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It seems that for success in science or art, a
dash of autism is essential.
— Hans Asperger

(Inhumane psychiatrist, accurate observation)
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INTRODUCTION

Research contextualization

Electrolytes are electrically charged minerals dissolved in the blood and body flu-
ids essential for maintaining homeostasis [1]. Electrolytes participate in various phys-
iological processes, including action potential generation for proper nerve conduction
and cardiac muscle contraction [2]. Like many other vital variables in the human bi-
ological system, blood electrolyte levels must be tightly regulated within pre-defined
limits to allow cells to function normally [2]. When electrolyte levels deviate from their
optimal range, neurological and cardiovascular functions can become severely com-
promised, resulting in disruptions of homeostasis with possible lifelong—or fatal—
consequences [1,2].

Electrolyte imbalance, or dyselectrolytemia, occurs when the level of an elec-
trolyte in the blood falls outside its homeostatic range and is associated with increased
all-cause mortality among various populations [3—6]. One of the most worrisome con-
sequences of electrolyte imbalance, particularly that of potassium [7], is arrhythmias
with the potential to instigate sudden cardiac death (SCD) [8,9]. Unfortunately, such
dangerous arrhythmias usually emerge without any apparent signs of electrolyte imbal-
ance that could warn patients to seek preemptive medical treatment [10]. The symp-
tomatology of early (and mild) dyselectrolytemia is broad and often nonspecific, vary-
ing from symptomless to general fatigue and malaise to ordinary digestive issues [11].
Thus, without a blood test, mild dyselectrolytemia is virtually undetectable. By the
time patients manifest more prominent clinical signs, blood electrolytes have already
reached life-threatening levels, and emergency care is required.

Since the kidneys are the primary regulators of the homeostatic blood electrolyte
profile [2], patients with renal dysfunction are the most susceptible to dyselectrolytemia.
Kidney damage, as seen in chronic kidney disease (CKD), evidently hampers renal
function, making CKD patients particularly vulnerable to SCD-triggering electrolyte
derangements [6, 12]. About 39.5% to 74.2% of CKD patients display at least one
dyselectrolytemia [13], although the incidence rate varies for each specific electrolyte
and CKD stage [12]. The degree of renal damage further aggravates the susceptibil-
ity to electrolyte imbalance, with end-stage renal disease (ESRD) patients requiring
hemodialysis (HD) every two-to-three days to rectify their electrolyte levels to sur-
vive [2].

Therapeutical drugs are, however, the most recurrent cause of dyselectrolytemia
in everyday clinical practice [14,15]. Many conventional therapies for treating various
chronic diseases induce renal dysfunction even if the kidney tissue is healthy [16]. One
notable example is antihypertensive agents and other prescribed drugs for CVD, such
as diuretics and g-blockers. Around 10% of patients manifest one dyselectrolytemia
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episode within a year after initiating hypertension treatment [14], and 26.8% develop
sodium imbalance recurrently [17]. Mild potassium derangements are present in
19% [18]—and even 80% [14]—of patients receiving diuretics, depending on the pre-
scribed diuretic class. Similar therapies are also reckoned to promote dyselectrolytemia
in 20% to 48% of patients during hospitalization, despite only 3% to 8% of them dis-
playing abnormal levels at admission [19, 20].

Even though sporadic episodes of mild dyselectrolytemia do not typically pose
an imminent threat to the patient, recent studies speculate that recurrent episodes can
have long-lasting health ramifications [5]. Chronic mild dyselectrolytemia predis-
poses hypertensive patients to syncope and falls [5], whereas hospitalized patients dis-
charged with uncorrected mild electrolyte imbalance have higher rehospitalization and
60-day [21], 90-day [22], and one-year [23] mortality rates. Albeit not yet proven, these
recurrent mild dyselectrolytemia episodes may be involved in the genesis of cardiore-
nal syndrome (CRS), which, as suggested by its name, is characterized by a deteriora-
tion of the cardiac and renal functions. This syndrome worsens long-term health, not
only because it accelerates the clinical progression of the pre-existent chronic disease,
but also because it predisposes patients to develop CVD, CKD, and even ESRD [24].
Furthermore, mild dyselectrolytemia can amplify the odds of a fatal outcome in more
advanced stages of chronic disease, especially if coupled with comorbid CVD [21].
Prompt correction of abnormal electrolyte levels is hence paramount for averting un-
favorable outcomes.

While some clinicians deem such mild episodes harmless—and often overlook
them unless they develop into severe ones—many other clinicians end up underpre-
scribing or underdosing indispensable drugs out of fear of adverse events [25]. How-
ever, in the long run, underdosing becomes a double-edged sword strategy that further
complicates chronic disease management. Without an appropriate drug regimen, the
body cannot maintain homeostasis and activates maladaptive compensatory mecha-
nisms that ultimately damage multiple organs [2, 26], inducing CRS and a declining
health status [1].

Research relevance

Many people worldwide are at risk of electrolyte imbalance since CKD, hyper-
tension, and CVD are global epidemics. CKD affects >10% of the world popula-
tion [27], while hypertension is present in nearly 32% of women and 34% of men [28]
and in about 60% of people older than 60 [17]. Almost half of the people with hyper-
tension are on antihypertensive therapy [28]. Roughly 8.8% of the global population
suffers from diabetes [29], and 70% to 80% exhibit comorbid hypertension alongside
diabetes [30]. CVD is found in 5.5% [31] to 21.3% [32] of adults in the US and UK
and already accounts for 32% of deaths globally [33], while CKD kills an estimated
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5-10 million people annually [34]. The incidence of these chronic diseases—and, con-
sequently, the occurrence of dangerous dyselectrolytemia—is forecasted to rise further
by 2030 due to the aging population [27,34].

On top of the heightened risk of all-cause mortality, electrolyte imbalance is
economically burdensome [35]. The treatment of dyselectrolytemia inflates the already
substantial healthcare costs of CKD and CVD, particularly the severe episodes that
require hospitalization [36]. In CKD patients, each severe dyselectrolytemia episode
costs up to $31,212 in the US, whereas only $1,782 suffices to treat a mild one [35].
Hospitalization for dyselectrolytemia is estimated to have an additional healthcare cost
burden of 7% to 39% on average [37], with the US reporting to have spent $1.6-3.6
billion in 2009 to treat sodium imbalance alone [38].

Regular monitoring of blood electrolyte levels could avert unfavorable health
outcomes in the short and long term. In addition to enabling a prompt correction of
electrolyte derangements before the onset of SCD-triggering arrhythmias [39], regu-
lar monitoring could facilitate drug titration, helping clinicians to continually adjust
the dosage of life-saving medications for the maximum benefits without adverse ef-
fects [25]. In those at risk of drug-induced dyselectrolytemia, regular monitoring could
delay—or even prevent—the development of CRS and the disease progression, thus
promoting general long-term health. Furthermore, regular blood electrolyte monitor-
ing could also decrease the economic burden of chronic diseases. For instance, the
timely detection of mild dyselectrolytemia may help avoid at least 22% of hospitaliza-
tions of elderly patients [40], while halting the progression of CKD to ESRD could
reduce the CKD cost by six times [41]. The average annual cost of ESRD is $100,593
per patient, whereas $16,112 suffices to treat CKD in the USA [41].

