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Abstract: Magnetic resonance imaging (MRI) is a technique that is widely used in practice to evaluate
any pathologies in the human body. One of the areas of interest is the human brain. Naturally,
MR images are low-resolution and contain noise due to signal interference, the patient’s body’s
radio-frequency emissions and smaller Tesla coil counts in the machinery. There is a need to solve
this problem, as MR tomographs that have the capability of capturing high-resolution images are
extremely expensive and the length of the procedure to capture such images increases by the order
of magnitude. Vision transformers have lately shown state-of-the-art results in super-resolution
tasks; therefore, we decided to evaluate whether we can employ them for structural MRI super-
resolution tasks. A literature review showed that similar methods do not focus on perceptual image
quality because upscaled images are often blurry and are subjectively of poor quality. Knowing
this, we propose a methodology called HR-MRI-GAN, which is a hybrid transformer generative
adversarial network capable of increasing resolution and removing noise from 2D T1w MRI slice
images. Experiments show that our method quantitatively outperforms other SOTA methods in terms
of perceptual image quality and is capable of subjectively generalizing to unseen data. During the
experiments, we additionally identified that the visual saliency-induced index metric is not applicable
to MRI perceptual quality assessment and that general-purpose denoising networks are effective
when removing noise from MR images.

Keywords: magnetic resonance imaging; super resolution

1. Introduction

Structural magnetic resonance imaging (sMRI) is a widely used medical imaging
technique that provides detailed information about the structure of the brain [1]. However,
sMRI images are often affected by various types of noise and artifacts, which can reduce
the accuracy of subsequent analysis and diagnosis [2]. Preprocessing of sMRI images is an
essential step to improve the quality of the images and enhance the accuracy of the analysis.
Generally, MRI images have around 1 mm × 1 mm in-plane resolution with 2–3 mm
thickness slices. This type of resolution is approximately equal to a 256 × 256 pixel density
image when dealing with a slice of a brain on one of the axial, coronal or sagittal planes.
With such low resolution, it is hard to distinguish small details, which could be essential
for detection of changes in the brain due to some mild pathological disease. To overcome
this issue, a super-resolution technology is usually used, which allows upscaling low-
resolution images into higher resolution. This technique is particularly useful in clinical
practice (for example, in Alzheimer’s disease diagnostics [3]) because magnetic resonance
tomographs, which can produce high-quality and high-resolution images, are expensive,
and the imaging procedure itself takes a long time. The study [4] demonstrated that AI
models could learn complex clinical information from photos and differentiate tumor slides.
Modern computer vision processing techniques [5] with combined models were able to
correctly extract data from the first encoder–decoder network and merge it with the second
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encoder–decoder network to offer exact anatomical structure segmentation, supporting
clinicians in identifying different pulmonary and heart disorders.

Single-image super resolution (SISR) became popular with the release of the super-
resolution convolutional neural network (SRCNN) [6] in early 2015, this being one of the
first applications of deep convolution neural networks to this problem. Since then, a lot
of research has emerged in the field aiming to improve the visual quality of upscaled
images. Before the introduction of transformers [7], the majority of solutions used some
type of convolutional neural network (CNN). After the adoption of self-attention—the
main idea for transformers for images [8,9]—vision transformer (ViT) was introduced,
and since then, it has been possible to achieve state-of-the-art results in the single-image
super-resolution task.

Looking at more recent work in this field, we can find ViT models, such as HAT [10]
and SwinIR [11], and a couple of CNN models, such as Real-ESRGAN [12], BSRGAN [13]
and CARN [14], which compete for SOTA performance. The majority of them use the
adversarial training techniques first proposed by [15], which make it possible to improve
the upscaled images’ visual quality even more.

MR images are 3D volumes that contain brain slices along the sagittal, coronal and
axial planes captured by the MR tomograph during the scanning procedure. During signal
capture, magnetic field frequencies are measured and encoded into so called “k” space,
which is the frequency domain. After applying a Fourier transform to the frequency domain,
we get an image where the signal intensity is now represented by pixel brightness. This
approach is applied for each spatial component (“voxel”) in 3D space. Since MR images
are 3D objects, the majority of applications use 3D network architectures to manage this.
For example, the authors of [16] used ResNet to upscale T2w MR images, and they also
used T1w as a reference to further improve the quality of the upscaled T2w image with
another ResNet network. In another example [17], the authors used a combination of a
CNN and ResNet to upscale 3D MR images. The main difference was that they utilized
adjacent MRI slices in the network layers. There have also been attempts to divide 3D
volume into patches and then learn filters that are capable of upscaling patches, which can
be combined back with the whole volume at the end, as described in [18]. We can also find
other methods, such as deep 3D CNNs with skip-connections, like in [19] or [20].

Training and deploying models working with 3D volumes requires more computa-
tional power and VRAM. It is more efficient to work in 2D space with slices from a 3D
volume, since when doctors need to evaluate MRI in search of any pathologies, they usually
look at a collection of slices for each plane. There are a few examples, such as [20] or [21],
where researchers have tried to upscale 2D MR images with a U-Net model or with classical
ResNet [22]. There is also a study [23] where, after upscaling 2D slices, the slices were
combined back into a 3D volume. The authors claimed it is more efficient to work with
slices than with volumes.

Another problem with MR images is that they are noisy by nature due to signal
interference, low amounts of coils or equipment wear-out. While noise is not a limitation
for clinical diagnosis, it can be a roadblock for AI solutions, since networks need to learn the
most important features for classification or other tasks, but noise could overwhelm those
features. A typical solution for noise reduction is to use a filter, like non-local means [24],
anisotropic diffusion [25] or a bilateral filter [26]; however, after application of these filters,
MR images become blurry and their perceptual quality decreases.

