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INTRODUCTION

Relevance of the research
Frailty syndrome is characterized by decline in the physiological reserve and

vulnerability to internal (e.g., disease, surgery) and external (e.g., activities of daily
living) stressors [1,2]. Frailty is becoming one of the most important challenges of the
aging population [3]. It is manifested in 17% of community-dwelling adults over 60
years old [4]. The syndrome is associated with an increased risk of adverse outcomes,
such as impaired mobility, disability, falls, and death [5]. Fortunately, evidence grows
that frailty progression can be stopped and even reversed by the timely prescription of
an appropriate exercise training program [6].

Older adults with frailty referred to open-heart surgery are prone to postopera-
tive complications and often need longer recovery [7]. Considering the dramatically
increasing number of older frail patients who enter cardiac rehabilitation programs,
it becomes a serious issue deserving research attention [8]. In particular, this patient
population suffers from a reduced muscle mass, lack of endurance, and decreased
physiological functions which complicate cardiac rehabilitation and preclude the uti-
lization of regular exercise training programs [9].

Exercise programs can benefit older adults with frailty, but the type, intensity,
and duration of physical activity sessions, as well as exercise recommendations for
home training, need to be carefully tailored to each individual to achieve rehabilita-
tion goals without causing harm [10, 11]. However, in some cases, exercise training
can become complicated. For example, after open-heart surgery, aerobic and strength
exercises are typically recommended to protect the sternum, but frailty may limit the
use of the conventional training methods. Instead, a tailored program may be needed
to increase the muscle strength, weight, and mobility. Therefore, there is a need for
informative and convenient tools to assess the effectiveness of exercise training pro-
grams, particularly when programs are intended for vulnerable patients, and they are
continued outside the clinical setting.

Despite the availability of various indexes and questionnaires covering physical,
physiological, cognitive, and social components, there is no universally accepted stan-
dardized tool for frailty assessment [12]. Additionally, clinical tools often require the
involvement of healthcare specialists, which greatly limits their applicability beyond
the clinical settings. As clinical tools are unsuitable for use outside of the clinical envi-
ronment, there has been a growing interest in studying new markers, often obtained by
using wearable devices, which could enable earlier identification of frailty [13]. Tradi-
tionally, research has been focusing on physical markers as the first component to get
manifested in frail adults, with the slowness of gait being among the most informative
in identifying frailty [13].

The growing body of evidence suggests that measures beyond those describing
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properties of physical activity may better reflect the physiological reserve [14]. Recent
systematic review and meta-analysis reported that various heart rate (HR) measures
reflecting autonomic function, namely, orthostatic heart response, spectral analysis of
low and high frequency domains of HR, HR change after standing, and baroreflex
sensitivity, were impaired in frail older adults compared to non-frail individuals [15].
Considering that HR measures can be affected by both psychological and physical
stressors, they could serve as valuable markers for evaluating the impacts of medical,
physical, and nutritional interventions in frail patients.

Frailty is a complex syndrome which encompasses various components, includ-
ing bthe physiological reserve, physical abilities, and the cognitive function. There-
fore, it is essential to accurately identify the specific frail components in an individual
patient and implement personalized exercise programs to strengthen the affected in-
dividuals [16]. Unfortunately, this area of research has not yet received the necessary
attention, and still there is a lack of algorithmic solutions to that problem.

Scientific-technological problem and working hypothesis
Currently, the clinical practice for assessing frailty is limited to in-clinic eval-

uations. However, wearable technology has advanced to the point where frailty can
potentially be assessed outside of the clinical setting. However, there are several chal-
lenges which arise when attempting to assess frailty in daily living by using wearables.
These challenges include detecting physical stressors and the evaluation of the status
of physiological functions attributed to frailty.

Scientific-technological problem: How can information obtained from wearable-
based biosignals be utilized to assess an individual’s frailty status in activities of daily
living?

The working hypothesis: Wearable-based monitoring is a suitable alternative to
clinical tests for assessing frailty outside of the clinical setting.

Research object
The research is based on the development and investigation of signal processing

algorithms for unobtrusive monitoring of the frailty status and the related physiologi-
cal functions.

The aim of the research
To develop, investigate, and validate algorithms for unobtrusive monitoring of

the frailty status in the activities of daily living.

The objective of the research is to develop, investigate, and validate signal pro-
cessing algorithms which enable the assessment of an individual’s frailty status on the
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grounds of wearable-based biosignals. Specifically, the thesis proposes and explores
algorithms for:

1. detecting physical stressors;

2. assessing kinematic properties;

3. assessing the heart rate response to physical stressors;

4. identifying the frailest physiological functions.

Scientific novelty
With an increasing number of patients with frailty being referred for surgery,

there is a need for convenient tools which would help to improve the understanding
of the effectiveness of exercise-based rehabilitation [9]. Accordingly, this doctoral
thesis proposes and investigates a wearable-based approach for unobtrusive assess-
ment of frailty. The majority of previous research has focused on identifying frailty
or pre-frailty in older adults. However, the feasibility of capturing subtle changes in
the frailty status during exercise training has not yet been deeply explored. This the-
sis fills this research gap by examining the suitability of kinematic and HR response
measures for tracking the frailty trajectory during exercise-based rehabilitation, by
specifically focusing on walking and stair-climbing as representative activities. The
approach has been comprehensively explored on patients after supervised inpatient re-
habilitation with an increased intensity, as well as unsupervised home-based exercise
training with a reduced intensity. The potential applications of this approach include
assessing the frailty status during home-based exercise training and remote monitoring
of frail patients for early the detection of frailty impairment.

The main finding of the analysis of algorithms for assessing the kinematic prop-
erties by using wearable-based biosignals is that most kinematic measures improved
in the majority of patients who also exhibited an improvement in their frailty status
after inpatient rehabilitation. No notable change in kinematic measures was observed
after completing the home-based exercise training program, which corresponds well
with only a minor deterioration in the frailty status as indicated by a clinical reference.

The main finding of the analysis of algorithms for assessing the heart’s response
to physical stressors is that the HR response improved in most patients after a surgery.
The improvement was the most obvious in the intervention group to whom home-
based exercise training was assigned. This suggests home-based training as a proper
intervention to improve the physiological reserve. When considering the applicability
of submaximal tests, walking and stair-climbing were found to be the most suitable to
induce the HR response sufficient enough to follow the trends of measures observed
when using veloergometry.

Finally, an interpretable machine learning-based algorithm for identifying clin-
ically informative features that provide information on the frailest components of an
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individual patient has been proposed. The use of interpretable machine training al-
lows to associate the frailty status with specific frailty-describing features, which, in
turn, can provide additional information to healthcare specialists for the development
of personalized training programs. Consequently, the proposed approach has the po-
tential to enhance the comprehension of frailty in individual patients and facilitate the
prescription of tailored interventions for more effective rehabilitation.

Practical significance
1. The proposed approach for assessing and interpreting the frailty status can be

valuable in the following applications:
(a) Assessment of the frailty status in the course of home-based exercise train-

ing.

(b) Remote monitoring of frail patients aiming at an early detection of frailty
impairment.

(c) Aid for clinicians in designing tailored exercise training programs.

(d) Aid for clinicians in understanding the frailest components of an individ-
ual patient.

2. The approach and algorithms provided in this thesis were developed in the
framework of the projects Unobtrusive technologies for monitoring of auto-
nomic nervous system function in patients with frailty syndrome - FrailHeart
funded by the Research Council of Lithuania (S-MIP-20-54, 2020–2022) and
Interpretable Machine Learning for Assessing Frailty Syndrome - intFrail funded
by the Research and Innovation Fund of Kaunas University of Technology (Project
Grant No. PP2022/58/2, 2022).

Approval of the research
This doctoral thesis relies on two main articles published in the international

scientific journals with the impact factor referred in the Clarivate Analytics Web of
Science database. A further group of two articles, published in the international sci-
entific journals with the impact factor, is closely related to the research topic. The
essential results have been presented in BIOSIGNALS 2021: 14th International Con-
ference on Bio-inspired Systems and Signal Processing and 19th Nordic-Baltic Con-
ference on Biomedical Engineering and Medical Physics. The paper presented at the
BIOSIGNALS 2021 conference was awarded the title of the best student paper.

The statements presented for defense

1. Stair-climbing and walking can be submaximal alternatives to conventional clin-
ical exercise tests, and the type of physical activity can be determined in free-
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living conditions by analyzing acceleration signals acquired when using wear-
ables.

2. Tracking the frailty trajectories during exercise training after an open-heart
surgery by relying on kinematic measures obtained from a single wearable sen-
sor can be an alternative to the conventional clinical exercise tests.

3. HR response to physical stressors can be considered for assessing the effective-
ness of exercise training programs in patients with frailty.

4. The identification of the frailest components by using an interpretable machine
learning-based approach is a feasible strategy.

Structure of doctoral thesis
The doctoral thesis is organized as follows. Section 1 is designated to the anal-

ysis of the relevant scientific literature with respect to the clinical significance of
frailty and the currently used approaches for frailty assessment. Section 2 presents
the database used for the development, investigation, and validation of the algorithms.
Sections 3 and 4 describe the algorithms and the results for the identification of phys-
ical stressors, the assessment of kinematic properties, the assessment of HR response,
and the identification of the frailest components.

Parts of the thesis have been quoted verbatim from the previously published
articles: [17, 18].

The thesis consists of 112 pages, 20 figures, 14 tables. It features 168 references.

Work done in collaboration
Research on the characterization of kinematic properties was performed in col-

laboration with Dr. Monika Butkuvienė (Biomedical Engineering Institute, KTU),
whereas research on the characterization of the HR response was performed in collab-
oration with Assoc. Prof. Raquel Bailón-Luesma (Biomedical Signals Interpretation
and Computational Simulation group, University of Zaragoza, Spain). Database of
wearable-based biosignals and reference clinical data was recorded by healthcare spe-
cialists (Eglė Tamulevičiūtė-Prascienė, Aurelija Beigienė, Vitalija Barasaitė) under
the supervision of Prof. Raimondas Kubilius representing Kulautuva Rehabilitation
Hospital of the Hospital of Lithuanian University of Health Sciences Kaunas Clinics.
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1. OVERVIEW

This chapter introduces the clinical relevance of assessing frailty. It emphasizes the
potential role of cardiac autonomic imbalance on the acceleration of frailty progres-
sion. Furthermore, the chapter overviews various approaches towards wearable-based
assessment of frailty, specifically focusing on gait, balance, and heart rate measures.
Emphasis is placed on the need to develop unobtrusive means for routine frailty as-
sessment outside of the clinical settings.

1.1. Clinical Relevance and Remaining Challenges

Frailty is a condition commonly observed in older adults and is characterized by a
decline in the physiological reserve and an increased susceptibility to physical stres-
sors [19]. This decline occurs across multiple organ systems, and results in various
adverse healthcare outcomes, including mobility loss, disability, emergency visits, in-
stitutionalization, hospitalization, and death [1]. Although frailty is often chronic and
progressive, it is not always a one-way progression towards complete decline. Proper
interventions, such as exercise training, have shown potential to improve or even re-
verse frailty, thus indicating that frailty may be amenable to intervention strategies
aimed at mitigating adverse effects [6, 20, 21].

Clinical observations indicate that the relationships between the manifestations
of frailty may be structured into a cycle of naturally occurring events that perpetuate
themselves [22]. The theory proposes that the cycle of frailty starts with the mani-
festation of some trigger which initiates a cascade of events leading to an aggregated
syndrome. It was also presumed that different initial manifestations may lead to vary-
ing rates of progression towards frailty [23]. The concept of the cycle of frailty was
first postulated by Fried as illustrated in Fig. 1.1. The various physiological functions
taking part in the cycle form the basis for the frailty assessment tool currently known
as Fried’s phenotype.

The growing evidence suggests that cardiac autonomic imbalance may be an
accelerating factor of the frailty progression. Despite the multitude of studies, the
physiological relationship of cardiac autonomic control and frailty still remains un-
clear, mostly because both cardiac autonomic dysfunction and cardiovascular disease
may be contributors to frailty. This reasoning can be supported by studies demonstrat-
ing a higher prevalence of cardiac autonomic dysfunction in both frail and pre-frail
older adults [24]. A reduced cardiac autonomic control may lead to lower physical ac-
tivity, reduce the ability to maintain homeostasis, and thus increase the vulnerability
to stressors [14, 25, 26].

The increasing number of frail patients entering cardiac rehabilitation programs
is a major concern as frail adults are at a higher risk for surgical interventions, pro-
longed recovery, postoperative complications, and in-hospital mortality [8]. Frailty
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Figure 1.1. Cycle of frailty involving cardiac autonomic imbalance.

in patients who have undergone an open-heart surgery, where sternum protection is
mandatory, can impact the type and intensity of exercise training programs, often lim-
iting the use of regular programs [9]. Furthermore, individual responses to tailored
exercise training can vary, and therefore necessitate convenient and informative tools
to routinely assess the effectiveness of a training program, especially when training
continues at home.

Exercise programs that include resistance, aerobic, balance, and coordination
exercises have shown promise in improving the gait, balance, and physical perfor-
mance in adults with frailty, although the optimal characteristics of these exercises
(such as the type, frequency, and duration) remain unclear according to previous stud-
ies [3, 10, 27, 28]. Determining the optimal exercise characteristics is challenging due
to the variability in program preparation across different rehabilitation clinics, which
complicates the comparison of various programs.

To tackle these challenges, it is crucial to focus research efforts on developing
comprehensive and practical approaches for frailty assessment that can be applicable
outside of the clinical setting.

1.2. Clinical Assessment of Frailty

Various tools and approaches are used in clinics to assess frailty, typically involving
the evaluation of multiple aspects of an individual’s physical, psychological, cognitive,
and social functioning (see Table 1.1). Fried’s frailty phenotype is commonly used
as a clinical indicator of the frailty status, particularly in studies involving physical
activity-describing measures [13], since it solely focuses on such physical components
as weight loss, weakness, slow gait speed, exhaustion, and low physical activity [22].
Other tools, such as the Edmonton Frail Scale (EFS), also account to social, cognitive,
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and nutritional aspects [29]. Despite being a subjective approach, the EFS has shown
high reliability and validity in various studies [12, 29, 30].

Table 1.1. Summary of the most commonly applied indexes to assess frailty status.

Index Components evalu-
ated

Assessment
type

Need of special
equipment

Studies

Fried frailty phenotype Physical Objective Needed [31]

Tilburg frailty indicator Physical, cognitive,
social

Mixed Needed [32]

Groningen frailty indicator Physical, cognitive,
social

Subjective Not needed [33]

Edmonton frail scale Physical, cognitive,
social, clinical

Mixed Not needed [29]

PASE Physical Objective Needed [34]

FES-I Physical, clinical Subjective Not needed [35,36]

PASE – physical activity scale for the elderly; FES-I – falls efficacy scale-international.

1.3. Wearable-based Assessment of Frailty

1.3.1. Stressors in patients with frailty

Stressors in patients with the frailty syndrome refer to internal or external factors or
conditions which can put additional strain on their already compromised functioning.
These stressors can worsen the frailty status and increase the risk of adverse health
outcomes.

The primary internal stressors experienced by patients with the frailty syndrome
are illnesses, infections, surgeries, and medical procedures [37]. Due to their weak-
ened immune systems, these patients are more susceptible to infections or illnesses,
which can further deteriorate their physical condition and increase the risk of compli-
cations. Additionally, surgical procedures or other medical interventions can impose
a significant physical stress, as their frailty may render them more vulnerable to the
physiological and metabolic demands of the procedure, as well as the postoperative
recovery [38].

Out of external stressors, walking and stair-climbing can be considered as com-
mon physical stressors due to the challenges they pose to their compromised physical
functioning. Frailty can impact an individual’s ability to walk or climb stairs safely
and efficiently. Based on the percentages reported in [39], 18% of older adults with
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frailty could not walk one bus-stop distance (about 50 m) and climb a flight of stairs.
Other physical stressors, such as those experienced in the environment (e.g., extreme
temperatures or inadequate housing conditions) can also impact the physical health of
patients with the frailty syndrome, as they may have reduced ability to adapt or cope
with such stressors [2].

1.3.2. Assessment of gait and balance

Gait and balance are fundamental aspects of the motor function which play a criti-
cal role in mobility and the overall functional ability in older adults. Gait refers to
the pattern of movement while walking, including the rhythm, speed, and coordina-
tion of steps whereas balance refers to the ability to maintain a stable posture under
stationary or dynamic conditions. Gait and balance can be influenced by various fac-
tors, including age-related physiological changes, musculoskeletal disorders, sensory
deficits, and cognitive decline [40]. These factors contribute to changes in the gait
patterns, such as a decreased step length, a reduced walking speed, altered foot place-
ment, and increased stride variability. Additionally, older adults may exhibit impaired
balance control, manifested by decreased postural stability, increased postural sway,
and reduced ability to recover from perturbations [41].

Numerous assessment tools are available for evaluating the gait and balance.
These may include clinical assessments, such as fixed distance walk, timed up-and-go
tests, and balance tests, as well as advanced technologies, such as wearable sensors
and motion analysis systems [42]. Obviously, utilizing specialized equipment for rou-
tine assessments of frailty is not practical. Therefore, there are ongoing efforts to gain
a deeper understanding of how frailty is manifested and to develop novel approaches
which can be applied in non-clinical settings.

A longitudinal study on frailty development revealed exhaustion, weakness, low
physical activity, and a slow gait among the initial signs to appear [21]. Consequently,
it is unsurprising that impairment in the physical function, as reflected in the measures
of physical activity, gait, and balance, has been found to be valuable in distinguishing
between different frailty statuses [13, 43].

The prevalent approach for estimating the physical activity, gait, and balance
measures involves the use of wearable inertial sensors to capture kinematic signals [12].
Among these measures, the gait speed has been identified as the most powerful indi-
cator for identifying frailty, while other physical activity measures show moderate
correlation with the frailty status [13,43,44,45]. Balance measures, on the other hand,
tend to be less powerful than physical activity and gait measures in discriminating
frailty statuses [13,43]. The most common kinematic measures are given in Table 1.2.

Typically, wearable-based kinematic measures are estimated during various clin-
ical tests which usually require supervision [39]. However, considering monitoring
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Table 1.2. Summary of kinematic measures.

Measure Wearable-based
implementation

Kinematic
property

Main findings related to the
measure

Studies

Gait speed Simple Gait One of the most sensitive mea-
sures for identification of pre-
frailty

[13, 42, 43,
43, 46, 47,
48, 49, 50]

Cadence Simple Gait Motor function assessment
measure characterizing mobil-
ity of lower extremities

[42, 43, 47,
48, 49, 51]

Mean amplitude
deviation

Simple Gait Measures physical activity lev-
els, disregarding the physical
activity type

[44, 52]

6MWD Simple Gait Can be used to assess functional
performance in free-living

[53]

Number of steps Simple Gait Used to evaluate endurance, can
be assessed for different time
intervals

[43, 53]

Gait irregularity Simple Gait Describe the predictability of
walking cycles

[51, 54]

Stride length Complex Gait Reported significant reduction
for patients with cognitive
frailty

[42, 43, 47,
49, 50]

Swing phase % Complex Gait Reported reduction of measure
in elderly patients

[48, 49, 50,
54]

Stance phase % Complex Gait Reported increase of measure in
elderly patients

[48, 49, 50,
54]

Timed up-and-go
test

Complex Gait Used to assess functional
performance in patients with
frailty

[29]

Sway range Simple Balance Reported increase of measure in
patients with frailty

[13, 43, 54,
55]

Sway area Simple Balance Reported increase of measure in
patients with frailty

[13, 43, 55]

Sway irregularity Simple Balance Reported increase of measure in
patients with frailty

[50, 55]

Lissajous index Simple Balance Evaluates the symmetry of
movement during physical
activity

[56]

Step width Complex Balance Associated with frailty [47, 57]
Double support
%

Complex Balance Association between frail and
not frail, and prefrail and not
frail

[47, 49]

CoP length vari-
ability

Complex Balance Can be assessed during physical
activity or during quite standing

[43]

Asymmetry Complex Balance Considerable cognitive effort is
needed to maintain gait symme-
try

[50, 51, 54]

outside the clinical environment, it may be more relevant to focus on common daily
life activities, such as walking or stair-climbing, which are integral to most individu-
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als’ daily routines, except for severely frail adults [39].

1.3.3. Assessment of the autonomic nervous system

The autonomic nervous system (ANS) functions through a series of complex neural
pathways involving nerve cells, or neurons, which transmit signals to various target
tissues and organs throughout the body. The ANS plays a critical role in regulating
many vital physiological processes in the body, and in ensuring the proper functioning
and adaptation to the changing conditions, and its complex and coordinated activities
are essential for maintaining the overall health and well-being [58].

The ANS is divided into two main branches: the sympathetic nervous system
and the parasympathetic nervous system. The sympathetic nervous system is acti-
vated during stress, excitement, or danger and it is responsible for the ‘fight-or-flight’
responses in preparing the body for emergencies by increasing HR and diverting blood
flow to muscles. On the other hand, the parasympathetic nervous system is responsi-
ble for the ‘rest-and-digest’ responses, thus promoting relaxation, digestion, and other
essential bodily functions during the periods of rest and recovery [58].

Since the cardiovascular function is regulated by the ANS, cardiac autonomic
imbalance may contribute to frailty worsening [14, 26, 59, 60], which, in turn, may
decrease the capacity to maintain homeostasis when exposed to physical stressors [14,
61]. The ANS controls the rate at which the sinoatrial node produces electrical im-
pulses; thus, abnormal HR characteristics, such as increased resting HR, decreased
the HR complexity and variability, a slower and weaker HR response to physical ac-
tivity, and attenuated HR recovery after exercise, often relate to the autonomic imbal-
ance [14, 62].

