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Simple Summary: The integration of artificial intelligence and advanced computer vision techniques
holds significant promise for non-invasive health assessments within the poultry industry. Monitoring
poultry health through droppings can provide valuable insights as alterations in texture and color
may signal the presence of severe and contagious illnesses. This study, in contrast to previous
research that often employed binary or limited multi-class classifications for droppings, employs
image processing algorithms to categorize droppings into six distinct classes, each representing
various abnormality levels, with data collected from three different poultry farms in Lithuania,
including diverse litter types.

Abstract: The use of artificial intelligence techniques with advanced computer vision techniques
offers great potential for non-invasive health assessments in the poultry industry. Evaluating the
condition of poultry by monitoring their droppings can be highly valuable as significant changes
in consistency and color can be indicators of serious and infectious diseases. While most studies
have prioritized the classification of droppings into two categories (normal and abnormal), with
some relevant studies dealing with up to five categories, this investigation goes a step further by
employing image processing algorithms to categorize droppings into six classes, based on visual
information indicating some level of abnormality. To ensure a diverse dataset, data were collected in
three different poultry farms in Lithuania by capturing droppings on different types of litter. With
the implementation of deep learning, the object detection rate reached 92.41% accuracy. A range of
machine learning algorithms, including different deep learning architectures, has been explored and,
based on the obtained results, we have proposed a comprehensive solution by combining different
models for segmentation and classification purposes. The results revealed that the segmentation
task achieved the highest accuracy of 0.88 in terms of the Dice coefficient employing the K-means
algorithm. Meanwhile, YOLOv5 demonstrated the highest classification accuracy, achieving an ACC
of 91.78%.

Keywords: poultry; droppings; computer vision; deep learning; segmentation; classification

1. Introduction

Adequate production capacity to produce high quality and safe products is a key
factor in the efficient operation of the poultry sector. In order to maintain the efficiency
of the sector, it is necessary not only to ensure good conditions for poultry farming in
line with animal welfare requirements, but also to control the technological parameters of
production and to ensure the prevention of health problems in poultry in order to avoid
losses at the initial stage of production. The concept of sustainable production has recently
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received considerable attention, with analysis of the environmental impact of poultry
meat production and the development of production technologies, taking into account
the European Green Deal strategy and the Food and Agriculture Organisation and the
European Feed Manufacturers’ Federation strategic guidelines. These strategies focus on
the reduction in odor dispersion and greenhouse gas emissions, with ammonia (NH3) [1]
and hydrogen sulfide (H2S) as harmful gases and CO2, CH4 and N2O as greenhouse gases.
Poultry farming also contributes to environmental pollution through the formation of
volatile organic compounds (VOCs). These compounds are another category of substances
that are associated with environmental pollution. The organic compounds released during
the production of poultry meat contribute to the pollution of the environment by residues
of macro and trace elements of these compounds. The health of a flock is greatly influenced
by the nutrient uptake of feed, which, in turn, has a direct correlation with environmental
pollution. Analyzing feed nutrients and health indicators requires a substantial investment
of human resources as it demands the expertise of highly qualified specialists and the
utilization of specialized and often costly techniques and equipment. In the agricultural
sector, AI-driven technologies have the potential to push the industry forward as AI can
bring many benefits to the sector, such as early prediction systems, disease identification,
automated feeding and nutritional analysis, self-monitoring systems for tracking animal
behavior and, in general, contributing to improving the efficiency of farm management
practices by providing timely insights and alerts to farmers and/or veterinarians. Overall,
harnessing the power of data analysis and intelligent decision making by taking into
account information gained from various smart sensors is paving the way to a smarter and
more sustainable agriculture in the future.

The deployment and use of Artificial Intelligence (AI) technology in the field of agri-
culture is also rapidly gaining popularity in response to the escalating global population
and the corresponding increased demand for food [1–3]. Multiple factors such as climate
change, a burgeoning population, increased food consumption and employment issues
have contributed to this trend. Recognizing the urgent need for modern and more sophisti-
cated technologies, the agricultural sector is increasingly turning to AI [3–5]. As a result, the
role of AI in poultry farming has gained significant prominence [6]. In the poultry industry,
the application of image processing technologies has produced impressive results [7–10].
However, data collection and capture commonly rely on IoT technologies.