A common problem in super-resolution and denoising methods is that these methods
do not focus on preserving the perceptual quality of images and the evaluation metrics
that are used, like the peak-signal-to-noise ratio (PSNR), do not evaluate this aspect of
quality. Therefore, the need for methods that preserve the perceptual quality of MR images
still remains. We were able to find only one example focused on the perceptual quality of
MR images in the recent paper [21], which reported on a perceptual quality metric called
learned perceptual image patch similarity (LPIPS) together with PSNR and others. This
means the research gap in the field still exists.
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In this work, we employed SOTA super-resolution and denoising networks to perform
MR image improvements focused on multiple quality aspects, such as pixel-level, style-
level and perceptual-level aspects. The novelty and the main contribution of this work
are represented by the improvement of the existing state-of-the-art single-image super-
resolution method to preserve perceptual quality in MR images, with another state-of-the-
art denoising network additionally employed to further improve the quality of upscaled
MR images. We call our proposed hybrid method HR-MRI-GAN. The primary reason for
concentrating on structural MRI (sMRI) preprocessing was to improve the quality and
usability of the images for future analysis and diagnosis in medical contexts [27]. Structural
MRI is a key imaging technology used to non-invasively examine the anatomy of the
brain and other organs. However, raw MRI images frequently contain noise, abnormalities
and defects that might impair interpretation and the accuracy of any subsequent analysis or
diagnosis. Preprocessing approaches are thus used to improve the quality of these pictures
and make them more acceptable for medical use.

2. Related Work

To identify similar research work, we queried two databases: Web of Science and
Scopus. We constructed search queries with Boolean operations (AND, OR, NOT) and used
these keywords: brain, MRI, upscal*, denois*, super*, preproc*, segm*. We used an asterisk
(*) to include all different styles of the same words; for example, denoise or denoising,
etc. All the included sources were from scientific journals or conference proceedings
and published after 2014. Initially, 116 sources were identified; after deduplication, 91
sources were left. Then, we filtered all identified sources by evaluating their relevance
to our solution based on titles and abstracts. After initial filtering, we were left with
26 publications. After a further eligibility study, only four sources were identified that
were different from our solution but worth mentioning, as they related to the problem we
were solving.

Wu et al. [21] modified the U-Net model architecture and added self-attention layers.
They called the model architecture the denoising diffusion probabilistic model (DDPM).
The authors focused on very-low-resolution images, as their input into the model only
used a 16 × 16 resolution and they performed ×8 upscaling on the Amsterdam open
MRI [28] dataset.

Feng et al. [20] combined the U-Net architecture model with a traditional CNN where,
in the first part, many upsample/downsample layers are stacked and, deeper in the
network, many convolution, pooling and batch normalization layers are stacked. They
also used residual connections to share weights with the deeper layer, as this allows
sharing of the knowledge between layers. The authors called this method the coupled-
projection approach. They used ×4 upscaling on The Cancer Genome Atlas (TCGA) [29]
and Anatomical Tracings of Lesions After Stroke (ATLAS) [30] datasets.

Hongtao et al. [23] used an earlier version of Real-ESRGAN [12]—ESRGAN [31]—to up-
scale slices of brain images and then interpolated all slices back into 3D object. They used
×2 upscaling but did not report the dataset with which they tested their solution. More details
on all identified similar works are mentioned in Table 1.

Song et al. [22] used a very similar approach to ours in terms of super resolution;
however, they used a more classic network architecture, the residual convolutional neu-
ral network, and applied it for the human fetal brain super-resolution task. They used
×2 upscaling with the Kirby 21 [32] and NAMIC [33] datasets.

In summary, these papers include studies on multi-parametric neuroimaging repro-
ducibility, deep learning methods for pixel-level crack detection, perceptual losses for
real-time style transfer and super resolution [34–37], and practical unified motion and
missing data treatment with degraded video.
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Table 1. Existing papers in the field of deep learning that used super-resolution technology to enhance
the quality of structural MRI.

Ref. Input Resolution Output
Resolution PSNR (dB) SSIM Dataset Model

[21] 16 × 16 (×8) 128 × 128 24.63 0.784 Amsterdam open
MRI [28]

U-Net with
self-attention

[20] 60 × 60 (×4) 240 × 240 TCGA (36.98),
ATLAS (29.02)

TCGA (0.996),
ATLAS (0.951)

TCGA [29],
ATLAS [30]

U-Net and
CNN hybrid

[23] 128 × 128 (×2) 256 × 256 32.45 0.935 - ESRGAN

[22] 128 × 128 (×2) 256 × 256 Kirby 21 (37.16),
NAMIC (35.56)

Kirby 21 (0.990),
NAMIC (0.982)

Kirby 21 [32],
NAMIC [33] ResNet

[19] 128 × 128 × 128
(×2) 256 × 256 × 256 Kirby 21 (38.93),

NAMIC (38.06)
Kirby 21 (0.9797),
NAMIC (0.9767)

Kirby 21 [32],
NAMIC [33]

Deep 3D CNN
with skip

connections

[18] 93 × 93 × 93 (×2,
×3, ×4)

186 × 186 × 186,
279 × 279 × 279,
372 × 372 × 372

HCP ×2 (35.97),
HCP ×3 (32.63),
HCP ×4 (30.64)

HCP ×2 (0.9827),
HCP ×3 (0.9671),
HCP ×4 (0.9519)