The HR response to walking was investigated and linked to the frailty status [63].
The findings revealed that frail older adults exhibited a slower and weaker HR re-
sponse to walking compared to non-frail individuals, which indicates the potential of
HR-based markers for improving the frailty assessment. However, the study only fo-
cused on normal and rapid walking, and thus the impact of other physical stressors on
the HR response remains to be explored. Furthermore, the available data only cov-
ered a short time frame of 5 seconds before and 10 seconds after the walking activity,
which may limit the reliable characterization of the baseline HR. Therefore, the au-
thors of [63] expressed a keen interest in investigating the baseline HR complexity and
full HR recovery measures in future studies.

Post-exercise HR recovery is noteworthy for its established clinical value when
assessing the ANS [64] and predicting the risk of cardiovascular diseases and death [65].
For this reason, it has been suggested that incorporating the HR recovery assessment
into the routine clinical practice could be a cost-effective and efficient alternative to
spiroergometry [66]. Normally, HR recovers exponentially with a fast decrease during
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the first minute after physical activity, followed by a slow gradual decay until reaching
the baseline HR (see Fig. 1.2). Often, HR recovery measures characterizing the fast
and slow recovery phases are investigated. The fast HR decrease occurs immediately
after the end of a physical activity and is due to an increase in the parasympathetic
activity driven by the deactivation of the central cardiovascular control mechanism
in the brain and the abolished feedback from muscle mechanoreceptors. Meanwhile,
the subsequent slow HR decrease is due to coordinated parasympathetic-sympathetic
interaction mediated by the reduced feedback from muscle metaboreceptors and the
adjustments in thermoregulation [67].

Figure 1.2. Example of a typical HR response with clearly expressed accelerating and
decelerating phases.

Differently from the HR recovery which has been extensively studied, the ac-
celerating phase of the HR response has received much less attention despite both of
them reflecting the balance of the ANS [68]. An increased time-to-peak HR during
walking was observed in frail older adults compared to non-frail ones [63].

The HR reserve was calculated by finding the difference between an individual’s
maximum heart rate and their resting HR. The HR reserve is often used to assess the
chronotropic incompetence in patients with heart failure, and it indicates an impaired
chronotropic response when it is below 80% when estimated at peak exercise [69].

The baseline HR measures, namely, resting HR, variability, and complexity may
have a prognostic value when assessing the autonomic function in frail patients [14].
Nevertheless, baseline measures were found to be less powerful when differentiat-
ing between frail and non-frail older adults compared to the difference between the
maximal and resting HR [14].
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HR measures commonly used to characterize the ANS are described in Ta-
ble 1.3.

Table 1.3. Summary of HR variability, HR response, and baseline HR measures.

Measure Wearable-based
implementation

Main findings related to the measure Studies

HRR30 Simple Independent predictor of both cardiovascular and
all cause mortality

[14, 64]

HRR60 Simple Reflect parasympathetic reactivation [64, 65, 70,
71]

HRR120 Simple Even after submaximal exercise predicted all-
cause mortality

[65, 71, 72]

HRR300 Simple Demonstrated increased cardiovascular and over-
all mortality rates in subjects with diabetes

[64]

HRmax Simple Are associated with higher mortality [62, 69, 73]
RES Simple Are associated with markedly reduced quality of

life and diminished exercise capacity
[69, 74]

T30 Complex Marker of parasympathetic reactivation immedi-
ately after exercise

[64, 73]

T30min Complex Similar measure to T30, but with improved repro-
ducibility

[64, 70]

Ta Complex Are reported to be different in non-frail and pre-
frail/frail groups

[63, 68]

τ Complex Reflect both parasympathetic reactivation and
sympathetic withdrawal

[64, 70, 75]

LF Complex Frail group presented increased power of the LF
band as compared to non-frail and pre-frail groups

[59, 60, 64]

HF Complex Provides an index of cardiac vagal modulation [59, 60, 64]
LF/HF Complex Reported reduction in individuals with a higher

likelihood of frailty
[14, 60]

SDNN Complex Are associated with frailty [14, 59, 63]
RMSSD Complex Represent the parasympathetic reactivation after

the exercise
[14, 59, 60,

63, 64]
pNN50 Complex Were reported to be different in non-frail and pre-

frail/frail groups
[14, 59, 63]

SampEn Complex Are reduced in frail compared to non-frail adults [14, 60]

1.3.4. Models for assessing frailty status

To better understand frailty and to facilitate its assessment, there have been attempts
to assess the frailty status by using mathematical models [76, 77]. Some studies fo-
cused on the assessment of the frailty status from the epidemiological data and patient
history, while others employed wearable-based data. Most wearable data-based mod-
els for frailty assessment predominantly rely on measures characterizing the physical
activity, with only a handful of studies considering cardiovascular measures. A lo-
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gistic regression model was used to identify frailty by assessing the physical activity
features using a pendant sensor [78], whereas a convolutional neural network was im-
plemented to identify frailty by analyzing the gait features extracted from the data
of the wearable device [79]. A similar study employed a wearable sensor to predict
frail and pre-frail in older adults; however, the model was trained and tested on the
same participants [80]. The studies on the assessment of HR include a deep learning-
based approach using a long short-term memory model for frailty identification [81],
whereas, a k-nearest neighbors algorithm used different biosignals including HR to
assess and predict the dependence while executing the activity of daily living [82].

1.3.5. Frailty in the presence of comorbidities

Frailty is linked to an increased prevalence of various comorbidities spanning across
cardiovascular, respiratory and musculoskeletal diseases. Comorbidity refers to the
coexistence of multiple medical conditions or diseases in an individual simultane-
ously [83, 84]. The presence of different comorbidities in frail individuals can im-
pact the treatment effectiveness, and thus necessitate multidisciplinary or tailored ap-
proaches [85]. Moreover, the presence of multiple comorbidities in frail older adults
poses a significant challenge of polypharmacy [86]. Adverse effects on the clinical
course and outcomes are observed in frail patients with comorbidities, as they are more
prone to hospitalization, rehospitalization, disability, institutionalization, and mortal-
ity [84, 87]. Regular evaluation of the status of these diseases can aid in managing
frailty.

Cardiovascular diseases such as heart failure, coronary artery disease, peripheral
vascular disease, and hypertension are common in frailty. Patients with any cardiovas-
cular diseases, especially those with heart failure and peripheral artery disease, were
more likely to become frail than those without any of those issues [88]. And, vice
versa, patients with frailty face an increased risk of developing heart failure [89, 90],
coronary artery disease [91, 92, 93], and peripheral artery disease [94]. Additionally,
hypertension was found to be very common in frail individuals by reaching 72% [95].

While the evaluation of these conditions is predominantly carried out by us-
ing clinical tools, there is a growing interest in exploring wearable-based approaches.
Attempts have been made to assess the severity of heart failure by tracking the car-
diopulmonary status by wearing wearable-based bioimpedance sensors [96, 97], such
as balistocardiogram and seismocardiogram [98], or detecting cardiac arrhythmias
[99, 100, 101]. Additionally, wearable-based electrocardiography techniques have
been proposed for detecting coronary artery disease [102, 103]. The status of periph-
eral artery disease has been assessed by tracking peripheral artery motion and vascular
resistance by using photoplethysmography (PPG) and piezo-electric sensors [104].

Despite the numerous wearable-based alternatives to assess the blood pressure,
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many of them are inconvenient and obtrusive [105]. Several approaches have been
investigated, including the use of wrist-based devices utilizing the oscillometric prin-
ciple [106, 107], the analysis of the PPG waveform [108], and the monitoring of the
radial pulse for assessing arterial stiffness [109]. However, the performance of these
techniques has not been properly validated [105].

Respiratory diseases such as chronic obstructive pulmonary disease, sleep ap-
nea, idiopathic pulmonary fibrosis and asthma are commonly occurring diseases in
frail older adults. Exacerbations of chronic obstructive pulmonary disease were 42%
higher in those with frailty compared to those without it [110]. This relationship may
be because chronic obstructive pulmonary disease and frailty share the same risk fac-
tors, including aging, smoking, and inflammation, as well as clinical manifestations,
such as fatigue, anorexia, muscle weakness, and a slowed walking speed [111].

The process of aging has a significant impact on the immune response, as it
leads to a persistent pro-inflammatory state and an increased susceptibility to respi-
ratory infections affecting the airways [112]. Furthermore, older patients may have
a diminished perception of respiratory disease symptoms, such as asthma, and these
symptoms are often only partially reversible [113]. Sleep problems, including sleep
apnea, are reported by approximately a half of older adults, and they are exacerbated
by fatigue and depression, particularly in older adults with frailty [114].

Wearable-based assessment of chronic obstructive pulmonary disease is a promi-
nent research area, with most of the proposed assessment techniques focusing on un-
obtrusive respiration monitoring. Thoracic electrical bioimpedance can be used to
assess a variety of respiration measures and breathing patterns [115,116]. A wearable-
based digital stethoscope for monitoring auscultations and the breathing intensity can
help to assess respiratory functions [117]. Additionally, high fluctuations of blood
oxygen saturation can be used for detecting sleep apnea and assessing the severity of
chronic obstructive pulmonary disease [118].

Musculoskeletal disorders such as sarcopenia and osteoporosis play a large role
in the development of frailty. These disorders are often a result of malnutrition in
frail individuals [119]. Sarcopenia, defined as an age-related progressive loss of
muscle mass and strength, is often the leading condition which marks the onset of
frailty [120]. Osteoporosis, which is also usually aftermath of malnutrition, is a sys-
temic skeletal disease with the characteristics of a low bone mass and the deterioration
of bone tissues. The relationship between frailty and osteoporosis relies on the fact
that the worse the frailty status is, the greater is the likelihood that the individual will
have osteoporosis complications and the higher is the risk of an injury [121]. Both
sarcopenia and osteoporosis complicate the management of frailty by making usual
exercise training less effective and even hurtful. The combination of both of these dis-
orders makes older frail individuals even more likely to sustain injuries which often
lead to disabilities [122]. Assessment of sarcopenia is largely based on the presence
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of a low muscle mass and a low muscle function which can be defined by low muscle
strength or a low physical performance, which are similar aspects to those defining
frailty [123].

1.3.6. Challenges related to the implementation of wearable-based monitoring in
home environment

HR is typically obtained from an electrocardiogram (ECG) acquired through elec-
trodes, which may be less motivating for older frail adults to use for extended periods
of time. While a chest strap usually does cause discomfort for short-term use, wrist-
worn bio-optical devices may be considered for monitoring in activities of daily living,
albeit with reduced accuracy in estimation. Previous studies have shown substantial
errors in estimating HR variability measures in elderly vascular patients when using
reflective wrist PPG devices [124]. In our previous study involving healthy partici-
pants, we reported estimation errors of ¤19.2% for T30 and ¤20.7% for HR decay
after 1 minute [70]. Therefore, further research is needed to determine the feasibility
of estimating the HR response by using bio-optical sensors.

Various barriers, such as poor health or fear of injury and pain, often prevent
older adults from exercising [125]. Therefore, it is crucial to identify individual bar-
riers and motivators to enhance their willingness to comply with a training program.
Special consideration should be given to addressing the patient’s fears and providing
clear explanations of the health benefits of exercise. Additionally, equipping patients
with wearable devices, such as smartwatches, to record their physical activity could
serve as a potential motivator [126].

The placement site of a single sensor near the body mass center, i.e., the lum-
bar spine or chest, is the most thoroughly investigated solution [13], probably due
to the possibility to estimate balance measures. While using a chest strap for short
periods does not cause notable discomfort, more convenient locations should be pre-
ferred considering the application in daily living. Despite recent advances in the sen-
sor technology providing an opportunity to integrate inertial sensors into shoes and
clothes [127,128], these technologies are still pending for wide-scale availability. Out
of wearables utilized to evaluate frailty [13], devices placed on the ankle or wrist
can be a primary choice in terms of wearing comfort. However, wrist-worn devices
are sensitive to arm and/or hand movements, which may affect kinematic measures.
Nevertheless, the wrist-worn sensor showed considerably better classification accu-
racy when discriminating between robust and frail adults than the sensor placed on
the lower back, which suggests that arm movements are an essential feature [129].

24



1.4. Conclusions of the Chapter

1. Recent advancements in wearable technologies have enabled the detection of
different types of physical activity in daily living. However, these approaches
have not been extensively tested on elderly and frail individuals who often face
challenges in mobility. Frail individuals may exhibit uneven and asymmetrical
walking patterns which can potentially impact the accuracy of algorithms for
the identification of the physical activity type.

2. The initial components of frailty progression include the slowness of gait, low
physical activity, exhaustion, and weakness, which can be monitored by us-
ing wearable inertial sensors. However, it is crucial to assess the feasibility of
adapting the wearable-based approach for frail patients to ensure applicability
in clinical practice.

3. There is a growing body of evidence indicating an association between frailty
and cardiac autonomic dysfunction, which may impair the capacity to maintain
homeostasis when exposed to physical stressors. Assessment of the heart rate
response to physical stressors offers a convenient and non-invasive approach
for evaluating cardiac autonomic dysfunction in frail adults. However, further
research is needed to address the influence of errors in the heart rate acquired
by using wearables so that to ensure accurate and reliable assessment in this
population.
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2. DATABASE

This chapter presents a study protocol and a comprehensive database comprising
biosignals and reference clinical data, which is essential when examining the utility
of wearable-based biosignals in assessing frailty. To explore various measures, data
was gathered from patients with frailty who had undergone a cardiac rehabilitation
program after open-heart surgery. The data collection took place during standardized
exercise tests at three time points: upon admission to inpatient rehabilitation, upon
completion of inpatient rehabilitation, and after engaging in home-based training.

2.1. Study Population

The patients after open-heart surgery who arrived at Kulautuva Rehabilitation Hospital
of Kaunas Clinics (Kulautuva, Lithuania) from 19 November 2020 till 3 January 2022
were invited to participate in the study. Out of 337 patients assessed for eligibility on
the first day of admittance to the rehabilitation hospital, 100 (38 females) fulfilled the
inclusion criteria described in Table 2.1.

Table 2.1. Patient inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Age ¥65 years Implanted cardiac devices
EFS score ¥4 at admittance to Exercise limiting deficits
the rehabilitation hospital Severe chronic heart failure (New York Heart

Association Class IV)
6-min walk distance ¥150 m Hemoglobin  9 g/dL
Agreement to participate Wound healing disturbance

Cognitive or/and linguistic deficits

EFS indicates the degree of fragility based on the Edmonton frail scale.

Upon arrival at the rehabilitation hospital after open-heart surgery (17.1 � 7.4
days post-surgery), the patients were randomly assigned to the intervention and con-
trol groups. The groups were generally well-matched except for the fact there were
considerably more men in the control group (Table 2.2). Both intervention and con-
trol groups participated in exercise training during inpatient rehabilitation. However,
only the intervention group had to perform exercises at home for 12 weeks after the
end of inpatient rehabilitation according to the individualized exercise training plan
(see Sec. 2.4). The control group was asked to maintain their usual physical activity
regimen.
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Table 2.2. Demographic and clinical characteristics in the intervention and control groups
before inpatient rehabilitation.

Intervention Control

Female 25 13
Male 25 37
Age, years 73.2 � 4.8 73.4 � 5.3
Height, cm 165.9 � 8.6 169.4 � 8.6
Weight, kg 74.9 � 12.8 78.7 � 13.2
Body mass index, kg/m2 27.3 � 4.8 27.4 � 3.9
Post-surgery, days 16.6 � 7.3 17.6 � 7.5
Surgery

Coronary artery bypass graft 23 33
Isolated valve 11 5
Combined 16 12

Medications
Angiotensin-converting enzyme 37 40
Beta adrenoblockers 49 50
Calcium channel blockers 2 1

Heart failure class
NYHA I 2 3
NYHA II 40 34
NYHA III 8 13

Comorbidities
Atrial fibrillation 15 17
Chronic obstructive pulmonary disease 0 3
Depression 1 2
Musculoskeletal system diseases 1 3
Oncological diseases 4 8

Functional capacity
Veloergometry duration, s 161.8 � 97.8 154.4 � 95.2
Peak workload, W 49.5 � 15.8 51.0 � 15.5
6-min walk distance, m 289 � 86.1 291 � 79.6
Timed up and go duration, s 8.9 � 2.4 8.5 � 1.7

Edmonton frail scale score 6.2 � 1.6 6.0 � 1.6

Certain parameter values are given as mean � standard deviation.
NYHA indicates the heart failure class according to New York Heart Association classification
criteria.

2.2. Clinical Assessment of Frailty

The degree of fragility was assessed based on the EFS [29], which involves nine do-
mains of frailty, namely, cognition, general health status, functional independence,
social support, medication usage, nutrition, mood, continence and functional perfor-
mance. The EFS score was assessed by healthcare specialists at three time points:
at the beginning of inpatient rehabilitation, after inpatient rehabilitation with a mean
duration of 16.2 � 2.9 days, and after home-based exercise training with a mean du-
ration of 104.2 � 23.0 days. At the beginning of inpatient rehabilitation, the EFS
score ranged from 4 to 9 and from 4 to 10 in the intervention and control groups,

27



respectively.

2.3. Data Acquisition

Electrocardiogram and triaxial acceleration signals, sampled at 130 Hz and 200 Hz,
were acquired by using a textile strap with a wearable sensor (Polar H10; Polar Electro
OY, Kempele, Finland) placed under the chest. RR intervals with a resolution of
1 ms were provided separately. The signals and RR intervals were transferred to a
smartphone with a mobile app in real-time via Bluetooth. To ensure a stable Bluetooth
connection, the smartphone was placed in the holder wrapped around the upper arm
of the patient. The smartphone was only taken out when a healthcare specialist logged
the beginning of each test. A detailed description of the available data for each test is
given in Fig. 2.1. A part of the signal database is accessible from Physionet [130].

Figure 2.1. Data availability for each test. Here, ‘lost to follow up’ refers to patients who left
the rehabilitation clinic earlier or did not return after home-based exercise training, ‘did not

perform’ refers to tests that were not performed by the patients due to pain or any other
reasons, ‘bad ECG quality’ refers to an unrecognizable electrocardiogram, ‘no marker’ refers

to the absence of a marker indicating the onset of a test, ‘not received’ refers to the signals
that were not received due to technical or user-related issues, ‘arrhythmia’ refers to atrial

fibrillation, and ‘obtained’ refers to acquired good quality signals.

2.4. Exercise Training

All study participants attended inpatient rehabilitation consisting of patient education,
diet counseling, psychological support, risk factor management, and individualized
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exercise training. The training duration and intensity were individually adapted based
on the clinical and functional status. The inpatient exercise training program, de-
scribed in detail in [131], includes light to moderate endurance training on a cycle
ergometer (six sessions a week for up to 40 min depending on a patient’s functional
status), aerobic dynamic gymnastics in the sitting or/and standing position (five ses-
sions a week for 30 min), resistance training focusing on lower limb muscles (three
sessions a week for 15 min), balance training (three sessions a week for 15 min),
and respiratory muscle training by using a lung exerciser (seven sessions a week for
15 min).

The home-based exercise training program included four different types of ex-
ercise:

• Aerobic endurance training (five sessions a week for 20–60 min, rate of per-
ceived exertion 12–14). Walking, stair-climbing, and cycling of moderate to
high intensity were recommended as proper physical activities.

• Sensomotoric training (three sessions a week for 15 min, rate of perceived exer-
tion 11–12). Exercises on postural control, dynamic balance, and coordination
of moderate to high intensity were advised.

• Resistance training (three sessions a week for 20–25 min, rate of perceived ex-
ertion 12–15). Four to eight exercises at moderate intensity, involving main
muscle groups of the legs were proposed.

• Flexibility training (three sessions a week for 10–15 min, rate of perceived ex-
ertion 11–12). Isolated type flexibility exercises at low to moderate intensity,
also including leg, arm, and neck stretching exercises, were offered.

All exercises were presented in easier and advanced versions so that the patients
could choose from based on their health and functional status. To comprehend the
home-based program, patients of the intervention group had three additional meetings
with physiotherapists at the end of inpatient rehabilitation. The patients were provided
with basic training equipment (e.g., stretch band, gymnastics ball, weights). To ensure
proper participation in home exercise training, patients were inquired by phone every
two weeks about adherence to the program.

2.5. Exercise Testing

Submaximal clinical tests, namely, 6-minute walking, stair-climbing, and timed up-
and-go, were chosen as representatives of the common physical stressors in activities
of daily living; the heart rate and acceleration signals of these activities are represented
in Figure 2.2. Meanwhile, veloergometry was chosen as a maximal test for reference.
Due to substantial effects on the patient’s condition, veloergometry was performed on
a different day than the submaximal tests. Before and after each test, a patient had
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to rest in a sitting position for at least three minutes. The tests were performed at
the beginning of inpatient rehabilitation, after inpatient rehabilitation, and after home-
based exercise training, see Figure 2.3.

Walking Stair-climbing Timed up-and-go

Figure 2.2. Heart rate and acceleration signals of walking, stair-climbing and timed
up-and-go submaximal tests.

Veloergometry is a clinical standard for exercise testing used to evaluate the car-
diovascular function under conditions of an increasing physical workload. Veloergom-
etry was performed on a cycle ergometer Viasprint 150P (Ergoline GmbH, Germany)
by using a ramp protocol starting at 25 watts and then increasing by 12.5 watts per
minute until subjective exhaustion or occurrence of the termination criteria (dyspnoea,
chest pain, leg fatigue, systolic blood pressure ¡220 mmHg, decrease in baseline sys-
tolic blood pressure ¡20 mmHg).