Despite being potentially life-saving and advisable in vulnerable patients, regular
monitoring is poorly implemented in clinical practice, primarily due to the lack of
practical methods to assess blood electrolyte levels. Blood tests are the only clinically
valid method for capturing electrolyte imbalance, but blood testing can be expensive
and logistically burdensome for healthcare facilities to perform regularly. Moreover,
blood tests are infeasible outside clinical settings, thus precluding ambulatory blood
electrolyte monitoring. Inexpensive—and ideally noninvasive—technologies to assess
blood electrolyte levels could facilitate regular monitoring in both in- and outpatients
and would, therefore, be of clinical significance [25,39].

The scientific-technological problem

Non-homeostatic blood electrolyte levels disrupt the action potential of heart
cells [7], leading to ventricular repolarization disturbances that can be reflected in the
electrocardiogram (ECG) [42]. For instance, an altered T-wave morphology is a well-
known manifestation of potassium-induced repolarization disturbances [42]. Thus, ECG
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ventricular repolarization markers may be surrogates for blood electrolytes.

In recent years, novel T-wave morphology parameters were devised to quantify
blood potassium levels [43—45]. Albeit with promising results, the performance of such
parameters was investigated exclusively in ESRD patients during HD sessions, where
electrolyte levels fluctuate much more rapidly than in everyday ambulatory settings.
While rapid electrolyte fluctuations are known to induce perceptible T-wave morphol-
ogy changes [46,47], whether an ECG can capture the gradual electrolyte fluctuations
expected in an everyday scenario remains unexplored.

Alongside the T-wave morphology, various other ECG features, such as the spa-
tial QRS-T angle, have been extensively studied as ventricular repolarization mark-
ers [48-50]. Although their relationship with blood electrolytes is yet unclear, some
of these markers are strong indicators of cellular electrical activity [48], thus spurring
scientific interest as prospective solutions for noninvasive blood electrolyte monitor-
ing. However, nearly all existing T-wave-based parameters [43, 45, 51-56] and other
ventricular repolarization markers [48, 57] are estimated exclusively from 12-lead or
precordial-lead ECG systems, thereby sharing the same core technological problem—
they are impractical for ambulatory applications. Therefore, methods to estimate ven-
tricular repolarization markers from a set of reduced-lead ECGs are necessary. Such
methods could be deployed in consumer healthcare devices and facilitate noninvasive
monitoring of blood electrolyte levels.

Research problem: The lack of practical methods to estimate ventricular repo-
larization markers in ambulatory settings encumbers the scientific-technological ad-
vancement of solutions for noninvasive blood electrolyte monitoring. It hinders the:
(i) performance investigation of currently available solutions in everyday ambulatory
scenarios, and (ii) development of other potential solutions that could harness the value
of some well-known ventricular repolarization markers, such as the spatial QRS-T an-
gle.

Research questions

The lack of adequate technological solutions for ambulatory settings challenges
the feasibility of noninvasive blood electrolyte monitoring in everyday scenarios, thereby
raising the following central questions:

1. Canreduced-lead ECGs capture gradual blood electrolyte fluctuations in am-
bulatory settings?

2. What possible confounding factors can affect the performance of potential
ECG-derived markers of blood electrolyte levels in ambulatory settings?

3. Can well-established ventricular repolarization markers such as the spatial
QRS-T angle be derived from reduced-lead ECGs with sufficient accuracy to be prospec-
tive solutions for ambulatory noninvasive blood electrolyte monitoring?

14



4. How can the efficiency of heartbeat annotation algorithms be improved so
that cardiovascular research of noninvasive blood electrolyte markers in long-term
ECGs can be expedited?

Working hypothesis

Ventricular repolarization markers can be estimated from reduced-lead ECGs
using model-based parametrization and machine-learning approaches with sufficient
accuracy to be potential surrogates for blood electrolytes in ambulatory monitoring
applications.

Research aim
This doctoral dissertation aims to research and develop methods for facilitating
noninvasive ambulatory monitoring of blood electrolyte levels.

Research object
The research focuses on developing signal-processing algorithms for capturing
ventricular repolarization changes from reduced-lead ECGs.

Research objectives

1. To analyze the significance of electrolyte balance in health and discuss the
clinical value of regular blood electrolyte monitoring for long-term general health.

2. Topropose T-wave morphology descriptors that can be estimated from single-
lead ECGs to be suitable for ambulatory monitoring. Such descriptors are necessary
to explore the feasibility of capturing gradual potassium-induced repolarization distur-
bances in out-of-hospital settings and thus identify possible confounding factors that
can affect noninvasive blood electrolyte monitoring.

3. To engineer algorithms for deriving well-established ventricular repolariza-
tion markers such as the spatial QRS-T angle from reduced-lead ECGs. Such meth-
ods can enable harnessing the clinical value of these markers to propel research and
development of new technological solutions for the noninvasive monitoring of blood
electrolyte levels.

4. To develop methods for accelerating the analysis and annotation of heartbeats
in long-term ECG recordings. Such methods would expedite the scientific investigation
of new ECG markers of blood electrolyte levels.

Scientific novelty
This doctoral dissertation presents a comprehensive overview of the clinical con-
sequences of electrolyte imbalance in long-term health by addressing the impact of
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recurrent episodes of mild dyselectrolytemia on the cardiac and renal functions and
homeostasis. In contrast to previous research, this dissertation contextualizes the im-
portance of regular blood electrolyte monitoring beyond the need to capture electrolyte
derangements solely for SCD prevention. This dissertation argues that it is plausible
that recurrent mild dyselectrolytemia episodes can have long-lasting health ramifica-
tions while further cementing the need to expand the scientific-technological research
and development of methods for facilitating noninvasive ambulatory monitoring of
blood electrolyte levels.

The first method uses a model-based-parameterization approach to derive a T-
wave morphology descriptor from single-lead ECGs. Unlike the other proposed T-
wave-based parameters, the developed descriptor accounts for the global T-wave mor-
phology instead of only local T-wave features. In addition, the descriptor is more robust
to noise, which is propitious for ambulatory ECG recordings.

The second method uses a deep-learning-based approach to estimate the spatial
QRS-T angle from sets of reduced-lead ECGs. Since the QRS-T angle reflects the
angle between the QRS and T vectors in the three-dimensional (3D) space, the model
was designed to return the coordinates of each vector as output. An original composite
loss function that combines the QRS-T angle and the Euclidean distance is proposed
to guide the model throughout the 3D space. Besides proposing the first method for
estimating the spatial QRS-T angle from reduced-lead ECGs, this dissertation also
explores the conceivability of measuring the angle from solely frontal-lead ECGs.

This doctoral dissertation also presents the first study exploring the feasibility of
capturing gradual blood potassium fluctuations in ambulatory settings from single-lead
ECGs. No other study had previously investigated the feasibility of noninvasive mon-
itoring of electrolyte levels outside HD sessions. Two T-wave morphology descriptors
were employed to quantify potassium-induced ventricular repolarization changes: the
proposed model-based descriptor and the only currently available single-lead-derived
descriptor sensitive to blood potassium levels in HD sessions. The presented study
identifies what possible confounding factors can affect the performance of potential
ECG-derived markers of blood potassium levels, thus unraveling the challenges of
noninvasive monitoring of blood electrolytes. Since the scientific research of noninva-
sive blood electrolyte monitoring is still in its infancy, such feasibility studies provide
valuable insights for future research and are thus essential to deepen scientific knowl-
edge and impel further development of the research field.