Human
Connectome

Project (HCP) [38]

3D regression-
based filters

[17] 40 × 40 (×2) 80 × 80

Kirby 21 (43.68),
ANVIL-adult

(40.96), MSSEG
(41.22)

Kirby 21 (0.9965),
ANVIL-adult

(0.9906), MSSEG
(0.9978)

Kirby 21 [32],
ANVIL-adult [39],

MSSEG [40]

CNN and
ResNet hybrid

[16] 20×20 (×2, ×3,
×4)

40 × 40, 60 × 60,
80 × 80

BrainWeb ×2
(46.58), BrainWeb
× 3 (40.97),

BrainWeb ×4
(35.20), NAMIC
×2 (38.32),

NAMIC ×3
(33.76), NAMIC
×4 (30.84)

BrainWeb ×2
(0.999), BrainWeb
×3 (0.995),

BrainWeb ×4
(0.986), NAMIC
×2 (0.945),

NAMIC ×3
(0.872), NAMIC
×4 (0.811)

BrainWeb [41],
NAMIC [33] ResNet

3. Materials and Methods

We are proposing a hybrid architecture network that consists of two parts: super-
resolution upscaling of MRI slice images and noise removal. As typical MRI images are
low-resolution and have natural noise due to the signal being affected by interference and
the patient’s body’s radio-frequency emissions [42], it is necessary to apply filtering to
reduce noise, as well as to try to improve the resolution of the images while preserving
smaller details of the brain. High-resolution MRI images are very expensive to produce
because not every hospital has MRI tomographs capable of producing high-resolution
images. The proposed methods could be beneficial in clinical practice. A high-level
overview of the pipeline for our proposed method for the preprocessing of MRI images is
depicted in Figure 1.

The shown pipeline has the default preprocessing steps mentioned (intensity normal-
ization, spatial normalization, skull stripping, pad and crop), which are common for almost
every T1w MRI image that is processed in any kind of workflow (the steps are additionally
illustrated in Figure 2).

The input for our hybrid network is images that have already been preprocessed
with the default steps. In the input, our hybrid network takes a 256 × 256 pixel density
resolution MRI slice image, applies four times upscaling with an upscale network and then
removes noise with a denoising network. In the output, we get a 1024 × 1024 pixel density
image that is filtered of noise. This resolution is approximately equal to a 250 µm in-plane
(spatial) resolution.



Life 2023, 13, 1893 5 of 22

Figure 1. High-level overview of suggested preprocessing pipeline for MRI.

Figure 2. Standard MRI preprocessing steps used in our pipeline. Tools from the FSL [43] library—
fslreorient2std, flirt, fast, slicer. Tools from the FreeSurfer [44] library—mri_synthstrip. Crop or pad
are implemented with a custom Python script.
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Our proposed method consists of these parts: an upscale network trained with a
combination of pixel/structural-level loss functions and multiple degradation techniques
and a denoising network. Each part is detailed in the following sections.

3.1. Upscale Network

After initial experimentation with super-resolution networks, we found that the high-
est objective quality out of the box was achieved by the image super-resolution transformer
called HAT [10]. Its architecture is depicted in Figure 3, as described in the authors’ paper.

Figure 3. HAT transformer architecture.

However, the subjective quality was low because generated images were blurry, as
shown in Figure 4a. When compared to other super-resolution networks, we observed that,
by improving the HAT transformer with the techniques described in this section, we could
make the network generate sharp and closer to ground truth images.

Figure 4. Subjective comparison of sharpness of the proposed method: (a) before applying changes
to HAT model, (b) after applying suggested changes, (c) ground truth image.

3.1.1. Degradation

Generating realistic images as proposed in recent research [12,13] requires introducing
specific degradation techniques for training data. Such techniques include blur, JPEG
compression artifacts, artificial noise, cropping, padding, rotating, etc. These degradation
techniques are just a combination of different augmentations applied during training for
each image from the dataset. These techniques improve the quality of generated images in
super-resolution applications when input images might be blurry or noisy.
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3.1.2. Loss Functions

To preserve the learning of features at different levels (pixel, structural), we combined
a set of loss functions that are designed for respective feature-level learning. Typical choices
for pixel-level learning are binary cross-entropy loss, L1 loss and Charbonnier loss [45].
We chose Charbonnier loss as it is a variant of L1 loss that is more stable for outliers.
For structural-level and super-resolution learning, we chose to utilize perceptual-style
reconstruction loss [46], which has been proven to allow generation of images subjectively
close to the ground truth. To further improve the generated images’ quality, we added
adversarial loss, which allows the network to generate realistic images.

Charbonnier loss. Charbonnier loss is just a differentiable variant of L1 loss (also
known as the mean absolute error (MAE)). It has been found [47,48] that this function
allows networks to learn more realistic pixel-level features; also, it is a great choice to obtain
robustness against overfitting, accuracy and good inference time [49]. Charbonnier loss is
defined in Equation (1).

LCharbonnier =
∑n

i=1

√
(yi − xi)2 + ε2

n
, (1)

Perceptual-style reconstruction loss. To allow a network to be able to learn structural
features, a common technique is to use perceptual loss functions, which focus on optimizing
networks to learn high-level-style features. One such loss function is perceptual-style
reconstruction loss, first proposed in [50,51]. The main idea for this loss function is to
take a deep convolutional neural network (VGG-19 was originally used [52]) pretrained
on a large dataset, like ImageNet [53], and extract activations from deep layers that have
learned high-level features from the dataset. These features are held in common between
the majority of objects and can represent the semantics of the images. The loss function
yields higher error values if the generated image differs in texture, colors, brightness, etc.
The mathematical expression of these proposed ideas is represented by the Gram matrix,
which is defined in Equation (2).