The 6-minute walk test is a well-established, safe, and inexpensive approach to
assess the functional performance. The test was found to be beneficial in assessing
the treatment efficiency across a variety of cardiopulmonary conditions [132]. The
test does not demand maximal physical effort, hence it is accessible to most except
for severely impaired older adults [133]. During the 6-minute walk test, the distance
walked on a flat surface under the encouragement of a supervising staff member is
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judged based on the individual-specific reference distance.

Before inpatient rehabilitation

N = 100

(62 male, 38 female)

Obtained data of submaximal tests:

Walking, N = 69

Stair-climbing, N = 73

Timed up and go, N = 78

Before inpatient rehabilitation

Obtained data of submaximal tests:

Walking, N = 69

Stair-climbing, N = 54

Timed up and go, N = 59

N = 90

(56 male, 34 female)

After 12-week stay at home/ 

home-based training

N = 60

(42 male, 18 female)

Obtained data of submaximal tests:

Walking, N = 48

Stair-climbing, N = 45

Timed up and go, N = 38

Drop out:

COVID-19, N = 5

Left earlier by choice, N = 3

Transferred to hospital, N = 2

Drop out:

COVID-19, N = 3

Left earlier by choice, N = 5

Refused to participate, N = 10

Unable to come, N = 10

Lost to follow-up, N = 2

Figure 2.3. Patient enrollment flow diagram. Here N denotes the number of patients.

Stair-climbing was chosen assuming that terrain-dependent peculiarities may re-
quire additional physical effort compared to ordinary walking [134]. Stair-climbing
has not yet been standardized for use in the clinical practice, thus the common ap-
proach is to instruct patients to climb the maximum number of stairs at a convenient
pace [135]. Taking into account that frail patients after open-heart surgery are espe-
cially vulnerable, they were asked to climb only a set of 12 stairs at a convenient pace
without assistance from a healthcare specialist and were allowed to terminate the test
whenever they felt exhaustion, leg fatigue, or chest pain.

A timed up-and-go test was chosen due to assuming that the body position
change may alter the HR response [136]. During the test, the patient is asked to change
the body position from sitting to standing, walk 3 meters forward, turn around, and
walk back to the chair to sit down.

2.6. Database-related Issues

Unfortunately, nearly one-third of our recordings were completely or partly lost due
to various reasons, which resulted in a substantively reduced number of patients with
available walk and stair-climbing tests. However, the effort required to record the data
by using wearable devices should not be overlooked since data loss due to hardware,
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software, network, and user-related issues is a well-known problem [137, 138, 139]
deserving transparency to mitigate the risk of similar issues in future studies. Patients
had to perform various clinical tests over a 2–4 hour period; thus it was decided to
turn on the devices at the beginning of the whole recording session and turn them
off at the end. Despite the fact that monitoring was partly observed by healthcare
specialists, most of the time, the patients’ behavior, who were elderly and less familiar
with technology, was unsupervised.

The custom-made software for signal acquisition crashed occasionally due to
the following reasons: a patient walked too far from the data collecting smartphone
when a healthcare specialist entered a time marker to indicate the beginning of the
test, leading to the interrupted Bluetooth connection; a patient accidentally pressed
a button on either the device or the smartphone; the device was not fully charged,
and therefore discharged before the end of a monitoring session; the stable internet
connection was occasionally unavailable due to maintenance or other reasons; a data
transfer error occurred due to updates of the end-point server. The wearable device
was also prone to stopping the sending of data during longer recording sessions, which
sometimes happened even when the device was fully charged and with a stable Blue-
tooth connection. In addition, one-third of the patients were lost to follow-up and did
not return to the clinic for assessment after home training.

2.7. Conclusions of the Chapter

1. The collected signals and clinical data have a wide range of potential applica-
tions, such as developing algorithms to assess frailty by using wearable devices,
exploring new measures which reflect frailty, and investigating the relationships
between clinical data, frailty status, and measures derived from biosignals.

2. Approximately one third of the collected data was unexpectedly lost due to tech-
nical and user-related issues, which emphasizes the importance of transparency
and proactive solutions to address such challenges in future studies when wear-
able devices are utilized. Furthermore, the unsupervised behavior of elderly pa-
tients, coupled with a notable loss to follow-up, highlights the complexities as-
sociated with monitoring studies involving individuals who are unfamiliar with
the particular technology.
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3. METHODS

This chapter describes the developed approaches to improve the understanding of the
effectiveness of exercise-based rehabilitation for patients with frailty. The approaches
rely on the analysis of wearable-based biosignals, while specifically focusing on kine-
matic and HR response measures. The chapter also proposes a concept of an inter-
pretable machine learning-based algorithm to identify clinically informative features
which can provide valuable insights into an individual patient’s frailty.

3.1. Detection of Physical Stressors

To distinguish between walking and stair-climbing, a derivative dynamic time warping
algorithm was applied which nonlinearly assesses the similarity between the two time
series, i.e., a signal under analysis and a template.

3.1.1. Preprocessing and templates of physical activity

Acceleration signals were filtered by using the 3rd order zero-phase Butterworth low-
pass filter with a cut-off frequency of 15 Hz. The duration of walking was 6 min,
whereas climbing one flight of stairs took from 10 to 20 s depending on the partici-
pant’s functional status. Therefore, the analysis time interval was set to 10 s to cover
both activities and was extracted from the middle of each activity in case the activ-
ity lasted longer. The extracted intervals were further used to manually detect three
individual strides in the magnitude vector of the acceleration signal. To achieve a
more accurate representation of the typical movement pattern and reduce the impact
of potential outliers, the approach of selecting three strides from each participant was
employed as visualized in Fig. 3.1 (a). The extraction of stride patterns was done man-
ually to reduce the inaccuracies of automatic extraction. Since the subjects included in
the study were frail, they often exhibited unusual movement patterns, thus the perfor-
mance of already existing stride detection algorithms may introduce additional errors.
The strides were resampled to 200 samples and averaged to create a representative
activity for each participant. Finally, the templates for walking and stair-climbing
were created by averaging the representative activities of all participants. The stair-
climbing template was generated by utilizing 162 stride intervals extracted from 54
participants, whereas the walking template was generated based on 186 stride inter-
vals extracted from 62 participants. To explore the effect of acceleration axes on the
detection performance, the templates were found for anterior-posterior, mediolateral,
and vertical axes, as well as for the magnitude vector. The stride intervals used for
templates were later involved for classifying stair-climbing and walking by using the
derivative dynamic time warping algorithm.
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3.1.2. Derivative dynamic time warping-based algorithm

The similarity is assessed by finding the optimal warping path from signal X to tem-
plate Y . The minimal distance wi,j is found by matching xi samples to the samples yj
of template time series as visualized in Fig. 3.1 (b). The optimal distance W � of the
signal under analysis to the template is found by minimizing the path from (x0,y0) to
(xN ,yN ), as shown in Fig. 3.1 (c):

W � �
argmin

WPW
DistW pX,Y q (3.1)

The signal under analysis is classified as either walking or stair-climbing, de-
pending on which activity resulted in a lower W � value.

Derivative dynamic time warping is a similarity assessment method which maps
similar features between two time series. The advantage of this method is that features
are recognized even when time series are not aligned or have different durations. Sim-
ilarity is evaluated by calculating a cost function after aligning all of the data points.

Figure 3.1. Template matching using a derivative dynamic time warping: a) extraction of
strides from the acceleration signal, b) alignment of a signal under analysis (solid line) with

the template (dashed line), and c) optimal alignment path.
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Dx �
pxi � xi�1q � ppxi�1 � xi�1q{2q

2
(3.2)

Fig. 3.2 illustrates the calculated distance for each participant during walking
and stair-climbing by using the acceleration signal of the vertical axis.

Figure 3.2. The distance of the signal under analysis from templates for walking and
stair-climbing. Crossed dots represent incorrectly classified physical activity.

3.1.3. Performance evaluation

Detection performance was investigated in terms of sensitivity (Se) and the positive
predictive value (PPV). Sensitivity involves the total number of a particular physical
activity correctly detected as a particular activity, whereas the positive predictive value
compares the number of the correctly detected particular activity to the total number
of activities detected, including false detections.

3.2. Characterization of Kinematic Properties

3.2.1. Preprocessing of acceleration signals

There is a variety of measures suitable to describe kinematic properties [140], how-
ever, only those that can be estimated from a single sensor and provide different in-
formation about the gait and balance were considered. The kinematic measures were
estimated from the triaxial acceleration signal which reflects movement in three axes,
namely, vertical (AccV ), mediolateral (AccM ), and anterior-posterior (AccA), see Fig-
ure 3.3.
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Figure 3.3. Presentation of the cardinal system representing axes and planes of the human
body movement, and the positioning of Polar H10 device.

The acceleration signal consists of a static vertical gravitational component and
a dynamic component due to velocity changes during motion. Therefore, the signal
was preprocessed to mitigate the influence of these components. Prior to the estima-
tion of all kinematic measures, the gravity component was removed by detrending
the triaxial acceleration signal [134], whereas other preprocessing depended on the
particular kinematic measures.

The stride time, cadence, and gait asymmetry were estimated based on the foot-
steps detected in the AccV signal filtered by using a third-order low-pass Butterworth
filter with a cut-off frequency of 2.5 Hz [51]. Movement vigor was estimated in the
raw triaxial accelerometer signal with a gravity component removed. Prior to the esti-
mation of the Lissajous index and postural sway, slow body movements, such as due
to respiration, were suppressed by using a third-order Butterworth high-pass filter with
a cut-off frequency of 0.3 Hz, whereas electrical and mechanical noise was removed
by using a third-order Savitzky–Golay smoothing filter with a frame length of 41 [46].

3.2.2. Estimation of kinematic measures

Many studies have shown that the stride time increases as frailty worsens [43, 47, 48,
51]. The stride time reflects the duration of the gait cycle and is defined as the time
elapsed between the first contact of two consecutive footsteps of the same leg.

Frail adults often have reduced cadence, thus making this measure useful for the
identification of pre-frailty [49,141]. Cadence is expressed as the number of steps per
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minute during the analysis time period T .
The movement vigor directly affects the acceleration amplitude, thus, unsurpris-

ingly, it was found to be powerful when discriminating between different intensities
of physical activity [52, 142]. Since frail adults often move slower, this may result in
a decreased movement vigor, here estimated as a mean amplitude deviation:

V igor �
1

n

ņ

i�1

��Accpiq �Acc
�� , (3.3)

where Accpiq is the Euclidean sum of the samples of the triaxial acceleration signal,
Acc is the mean value of Acc, and n is the number of samples during the analysis time
period T .

Maintaining the gait symmetry in healthy people does not require considerable
cognitive resources, however, cognitive effort may be needed to keep coordination un-
der certain pathological states [50]. Since frailty affects the cognitive function [143],
the gait may become more asymmetrical in increasingly frail patients due to the in-
ability to cope with the additional cognitive input. Gait asymmetry, representing the
left and right step coordination, is found by

Asymmetry �
1

k

ķ

i�1

|tlpiq � trpiq|

tlpiq � trpiq
� 100, (3.4)

where k is the number of strides over the analysis time period T , tlpiq and trpiq are
the left and right step times, respectively. A value of 0 reflects the perfect symmetry,
whereas higher values show a greater degree of asymmetry.

The Lissajous index quantifies the movement symmetry in the mediolateral plane [56].
The Lissajous index is calculated by finding the difference between the areas of the
rectangles enclosing the spaghetti plot obtained by plotting the acceleration signal in
the vertical plane against the acceleration signal in the mediolateral plane (Fig. 3.4):

Lissajous index � 2
|Areap �Arean|

Areap �Arean
� 100, (3.5)

where Areap and Arean are the areas of the positive and negative sites of the rectangle-
enclosed spaghetti plot, respectively. The Lissajous index of 0 shows the perfect
movement symmetry, whereas it tends to increase for an increasing asymmetry.

A common approach to assessing balance is to estimate the postural sway [46,
144]. The postural sway is estimated based on the spaghetti plot obtained by plotting
the acceleration signal in the anteroposterior plane against the acceleration signal in
the mediolateral plane. The spaghetti plot is then enclosed by using a convex hull
approach which finds the smallest convex polygon that wraps all data points. The
total area of the convex hull is defined as the postural sway (Fig. 3.4).
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Figure 3.4. A spaghetti plot of acceleration signals in the vertical and the mediolateral planes,
enclosed by rectangles, used to calculate the Lissajous index (left). The convex hull of the
spaghetti plot of acceleration signals in the anteroposterior and the mediolateral planes was

used to estimate the postural sway which is equal to the sway area (right).

All kinematic measures described above were extracted both during walking and
stair-climbing. The analysis time period T was set to 30 s for the walk test. To better
represent steady walking, the onset of the analysis time window was chosen to be 30 s
after the beginning of the walk test assuming that cadence tends to be more variable at
the beginning of the test. This assumption is substantiated by the observation that the
distance walked during the 6-min walk test slightly declines after the first 2 min and
remains stable afterwards [145]. Based on this finding, an alternative possibility was
to set the beginning of the analysis time interval after the 2-min datapoint. However,
walking bouts of a longer duration might be too exhausting for severely frail adults,
which would result in slowdowns or stops. This reasoning can be supported by a study
showing that unintentional walk tests of 2-min duration are nearly twice as common
as 6-min among elderly patients with cardiovascular disease [53]. Since ascending the
stairs was challenging for some patients, as this resulted in stops or early termination,
T was set to 10 s. The beginning of the stair-climbing test defined the onset of the
analysis time window.

3.2.3. Performance evaluation

Either walk or the stair-climbing test was unavailable for some patients due to various
reasons, which resulted in an unequal number of patients with completed tests for a
particular analysis. The Shapiro-Wilk test was used to assess the data normality, and
because of the non-normal distribution, the nonparametric tests were used to compute
the p-values. Statistical significance was set at p   0.05.

Kinematic and functional capacity measures before and after inpatient rehabil-
itation are represented by boxplots. Only patients with available walking and stair-
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climbing tests both before and after inpatient rehabilitation were included in the anal-
ysis. The Wilcoxon signed-rank test was applied to compute the p-values for the
differences between dependent groups.

Kinematic and functional capacity measures before and after home-based exer-
cise training/stay at home in intervention and control groups are given as a mean and
a standard deviation. Only those patients with available walking and stair-climbing
tests both before and after home-based exercise training/stay at home were included
in the analysis. The Mann–Whitney U test was applied to compute the p-values for
the differences between independent groups.

Kinematic and functional capacity measures in the groups of non-frail (EFS: 0–
3), vulnerable (EFS: 4–5), and frail (EFS: ¥6) participants are represented as a mean
and a standard deviation. For this analysis, the kinematic measures were estimated
after inpatient rehabilitation whenever data was available. When data was unavail-
able after inpatient rehabilitation, data from the beginning of rehabilitation was used
instead. The Kruskal–Wallis H-test was applied to compute the p-values for the dif-
ferences among independent groups.

3.3. Characterization of Heart Rate Response

3.3.1. Biosignal preprocessing

Before HR characterization, RR series were processed to ensure that only normal-
to-normal intervals were included for analysis. Atypical RR intervals which include
missed, extra, and ectopic beats were corrected by analyzing successive RR interval
differences by using the algorithm described in [146]. Extra beats were corrected
by removing the corresponding beats, whereas new beats were added in place of the
missing beats so that the long RR interval could be divided into two halves. Ectopic
beats were corrected by interpolating the corresponding RR intervals. Additionally, all
corrected RR series were manually inspected by analyzing a synchronously recorded
electrocardiogram.

Estimation of the HR response measures requires the detection of the peak HR
and HR recovery onset. The peak HR rate is the maximal HR during the entire HR
response phase. Detection of the recovery onset immediately after the cessation of
physical activity is explained in detail in our previous work [70]. Briefly, search for
the recovery onset is performed by fitting a line to the HR series in a sliding window
of 1 min. Then, the time interval with the steepest falling slope is chosen as a sus-
pected recovery phase. The HR series 25 s before and 25 s after the beginning of the
steepest falling curve is taken for fitting a polynomial curve where the maximal value
determines the onset of the recovery phase, see Figure 3.5.

Baseline HR measures were estimated from a resting phase of 3-minute duration
before the exercise test. To ensure that the measures are not altered by movements,
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Figure 3.5. Exemplary illustrations of detection of the peak HR and HR recovery onset.

the rest phase with a less intense activity, as measured by the triaxial accelerometer, is
chosen as the most representative point.

3.3.2. Exclusion of heart rate series

HR series unacceptable for the estimation of measures, i.e., showing no HR response
to the physical activity or exhibiting a high HR variation during the recovery phase,
were excluded from the analysis. No response to an exercise test was considered
when HR did not rise at least 5 bpm above the average baseline HR. HR variations
either caused by physiological factors or by unexpected activity (e.g., turning or lean-
ing) were considered unacceptable when exponential fitting to the recovery phase,
determined via the coefficient of determination R2, was below the fixed threshold of
0.5 [70]. Examples of typical and unacceptable HR series for each type of exercise
test are given in Fig. 3.6.

3.3.3. Heart rate response measures

To comprehensively characterize the HR response, the measures covering the acceler-
ating phase, decelerating phase, and the entire HR response were chosen for investi-
gation.

The accelerating phase of HR response is characterized by the time interval Ta

during which HR accelerates until it reaches the peak HR (HRp) starting at the onset
of a particular exercise test [63]. The time to peak HR was found to be prolonged in
frail older adults compared to non-frail adults during walking [63].

The decelerating phase of the HR response is characterized by post-exercise HR
recovery which reflects the capacity to respond and adapt to the maximal or submaxi-
mal physical activity [64]. The fast recovery phase is characterized by the short-term
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Figure 3.6. Exemplary illustrations of typical and unacceptable HR series for the estimation
of measures during veloergometry and submaximal tests. Grey bars indicate the physical

activity intensity estimated as a mean absolute deviation of the triaxial acceleration signal.
Physical activity intensity cannot be estimated during veloergometry due to sitting on the

cycle ergometer.

time constant (T30) which is found by fitting the line of 30 s duration to the logarithm
of HR, where T30 is the negative inverse of the slope of the resulting line. To im-
prove reproducibility, T30 is estimated within the first min after the recovery onset in
a sliding window of 30 s, and the lowest value is selected [147]. Meanwhile, the slow
recovery phase is characterized by a decay of HR at 120 seconds (HRR120) after the
recovery onset. A slower HR recovery may indicate cardiac autonomic dysfunction,
and it was found to be associated with a broad range of cardiovascular diseases and an
increased risk of mortality [64].

The entire HR response is characterized by the HR reserve which is a measure of
chronotropic competence independent of age, resting HR, and physical fitness [148].
The HR reserve is found by

RES �
HRp �HRr

HRa �HRr
� 100, (3.6)

where HRr is a resting HR derived from the resting period before the exercise test,
and HRa is the attainable HR calculated as 220 minus age in years.

Low RES may indicate an impaired chronotropic response, whereas it is roughly
100% in healthy people during peak exercise.
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3.3.4. Characterization of baseline heart rate

Elevated resting HR, reduced HR complexity, and reduced HR variability indicate au-
tonomic imbalance manifesting as an increased sympathetic and/or decreased parasym-
pathetic tone [62].

Resting HR (HRr) is calculated as an average HR over the entire resting phase
prior to the exercise test. An elevated resting HR is an established independent risk
factor for all-cause and cardiovascular mortality [149], and it was also found to be
higher among frail older adults compared to non-frail individuals [136].

The HR complexity during rest prior to exercise is assessed by using sample
entropy (SampEn) [60,150]. Given the HR pattern length m and the similarity thresh-
old η showing the tolerance for accepting similar patterns, the sample entropy esti-
mates the logarithmic probability of similar m-length patterns to remain similar for
m � 1 [150]. Sample entropy is close to 0 for regular HR, whereas it takes larger
values for unpredictable HR. In this study, η was set to 0.15, and m was set to 2 as
in [60]. Reduced HR complexity may indicate autonomic dysfunction in people with
frailty.

To assess ultra-short-term HR variability [151], the standard deviation of all
normal-to-normal RR intervals (SDNN) during rest before the exercise test is com-
puted. Reduced SDNN may indicate a decreased parasympathetic activity in frail
adults [60].

Characterization of the HR response and baseline HR is illustrated in Fig. 3.7.

Figure 3.7. Characterization of baseline HR and HR response. Note that RES also involves
normalization by [(200 – age) – HRr]. The onset and the cessation of physical activity are at

180 s and 195 s, respectively.
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3.3.5. Performance evaluation

Some veloergometry, walking, stair-climbing, and timed up-and-go tests were un-
available, which resulted in an unequal number of patients with completed tests for a
particular analysis.

The agreement between the HR response to veloergometry and submaximal tests
is expressed as the mean difference and 95% confidence interval. Associations be-
tween the HR response to veloergometry and each submaximal test are represented by
scatter plots. The relationship is assessed by using linear regression and given as the
Pearson correlation coefficient.

To assess the relationship between HR measures and the frailty status, the HR
response and baseline values of HR measures are subdivided into quartiles. The cor-
responding EFS values of each quartile are given as the mean and standard deviation.
The Shapiro-Wilk test was used to assess data normality, and, because of non-normal
distribution, the nonparametric Kruskal-Wallis H-test was used to calculate the p-value
for the differences between the EFS values of the corresponding quartiles.

To investigate the effect of inpatient cardiac rehabilitation on the HR response
measures, only patients with available tests both before and after inpatient rehabilita-
tion were included in the analysis. In the case of a normal distribution, the Student
t-test for paired data was applied to calculate the p-value. Otherwise, the Wilcoxon
signed-rank test was used.

