this purpose, the phase velocity values, extracted 

with the developed method are compared with the theoretical calculations, which were 

considered as a reference. In this study, the velocities of the S0 mode on the aluminium 

sample will be analysed. 

The experiments were carried out on the aluminium alloy 2024-T6 sample, 

which was 2 mm thick, 650 mm wide and 1,250 mm long. The well-known isotropic 

material was deliberately selected for this study, in order to be able to compare the 

experimental results with the theoretically estimated values. The S0 mode was 

launched into the structure by attaching the thickness mode transducer to the edge of 

the Al plate as it is shown on Fig. 4.2.1. For the reception, two transducers r1 and r2 

possessing the same characteristics were bonded perpendicularly to the upper surface 

of the specimen at distances d1 = 450 mm and d2 = 550 mm from the source (see 

Fig.4.2.1).  

 

Fig. 4.2.1. The schematic diagram of the experimental set-up for validation of phase velocity 

estimation method 

In this research, the transducers with a central frequency of 240 kHz and a 

bandwidth of 340 kHz at –6 dB level was used. The frequency response of the probe 

can be seen in Fig. 4.2.2a. To reconstruct the dispersion curve under the wide band, 
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two different scenarios employing the square pulse excitation were used as follows: 

n1 = 3 cycles, f1 = 150 kHz and n2 = 3 cycles, f2 = 200 kHz. Such excitation frequencies 

were deliberately selected according to the magnitude spectrum of excitation pulse, 

which can be seen in Fig. 4.2.2b. The results presented in the figure demonstrate that 

a minor shift of excitation frequency (from 150 kHz to 200 kHz) enables local 

maximum amplitudes of the magnitude spectra to be obtained at different frequencies 

in contrast to 150k Hz excitation. Moreover, the local maximum values in case of 

200 kHz excitation mostly correspond to the local minimum frequencies of 150 kHz 

excitation. Thus, excitation under the selected frequencies enables a larger variety of 

reconstruction frequencies to be obtained as well as the phase velocity values. In this 

case it was presumed that the selected excitation frequencies will provide a sufficient 

amount of velocity values. Meanwhile in other cases, more excitation frequencies may 

be used exploiting the whole bandwidth of the transducer. 

  
a) b) 

Fig. 4.2.2. The frequency response of the thickness mode transducer used for the 

experiments (a), the magnitude spectra of 3 cycles 150 kHz (solid line) and 3 cycles 200 kHz 

(dashed line) square excitation pulse (b) 

The experimental waveforms of the S0 mode at distances d1 and d2 under the 

f1 = 150 kHz and f2 = 200 kHz excitation are presented in Fig. 4.2.3a,b respectively. 

The magnitude spectra |Ur1f1(jf)| and |Ur2f2(jf)| of the windowed S0 mode wave packet 

can be seen in Fig. 4.2.3c. The frequencies at which the phase velocity values were 

extracted are indicated with circle markers. Finally, the reconstructed dispersion curve 

of the phase velocity for the S0 mode along with theoretical estimation is shown on 

Fig. 4.2.3d. The theoretical dispersion curve was calculated employing the SAFE 

method and material properties of aluminium 2024-T6 listed in the previous chapter.  

The results in Fig. 4.2.3d show, that the phase velocities are reconstructed quite 

accurately in the frequency band up to 0.8 MHz. According to the frequency response 

of the transducer used in this study (see Fig. 4.2.2a), the technique enables the phase 

velocities in the –20 dB level bandwidth of the actuator to be reconstructed. In this 

study, a total of 52 velocity values were extracted at a band up to 1 MHz. It is 

noteworthy that the general reliability of the phase spectrum method depends on 

proper selection of the time window to crop the wave packet of the single mode for 
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FFT. Therefore, if the proposed method is used to experimentally estimate the actual 

dispersion relationship of the unknown structure, the degree of separation between the 

receivers r1, r2 and object boundaries has to be sufficient to achieve the good isolation 

between modes. On the other hand, if the goal is to estimate the dispersion 

relationship, in most cases it is satisfactory to analyse the first arrival of each mode 

only, which is usually separated to an adequate extent. Once the dispersion 

relationship of each mode are known, it can be passed to the analytical model, which 

may be further used to distinguish the wave propagation within the structure from 

influence caused by damage.  

  
a) b) 

  
c) d) 

Fig. 4.2.3. The experimental waveforms of S0 mode at distances d1 and d2 in case of 

150 kHz (a) and 200 kHz (b) excitation, the magnitude spectra of windowed S0 mode at 

different excitation frequencies (c), the combined reconstruction of dispersion relations (d) 

In order to estimate the agreement of the results with theoretical phase 

velocities, the standard deviation (STD) was used as a measure of spread. 

Mathematically it can be expressed: 
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where A is the deviation of estimated velocity values from the theoretical DC 

(A = cp(f)–cpe(f), where cp(f) are the theoretical velocities; cpe(f) are the extracted 

velocities); µ is the mean of A. According to eq. 4.2.1 the estimated variation of 

calculated phase velocity values is σ = 161.2 m/s. This leads to the conclusion that 40 

out of 52 velocity values (77%) are within the standard deviation (see Fig. 4.2.4). 

 

Fig. 4.2.4. The graphic representation of standard deviation showing the spread of estimated 

phase velocity values 

The major advantage of this technique over the conventional phase spectrum 

method initially proposed by Sachse (255) is the ability to reconstruct the dispersion 

relationship in a wide band using relatively narrowband transducers. This is especially 

beneficial if contact type transducers and square pulse excitation are used, as it 

delivers some additional distortions in magnitude spectra due to operation mode, type 

of excitation and size of transducer. Thus the conventional method cannot be used 

directly, while the excitation at different frequencies and reconstruction only at local 

maximum components of Fourier spectra enables more precise velocity values to be 

obtained in wide band. It was determined that the conventional phase spectrum 

method (255) would provide the approximate deviation of σ = 452 m/s for the 

abovementioned experiment. 

 

4.3 Verification of the phase velocity method employing the converted modes 

In the upcoming section, the numerical validation of the proposed phase velocity 

method will be presented. The major focus will be given to the method performance 

in case the analysed signal is surrounded by the wave packets of other modes. To 

achieve the purpose of this study, the phase velocities of converted A0 mode will be 

analysed, which arrive later than the direct S0 mode. 

To fulfil the scope of this research, the 3D finite element model of isotropic 

aluminium alloy 2024-T6 plate (600 mm × 200 mm × 2 mm) is considered. The top 

view of the analysed structure is presented on Fig. 4.3.1. The S0 mode was initially 

launched into the structure by applying the tangential in-plane nodal displacements to 

the shortest edge of the Al plate. To generate the converted A0 mode, the vertical 

36 mm wide (along x axis) crack type defect with depth of 66% of the plate thickness 

was introduced by duplicating the nodes of the mesh. It was shown by the various 
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researchers, that if a crack is not symmetrical to the middle plane of the plate 

according to the thickness, the mode conversion takes place upon the wave interaction 

with the notch and both S0 and A0 modes are expected as the reflected and transmitted 

waves (257). The defect was centred with respect to the short edge of the sample and 

situated at the distance of 200 mm from source of Lamb waves (see Fig. 4.3.1). 

 

Fig. 4.3.1. Illustration of the set-up of numerical aluminium plate FE model with the notch 

Throughout the simulations, 3D solid64 finite elements were used, which are 

defined by eight nodes having three degrees of freedom at each node. Once again two 

different scenarios employing the square pulse excitation were used as it was 

described in the previous section. At first the excitation pulse consisted of n1 = 3 cycles 

with central frequency of f1 = 150 kHz. Meanwhile in the second case, the Lamb waves 

were excited with n2 = 3 cycles at f2 = 200 kHz. The average mesh size was equal to 

0.8 mm, which corresponds to 13 nodes per wavelength for the slowest A0 mode at f1 

and 11 nodes per wavelength at f2. The integration step in time domain was 0.33 µs 

and 0.25 µs respectively, which produces a 1/20 of the period both at f1 and at f2. The 

variable monitored in this study was a vertical component of particle velocity (y) along 

the centreline of the sample. The waveforms for the phase velocity estimation were 

selected along the centreline of the sample at distances d1 = 240 mm and d2 = 360 mm. 

The B-scan images of the longitudinal (z) and vertical component (y) of the particle 

velocity, showing the S0 and converted A0 modes are presented in Fig. 4.3.2a,b. 

  
a) b) 

Fig. 4.3.2. The longitudinal (a) and vertical (b) component of particle velocity along the 

centreline of the sample in case of 150 kHz excitation 
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The simulated waveforms of the converted A0 modes at distances d1 and d2 in 

case of f1 = 150 kHz and f2 = 200 kHz excitation are presented in Fig. 4.3.3a,b. The 

selected time windows to cut the wave packet of single mode are indicated with 

vertical dashed lines. The magnitude spectra of windowed A0 mode at frequencies f1 

and f2 along with indicated reconstruction frequencies can be seen on Fig. 4.3.3c. 

Finally, the comparison of estimated DC with the theoretical calculations is shown on 

Fig. 4.3.3d. The results demonstrate a good match between the estimated results and 

theoretical phase velocities. The standard deviation of the reconstructed velocities is 

equal to σ = 47.3 m/s according to eq. 4.2.1. Overall the 32 velocity values were 

extracted, while 20 (63%) of them were within the standard deviation. 

  

a) b) 

 

 

c) d) 

Fig. 4.3.3. The simulated waveforms of converted A0 mode at distances d1 and d2 in case of 

150 kHz (a) and 200 kHz (b) excitation, the magnitude spectra of windowed A0 mode at 

different excitation frequencies (c), the combined reconstruction of phase velocity dispersion 

curve along with the theoretical estimation (d) 

As it was mentioned previously, if the proposed method is used to determine the 

dispersion relationship of unknown structure, it is recommended to analyse the first 

arrival. In such case the proper selection of time window is not a very serious problem 

as the modes tend to be well isolated. If the proposed method is used to identify 
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unpredicted modes, which are likely due to the presence of some defects, then the start 

and stop points may be selected employing the analytical model presented in the 

previous chapter. As it was demonstrated, the analytical model enables the wave 

propagation to be analysed in the defect-free structure. Thus, the comparison between 

analytical predictions and experimental measurements may give an idea where the 

time window should be positioned. 