Currently, the integration of IoT technologies into the poultry farming business in
Lithuania and worldwide is relatively low. Scientific sources extensively discuss cutting-
edge farming technologies that involve analyzing temperature fluctuations within the
flock, examining the effects of oxidative and thermal stress on both health and productivity,
exploring the development of an optimal microclimate and assessing the influence of noise
levels on the well-being of birds, among other factors [11–13].

In broiler chicken production, the utilization of the IoT is highlighted for various
purposes. One notable application involves predicting chicken health by analyzing their
appearance, behavior and microclimatic parameters [14,15]. Through the collection and
analysis of such information, it becomes feasible to identify the presence of particular
diseases in chickens [16,17] and subsequently implement more efficient preventive mea-
sures. This enables improved disease management and control in the poultry farming
industry [18]. In digital production, the chickens can be monitored in real time. This
includes automated scales that send continuous data on body weight, temperature and
feed intake to improve production efficiency, the welfare and health of the birds, more
effective nutritional strategy, biosecurity and odor reduction. It is very important for large
poultry farms as it allows them to analyze very large flocks of chickens to predict growth
trends and to adjust feed production, quality, rearing conditions and the production of
high quality poultry meat accordingly. Moreover, AI techniques can also be applied to
DNA research, facilitating the development of disease-resistant combinations of poultry
lines, rectifying defects in poultry meat and creating products with enhanced nutritional
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value [19–22]. However, the effective integration of these technologies into the poultry
production chain is still pending.

Currently, the utilization of advanced technologies as a reliable means for controlling
and preventing bird health issues in the poultry sector is not adequately effective. Inad-
equate preventive measures at later stages result in significant losses due to bird deaths.
Increased bird morbidity is directly associated with elevated environmental pollution,
which encompasses not only heightened odor and CO2 emissions but also the discharge of
drug residues into the environment. Consequently, this leads to a decline in production
quality, causing substantial losses for agricultural companies. Moreover, consumers are
negatively impacted by the inferior quality and increased cost of the produce.

The poultry farming sector faces several challenges, particularly in terms of hygiene
and diseases. Common ailments include Salmonella, Gumboro pullorum, Newcastle, and
Coccidiosis [23]. Diagnostic laboratory procedures for these conditions are typically time
consuming and performed manually, with considerable expense. For example, American
laboratories (e.g., GPLN and others) charge an average of $30 for bacteriological tests on
poultry feces, and the price varies based on the number of birds tested [24,25]. To detect
disease and eliminate the disease source as early as possible, poultry workers must monitor
individual chickens for any behavioral or physical changes [16]. Assessing the condition of
chickens through monitoring their feces provides a non-invasive approach, as significant
changes in consistency and color may indicate certain abnormalities prompting further
investigation into potential causes like diseases or infections [26]. However, these indicators
also depend on chicken feed, with greenish stools resulting from grass consumption and
black stools from blackberry consumption [3].

In this study, we have implemented computer vision technologies, focusing on time-
sensitive production control and the primary detection of abnormal poultry droppings,
through non-invasive droppings analysis, thus ensuring the timely control of possible
disease outbreaks and improved flock health. Therefore, the main objective of this research
is to develop a deep learning-based approach for monitoring poultry droppings.