The effect of the entire exercise training program, covering inpatient cardiac
rehabilitation and home-based training, is expressed as the mean and standard devi-
ation. HR response measures were estimated after home-based training and before
inpatient rehabilitation whenever data was available. When data was unavailable, the
data recorded after inpatient rehabilitation was used instead. In the case of a normal
distribution, the Student t-test for paired data was used to calculate the p-value for
the change of measures within the intervention and control groups. Otherwise, the
Wilcoxon signed-rank test was applied. Meanwhile, the differences in the change of
values before and after the entire exercise training program between the intervention
and control groups were assessed by using the Student t-test for unpaired data in the
case of a normal distribution. Otherwise, the Mann–Whitney U test was applied.

3.4. Identification of Frail Physiological Functions

3.4.1. Frailty components under analysis

The frailty status can be influenced by various components, including physical, cog-
nitive, social, and psychological factors [152]. Although physical components are
often prioritized in clinical evaluations, it is important to develop approaches which
accurately identify the frailest component among others. Social, mental and clinical
components are usually either slow-changing (cognition, medication use), unreliable
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(mood) or can be assessed only by a patient (continence, social support). Therefore,
only physical components, namely, general health status, functional independence,
nutrition, and functional capacity of the EFS were analyzed, see Table 3.1.

Table 3.1. EFS components and respective ranges. The components chosen for investigation
are bolded.

Component Range Type

Cognition 0 - 2 Mental
General health status 0 - 2 Physical
Functional independence 0 - 2 Physical
Social support 0 - 2 Social
Medication use 0 - 1 Clinical
Nutrition 0 - 1 Physical
Mood 0 - 1 Mental
Continence 0 - 1 Clinical
Functional performance 0 - 2 Physical

3.4.2. Features for machine learning model

The relevant features which characterize physiological functions (i.e., gait, balance,
HR response) are selected based on their association with frailty and ability to charac-
terize different components. Two sets of features were chosen for investigation: those
obtained from wearable devices and from clinical equipment for a reference.

Wearable-based features characterizing the gait include the number of steps, ca-
dence, gait irregularity, and movement vigor. The balance features include gait asym-
metry, postural sway, sway irregularity, and Lissajous index. The HR response fea-
tures include HRR60, HRR120, T30, RES, HRp, and Ta. All of these measures are
extracted from the walking and stair-climbing activities.

Clinical features characterizing the gait are the timed up-and-go score, the dis-
tance walked during the 6-minute walk test (6MWD), and the gait speed. The balance
features include the step width, gait asymmetry, double support percentage, and the
center of pressure (CoP ) length variability, evaluated by the Zebris gait and stance
analysis system. The HR response features include HRR60, HRR120, RES, T30,
HRmax and Ta obtained during veloergometry.

In addition, the age, body mass index, and days after the heart surgery were
included for both sets of features.

3.4.3. Machine learning model

Due to a large number of features and a small number of samples, the decision trees
model was chosen to classify EFS components. The decision tree is a tree-like model
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that is used to make decisions based on the values of features and their corresponding
outcomes. In the binary classification, the decision tree is used to classify data into
one of two categories.

The decision trees model finds an optimal threshold of each of the most impor-
tant features to group the samples, thus minimizing the prediction error. The tree is
constructed by recursively splitting the data into smaller subsets based on the values
of the features. The split is done in a way that minimizes the impurity of the resulting
subsets.

The impurity of a subset is measured by the information gain metric which mea-
sures the reduction in entropy of the samples representing each label in the subset after
the split. The splitting process continues until a stopping criterion has been met, such
as reaching a maximum depth or a minimum number of samples in a leaf node. At
this point, the decision tree is considered trained and can be used to clasify new data.
To classify new data, the features of the data are evaluated against the decision tree,
by following the path from the root node to a leaf node. The leaf node reached by fol-
lowing the path represents the predicted class of the data. To improve the predictive
capabilities of decision trees, the ensemble algorithm of gradient boosting is adapted.
The structure of the proposed algorithm is presented in Figure 3.8 [153].

{x(g,1) ,   , x(g,N)}Gait

{x(b,1) ,   , x(b,N)}Balance

{x(h,1),   , x(h,N)}HR

Features

X
γ1 γ2 

f(X)1 f(X)2 f(X)3
f(X)N

Gradient boosting

Normal

0

Labels
Y

Frail

1

Ensemble classifier

Figure 3.8. Structure of gradient-boosting decision trees model.

The primary decision trees model is constructed by fitting the actual values of
samples, namely, either normal (0) or frail (1). The gradient boosting method is based
on the iterative generation of weak decision trees models. However, each iteration is
constructed by fitting the residuals γ of the previous prediction from the actual values.
At the end of the process, the models are combined to form a final prediction model
that is more accurate than any of the individual models. During the training process,
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the algorithm applies a loss function to determine the difference between the predicted
values and the actual values. The gradient of this loss function is then utilized to mod-
ify the model parameters with the aim of minimizing the error. The gradient boosting
ensemble model is used for its ability to learn non-linear relationships between vari-
ables. In addition to the improvement of accuracy, gradient boosting also reduces the
risk of over-fitting.

3.4.4. Interpretation of model classifications

The EFS represents different characteristics of health condition; thus, different fea-
tures are expected to be more important when classifying each component [154]. To
determine the importance of individual features, the permutation feature importance
method is applied [155].

The importance of parameter j is calculated by comparing the error of the orig-
inal model eo and the model with with permuted values ep:

eo � Lpy, fpXqq, (3.7)

ep � Lpy, fpXpqq, (3.8)

where X is the collection of features, and y is a label (normal or frail). Feature im-
portance FIj represents the reduction of the classification error when the value of the
feature is removed, via permutation of the feature vector.

FIj �
eorig

epj
, (3.9)

FI of a particular EFS component is calculated as a sum of features representing that
function.

For the interpretation of individual predictions, the Shapley additive explana-
tions method (SHAP) is used. SHAP indicates an average additive change in classi-
fication when the feature is considered in the model. The importance of feature j is
estimated by calculating the additive predictive value ϕ for every iteration of m, when
m = 1,...,M . Iterations consist of all possible combinations of X features.

ϕm
j � fpXm

�jq � fpXm
�jq, (3.10)

where X�j and X�j indicate models constructed with and without feature j. The
average of the predictive value of all iterations is the SHAP value.

ϕj �
1

M

M̧

m�1

ϕm
j . (3.11)

The SHAP of a particular physiological function is calculated as a sum of the
SHAP values calculated for the features which characterize that function.
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3.4.5. Performance evaluation

To evaluate the accuracy of the regression models, a leave-one-out cross-validation
was employed, where the model was tested on the data of each participant and trained
on the remaining dataset. The performance of the models was assessed by finding
their classification accuracy, specifically for each of the four EFS components, by
determining whether they were weakened or normal.

Since the accuracy of the models is dependent on the appropriate selection of the
training hyperparameters, such as the number of estimators (N ), the maximum depth
of the decision tree (h), and the learning rate (l), the best combination of training
hyperparameters was found by testing the accuracy of the models by using various
hyperparameter combinations. The performance of the model was evaluated by using
F1 score (Eq. 3.12):

F1 �
TP

TP � 1
2pFP � FNq

, (3.12)

where TP , FP , and FN are true positive, false positive, and false negative clasifica-
tions, respectively.

3.5. Conclusions of the Chapter

1. The derivative dynamic time warping-based algorithm has been proposed to
detect physical stressors in wearable-based biosignals, with a focus on walking
and stair-climbing as these activities are feasible even among frail individuals.

2. Gait and balance measures were chosen to investigate the potential of using
kinematic measures extracted from the acceleration signals of a single wearable
sensor to track the frailty trajectories during exercise training.

3. To comprehensively assess the heart rate response to physical stressors, it has
been proposed to utilize measures encompassing the acceleration phase, decel-
eration phase, and the overall heart rate response.

4. A concept of interpretable machine learning has been proposed for identifying
clinically informative features that provide information on the frail physiologi-
cal functions of an individual patient.
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4. RESULTS

This chapter presents the findings regarding the detection of physical stressors, the
assessment of the kinematic and HR response measures, and the results of an inter-
pretable machine learning-based algorithm for identifying the frailest components.
These findings contribute to a better understanding of frailty assessment and highlight
the potential of wearable-based approaches in monitoring frail patients.

4.1. Detection of Physical Stressors

The performance of a derivative dynamic time warping-based algorithm for acceler-
ation signals of anterior-posterior, mediolateral, and vertical axes, as well as for the
magnitude vector of acceleration is given in Table 4.1. The best overall performance
is achieved when using the acceleration signal of the vertical axis, which results in Se

of 84.2% and PPV of 82.1% for detecting walking and Se of 81.6% and PPV of
83.8% for detecting stair-climbing scores.

Table 4.1. The performance of a derivative dynamic time warping-based algorithm.

Walking Stair-climbing
Se, % PPV , % Se, % PPV , % ACC

Anterior-posterior 95.1 69.5 57.9 93.6 76.9
Mediolateral 75.0 68.7 65.8 72.5 70.4
Vertical 84.2 82.1 81.6 83.8 82.9
Magnitude vector 97.4 65.5 46.7 94.9 73.0

Table 4.2 presents the performance for the groups of frail (EFS <6 points) and
vulnerable/non-frail (EFS ¥6 points) participants when using an acceleration signal
of the vertical axis. The results show that the algorithm is more sensitive (Se = 86.9%)
when detecting walking in frail adults compared to stair-climbing (Se = 79.1%). The
opposite tendency is observed for the vulnerable/non-frail group.

Table 4.2. The performance in the groups of different frailty statuses.

Walking Stair-climbing
Se, % PPV , % Se, % PPV , % ACC

Frail 86.9 81.6 79.1 85.0 82.5
Vulnerable/non-frail 80.0 82.8 84.9 82.4 83.2

Discussion. This study explored the feasibility of detecting physical stressors
in adults with frailty, which is a challenging issue due to the weakness and slow-
ness of these persons, which results in an inconsistent speed and intensity of physical
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activities. The proposed derivative dynamic time warping-based algorithm allows to
mitigate the influence of inconsistent movements by aligning acceleration signals non-
linearly. The ability to detect physical stressors, such as walking and stair-climbing,
in daily living opens up the possibility to provide additional measures about the phys-
iological reserve of frail adults.

Previous studies indicate that people with frailty suffer from increased fatigue
and a higher risk of falling. These findings explain additional issues associated with
the detection of physical stressors in adults with frailty. Walking, and especially more
physically demanding activities such as stair-climbing, tend to be less consistent, of-
ten with slowdowns and stops. Additionally, pain in the lower extremities or torso can
induce asymmetry of consecutive steps, which further complicates the detection of
physical stressors in acceleration signals [156]. These peculiarities hinder the perfor-
mance of template-matching methods relying on correlation between the signal under
analysis and the template.

The limitation is that only two types of activities were considered for detection.
The main motivation for choosing walking and stair-climbing was that these activities
are common in daily living, including most adults with frailty. However, consider-
ing the application of the proposed algorithm in daily life, accounting for alternative
activity types, such as riding a bicycle, will be necessary.

4.2. Frailty Kinematic Measures

4.2.1. Effect of inpatient rehabilitation

Forty-eight patients underwent available walk tests before and after inpatient reha-
bilitation, and their EFS scores dropped from 6.0 to 4.7, on average. Three patients
improved their EFS scores by four points, six by three, nine by two, and 17 by one
point after inpatient rehabilitation. The scores did not improve in 11 patients, and de-
teriorated by one in two patients. The performance in veloergometry, 6-min walk, and
timed up and go tests improved from 52.1 � 18.3 W to 61.3 � 19.2 W (p   0.001),
from 301.1 � 79.4 m to 387.2 � 83.8 m (p   0.001), and from 8.3 � 2.2 s to 7.6
� 1.7 s (p � 0.017), respectively. Fig. 4.1 shows that all kinematic measures, except
for gait asymmetry and the Lissajous index, improved considerably during walking
for most patients after inpatient rehabilitation (p   0.001). That is, the stride time
decreased in 34 (71%) patients, cadence increased in 37 (77%), movement vigor in-
creased in 40 (83%), and postural sway increased in 39 research subjects (81%). An
increase in postural sway can be explained by a wider range of motion due to the better
overall physical condition after open-heart surgery.

Forty-four patients underwent available stair-climbing tests before and after in-
patient rehabilitation, and their EFS score dropped from 6.1 to 4.6, on average. One
patient improved the EFS scores by six, one by five, three by four, four by three, eight
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by two, and 15 by one. The scores did not improve in 12 patients. The performance in
veloergometry, 6-min walk, and timed up and go tests improved from 51.2 � 16.3 W
to 62.0 � 17.7 W (p   0.001), from 298.7 � 77.2 m to 380.9 � 89.8 m (p   0.001),
and from 8.4� 2.0 s to 7.5� 1.8 s (p � 0.008), respectively. The kinematic measures
during stair-climbing improved to a lesser extent compared to walking (Fig. 4.1). The
stride time decreased in 32 (73%) (p   0.001), cadence increased in 25 individuals
(57%) (p � 0.003), and movement vigor increased in 28 (64%) (p � 0.009).

Figure 4.1. Kinematic measures estimated during the walk and stair-climbing tests before and
after inpatient rehabilitation. A trend towards improvement in kinematic measures is depicted

by the thicker line.

Discussion. Balance-reflecting measures are usually estimated during quiet
standing either with open or closed eyes [127]. Given the far-reaching aim of our
study to assess the kinematic response to the common daily life activities, quiet stand-
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ing was not viewed as a suitable activity, especially considering the potential difficul-
ties in reliably detecting quiet standing while using a wearable device. Contrary to
the observation in [43], reporting a positive relationship between higher postural sway
values and a worse frailty status, the present study showed the reverse, namely, an in-
crease in the postural sway after inpatient rehabilitation. This finding can be explained
by the healing of the surgical site and an improved patient mobility.

Kinematic measures were estimated during supervised clinical tests, therefore,
scores may differ when obtained during causal walking and stair-climbing. A recent
surgery, clinical environment, and guidance by healthcare specialists may have influ-
enced the patients’ motivation and the pace at which the tests were performed. In
addition to that, an improvement in kinematic measures throughout inpatient rehabil-
itation may have been affected by the learning effect bias. Due to the learning effect,
the performance on clinician-administered walk tests tends to improve in successive
tests and can result in up to 14% increase in the distance walked [157]. This can be a
major factor causing a high variability in distance during clinician-administered walk
tests [158]. Unintentional walk testing, described in detail in [53], should be less af-
fected by learning since it depends on the functional status rather than on familiarity
with the test.

Parts of Sec. 4.2.1 have been quoted verbatim from the previously published
article [17]

4.2.2. Effect of home-based exercise training

No difference is reflected by most kinematic measures between the intervention and
the control groups before and after home-based training/stay at home, which corre-
sponds to the absence of difference in the EFS scores, see Table 4.3. The EFS score
slightly increased in both groups, which indicates that unsupervised reduced intensity
exercise training did not result in a further improvement of the frailty status. Some-
what unexpectedly, the Lissajous index increased by 13.1% in the intervention group
and decreased by 5.14% in the control group (p � 0.021), which suggests larger
movement asymmetry among those who continued training. During stair-climbing,
the movement vigor increased by 0.01 g in the intervention group and by 0.03 g in the
control group (p � 0.046).

Discussion. For this study, the program was prepared by the clinic’s physiother-
apist taking into account frailty-caused restrictions to exercise training. Somewhat
unexpectedly, no further improvement in the intervention group, instructed to con-
tinue exercising at home, was observed compared to the controls, despite the sudden
improvement of both groups after inpatient rehabilitation. While the explanation for
no difference between the intervention and control groups is not obvious, the three fur-
ther months of unsupervised training at reduced intensity probably did not influence
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Table 4.3. Changes in kinematic and functional capacity measures in the intervention group
who performed the home-based exercise training program and controls who were asked to
maintain their usual physical activity regimen.

Walking
Intervention Control p-value
(N � 18) (N � 11)

Stride time, s -0.02 � 0.17 -0.12 � 0.21 0.342
Cadence, steps/min 5.24 � 9.70 7.45 � 12.0 0.854
Movement vigor, g 0.03 � 0.07 0.05 � 0.06 0.538
Gait asymmetry, % 0.75 � 3.81 -1.06 � 3.26 0.129
Lissajous index, % 13.1 � 19.7 -5.14 � 23.6 0.021
Postural sway, g2 0.07 � 0.16 0.07 � 0.09 0.582
Peak workload, W 7.07 � 10.4 10.8 � 7.82 0.205
6-min walk distance, m 34.7 � 84.5 49.3 � 81.9 0.677
Timed up-and-go duration, s 0.97 � 2.96 0.71 � 2.15 0.524
EFS score 0.47 � 1.77 0.00 � 1.97 0.520

Stair-climbing
Intervention Control p-value
(N � 15) (N � 20)

Stride time, s -0.04 � 0.17 -0.07 � 0.22 0.590
Cadence, steps/min 1.67 � 10.0 -3.27 � 8.64 0.204
Movement vigor, g 0.01 � 0.04 0.03 � 0.02 0.046
Gait asymmetry, % 0.21 � 4.59 -2.47 � 8.48 0.982
Lissajous index, % -0.55 � 24.5 -3.63 � 30.0 0.840
Postural sway, g2 0.04 � 0.06 -0.01 � 0.07 0.051
Peak workload, W 6.00 � 9.65 12.2 � 10.0 0.149
6-min walk distance, m 34.3 � 70.4 39.9 � 65.2 0.916
Timed up-and-go duration, s 1.12 � 2.63 0.88 � 1.87 0.782
EFS score 0.39 � 1.72 0.27 � 2.10 0.891

N denotes the number of patients in a particular group.
Certain parameter values are given as mean � standard deviation.

the kinematic measures to such an extent as that observed during supervised inpatient
rehabilitation. Furthermore, it cannot be ruled out that some patients in the control
group changed their physical activity habits and started exercising after completing
inpatient rehabilitation. Another factor hiding the differences may be that at least one-
third of the patients in the intervention group did not exercise regularly as was revealed
during phone interviews.

Parts of Sec. 4.2.2 have been quoted verbatim from the previously published
article [17]

4.2.3. Kinematic and functional capacity measures for different frailty status

Table 4.4 shows kinematic measures when patients are grouped into non-frail, vulner-
able, and frail groups according to their EFS scores. In general, the groups of different
frailty statuses can hardly be distinguished based on the kinematic measures under in-
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Table 4.4. Kinematic and functional capacity measures estimated during the walk and
stair-climbing tests after inpatient rehabilitation within the groups of different frailty statuses.

Walking
Non-frail Vulnerable Frail p-value
(N � 18) (N � 40) (N � 32)

Stride time, s 1.20 � 0.22 1.19 � 0.14 1.24 � 0.16 0.166
Cadence, steps/min 103.1 � 13.7 101.8 � 11.2 97.6 � 11.7 0.083
Movement vigor, g 0.16 � 0.06 0.13 � 0.05 0.12 � 0.06 0.005
Gait asymmetry, % 4.02 � 3.40 3.75 � 2.40 4.12 � 3.20 0.918
Lissajous index, % 20.6 � 13.3 21.4 � 15.0 22.5 � 17.1 0.976
Postural sway, g2 0.24 � 0.21 0.16 � 0.06 0.15 � 0.06 0.048
Peak workload, W 64.9 � 22.9 62.6 � 23.2 53.5 � 15.3 0.147
6-min walk distance, m 416.4 � 87.2 366.9 � 112.4 322.4 � 83.9 0.002
Timed up-and-go duration, s 7.00 � 1.18 7.75 � 1.50 8.92 � 2.19 0.004
EFS score 2.56 � 0.62 4.45 � 0.50 7.34 � 1.18  0.001

Stair-climbing
Non-frail Vulnerable Frail p-value
(N � 16) (N � 32) (N � 35)

Stride time, s 1.46 � 0.27 1.54 � 0.27 1.64 � 0.35 0.143
Cadence, steps/min 82.1 � 12.1 77.6 � 12.6 73.2 � 13.4 0.097
Movement vigor, g 0.12 � 0.04 0.11 � 0.03 0.11 � 0.04 0.384
Gait asymmetry, % 9.33 � 4.51 10.4 � 4.91 10.8 � 5.31 0.648
Lissajous index, % 22.2 � 21.4 25.8 � 21.7 23.8 � 14.6 0.675
Postural sway, g2 0.23 � 0.08 0.21 � 0.08 0.20 � 0.09 0.268
Peak workload, W 65.3 � 19.8 61.3 � 19.5 52.7 � 15.3 0.047
6-min walk distance, m 402.6 � 76.7 359.1 � 97.9 313.0 � 85.7 0.002
Timed up-and-go duration, s 6.78 � 0.98 7.78 � 1.65 9.14 � 2.80 0.002
EFS score 2.69 � 0.48 4.34 � 0.48 7.11 � 1.13  0.001
Patients are classified into three categories based on the EFS score: non-frail (0–3 points), vulnerable
(4–5 points), and frail (¥6 points) [159].
N denotes the number of patients in a particular group.
Certain parameter values are given as mean � standard deviation.

vestigation, except between frail and non-frail individuals. During walking, the mean
cadence, movement vigor, and postural sway were lower by 6 steps/min (p � 0.038),
0.04 g (p � 0.002), and 0.09 g2 (p � 0.021) in the frail group compared to the
non-frail group, respectively. During stair-climbing, the mean cadence was lower by
9 steps/min (p � 0.037) in the frail group compared to the non-frail group.