The proposed method implicitly assumes that only one mode is present at the 

selected time window. Therefore, it is not so effective if more than one mode shares 

the same frequency and time range. On the other hand, it is attractive from the SHM 

point of view, since two measurement locations are required only for the phase 

velocity reconstruction. 

 

4.4 Analysis of the experimental multimodal signals in anisotropic structure 

In this section, the performance of the proposed phase spectrum method is 

validated qualitatively by analysing the experimental multimodal signals in an 

anisotropic structure. For this purpose, the same GFRP plate and set-up previously 

presented in Chapter 3, section 3.3 was used. Two waveforms were recorded along 

the wavepath (0° propagation) at the distances d1 = 773 mm and d2 = 895 mm from 

the source of Lamb waves (see Fig. 3.3.1). In this case the measurements were 

recorded at a single excitation frequency f = 100 kHz. The proposed phase velocity 

estimation method was used to extract velocities of four wave packets: direct S0, 

bottom reflected S0, left-top edge reflected S0 and direct A0 mode. The experimentally 

obtained waveforms at the distances d1 and d2 are presented in Fig. 4.4.1a,b. The start 

and stop points of time windows used to crop the wave packets are indicated by dashed 

squares.  

 
a) 

 
b) 

Fig. 4.4.1. The experimental waveforms obtained on GFRP sample along the wavepath at 

distances d1 (a) and d2 (b) 
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The reconstructed phase velocities of different reflections can be seen in 

Fig. 4.4.2a–d. The standard deviations for each case of reconstruction are summarized 

in Table 4.4.1. Note, the reconstructed velocity values below the cut-off frequency of 

S0 mode were not considered in the calculations of STD. 

  
a) b) 

  
c) d) 

Fig. 4.4.2. The reconstructed phase velocities of the S0 and A0 modes: S0 direct (a), S0 

bottom edge reflected (b), S0 left and top edge reflected (c), A0 direct (d) 

Table 4.4.1. The standard deviation of the estimated phase velocities for different 

GW mode packets 

Type of mode Standard deviation, σ (m/s) 

S0 direct 97.4 

S0 bottom edge 202.7 

S0 left and top edge 224.5 

A0 direct 51.5 

The results presented above (Fig. 4.4.2) were found to be in quite good 

agreement with theoretical calculations. Thus, the proposed technique can be used 

with a certain reliability to extract the phase velocities of GW. The results show, that 

the velocities of direct modes are closer to theoretical values in comparison to the 

reflected ones. The average deviation for the direct modes is approximately 75 m/s, 
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while for the reflected modes – 213 m/s. Several factors may influence the reliability 

of the results though. First of all, the selected time windows in Fig. 4.4.1a,b (dashed 

squares) may give an idea that this procedure is not very straightforward, especially 

for the reflected modes. As it turns out, in some cases part of the wave packet has to 

be cropped to get better velocity estimation. Another important factor is the 

propagation distance, which varies for modes arriving at different directions. It means 

that the variable d has to be predefined for each wave packet separately. If the 

propagation distance is not known in advance, an additional error will be obtained. 

The study revealed that the proposed velocity estimation technique gives an 

approximate experimental error of 4% in comparison to theoretical predictions. 

Meanwhile, for the incident modes, the error is always less than a 2.5%. For example, 

the 2D FFT method (152) gives an error of approximately of 1%. However, to achieve 

such accuracy, the authors used a set of 64 time series, spatially sampled at 1 mm. 

 

4.5 Conclusions of Chapter 4 

1. The modified method for phase velocity estimation based on existing phase 

spectrum techniques was developed. The proposed method enables the 

dispersion relationship in the –20 dB level bandwidth of the transducer to be 

reconstructed, employing the time series measured at two distinct locations. 

Thus it can be effectively used in SHM systems as the tool to estimate the 

actual velocity of GW modes in the structure and to identify unknown 

reflections. 

2. In contrast to the conventional phase spectrum technique, the proposed 

method is applicable to the narrowband transducers, maintaining the wide 

reconstruction bandwidth and accurate velocity values. This is achieved by 

reconstructing the velocities at harmonics of magnitude spectra only and by 

driving the actuator at several different frequencies.  

3. The proposed phase velocity estimation technique is applicable to flat 

structures with uniform thicknesses, which can be multi-layered, anisotropic 

or isotropic, including complex geometries. 

4. The proposed technique was validated with the numerical simulations and 

the experiments both on metallic and composite structures. It was determined 

that experimentally the velocities are estimated with an average spread of 

4%, compared to the theoretical predictions. The incident modes are 

reconstructed more accurately (with deviation up to 2.5%), while the 

reflected modes are spread out over a wider range of values, up to 6%. For 

the numerical signals, the estimated velocities were even closer to theoretical 

ones, producing an average deviation of 2%. 

5. The method developed in this research implicitly assumes that only a single 

mode is present in the selected time window. If more than one wave packet 

shares the same time and frequency content, the proper velocity 

reconstruction becomes impossible. On the other hand, the method 

demonstrated a good performance estimating the velocities of isolated, 

dispersive signals and might be effectively used in SHM systems, unlike the 

conventional zero-crossing and cross-correlation techniques.  
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5. A METHOD FOR DAMAGE DETECTION AND FEATURE 

EXTRACTION IN COMPOSITE STRUCTURES 

5.1 Motivation and background of the proposed method 

Once the behaviour of GW in the investigated defect-free structure can be fully 

explained, the next step forward is to detect the damage and to extract its features. The 

identification of damage can be described as a four step process that involves the 

information about the existence, location, type and severity of the defect. The 

detection and localisation of damage does not necessarily require the reference data 

from the damaged structure, meanwhile for characterisation of defect, the data from 

both undamaged and damaged structures is usually mandatory. For example, the 

presence of a defect can be identified by using the time reversal method (202), while 

the location of it can be determined using various imaging approaches, described in 

section 1.5. In most of the current SHM applications, the detection of damage simply 

relies on the algebraic difference between the current time trace and the reference 

baseline. It is assumed that subtraction allows the structural features to be removed, 

leaving the influence of damage. However, as those time traces are recorded at 

different environmental conditions and wear stages of the structure, such simple 

approach to detect the damage is not reliable, unless the additional compensation 

strategies, such as optimal baseline subtraction or baseline signal stretch (59) are 

applied. Moreover, such technique can only tell the existence of damage. Many 

authors have also used other approaches to detect and localise the damage as well, 

such as analysis of natural frequencies, mode shapes or wavelet post-processing. 

However, only a few of them are taking a step further to develop the indicators suitable 

to describe the features of damage, such as size and depth. This information is 

substantial for complete identification of damage, as well as for the prognosis of 

strength and lifetime of the structure. The lack of damage features makes the SHM 

systems ineffective, as not every imperfection present in the structure can be treated 

as critical. 

Among the attempts to describe the features of the damage, a lot of attention has 

been paid to assess delamination type defects, as they are common in composite 

structures. For example, Guo and Cawley (258) investigated the reflection and 

transmission of S0 mode signals as a function of defect positioning through the 

thickness of the laminate. They found that the presence of delamination affects the 

reflected signal of the S0 mode rather than the direct one. Similarly, Birt (259) studied 

the dependencies between the magnitude of the reflected S0 mode and the width of the 

delamination. Furthermore, Tan et al. (260) scanned the receiver along the 

delaminated area and found that the greater sensitivity is obtained in the case of a 

defect situated close to the surface. The research listed above formed an initial 

background for development of algorithms to characterize the damage. However, 

currently there are no widely known approaches that may be used to describe the 

remote delamination type defects, employing the time series captured at a few 

permanent locations. In this study, the SHM method to detect the delamination type 

defects and to extract the size and depth of it is proposed. It is a baseline method, 

based on the delay time estimation and constructive/destructive interference of the A0 
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mode, which propagates through delaminated area. In this case, the baseline is referred 

as a database of analytically calculated relationships between the parameters of A0 

mode and the features of damage, which is compared to the experimental data in order 

to describe the delamination. The proposed method employs the A0 mode, which 

ensures adequate sensitivity to such defects, since it possess a dominant out-of-plane 

component and smaller wavelength in contrast to the symmetrical modes. The 

proposed technique features one side access and can provide the information about 

the existence, depth and size of the damage employing a few time traces measured at 

a series of different excitation frequencies. In the upcoming few paragraphs, the 

general interaction of A0 mode with the delamination type defect will be briefly 

explained, followed by description of the proposed technique to detect and describe 

the damage. 

Let’s assume we have the composite plate with length l and thickness h as shown 

in Fig. 5.1.1. It will be analysed in a 2D approach, which means that the plate is 

infinite along the y axis. As it was mentioned previously, in SHM systems the 

transducers are attached to permanent positions on the structure and in contrast to 

conventional NDT, and surface scanning is not used. Hence, in this case, the 

considered problem will be analysed between two permanent positions on the 

structure – the source point at which the A0 mode is being introduced and the 

monitoring point, located beyond the damage. Consider that the delamination type 

defect is present in the analysed structure, which is l1 wide and situated at a distances 

of l0 and l2 from the source and monitoring point respectively, at the depth of h1 in 

respect to the top surface. The sketch of the discussed example is presented in 

Fig. 5.1.1. 

 

Fig. 5.1.1. The schematic diagram of considered example of the composite plate with 

delamination type damage 

In general, upon the interaction of the A0 mode with the delamination type 

defect, the reflection, transmission and mode conversion occurs at each end of the 

damage. In such way, at the leading edge of the damage, the initial A0 mode reflects 

back and splits into the wave packets that accordingly propagate above and below the 

defect. Moreover, mode conversion occurs at the leading edge, therefore part of the 

energy transforms into the S0 mode as well (see Fig. 5.1.2a). Similarly, at the trailing 

edge of the damage, both A0 and S0 modes are reflecting back, propagating forward 

and converting to each other (see Fig. 5.1.2b). The brief explanation of the GW 

interaction with a delamination type defect is graphically illustrated at Fig. 5.1.2. To 

simplify the task, in this study the directly transmitted wave packets of A0 mode at the 

monitoring point are analysed only.  