Gφ
j (x)c,c′ ) =

1
CjHjWj

Hj

∑
h=1

Wj

∑
w=1

φj(x)h,w,cφ(x)h,w,c′ , (2)

where φj(x) are activations of image x in convolution layer j of shape Cj × Hj ×Wj.
Reshaping this Gram matrix into matrix ψ with shape Cj × HjWj, we get Equation (3),

which makes it possible to calculate the matrix efficiently. With a reshaped Gram matrix ψ,
we can define perceptual-style reconstruction loss as in Equation (4).

Gφ
j (x) =

ψψT

Cj HjWj
, (3)

Lφ,j
style(ŷ, y) =

∥∥∥Gφ
j (ŷ)− Gφ

j (y)
∥∥∥2

F
, (4)

where ŷ is the generated image and y is the target (ground truth) image. The application of
this loss function in training allows a network to generate perceptually and semantically
similar images to the ones used in training. One examples is given in [46], which shows the
style transfer effect from one image to another.

Adversarial Loss. Another improvement that allows networks to generate hyper-
realistic images is to take advantage of adversarial loss, first proposed in [15]. This type of
loss (shown in Equation (5)) introduces generative adversarial networks (GANs), which
make use of an architecture that has two networks: a generator and discriminator. The
generator only focuses on generating an image that cannot be distinguished as a fake from
the real, and the discriminator’s objective is to correctly distinguish fake from real images.
We used binary cross-entropy loss for both the generator and discriminator because we
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wanted the discriminator to assign high probability (close to 1) for generator outputs
and the generator to generate images from an input feature vector that is a low-resolution
image instead of a random latent vector z like in the original proposed GANs. The objective
of the generator is to minimize the adversarial loss, while discriminators aim to maximize
it. The generator in our case was the HAT model and the discriminator was the U-Net
model described in [12] with a minor modification: instead of the default number of output
channels in convolution layers (64), we used 128. The adversarial BCE loss function we
used is defined in Equation (6). To define the objective loss functions for the generator and
discriminator, we replace the terms in Equation (5) with the BCE loss function. For the
generator, we get the loss function as defined in Equation (7), and for the discriminator, we
get the loss function as defined in Equation (8):

min
G

max
D

V(D, G) = [log D(x)] + [log (1− D(G(z)))], (5)

where x is an image, z is a random noise latent vector, D is the discriminator network
output and G is the generator network output;

LBCE(x, y) = −[y log σ(x) + (1− y) ∗ log 1− σ(x)], (6)

where σ is a sigmoid activation function and y is the predicted label (real, fake);

LG = LBCE(1, D(G(z))), (7)

where z is a fake image;

LD = LBCE(1, D(x)) + LBCE(1, 1− D(G(z))), (8)

where x is a real image and z is a fake image.
Combined loss function. To train the HAT generator, we combined Charbonnier loss,

perceptual loss and generator adversarial loss, as defined in Equation (9). To train the
U-Net discriminator, we used discriminator adversarial loss.

LCOMB = LCharbonnier + Lstyle + LG. (9)

3.2. Denoise Network

To reduce noise in upscaled MRI images, we objectively and subjectively evaluated
multiple denoise filters (non-local means [24], anisotropic diffusion [25], the bilateral filter [26],
the Chambolle filter [54], the Bregman filter [55], the wavelet filter [56], the median filter [57]
and the Gaussian filter [57]), as well as GAN-based solutions (SCUNet [58], SwinIR [11],
Restormer [59], PNGAN [60] and NAFNet [61]). The implementation of the non-local means
filter from OpenCV [62]; the implementations of the bilateral, Chambolle, Bregman and
wavelet filters from the Python library scikit-image [63]; and the median and Gaussian
filter implementations from the Python library scipy [64] were used. The performance of
each network and filter was evaluated separately (each network and filter was applied
independently to the validation dataset, which was used by the upscale network, and results
are reported in Table 2).

The best method based on the objective and subjective evaluations was SCUNet with
noise level reduction σ = 25. Its architecture is depicted in Figure 6.
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Table 2. Comparison of evaluated denoise models and methods.