Discussion. Previous research indicates that frail adults often exhibit inferior
basic gait values compared to the non-frail group, which is consistent with the results
of our work, despite the specifics of the study population. Similarly as in this study,
the stride time was found to be 1.0–1.1 s for non-frail and 1.2–1.5 s for frail research
subjects in [47, 48]. Meanwhile, cadence was reported to be 117–118 steps/min for
non-frail and 85–101 steps/min for frail individuals in [47, 48], with a notable excep-
tion in [160] where cadence was equally low in both groups. Movement vigor was
also found to be lower among those with frailty, probably due to a slower pace and
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less intense movements. This finding is in concordance with a previous work reporting
considerably more intense movements among non-frail compared to frail adults [160].
In the present study, movement vigor was estimated as a mean amplitude deviation,
same as in [142]. However, it can alternatively be expressed as the average of the Eu-
clidean sum of the triaxial accelerations [52], or as a root mean square of acceleration
in a particular direction [160] since it largely depends on the signal amplitude.

Due to the plausible interaction between the cognitive and physical frailty [143],
it is reasonable to expect an increased gait asymmetry in patients with a worse frailty
status. Nevertheless, asymmetry-reflecting measures, i.e., gait asymmetry and the Lis-
sajous index, were the least responsive to inpatient rehabilitation and did not indicate
any difference between the non-frail and frail groups. This finding is consistent with
the previously reported results where gait asymmetry, gait irregularity, and stride vari-
ability did not show a significant difference between the non-frail and pre-frail/frail
groups [51]. On the other hand, the opposite results were reported in [160], where
stride regularity, step regularity, and step symmetry turned out to be powerful discrim-
inators when estimated from the vertical component of the acceleration signal when
using a sensor placed on the trunk [160]. Presumably, dual tasking should be involved
to properly explore the effect of the cognitive load on gait asymmetry, as it was shown
in elderly patients with Parkinson’s disease [50]. However, understanding the rela-
tionship between cognitive and physical frailty was outside the scope of the present
study.

Parts of Sec. 4.2.3 have been quoted verbatim from the previously published
article [17]

4.3. Heart Rate Response

4.3.1. Distribution of unacceptable heart rate series

Table 4.5 sheds light on the distribution of unacceptable HR series for different exer-
cise tests in frail/vulnerable and non-frail patients. Bad fitting of the exponential curve
to the recovery phase prevailed in veloergometry and walking, whereas an insufficient
HR response was the most common cause of HR series exclusion for stair-climbing
and timed up-and-go. No notable difference is observed between the frail/vulnera-
ble and non-frail patients, except for timed up-and-go, which resulted in a two times
larger number of excluded tests due to the insufficient HR response in frail/vulnerable
compared to non-frail individuals.

4.3.2. Agreement between submaximal testing and veloergometry

Compared to veloergometry, the lowest estimation errors were obtained during walk-
ing, which were considerably lower than those during other submaximal tests, see
Table 4.6.
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Table 4.5. Percentage of unacceptable HR series for different exercise tests in frail/vulnerable
(EFS ¥ 4) and non-frail (EFS   4) patients.

Frail/Vulnerable Non-frail Total

Veloergometry
No HR response 2.0% 0.0% 1.6%
Bad fitting 5.2% 5.4% 5.2%

Walking
No HR response 0.7% 0.0% 0.6%
Bad fitting 9.6% 11.1% 9.9%

Stair-climbing
No HR response 11.9% 14.3% 12.4%
Bad fitting 3.4% 3.6% 3.4%

Timed up-and-go
No HR response 19.0% 10.7% 17.5%
Bad fitting 11.3% 12.1% 11.4%

Percentages are given for pooled data from before inpatient rehabilitation, after inpatient rehabilita-
tion, and after home-based training.

Table 4.6. Agreement between HR response to veloergometry and each submaximal exercise
test.

Submaximal Ta, s HRR120, T30, RES, %
bpm slope

Walking -66.5 1.6 0.04 2.2
[-97.6, -35.3] [0.12, 3.1] [0.01, 0.07] [-0.4, 4.8]

Stair-climbing 203 7.25 -0.07 15.9
[180.7, 225.3] [6.0, 8.5] [-0.09, -0.04] [13.5, 18.2]

Timed up-and-go 212.9 10.9 -0.06 18.4
[185.1, 240.8] [9.1, 12.7] [-0.09, -0.03] [15.4, 21.4]

The agreement is expressed as mean difference and 95% confidence interval. Results are given for
pooled data from before inpatient rehabilitation, after inpatient rehabilitation, and after home-based
training.

4.3.3. Relationship between submaximal testing and veloergometry

Fig. 4.2 shows an association between HR response measures estimated during velo-
ergometry and each submaximal exercise test. All submaximal tests show moderate to
high correlation for HR recovery measures T30 and HRR120, and for HR reserve. On
the other hand, none of the submaximal tests induced similar HR acceleration patterns
as during veloergometry, which resulted in uncorrelated Ta values.
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Figure 4.2. Association between HR response measures during veloergometry and
submaximal exercise tests. Correlations are given for pooled data from before inpatient

rehabilitation, after inpatient rehabilitation, and after home-based training.

Discussion. The selected submaximal tests differ considerably in terms of the
induced physical exertion. That is, the patients were asked to ascend 12 stairs during
stair-climbing and walk 6 meters during the timed up-and-go test, which was a feasi-
ble task for most patients. On the other hand, the ability to perform on the 6-minute
walk test largely depends on the patient’s functional capacity. As a consequence, the
6-minute walk test resulted in a wide scale of distances, ranging from 150 to 736 me-
ters. The HR response to physical stressors of various intensities is understudied, and
therefore it remains an interesting research direction to be explored in the future [63].
For instance, a stronger association between the frailty status and the HR response
during normal walking was found compared to rapid walking [63]. This finding may
suggest an additional value of submaximal testing for frailty assessment. In addition,
submaximal testing showed excellent reproducibility in terms of the HR response at
various physical exertions [161].

4.3.4. Relationship of heart rate measures with frailty status

Fig. 4.3 shows associations between the HR response to the veloergometry and base-
line HR measures, subdivided into quartiles, and the frailty status. The results indicate
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an obvious association between the worsening of HR response measures and the de-
teriorating frailty status, as indicated by an increasing EFS score. The baseline HR
measures, namely, resting HR, SampEn, and SDNN, exhibit the same trend until the
highest quartile.

Figure 4.3. Frailty status in quartiles of HR response to veloergometry and baseline HR
measures. Results are given as mean � standard deviation for pooled data from before

inpatient rehabilitation, after inpatient rehabilitation, and after home-based training. p-value
refers to the difference in the EFS scores across the corresponding quartiles of HR measures.

4.3.5. Effect of inpatient cardiac rehabilitation

To explore the effect of inpatient rehabilitation on the HR response and baseline HR,
the measures were computed before and after rehabilitation for veloergometry and
submaximal tests. Veloergometry, walking, stair-climbing, and timed up-and-go tests
before and after inpatient rehabilitation were available for 41, 29, 26, and 18 patients,
respectively. The HR response measures noticeably changed only for veloergometry.
That is, Ta increased from 175�84 s to 242�78 s (p   0.05), T30 decreased from
-0.21�0.12 to -0.29�0.14 (p   0.05), HRR120 increased from 10.6�6.2 bpm to
13.9�7.3 bpm (p   0.05), and RES increased from 23.3�11.3% to 29.2�14.6%
(p � 0.05). No significant change was reflected by walking, stair-climbing, and timed
up-and-go.

Discussion. The effect of inpatient cardiac rehabilitation was reflected only by
veloergometry. Physical inactivity due to unavoidable bed rest during the early recov-
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ery from surgery is the most plausible explanation for the insufficient HR response to
submaximal tests [162, 163]. Physical inactivity is associated with autonomic imbal-
ance [162], while cardiac atrophy can already be detected after as little as two weeks of
bed rest [164]. The patients spent 17.0�7.4 days recovering from open-heart surgery
with minimal or no physical activity, and then were transferred to the rehabilitation
hospital. Another important aspect is that patients received beta-blockers altering the
HR response through the inhibition of the sympathetic branch of the autonomic ner-
vous system [165]. Despite the inevitability of including those patients who were
using HR-affecting medications, the number of medications was balanced in both
groups. Furthermore, 14% of the study participants had diabetes mellitus. Cardiac
autonomic neuropathy is common in the diabetic population which, in turn, may lead
to autonomic imbalance [166].

4.3.6. Effect of the entire exercise training program

Fig. 4.4 shows the effect of the entire exercise training program on the HR response
measures in the intervention and control groups. Veloergometry, walking, stair-climbing,
and timed up-and-go tests which covered the entire exercise training were available
for 30, 25, 22, and 15 patients, respectively. All the HR response measures improved
significantly during veloergometry (p   0.05), except for Ta for the control group.

When comparing the submaximal tests with veloergometry, the trends of the
measures were best followed during walking, whereas stair-climbing and timed up-
and-go seem to be less suitable to capture the change in measures.

No difference is reflected by the change in the values of the HR measures be-
fore and after the entire exercise training program between the intervention and the
control groups, except for Ta during stair-climbing. The absence of difference corre-
sponds well with similar EFS scores after completing the entire training program in
the intervention (4.13�1.45) and the control (4.78�1.66) groups.

Discussion. An increased time to peak HR during walking was observed in frail
older adults compared to non-frail individuals [63]. However, the comparison with
previous works is complicated since the walking duration, which directly relates to
the time of reaching peak HR, differed among the study participants due to the earlier
termination of the 6-minute walk test. The changed test duration due to an improved
physiological reserve explains why Ta increased during veloergometry but decreased
during stair-climbing in the intervention group after the entire exercise training pro-
gram. That is, the patients were able to continue the veloergometry test 55% longer on
average, and thus reach the peak HR later, at end of the training program. Conversely,
stair-climbing lasted shorter since the patients were able to climb the stairs faster. Ac-
cordingly, the change in the physiological reserve and the ability to sustain physical
exertion should be accounted for when considering HR acceleration as a measure for
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Figure 4.4. Effect of the entire exercise training program on HR response measures in the
intervention and control groups. p-value on the top of each subplot refers to the difference in

the change of values before and after the entire exercise training program between the
intervention and the control groups. p-values on the bottom of each subplot refer to the

change in values before and after the entire exercise training program within the intervention
and the control groups.

assessing the effectiveness of exercise training programs.

The HR reserve below 80%, at peak exercise, indicates impaired chronotropic
response [69]. Despite the fact that the threshold for patients on beta-blockers was
reduced to 62% [167], none of the patients managed to reach it at the beginning of
the exercise training program. However, 27% of the patients were able to exceed this
threshold after completing the program. Even though submaximal testing does not
allow to achieve the peak HR, the HR reserve reflected well the tendencies observed
while performing veloergometry.

This study showed that resting HR was the least associated with the frailty status.
Differently from [60], where the HR complexity, as indicated by the sample entropy,
did not differ among frail, pre-frail, and non-frail research subjects, the complexity
was associated with the frailty status in our study. When assessing the baseline HR,
the effect of HR-altering medication should also be taken into account. A study on
the effectiveness of cardiac rehabilitation showed that baseline HR measures, such as
variability, were less responsive in those who were taking beta-blockers [168]. Taking

59



this into consideration, it can be assumed that the HR response to exercise may be
more beneficial for assessing the autonomic function in patients on beta-blockers than
the baseline HR.

Parts of Sec. 4.3 have been quoted verbatim from the previously published arti-
cle [18]

4.4. Identification of Frailest Physiological Functions

4.4.1. Classification of the components of the Edmonton frail scale

Table 4.7 presents the performance of a gradient boosting decision tree model con-
structed by using either clinical reference or wearable-based features. The wearable-
based model was trained and tested on 121 feature sets, including 73 patients from in-
patient rehabilitation, 37 after inpatient rehabilitation, and 11 after home-based train-
ing. Meanwhile, the clinical reference model was trained and tested on 157 feature
sets, including 82 patients from inpatient rehabilitation, 59 after inpatient rehabilita-
tion, and 16 after home-based training. The model’s accuracy, as evaluated by the
F1 score, was 77.8% and 72.7% for the general health status, 71.3% and 65.3% for
the functional independence, 72.6% and 76% for nutrition, and 84.7% and 81.0%
for the functional performance, when using the clinical reference and estimates from
wearable-based biosignals, respectively.

Table 4.7. The performance of the gradient boosting decision trees model using
wearable-based features and the clinical reference. Leave-one-out cross-validation is used to
evaluate the performance. The performance is evaluated by using F1 score.

EFS component Wearable-based measures Clinical reference measures

General health status 72.7% 77.8%
Functional independence 65.3% 71.3%
Nutrition 76.0% 72.6%
Functional performance 81.0% 84.7%

4.4.2. Interpretation of frailty predictions

The importance of physiological functions in classifying the EFS components is shown
in Fig. 4.5. A noticeable observation is that the importance of clinical and wearable-
based features differs. For example, wearable-based balance features are found to be
more important than those from the clinical reference. Conversely, the gait features
from clinical reference are more crucial than the wearable-based features, particularly
in identifying the functional performance component.

Figure 4.6 provides an interpretation of classifications for a single patient. In
the given example, both wearable-based features and clinical reference contributed
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Figure 4.5. Feature importance when classifying EFS components.

similarly in classifying the general health status, the functional independence, and the
nutrition components. However, their contributions were opposite when classifying
the functional performance component.

Figure 4.6. Example of an interpretation of classifications for a single patient. SHAP values
represent the contribution of a feature towards the outcome of a single prediction.

Figure 4.7 shows the distribution of the SHAP values for the classifications of
all patients. Notably, wearable-based features and the clinical reference demonstrated
similar contribution tendencies when classifying the general health status, functional
independence, and nutrition components. However, distinctly different physiological
functions contributed when classifying the functional performance.

If a specific component of the EFS is classified as weak, the physiological func-
tion that contributes the most to that classification may be considered as the frailest for
the corresponding patient. Table 4.8 presents the percentage of patients in whom the
gait, balance, or the heart rate response contributed most to a particular EFS compo-
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Figure 4.7. Visualization of the distribution of SHAP values for the classifications of all
patients. Each vertical bar represents an individual patient.

nent. The results indicate that wearable-based identification of the frailest component
aligns with the clinical reference in all cases, except for the functional performance.
When determining the general health status, the gait and balance were found to be the
predominant contributors to the prediction for 47.9% and 35.5% of patients, respec-
tively. On the other hand, when identifying the functional independence, the heart rate
response was the primary contributor for 81.8% of the patients.

Table 4.8. The percentage of patients with physiological functions that contributes the most
to classification of a particular EFS component.

Physiological General health Functional Nutrition Functional
function status independence performance

Clinical reference
Gait 80.9% 33.8% 17.8% 87.9%
Balance 8.9% 0.6% 51.6% 6.4%
Heart rate response 10.2% 65.6% 30.6% 5.7%

Wearable-based
Gait 47.9% 10.7% 8.3% 7.4%
Balance 35.5% 7.4% 39.7% 36.4%
Heart rate response 16.5% 81.8% 52.1% 56.2%
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Discussion. In general, the clinical reference, which involves features obtained
from standardized clinical tests and/or specialized equipment, demonstrated better
performance in classifying the general health status, functional independence, and
functional performance. However, wearable-based features yielded superior perfor-
mance in classifying the nutrition component. Analysis of the results presented in
Figure 4.7 and Table 4.8 suggests that the clinical reference heavily relies on gait-
related features, which is expected as the EFS assessment includes such measures as
timed up-and-go and the distance walked during the 6-minute walk test.

In contrast, the interpretation of the wearable-based model revealed that all
physiological functions contributed to the classification of the EFS component status,
thereby suggesting a more comprehensive and multi-dimensional approach to assess-
ing frailty compared to the clinical reference.

4.5. Conclusions of the Chapter

1. The derivative dynamic time warping-based algorithm demonstrated the best
overall performance in detecting physical stressors when utilizing the accel-
eration signal from the vertical axis. Specifically, a sensitivity of 84.2% and a
positive predictive value of 82.1% were obtained when assessing walking, while
a sensitivity of 81.6% and a positive predictive value of 83.8% were achieved
when assessing stair-climbing.

2. The majority of kinematic measures estimated during walking showed an im-
provement after rehabilitation, along with an improvement in the frailty status.
Specifically, the stride time, cadence, postural sway, and movement vigor im-
proved in 71%, 77%, 81%, and 83% of the patients, respectively. However,
kinematic measures during stair-climbing showed less improvement compared
to walking. Interestingly, home-based exercise training did not result in signif-
icant changes in the kinematic measures, which aligns with the minimal deteri-
oration observed in the frailty status.

3. All submaximal tests demonstrated moderate to high correlations (r = 0.59–
0.72) with veloergometry for the HR recovery and HR reserve measures. No-
tably, the effect of inpatient rehabilitation was primarily reflected in the HR
response to veloergometry, while the trends of measures over the entire exercise
training program were also consistent during stair-climbing and walking.

4. Investigation of an interpretable machine learning model shows that wearable-
based performance is comparable to that obtained by using clinical tests. That
is, the F1 score was 77.8% during clinical tests and 72.7% when estimated from
wearable-based data for the general health status, 71.3% and 65.3% for func-
tional independence, 72.6% and 76% for nutrition, and 84.7% and 81.0% for
the functional performance, respectively.
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5. CONCLUSIONS

1. A derivative dynamic time warping-based algorithm has been proposed to de-
tect physical stressors, namely, walking and stair-climbing, in wearable-based
biosignals. A sensitivity of 84.2% and a positive predictive value of 82.1% were
obtained when assessing walking, while a sensitivity of 81.6% and a positive
predictive value of 83.8% were achieved when assessing stair-climbing. The
identification of physical stressors in daily activities opens up the possibility to
assess the heart rate response to the detected stressors.

2. The feasibility of using a single wearable sensor to track the kinematic proper-
ties of frail patients undergoing cardiac rehabilitation after an open-heart surgery
has been explored. The stride time, cadence, postural sway, and the movement
vigor, derived from wearable-based acceleration signals during walking, im-
proved after rehabilitation, which coincided with an improvement in the frailty
status. On the other hand, kinematic measures during stair-climbing showed
only a minor improvement, which suggests that walking is a more appropriate
physical stressor for assessing the rehabilitation progress. The findings em-
phasize the value of wearable-based monitoring of the kinematic properties in
evaluating the effectiveness of the exercise training programs for frail patients
after an open-heart surgery.

3. To comprehensively characterize the heart rate response by relying on the analy-
sis of wearable-based biosignals, measures covering the accelerating phase, the
decelerating phase, and the entire heart rate response phase were proposed. The
results show a moderate-to-high correlation (ranging from 0.59 to 0.72) between
the submaximal tests, such as walking, stair-climbing, and stand up-and-go, and
veloergometry for the heart rate recovery and the heart rate reserve measures.
Moreover, the findings indicate a clear association between the deteriorating
wearable-based heart rate response measures and the worsening frailty status.
While the effect of the inpatient rehabilitation was primarily reflected in the
heart rate response to veloergometry, the trends observed in the measures dur-
ing the entire exercise training program were also evident during stair-climbing
and walking. Based on these findings, the heart rate response to walking should
be considered as a useful measure for assessing the impact of home-based exer-
cise training programs while using wearable devices.

4. A concept of interpretable machine learning has been proposed for identify-
ing clinically informative features which would provide information on the frail
physiological functions of an individual patient. The performance of the pro-
posed gradient boosting decision tree model, as evaluated by the F1 score, was
77.8% and 72.7% for the general health status, 71.3% and 65.3% for functional
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independence, 72.6% and 76% for nutrition, and 84.7% and 81.0% for the func-
tional performance when using clinical reference and estimates from wearable-
based biosignals, respectively. By targeting the frailest physiological functions,
a possibility opens up to tailor exercise programs and improve the functions
contributing most of all to frailty for an individual patient.
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SANTRAUKA

ĮVADAS

Tyrimo aktualumas
Senatviniam silpnumo sindromui (SSS) būdingas fiziologinio rezervo sumažėjimas

ir jautrumas vidiniams (pvz., ligos, operacijos) ir išoriniams (pvz., fizinė veikla) stre-
soriams [1, 2]. SSS pasireiškia 17 % asmenų, vyresnių nei 60 metų [4], ir tampa
vienu iš svarbiausių senėjančios visuomenės iššūkių [3]. SSS susijęs su padidėjusia
nepageidaujamų pasekmių, tokių kaip judrumo sutrikimas, negalia, griuvimai ir mir-
tis, rizika [5]. Laimei, daugėja įrodymų, kad SSS progresavimą galima pristabdyti
laiku pritaikius tinkamą intervenciją [6].

Vyresnio amžiaus SSS pacientams po atviros širdies operacijos padidėja pooperaci-
nių komplikacijų rizika, taip pat jiems reikia daugiau laiko išgyti [7]. Atsižvelgiant į
sparčiai didėjantį vyresnio amžiaus SSS pacientų, dalyvaujančių širdies reabilitacijos
programose, skaičių, tai tampa opia problema, į kurią būtina atkreipti dėmesį [8]. Ši
pacientų grupė kenčia nuo sumažėjusios raumenų masės, ištvermės stokos ir susilpnėju-
sių fiziologinių funkcijų, o tai apsunkina širdies reabilitaciją ir neleidžia taikyti įprastų
treniruočių programų [9].

Daugėja įrodymų, kad treniruočių programos gali būti naudingos SSS pacientams,
tačiau fizinio aktyvumo užsiėmimų tipas, intensyvumas ir trukmė, taip pat treniravi-
mosi namuose rekomendacijos turi būti kruopščiai pritaikyti kiekvienam asmeniui,
kad reabilitacijos tikslai būtų pasiekti nedarant žalos [10,11]. Visgi kai kuriais atvejais
treniruočių programos parinkimas ir individualus pritaikymas gali būti problemiškas.
Pavyzdžiui, po atviros širdies operacijos įprastai rekomenduojami aerobiniai ir jėgos
pratimai, siekiant apsaugoti krūtinkaulį, tačiau SSS gali apriboti įprastinių treniruočių
taikymą. Tokiais atvejais, norint padidinti paciento raumenų jėgą, svorį ir mobilumą,
gali prireikti asmeniškai pritaikytos programos. Todėl reikia informatyvių ir patogių
priemonių treniruočių programų efektyvumui įvertinti, ypač kai programos skirtos
pažeidžiamiems pacientams ir numatomos tęsti namų aplinkoje.