99 

  
a) b) 

Fig. 5.1.2. The graphic representation of A0 mode interaction with delamination type 

defect at the leading (a) and trailing edge (b) 

Based on the parameters of the transmitted A0 mode, such as propagation time 

and magnitude, the special indicators will be estimated to assess the size and the depth 

of the defect. Mathematically the first arrival of A0 mode at the monitoring point can 

be expressed as: 
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where UsA0(ω) is the frequency representation of the A0 mode upon its introduction 

into the structure; H(ω) is the frequency response of the analysed system; α(ω) is the 

attenuation function; cp(ω) is the phase velocity; l is the propagation distance; L is the 

separation between the source and the monitoring point (L = l0 + l1 + l2); kT01A, kT02A, 

kT10S and kT20S are the transmission coefficients for the A0 and S0 modes at the leading 

and trailing edges of the delamination respectively for the layer above and below the 

defect. The wave packet described by eq. 5.1.1 is A0 mode, which is a superposition 

of the signals, traveling above and below the damage, that converts to S0 mode at the 

leading edge and back to A0 at the trailing edge of the defect. Due to this reason, this 

wave packet UIA0(ω) arrives earlier compared to the direct transmission of the A0 

mode, as the S0 mode possess greater phase velocities at low frequencies (cp1S0>cp1A0 

and cp2S0>cp2A0). Consequently, the direct transmission of A0 mode can be written as: 
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The first part of eq. 5.1.1 and eq. 5.1.3 (UsA0(ω)·H(ω,cp0A0,L–l1)) describe the wave 

propagation in a defect free area, meanwhile the second part represent the converted 

S0 wave propagation in case of eq. 5.1.2 and direct A0 wave propagation in case of 

eq. 5.1.3 within the defect. In a similar way the transmitted S0 modes at the monitoring 

point can be expressed as well: 
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where UIS0(ω) and UIIS0(ω) are the wave packets which convert to S0 mode at the 

leading and trailing edge of the damage respectively. In general, the S0 mode has a 

weak out-of-plane component at low frequencies, therefore in this study the direct 

transmissions of the A0 mode, described by eq. 5.1.1 and eq. 5.1.3 were considered 

only. For the sake of simplicity, all the reflections and repetitive transmissions were 

not taken into the account. The interaction of the A0 mode with a delamination type 

defect is illustrated in Fig. 5.1.3, which represents the B-scan of vertical (a) and 

longitudinal (b) components of particle velocity, obtained along the top surface of the 

4 mm thickness GFRP sample, with the geometry corresponding to the one presented 

in Fig. 5.1.1. Note that only the wave packets UIA0(ω) and UIIA0(ω) will be analysed 

further to detect and describe the damage. 

An approach to estimate the existence of a defect. Based on the concept of 

guided wave interaction with delamination type defect, several observations may be 

outlined, which enables the damage to be detected and described. The results in 

Fig. 5.1.3 show that after the interaction with a delamination type defect, four directly 

transmitted wave packets can be captured at the monitoring point, situated beyond the 

damage: two weak S0 modes (UIS0(t) and UIIS0(t)) and two dominant A0 modes (UIA0(t) 

and UIIA0(t), see Fig.5.1.3a,b). It is obvious that if the structure is defect free, only the 

direct A0 or boundary reflected modes will be observed. Meanwhile, in the presence 

of delamination, the converted A0 mode (UIA0(t)) appears in the structure and arrives 

even faster than the direct A0 one (UIIA0(t)), due to the conversion to S0 mode at the 

defective area (see Fig.5.1.3a). Thus, in order to detect the presence of damage it is 

proposed to monitor the appearance of converted A0 mode UIA0(t) in front of the direct 

arrival UIIA0(t). The converted A0 mode UIA0(t) can be detected using the short time 

cross-correlation technique between the current time trace and the excitation signal. 
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The technique was previously described in Chapter 3, section 3.2, mathematically it 

can be expressed as: 
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where ue(t,τ) is the current time trace, captured from the structure; uref(t) is the 

reference excitation signal. In the absence of a defect, only the direct arrival UIIA0(t) 

will be detected using eq. 5.1.6. Meanwhile in the presence of delamination, two wave 

packets of same mode (UIA0(t) and UIIA0(t)) will be observed next to each other. 

  
a) b) 

Fig. 5.1.3. The illustration of A0 mode interaction with delamination: the B-scan images of 

vertical (a) and longitudinal (b) component of particle velocity along the top surface of the 

4 mm thickness GFRP sample 

The proposed approach to detect the existence of delamination is relatively 

simple and in general invariant to environmental conditions, as the likely temperature 

shifts will alter the arrival of all wave packets assuming that no temperature gradient 

is present in the structure. On the other hand, the proposed approach has some 

challenges to cope with as well. If the size of defect is relatively small compared to 

the wavelength, the converted UIA0(t) and the direct UIIA0(t) modes may be completely 

or partly overlapped in time domain. Thus, there is a minimum size of the detectable 

defect, which is a function of frequency and group velocities of A0 and S0 modes. It 

is presumed that the existence of a defect can be detected if the converted mode UIA0(t) 

is fully separated from the direct arrival UIIA0(t). It is noteworthy that in some cases, 

the converted A0 mode might be concealed due to low signal to noise ratio or 

interference with other reflected modes from structural boundaries as well. Hence, the 

abovementioned points have to be considered during design of the monitoring system. 

Method to estimate the depth of defect. In order to extract the depth of damage, 

the approach based on excitation of A0 mode at different frequencies and 
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constructive/destructive interference is proposed. As it was shown by eq. 5.1.3 the 

wave packet of direct A0 mode is a superposition of the waves traveling at the layers 

below and above the damage. If the delamination is asymmetrical (h1≠h2) the phase 

velocities at these layers are different as well (cp1≠cp2). The proof of change in the 

phase velocity upon the interaction with the defect can be seen in the zoomed B-scan 

image of the vertical component of the particle velocity, which is presented in 

Fig. 5.1.4. Beyond the defect, the modes from the different layers interfere with each 

other resulting in the single transmitted A0 mode UIIA0(t). The magnitude of this mode 

is proportional to the result of interference, which can be either in-phase, out-of-phase 

or intermediate, depending on the parameters of the defect. In general, the length and 

depth of the defect are related to each other and both of them influence the behaviour 

of GW simultaneously. However, some wave parameters, such as amplitude may 

appear to be more suitable to extract the depth, while others, like delay time – to 

estimate the length of the defect. Thus the idea of the proposed method to estimate the 

depth of damage relies on magnitude measurements of the direct A0 mode UIIA0(t) at 

different excitation frequencies (f1, f2, … fn). Note, that technique is only valid if 

delamination is asymmetrical h1≠h/2≠h2. 

 

Fig. 5.1.4. The zoomed region of the B-scan image of vertical component of particle 

velocity, showing the change in phase velocity upon the interaction with defect 

The proposed methodology to estimate the depth of delamination requires a 

baseline dataset, which would represent the analytical prediction of magnitude 

variation both due to the excitation frequency, depth and size of damage. Then the 

experimental measurements can be compared with the baseline data looking for best 

match. It is presumed that the baseline whose variation best matches the experiments 

is the one which gives the closest definition of damage depth in the structure. The step 

by step procedure of the damage depth estimation can be outlined as follows: 

1. The emitter E is driven at frequency f1, to introduce the A0 mode in the 

investigated structure. 

2. The time trace UA0(t) is received with the sensor Rref, which represents the 

structure without the damage. Meanwhile the other receiver Ri captures the 
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time history UIIA0(t), which represents the response of structure at monitoring 

point, beyond the likely defective area (i = 1…N, N – is the number of 

receivers, depending on the implemented arrangement). 

3. The ratio UA0expf1 of peak-to-peak amplitudes of waveforms UA0(t) and 

UIIA0(t) is estimated at the excitation frequency f1. 

4. The same procedure is repeated over for all available excitation frequencies 

f = (f1, f2, … fn). As the consequence, the experimental dataset UA0exp(f) = {f, 

UA0expf1, UA0expf2, …, UA0expfn} is collected. 

5. The experimental dataset UA0exp(f) is compared to the prescribed database of 

analytical predictions UA0ref(f,h,x) referred as the baseline (where h, x – are 

the depth and the length of damage respectively). Based upon this concept, 

the goal is to select the baseline that is the closest to the experimental data. 

The criteria to characterize the similarity of two datasets include the mean 

and standard deviation are as follows: 
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where hmin1 and hmin2 are the values that correspond to the delamination depth 

where the baseline best matches the experimental dataset; UA0ref(f,h,x) is the 

analytically calculated baseline dataset; UA0exp(f) is the experimental dataset; 

h and x are the depth and length of delamination respectively; mean and std 

denotes the mean value and the standard deviation. 

6. If the structure is defect-free, there will be no variation in the ratio UA0exp(f). 

Meanwhile if the variation in the magnitude ratio is observed, it can be 

related to the depth of the defect. 

In the in-situ applications, the magnitude of the time series can be altered due to 

the attenuation and external factors such as transducer bonding, environmental, 

operational conditions etc. The proposed approach enables the influence of the most 

external factors to be eliminated, as the two signals recorded at the same time on the 

same structure are divided at locations before and after interaction with the defect. In 

most cases the ratio of the latter time series should be invariant to the external factors. 

As soon as the depth of the defect is known, the length of it can be estimated further, 

using the approach described in the next paragraph. 

Technique to assess the length of defect. If the depth of the defect is known, 

the size of it can be estimated from the delay between the direct UIIA0(t) and converted 

UIA0(t) A0 modes, which can be denoted as ΔtA0. As mentioned above the A0 mode 

converts to the S0 at the leading edge of the delamination. Due to this phenomenon, 

the converted A0 mode UIA0(t) arrives first compared to the direct one UIIA0(t), because 
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the S0 mode possess a velocity greater than the A0 one. The separation ΔtA0 between 

the direct and converted A0 modes is proportional to the excitation frequency and 

propagation path of S0 mode, which itself is actually determined by the length of the 

defect (Fig. 5.1.5 for complete understanding). Thus, the delay time between wave 

packets UIA0(t) and UIIA0(t) at discrete excitation frequencies should be estimated in 

order to extract the length of damage. The time delay between two neighbouring wave 

packets can be estimated according to: 

        ,HTmaxargHTmaxarg
000 IAIIAA tUtUt

tt
  (5.1.9) 

where UIA0(t) and UIIA0(t) are the wave packets of converted and direct A0 mode 

respectively, and HT denotes the Hilbert transform. In most cases it should be 

sufficient to measure a delay at a single frequency only, especially if no major 

dispersion is present at the used frequency band. 