Lastly, an unsupervised symbolic clustering algorithm for faster semiautomatic
heartbeat annotation in long-term ECGs is presented. The algorithm compresses heart-
beats into short strings by using a classic discretization technique employed in many
time-series data mining problems. Beats represented by equal strings are grouped into
the same pre-clusters to reduce the computational demands. Instead of every individ-
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ual heartbeat, the human expert is presented with the hierarchical clustering results
of the generated pre-clusters for manual investigation and annotation. By clustering
heartbeats in an unsupervised fashion, the algorithm allows researchers to discover
unexpected morphological ECG changes that can be related to blood electrolyte fluc-
tuations.

Practical significance

1. Methods enabling an accurate assessment of the electrolyte profile in ambu-
latory settings can:

(a) Allow a timely detection of severe dyselectrolytemia before the onset of
SCD-triggering arrhythmias.

(b) Aidin drug titration and personalization for patients at risk of drug-induced
dyselectrolytemia.

(c) Clarify the causal relationship between electrolyte fluctuations and arrhyth-
mia occurrence and progression.

(d) Provide insights into the interrelationship of the cardio-renal function, home-
ostasis, blood electrolytes, and their long-term health ramifications.

2. The engineered algorithms and methods presented in this doctoral disserta-
tion can be used in the following applications:

(a) The proposed T-wave morphology descriptor can facilitate the development
of technological solutions to quantify blood potassium levels in ambulatory
settings.

(b) Since single-lead ECGs suffice to derive the proposed T-wave morphology
descriptor, comfortable consumer healthcare devices can be used to collect
long-term data instead of Holter devices. Databases of long-term ECGs
and synchronous blood samples are still largely unavailable and are piv-
otal for the research field of noninvasive monitoring of blood electrolyte
fluctuations.

(c) The relationship between the spatial QRS-T angle and blood electrolyte
levels can be explored since the proposed deep-learning-based approach
estimates the angle from sets of reduced-lead ECGs. The spatial QRS-T
angle could be a potential solution for noninvasive blood electrolyte mon-
itoring.

(d) Estimating the spatial QRS-T angle from reduced-lead ECGs opens up the
possibility of harnessing its well-known diagnostic value for SCD risk strat-
ification and early detection of dangerous cardiac events in vulnerable pop-
ulations, such as CKD and CVD patients.
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(e) Similar architectures to the proposed deep-learning model could be devel-
oped to derive other 3D-based repolarization markers, such as the ventric-
ular gradient.

(f) The symbolic clustering algorithm may enable researchers to annotate long-
term data much faster. Large annotated databases can improve the devel-
opment of machine-learning models for interpreting ECG signals.

(g) The symbolic clustering algorithm can help researchers discover unex-
pected morphological ECG changes related to blood electrolyte fluctua-
tions.

3. The feasibility study results provide valuable insights to improve future re-
search on noninvasive monitoring of blood electrolyte levels, namely of what con-
founding factors that can affect the performance of potential ECG-derived markers of
blood electrolytes.

4. The algorithms described in this thesis have been devised in the framework of
the project Personalized wearable technologies for evaluating life-threatening health
conditions in chronic kidney disease patients—KidneyLife funded by the European Re-
gional Development Fund with the Research Council of Lithuania (LMTLT) under
Project No. 01.2.2-LMT-K-718-01-0030 from 2018-2022.

Approval of results

The doctoral thesis relies on two primary papers published in international sci-
entific journals with an impact factor listed in the Clarivate Analytics Web of Science
database. The key results have been presented at four international conferences recog-
nized worldwide: the 2017 IEEE Biomedical Circuits and Systems Conference (Bio-
CAS), the 45 and 48 Computing in Cardiology (CinC) conferences, and the 15"
International Conference on Bio-inspired Systems and Signal Processing, Biosignals
(BIOSTEC 2022).

The research has been commended both internationally and in Lithuania. In
2018, Kaunas University of Technology awarded the author of the research as one of
the most active Ph.D. students in Electrical and Electronics Engineering. At the 45
Computing in Cardiology conference, the research received the Gary and Bill Sanders
Poster Award. In 2021, the research received a promotion scholarship for academic
research granted by the Research Council of Lithuania.

Statements prepared for defense

1. The clinical consequences of electrolyte imbalance stretch beyond danger-
ous arrhythmias. In patients with chronic diseases, even mild and recurring episodes
of dyselectrolytemia can initiate a cascade of maladaptive compensatory mechanisms,
resulting in the deterioration of cardiac and renal functions. This deterioration can
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ultimately threaten long-term health and hasten the progression of the disease. There-
fore, regular monitoring of blood electrolyte levels is essential not only for preventing
sudden cardiac death in the short term, but also for maintaining homeostasis and pro-
moting overall health in the long term.

2. T-wave morphology descriptors can capture ventricular repolarization dis-
turbances induced by gradual blood potassium fluctuations in ambulatory single-lead
ECGs. However, ambulatory recordings are vulnerable to noise, thus warranting model-
based parameterization to generate ECG descriptors. Nonetheless, concurrent elec-
trolyte imbalances and alternating T-wave morphologies are confounding factors that
can influence the effectiveness of potential ECG-derived markers of blood potassium.

3. Leveraging deep learning makes it possible to estimate the spatial QRS-T
angle with sufficient accuracy from a set of reduced-lead ECGs. Adopting metrics that
guide the model through the 3D space improves the model’s performance, enabling
the estimation of spatial ventricular repolarization markers even when the input ECG
leads provide limited spatial information. This approach offers a promising solution
for ambulatory QRS-T angle monitoring.

4. Symbolic clustering algorithms can enhance the efficiency of annotating and
analyzing heartbeats in long-term ECGs. These algorithms significantly reduce the
computational demands of various machine-learning clustering techniques. In addi-
tion, symbolic clustering allows researchers to explore how heartbeats naturally fall
into different classes and even identify unexpected sub-classes for further study.

Structure of the doctoral dissertation

The doctoral dissertation is organized as follows. Chapter 1 provides a clinical
background in electrolyte physiology and its significance for homeostasis. The Chapter
introduces the physiological role of electrolytes in the body, their primary regulatory
mechanisms, and the etiology and epidemiology of electrolyte imbalance. Chapter 1
contextualizes the short- and long-term health ramifications of electrolyte imbalance.

Chapter 2 is devoted to analyzing the state-of-the-art scientific literature and
available technological solutions for the noninvasive assessment of blood electrolyte
levels. This Chapter also showcases the theoretical framework upon which the cur-
rently available solutions and the ones proposed in this doctoral dissertation are built.

Chapters 3-5 describe the engineered algorithms and methods for facilitating
noninvasive ambulatory monitoring of blood electrolyte levels. Chapter 3 explores the
feasibility of capturing gradual potassium fluctuations by quantifying T-wave morphol-
ogy changes in single-lead ECGs via model-based parameterization. Chapter 4 intro-
duces a deep-learning-based approach to estimating the spatial QRS-T from reduced-
lead ECGs. Chapter 5 presents a symbolic clustering algorithm for faster heartbeat
annotation and analysis in long-term ECGs. Performance evaluation, results, and dis-

19



cussion of each of the three methods are presented in their respective Chapter.