Nepaisant to, kad pasiūlyta įvairių indeksų ir klausimynų, apimančių fizinius,
fiziologinius, pažintinius ir socialinius gyvenimo aspektus, vis dar nėra visuotinai pri-
imtos standartizuotos SSS vertinimo priemonės [12]. Kadangi klinikiniai įvertinimo
metodai netinkami naudoti ne klinikinėje aplinkoje, didėja poreikis naujų žymenų,
kurie įgalintų ankstyvą SSS diagnozę ir stebėseną [13]. Tradiciškai moksliniai tyrimai
buvo fokusuoti į fizinių žymenų, tokių kaip sulėtėjusi eisena, kurie pirmieji pasireiškia
esant SSS, vertinimą [14].

Sisteminė apžvalga ir metaanalizė parodė, kad autonominės nervų sistemos funkci-
ją atspindintys širdies ritmo (ŠR) analize pagrįsti žymenys, tokie kaip širdies ritmo
atsakas į krūvį, žemo ir aukšto dažnio sričių spektrinė analizė, ŠR pokyčiai pasikeitus
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kūno padėčiai, SSS pacientams yra pablogėję [15]. Tai leidžia daryti prielaidą, kad
ŠR žymenys gali būti naudingi vertinant širdies gebėjimą normalizuotis paveikus stre-
soriams ir būtų naudingi vertinant medicininių, fizinių ir mitybos intervencijų poveikį
SSS pacientams.

SSS yra kompleksinis sindromas, apimantis įvairias komponentes, tokias kaip
fiziologinis rezervas, fiziniai gebėjimai ir pažinimo funkcijos. Dėl šios priežasties
svarbu tiksliai nustatyti konkrečias susilpnėjusias komponentes atskiram pacientui ir
jas stiprinti taikant individualizuotas treniravimosi programas [16]. Deja, ši tyrimų
sritis dar nesulaukė pakankamo dėmesio, todėl trūksta algoritminių sprendimų šiai
problemai spręsti.

Mokslinė ir technologinė problema bei darbinė hipotezė
Kol kas SSS įvertinimas apsiriboja tyrimais, atliekamais klinikinėje aplinkoje. Vis

dėlto dėvimų įrenginių technologija patobulėjo tiek, kad galima svarstyti galimybę
SSS vertinti ir už klinikos ribų. Norint vertinti SSS kasdienėje veikloje, pvz., nau-
dojant dėvimus įrenginius, reikia išspręsti keletą iššūkių, tokių kaip fizinių stresorių
atpažinimas ir su SSS siejamų fiziologinių funkcijų įvertinimas.

Mokslinė ir technologinė problema: Kaip informacija, gauta iš dėvimais įrenginiais
užregistruotų biosignalų, gali būti panaudota siekiant įvertinti SSS būseną kasdienėje
veikloje?

Darbinė hipotezė: Dėvimų įrenginių panaudojimu pagrįsta stebėsena yra tinkama
alternatyva siekiant įvertinti SSS būseną už klinikos ribų.

Tyrimo objektas
Šiame darbe vystomi ir tiriami signalų apdorojimo algoritmai, skirti kasdienės

veiklos netrukdančiai SSS būsenos ir su SSS siejamų fiziologinių funkcijų stebėsenai.

Tyrimo tikslas
Sukurti, ištirti ir validuoti kasdienės veiklos netrukdančios SSS būsenos stebėsenos

algoritmus.

Tyrimo uždavinys yra sukurti, ištirti ir validuoti signalų apdorojimo algoritmus,
įgalinančius vertinti SSS būseną naudojant dėvimais įrenginiais užregistruotus biosig-
nalus. Konkrečiai disertacijoje tiriami algoritmai skirti:

1. atpažinti fizinius stresorius;

2. įvertinti kinematines savybes;

3. įvertinti širdies ritmo atsaką į fizinius stresorius;

4. identifikuoti nusilpusias fiziologines funkcijas individualiam pacientui.
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Tyrimo tikslas – sukurti, ištirti ir patvirtinti signalų apdorojimo algoritmus, lei-
džiančius įvertinti individo silpnumo būseną naudojant nešiojamus biosignalus. Konkre-
čiai darbe siūlomi ir tiriami fizinių stresorių aptikimo algoritmai; kinematinių savybių
įvertinimas; širdies ritmo reakcijos į fizinius stresorius įvertinimas; silpniausių fiziologi-
nių funkcijų nustatymas.

Mokslinis naujumas
Didėjant SSS pacientų, kuriems atliekamos operacijos, skaičiui, reikia tinkamų

sprendimų, kurie padėtų geriau suprasti ir įvertinti treniravimo plano efektyvumą [9].
Atsižvelgiant į patogių stebėsenos technologijų poreikį, disertacijoje pasiūlytas ir ištir-
tas kasdienės veiklos nevaržantis SSS įvertinimo būdas.

Dauguma ankstesnių tyrimų buvo skirti SSS ir ankstyvajai SSS stadijai atpažinti,
tačiau galimybė stebėti subtilius SSS pokyčius treniruočių metu dar nebuvo išsamiai
nagrinėta. Disertacijos tyrimai, kuriuose nagrinėjimas kinematinių ir ŠR atsako para-
metrų tinkamumas SSS trajektorijai sekti treniruotėmis pagrįstos reabilitacijos metu,
užpildo šią tyrimų spragą. Pasiūlytas būdas visapusiškai ištirtas su pacientais, kurie
vykdė padidinto intensyvumo reabilitaciją klinikoje bei mažesnio intensyvumo treni-
ravimosi programą namuose. Pasiūlytas būdas gali būti taikomas vertinant SSS būklę
treniruočių namuose metu ir atpažįstant ankstyvuosius SSS požymius.

Sukurti algoritmai leido dėvimais įrenginiais užregistruotuose biosignaluose įver-
tinti kinematines SSS pacientų savybes. Rezultatai parodė, kad dauguma kinematinių
parametrų pagerėjo daugumai pacientų, o tai atitiko SSS gerėjimo tendenciją. Vyk-
dant treniruočių programą namuose, nepastebėta ryškesnių kinematinių parametrų
pokyčių.

Sukurtais algoritmais vertinant ŠR atsaką į fizinius stresorius pastebėta, kad dauge-
liui SSS pacientų ŠR atsakas pagerėjo. Pagerėjimas didžiausias intervencijos grupėje,
kuriai buvo paskirta treniruočių programa namuose, kas leidžia daryti prielaidą, kad
treniravimasis namuose yra tinkama intervencija fiziologiniam rezervui pagerinti. Verti-
nant galimybes taikyti algoritmus kasdienėje veikloje, nustatyta, kad spartus ėjimas ir
lipimas laiptais tinkamiausi sukelti ŠR atsaką, kurio pakaktų sekti parametrų tenden-
cijas, stebimas naudojant klinikinį standartą – veloergometriją.

Pasiūlytas interpretuojamas mašininiu mokymusi pagrįstas algoritmas, skirtas nusil-
pusioms konkretaus paciento fiziologinėms funkcijoms identifikuoti. Pasiūlytas būdas
leidžia susieti SSS stadiją su specifiniais SSS bruožais, o tai gali suteikti papildomos
informacijos gydytojams kuriant individualizuotas treniruočių programas. Pasiūlytas
būdas turi pontencialo įgalinti geriau suprasti kiekvieno paciento SSS būklę ir su-
darant sąlygas efektyviau taikyti esamas reabilitacijos priemones.
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Praktinė reikšmė

1. Siūlomas SSS būsenos vertinimo būdas gali būti taikomas šiais atvejais:

(a) SSS būklei vertinti treniravimosi programos namuose metu.

(b) Kasdienės veiklos nevaržančiai SSS pacientų stebėsenai ir ankstyvai SSS
stadijai nustatyti.

(c) Pagalbinė priemonė gydytojams kuriant individualizuotas treniravimosi
programas.

(d) Pagalba gydytojams siekiant geriau suprasti labiausiai nusilpusias konkre-
taus paciento fiziologines funkcijas.

2. Šiame darbe pasiūlyti būdas ir algoritmai sukurti įgyvendinant projektus „Kas-
dienės veiklos nevaržančios autonominės nervų sistemos funkcijos stebėsenos
technologijos senatvinį silpnumo sindromą turintiems pacientams – FrailHeart“
(P-MIP-20-95), 2020–2022 ir „Interpretuojamas mašininio mokymo algoritmas
senatvinio silpnumo sindromui vertinti – intFrail“ (Nr. PP2022/58/2), 2022.

Tyrimo aprobavimas
Daktaro disertacija remiasi dviem pagrindiniais straipsniais, publikuotais tarptau-

tiniuose moksliniuose žurnaluose, turinčiuose cituojamumo rodiklį „Clarivate Ana-
lytics Web of Science“ duomenų bazėje. Taip pat publikuoti du susiję su tyrimų tema
straipsniai. Pagrindiniai rezultatai pristatyti konferencijose „BIOSIGNALS 2021: 14th

International Conference on Bio-inspired Systems and Signal Processing“ ir „19th

Nordic-Baltic Conference on Biomedical Engineering and Medical Physics“. Tyri-
mas, pristatytas „BIOSIGNALS 2021“ konferencijoje, įvertintas geriausio studentų
straipsnio apdovanojimu.

Ginti teikiami teiginiai

1. Lipimo laiptais ir ėjimo veiklos tinkamos alternatyvos įprastiniams, klinikose
taikomiems fizinio aktyvumo testams, o fizinio aktyvumo tipą galima nustatyti
kasdienės veiklos metu, analizuojant pagreičio signalus, gautus naudojant dėvim-
us įrenginius.

2. SSS tendencijų stebėsena treniruočių metu, naudojant kinematinius parametrus,
gautus iš vieno dėvimo jutiklio, gali būti alternatyva įprastiems klinikiniams
fizinio aktyvumo testams.

3. ŠR atsakas į fizinius stresorius gali būti naudojamas vertinant treniruočių progra-
mų efektyvumą SSS pacientams.

4. Identifikuoti susilpnėjusias fiziologines funkcijas galima naudojant interpretuo-
jamą mašininio mokymosi algoritmą.
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1. APŽVALGA

SSS yra vyresniems žmonėms įprastai pastebima būklė, kuriai pasireiškus būdingas
fiziologinio rezervo sumažėjimas ir padidėjęs jautrumas įvairiems stresoriams [19].
SSS pasireiškia įvairiose organų sistemose ir sukelia neigiamų sveikatos pasekmių,
įskaitant mobilumo sumažėjimą, negalią, hospitalizavimą ir mirtį [1]. Nors SSS daž-
nai lėtinis ir progresuojantis – tai ne visada reiškia negrįžtamą progresavimą iki visiško
nusilpimo. Daugėja įrodymų, kad tinkamos intervencijos, tokios kaip treniravimosi
programos, gali pristabdyti progresavimą arba net pagerinti SSS būklę [6, 20, 21].

Didėjantis SSS pacientų, įsitraukiančių į širdies reabilitacijos programas, skaičius
kelia didelį susirūpinimą, nes SSS pacientams gresia didesnė chirurginių intervencijų,
ilgesnio sveikimo, pooperacinių komplikacijų ir mirštamumo ligoninėje rizika [8].
SSS pacientams po atviros širdies operacijos svarbus tinkamo treniruočių programos
tipo ir intensyvumo parinkimas, nes būtinybė saugoti krūtinkaulį dažnai apriboja įpras-
tų treniravimosi programų taikymo galimybes [9]. Organizmo reakcija į programas
gali būti skirtinga, todėl, siekiant reguliariai įvertinti treniruočių programos efek-
tyvumą, reikia patogių ir informatyvių metodų, ypač kai treniruotės tęsiamos namu-
ose. Pasiūlyta įvairių SSS būklės įvertinimo būdų [12], tačiau vis dar nėra universalaus
ir pripažinto standarto. Taip yra dėl išskirtinai daugiakomponentinio SSS pobūdžio,
apimančio fizinius, psichologinius, pažintinius ir socialinius veiksnius. Negana to,
esami klinikiniai SSS įvertinimo būdai dažnai reikalauja specialistų priežiūros, o tai
riboja jų pritaikymą už klinikos ribų.

Treniruočių programos, apimančios jėgos, aerobikos, pusiausvyros ir koordinaci-
jos pratimus, turi potencialo pagerinti SSS pacientų eiseną, pusiausvyrą ir fizinį pajė-
gumą, nors optimalios šių treniruočių charakteristikos (pvz., tipas, dažnis ir trukmė)
lieka neaiškios [3,10,27,28]. Nustatyti optimalias treniruočių charakteristikas sudėtin-
ga dėl nestandartizuotų reabilitacijos klinikų programų rengimo skirtumų, o tai ap-
sunkina įvairių taikomų treniruočių programų palyginimą. Siekiant įveikti šiuos iššū-
kius, svarbu sutelkti pastangas kuriant visapusius ir praktiškus SSS būklės vertinimo
būdus, kurie galėtų būti taikomi ir už klinikos ribų.

Friedo silpnumo fenotipas – populiarus klinikinis SSS būklės įvertinimo būdas,
ypač dažnai naudojamas atliekant tyrimus, kuriuose taikomi kinematiniai mobilumą
įvertinantys parametrai [13]. Friedo silpnumo fenotipas remiasi fizinių komponenčių,
tokių kaip svorio kritimas, nuovargis, sulėtėjęs eisenos tempas ir mažas fizinis aktyvu-
mas, vertinimu, todėl laikomas vienu iš objektyviausių SSS būklės vertinimo būdų.
Edmontono silpnumo skalė (EFS) papildomai atsižvelgia į socialinius, pažintinius ir
mitybos aspektus [29]. EFS įvertina funkcinį pajėgumą, remiantis „stokis ir eik“ testu,
įvertinančiu eisenos tempą ir pusiausvyrą. Nepaisant to, kad EFS gana subjektyvus,
šis būdas įvairiuose tyrimuose išsiskyrė patikimumu ir atkartojamumu [12, 29, 30].

Ilgalaikiai SSS progreso tyrimai atskleidė, kad nuovargis, silpnumas, mažas fizi-
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nis aktyvumas ir lėtas eisenos tempas yra vieni pirmųjų SSS požymių [21]. Todėl
nenuostabu, kad fizinių funkcijų, kurios atsispindi fizinio aktyvumo, eisenos ir pu-
siausvyros parametruose, sutrikimo vertinimas, yra ypač vertingas atpažįstant SSS
būsenas [13, 43]. Paprastai kinematiniai parametrai įvertinami atliekant klinikinius
testus, kuriems būtina medicinos darbuotojų priežiūra [39], tačiau stebėsenai už klini-
kos ribų įprastos kasdienės veiklos, tokios kaip ėjimas ar lipimas laiptais, turi poten-
cialo geriau atspindėti tikrąją tiriamojo fizinę būklę [39].

Širdies ir kraujagyslių funkciją reguliuoja autonominė nervų sistema, todėl ke-
liama hipotezė, kad širdies autonominis disbalansas prisideda prie SSS pablogėjimo [14,
26, 59, 60], o tai savo ruožtu gali sumažinti gebėjimą išlaikyti homeostazę veikiant
fiziniams stresoriams [14, 61]. Autonominė nervų sistema kontroliuoja ŠR, todėl
matomi ŠR pakitimai – padidėjęs ŠR ramybės būsenoje, sumažėjęs ŠR kompleksišku-
mas ir variabilumas, lėtesnė ir silpnesnė ŠR reakcija į fizinį krūvį ir susilpnėjęs ŠR
normalizavimasis po fizinio krūvio [14, 62].

ŠR atsakas į ėjimą jau buvo sietas su SSS būsena [63]. Ankstesni tyrimai parodė,
kad po ėjimo ŠR atsakas vyresnio amžiaus SSS pacientams yra lėtesnis ir silpnes-
nis, palyginti su sveikais asmenimis, o tai rodo, kad ŠR parametrai gali būti naudingi
vertinant SSS būklę. Tyrime sutelktas dėmesys tik į normalų ir greitą ėjimą, todėl
lieka neaiškus kitų fizinių stresorių poveikis ŠR atsakui. Be to, turimi duomenys
apėmė tik trumpą laikotarpį — 5 sekundes prieš ir 10 sekundžių po ėjimo, o tai ri-
boja ramybės ŠR charakterizavimo galimybes. Atsižvelgiant į šiuos trūkumus, tyrimo
autoriai išreiškė didelį susidomėjimą ištirti ramybės ŠR kompleksiškumą ir ŠR nor-
malizavimosi parametrus [63].
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2. DUOMENŲ BAZĖ

SSS pacientų stebėsenos algoritmams vystyti ir tirti užregistruota biosignalų ir atrami-
nių klinikinių duomenų bazė. Elektrokardiogramos ir trijų ašių pagreičio signalai
užregistruoti atitinkamai 130 Hz ir 200 Hz diskretizavimo dažniu, panaudojant teksti-
linį krūtinės diržą su nešiojamu jutikliu (Polar H10; Polar Electro OY, Kempele,
Suomija). Kaupiant duomenų bazę, įvertinti 337 pacientai, atvykę į Kulautuvos re-
abilitacijos ligoninę po širdies operacijos. Iš jų 100 atitiko numatytus įtraukimo kri-
terijus, t.y. vyresnis nei 65 m. amžius, nustatytas SSS, pakankamas fizinis pajėgumas
bei atmetimo kriterijų nebuvimas. SSS įvertintas EFS įverčiu, kuris gali būti nuo 0 iki
17. Atsižvelgiant į balų skaičių, išskiriamos trys SSS stadijos: ¤3 — nėra SSS, 4–5
— pažeidžiami, ¥6 — SSS.

2.1 lentelė. Pacientų demografiniai ir klinikiniai duomenys intervencinėje ir kontrolinėje
grupėse.

Kintamasis Intervencinė Kontrolinė
Moterys 25 13
Vyrai 25 37
Amžius, metai 73,2 � 4,8 73,4 � 5,3
Ūgis, cm 165,9 � 8,6 169,4 � 8,6
Svoris, kg 74,9 � 12,8 78,7 � 13,2
Kūno masės indeksas, kg/m2 27,3 � 4,8 27,4 � 3,9
Laikas po operacijos, dienos 16,6 � 7,3 17,6 � 7,5
Medikamentai

Angiotenziną konvertuojantis fermentas 37 40
β adrenoblokatoriai 49 50
Kalcio kanalų blokatoriai 2 1

Širdies nepakankamumo klasė
NYHA I 2 3
NYHA II 40 34
NYHA III 8 13

Fizinis pajėgumas
Maksimalus pasiektas krūvis, W 49,5 � 15,8 51,0 � 15,5
Veloergometrijos trukmė, s 161,8 � 97,8 154,4 � 95,2
6 min ėjimo atstumas, m 289 � 86,1 291 � 79,6
„Stokis ir eik“ trukmė, s 8,9 � 2,4 8,5 � 1,7
Edmontono silpnumo skalės įvertis 6,2 � 1,6 6,0 � 1,6

Prieš pradedant reabilitaciją, pacientai atsitiktiniu būdu suskirstyti į intervencinę ir
kontrolinę grupes. Grupės gerai suderintos, išskyrus tai, kad kontrolinėje grupėje buvo
kur kas daugiau vyrų (2.1 lentelė). Intervencinės grupės pacientams atlikti kontroliniai
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telefono skambučiai kas dvi savaites teiraujantis, ar laikomasi sudarytos fizinio treni-
ravimosi namuose programos.

3. METODAI

3.1 Fizinių stresorių atpažinimo algoritmas

Sukurtas dinaminiu laiko skalės iškreipimu pagrįstas algoritmas fiziniams stresoriams
atpažinti. Algoritmas priima sprendimą apie fizinio stresoriaus tipą (pvz., ėjimas ar
lipimas laiptais), įvertindamas dviejų signalo segmentų panašumą nepriklausomai nuo
laiko vėlinimo bei signalo formos ištempimo ar suspaudimo laiko ašyje (3.1 pav.).
Signalo sutapimas įvertinamas apskaičiuojant atstumų sumą tarp šablono ir analizuo-
jamo signalo segmento atskaitų. Šablono parinkimas ėjimo ir lipimo laiptais stresoriams
turi esminę svarbą, nes šablonas turi būti pakankamai detalus, kad skirtųsi nuo kitų
judesių, bet ne per daug specifiškas. Lyginant ėjimo ir lipimo laiptais šablonus su
analizuojamu segmentu bei nustačius optimalų sutapimą, segmentas priskiriamas tai
veiklai, kuriai paklaida gaunama mažesnė.