 

Fig. 5.1.5. The zoomed in region of the B-scan image of vertical component of particle 

velocity, showing separation between converted and direct A0 modes beyond the defect 

It is noteworthy that for the reliable operation of the method, again the direct 

and converted modes have to be separated to an adequate extent. Thus, there is a 

minimum size of defect that can be evaluated using this approach. Furthermore, it is 

important to bear in mind that in real-world situations the temperature shifts may alter 

the phase and group velocities of GW. If the influence of temperature appears to be 

different for asymmetrical and symmetrical modes, the delay ΔtA0 may vary as well. 

 

5.2 Analytical estimation of the baseline dataset 

As mentioned previously, the proposed technique to estimate the depth and size 

of delamination relies on a baseline, which means that the experimental signals must 

be compared to the model based analytical predictions to extract the features of the 

damage. In this chapter, the techniques to calculate the baseline datasets, which 

include the theoretical dependencies required to assess the depth and the length of the 
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defect, will be introduced. Two separate baseline datasets will be estimated, one for 

damage depth and the other for size assessment. 

In order to extract the depth of damage, the analytical dependencies between the 

magnitude of the transmitted A0 mode UA0ref(f,h,x), excitation frequency (f) and depth 

(h) at fixed defect lengths (x) will be calculated. Meanwhile for damage size 

description, the separation in time domain between the converted UIA0(t) and direct 

UIIA0(t) A0 modes as a function of defect length (x) and excitation frequency (f) will 

be estimated for the particular known depth (h). The baseline datasets have to be 

calculated for each investigated material separately including all possible excitation 

scenarios, defect sizes and through-thickness positions. In this study, for a better 

understanding, the estimation of baseline datasets will be demonstrated employing the 

2D GFRP plate. To achieve the purpose of the baseline estimation, the analytical 

approach to predict waveform that passes through a medium will be implemented and 

described in the following paragraphs. 

Technique to calculate the baseline dataset for defect depth assessment. To 

assess the depth of defect, the theoretical dataset of analytically predicted magnitude 

variations versus frequency at particular depths and defect lengths is required. In 

general, the goal is to analytically predict the part of eq. 5.1.3 that describes the 

propagation of A0 mode within the defect area. Eq. 5.1.3 can be written in a short form 

as: 
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where UA0ad(ω) and UA0bd(ω) represent the propagation of the A0 mode above and 

below the delamination respectively. The sum of wave packets UA0ad(ω) and UA0bd(ω) 

determine the amplitude of transmitted A0 mode UIIA0(ω). The waveforms UA0ad(t) and 

UA0bd(t) can be predicted analytically according to the theory of linear acoustics, which 

states that the output waveform of the system is the convolution of the input signal 

and system impulse response. Consequently, each of the signals UA0ad(t) and UA0bd(t) 

can be expressed by the equations: 
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where uref(t, fl) is the theoretical input signal at a particular excitation frequency 

(l = 1 ÷ M, where M is the total number of frequencies used to drive the emitter); 

α(f) is the attenuation function; xk is the propagation path that is equal to the length of 

the defect (k = 1 ÷ N, where N is the total number of length incrementations); cp(f,h1m) 
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and cp(f,h2m) are the phase velocities for the layer above (h1m) and below the defect 

(h2m), which depend on the amount of defect asymmetry; FT denotes the Fourier 

transform. The equations listed above enables the waveforms to be predicted, which 

exist at different frequency-thickness regions and propagates the distance equal to the 

length of the defect. The in-phase or out-of-phase sum of these signals define the 

magnitude of the transmitted A0 mode UA0ref(xk,h1m,h2m,fl) at excitation frequency fl: 
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Eq. 5.2.2–5.2.4 can be used to predict the magnitude of the directly transmitted A0 

mode at different defect depths, lengths and excitation frequencies by changing the 

appropriate parameters (cp(f,h1m), cp(f,h2m), xk and fl) in eq. 5.2.2 and eq. 5.2.3. 

To illustrate the estimation of baseline dataset, let’s consider the GFRP plate of 

thickness h = 4 mm, with the delamination type defects situated at the various depths 

as follows: h1m = mh/8, h2m = h–h1m, where m = 1, 2,…,3. Assume that the excitation 

frequency of the incident A0 mode varies starting from 50 kHz to 200 kHz with 

increments of 1 kHz. The graphic illustration of the magnitude of A0 mode 

UA0ref(xk,h1m,h2m,fl) as the function of excitation frequency fl at the discrete depths 

h1m = mh/8, h2m = h–h1m are illustrated in Fig. 5.2.1 and Fig. 5.2.2. The results are 

presented at the fixed defect lengths of x1 = 50 mm, x2 = 70 mm, x3 = 90 mm and 

x4 = 110 mm. The results demonstrate that the magnitude variation of transmitted A0 

mode depends both on the depth and length of the defect. However, as one might 

observe, the estimation of defect length is not so straightforward from these amplitude 

relationships. For example, if the defect is 0.5 mm below the surface, the magnitude 

variation versus frequency is almost identical at defect lengths of x3 = 90 mm and 

x4 = 110 mm (see Fig. 5.2.2). On the other hand, at any of the defect lengths the 

observed variations due to the depth are always different. It means that the amplitude 

variation is mostly suitable to estimate the depth rather than the length. 

  
a) b) 

Fig. 5.2.1. The magnitude variation of the transmitted A0 mode versus frequency at different 

defect depths in case the length of defect is equal to x1 = 50 mm (a) and x2 = 70 mm (b) 
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a) b) 

Fig. 5.2.2. The magnitude variation of the transmitted A0 mode versus frequency at different 

defect depths in case the length of defect is equal to x3 = 90 mm (a) and x4 = 110 mm (b) 

Technique to calculate the baseline dataset for assessment of defect length. 

Once the depth of the defect is known, the length of it can be estimated analysing the 

delay ΔtA0 between the direct and converted A0 modes. As in the previous case, the 

damage size estimation requires a baseline, which would represent the delay ΔtA0 

versus defect length xk at a particular frequency and damage depth. The closest match 

will represent the actual length of the damage. The delay time is proportional to the 

difference in group velocities of A0 and S0 modes. The arrival time of the direct tA0 

and converted tA0c A0 mode can be estimated using the simple relations: 
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where cgA0(fl,h), cgS0(fl,h) are the group velocities of the A0 and S0 modes at particular 

depth h and excitation frequency fl. Then the delay ΔtA0 as the function of frequency 

and defect length can be expressed as: 

     .,,
000 AcA,A lklklk fxtfxtfxt   (5.2.6) 

If again the 4 mm thickness GFRP plate is considered with the known defect 

depth of 1 mm below the surface (h12 = 1 mm, h22 = 3 mm), the arrival time of direct 

tA0(xk,fl) and converted tA0c(xk,fl) mode will be determined by the velocity at thicker 

layer h22, as it possess greater velocity. Then the dispersion curves of A0 and S0 modes 

at that particular thickness will look like that presented in Fig. 5.2.3a. The results in 

Fig.5.2.3a demonstrate, that at low frequency-thickness values, the velocities of both 

modes can be similar. Meanwhile, increasing with the frequency, the velocities remain 

separated by almost the same amount. As an example, in this case the delays may be 

measured at the excitation frequencies f1 = 50 kHz, f2 = 70 kHz, f3 = 190 kHz. The 

estimated length-delay relations at depth h12 = 1 mm, h22 = 3 mm and frequencies f1, f2 

and f3 are presented on Fig. 5.2.3b. As in the previous case, the experimentally 
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obtained delay values at different frequencies are compared with the analytically 

predicted baseline looking for the best similarity. 

  

a) b) 

Fig. 5.2.3. The group velocity dispersion curves of the A0 and S0 modes on 3 mm GFRP 

plate (a), the estimated delay values between the direct and converted A0 modes as a function 

of defect length and excitation frequency (b) 

 

5.3 Numerical and experimental verification of baseline estimation technique 

In the following chapter the analytical technique presented in the previous 

section, which can be used to estimate the amplitude variations due to the excitation 

frequency, length and depth of the defect is verified with the appropriate numerical 

simulations and experiments on the GFRP and aluminium samples. The goal of this 

validation is to prove that the assumptions made earlier, as well as the estimated 

amplitude variations correspond to the real-world situations. To achieve the purpose 

of this study, the numerically and experimentally estimated amplitude variations due 

to the increasing length of the defect at constant excitation frequency and depth are 

compared to the analytical predictions calculated with eq. 5.2.4. It is presumed that if 

a good match is achieved at one particular defect depth and excitation frequency, then 

the analytical results can be treated as trustworthy for the rest of the frequencies and 

depths as well. In the upcoming paragraphs, the numerical model and experimental 

set-up used for the validation will be briefly described followed by the appropriate 

comparison of the results. 

Numerical validation of the baseline dataset. To fulfil the scope of this study, 

a total number of 50 2D linear structural mechanics FE models were employed for an 

anisotropic GFRP plate with the dimensions of x = 2,000 mm, y = 4 mm. In this case 

it was presumed that the object is long in the z direction and the loads act in the xy 

plane, so the problem to solve was a plane-strain one. In each of the 50 models, 

delamination type defects were introduced 1.5 mm below the surface (h1 = 1.5 mm, 

h2 = 2.5 mm) by separating the appropriate nodes of the mesh. The length of the 

delamination x varied from 10 mm to 500 mm with increment of 10 mm, yielding a 

total number of 50 numerical models. The delamination was centred horizontally 

along the x axis of the investigated sample. Throughout the simulations, 2D structural 
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solid plane42 finite elements were used. The spatial size of the element was equal to 

0.5 mm, which corresponds to the 26 nodes per wavelength if the slowest A0 mode at 

80 kHz central frequency is considered. The excitation signal in all cases was a 

Gaussian envelope tone burst of 3 cycles and a central frequency of 80 kHz. The A0 

mode was introduced by applying the normal out-of-plane nodal displacements to the 

edge of the sample. The integration step in time domain was 0.625 µs, which is 1/20 

of the period at 80 kHz central frequency. The sketch of the numerical model used in 

this study is presented in Fig. 5.3.1. 