2. Related Works

The classification of poultry droppings is a critical task in poultry farming which
involves categorizing droppings based on their characteristics, such as color, consistency,
water content and texture. Several studies have been conducted with the objective of
classifying or segmenting droppings using image analysis. But, it should be noted that
there is significant variation in terms of experimental conditions, the establishment of
ground truth (e.g., litter) and the number of classes used in these studies. In the simplest
scenario, the classification task focuses on a binary distinction, categorizing droppings
as either healthy or unhealthy [27]. However, given the increasing importance of the
early detection of diseases or infections, a multi-class classification approach is becoming
more relevant. For example, in a recent study [28], researchers identify the eight prevalent
diseases (such as Avian influenza, Infectious bursa disease, Pullorum disease, etc.) that lead
to diarrhea in chickens and highlight visual distinctive dropping characteristics associated
with each disease. Additionally, the study highlights the vulnerable time periods and
the level of risk associated with these diseases. Visual differences in droppings affected
by the above diseases can be quite apparent when captured under controlled laboratory
conditions with close-up shots of the specimens, and so on. In some investigations, fecal
images are taken on a conveyor line, which can lead to very different results under realistic
conditions [29]. The study encompassed five heuristic classes, with one class representing
normal fecal samples and the remaining classes indicating abnormalities in terms of shape,
color or a combination of both. Other authors classify droppings into three categories,
“Coccidiosis”, “Health” and “Salmonella”. A high accuracy of 93.67% was achieved using
the fully connected CNN model [16]. A four-class classification model has also been
proposed, with one additional class, Newcastle Disease [30]. This model utilizes two deep
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learning architectures, namely YOLOv3 for object detection and the ResNet50 algorithm
for image classification, and achieved an accuracy of 98.71%.

Various approaches can be used for this task, including unsupervised and supervised
machine learning techniques. Unsupervised approaches for poultry dropping classification
(more specifically clustering) do not require labelled data and rely on the intrinsic char-
acteristics of the data itself. However, to achieve high accuracy in this task, the features
extracted must be highly distinctive, and the complexity of the multi-class classification
makes this task challenging. In contrast, supervised approaches rely on labeled data to
train machine learning models capable of accurately classifying the droppings. It is crucial
to have a substantial amount of labeled data to ensure effective training. However, it is
evident that deep learning architectures exhibit the greatest potential in this context as
these models are capable of automatically learning complex data patterns and performing
object detection, segmentation and classification tasks.

3. Materials and Methods

A motorized pan-tilt-zoom (PTZ) camera, mounted at a height of ~3.48 m, is employed
for scanning the litter-covered surface (see Figure 1). The PTZ camera provides extensive
area coverage and the ability to zoom in for finer details using a single-color camera.
This camera possesses three degrees of freedom, including pan, tilt and zoom. Every
few minutes, the PTZ camera is directed to a predefined location, scanning the entire
litter-covered surface in a zigzag-like motion pattern. Once the camera reaches a new
location, a still image is captured and then transferred to the image processing model
where segmentation and classification tasks are performed. Images are initially saved at
1796× 1009 px resolution and cropped as required.

Figure 1. The process of gathering litter images in poultry farm.

3.1. Image Segmentation

Image segmentation is a very important technique used to separate and classify
individual objects in an image by assigning each pixel to a class. In the early stages, the
most common segmentation methods were thresholding, histogram-based clustering and
k-means clustering, but over the years several advanced deep learning algorithms have
been developed that effectively facilitate this task.

One prominent example is U-Net, which was originally developed for medical image
segmentation and is one of the first deep learning models specifically designed for segmen-
tation tasks [31]. Moreover, the U-Net structure is widely employed in various Generative
Adversarial Network (GAN) variations, including the Pix2Pix generator. The architecture
of the model is relatively straightforward, comprising of an encoder responsible for down-
sampling and a decoder responsible for upsampling [32]. Additionally, the presence of skip
connections further enhances the model’s structure.
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Mask R-CNN is an advanced deep neural network utilized for image segmentation,
known for its exceptional performance [33]. With Mask-RCNN, it becomes possible to
automatically generate masks on a pixel level for objects present in an image. This capability
enables the precise separation of foreground objects from the background. Mask R-CNN
was developed as an extension of Faster R-CNN [34], a renowned object detection model.
While Faster R-CNN focuses on generating two outputs for each potential object, namely a
class label and a bounding-box offset, Mask R-CNN introduces an additional branch solely
dedicated to producing object masks. The inclusion of this supplementary mask output
is distinct from the class and bounding-box outputs as it necessitates capturing a much
finer spatial representation of an object. The fundamental component of Mask RCNN is the
precise alignment of pixels, a crucial element missing in Fast/Faster R-CNN models [33].
Mask-RCNN follows a two-stage process similar to Fast/Faster R-CNN, with an identical
initial stage involving a Region Proposal Network (RPN). However, in the second stage,
alongside predicting class labels and box offsets, Mask RCNN additionally generates a
binary mask for each Region of Interest (RoI) [35]. This approach deviates from many
recent systems that rely on mask predictions for classification purposes. Furthermore, the
mask branch of Mask RCNN introduces minimal computational overhead, enabling a fast
system and facilitating rapid experimentation.