Model Modification SSIM (%) ↑ PSNR (dB) ↑ VSI ↑ LPIPS ↓
Anisotropic

diffusion
Kappa = 60,

gamma = 0.0135 99.57 45.07 0.9992 0.0048

Bilateral filter σ(5) 98.55 39.31 0.9943 0.0209

NAFNet Baseline and
width 32 97.85 36.55 0.9978 0.0305

Non-local
means σ(10) 96.25 38.44 0.9958 0.0487

Wavelet filter Wavelet =
“sym9” 96.22 34.72 0.9984 0.0631

Restormer Non-blind and
σ(15) 96.19 35.34 0.9970 0.0349

SCUNet σ(15) 96.18 35.35 0.9964 0.0348

SwinIR σ(15) 96.12 35.36 0.9965 0.0376

Restormer Nlind and
σ(15) 96.09 35.31 0.9966 0.0364

Gaussian filter Std = 0.75 95.96 34.14 0.9979 0.0489

PNGAN MIRNet 95.81 35.23 0.9974 0.0587

Chanbolle filter Weight = 0.08 95.11 34.84 0.9969 0.0886

NAFNet Baseline and
width 64 94.87 34.38 0.9976 0.1555

PNGAN RIDNet 94.08 34.09 0.9971 0.0833

SCUNet σ(25) 93.94 33.29 0.9949 0.0553

Restormer Non-blind and
σ(25) 93.85 33.24 0.9949 0.0580

SwinIR σ(25) 93.79 33.28 0.9947 0.0636

Restormer Blind and σ(25) 93.78 33.24 0.9947 0.0577

Median filter Kernel size = 2 93.71 30.12 0.9947 0.0384

Bregman filter Weight = 4.5 91.46 32.02 0.9949 0.0991

SCUNet σ(50) 91.07 31.19 0.9903 0.0903

Restormer Non-blind and
σ(50) 90.76 31.09 0.9899 0.0995

Restormer Blind and σ(50) 90.68 31.09 0.9898 0.1013

SwinIR σ(50) 90.38 31.13 0.9904 0.1157

NAFNet Width 32 17.83 21.38 0.9796 0.5353

NAFNet Width 64 16.78 15.00 0.9349 0.5685

σ—Noise level reduction factor, SCUNet—chosen network for MRI denoising.

The best overall solution, which matched our subjective expectations and had good
enough values for the objective evaluation metrics (Section 3.3.1), was chosen as the
denoising network method. The objective evaluation is represented in Table 2, while the
subjective evaluation is shown in Figure 5.
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Figure 5. Subjective comparison of denoising filters and models.



Life 2023, 13, 1893 11 of 22

Figure 6. SCUNet architecture.

3.3. Evaluation of Results

Evaluation of the quality of generated images can be undertaken in two ways: objec-
tively and subjectively.

3.3.1. Objective Evaluation

For objective evaluation, there are a couple of commonly used metrics: the peak-signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM) [65]. However, these
metrics only capture pixel-level quality, they do not capture the perceptual quality of the
image. For that, typical metrics are VSI or LPIPS. As suggested in [66], for MR images, VSI
is one of the top-performing quality metrics.

Peak-signal-to-noise ratio. The PSNR measures the ratio between the highest possible
pixel value (255) and the pixel intensity differences. The metric is expressed in logarithmic
decibels and makes it possible to measure how well an image is enhanced compared to
the baseline. Higher metric values indicate better image quality. However, this metric only
captures pixel-level differences, so if an image that is completely blurry is being compared
to a non-blurry one, the metric will yield a high score anyway, even though the perceptual
quality of the image is poor. The PSNR metric is defined in Equation (10).

PSNR = 10 log10(
2552

MSE
), (10)

where MSE is the mean squared error or L2 loss defined in Equation (11).

MSE =
1

m ∗ n

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2, (11)

where an m × n sized image I is approximated by image K, and i, j are counters for each
image dimension.

Structural similarity index measure. The SSIM metric is another perceptual metric
that allows objectively measuring difference between two images. “Structural” in the
metric name indicates that the metric value depends on the visible structure distortions in
the image. More distortions degrade the quality of an image and lower the metric value.
The metric consists of three parts: luminance, contrast and structure. The general equation
for the SSIM is defined in Equation (12), the luminance term in Equation (13), the contrast
term in Equation (14) and the structure term in Equation (15).

SSIM(x, y) = l(x, y)c(x, y)s(x, y), (12)

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (13)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (14)

s(x, y) =
σxy + C3

σxσy + C3
, (15)
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where µ is the mean, σ is the standard deviation and σxy is the cross-covariance of images x
and y.

Visual saliency-induced index. The VSI metric [67] is a metric that is oriented to cap-
turing the perceptual quality of an image. The Kadid-10k IQA (image quality assessment)
database [68], which was created to evaluate metrics that capture perceptual image quality,
has proven that the VSI metric is one of the best-performing when assessing perceptual
image quality. The metric first transforms RGB images into other color spaces with a
transformation matrix, as shown in Equation (16). L

M
N

 =

0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.6 0.17

R
G
B

 (16)

Then, additionally, authors have mentioned that they computed the gradient modulus
(GM)—or, in other words, the image gradient—with a Scharr gradient operator. Partial
derivatives for the image are calculated as in Equations (17) and (18).

Gx(x) =
1

16

 3 0 −3
10 0 −10
3 0 −3

 ∗ f (x), (17)

Gy(x) =
1
16

 3 10 3
0 0 0
−3 −10 −3

 ∗ f (x), (18)

Then, the GM is computed as in Equation (19).

G(x) =
√

G2
x(x) + G2

y , (19)

The last part, which is also captured additionally to the GM, is the visual saliency (VS)
map, which is extracted with a trained model for each image. These maps are then used
to calculate similarity between different image features (VS maps, GM and chrominance
elements). Similarity between VS maps is calculated as in Equation (20).

SVS(x) =
2VS1(x) ·VS2(x) + C1

VS2
1(x) + VS2

2(x) + C1
, (20)

where C1 is a constant that controls the stability of the similarity between VS maps. Similar-
ity between GMs for images is then computed, as denoted in Equation (21).

SG(x) =
2G1(x) · G2(x) + C2

G2
1(x) + G2

2(x) + C2
, (21)

where C2 is another constant but this it time controls the stability for the GM similarity. One
of the last parts in the VSI metric is the chrominance element. Chrominance is captured
after RGB image transformation, where we get L, M, N channels. Then, the chrominance
similarity is calculated as in Equation (22).

SC(x) =
2M1(x) ·M2(x) + C3

M2
1(x) + M2

2(x) + C3
· 2N1(x) · N2(x) + C3

N2
1 (x) + N2

2 (x) + C3
, (22)

where C3 is a positive constant as well. Combining the captured similarities, we get the
similarity measure denoted in Equation (23).