 

Fig. 5.3.1. The sketch of the numerical model used for validation of analytical predictions 

The variable monitored in this study was a vertical displacements (y) at the nodal 

locations before (x1 = 500 mm, y1 = 4 mm) and beyond (x2 = 1,500 mm, y2 = 4 mm) the 

defect (see Fig. 5.3.1). The peak-to-peak amplitude ratio of A0 mode at these nodal 

points was compared to the analytical predictions estimated with eq. 5.2.4. In the 

analytical calculations (eq. 5.2.2 and eq. 5.2.3), the DC of 1.5 mm and 2.5 mm GFRP 

plate was used to define the phase velocities for the layer above (h1m) and below the 

defect (h2m). The theoretical input signal uref(t, fl) was a Gaussian envelope tone burst 

of 3 cycles and a central frequency of 80 kHz. The length of the defect ranged from 

1 mm, to 500 mm with increments of 10 mm. Attenuation α(f) and coefficients kT01A, 

kT10A, kT02A and kT20A were ignored. The numerically and analytically estimated 

amplitude variations due to the change of defect length in case the delamination is 

positioned 1.5 mm below surface can be seen in Fig. 5.3.3a, which is presented at the 

end of this section. The solid line in the results presented below stands for analytical 

predictions, meanwhile the dashed line represents the numerical simulations. 

Experimental verification of the baseline dataset. In addition to the numerical 

calculations, the experiments on a custom made aluminium alloy plate with 

dimensions of 1250 mm × 600 mm × 5 mm were carried out as well. A special 

aluminium sample with an artificial air gap was produced in order to obtain the 

response adequate to that with the delamination type defect. Such simple and well 

known material was deliberately selected for simplicity of controlling the size and 

properties of the artificial defect. In the production of the sample, two aluminium 

sheets with thicknesses of 2 mm and 3 mm were bonded together, to produce a total 

thickness of 5 mm. The air gap at the interface of the sheets was introduced at 

particular locations of the sample by machining a thin wedge shaped groove. The 

lateral dimensions of the air gap were ranging from 35 mm to 335 mm, which enabled 

the delamination type defect of variable size to be simulated. The sketch of the 

experimental set-up used for validation purposes is presented in Fig. 5.3.2. 
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The experimental investigation was performed using low frequency ultrasonic 

transducers (130 kHz) operating in a thickness mode. The transducers were arranged 

in a pitch-catch configuration and attached perpendicularly to the surface of the 

sample to introduce A0 mode. To achieve reliable and uniform acoustic contact 

between the transducer and the specimen, special spring type adjusters were used. The 

transmitter and receiver were linked together and scanned along the short edge of 

artificial defect as it is shown in Fig. 5.3.2. The results of experiment, the set of 

waveforms at different defect lengths, was collected. The peak-to-peak amplitude of 

each time trace was compared to the reference time history captured at the same basis 

on the defect free region. 

 

Fig. 5.3.2. The illustration of experimental set-up used to validate the analytical predictions 

For the analytical predictions, the DC of 2 mm and 3 mm aluminium plate was 

used to define the phase velocities for the layers above (h1m) and below (h2m) the defect 

in eq. 5.2.2 and eq. 5.2.3. The theoretical input signal uref(t, fl) was a Gaussian 

envelope tone burst of 3 cycles and a central frequency of 130 kHz. As in the previous 

case, the attenuation α(f) and coefficients kT01A, kT10A, kT02A and kT20A were ignored. 

The length of the defect xk varied from 1 mm, to 400 mm with increments of 1 mm. 

The experimentally and analytically estimated amplitude variations due to the change 

of defect length can be seen in Fig. 5.3.3b. Again, the solid and the dashed lines 

represents the analytical and experimental results respectively. 

The results presented Fig. 5.3.3 demonstrate a quite good agreement between 

the numerical, experimental and analytical predictions, especially below the defect 

lengths of 200 mm. The numerical calculations (Fig. 5.3.2a) demonstrated good 

agreement between the values of amplitude ratio UA0, meanwhile, the experimental 

estimations (Fig. 5.3.2b) showed a good match in terms of periodicity of local extrema 

in the ratio UA0. Hence, it can be presumed that the analytically calculated baselines 

can be used with some certain confidence to detect the defects smaller than 200 mm. 

The mismatch in the amplitude ratio between the analytical and experimental 

estimations, which can be observed in Fig. 5.3.2b, may be due to the ignored 

transmission coefficients in eq. 5.2.2 and eq. 5.2.3. These coefficients depend on the 
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material, frequency, depth of defect and conversion of energy to other modes, thus 

they have to be estimated each time prior to the investigation of any structure. The 

estimation of actual values of coefficients kT01A, kT10A, kT02A and kT20A is not very 

straightforward, as they are different at the leading and trailing edges of the damage. 

Thus, the estimation of k values was out of the scope of this study. In the following 

section, the procedure of detecting and describing the damage will be demonstrated 

with the numerical models that contain delaminations of different size and depth.  

  

a) b) 

Fig. 5.3.3. The amplitude variation due to the size of defect: the analytical predictions along 

with numerical verification on the GFRP sample (a), the analytical estimations together with 

experimental validation on the aluminium sample (b) 

 

5.4 Numerical validation of performance of the proposed method 

In the following chapter, the procedure on how the defects can be detected and 

distinguished from each other will be demonstrated utilising the proposed method. 

For this purpose, two separate 2D GFRP numerical models both with dimensions of 

2,000 mm × 4 mm will be considered. For the sake of better understanding, let’s 

denote them as “sample No. 1” and “sample No. 2”. Each of the considered models 

contain delaminations of different sizes and through-thickness locations. In “sample 

No. 1”, the x1 = 70 mm wide delamination is introduced 1 mm below the top surface 

(h11 = 1 mm, h21 = 3 mm). Meanwhile, “sample No. 2” has a defect of x2 = 90 mm, 

located at a depth of 1.5 mm (h12 = 1.5 mm, h22 = 2.5 mm). In both cases the 

delamination was centred horizontally along the x axis of the investigated sample. The 

sketch of the considered cases is presented in Fig. 5.4.1. 

Throughout the simulations, 2D structural solid plane42 finite elements were 

used. In each of the investigated cases the frequency sweep excitation employing the 

Gaussian envelope tone burst of 3 cycles was used. The excitation frequencies ranged 

from f1 = 50 kHz to fn = 200 kHz with increments of 10 kHz. Hence, 16 different 

excitation frequencies were used for each of the considered models. The spatial size 

of the element in all cases was constant and equal to 0.5 mm, which corresponds from 

37 to 12 nodes per wavelength for the slowest A0 in a frequency range of f1,  f2, …, fn. 

The A0 mode was introduced into the structure by applying the normal out-of-plane 

nodal displacements to the edge of sample in the same way as it was demonstrated in 
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Fig. 5.3.1. The integration step in time domain varied from 1 µs for the lowest 

excitation frequency f1 = 50 kHz, to 0.25 µs for fn = 200 kHz. The variable monitored 

in this study was a vertical displacements (y) at the nodal locations r1 (x1 = 750 mm, 

y1 = 4 mm) and r2 (x2 = 1250 mm, y2 = 4 mm), where r1 is the waveform before the 

defect, meanwhile r2 is the waveform after interaction with the defect. In the following 

sections estimations of the existence, depth and size of the defect will be 

demonstrated. 

  

a) b) 

Fig. 5.4.1. The graphic representation of investigated cases: “sample No. 1” with 70 mm 

wide delamination located 1 mm below the surface (a), “sample No. 2” with delamination of 

90 mm at depth of 1.5 mm (b) 

Defect detection. As it was mentioned previously, in order to detect the 

existence of a defect, it is proposed to monitor the appearance of converted A0 UIA0(ω) 

mode, which arrives faster than the direct A0 UIIA0(ω). In this case both defects can be 

reliably found at the frequencies of 130 kHz and above. However, for the sake of 

simplicity, the results will be presented for the frequency f9 = 130 kHz only. The 

vertical component of the particle velocity at nodal point r2 for both of investigated 

samples is presented in Fig. 5.4.2a,b. The short-time cross-correlation between the 

current time trace and the excitation signal (see eq. 5.1.6) is presented in Fig. 5.4.3c,d. 

  
a) b) 

Fig. 5.4.2. The vertical component of the particle velocity at nodal point r2 beyond the defect 

for “sample No. 1” (a), “sample No. 2” (b) 



113 

  
a) b) 

Fig. 5.4.3. The short-time cross-correlation between the current time trace and the excitation 

signal for “sample No. 1” (a) and “sample No. 2” (b) 

The results above demonstrate, that in both cases the converted A0 mode can be 

easily detected using the frequency of f9 = 130 kHz and the correlation coefficient 

threshold of 0.8 and above, if the estimated arrival of the direct A0 mode is known. 

The magnitude of converted UIA0(ω) mode is –10 dB for “sample No. 1” and – 4 dB 

for “sample No. 2” relative to the direct arrival UIIA0(t). For the proposed technique to 

function properly, it is recommended to estimate the short-time cross-correlation for 

each excitation frequency to reliably detect the likely appearance of UIA0(t) mode. 

Estimation of defect depth. In order to estimate the depth of the defect, the 

procedure described in section 5.1 is employed. The analytical baseline is calculated 

according to eq. 5.2.2–5.2.4 for the defect lengths x1 = 10 mm, x2 = 11 mm, …, 

xN = 100 mm and defect depths h11 = 0.5 mm, h12 = 1 mm, h13 = 1.5 mm for the same 

set of excitation frequencies (f1 = 50 kHz, f2 = 60 kHz, …, fn = 200 kHz). Then the hmin1 

and hmin2 are calculated using eq. 5.1.7 and eq. 5.1.8 to estimate the depth of damage. 