The K-means clustering algorithm is an unsupervised technique which can be em-
ployed to separate the region of interest from the background [36]. This becomes highly
valuable in situations where unlabeled data are utilized, experts are unavailable for data
annotation or when searching for anomalies. The algorithm’s objective is to identify distinct
clusters within the data based on their similarity. Applying this algorithm for dropping
segmentation could be valuable and serves as both additional information and a cautionary
factor, triggering disease identification procedures. Typically, the background value is set
to 0 and the desired color spectrum is assigned to the object of interest. Several studies
have indicated that K-means-based image segmentation using the Lab color method is
more proficient in differentiating object features compared to RGB [37,38]. In our study, we
applied the K-means algorithm to each image, following the sequential steps specified in
Table 1.

Table 1. Pre-processing steps in image feature extraction using K-means algorithm.

No. Steps:

1. Transform the image: Convert an RGB image into the HSI and the Lab color space;

2. Apply OTSU thresholding: Use the OTSU algorithm to create a binary image, differentiating
the objects from the background.

3. Perform thresholded image corrections: apply erosion and dilation operations.
4. Invert the threshold: consider the black part as the background of the image.
5. Extract edges/contours: utilize Suzuki’s algorithm to extract the edges or contours from the image.
6. Filter out smaller contours: remove smaller contours from the extracted edges.
7. Features extraction:
7.1 Compute the convex hull and calculate the perimeter and area of the hull.
7.2 Obtain morphological information: length, width, perimeter, area and bounding points.
7.3 Generate distance maps.

Figure 1 illustrates three examples of poultry dropping segmentations using the K-
means algorithm, with bounding boxes applied to crop specific regions of interest within
the whole images. Figure 2 shows the sequence from (a) to (d), including the original image,
the initially created mask (steps 1 to 3), the final mask (step 7) and the resulting color result.
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Figure 2. Examples of K-means segmentation results for poultry droppings: (a) original image;
(b) initial; (c) final mask; (d) final result.

3.2. Image Classification

Many other deep learning algorithms have gained popularity in image classification.
Each algorithm has unique strengths and may be superior depending on the specific task,
the dataset and the available computing resources. In our research, we have implemented
three different models, namely Resnet101, modified VGG-16 and YOLOv5.

Residual Neural Networks (ResNets are a family of deep learning models that have
been widely used for various computer vision tasks, including image classification [39]. The
ResNet family comprises various variations, including well-known models like ResNet50,
ResNet101, ResNet152 and more. Each model presents a unique trade-off between depth
and computational complexity, but, in general, ResNets were developed to tackle the
challenge of vanishing gradients in deep neural networks. They introduced residual
connections, which enable the training of deep networks by effectively propagating gradi-
ents through skip connections. As a result, different ResNets models have demonstrated
outstanding performance on a wide range of image classification tasks [40–44].

The VGGNet architecture is renowned for its simplicity and uniformity. It is com-
posed of a sequence of convolutional layers with small receptive fields, followed by fully
connected layers. VGG-16, as the name suggests, refers to the specific variant of VGGNet
that contains 16 layers with learnable weights [45]. Despite its relatively large size, with
around 138 million parameters, VGG-16 remains a popular choice for image classification
tasks [46–48] due to its simplicity, ease of use and compatibility with transfer learning
techniques. We have implemented a modified VGG-16 architecture in our model, utilizing
different filters, kernel sizes and dense layer unit numbers compared to the original, with
the aim of potentially improving accuracy for our task (see Figure 3).

Figure 3. VGG-16 model for classification task.
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YOLO (You Only Look Once) is a well-known and widely used set of object detection
models in computer vision. Initially proposed in 2016, YOLO combines object classification
and localization within a single network, making it a popular choice for object detection
tasks [49]. Over time, YOLO has experienced numerous advancements, evolving from
its initial version to subsequent iterations, including version 8. Each version includes
improvements to the model architecture and features to improve object detection accuracy
and speed. In our research, we conducted experiments using YOLOv5 [50], which includes
four distinct models, each with different structures consisting of the Input, Backbone, Neck
and Prediction components, enabling efficient and accurate object detection [51–53].