The doctoral dissertation finishes with the general conclusions in Chapter 6.

Parts of Chapters 3—5 have been quoted verbatim from the previously published
articles: [58-61].

The dissertation consists of 194 pages, 48 figures, and eight tables. It presents
221 references.
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1. CLINICAL BACKGROUND IN ELECTROLYTE PHYSIOLOGY AND
HOMEOSTASIS

1.1. Electrolytes and Homeostasis: The Importance for Life and Health

Homeostasis is the term coined to describe the body’s ability to preserve a nearly con-
stant internal environment in response to the changing external conditions, including
in settings of injury or disease [1,2]. All cells, tissues, and organs work systematically
to maintain homeostasis and sustain life. For example, the lungs provide oxygen to
replenish cells, the kidneys eliminate toxic substances, and the gastrointestinal (GI)
system supplies nutrients for energy production. Optimal organ functioning hinges on
many variables that must be kept within pre-defined limits to be compatible with life.
Body temperature, arterial blood pressure, oxygen, fluid and electrolyte levels, and
blood pH are some of the variables essential for the survival of the human biological
system. Robust homeostatic mechanisms tightly regulate these variables to permit the
cells to perform their normal functions and uphold life [2].

Many problems encountered in clinical practice emerge from impaired homeo-
static mechanisms that can no longer maintain biological variables within their optimal
range [1]. When one or more functional systems lose their ability to contribute their
share to homeostasis, all cells in the body become endangered—extreme dysfunction
will lead to death, while moderate dysfunction leads to disease [2]. The state of disease
is hence considered one of disrupted homeostasis.

While any disruption of the homeostatic state adversely impacts health, the body
continues to operate on multiple compensations to support vital functions even in dis-
ease [2]. Albeit restorative of balance, these compensations are only life-sustaining
in the short term. When activated for prolonged periods, such compensatory mecha-
nisms become maladaptive, ultimately damaging multiple organs in an attempt to re-
store homeostasis [26]. Recurrent disruptions of homeostasis not only induce chronic
disease but also exacerbate it, thus limiting the quality—and expectancy—of life [1,2].

One of the many crucial variables for maintaining homeostasis is electrolytes [2].
Abnormal electrolyte levels jeopardize proper cell functioning, including that of the
heart, and endanger life [7]. While physicians acknowledge the timely detection of
electrolyte derangements as pivotal to avert unfavorable outcomes, mild electrolyte
imbalance episodes are often overlooked if they do not pose an imminent threat to pa-
tients. Such mild episodes usually precede the severe ones and can be early manifes-
tations of disrupted homeostasis, thus suggestive of worsening health status. Regular
blood electrolyte monitoring could enable prompt administration of life-saving proce-
dures to restore homeostasis [25].

This Chapter introduces the physiological fundamentals of homeostasis, the im-
portance of electrolytes in the body, and their regulatory mechanisms. The Chapter
analyzes the significance of electrolyte balance in health to contextualize the impor-
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tance of regularly monitoring blood electrolyte levels for short- and long-term health
in those populations most susceptible to electrolyte imbalance.

1.1.1. Composition of the internal environment

About 50% to 70% of the adult human body is fluid, mainly a water solution of ions
(i.e., electrolytes) and other substances [2]. The total body fluid is distributed between
two compartments: almost two-thirds is intracellular (inside the cell), and the remain-
ing is extracellular (outside the cell). Blood plasma comprises most of the body’s
extracellular fluid, constantly moving throughout the body to bathe cells with ions
and nutrients needed for survival. Cells can live and function as long as the extra-
cellular fluid embodies the proper concentration of oxygen, electrolytes, pH, and other
constituents. Organs and tissues, therefore, collaborate to maintain homeostasis in the
extracellular fluid—the body’s internal environment [1,2].

Ionic profiles of the intra- and extracellular fluids

The intra- and extracellular fluids differ in ionic composition [2], as illustrated in
Fig. 1.1. The two fluid compartments are kept separate by cell membranes, which help
maintain the ionic profile of each fluid by regulating ion transport across them. Large
amounts of sodium, calcium, chloride, and bicarbonate ions, plus nutrients, are avail-
able in the extracellular fluid (ECF). In contrast, the intracellular fluid (ICF) is abundant
in potassium, magnesium, phosphate, and large anionic proteins. Optimal cell func-
tion crucially depends on the two fluids having these ionic profile differences [62], as
will be covered in Sec. 2.1.

Constituents of the extracellular fluid in homeostasis

Ions and other ECF constituents are regulated within a pre-defined range of val-
ues., i.e., their homeostatic range, rather than fixed values [2]. For some substances,
this range is markedly minuscule. Table 1.1 lists the optimal range and maximum non-

mEq/L

HCOs

Intracellular Extracellular

Fig. 1.1. Major cations and anions of the intracellular and extracellular fluids. Adapted from [2].
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Table 1.1. Constituents of the extracellular fluid. Adapted from [2].

Constituent Normal value Normal range Nonlethal limits  Unit
Oxygen' (O) 40 25-40 10-1000 mmHg
Carbon dioxide' (CO,) 45 41-51 5-80 mmHg
Sodium 142 135-145 115-175 mmol L!
Potassium 4.2 3.5-54 1.5-9.0 mmol L!
Calcium? 1.2 1.0-1.4 0.5-2.0 mmol L!
Chloride 106 98-108 70-130 mmol L!
Bicarbonate 24 22-29 845 mmol L!
Acid-base' (pH) 7.4 7.3-7.5 6.9-8.0 -
Glucose 90 70-115 20-1500 mgdL

' In the venous blood;
2 Tonized calcium.

lethal limits of some of the ECF constituents. Since the blood plasma contains most
of these substances, the terms ’extracellular’ and "blood” will be used interchangeably
from this point onwards.

Homeostatic control systems and feedback mechanisms

Various homeostatic control systems carefully regulate the composition of the
internal environment [1,2]. Control systems consist of four components: a stimulus,
a sensory receptor, a control center, and an effector. The sensory receptor is a cell,
tissue, or organ that senses a change in a physiological variable, i.e., the stimulus.
Whenever a pertinent change in the stimulus is detected, the receptor conveys a nerve
impulse response to the control center which processes the information and signals the
effector to produce a response that will revert the physiological variable to its optimal
range. Homeostatic mechanisms respond to a perturbation with a looping mechanism
(feedback mechanism), either positive or negative. Positive feedback accelerates the
effect of the stimulus (e.g., labor contractions), whereas negative feedback inhibits the
source of the stimulus or lessens the metabolic process (e.g., thermoregulation). Most
homeostatic control systems rely on negative feedback processes to reverse a change
in a physiological condition [2].