The graphic illustration of umean(h,x) and ustd(h,x) at different lengths and depths is 

presented in Fig. 5.4.4.  

The criteria to estimate the actual depth of defect is based on the selection of the 

average umean(h,x) value which is closest to zero and the minimum of ustd(h,x) (see 

eq. 5.1.7 and eq. 5.1.8). The estimated hmin1 and hmin2 values for “sample No. 1” and 

“sample No. 2” at different depths are summarized in Table 5.4.1. 

 The results presented in Table 5.4.1 show that values of hmin1 and hmin2 may be 

used to discriminate the depth of damage. For example, it can be observed that for 

“sample No. 1” (Fig. 5.4.4a,b) hmin1 is close to zero for the depth h12 = 1 mm (dash-dot 

line in Fig. 5.4.4a), meanwhile hmin2 has a minimum at the same depth as well 

(dash-dot line in Fig. 5.4.4b). Hence, the estimated depth of delamination for “sample 

No. 1” is 1 mm, which corresponds to the actual depth of the damage. Similar 

observations may be made for “sample No. 2”. The hmin1 and hmin2 possess the lowest 

values at the depth h13 = 1.5 mm (dashed line in Fig. 5.4.4c,d), which is in agreement 

with the actual depth of damage. As one might observe, the values presented in 
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Table 5.4.1 are relatively close to each other, however they indicate the correct depth 

of delamination in both cases, despite the investigated sample being very thin (4 mm) 

and the excitation frequencies were quite low (up to 200 kHz, wavelength of A0 mode 

up to 6.1 mm). 

  
a) b) 

  
c) d) 

Fig. 5.4.4. The mean and deviation values of difference between the experimental and 

analytical baseline: the results for “sample No. 1” with defect located 1 mm below the 

surface (a,b), the results for “sample No. 2” with delamination situated at depth of 1.5 mm 

(c,d) 

Table 5.4.1. The hmin1 and hmin2 values for “sample No. 1” and “sample No. 2” which 

are used as a criterion to estimate the depth of delamination 

 Sample No. 1 Sample No. 2 

hmin1 hmin2 hmin1 hmin2 

h11 = 0.5 mm, 

h21 = 3.5 mm 
0.195 0.033 0.179 0.137 

h12 = 1 mm, 

h22 = 3 mm 
0.03 0.018 0.344 0.091 

h13 = 1.5 mm, 

h23 = 2.5 mm 
0.034 0.035 0.158 0.036 
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Evaluation of the defect length. As the depth of defect for both samples is 

known, the length is estimated by measuring the delay between the converted UIA0(t) 

and direct UIIA0(t) A0 mode. The delays are measured according to the maximum 

envelope values of each wave packet, using eq. 5.1.9. In this particular case due to a 

large amount of data, the delay values are estimated at a single excitation frequency 

f9 = 130 kHz and then compared to the analytical baselines calculated by eq. 5.2.6 to 

extract the length of the damage. 

The vertical component of the particle velocity at nodal point r2 for 

“sample No. 1” and “sample No. 2” are presented in Fig. 5.4.5a,b. The picture shows 

the wave packets of converted UIA0(t) and direct UIIA0(t) A0 mode, along with the 

estimated delay values according to the Hilbert envelope. The analytically estimated 

delay versus the length of the defect at depth h12 = 1 mm for “sample No. 1” and 

h13 = 1.5 mm for “sample No. 2” can be seen in Fig. 5.4.5c,d respectively.  

  

a) b) 

  
c) d) 

Fig. 5.4.5. The vertical component of the particle velocity at the nodal point r2 for “sample 

No. 1” (a) and “sample No. 2” (b) showing the converted and direct A0 modes along with an 

estimated delay values and the analytically obtained delay versus defect length for “sample 

No. 1” (c) and “sample No. 2” (d), showing the estimated size of damage 
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The results demonstrate that the estimated delay values correspond to the defect 

length of 67.6 mm for “sample No. 1”, meanwhile for “sample No. 2” the delay 

indicates the length of 83.4 mm. The results demonstrate that the average error in the 

length estimation is approximately 5% relative to the actual size. The amount of error 

depends on the proper selection of dispersion relations required for analytical 

predictions, as well as the accuracy of delay estimation from the experimental data. 
 

5.5 Conclusions of Chapter 5 

1. The model based baseline method to detect and describe the delamination 

type defect was proposed, exploiting the frequency sweep excitation, mode 

conversion and constructive/destructive interference of the A0 mode. The 

proposed technique features one side access and can provide the information 

about the existence, depth and size of the damage even at a relatively narrow 

frequency bandwidth. 

2. The proposed method is limited to the detection of delamination type defects 

on flat, uniform thickness structures only, where the defect is located 

anywhere but in the middle across the thickness of the sample. On the other 

hand, it can be used to detect and describe the damage on both isotropic and 

multi-layered anisotropic structures, possessing complicated geometries. 

3. The special analytical method to create a baseline dataset, required to extract 

the depth and length of defect was developed. The baseline dataset enables 

the amplitude and delay time variation due to the size, depth of defect and 

frequency of excitation for any 2D investigated structure to be predicted. 

Furthermore, the analytically calculated baselines were validated with 

appropriate numerical simulations and experiments showing a good 

agreement, especially for the defects smaller than 200 mm. 

4. The performance of the proposed method was demonstrated and verified 

detecting and describing two delamination type defects of different lengths 

and depths. It was demonstrated, that the depth of the damage can be 

estimated analysing the amplitude variations of the transmitted A0 mode, 

meanwhile the size can be extracted from the delay time between the wave 

packets of converted and direct A0 modes. The results of numerical 

validation demonstrated that the size of defect can be reconstructed with an 

error of approximately 5%. 

5. The study revealed several limitations of the proposed method as well. First 

of all, the wave packets of converted and direct A0 modes have to be 

separated from each other in time domain in order to be able to detect and 

estimate the size of damage. Furthermore, for correct damage depth 

estimation it is important to carefully set the values of transmission and 

reflection coefficients k at the leading and trailing edges of the defect. The 

actual values of these coefficients depend on material, frequency, depth of 

the defect and energy conversion to other modes. Finally, the error in the 

damage depth and length estimation is directly proportional to the error in 

setting the phase velocity, which is required for calculation of the baseline. 
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6. A TECHNIQUE TO SIMULATE THE RESPONSE OF 

DELAMINATION TYPE DEFECTS 

6.1 Motivation and background of the proposed technique 

The design of any structural health monitoring system is a multi-step process 

that involves: the definition of damage that has to be detected; choice of the physical 

measurands and damage sensitive features; formulation and validation of the 

developed methods and installation to the in-service structures. Currently there are 

many ultrasonic SHM methods available, which are capable of detecting defects of 

different kinds employing various physical measurands and signal processing 

techniques. Most of them are well tested and have demonstrated a feasibility in the 

controlled laboratory environments, which presumably reproduces the real-world 

conditions. The vast majority of the laboratory studies involve detection of defects, 

such as cracks, corrosion or delaminations. To get the response of the defect, special 

samples are usually produced by introducing some special artificial inserts in the 

structure of an object. In such way, the developed SHM system can be tested and 

validated. However, the progress of these methods towards the in-field use is still 

limited, as the laboratory and real-world environments are never the same. Due to this 

reason, upon the installation of any SHM system, it has to be somehow re-validated, 

with the general purpose to make sure that the performance of it is the same as it is 

supposed to be. During the implementation phase of the SHM system, it is usually 

scaled, going from the compact laboratory samples, to the real structures, hence the 

confirmation test of correctness of the system design becomes an important feature. 

However, the in-service structures can no longer be damaged or affected by any other 

means that are usually available in the laboratory environment. Moreover, during the 

exploitation of the monitoring system, most parts of it including the transducers, 

bonding and hardware tend to degrade, thus performance of the in-service SHM 

systems have to be checked periodically as well. In contrast to SHM, the conventional 

NDE systems are always calibrated first, employing known calibration blocks, prior 

to testing of the in-field structures. Whereas the calibration of the SHM system is an 

open and challenging task, since currently there are no available calibration standards. 

Thus, the verification of the SHM systems is usually limited to the proof of simple 

functioning. 

The aim of this study was to develop a theoretical calibration method that would 

be suitable to proof the performance and to test the sensitivity of the in-field SHM 

systems. The method proposed in this research has a general purpose to 

non-destructively imitate the response of a delamination type defect. In such a way, 

the performance of the in-service SHM system can be tested and the sensitivity to the 

defects of different sizes can be estimated without damaging the structure. The idea 

of the proposed method relies on the hypothesis, that the effect of wave trapping inside 

the delaminated area with some limitations can be reproduced with the artificial 

calibration block of certain geometry and size attached to the surface of the structure. 

For the sake of better understanding, let’s again analyse the structure, which is 

presented in Fig. 6.1.1. Assume that the analysed structure holds the delamination 
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type defect of width l1, the edges of which are situated at the distances l0 and l2 in 

respect to the source of guided waves and the monitoring point respectively. 