3.3. Proposed Model

In this study, we collected data from a specific poultry farm in Lithuania using Ezviz
C3X cameras and a decision-making model based on deep learning techniques (see Figure 4).
This model primarily processes the data as there are images where it is difficult to see
poultry droppings due to poor image quality, blurring or similar. Due to the small amount of
data, data augmentation was performed using several different techniques such as rotation
and brightness level differentiation. The data were manually annotated by a veterinary
expert who divided the data into six separate classes. Furthermore, the expert provided
the necessary labeling (using PixelAnnotationTool, version 1.4.0) for the segmentation and
identification task. Once the object is detected, it undergoes classification into six distinct
classes. The final class is determined by identifying the dominant class among them. The
object detection threshold is 0.5, i.e., objects with confidence values greater than or equal
to 0.5 are considered as detected, while objects with confidence values less than 0.5 are
excluded from the final output.

Figure 4. Schematic diagram of a decision-making system for dropping segmentation and classifica-
tion.

3.4. Accuracy Evaluation Metrics

The F1-score is a widely used metric for evaluating the performance of a classification
model, especially in scenarios where we want to balance both precision and recall. Hence,
these three metrics (precision, recall, and F1-score) were computed to evaluate the automatic
classification of droppings images:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)
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F1− score =
2× Precision× Recall

Precision + Recall
(3)

where TP (true positive)—the number of positive class samples correctly classified by a
model; FP (false positive) the number of samples in the negative class that the model
(incorrectly) assigned to the positive class; FN (false negative) the number of samples in
the positive class that were (incorrectly) assigned by the model to the negative class.

In the case of multiple classes, the F1-score for each class is calculated using the one-
against-one (OvR) method. In this method, the performance of each class is determined
separately, as if a separate classifier were used for each class. But, instead of assigning
several F1-scores to each class, it is more appropriate to derive an average and obtain
a single value to describe the overall performance. There are three types of averaging
methods commonly used to calculate F1-scores for multi-class classification, but weighted
averaging is the most appropriate for unbalanced data.

Weighted averaging involves calculating the F1-score for each class separately and
then taking the weighted average of these individual scores. The weight assigned to each
class is proportional to the number of samples in that class. In this case, the F1 result is
biased towards the larger classes.

WeightedavgF1 Score =
n

∑
i=1

wi×F1 Scorei (4)

wi =
ki

N
(5)

where N—total number of samples, number of samples ki in class i.
Intersection over Union (IoU) is a widely utilized evaluation metric in the field of

computer vision, specifically for the segmentation task. IoU measures the overlap between
a ground truth bounding box B and a predicted bounding box A. To calculate the IoU,
you need to determine the intersection area (common area) and the union area of the two
mentioned boxes:

IoU =
Area of Overlap
Area of Union

=
|A∩ B|
|A∪ B| =

TP
(TP + FP + FN)

(6)

The Dice coefficient is very similar to the IoU; however, it is calculated as twice the
intersection of the two sets divided by the sum of their sizes. The Dice coefficient ranges
from 0 to 1, where a value of 1 indicates a perfect overlap or segmentation match, while a
value of 0 represents no overlap.

Dice =
2 ∗ |A∩ B|
|A|+ |B| (7)

4. Data

The collected image dataset consists of 487 pictures, and each class was labelled in a
specific color mask class, contained separate objects can be viewed in Table 2.

Figure 5 displays sample photos representing each class. Normal feces from chickens
usually consist of a solid, brown or greyish-brown part with a white, chalky part made up
mainly of uric acid from their urinary tract (Figure 5a). If there are small changes in the
shape and texture of the faces, this indicates a minor abnormality (Figure 5b). A marginal
change in dropping form and structure may suggest mild health issues. Feces may be
loose, irregularly shaped and discolored, possibly due to minor bacterial enteritis where
inflammation in the intestines disrupts normal gut function, or early stage dysbiosis. Such
abnormalities are usually an early warning sign of possible health problems that may
require further investigation and intervention. Gas frothiness or bubbly droppings often
indicates an underlying infection or disease (Figure 5c). This can be due to conditions such
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as necrotic enteritis, a disease caused by the bacterium Clostridium perfringens which
can produce gas in the intestinal tract. When such feces are detected, a prompt response
is needed as they can lead to a reduction in productivity and even increased mortality
when untreated.