1.1.2. The physiological role of electrolytes in the body

Electrolytes are electrically charged minerals (i.e., ions) dissolved in the blood and
body fluids. Living systems assimilate many electrolytes, such as zinc and iron. How-
ever, some of the most important for cellular processes include sodium, potassium,
calcium, magnesium, and bicarbonate. These electrolytes play a vital role in various

23



physiological processes, such as generating and conducting action potentials in neurons
and muscles, stabilizing enzymatic reactions, or aiding in releasing hormones from
endocrine glands [2, 62]. They also contribute to balancing mechanisms of two other
crucial biological variables—fluid volume and acid-base levels (i.e., blood pH) [2].
Proper nervous system functioning and muscular relaxation and contraction, including
that of the heart, requires these five electrolytes to be within their homeostatic range
(Table 1.1) [7]. The physiological role of these five electrolytes is briefly summarized
below.

Sodium (Na*)

Sodium is the most abundant ECF cation and the main osmotic solute of the body,
meaning that water moves towards the site of higher Na* concentration via osmosis [2].
Na* determines the fluid distribution between the ICF and ECF compartments, carrying
an essential role in the intravascular volume, overall fluid balance, and blood pressure
(BP) regulation. Na* is also paramount for generating and propagating action potentials
in excitable cells. Its homeostatic range is [Na*]=135-145 mmol/L.

Potassium (K*)

Potassium is the most predominant cation inside the cells [7]. Potassium is piv-
otal in establishing the resting membrane potential necessary to spur optimum ac-
tion potentials [63]. Abnormal potassium levels impair cellular excitability, hampering
communication between neurons and contractility of both skeletal and cardiac muscle
fibers [7,42]. Rapid or substantial fluctuations in K* levels can instigate life-threatening
neurological changes and cardiac arrhythmias [7,64]. Thus, blood K* must be regu-
lated precisely between [K*]=3.5-5.5 mmol/L, but preferably within the narrow range
of 4.2+0.3 mmol/L [2].

Calcium (Ca*")

Calcium is the most abundant mineral in the body, making up 1.5-2% of the
total body weight [65]. The bones store 99% of all calcium in the body. Only 0.99%
is present in the blood, and 0.01% inside the cells [2]. Nearly 50% of all calcium
in the blood, i.e., the total blood calcium (Ca), is ionized (Ca**), which is its only
biologically active form. The remaining 40% is bound to plasma proteins (mainly
albumin), and the other 10% to anions (e.g., phosphate). Calcium is essential for bone
strength, neuromuscular function, and many intracellular processes, such as enzymatic
reactions, blood coagulation, and the release of neurotransmitters and hormones from
endocrine glands [2,66]. Ca”* ions stabilize cell membranes in action potentials and
mediate the excitation-contraction coupling mechanism in muscle contraction [2].
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Magnesium (Mg?*)

Magnesium is the fourth most common mineral [64] and is a primarily ICF cation
involved in energy-production metabolism, neurotransmitter release, proper neurologi-
cal function, and muscular contraction and relaxation. Less than 1% of the body’s total
Mg?* is present in the ECF, with bones storing more than half of the body’s magne-
sium. Although Mg** does not directly alter the cellular action potential, it contributes
to excitable membrane stabilization. Mg”* controls the activity of various ion channels
necessary to move Na*, K*, and Ca** ions across cell membranes [7].

Bicarbonate (HCO3)

Bicarbonate is the second most abundant ECF anion. Its principal function is to
regulate blood pH and acid-base balance by acting as a buffer of hydrogen ions (H).
The bicarbonate buffer system is the most critical extracellular buffer [2], which helps
the body to maintain an adequate blood pH by neutralizing metabolic waste products,
such as lactic acid and ketones. HCO3 ions are the byproduct of a chemical reaction
that starts with carbon dioxide (CO,) and water, which makes bicarbonate a significant
component of CO, elimination: CO, + H,O « H,CO; « H" + HCO;.

1.1.3. The kidneys and their functions in homeostasis

The kidneys oversee multiple vital functions for sustaining an optimal internal envi-
ronment: excretion of metabolic waste products, regulation of water and electrolytes,
blood pH balance, management of arterial pressure, activation of vitamin D, and stimu-
lation of red cell production [2]. Aside from CO,, the kidneys remove most substances
in the blood that cells do not need [2], making them the body’s primary effector for
maintaining the extracellular constituents within their homeostatic range.

Renal dysfunction, whether caused by kidney disease or other factors, results in
substantial derangements of homeostasis [25]. If enough fluids, electrolytes, and other
substances accumulate in the body, death occurs within a few days unless clinical inter-
ventions are initiated to restore, at least partially, water, and electrolyte balances [2].
Such is the case with complete renal failure, in which patients require hemodialysis
every two-to-three days to survive.

Functional anatomy of the kidneys

The kidneys are a pair of bean-shaped organs lying on the abdomen’s posterior
wall. Together with the ureters, bladder, and urethra, the kidneys comprise the urinary
system (Fig. 1.2a).

Each kidney contains two main structures: the outer cortex and the inner medulla
(Fig. 1.2b). Spanning across the cortex and medulla are the nephrons, the functional
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Fig. 1.2. The components of (a) the urinary system, the (b) general organization of the kidney, and (c)
basic tubular segments of the nephron (not drawn to scale). The proximal and distal tubules, the loop of
Henle, and the collecting duct are the four components of the renal tubule. Adapted from [2].

units of the kidneys that cleanse the blood and produce urine [67]. Along with urine
formation, the nephrons control BP regulation, red blood cell production, and calcium
absorption [67]. Up to one million nephrons exist in each kidney, but this number
gradually decreases with renal injury, disease, or aging, as kidneys cannot regenerate
new ones [2].

Each nephron contains a cluster of filtering capillaries known as the glomerulus
surrounded by the Bowman’s capsule and a pipe-like structure called renal tubule. The
renal tubule comprises four components: the proximal tubule, the loop of Henle, the
distal tubule, and the collecting ducts (Fig. 1.2c). The loop of Henle is a U-shaped
component lying in the medulla composed of three segments: the descending limb and
the thin and thick ascending limbs [2].

Urine formation

There are three main steps of urine formation: glomerular filtration, reabsorp-
tion, and secretion [67]. Upon the arrival of blood at the glomerulus, large amounts of
fluid and most non-proteic substances are filtered as blood moves into the Bowman’s
capsule (filtration), resulting in what is known as the filtrate. The filtrate enters the
proximal tubule, which reabsorbs most ions, water, and nutrients (reabsorption) but
not metabolic waste products [2]. The concentration of dissolved ions in the filtrate
(i.e., the osmolality) varies as it passes through each renal tubule component, as wa-
ter and electrolytes continue to be reabsorbed. Excess ions and other substances are
secreted in the distal and collecting tubules. Hormones modulate the rates of reabsorp-
tion and secretion of ions and water according to the body’s needs [68], thus affecting
the volume and composition of the filtrate. Finally, the yielded fluid at the end of the
collecting duct is ready to be excreted as urine, moving into the ureter onto the bladder.
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1.2. Electrolyte Metabolism: Homeostatic Regulation of Electrolyte Balance

Homeostatic regulation of electrolytes and fluids falls primarily (but not exclusively)
under the responsibility of one of the most pivotal organs for preserving homeostasis—
the kidneys [1,2,67]. The kidneys have the task of adjusting the excretion rate of elec-
trolytes and water to match the intake of these substances precisely so that a relatively
constant fluid volume and stable blood electrolyte composition can be maintained [2].