3.1 pav. Dinaminiu laiko skalės iškreipimu pagrįsto algoritmo, skirto atpažinti fizinius
stresorius, veikimo principas: a) analizuojamo segmento (ištisinė linija) sulyginimas su

šablonu (brūkšninė linija) ir b) optimalus signalų sutapdinimas

3.2 Kinematiniai parametrai

Eisena ir balansas įvertinami analizuojant trijų ašių pagreičius: priekinį-šoninį (AccAP ),
vertikalų (AccV ) ir vidurio (AccML). Pagreičio signalą sudaro dinaminė komponentė,
atsirandanti dėl greičio pokyčių judėjimo metu, bei statinė gravitacijos komponentė.
Gravitacijos įtaka eliminuota trendo pašalinimo būdu. Žingsnio trukmė, ėjimo tem-
pas ir eisenos asimetrija įvertinti radus žingsnio ilgį AccV signale, nufiltruotame 3
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eilės žemųjų dažnių Butterworth filtru, kurio pjūvio dažnis 2,5 Hz. Judėjimo inten-
syvumas įvertintas neapdorotame pagreičių signale, prieš tai pašalinus gravitacijos
komponentę. Vertinant Lisažu indeksą ir pusiausvyros svyravimus, lėti kūno judesiai,
pvz., dėl kvėpavimo, nuslopinti 3 eilės Butterworth aukštųjų dažnių filtru, kurio pjūvio
dažnis 0,3 Hz. Triukšmas pašalintas naudojant 3 eilės Savitzky ir Golay glotninamąjį
filtrą, kurio lango ilgis – 41.

Tyrimai rodo, kad žingsnio trukmė ilgėja esant sunkesnei SSS stadijai [43, 51].
Žingsnio trukmė atspindi eisenos ciklo trukmę ir apibrėžiama kaip laikas, praėjęs tarp
dviejų iš eilės tos pačios kojos žingsnių pirmųjų kontaktų su žeme. Nufiltruotame
AccV signale pikai atitinka dešine arba kaire koja atliekamą žingsnį. Laiko intervalas
tarp gretimų pikų atitinka vieno žingsnio, atliekamo dešine arba kaire koja, trukmę, o
intervalas tarp kas antrojo piko atitinka bendrą žingsnio ilgį, kurį sudaro pakaitomis
einantys du žingsniai.

SSS asmenims dažnai būdingas sulėtėjęs eisenos tempas, todėl šis įvertis gali būti
taikomas nustatant pirmines SSS stadijas [49, 141]. Eisenos tempas išreiškiamas kaip
žingsnių skaičius per minutę analizės laiko intervale T .

Judėjimo intensyvumas tiesiogiai daro įtaką pagreičio signalo amplitudei, todėl
ypač gerai tinka fizinio aktyvumo intensyvumui kategorizuoti [52,142]. Kadangi SSS
pacientai dažnai juda lėčiau, sumažėja judėjimo intensyvumas, kuris šiame tyrime
įvertintas vidutiniu amplitudės nuokrypiu:

Intensyvumas �
1

n

ņ

i�1

��Accpiq �Acc
�� , (3.1)

čia Accpiq yra trijų ašių pagreičio signalo atskaitų euklidinis atstumas, Acc – vidutinė
Acc reikšmė ir n – atskaitų skaičius analizės laiko intervale T .

Sveikiems asmenims nereikia kognityvinių pastangų siekiant išlaikyti pusiausvyrą,
tačiau kognityvinių pastangų reikalauja kai kurios patologinės būsenos [50]. SSS
neigiamai veikia kognityvines funkcijas [143], todėl yra pagrindo manyti, kad SSS
pacientų eisena gali būti labiau asimetriška dėl negebėjimo susitvarkyti su papildoma
kognityvine apkrova. Eisenos asimetrija, apibūdinanti kairiojo ir dešiniojo žingsnių
koordinaciją, randama pagal formulę:

Asimetrija �
1

k

ķ

i�1

|tlpiq � trpiq|

tlpiq � trpiq
� 100, (3.2)

čia k yra žingsnių skaičius analizės laiko intervale T , tlpiq ir trpiq atitinkamai kairiojo
ir dešiniojo žingsnių trukmės. Artima nuliui vertė rodo simetrišką eiseną, o didėjančios
vertės – didėjančią asimetriją.

Lisažu indeksas įvertina judesių simetriją pagreičio šoninėje plokštumoje [56].
Lisažu indeksas apskaičiuojamas randant skirtumą tarp stačiakampių, gaubiančių spa-
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geti diagramą, gautą pavaizduojant pagreičio signalą vertikalioje plokštumoje su pa-
greičio signalu šoninėje plokštumoje:

Lisažu indeksas � 2
|Plotast � Plotasn|

Plotast � Plotasn
� 100, (3.3)

čia Plotast ir Plotasn yra atitinkamai teigiamų ir neigiamų spageti diagramos pusių
stačiakampių plotai. Nuliui artima Lisažu indekso vertė rodo puikią judesių simetriją
ir didėja didėjant asimetrijai.

Pusiausvyros svyravimai įvertinami remiantis spageti diagrama, gauta vaizduo-
jant pagreičio signalą priekinėje-užpakalinėje plokštumoje su pagreičio signalu šoninė-
je plokštumoje [46]. Tokia spageti diagrama apgaubiama randant mažiausią išgaubtą
daugiakampį, apimantį visus duomenų taškus. Bendras apgaubtas plotas apibūdina
pusiausvyros svyravimus.

3.3 Širdies ritmo atsako parametrai

Prasidėjus fiziniam krūviui, ŠR pradeda didėti dėl parasimpatinės nervų sistemos slopi-
nimo ir simpatinės nervų sistemos aktyvavimosi. Pasibaigus krūviui, ŠR sumažėja iki
pradinio lygio dėl parasimpatinės nervų sistemos reaktyvacijos ir simpatinės nervų sis-
temos slopimo. Norint visapusiškai apibūdinti ŠR atsaką į fizinį stresorių, pasirinkti
ŠR parametrai, apimantys ŠR augimo ir lėtėjimo fazes bei bendrą ŠR atsako intervalą.

ŠR augimo fazė charakterizuojama laiko intervalu Ta, kuriame ŠR greitėja, kol
pasiekia didžiausią ŠR fizinio stresoriaus metu (HRp). Pastebėta, kad vyresnio am-
žiaus žmonių, kuriems nustatytas SSS, laikas iki didžiausio ŠR ilgesnis, palyginti su
nesergančiais SSS [63].

ŠR įprastai normalizuojasi eksponentiškai, sparčiai mažėja pirmąją minutę pasi-
baigus fizinei apkrovai, po to mažėja lėčiau, kol pasiekiamas pradinis ŠR. Greita-
jai normalizavomosi fazei charakterizuoti skaičiuojama laiko konstanta (T30), kuri
randama pritaikant tiesę prie logaritmuotos ŠR sekos 30 s laiko lange nuo normali-
zavomosi pradžios taško. Lėtajai normalizavomosi fazei charakterizuoti skaičiuoja-
mas ŠR sumažėjimas 120 s nuo normalizavomosi pradžios (HRR120). Lėtesnis ŠR
normalizavimasis gali įspėti apie autonominę disfunkciją bei padidėjusią širdies ir
kraujagyslių ligų riziką.

Bendras ŠR atsakas įvertintas ŠR rezervu, kuris apima tiek ramybės, tiek fizinio
aktyvumo fazes ir nepriklauso nuo amžiaus, ramybės ŠR bei fizinio pasirengimo [148].
ŠR rezervas randamas pagal formulę:

RES �
HRp �HRr

HRa �HRr
� 100, (3.4)

čia HRr yra ramybės ŠR, apskaičiuotas ramybės fazėje prieš fizinį krūvį, ir HRa yra
maksimalus pasiekiamas individualus ŠR (220 – amžius). Sveikų žmonių RES fizinio
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krūvio metu yra apie 100 %, o žemas RES gali įspėti apie sutrikusį chronotropinį
atsaką. Slenkstinis RES   80 % gali įspėti apie sutrikusį chronotropinį atsaką, o
pacientams, vartojantiems beta blokatorius, slenkstinė RES vertė   62 % [74].

Padidėjęs ramybės ŠR, sumažėjęs ŠR kompleksiškumas ir variabilumas siejamas
su autonominiu disbalansu, kuris pasireiškia padidėjusiu simpatiniu ir (arba) sumažėju-
siu parasimpatiniu aktyvumu [62]. Padidėjęs ramybės ŠR laikomas mirtingumo nuo
širdies ir kraujagyslių ligų rizikos veiksniu [149]. Taip pat pastebėta, kad ramybės ŠR
didesnis SSS asmenims [136].

Ramybės ŠR kompleksiškumas įvertintas imties entropijos (SampEn) parametru
[150]. Atsižvelgiant į ŠR sekos profilio ilgį m ir panašumo slenkstį r, kurį viršijus
ŠR profiliai laikomi panašiais, SampEn įvertina tikimybę, kad panašūs m ilgio ŠR
profiliai išliks panašūs padidinus profilio ilgį iki m + 1. Reguliaraus ŠR metu SampEn
artėja į 0 ir įgauna didesnes reikšmes didėjant ritmo kompleksiškumui. Šiame tyrime
konstanta r parinkta 0,15 s, o m – 2 [60]. Sumažėjęs ŠR kompleksiškumas gali įspėti
apie autonominę disfunkciją SSS pacientams.

Ultratrumpalaikiam ŠR variabilumui vertinti [151] apskaičiuotas RR intervalų stan-
dartinis nuokrypis (SDNN). Sumažėjęs variabilumas gali įspėti apie asmenų, kuriems
pasireiškia SSS, parasimpatinės veiklos nuslopimą [60].

Skaičiuojami ŠR atsako į fizinius stresorius ir ramybės ŠR parametrai pateikti 3.2
pav.

3.2 pav. ŠR atsako į fizinius stresorius ir ramybės ŠR charakterizavimas. Pastaba: RES
normalizuotas [(200 – amžius) – Rr]. Fizinio krūvio pradžia ir pabaiga atitinkamai 180 s ir

195 s
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3.4 Nusilpusių fiziologinių funkcijų identifikavimo algoritmas

Sukurtas interpretuojamu mašininiu mokymusi pagrįstas nusilpusių fiziologinių funkci-
jų identifikavimo algoritmas. Požymiai mašininio mokymosi algoritmui parinkti at-
sižvelgiant į fiziologines funkcijas, kurias jie charakterizuoja. Tyrimui atrinkti du
požymių rinkiniai: išskirti iš dėvimais įrenginiais užregistruotų signalų ir atraminiai
klinikiniai.

Požymiai, išskirti iš dėvimais įrenginiais užregistruotų signalų, sugrupuoti į fiziolo-
gines funkcijas, t. y. charakterizuojantys eiseną, balansą ir ŠR atsaką. Eiseną charak-
terizuojantys požymiai – žingsnių skaičius, eisenos tempas, ėjimo nereguliarumas ir
judėjimo intensyvumas. Pusiausvyrą charakterizuojantys požymiai – eisenos asimetrija,
pusiausvyros svyravimai, pusiausvyros svyravimo nereguliarumas ir Lisažu indeksas.
ŠR atsaką charakterizuojantys požymiai – HRR60, HRR120, T30, RES, HRmax ir
Ta. Visi požymiai įvertinti ėjimo ir lipimo laiptais testų metu.

Eiseną charakterizuojantys klinikiniai požymiai – „stokis ir eik“ testo įvertis, nuei-
tas atstumas 6-min ėjimo testo metu ir eisenos greitis. Pusiausvyros požymiai –
žingsnio plotis, eisenos asimetrija, dvigubos atramos dalis eisenos metu ir pusiausvy-
ros centro kitimas. Pastarieji požymiai gauti naudojant klinikinę eisenos ir balanso
įvertinimo įrangą Zebris FDM-T. ŠR atsako požymiai – HRR60, HRR120, RES,
T30, HRmax ir Ta, įvertinti veloergometrijos testo metu.

Taip pat abiem atvejais įtraukti asmens charakteristikas apibūdinantys požymiai –
amžius, kūno masės indeksas ir laikas po širdies operacijos.

Duomenų bazę sudaro sąlyginai daug požymių, bet mažai duomenų, todėl nusilpu-
sioms fiziologinėms funkcijoms identifikuoti pasirinktas sprendimų medžio modelis.
Sprendimų medžio modelis randa optimalią slenkstinę vertę kiekvienam iš požymių
vis mažinant klasifikavimo paklaidą. Modelis vystomas rekursyviai – padalijant duome-
nis į vis mažesnes grupes, atitinkančias tam tikrą kategoriją. Padalijimas atliekamas
taip, kad gautos grupės kuo tiksliau atitiktų joms priskirtas kategorijas.

Optimali slenkstinė vertė randama apskaičiuojant informacijos išlošio įvertį, kuris
įvertina kiekvienos iš grupių entropijos sumažėjimą po padalijimo. Padalijimo proce-
sas tęsiasi tol, kol pasiekiami pabaigos kriterijai: maksimalus modelio gylis arba mini-
malus imties skaičius grupėje. Siekiant pagerinti sprendimų medžių modelio tikslumą,
pritaikytas jungtinis gradiento tobulinimo algoritmas. Pasiūlyto algoritmo struktūra
pateikta 3.3 pav. [153].

EFS įvertina skirtingus sveikatos būklės aspektus [154], todėl daroma prielaida,
kad skirtingi požymiai turės skirtingą svarbą klasifikuojant konkrečias EFS kompo-
nentes. Kiekvieno požymio svarbai nustatyti taikomas permutacinis požymių svarbos
(FI) būdas [155]. Požymio j svarba yra apskaičiuojama lyginant pradinio modelio eo

ir modelio su permutuotomis reikšmėmis ep paklaidą:

eo � Lpy, fpXqq, (3.5)
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3.3 pav. Gradientinio tobulinimo sprendimų medžio algoritmo struktūra

ep � Lpy, fpXpqq, (3.6)

čia X yra visų modelį sudarančių požymių rinkinys, o y yra anotacija (normalus
arba nusilpęs). Funkcijos svarba FIj reiškia klasifikavimo klaidos sumažėjimo dydį
pašalinus požymio reikšmingumą. Atitinkamo požymio reikšmingumas pašalinamas
sumaišius požymio vektoriaus vertes prieš išmokant mašininio mokymo algoritmą.

FIj �
eorig

epj
. (3.7)

Kiekvienos iš fiziologinių funkcijų FI EFS klasifikavimas vykomas randant funkci-
ją reprezentuojančių požymių FIj sumą.

Individualioms prognozėms interpretuoti naudojamas Shapley paaiškinimų meto-
das (SHAP). SHAP nurodo vidutinį klasifikavimo tikslumo pokytį, kai požymis įtrau-
kiamas į algoritmo mokymą. Požymio j svarba įvertinama apskaičiuojant pridėtinę
prognozės vertę ϕ kiekvienai m iteracijai, kai m = 1,...,M . Iteracijos susideda iš visų
galimų X požymių derinių.

ϕm
j � fpXm

�jq � fpXm
�jq, (3.8)

čia X�j ir X�j nurodo modelius, sudarytus su požymiu j ir be jo. Visų iteracijų
pridėtinių prognozuojamų verčių vidurkis yra SHAP reikšmė.

ϕj �
1

M

M̧

m�1

ϕm
j . (3.9)

Fiziologinės funkcijos SHAP vertė yra tą fiziologinę funkciją charakterizuojančių
požymių SHAP verčių suma.

79



4. REZULTATAI

4.1 Fizinių stresorių atpažinimo algoritmo tyrimas

Dinaminiu laiko skalės iškreipimu pagrįsto fizinių stresorių atpažinimo algoritmo tik-
slumo rezultatai pateikti 4.1 lentelėje. Algoritmu pasiekti geriausi rezultatai, kai nau-
dojamas vertikalios ašies pagreičio signalas. Atpažįstant ėjimą Se yra 84,2 %, o PPV
– 82,1 %. Atpažįstant lipimą laiptais Se yra 81,6 %, o PPV – 83,8 %.

4.1 lentelė. Fizinių stresorių atpažinimo algoritmo rezultatai, kai naudojamos skirtingos
pagreičių signalų ašys

Ėjimas Lipimas laiptais
Se, % PPV , % Se, % PPV , % ACC

Priekinė-šoninė 95,1 69,5 57,9 93,6 76,9
Vidurio 75,0 68,7 65,8 72,5 70,4
Vertikali 84,2 82,1 81,6 83,8 82,9
Bendra amplitudė 97,4 65,5 46,7 94,9 73,0

4.2 Kinematinių parametrų tyrimas

Keturiasdešimt aštuoniems pacientams, kurie atliko 6-min ėjimo testą prieš ir po sta-
cionarinės reabilitacijos, EFS įvertis vidutiniškai sumažėjo nuo 6,0 iki 4,7. Po sta-
cionarinės reabilitacijos trys pacientai pagerino EFS įvertį keturiais balais, šeši –
trimis, devyni – dviem ir spetyniolika – vienu balu. Parametrai nepagerėjo 11 pacientų,
o dviem pablogėjo vienu balu. Veloergometrijos, 6-min ėjimo ir „stokis ir eik“ testų
rezultatai pagerėjo nuo 52,1 � 18,3 W iki 61,3 � 19,2 W (p   0, 001), nuo 301,1
�79, 4 m iki 387,2 � 83,8 m (p   0, 001) ir nuo 8,3 � 2,2 s iki 7,6 � 1,7 s (p �
0, 017). 4.1 pav. matyti, kad ėjimo metu visi kinematiniai parametrai, išskyrus eisenos
asimetriją ir Lisažu indeksą, daugumai pacientų po stacionarinės reabilitacijos labai
pagerėjo (p   0, 001). Tai yra žingsnio trukmė sumažėjo 34 (71 %) pacientams,
ėjimo tempas padidėjo 37 (77 %), judėjimo intensyvumas padidėjo 40 (83 %), o pu-
siausvyros svyravimas padidėjo 39 (81 %). Padidėjęs pusiausvyros svyravimas gali
būti paaiškintas didesniu judesių diapazonu dėl geresnės bendros fizinės būklės.

Keturiasdešimt keturiems pacientams, kurie atliko lipimo laiptais testą prieš ir po
stacionarinės reabilitacijos, EFS įvertis vidutiniškai sumažėjo nuo 6,1 iki 4,6. Vienas
pacientas pagerino EFS įvertį šešiais, vienas penkiais, trys keturiais, keturi trimis,
du aštuoniais ir penkiolika – vienu balu. Dvylikai pacientų parametrai nepagerėjo.
Veloergometrijos, 6-min ėjimo ir „stokis ir eik“ testų rezultatai pagerėjo nuo 51,2 �
16,3 W iki 62,0 � 17,7 W (p   0, 001), nuo 298,7 �77, 2 m iki 380,9 � 89,8 m
(p   0, 001) ir atitinkamai nuo 8,4 � 2,0 s iki 7,5 � 1,8 s (p � 0, 008). Kinematiniai
parametrai lipimo laiptais testo metu pagerėjo mažiau nei ėjimo testo metu (4.1 pav).
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Žingsnio trukmė sumažėjo 32 (73 %) (p   0, 001), eisenos tempas padidėjo 25 (57
%) (p � 0, 003), o judėjimo intensyvumas padidėjo 28 (64 %) (p � 0, 009).

4.1 pav. Kinematiniai parametrai įvertinti atliekant ėjimo ir lipimo laiptais testus prieš ir po
stacionarinės reabilitacijos. Parametrų įverčiai su gerėjančia tendencija pavaizduoti storesne

linija. p reikšmės apskaičiuotos taikant Wilcoxon signed-rank testą

Dauguma kinematinių parametrų nesiskyrė tarp intervencinės ir kontrolinės grupių
prieš ir po treniruočių namuose, kas gerai atitinka reikšmingo skirtumo nebuvimą
EFS įverčiuose (4.2 lentelė). EFS įvertis abiejose grupėse šiek tiek padidėjo, o tai
rodo, kad nekontroliuojama sumažinto intensyvumo treniruočių programa nepagerino
SSS būklės. Kiek netikėtai Lisažu indeksas padidėjo 13,1 % intervencinėje grupėje
ir sumažėjo 5,14 % kontrolinėje grupėje (p � 0, 021). Tai rodo padidėjusią judėjimo
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4.2 lentelė. Kinematiniai ir funkcinio pajėgumo parametrai intervencinėje grupėje, kuri
vykdė pratimų namuose programą, ir kontrolės grupėje, kuri laikėsi įprasto fizinio aktyvumo
režimo

Ėjimas
Intervencinė Kontrolinė p-vertė
(N � 18) (N � 11)

Žingsnio greitis, s -0,02 � 0,17 -0,12 � 0,21 0,342
Ėjimo tempas, ž./min 5,24 � 9,70 7,45 � 12,0 0,854
Judesių intensyvumas, g 0,03 � 0,07 0,05 � 0,06 0,538
Eisenos asimetrija, % 0,75 � 3,81 -1,06 � 3,26 0,129
Lisažu indeksas, % 13,1 � 19,7 -5,14 � 23,6 0,021
Svyravimai, g2 0,07 � 0,16 0,07 � 0,09 0,582
Maksimalus pasiektas krūvis, W 7,07 � 10,4 10,8 � 7,82 0,205
6-min ėjimo atstumas, m 34,7 � 84,5 49,3 � 81,9 0,677
„Stokis ir eik“ trukmė, s 0,97 � 2,96 0,71 � 2,15 0,524
EFS įvertis 0,47 � 1,77 0,00 � 1,97 0,520

Lipimas laiptais
Intervencinė Kontrolinė p-vertė
(N � 15) (N � 20)

Žingsnio greitis, s -0,04 � 0,17 -0,07 � 0,22 0,590
Ėjimo tempas, ž./min 1,67 � 10,0 -3,27 � 8,64 0,204
Judesių intensyvumas, g 0,01 � 0,04 0,03 � 0,02 0,046
Eisenos asimetrija, % 0,21 � 4,59 -2,47 � 8,48 0,982
Lisažu indeksas, % -0,55 � 24,5 -3,63 � 30,0 0,840
Svyravimai, g2 0,04 � 0,06 -0,01 � 0,07 0,051
Maksimalus pasiektas krūvis, W 6,00 � 9,65 12,2 � 10,0 0,149
6-min ėjimo atstumas, m 34,3 � 70,4 39,9 � 65,2 0,916
„Stokis ir eik“ trukmė, s 1,12 � 2,63 0,88 � 1,87 0,782
EFS įvertis 0,39 � 1,72 0,27 � 2,10 0,891

N nurodo pacientų skaičių grupėje.
Įverčių reikšmės nurodytos kaip vidurkis � standartinis nuokrypis.
p-vertės yra įvertintos naudojant Kruskalio ir Walliso H-testą.

asimetriją tiems, kurie tęsė treniruotes. Lipimo laiptais metu judėjimo intensyvumas
intervencinėje grupėje padidėjo 0,01 g, o kontrolinėje grupėje — 0,03 g (p � 0, 046).