S(x) = SVS(x) · [SG(x)]α · [SC(x)]β, (23)
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where α and β are controllable parameters that control the importance of the GM and
chrominance components. Finally, the VSI metric equation is provided in Equation (24).

VSI = ∑x∈Ω S(x) ·VSm(x)
∑x∈Ω VSm(x)

, (24)

where S(x) is the local similarity of image f1 and image f2, VSm is the max value between
VS1(x) and VS2(x) and Ω denotes the whole spatial domain.

Learned perceptual image patch similarity. The LPIPS metric was first introduced
in [69] and is an extension of the perceptual-style reconstruction loss but as a metric. This
metric also extracts features from deep layers and computes distances between them.
The authors of the metric mentioned that it is capable of representing human perceptual
similarity judgment well and can be used as an objective evaluation metric to capture the
subjective component. The metric was also mentioned in the Kadid-10k benchmark as one
of the best perceptual image quality evaluation metrics, together with the VSI metric.

3.3.2. Subjective Evaluation

Every person understands what good quality is differently. In the case of super-
resolution upscaling and denoising of images, subjective evaluation is not difficult be-
cause generated images may contain differences, distortions, blurriness and noise that
differ from the ground truth. An image with distortions is of poor quality. Even though
the VSI and LPIPS metrics have proven that objective evaluation can capture the subjective
component, it is still preferred to have humans included in the evaluation loop to make the
final decision.

4. Results and Discussion
4.1. Experimentation Data

For the experiment, we utilized the ultra-high-resolution MRI dataset “human phan-
tom” [70] with isotropic resolution of 250 µ for T1w MRI scans (dataset available online:
https://datadryad.org/stash/dataset/doi:10.5061/dryad.38s74, accessed on 31 August
2023). In Table 3, we provide a list of studies where this dataset has been used or mentioned.

Table 3. References to the “human phantom” dataset in other studies.

Reference Description

[71]

Literature review on how high-resolution MRI can help in the detection of amyotrophic lateral
sclerosis. The dataset was used to justify how certain vascular markers can be identified in the
brain due to high-resolution MRI making it possible to see small details, which can be crucial

for detection of some diseases, including amyotrophic lateral sclerosis.

[72]
Book chapter where usage of high-resolution MRI is discussed—how small details in brain

imaging can help in assessment of neurodegenerative pathophysiology and vascular
dysfunction. The dataset was mentioned as an example.

[73]
The research utilized the dataset in quantitative susceptibility mapping (QSM) MRI

reconstruction from thin slices, where a T1w scan was used as a structural reference. This
research aimed to improve QSM reconstruction speed and reliability.

[74]
Literature review conducted to analyze the current state of ultra-high-resolution MRI

acquisition in Germany. The dataset was mentioned as one of the sources for
high-resolution MRI.

[75] Book chapter that discusses state-of-the-art methods and datasets for ultra-high-resolution
structural MRI acquisition. The dataset was mentioned as an example.

The dataset contains one intensity-normalized and spatially normalized T1w MRI
scan of a patient. The shape of this scan is 640, 880, 880. We performed skull stripping
on the mentioned scan and then extracted the slices for all planes, removed empty slices
or slices without enough relevant information and combined them into one dataset. Fi-
nally, all extracted slice images were padded with zeros to give them a square shape of
1024 × 1024. These steps are illustrated in Figure 7. This dataset was then split into training

https://datadryad.org/stash/dataset/doi:10.5061/dryad.38s74
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and validation sets with a random sampling in a ratio of 80 to 20 percent. Sampled projec-
tions from slices were kept together; for example, for slice number 171, we moved all three
planes into either the training or validation set. The sampling was undertaken in terms of
the slices and not the extracted projections. The final pixel resolution for ground truth im-
ages was 1024× 1024. To acquire low-resolution images, we applied bicubic downsampling
using the Python package Pillow and reduced the pixel resolution to 256 × 256.

Figure 7. Preparation steps for the human phantom dataset.

To verify the generalizability of the created model, we utilized a test set from OASIS
4 [76] that consists of different T1w scans for patients with dementia. In the dataset, the
scans are from different MR tomographs with different Tesla configurations. All plane
slices of scans after default preprocessing had 256 × 256 pixel resolution.

4.2. Implementation Details

For the training environment, we used a personal computer with an AMD Ryzen
5900 X CPU, GeForce RTX 3090 GPU and 32GB RAM. For the final model, we used a batch
size of 4, a patch size of 64 × 64 and an Adam optimizer with a learning rate of 1 × 10−4,
which was gradually decreased by 0.5 at 50,000, 125,000, 200,000, 225,000 and 240,000 steps.
The HAT generator model architecture was not modified. As mentioned previously, for
the discriminator, we used the U-Net model proposed in [12] with 128 output channels in
convolution layers instead of 64.

4.3. Results

The creation of the proposed methodology started with training many different models
for the super-resolution problem. As mentioned before, we trained the HAT model in the
default configuration, as proposed by previous authors [10] and in work on CARN [14],
BSRGAN [13], SwinIR [11] and Real-ESRGAN [17]. Then, we compared the results that we
got for all models with our validation set objectively and subjectively. Objective evaluation
is shown in Table 4.
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Table 4. Comparison of upscale models’ validation metric results.