 

Fig. 6.1.1. The sketch of the analysed problem of guided wave interaction with delamination 

If the A0 mode is introduced into the structure, the directly transmitted wave 

packet UdIA0(ω) at the monitoring point can be expressed mathematically as the 

superposition of two wave packets, traveling above and below the damage: 
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where UsA0(ω) is the frequency representation of the A0 mode upon its introduction 

into the structure; H(ω,cp,l) is the frequency response of the analysed system; α(ω) is 

the attenuation function; cp(ω) is the phase velocity; l is the propagation distance; L is 

the separation between the source and the monitoring point (L = l0 + l1 + l2); kT01, kT02, 

kT10 and kT20 are the transmission coefficients at the leading and trailing edges of the 

delamination for the layers above and below the damage respectively; kR10 and kR20 

are the reflection coefficients in the layers above and below the damage, which are 

required to describe the trapped wave. The first part of eq. 6.1.1 

(UsA0(ω)·H(ω,cp0A0,L-l1)) represent the propagation of the A0 mode in the defect free 

area, meanwhile the second part (kT01·H(ω,cp1A0,l1)·kT10+kT02·H(ω,cp2A0,l1)·kT20) 

describe the transmission below and above the damage. Upon the interaction of the 

A0 mode with the delamination, the wave packet of A0 mode gets trapped inside the 

defect by reflecting back and forth multiple times. Due to this reason, the decaying 

repetitive transmissions of the A0 mode will be observed at the monitoring point as 

well. Thus, similarly to eq. 6.1.1, the first repetitive transmission or in other words the 

second wave packet of A0 mode UdIIA0(ω) at the monitoring point can be described as: 
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 (6.1.3) 

Such repetitive wave transmission behaviour happens until the transmitted wave 

packet is completely attenuated. If Ng repetitive transmissions of the A0 mode are 

considered, then eq. 6.1.3 can be re-written in a form as follows: 
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Note that eq. 6.1.1 and eq. 6.1.4 describe the repetitive wave transmission only in the 

absence of mode conversion, which inevitably happens at each end of the defect. The 

main purpose of this study is to develop a method to reproduce such repetitive wave 

transmission at the monitoring point defined by eq. 6.1.4 (N≥1), without damaging 

the structure. It is noteworthy that it is impossible to non-destructively reproduce 

direct A0 mode transmissions defined by eq. 6.1.1, which is delayed due to presence 

of damage. However, it will be demonstrated later that the method proposed in this 

research enables the transmission of subsequent wave packets to be reproduced in 

terms of ToF as it was described in eq. 6.1.4 (N≥1). For the graphic illustration of the 

goal of this study, assume that the A0 mode is introduced into the 2 m long and 4 mm 

thick GFRP plate with the 150 mm delamination situated 1.5 mm below the surface. 

The typical B-scan image along the surface of the sample will look like that presented 

in Fig. 6.1.2a. The results in the latter figure demonstrate that multiple reflections of 

A0 mode are inside the delaminated area, which produces the multiple transmissions 

beyond the defect as well. The received signal at the distance of 1.25 m on the surface 

of the sample is presented in Fig. 6.1.2b. This picture illustrates the aim of this study, 

which is to reproduce multiple repetitive transmissions (UdIIA0(t), …, UdNgA0(t)) of the 

A0 mode (see wave packets in square dashed boxes), yet without intervention into the 

structure. 

  
a) b) 

Fig. 6.1.2. The B-scan image of the vertical component of the particle velocity on GFRP 

plate. The 150 mm long delamination is situated 1.5 mm below the top surface (a) and the 

appropriate signal acquired on the surface of the sample at the distance of 1,250 mm, 

showing the wave packets that are intended to be non-destructively reproduced (b) 

Note, that in general the mechanism of guided wave interaction with 

delamination is much more complicated, as the mode conversion occurs after each 
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wave reflection (see intermediate reflections in Fig. 6.1.2b). However, in this study, 

the analysis is limited to the repetitive transmission of the A0 mode only, neglecting 

the conversion to other modes. Moreover, the reproduction of the shape or the 

amplitude of the wave packet was out of the scope of this study, as the main focus 

will be given to the estimation of the correct ToF, which itself is related with the length 

of the damage. 

The sketch of the proposed configuration for non-destructive imitation of 

“trapped” wave behaviour is presented in Fig. 6.1.3. The proposed configuration 

consists of two rectangular blocks of any material, attached to the surface of the 

sample, where each of them is devoted to imitate the wave propagation at the layer 

above and below the damage respectively. 

 

Fig. 6.1.3. The proposed configuration for non-destructive imitation of the “trapped” wave 

behaviour, which is presumably adequate to the structural damage 

To prove the point of this study, let’s mathematically describe the wave 

transmission for the structure presented above. The directly transmitted wave packet 

at the monitoring point can be expressed as: 
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where L is the separation between the source and the monitoring point (L = l0 + l2). As 

it can be observed from Fig. 6.1.3 and eq. 6.1.5, the direct wave propagates in a defect 

free structure, thus UDIA0(ω) will never be equal to UIIA0(ω) (UDIA0(ω) ≠UIIA0(ω)). It 

means that the proposed configuration cannot be used to reproduce the directly 

transmitted wave, which is delayed due to the presence of the damage. On the other 

hand, the 1st repetitive transmission at the monitoring point for the proposed 

configuration can be expressed as: 
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(6.1.6) 

In order to prove that trapped wave phenomenon can be imitated with the proposed 

configuration, let’s now analyse and mathematically compare the cases that are 

graphically illustrated in Fig. 6.1.4. In this case, only the first repeated transmission 

in the structure with a defect and the structure with a beam attached to the surface is 
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considered. For the sake of simplicity, the wave propagation in the layer above the 

damage and one beam is taken into the account only.  

  
a) b) 

Fig. 6.1.4. The investigated case to proof the adequacy of the proposed configuration to the 

structural damage in terms of wave trapping: the defective structure (a) and the structure with 

a beam attached to the surface (b) 

Hence, the first repeated transmission (N = 1) at the monitoring point for the defective 

structure (Fig. 6.1.4a) can be expressed as: 
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where KΠd = kT01·kT10·(kR10)2. Taking into the account eq. 6.1.2, the expression 6.1.7 

can be rearranged into: 
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In a similar fashion, the first repeated reflection for the structure presented in Fig. 

6.1.4b can be written as: 
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where KΠI = kT01·kT10·kR20, lx and cpxA0 are the length and the phase velocity of a beam, 

attached to the surface of the structure. From eq. 6.1.8 and 6.1.9 it follows that in 

terms of the trapped wave behaviour, the imitation of the defect is adequate to the 

defective case if: 
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The left side of eq. 6.1.10 represent the defect imitation case, meanwhile the right side 

describe the defective case. Using eq. 6.1.10, the parameters of the beam (length and 

phase velocity) can be calculated, which makes it adequate to the layer above the 

damage. If the beam attached to the surface of the sample is made of different material, 

then the parameters of it have to be matched to the properties of the structure in the 

appropriate layer within the delamination. From eq. 6.1.10 it can be written that: 
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The equation above can be rearranged into the form of: 
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Consider that carbon steel is selected as the material of a beam. If the phase velocity 

dispersion relationships are known (cpxA0 = cpsteel), then the parameters of a beam can 

be estimated by minimizing a function: 
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where d is the thickness of the attached beam. In a similar way, the parameters of the 

second beam, which describe the wave propagation below the damage can be defined 

as well. As the consequence, the proposed set-up can be used as a tool to imitate the 

presence of damage, as it enables repeated transmissions of A0 mode to be reproduced. 

The proposed method is limited to reproduce trapped wave behaviour only, since 

neither the directly transmitted wave nor the mode conversion are considered in this 

case. On the other hand, such construction can be positioned anywhere on the 

investigated structure and may be beneficial as a tool for testing the correctness of 

developed damage detection methods upon SHM system installation to an in-service 

structure. The parameters of the attached beams (length, thickness) can be related to 

the depth and size of the structural damage, hence defects of various sizes can be 

reproduced without intervention into the material. 

 

6.2 Numerical validation of the proposed technique 

In this section, the proposed method to reproduce the trapped wave behaviour 

will be validated with the numerical finite element simulations. To complete the goal 

of this verification, two numerical models will be compared, where one of them 

includes the structural damage, while the other one is the beam attached to the surface. 

The waveforms at specific locations on both structures will be compared in terms of 

ToF and the adequacy of the proposed set-up will be estimated. In the following 

paragraphs, the employed numerical models will be briefly described. The 

propagation of the A0 mode in a 2D GFRP plate with dimensions of 2,000 mm × 4 mm 

was considered in this validation. 

Description of numerical model for the defective sample. The numerical model 

of the defective sample consists of 150 mm long delamination type defect situated 

1.5 mm below the top surface of the sample. The defect was virtually produced by 

separating appropriate nodes in the mesh of the FE model. The parameters of the 

model, such as the size of an element, excitation signal, material properties and 

integration step in time domain were the same as described in section 5.3. The variable 

monitored in this study was a vertical component of the particle velocity (y) along the 

top surface of the structure. 

Description of numerical model of the structure with the attached beams. In 

this case, the defect free 2D GFRP sample was considered, with the beams attached 
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to the surface of the structure. To check the adequacy of proposed set-up two separate 

models were created here. In the first model one beam adjusted to be adequate to the 

layer below the damage (possessing the thickness of 2.5 mm) was attached to the 

surface only. Meanwhile in the second model, two beams were bonded to the surface, 

where each of them correspond to the layer below and above the defect. Note that all 

the parameters of the GFRP, such as the excitation, numerical integration and so on 

were the same as in the previous model, except that two beams were bonded to the 

surface instead of separating the nodes in the mesh. The carbon steel was selected as 

the material of the beam with the following properties: the Young’s modulus: 

212.8 GPa, the Poisson’s ratio: 0.287, the density: 7,800 kg/m3. The parameters of the 

beams were calculated using eq. 6.1.13. As the consequence it was estimated that the 

carbon steel beams with dimensions 358.8 mm × 6 mm and 358.8 mm × 9.4 mm may 

be adequate to the 150 mm long delamination, situated in the GFRP sample 1.5 mm 

below the top surface. The first beam represents the 150 mm × 1.5 mm layer in the 

GFRP, while the second beam corresponds to the layer with dimensions of 

150 mm × 2.5 mm. Thus in the first model, the beam with dimensions of 

358.8 mm × 9.4 mm was attached to the surface only. Whereas in the second model 

two beams were bonded at a time. The sketch of the considered cases in this study are 

presented in Fig. 6.2.1. To ensure the acoustic contact between the beam and the 

structure, a one element layer of elastic fluid was used with the properties: the 

Young’s modulus: 0.75 kPa, the Poisson’s ratio: 0.49, the density: 1,000 kg/m3. The 

length of the contact area between the GFRP and steel beam was set to 2 mm.  

  
a) b) 

Fig. 6.2.1. The sketch of considered numerical models for verification of proposed method: 

one beam set-up, which corresponds to the layer below the damage (a) and two beam set-up 

which each represents the layer above and below the defect (b) 

In this case the variable monitored in this study was again a vertical component 

(y) of the particle velocity along the surface of the sample. The B-scan images of the 

vertical component of the particle velocity in case of structural damage and attached 

single beam (as it was shown in Fig. 6.2.1a) are presented in Fig. 6.2.2a and 
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Fig. 6.2.2b respectively. The results indicate, that multiple repetitive transmissions of 

the A0 mode are observed in both cases. At the first sight it may seem that the B-scan 

images presented below are completely different as many more wave packets can be 

observed in the case of structural damage. However, in case of SHM system the end 

user does not operate with the B-scan data, since the transducers are bonded to the 

permanent positions. It will be demonstrated later that the time series for both of the 

investigated cases can be very close to each other at some monitoring points on the 

structure, of course with some limitations.  

  
a) b) 

Fig. 6.2.2. The B-scan image of the vertical component of the particle velocity along the top 

surface of the sample in case of structural damage (a) and the single beam attached to the 

surface (b) 

As the main goal of this study is to reproduce the wave “trapping” in terms of 

ToF between the subsequent wave packets, the waveforms at monitoring points 

located on the surface of the sample at coordinates x1 = 1,250 mm, y1 = 4 mm were 

further compared. The graphic illustration of the time series from the defective sample 

and the one with a single beam on the surface is presented in Fig. 6.2.3a. Meanwhile 

Fig. 6.2.3b represents the comparison in case two beams are attached at a time. The 

results in Fig. 6.2.3 show that the repetitive transmissions of the A0 mode arrive faster 

if the single beam is attached to the surface only compared to the case of structural 

defect. On the other hand, it can be observed that if two beams are bonded at a time 

the arrival time of repetitive reflections is almost identical in both cases. 