4.3 lentelėje pateikti kinematiniai parametrai pacientams, suskirstytiems į SSS,
pažeidžiamus ir kuriems nėra SSS grupes, priklausomai nuo EFS įverčio. Skirtingos
SSS būsenų grupės blogai atskiriamos remiantis kinematiniais parametrais, išskyrus
lyginant SSS grupę su tų, kuriems nėra SSS, grupe. Ėjimo testo metu vidutinis ėjimo
tempas, judėjimo intensyvumas ir pusiausvyros svyravimai buvo mažesni 6 žings/min
(p � 0, 038), 0,04 g (p � 0, 002) ir 0,09 g2 (p � 0, 021) SSS grupėje, palyginti su
grupe tų, kuriems nėra SSS. Lipimo laiptais testo metu SSS grupėje vidutinis ėjimo
tempas buvo 9 žings/min (p � 0, 037) mažesnis, palyginti su grupe tų, kuriems nėra
SSS.
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4.3 lentelė. Kinematiniai ir funkcinio pajėgumo parametrai skirtingose SSS grupėse, įvertinti
atliekant ėjimo ir lipimo laiptais testus po stacionarinės reabilitacijos

Ėjimas
Nėra SSS Pažeidžiami SSS p-vertė
(N � 18) (N � 40) (N � 32)

Žingsnio greitis, s 1,20 � 0,22 1,19 � 0,14 1,24 � 0,16 0,166
Ėjimo tempas, ž./min 103,1 � 13,7 101,8 � 11,2 97,6 � 11,7 0,083
Judesių intensyvumas, g 0,16 � 0,06 0,13 � 0,05 0,12 � 0,06 0,005
Eisenos asimetrija, % 4,02 � 3,40 3,75 � 2,40 4,12 � 3,20 0,918
Lisažu indeksas, % 20,6 � 13,3 21,4 � 15,0 22,5 � 17,1 0,976
Svyravimai, g2 0,24 � 0,21 0,16 � 0,06 0,15 � 0,06 0,048
Maksimalus pasiektas krūvis, W 64,9 � 22,9 62,6 � 23,2 53,5 � 15,3 0,147
6-min ėjimo atstumas, m 416,4 � 87,2 366,9 � 112,4 322,4 � 83,9 0,002
„Stokis ir eik“ trukmė, s 7,00 � 1,18 7,75 � 1,50 8,92 � 2,19 0,004
EFS įvertis 2,56 � 0,62 4,45 � 0,50 7,34 � 1,18  0,001

Lipimas laiptais
Nėra SSS Pažeidžiami SSS p-vertė
(N � 16) (N � 32) (N � 35)

Žingsnio greitis, s 1,46 � 0,27 1,54 � 0,27 1,64 � 0,35 0,143
Ėjimo tempas, ž./min 82,1 � 12,1 77,6 � 12,6 73,2 � 13,4 0,097
Judesių intensyvumas, g 0,12 � 0,04 0,11 � 0,03 0,11 � 0,04 0,384
Eisenos asimetrija, % 9,33 � 4,51 10,4 � 4,91 10,8 � 5,31 0,648
Lisažu indeksas, % 22,2 � 21,4 25,8 � 21,7 23,8 � 14,6 0,675
Svyravimai, g2 0,23 � 0,08 0,21 � 0,08 0,20 � 0,09 0,268
Maksimalus pasiektas krūvis, W 65,3 � 19,8 61,3 � 19,5 52,7 � 15,3 0,047
6-min ėjimo atstumas, m 402,6 � 76,7 359,1 � 97,9 313,0 � 85,7 0,002
„Stokis ir eik“ trukmė, s 6,78 � 0,98 7,78 � 1,65 9,14 � 2,80 0,002
EFS įvertis 2,69 � 0,48 4,34 � 0,48 7,11 � 1,13  0,001
Pacientai suskirstyti į grupes pagal SSS stadiją: ¤3 — nėra SSS, 4–5 — pažeidžiami,¥6 — SSS [159].
N nurodo pacientų skaičių grupėje.
Įverčių reikšmės nurodytos kaip vidurkis � standartinis nuokrypis.
p-vertės yra įvertintos naudojant Kruskalio ir Walliso H-testą.

4.3 Širdies ritmo atsako įvertinimo parametrų tyrimas

Netinkamos ŠR sekos, pvz., tos, kuriose nėra ŠR atsako į fizinį stresorių arba kurių
normalizavimosi fazėje matomas didelis ŠR varijavimas, neįtrauktos į analizę. ŠR
atsako nebuvimu laikomos ŠR sekos, kai fizinio stresoriaus poveikio metu ritmas
pakyla mažiau nei 5 kpm, palyginti su ramybės ŠR. Ryškiu ŠR varijavimu, kurį sukėlė
fiziologiniai veiksniai arba nenumatyta pacientų veikla (pvz., pasisukimas, svyravi-
mai), laikomos ŠR sekos, kurioms eksponentės pritaikymo prie ŠR normalizavimosi
fazės determinacijos koeficientas gautas mažesnis už fiksuotą slenkstį 0,5. Tipinių bei
netinkamų analizei ŠR sekų pavyzdžiai kiekvieno fizinio stresoriaus atveju pateikti
4.2 pav.

4.3 pav. pateiktas ryšys tarp ŠR atsako parametrų, įvertintų veloergometrijos
testo ir kasdienės veiklos stresorių metu. Visi ištirti kasdienės veiklos stresoriai rodo
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4.2 pav. Tipinių ir analizei netinkamų ŠR sekų pavyzdžiai fizinių stresorių metu. Pilkos
juostos žymi fizinio aktyvumo intensyvumą, įvertintą vidutiniu absoliučiu pagreičio signalo

nuokrypiu. Pastaba: fizinio aktyvumo intensyvumo pagreičio signaluose nebuvo galima
įvertinti veloergometrijos metu dėl sėdėjimo ant dviračio ergometro

vidutinę ar didelę koreliaciją lyginant ŠR atsako parametrus T30 ir HRR120 bei ŠR
rezervą. Kita vertus, nė vienas iš kasdienės veiklos stresorių nesukėlė panašių ŠR
augimo fazės tendencijų kaip atliekant veloergometriją, todėl Ta parametras reikšmin-
gai nekoreliavo.

4.4 pav. rodo ryšį tarp ŠR atsako ir ramybės ŠR parametrų, suskirstytų į kvartilius,
bei SSS būklės įvertinimų. Ryšys akivaizdus tarp ŠR atsako parametrų pablogėjimo ir
SSS būklės pablogėjimo, kurį indikuoja didėjantis EFS įvertis. Ramybės ŠR apibūdi-
nantys parametrai, t. y. ŠR ramybės metu, SampEn ir SDNN, rodo tą pačią tendenciją
iki aukščiausio kvartilio.

Siekiant ištirti stacionarinės reabilitacijos poveikį ŠR atsakui ir ramybės ŠR, parame-
trai apskaičiuoti prieš ir po reabilitacijos, atliekant veloergometriją ir kasdienės veik-
los stresorių metu. Veloergometrijos, ėjimo, lipimo laiptais ir „stokis ir eik“ testai prieš
ir po stacionarinės reabilitacijos atlikti 41, 29, 26 ir 18 pacientų. ŠR atsako parame-
trai reikšmingai pasikeitė tik veloergometrijos testo metu: Ta padidėjo nuo 175�84 s
iki 242�78 s (p   0, 05), T30 sumažėjo nuo -0,21�0,12 iki -0,29�0,14 (p   0, 05),
HRR120 padidėjo nuo 10,6�6,2 kpm iki 13,9�7,3 kpm (p   0, 05) ir RES padidėjo
nuo 23,3�11,3 % iki 29,2�14,6 % (p � 0, 05). Reikšmingų parametrų pokyčių ėjimo,
lipimo laiptais ir „stokis ir eik“ testų metu nebuvo.
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4.3 pav. Ryšys tarp ŠR atsako parametrų veloergometrijos testo ir kasdienės veiklos stresorių
metu. Pateikiamos koreliacijos pagal duomenis, gautus prieš stacionarinę reabilitaciją, po

stacionarinės reabilitacijos ir po treniruočių namuose

4.5 pav. parodytas visos treniruočių programos poveikis ŠR atsako parametrams
intervencijos ir kontrolės grupėse. Veloergometrijos, ėjimo, lipimo laiptais ir „stokis
ir eik“ testai, kurie apėmė visą treniruočių programą, buvo atlikti atitinkamai 30, 25,
22 ir 15 pacientų. Visi ŠR atsako parametrai, išskyrus Ta, reikšmingai pagerėjo kon-
trolinei grupei veloergometrijos metu (p   0, 05).

Lyginant kasdienės veiklos stresorius su veloergometrija, parametrų tendencijas
labiausiai atitiko ėjimo stresorius, o lipimo laiptais ir „stokis ir eik“ stresoriai yra
mažiau tinkami parametrų pokyčiams stebėti.

Reikšmingų skirtumų nepastebėta ŠR atsako parametruose prieš ir po visos treniruo-
čių programos tarp intervencinės ir kontrolinės grupių, išskyrus Ta lipimo laiptais
stresoriaus metu. Skirtumų nebuvimas atitinka EFS įvertį pasibaigus visai treniruočių
programai intervencinėje (4,13 � 1,45) ir kontrolinėje (4,78 � 1,66) grupėse.
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4.4 pav. SSS būklės įvertinimai ŠR atsako į veloergometrijos testą ir ramybės ŠR parametrų
kvartiliuose. Rezultatai pateikiami vidurkiu�standartiniu nuokrypiu naudojant duomenis,

gautus prieš stacionarinę reabilitaciją, po stacionarinės reabilitacijos ir po treniruočių
namuose. p vertė apskaičiuota EFS balų kitimo tendencijoms atitinkamuose ŠR parametrų

kvartiliuose

4.4 Nusilpusių komponenčių identifikavimo algoritmo tyrimas

4.4 lentelė lentelėje pateikiami gradientinio tobulinimo sprendimų medžio modelio,
sukurto naudojant klinikinius ir dėvimais įrenginiais išskirtus požymius, klasifika-
vimo rezultatai. Modelio tikslumas, įvertinamas F1 įverčiu, yra 77,8 % ir 72,7 %
klasifikuojant bendrą sveikatos būklę, 71,3 % ir 65,3 % – funkcinį savarankiškumą,
72,6 % ir 76 % – mitybą, ir 84,7 % ir 81,0 % – funkcinę būklę, atitinkamai naudojant
klinikinius ir dėvimais įrenginiais išskirtus požymius.

4.4 lentelė. Modelio, išmokyto klinikiniais požymiais ir požymiais, išskirtais iš dėvimais
įrenginiais registruojamų biosignalų, klasifikavimo įvertinimas. Modelio klasifikavimas
įvertintas F1 įverčiu

EFS komponentė Klinikiniai įverčiai Dėvimais įrenginiais
išskirti įverčiai

Bendroji sveikatos būklė 77.8% 72.7%
Funkcinis savarankiškumas 71.3% 65.3%
Mityba 72.6% 76.0%
Funkcinė būklė 84.7% 81.0%
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4.5 pav. Visos treniruočių programos poveikis ŠR atsako parametrams intervencijos ir
kontrolinėse grupėse. p vertė kiekvienos dalies viršuje apibūdina parametrų pokytį prieš ir po
visos treniruočių programos intervencinėje ir kontrolinėje grupėse. p vertės kiekvienos dalies
apačioje apibūdina parametrų pokytį prieš ir po visos treniruočių programos intervencinėje ir

kontrolinėje grupėse

4.6 pav. pateikiama vieno paciento nusilpusių funkcijų identifikavimo modelio
sprendimų interpretacija. Pateiktame pavyzdyje klinikiniai ir dėvimais įrenginiais
išskirti požymiai panašiai prisidėjo klasifikuojant bendrą sveikatos būklę, funkcinį
savarankiškumą ir mitybos EFS komponentes, tačiau jų indėlis buvo priešingas klasi-
fikuojant funkcinės būklės komponentę.

4.7 pav. parodytas visų pacientų SHAP reikšmių pasiskirstymas. Klinikiniai ir
dėvimais įrenginiais išskirti požymiai rodė panašias tendencijas klasifikuojant bendrą
sveikatos būklę, funkcinį savarankiškumą ir mitybos EFS komponentes, tačiau identi-
fikuojant funkcinę būklę prisidėjo skirtingos fiziologinės funkcijos.

Tam tikra fiziologinė funkcija identifikuojama kaip nusilpusi, kai ji daugiausiai
prisideda prie klasifikavimo. Rezultatai rodo, kad dėvimais įrenginiais išskirtais požymi-
ais pagrįsta nusilpusios EFS komponentės klasifikavimo prognozė visais atvejais, išsky-
rus funkcinės būklės, sutampa su klinikiniais požymiais pagrįstu klasifikavimu. Klasi-
fikuojant bendrąją sveikatos būklę, eiseną ir pusiausvyrą charakterizuojantys požymiai
rodė komponentės nusilpimą atitinkamai 47,9 % ir 35,5 % pacientų. Klasifikuojant
funkcinį savarankiškumą, ŠR atsakas buvo pagrindinis veiksnys 81,8 % pacientų.
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4.6 pav. Konkretaus paciento EFS komponenčių klasifikavimo interpretavimas SHAP būdu

4.7 pav. Visų pacientų interpretavimo rezultatų palyginimas ir atskirų funkcijų svarbos
klasifikuojant palyginimas

IŠVADOS

1. Pasiūlytas ir ištirtas dinaminiu laiko skalės iškreipimu pagrįstas algoritmas, skir-
tas aptikti ėjimą ir lipimą laiptais dėvimais įrenginiais užregistruotuose biosig-
naluose. Atpažįstant ėjimą pasiektas 84,2 % jautrumas ir 82,1 % teigiama prog-
nostinė vertė, o lipimą laiptais — 81,6 % jautrumas ir 83,8 % teigiama prognos-
tinė vertė. Fizinių stresorių atpažinimas kasdienėje veikloje atveria galimybes
įvertinti širdies ritmo reakciją į fizinius stresorius.
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2. Tyrimai parodė, kad SSS progresavimo tendencijos stebėsena reabilitacijos metu,
remiantis kinematiniais parametrais, gautais iš dėvimais įrenginiais registruojamų
biosignalų, yra įmanoma. Dauguma kinematinių parametrų, įvertintų ėjimo
testo metu, pagerėjo po reabilitacijos: žingsnio trukmė, ėjimo tempas, pusiausvy-
ros svyravimai ir judesių intensyvumas pagerėjo 71 %, 77 %, 81 % ir 83 %
pacientų. O kinematiniai parametrai lipimo laiptais testo metu pagerėjo mažiau.
Po treniruočių namuose programos reikšmingų kinematinių parametrų pokyčių
nepastebėta, o tai atitinka nedidelį SSS būklės pablogėjimą. Kinematinių para-
metrų stebėsena vaikščiojant ir lipant laiptais gali būti naudinga vertinant treni-
ruočių programų efektyvumą SSS pacientams.

3. Siekiant visapusiškai apibūdinti širdies ritmo atsaką, pasiūlyti parametrai, charak-
terizuojantys širdies ritmo greitėjimo ir lėtėjimo fazes ir visą širdies ritmo atsako
fazę. Atliekant kasdienės veiklos stresorius imituojančius testus (ėjimo, lipimo
laiptais ir „stokis ir eik“), širdies ritmo atsako ir širdies ritmo rezervo parametrai
vidutiniškai koreliavo (r = 0,59–0,72) su analogiškais parametrais, įvertintais
veloergometrijos testo metu. Remiantis tyrimo rezultatais, kasdienėje veikloje
rekomenduojama vertinti širdies ritmo atsaką į ėjimą.

4. Pasiūlyta interpretuojamo mašininio mokymosi algoritmo koncepcija, skirta iden-
tifikuoti kliniškai informatyviems požymiams, suteikiantiems informacijos apie
nusilpusias paciento fiziologines funkcijas. Algoritmo patikimumas įvertintas
F1 įverčiu, kuris yra 77,8 % ir 72,7 % klasifikuojant bendrąją sveikatos būklę,
71,3 % ir 65,3 % funkcinį savarankiškumą, 72,6 % ir 76 % mitybą ir 84,7 % ir
81,0 % funkcinę būklę, naudojant klinikinius ir dėvimais įrenginiais registruo-
jamus požymius.

89



REFERENCES

1. HOOGENDIJK, E. O., AFILALO, J., ENSRUD, K. E., KOWAL, P., ONDER,
G., and FRIED, L. P. Frailty: implications for clinical practice and public health.
Lancet. 2019, 394(10206), 1365–1375.

2. ROMERO-ORTUÑO, R., MARTÍNEZ-VELILLA, N., SUTTON, R., UNGAR,
A., FEDOROWSKI, A. et al. Network physiology in aging and frailty: The
grand challenge of physiological reserve in older adults. Frontiers in Network
Physiology. 2021, 2.

3. DENT, E., MARTIN, F. C., BERGMAN, H., WOO, J., ROMERO-ORTUNO,
R., and WALSTON, J. D. Management of frailty: opportunities, challenges, and
future directions. Lancet. 2019, 394(10206), 1376–1386.

4. SIRIWARDHANA, D. D., HARDOON, S., RAIT, G., WEERASINGHE, M. C.,
and WALTERS, K. R. Prevalence of frailty and prefrailty among community-
dwelling older adults in low-income and middle-income countries: a systematic
review and meta-analysis. BMJ Open. 2018, 8(3), e018195.

5. VERMEIREN, S., VELLA-AZZOPARDI, R., BECKWÉE, D., HABBIG, A.-
K., SCAFOGLIERI, A. et al. Frailty and the prediction of negative health out-
comes: a meta-analysis. Journal of the American Medical Directors Association.
2016, 17(12), 1163–e1.

6. KOJIMA, G., TANIGUCHI, Y., ILIFFE, S., JIVRAJ, S., and WALTERS, K.
Transitions between frailty states among community-dwelling older people: a
systematic review and meta-analysis. Ageing Research Reviews. 2019, 50, 81–
88.

7. VERONESE, N., CEREDA, E., STUBBS, B., SOLMI, M., LUCHINI, C. et al.
Risk of cardiovascular disease morbidity and mortality in frail and pre-frail older
adults: Results from a meta-analysis and exploratory meta-regression analysis.
Ageing Research Reviews. 2017, 35, 63–73.

8. LEE, J. B., MELLIFONT, R. B., and BURKETT, B. J. The use of a single inertial
sensor to identify stride, step, and stance durations of running gait. Journal of
Science and Medicine in Sport. 2010, 13(2), 270–273.

9. VIGORITO, C., ABREU, A., AMBROSETTI, M., BELARDINELLI, R.,
CORRÀ, U. et al. Frailty and cardiac rehabilitation: A call to action from the

90



eapc cardiac rehabilitation section. European Journal of Preventive Cardiology.
2017, 24(6), 577–590.

10. DE LABRA, C., GUIMARAES-PINHEIRO, C., MASEDA, A., LORENZO,
T., and MILLÁN-CALENTI, J. C. Effects of physical exercise interventions in
frail older adults: a systematic review of randomized controlled trials. BMC
Geriatrics. 2015, 15(1), 1–16.

11. STOTT, D. J. and QUINN, T. J. Principles of rehabilitation of older people.
Medicine. 2017, 45(1), 1–5.

12. PANHWAR, Y. N., NAGHDY, F., NAGHDY, G., STIRLING, D., and POTTER,
J. Assessment of frailty: a survey of quantitative and clinical methods. BMC
Biomedical Engineering. 2019, 1(1), 1–20.

13. VAVASOUR, G., GIGGINS, O. M., DOYLE, J., and KELLY, D. How wearable
sensors have been utilised to evaluate frailty in older adults: a systematic review.
Journal of Neuroengineering and Rehabilitation. 2021, 18(1), 1–20.

14. PARVANEH, S., HOWE, C. L., TOOSIZADEH, N., HONARVAR, B.,
SLEPIAN, M. J. et al. Regulation of cardiac autonomic nervous system control
across frailty statuses: a systematic review. Gerontology. 2016, 62(1), 3–15.

15. DEBAIN, A., LOOSVELDT, F. A., KNOOP, V., COSTENOBLE, A., LIETEN,
S. et al. Frail older adults are more likely to have autonomic dysfunction: A
systematic review and meta-analysis. Ageing Research Reviews. 2023, 101925.

16. HOWLETT, S. E., RUTENBERG, A. D., and ROCKWOOD, K. The degree of
frailty as a translational measure of health in aging. Nature Aging. 2021, 1(8),
651–665.
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Method for finding the limits of blood vessel landmarks in eye fundus images
based on distances in graphs: preliminary results. IFMBE proceedings: Medi-
con 2019: XV Mediterranean Conference on Medical and Biological Engineer-
ing and Computing, September 26-28, 2019, Coimbra, Portugal: conference
proceedings. 2019, vol. 76, p. 358-366.

Conference presentation abstracts
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Vilma; Rapalis, Andrius; Sokas, Daivaras; Sološenko, Andrius; Staigytė, Justina;
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