Almost all electrolytes come from food and fluids, which means that a person’s
eating and drinking habits govern the overall daily intake of water and electrolytes.
However, depending on the diet, level of activity, or climatic conditions, the amount
of electrolytes a person consumes per day typically surpasses their daily needs. If the
intake of a substance exceeds its excretion, its bodily amount increases; likewise, if
excretion is higher than its intake, its bodily amount decreases. Hence, it is up to
the homeostatic control systems to balance the daily consumption and excretion of
electrolytes, as well as compensate for excessive losses whenever possible [2].

While the kidneys and the urinary system are the most preeminent blood elec-
trolyte regulator, the renal excretion rate is usually not fast enough to correct any elec-
trolyte or fluid derangements in case of abrupt fluctuations. Other mechanisms operate
as the first line of defense against such rapid fluctuations, thus preserving homeosta-
sis in the short term until the kidneys can restore balance. This Section outlines the
regulatory mechanisms of electrolyte balance.

1.2.1. Endocrine control of electrolyte metabolism

Hormones modulate the renal function and the water and electrolytes absorption rate.
They stimulate or inhibit the renal blood flow to control the glomerular filtration rate
(GFR) so that adequate fluids and electrolyte levels are maintained in the filtered
blood [68].

Hormonal modulation of tubular reabsorption/secretion is electrolyte specific,
which means that each electrolyte is reabsorbed/secreted at a specific anatomic site [2].
Such specificity allows the kidneys to excrete different electrolytes at variable rates,
often independently of one another. In settings where only one individual electrolyte
is outside its homeostatic range, this mechanism permits the correction of excessive
levels of that electrolyte without compromising the balance of the others.

The primary hormones in electrolyte balance regulation are the ones of the renin-
angiotensin-aldosterone system (RAAS), the antidiuretic hormone (ADH), natriuretic
peptides, the parathyroid hormone (PTH), and, albeit to a lesser extent, vitamin D,
calcitonin, insulin, and sympathetic adrenergic activity [68].
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Renin-angiotensin-aldosterone system (RAAS)

The RAAS is a hormonal system critical for regulating blood volume and sys-
temic vascular resistance. It consists of three main hormones—renin, angiotensin II,
and aldosterone—that impact the cardiovascular, neural, and renal functions. The
RAAS involves the kidneys, lungs, systemic vasculature, and the brain, and its pri-
mary function is to regulate BP by modulating blood volume, Na*™ and water (H,O)
reabsorption, K* secretion, and vascular tone [69]. The body activates the RAAS in
response to: BP drops (] ), arise (T) in blood [K*], or low () blood [Na*] [2,68].

Renin.  Renin secretion is the first stage of RAAS activation. The kidneys release
renin in response to one of three factors: (i) decreased BP (that can be linked to a drop
in blood volume), (ii) increased renal Na* excretion, or (iii) sympathetic adrenergic
stimulation [2].

Angiotensin.  Angiotensin-conversion is the second stage. Once renin has been re-
leased into the blood, it initiates a biochemical chain of events that converts its target,
angiotensinogen, into angiotensin I. Angiotensinogen is produced in the liver but is
constantly circulating in the plasma. Angiotensin I is then transformed into angiotensin
II by the angiotensin-converting enzyme (ACE), which is found primarily on the sur-
face of the pulmonary and renal endothelium. Angiotensin II exerts various actions
throughout the body. It induces vasoconstriction of the arterioles, elicits renal Na* re-
absorption in the proximal tubules, and stimulates the release of noradrenaline, ADH,
and aldosterone [2, 68, 69]. Increased blood Na* levels promote water retention, sub-
sequently leading to a rise in ECF volume and, therefore, BP restoration. Angiotensin
II also acts in the hypothalamus to evoke the sensation of thirst, so more fluids are
consumed to raise the circulating fluid volume (and, in turn, BP). In instances of blood
loss or dehydration, angiotensin II also restores BP by reducing GFR and renal blood
flow, thereby limiting further fluid loss and blood volume decrease [2, 68, 69].

Aldosterone.  The last stage of RAAS activation is aldosterone secretion stimulated
by angiotensin II. Aldosterone exercises its function in the Na*-K*-ATPase pumps of
the cells in the collecting ducts of the nephron. It prompts Na* reabsorption in exchange
for K ions. However, the effects of aldosterone on potassium and sodium balances,
i.e., Na* reabsorption in unison with K* loss, do not always go hand in hand. Whether
aldosterone results in Na* retention without losing potassium, or K* loss without re-
taining sodium depends on a biochemical process called phosphorylation. Angiotensin
1T influences phosphorylation and inhibits K* secretion: if present, aldosterone triggers
Na' retention without K* loss; if absent, aldosterone increases K* excretion without al-
tering sodium and fluid balance. This mechanism allows the body to increase the blood
Na* levels in states of blood volume depletion without significantly altering K* levels
and to excrete excess K" without affecting sodium or blood volume balance. Since
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aldosterone is a steroid hormone, its effects may take hours to days to begin, while the
effects of angiotensin II are rapid [69].

Antidiurectic hormone (ADH)

The ADH, or vasopressin, is the primary regulator of tonicity, i.e., the capability
of an extracellular solution to enable water to migrate into or out of a cell via osmosis.
The body releases ADH when a change in blood osmolality is detected, caused either
by increased Na* levels, or by volume depletion. ADH controls renal H,O secretion
and is particularly important during states of water deprivation and fluid loss. It essen-
tially enables the kidneys to form a small volume of concentrated urine while excreting
normal amounts of Na* [2,68]. ADH promotes H,O reabsorption in the distal and col-
lecting tubules, thus minimizing further decreases in fluid volume and arterial pressure
that would otherwise occur during a state of volume depletion [2, 68].

Natriuretic peptides

Natriuretic peptides are hormones secreted by heart cells when changes in blood
pressure occur [2]. Atrial natriuretic peptide (ANP) and B-type natriuretic peptide
(BNP) are two examples of this family of hormones that inhibit aldosterone and ADH
release by stimulating the kidneys to excrete sodium (natriuresis) and water (diure-
sis) [2,68]. A slight change in blood volume causes a marked change in the cardiac
output, which induces BP changes that, in turn, cause substantial changes in urine out-
put [26]. Raised blood volume elicits the release of ANP and BNP from the heart.
These hormones promote natriuresis to reduce the circulating blood volume by reduc-
ing aldosterone secretion, thereby decreasing Na* reabsorption. ANP and BNP also in-
crease GFR by dilating glomerular arterioles, meaning that more blood moves through
the nephrons [2].

Parathyroid hormone (PTH)

The PTH is the preeminent hormone in the metabolism of calcium and phosphate
(PO3™). PTH is secreted in response to low blood calcium levels and exerts its action in
the bones, kidneys, and small intestines. Among its targets are the proximal tubules and
the ascending loop of Henle, where PTH elicits Ca®* reabsorption while reducing PO3~
reabsorption [2]. Eliminating PO3~ from the blood is necessary to increase the levels
of circulating Ca** since PO}~ binds to Ca®* to form calcium phosphate, a mineral that
is not biologically active. Thus, the reduction of PO3~ levels results in more Ca** ions
available in the blood. Other PTH-mediated mechanisms that lead to an increase of
blood Ca** levels include bone remodeling and vitamin D activation. Bone remodeling
releases Ca’* as a byproduct, while vitamin D stimulates calcium absorption in the
small intestine [2].
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Insulin

Although its effects on electrolyte metabolism are not as critical as that of other
hormones, insulin still has a meaningful impact on electrolyte regulation. Insulin in-
fluences the renal handling of Na*, K*, Ca**, and PO}~ [70] and modulates the cellular
distribution of K* [2,71]. Its main role is to prevent electrolyte imbalance, namely K*
surplus and Na* and volume loss, immediately after meals until the kidneys can restore
balance.