In order to mathematically measure the match between the two-time series, 

presented in Fig. 6.2.3, the cross-correlation technique, described in section 3.1 by 

eq. 3.2.1 and eq. 3.2.3 was employed. Throughout the calculations of the short time 

cross-correlation, the width of time window was equal to 5 periods of the excitation 

signal. The delay between the two wave packets was estimated by measuring the lag 

of correlation function at the window position indicating the best match. The match 

between the signal from the damaged structure and the sample with the attached single 

beam is presented in Fig. 6.2.4a. Similarly, the comparison for the damaged structure 

and two beams bonded at a time can be seen in Fig. 6.2.4b. The estimated delay values 
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for both cases are summarized in Table 6.2.1. The results in Table 6.2.1 indicate that 

in case a single beam is attached to the surface, the wave packets of the first and 

second repetitive A0 mode transmission arrives faster by approximately 25μs 

compared to the damaged structure. If two beams are attached simultaneously, the 

ToF in both cases are almost identical. Furthermore, the correlation itself is better for 

the two beam set-up as well. Thus it can be concluded, that the proposed set-up 

enables the trapped wave behaviour to be quite accurately reproduced in terms of the 

arrival time of each repetitive transmission. 

  
a) b) 

Fig. 6.2.3. The comparison of the time series in the defective structure and the sample with 

the attached beams in case single (a) and two beams (b) are mounted to the structure 

  
a) b) 

Fig. 6.2.4. The short time cross-correlation between the waveform obtained from the 

damaged structure and the one from the structure with the single (a) and two beams (b) 

As one might observe, the mismatch in terms of ToF may increase for each 

subsequent repetitive transmission, however, in most cases it is sufficient to obtain at 

least two repetitive reflections to estimate the size of the damage. In addition, the 

proposed set-up enables the amplitudes of the repetitive transmissions to be equalized 
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as well by adjusting the coupling material and contact area between the beam and the 

structure in the proposed set-up. In this particular case the steel beam was bonded to 

the GFRP using an elastic fluid as a coupler and 2 mm contact area. However, if 

transmission and reflection coefficients KΠd (see eq. 6.1.7) are known, the contact area 

and the coupling can be selected in the way that KΠd = KΠI. Then the amplitude of 

reflected transmissions in the case of attached beams should be close to the response 

amplitude from the structural damage, thus the sensitivity to the defect can be 

estimated using the proposed approach. 

Table 6.2.1. The estimated mismatch of the wave packet arrival time between the 

damaged structure and the one with single and two beams attached to the surface 

Wave packet 

Defective sample vs single beam Defective sample vs two beams 

Correlation 

coefficient 

Window 

position, 

(µs) 

Time 

delay, 

(µs) 

Correlation 

coefficient 

Window 

position, 

(µs) 

Time 

delay, 

(µs) 

1st repetitive 

transmission 
0.86 1,163 22.5 0.98 1,188 0 

2nd repetitive 

transmission 
0.77 1,394 26.88 0.92 1,401 1.875 

 

6.3 Conclusions of Chapter 6 

1. The technique to non-destructively imitate the delamination type defect was 

proposed, which reproduces the trapped wave behaviour with beam 

structures attached to the surface of the sample. The technique developed in 

this research can be used as a tool to proof the correctness of the performance 

of the SHM systems upon installation to an in-service structure, without 

damaging it. 

2. It was mathematically demonstrated that under the certain circumstances the 

proposed set-up may be adequate to the structural damage in terms of ToF 

between the repetitive trapped wave transmissions. It was also shown that 

the beams can be produced from any material and related to the parameters 

of the structural damage such as the length and the depth. As a consequence, 

the proposed method enables the sensitivity of the SHM system to defects of 

different sizes to be evaluated. 

3. The proposed technique was validated by the numerical simulations, 

comparing the wave propagation in the sample holding structural 

delamination and the same material with the attached beams. It was 

demonstrated that if two beams are bonded to the surface at a time, where 

each of them represents the appropriate structural layer above and below the 

damage, the ToF of the repeated transmissions of A0 mode are almost 

identical in both cases. 

4. The method proposed in this research is limited to the imitation of trapped 

wave behaviour as it cannot be used to reproduce the direct transmission and 

the appropriate mode conversion at each end of the defect. 

  



127 

GENERAL CONCLUSIONS 

1. In this thesis, the set of novel ultrasonic signal analysis and interpretation 

methods, which are mandatory in order to properly analyse the complex 

behaviour of GW, to extract the features of detected damage and to validate the 

monitoring system, were proposed. The methods developed in this research, aim 

to solve the most essential problems in the field of guided wave structural health 

monitoring. 

2. The source influence on the frequency response of guided wave modes was 

demonstrated and explained. It was shown with the numerical simulations and 

the experiments that the frequency response of each guided wave mode is a 

product of the spectrum of the excitation pulse and the excitability function, 

which itself depends on the loading type, material properties and size of source. 

A novel excitability function estimation technique based on Fourier analysis of 

particle velocity distribution on the excitation area was proposed, which enables 

the response amplitude as a function of frequency to be estimated separately for 

each mode under any type of complex surface loading. The technique developed 

in this study was validated with the appropriate numerical simulations and 

experiments and can be further used as a tool to explain and predict differences 

in frequency bandwidths of each guided wave mode. 

3. The analytical model, which enables the propagation of GW in plate-like 

structures to be better understood, analysed and interpreted has been developed. 

The proposed model allows the propagation of separate GW mode packets in 

the plate-like rectangular structures to be analysed, to calculate the arrival times 

of the wave packets after multiple reflections at virtual receivers positioned 

anywhere on the object and to retrace the wave propagation paths at specific 

time intervals. It was demonstrated that the proposed model offers tremendous 

improvements in terms of solution time of transient wave propagation problems, 

compared to the commonly used FE method and proves high accuracy in terms 

of ToF of different wave packets if the initial phase and group velocities are 

properly defined. 

4. The method for phase velocity estimation based on the phase spectrum 

technique was developed. The proposed method enables the dispersion relations 

in the –20 dB level bandwidth of the transducer to be reconstructed, employing 

the time series measured at two distinct locations. In contrast to the conventional 

phase spectrum technique, the proposed method is applicable to the narrowband 

transducers, maintaining the wide reconstruction bandwidth and accurate 

velocity estimation. It was determined that experimentally the velocities are 

estimated with an average spread of 4%, compared to the theoretical predictions. 

The incident modes are reconstructed more accurately (with a deviation up to 

2.5%), while the reflected modes are spread out over a wider range of values, 

up to 6%. Due to the abovementioned reasons the proposed method can be 

effectively used in SHM systems as the tool to estimate the actual velocity of 

GW modes in the structure and to identify unknown reflections. 
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5. The model based baseline method to detect and describe the delamination type 

defect was proposed, exploiting the frequency sweep excitation, mode 

conversion and constructive/destructive interference of the A0 mode. It was 

shown that the magnitude of the direct transmission of the A0 mode appeared to 

be significantly sensitive to the depth of damage, meanwhile the delay time 

between the direct and converted transmission of A0 mode can be reliably used 

for damage size extraction. The investigations revealed that the proposed 

features of A0 mode can tell the depth and the size of damage with an error of 

approximately 5% even in relatively thin structures, at wavelengths that are at 

least twice the thickness of the investigated structures. 

6. The technique to non-destructively imitate the delamination type defect in terms 

of wave trapping inside the defect was proposed, which uses the two-beam 

structure attached to the surface of the sample, where each of them represents 

wave propagation in the layer above and below the defect. The proposed set-up 

was mathematically validated showing that under certain circumstances it may 

be adequate to the structural damage in terms of ToF between the repetitive A0 

wave transmissions. This technique can be used as a tool to proof the correctness 

of the performance of the SHM systems upon installation to an in-service 

structure, without structural intervention. 

 

GUIDELINES FOR FUTURE WORK 

The methods proposed in this research creates a framework of the guided wave 

based structural health monitoring system, that can be used in practical applications. 

However, some further improvements could be made that would increase the practical 

adaptability: 

 The proposed baseline method to detect and describe the delamination type 

defects demonstrated good performance and sensitivity to the features of the 

defect on the 2D model, however, it should be tested and verified further 

using the 3D FE technique and experiments on the sample with natural 

structural damage.  

 It is expected, that the proposed damage detection method could be applied 

to detect the multiple parallel delaminations as well, since they are common 

consequence of impact damage.  

 The developed damage detection technique requires the transducer 

arrangement and data collection schemes, that would allow adequate surface 

coverage to be ensured and reliable detection of the defects on the in-service 

structures. 

 Further developments could be made for the proposed non-destructive defect 

imitation technique, which demonstrated good feasibility on the FE model, 

yet it has not been validated experimentally.  

It is anticipated that the abovementioned research areas will be addressed during 

the post-doc internship.  
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