Model SSIM ↑ PSNR ↑ VSI ↑ LPIPS ↓

HAT [10] 91.40 31.76 0.9971 0.0984
CARN [14] 90.70 30.43 0.9963 0.0964
HAT (ours) 88.58 28.74 0.9942 0.0529

BSRGAN [13] 87.96 28.42 0.9944 0.0542
SwinIR [11] 87.76 28.25 0.9937 0.0546

Real-ESRGAN [12] 86.96 27.24 0.9915 0.0585

Initial findings showed that the HAT model in the default configuration was capable
of upscaling MRI while preserving good quality because the SSIM and PSNR were the
highest among the trained models, but visually the images were blurry. This can be seen in
the subjective comparison in Figure 8. Both the default HAT and CARN models produced
blurry results because models with default settings do not use perceptual-style loss or the
adversarial training technique. Looking both at the metric results and the visual quality
of the upscaled images, we decided to improve the HAT model since it produced the best
overall results by applying the proposed methodology.

Figure 8. Subjective comparison of upscale models.

The first change was to include the perceptual-style reconstruction loss in the training
pipeline together with Chambonnier loss. However, the results were not satisfactory
because upscaled images had artifacts, as shown in Figure 9. The findings showed that
perceptual-style reconstruction loss alone was not enough to preserve sharpness while
upscaling the MR images. The next step was to include the adversarial loss, as defined in
our methodology.
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Figure 9. Results of using only perceptual-style reconstruction loss with Charbonnier loss for training
the HAT model.

After adversarial loss inclusion, we found that it dramatically improved the sharpness
while increasing the resolution of MR images. This can be seen in Figure 8. Next, we
introduced the VSI and LPIPS perceptual quality metrics into our considerations. We
calculated both metrics for each trained model and report the results in addition to the
SSIM and PSNR metrics. In Table 4, we can see that the VSI metric had the highest score for
the default HAT model, even though the visual quality was not the highest because the
upscaled images were blurry. This finding was not what we expected from a perceptual
quality metric. However, the LPIPS metric did match our perceptual judgment of upscaled
images and showed objectively that our improved HAT model outperformed other state-
of-the-art models in terms of perceptual image quality.

The second step in our proposed methodology is MRI denoising. We took a number of
widely known image filters and a couple of SOTA denoising networks and applied them to
evaluate objectively and subjectively which filter or network would work the best in terms
of the MRI denoising problem. The objective evaluation is shown in Table 2. We calculated
the same metrics for all filters, networks and their modifications. All the networks that we
evaluated used open-source-community shared weights.

The best objective results were achieved with the anisotropic diffusion filter; however,
it was impossible to see if any noise was removed from the images, as shown in Figure 5.

To choose the best overall network for the MRI denoising problem, we subjectively
evaluated different denoising filters and models. Our initial intention was to obtain a
filter or a network that could remove the noise from MRI. As a result, as can be seen in
Figure 5, we found that it was impossible to remove all noise because, as filters became
more aggressive, more distortions of the ground truth appear. We can even see failed tries,
such as NAFNet with a filter width of 64, where upscaled images had strange pixel artifacts.
This happened due to the network being unable to cope with the MRI dataset we used.

For the denoising method, we chose the middle ground between the results with
the most noise and the least noise, which had high perceptual quality and good metric
results. The chosen network was SCUNet with a noise reduction level of 25, as mentioned
in the methodology.

The last step was to confirm that the proposed HR-MRI-GAN pipeline works well
with unseen data. We tested the model with the OASIS 4 dataset [76]. Since the OASIS
4 dataset ground truth images have 256 × 256 resolution, we could not objectively evaluate
the results. However, we could evaluate subjectively. The results are depicted in Figure 10.
Judging the results, it is fair to say that our model generalized well with unseen data
due to the degradation techniques applied during training, as proposed by the defined
methodology, and the generated images were of high perceptual quality. The goal of
preserving small details and removing as much noise as possible was achieved successfully.
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Figure 10. Subjective comparison of HR-MRI-GAN model results with OASIS 4 dataset. Figure
shows four different patients’ brain scan slices for each plane.

4.4. Discussion

A special problem in picture enhancement activities is managing the trade-off between
pixel-level quality and perceived quality. Previous techniques have concentrated largely on
maximizing one component without thoroughly investigating the trade-off. The strategies
adopted constitute a happy medium between high pixel-level similarity and perceived
quality. These strategies were most likely chosen based on the experimental findings, which
revealed a trade-off between pixel-level and perceived quality. To achieve more stable
training and better optimum solutions, the suggested modifications include employing
a denser and deeper network (VGG-16) for the discriminator, boosting the self-attention
layers in the HAT model and using a Wasserstein GAN (WGAN). The hybrid combination
is a revolutionary method for medical image enhancement that capitalizes on the strengths
of both designs for superior results. The results of this paper demonstrate that the proposed
hybrid transformer generative adversarial network (HT-GAN) method for improving the
perceptual quality of MR images through joint denoising and super-resolution upscaling
outperforms state-of-the-art methods in terms of both quantitative and qualitative eval-
uation metrics. We conducted extensive experiments with an ultra-high-resolution MRI
dataset and a publicly available sMRI dataset, and the results showed that the proposed
method significantly improved the accuracy of subsequent analysis and diagnosis of sMRI
images. The proposed methodology has the potential to be applied in clinical practice
and can significantly improve the quality of medical images, ultimately leading to better
patient outcomes. The results of this paper demonstrate the potential of deep learning tech-
niques, specifically GANs and transformers, in improving the quality of medical images
and enhancing the accuracy of subsequent analysis and diagnosis.
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The proposed methodology is a middle ground between high pixel-level similarity
and perceptual image quality based on our experimental results. Based on the comparison
of the metrics in Table 4, we can see that the pixel-level quality (SSIM and PSNR metrics)
was reduced after applying perceptual quality-preserving techniques. In some cases, we
can see that very small details were washed out or missing in the upscaled images, like in
the example in Figure 4. However, upscaled images were no longer blurry and better in
terms of perceptual quality. In the future, it would be beneficial to try to preserve better
pixel-level quality. At least a couple of improvements can be made to achieve this. The
first improvement would be changing the discriminator network to a denser and deeper
network, like VGG-16, which would be far more capable of capturing small details in
images since these networks are known in the field to be great image classifier backbones.
For the second improvement, we could increase the number of self-attention layers in
the HAT model, which may additionally improve the quality of upscaled images. This is
one of the techniques that the authors of the HAT model used to improve metric results
with the HAT-L modification, which had two times more attention layers. For the third
improvement, we could use the Wasserstein GAN (WGAN) [77], which is a modification
of the GAN proposed by [15]. The WGAN has been proved to be more stable during
training and could help in finding better optimal solutions, which would be equivalent to
higher-quality upscaled images. We are planning to apply these additional improvements
in the future.