1.2.2. Sympathetic control of electrolyte metabolism

Since the kidneys have extensive sympathetic innervation, the sympathetic ner-
vous system (SNS) modulates multiple renal functions, such as renal blood flow, GFR,
urinary sodium and water excretion, and hormonal production and secretion [72]. Re-
nal sympathetic nerve activity (RSNA) plays a crucial role in BP regulation and is ac-
tivated in response to hypotension or volume depletion. Heightened RSNA promotes
Na* reabsorption in the proximal tubule to increase fluid retention and, thereby, in-
travascular volume and BP [2].

The physiological association between SNS activation and the kidneys explains
why many medications, such as g-blockers, f,-agonists, and a,-agonists which are
used to treat hypertension, asthma, and CVD, can induce renal dysfunction—and thus
a heightened susceptibility to electrolyte imbalance—in the patients taking them. Sym-
pathetic innervation of the renal vasculature is predominantly adrenergic with « and
B adrenoceptors [72]. Thus, norepinephrine and other adrenergic agonists stimulate
RSNA. These neurohumoral substances induce renin release and vasoconstriction of
the renal vasculature, reducing renal blood flow and increasing Na* retention. The in-
terrelationship between RSNA and BP substantially impacts the cardiovascular func-
tion and vice versa, hence why kidney and heart diseases often co-exist. The cardio-
vascular and renal systems work in tandem to maintain homeostasis, displaying an
intricate cardio interrelationship in which the dysfunction in one of the organs leads to
the dysfunction of the other.

1.2.3. Renal and extrarenal regulatory mechanisms

As mentioned above, the responsibility to regulate electrolyte levels and fluid volume
is placed primarily on the kidneys [2]. They eliminate most daily excess of H,O, Na*,
K*, and Mg**, while urine usually contains only traces of Ca®* and PO3~. While re-
nal excretion of Ca** and PO3~ is still relevant for maintaining their homeostatic blood
range, the renal hormones control the GI absorption of these two electrolytes, meaning
that most excessive Ca®* and PO3~ intake is eliminated through the feces [73]. In con-
trast, most daily consumed H,O, Na*, K*, are absorbed and thus must be excreted in the
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Fig. 1.3. Renal electrolyte secretion and reabsorption in their specific anatomic site and respective hor-
monal control. Adapted from: [74].

urine. The renal end extrarenal mechanisms of electrolyte metabolism are summarized
below.

Sodium and fluid balance

The regulation of sodium and fluid volume are intertwined, and the mechanisms
of one cannot be conveyed without the other. Because cell membranes are porous
to H,O but impermeable to most solutes, water swiftly diffuses between the ICF and
ECF compartments whenever there is a difference in [Na*] on either side of the mem-
brane [2]. Thus, any change in blood [Na*] will be equated with H,O (and ergo blood)
volume changes.

About 80% of Na® and water consumed daily is absorbed in the GI tract and is
mostly excreted by the kidneys. The daily excreted amount is adjusted by the glomeru-
lar filtration and tubular reabsorption rates, each modulated by various feedback mech-
anisms. Sodium reabsorption varies in different sections of the nephron: 65% is reab-
sorbed in the proximal tubule, 20% in the loop of Henle, 10% in the distal tube, and
4% in the collecting duct [2]. Other Na* and water excretion sources include feces and
sweat, albeit in significantly lower amounts than that contained in the urine.

Changes in Na* or H,O alter the plasma osmolarity and blood volume, resulting
in BP variations. The body responds to such changes by activating one of the three
homeostatic control mechanisms: the RAAS (| BP), the ADH (Tosmolarity), or na-
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Table 1.2. Factors inducing transcellular K* shifts. Adapted from [2,74].

Shifts K* into cells ({ blood [K*]) Shifts K* out of cells (Tblood [K*])

Insulin Insulin deficiency (High blood sugar)

Alkalosis Acidosis

B-adrenergic agonist B-blocker

Hypoosmolarity Hyperosmolarity

Aldosterone Aldosterone deficiency (Addison disease)
Cell lysis (e.g., crush injury, rhabdomyolysis)
Digitalis

Strenuous exercise

triuretic peptides (Tatrial pressure) [74]. These mechanisms are detailed in Sec. 1.2.1
and illustrated in Fig. 1.3.

Potassium balance

Nearly 90% of the ingested K* is absorbed in the GI tract [71]. About 90-95%
of excess K* is excreted in the urine, whereas the rest is eliminated through the feces
and sweat [2]. Most of the filtered K* in the kidneys is reabsorbed in the proximal
tubule (65%) and the loop of Henle (25-30%) [2]. When blood [K*] increases, the
body secretes aldosterone, which prompts the cells in the distal and collecting tubules
to secrete K™ (Fig. 1.3), resulting in an increased K" excretion [71,74]. As explained
in Sec 1.2.1, aldosterone-mediated renal K* secretion occurs without affecting sodium
and fluid balance and vice versa [69]. Unlike other electrolytes, the kidneys always
excrete a minimum daily amount of K* (~580 mg) and are thus unable to reduce its
excretion to virtually zero in settings of potassium-deficient diets [71].

Another important mechanism of potassium balance is its internal distribution
between the ICF and ECF. Since the ICF contains more than 98% of the body’s potas-
sium, cells can serve as an overflow site for excess K* or as a source of K* in the event
of depletion [2]. Without this distribution, blood [K*] would rise to dangerous levels
after any potassium-containing meal. Thus, transcellular K* shifts are the first line of
defense against rapid blood K* fluctuations. Table 1.2 summarizes the factors that can
induce transcellular K* shifts.

Calcium balance

In contrast to Na* and K*, not all calcium ingested daily is absorbed in the small
intestine. GI absorption of Ca** is subject to endocrine regulation by vitamin D, and
most excess Ca* is excreted in the feces and not by the kidneys [66]. Urine contains
only trace amounts of Ca?* as kidneys reabsorb 99% of the filtered Ca** [2]. The kid-
neys, therefore, play a more vital role in calcium retention rather than excretion. Renal
Ca’* reabsorption is controlled by hormones, fluid volume, and other electrolytes (Ta-
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Table 1.3. Factors that alter renal calcium excretion. Adapted from [2].

Decreases Ca?* excretion Increases Ca?* excretion
TPTH JPTH
LFluid volume T Fluid volume
lBlood pressure TBlood pressure
TBlood PO3- levels JBlood PO;3- level
Metabolic alkalosis Metabolic acidosis

1,25-Vitamin D5 (calcitriol)

ble 1.3). In the proximal tubule, Ca>* reabsorption is passive, paralleling that of Na* and
H,O. Thus, urinary Ca®* excretion is inadvertently increased when the body decreases
renal Na* and H,O reabsorption in response to increased fluid volume and BP [2].