Table 2. The dataset consisted of six distinct classes of droppings.

Classes Description Initial Amount of Images Amount of Images after
Augmentation

Normal Normal droppings, good form and structure,
low moisture amount 216 648

ABN1 Abnormalities: marginal change of
droppings form and structure 47 141

ABN2 Abnormalities: gas frothiness 23 69
ABN3 Abnormalities: high moisture amount 130 390

ABN4 Abnormalities: high moisture amount and
gas frothiness 53 159

ABN5 Abnormalities: undigested feed particle 18 54

Total 487 1461

Figure 5. Examples of each of the six class images showing droppings on different types of litter:
(a) Normal; (b) ABN1; (c) ABN2; (d) ABN3; (e) ABN4 and (f) ABN5.

If there is a significant amount of moisture and discoloration in the feces (see Figure 5d),
it usually means diarrhea, which can occur for a variety of reasons because diarrhea can
be caused by a bacterial or parasitic disease. Such diseases can lead to malabsorption
syndrome, weight loss and reduced growth, and should be treated urgently in order
to avoid serious consequences. Moreover, the combination of high moisture and gas
frothiness in droppings may imply a severe digestive disturbance or disease (Figure 5e).
Visible undigested feed particles in the droppings is generally a clear sign of malabsorption
syndrome. In this case, the chicken’s digestive system is not adequately processing the
consumed feed, resulting in particles passing through the system without being digested.
This may be due to inflammation in the intestines from bacterial enteritis or damage to the
intestinal wall from coccidiosis. It may also be due to a change in the diet that the bird’s
digestive system cannot handle. This signifies significant health concerns as malabsorption
can lead to nutrient deficiencies, weight loss and reduced growth rates. The detection
of undigested food particles in the droppings (Figure 5f) may indicate the presence of
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malabsorption syndrome. This is a major health concern as malabsorption can lead to
nutrient deficiencies, weight loss and stunted growth. These six categories can be visually
identified and each necessitates a unique response rate and often involves distinct treatment
measures or medications. All of these possible causes and diseases are assumptions that
need to be verified since diagnosis is commonly made by directly or indirectly identifying
either the agent or serologically.

5. Experimental Results
5.1. Segmentation Results

To investigate different segmentation methods, we implemented three different algo-
rithms: K-means, U-Net and Mask-RCNN architectures. The images of the segmentation
results (predicted masks), including the predicted masks, original image and true mask,
are provided below in Figure 6. In the case of the K-means algorithm, we set the number of
clusters (K) to 3. As illustrated in Figure 6, the algorithm successfully predicts the masks
with a high level of accuracy, achieving an average dice coefficient value of 0.8875 across
all six classes. Comparatively, the other two algorithms displayed slightly lower results.
The Mask-RCNN algorithm obtained an average dice coefficient of 0.8530, while the U-Net
algorithm achieved 0.8746.

Figure 6. Instances of Segmentation results for 4 different classes: (a) Normal; (b) ABN1, (c) ABN4
and (d) ABN3.

The most complex scenarios occur when there is a small piece of feces on the litter,
accompanied by a variety of objects with a similar color and shape characteristics to the
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feces. It is therefore challenging to detect such a small object that is almost indistinguishable
(see Figure 6d).

Table 3 provides the average Dice coefficient values obtained from the segmentation
for all six classes of droppings. Despite the K-means model having the highest average Dice
coefficient, the U-net model had a slight advantage in two of the six classes. Specifically,
in the Normal class, the U-net model achieved a 0.18% higher segmentation accuracy
compared to K-means, while for the ABN4 class it achieved 0.93% higher accuracy. The
Mask-RCNN model yielded the lowest dice coefficient values for all classes. The K-means
algorithm demonstrates its pronounced advantage in the ABN3 class, exhibiting a 7.45%
higher dice coefficient value compared to U-Net and a 10.04% higher dice coefficient value
compared to Mask-RCNN.