Another aspect that is worth discussing is why the VSI metric did not reflect our
subjective evaluation of upscaled images as well as the LPIPS. Our expectations were high,
since the Kadid-10k benchmark results proposed it as the best-performing metric in terms
of perceptual image quality. We believe, and our results have shown, that the metric itself
is not suitable for the problem we are addressing: grayscale image perceptual quality
evaluation. The metric was developed for RGB images and not for single-channel images.
Even if we use the basic approach of cloning one channel to the other two when converting
a grayscale image to an RGB one, the metric still does not work as expected. It is evident
that the VSI metric is not suitable for MRI perceptual quality evaluation. For grayscale
image perceptual quality evaluation, the LPIPS metric is a better choice.

The application of SCUNet for the MRI denoising problem was successful. Even
though the model weights were not specifically trained for MRI, the result was still satisfac-
tory enough. This means that general-purpose grayscale denoising networks can be applied
to the MRI denoising problem. Since MR images naturally come with noise, it is impossible
to find a dataset for which MR images would be noise-free. In the future, it would be
beneficial to work on a solution that would allow application of transfer learning from
general-purpose denoising networks to MRI denoising. This could potentially improve the
final image quality even more.

Recently, ensemble learning has been becoming a popular topic in the research commu-
nity. From the machine learning perspective, an ensemble is a collection of models trained
to solve the same problem but using different model types or data. Typically, ensembles
tend to increase the performance of traditional models due to the statistically increased
probability of achieving a better model when training multiple different models for an
ensemble [78]. Ensemble learning could also be used for the super-resolution task, where
multiple different super-resolution models could be trained and then the results of the
model with the best metric results (or the median) would be used as an output. In the same
way, outputs from all models could be averaged to a single output. There are plenty of
examples where ensemble learning improves network performance: predicting the func-
tional brain connectome [79], detection of Alzheimer’s disease [80], flood prediction [81]
and change point estimation [82].
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5. Conclusions

In this paper, we introduced an innovative approach aimed at enhancing the per-
ceptual quality of MR images through the utilization of a hybrid transformer generative
adversarial network (HT-GAN). By synergistically leveraging the capabilities of both gen-
erative adversarial networks (GANs) and transformers, our proposed method presents a
unified solution to jointly address the challenges of denoising and the super-resolution task
within the realm of structural MRI (sMRI) enhancement.

Our contributions extend to modifying the hybrid attention transformer (HAT) model
to heighten the perceptual image quality of MRI. Demonstrating superiority over existing
state-of-the-art (SOTA) super-resolution networks, our method, aptly named HR-MRI-
GAN, exhibits remarkable perceptual image quality enhancement. Furthermore, the versa-
tility of our approach is evident in its ability to generalize effectively to previously unseen
data. Seeking to further elevate MRI quality, we incorporated advanced denoising net-
works, showcasing the adaptability of general-purpose SOTA denoising models to the
intricate domain of MRI denoising. Notably, our exploration uncovered the limitations of
the visual saliency-induced index (VSI) metric for evaluating MRI perceptual image quality,
steering us toward more appropriate evaluation criteria.

The empirical outcomes of our study underscore the remarkable efficacy of the pro-
posed HR-MRI-GAN method, surpassing prevailing benchmarks in both quantitative and
qualitative evaluation domains. Beyond the realms of research, the proposed methodology
carries implications of considerable practical significance, potentially revolutionizing the
accuracy of subsequent sMRI image analysis and diagnostic procedures. As we navigate
towards the prospect of clinical implementation, this work paves the way for substantial
improvements in medical image quality and, by extension, patient care. The synergistic
fusion of GANs and transformers offers a promising avenue for propelling the field of med-
ical imaging forward, underscoring the tremendous potential of deep learning techniques
in transforming healthcare practices.

The intricacy and computational demands of combining GANs and transformers may
result in lengthier training timeframes and resource-intensive processing as compared to
more standard techniques. Furthermore, the trade-off between pixel-level and perceived
quality may result in fine detail loss in upscaled pictures. In future work, we plan to
explore the optimization of these aspects, as well as the potential of transfer learning from
general-purpose denoising networks to MRI denoising, which could potentially improve
the final image quality even more. Additionally, we plan to investigate the use of our
proposed methodology on other types of medical images, such as CT scans and PET scans.
Overall, our proposed methodology has the potential to significantly improve the quality of
medical images and enhance the accuracy of subsequent analysis and diagnosis, ultimately
leading to better patient outcomes.
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