Table 3. The Dice coefficient’s average values determined from the segmentation test.

Algorithm Class Average

Normal ABN1 ABN2 ABN3 ABN4 ABN5

Mask_RCNN 0.85993 0.87388 0.85232 0.79055 0.87945 0.89119 0.8579
U-Net 0.87674 0.87404 0.87260 0.81130 0.91259 0.90896 0.8760

K-means 0.87518 0.87947 0.87820 0.87408 0.90414 0.91393 0.8875

The advantage of the K-means model can be explained by the ABN3 class of cases
where the size of the object is very small (as shown in Figure 6d), where both the U-Net
model and the Mask-RCNN model encounter difficulties in segmentation, resulting in
a dice coefficient of 0 (see Figure 7d). The segmentation results of the ABN3 class are
distinguished by a larger number of outliers in the dice coefficients, which are also found
in the other classes, while the segmentation results for class ABN5 are the most stable and
accurate (see Figure 7f).

Figure 7. Instances of Segmentation results for 4 different classes: (a) Normal; (b) ABN1, (c) ABN2
(d) ABN3, (e) ABN4 and (f) ABN5.
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5.2. Classification Results

For the classification task, we have implemented three different models as well and
the accuracy results are provided in Table 4. The YOLOv5 model gives the best results with
an accuracy of 91.78%. The ResNet-101 model gives slightly worse results with a 91.10%
accuracy (<1% difference). And the worst results were obtained with the VGG-16 model
with an accuracy of 89.24%. As our data are unbalanced (the largest class has 195 testing
data and the smallest has 16), it is appropriate to provide a weighted average of F1 scores
as an indicator for evaluation.

Table 4. Accuracy values of classification models.

Model Precision Recall Accuracy Macro-F1 Weighted Average F1

VGG-16 79.74% 86.62% 89.24% 82.34% 89.67%
ResNet-101 83.486 88.89% 91.10% 86.03% 91.28%

Yolov5 84.55% 90.54% 91.78% 86.96% 92.03%

Observing the results of confusion matrixes (see Figure 8) we can see that the best
classification results are given by the Normal class (with F1-scores of 95.31% for ResNet-101
and YOLOv5 and 94.48% for VGG-16) and the worst by ABN2 and ABN5, but in these
classes we have the least data. In the classification process, there is a notable confusion
between the classes Normal and ABN5, as well as between ABN3 and ABN4.

Figure 8. Confusion matrix of three different classification models: (a) VGG-16, (b) YOLOv5,
(c) ResNet-101.
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6. Discussion

In our study, we have used YOLOv5 for binary object detection, specifically for
detecting object class and the background. The confusion matrix is presented in Figure 9 to
assess the model’s performance on the task. The classification accuracy (ACC) stands at
0.9241, whereas the F1-score is 0.9605. The algorithm is more likely to fail to detect existing
objects than to detect objects that are not actually present in the image. This is usually the
case when there are many objects in the photo, usually more than four (see Figure 10).

Figure 9. Object detection confusion matrix.
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The YOLOv5m model has been implemented and training was carried out over
350 epochs. Figure 10 presents the training results, which include a precision score of
0.891 recall of 0.892 and mAP (mean Average Precision) of 0.901 and 0.601 for 0.5 IOU and
0.95 IOU, respectively (95%).

Figure 11 shows some examples of object detection. It is noted that usually only very
small pieces of droppings are missing, which is, in principle, not very significant in a
more holistic view of the problem itself. On the other hand, objects that are not detected
usually have a low confidence level and, thus, do not pass the threshold value (0.5) and are
therefore not evaluated in the final solution. A detailed review of such cases reveals that
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some of the objects inaccurately detected may actually exist and have been overlooked by
an expert, possibly due to human error or because they are very small.

Figure 11. The sample images with true object (left side of image) and predicted objects with
confidence level (right side of the image): (a) perfect detection with high confidence level; (b) two of
three object have been detected; (c) one object has been incorrectly identified as dropping; (d) three
objects incorrectly identified as droppings and three are missing.

In this research, we also conducted binary classification, categorizing data into two
classes: normal and abnormal. As depicted in the results table (see Table 5), such classi-
fication approach showed a slight improvement of 2.74%, achieving an accuracy (ACC)
of 94.52%. Table 5 also presents the experimental results of other authors’ attempts at
classifying droppings into 3–5 categories. However, it is important to note that direct
comparison is difficult due to the differences in datasets, data collection conditions (real
or laboratory), data quality and the number of dropping classes used for classification. A
number of studies have been carried out using open source Kaggle 4-class dataset (Poultry
Diseases Detection), which includes images of “Newcastle”, “Salmonella”, “Coccidiosis”
and “Healthy” droppings.

Such research aligns with the current global trends in poultry farming and the overar-
ching research concept of poultry gut health. This indicator depends on many factors, such
as feed production technology, compound feed composition and structure, oil quality, pro-
tein and amino acid content in the feed, fiber and its components, macro and microelements
such as calcium, phosphorus, sodium, copper, zinc, selenium and feed additives such as
glycerides of medium-length fatty acids, NSP enzymes, etc. It is therefore, reasonable to
take into account the effect of the above indicators on the health of the poultry, which will
allow a more efficient prediction of the status of poultry health through the utilization of
data analytics (e.g., correlations, monitoring of dynamics).
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Table 5. Accuracy values of classification models.

Classes References Dataset Size Algorithm/Model Classification
Results (Metric)

(1) Health
(2) Coccidiosis
(3) Salmonella

Degu, M.Z. et al. [28] 10,500 ResNet50 98.70% (ACC)

Mbelwa, H. et al. [16] 1590

XceptionNet 94.00% (ACC)

CNN 93.67% (ACC)

VGG 16 89.33% (ACC)

(1) Newcastle
(2) Salmonella
(3) Coccidiosis
(4) Healthy

Liu, X. et al. [54] 8067 PoultryNet 97.77% (ACC)

Chen, X. et al. [55] 8067 ResNeXt50-3A 97.40% (ACC)

Machuve, D. et al. [23] 1255
InceptionV3 95.45% (ACC)

MobileNetV2 98.02% (ACC)

Xception 98.24% (ACC)

(1) Normal
(2) Abnormal shape
(3) Abnormal color
(4) Abnormal water content
(5) Abnormal shape and water

Jintao Wang [27] 7637

Yolo V3 88.70% (Recall)

Faster R-CNN 99.10% (Recall)

(1) Normal
(2) Abnormal

Our proposed model 1461

K-means + YOLO V5 94.52% (ACC)

(1) Normal
(2) Abnormal with minor changes
(3) Abnormal with gas foaming
(4) Abnormal with moisture content
(5) Abnormal with undigested feed

K-means + YOLO V5 91.78% (ACC)

7. Conclusions

Within the scope of this study, we have developed a computer vision-based solution
with a primary emphasis on the early detection of abnormal poultry droppings through
non-invasive droppings analyses. The main objective was to provide an additional visual
factor and to enable prompt disease outbreak control and to contribute to optimal bird
health management. In our research, the droppings were categorized into six classes,
guided by expert veterinary knowledge and visual indicators, which signified specific
levels of abnormalities. The conducted experiments highlighted the proficiency of the
proposed model in recognizing and categorizing both individual and multiple occurrences
of droppings within a single image. The results obtained revealed that the deep learning
model achieved a detection accuracy of 92.41% for droppings, even when presented with up
to 11 objects. Notably, it was observed that only small pieces of droppings were undetected
or inaccurately detected, which has little or no impact on the overall decision making.

After evaluating multiple machine learning algorithms for the segmentation and clas-
sification tasks, we have created a decision-making system based on the obtained results.
The results indicated that the K-means algorithm outperformed U-Net and Mask-RCNN in
the segmentation task, achieving the highest accuracy of a 0.88 Dice coefficient. Among ar-
chitectures such as VGG-16 and ResNet-101, YOLOv5 demonstrated superior performance,
achieving the highest accuracy of ACC = 91.78% for classification task. However, it should
be noted that the dataset is unbalanced and the lowest accuracies are obtained with the
anomaly classes with the least data. Therefore, it is likely that in the future the collection
of more images with these classes will not only increase the accuracy but also allow for
more detailed studies to be carried out to identify more class-specific features to assess
correlations with diet, poultry age, etc.
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