Bone remodeling is the primary regulatory mechanism of calcium balance [66],
and is the first line of defense against abnormal Ca®* levels. This mechanism balances
blood [Ca?*] through a dynamic exchange of Ca®* ions between the blood and the bones.
When [Ca®*] drops, the body elicits bone resorption, which releases Ca>* into the blood-
stream. Conversely, when blood [Ca?*] rises, the body prompts bone formation, thus
depositing Ca** into the bones. Nevertheless, the bones do not have an endless supply
of Ca®*, and the kidneys and GI tract must adjust Ca** absorption/excretion accord-
ingly [2].

Calcium metabolism is modulated mainly by PTH, vitamin D (calcitriol), and
calcitonin [2, 66]. PTH is secreted in response to low blood [Ca®*], and mediates
bone remodeling, vitamin D activation, and renal Ca>* reabsorption. In the kidneys,
PTH elicits Ca®* reabsorption in the distal and PO}~ excretion in the proximal tubules
(Fig. 1.3) to raise the levels of circulating Ca”* (Sec. 1.2.1). Calcitonin inhibts PTH
secretion, thus producing the opposite effect, i.e., reduced blood [Ca®*].

Magnesium balance

About 30-40% of dietary Mg?* intake is absorbed by the GI tract. This number
rises to 65% at a low intake and drops to 11% at a high Mg>* intake, but the factors
controlling Mg** absorption are not yet clear. PTH is believed to play a role, but other
dietary factors such as proteins, K*, and zinc also affect Mg?** absorption [75].

While the physiological mechanisms of magnesium regulation are not well un-
derstood, excretion of excess Mg>* falls under the responsibility of the kidneys. Unlike
K*, renal Mg>* excretion decreases to virtually zero in settings of magnesium deple-
tion [2]. The loop of Henle is the primary site of Mg2+ reabsorption (65%), followed
by the proximal tubule (25%) [75]. No single hormone seems to be explicitly related
to magnesium metabolism, but PTH, calcitonin, acid-base levels, blood volume status,
ADH, insulin, high blood Ca®* and low PO3~ levels are known factors which influence
renal Mg>* reabsorption [2,75]. PTH is the most significant of these, and it stimulates
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Mg2+ reabsorption in the distal tubule [75].

Bicarbonate and acid-base balance

In contrast to other electrolytes, HCOj3 is conserved rather than reabsorbed in the
kidneys since tubular cells are not permeable to HCO3 [2]. Essentially, the kidneys
reabsorb Na™ in exchange for H" ions to generate HCO3. However, it is possible that
certain molecules in the filtrate, such as phosphates and ammonia, will capture H,
which will result in fewer available H" ions to generate HCO3. In such cases, HCO3;
is not conserved, which can lead to pH imbalance and metabolic acidosis. If more
blood K is present than normal, K¥, rather than H*, will be exchanged, subsequently
excreting higher concentrations of K*. When this occurs, fewer H" ions will also be
available, and less HCO5 will be conserved. Conversely, if there is less K*, more H*
ions enter the filtrate to be exchanged with Na*, and more HCO5 is conserved.

While the kidneys primarily regulate bicarbonate levels, the respiratory system
also plays arole. When CO, levels in the blood increase, the body responds by increas-
ing the rate and depth of breathing. This causes more CO, to be exhaled, which helps to
restore the balance of blood [HCO5]. Similarly, when [CO,] decreases, the body slows
down breathing to retain more CO,, which can then be converted into HCO3 [2,74].

1.3. Electrolyte Imbalance—a Byproduct of Disrupted Homeostasis

Electrolyte imbalance, or dyselectrolytemia, occurs when the concentration of an elec-
trolyte in the blood falls outside its homeostatic range. More often than not, electrolyte
(and fluid) imbalances arise due to disrupted homeostatic mechanisms [5] rather than
environmental causes (e.g., excessive sweat in a tropical climate) [1,2,76]. The dis-
ruption of a homeostatic mechanism is usually of pathological genesis, caused either
by direct damage/failure of an effector organ, as in kidney disease [77], or by dysreg-
ulation of their hormonal control centers, such as overactivation of the RAAS in heart
failure (HF) [26] or undersecretion of aldosterone in Addison’s disease. Electrolyte
imbalance instigated by an inadequate diet or environmental factors, while possible,
rarely occurs in clinical practice without any associated comorbidity unless in extreme
settings. Such is the case of prolonged starvation, rapid loss (or intake) of water or
electrolytes within a short time, or continuous small losses without replenishment (e.g.,
strenuous exercise devoid of rehydration). Despite representing a medical emergency,
dyselectrolytemia caused by such extreme settings can generally be corrected without
long-term health consequences, provided that patients display normal renal, cardio-
vascular, and endocrine function. Thus, electrolyte imbalance becomes particularly
relevant—and clinically challenging to manage—in patients with chronic diseases.
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ETIOLOGY OF DYSELECTROLYTEMIA

Transcellular shifts Dysregulated excretion Inadequate intake
ICF ions (K+) shift between . ) Malnutrition, excess or deficit, due to:
the ICF and ECF in large Site of dysfunction * Gldisorders (e.g., Chron's disease)

amounts (e.g., crush injuries,

e « Starvation (e.g., Anorexia)
severe burns, or dysfunction in

insulin and 2 stimulation) v v * Poordiet
Renal Extrarenal
l Loss of fluids (and electrolytes)
l l from prolonged vomiting,
. L diarrhea, sweating/fever
Disease Medications 2
l—‘—l Impact ion and fluid reabsorption:
; . * Diuretics
Acquired Hereditary

« Corticosteroids and steroids
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Birsetie affect cell ion transport, « Chemotherapy drugs

and thus reabsorption
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Inappropriate Kidney (e.g., Gitelman and s OCKers or agomisis
tier s * Psychiatric drugs
hormonal Organ failure Bartter syndromes)
secretion affects (e.g., CKD,
reabsorption (e.g., AKI)

Addison’s disease)

Fig. 1.4. Graphical overview of the three etiologies of electrolyte imbalance.

1.3.1. Etiology

Whenever one of the mechanisms mentioned in Sec. 1.2 malfunctions, electrolyte regu-
lation is compromised, and dyselectrolytemia can develop. Dyselectrolytemia emerges
primarily from two-to-three etiologies (Fig. 1.4): inadequate intake, dysregulated ex-
cretion, and transcellular shifts in the case of ICF ions (K* and Mg?*). Excessive elec-
trolyte intake, insufficient excretion, or the release of large quantities of an intracellular
ion into the blood raises electrolyte levels above their ideal range. Conversely, a defi-
cient intake, excessive excretion, or an increased cellular uptake can result in low blood
electrolyte disorders. Each of the three etiologies is summarized below.

Dysregulated excretion

Dysregulated excretion is the root of most dyselectrolytemias. It is primarily due
to renal dysfunction and can lead to excessive, insufficient, or even nonexistent elimina-
tion of fluids and electrolytes, depending on the degree of renal failure. Etiologically,
renal dysfunction is the byproduct of diseases (acquired or hereditary) or medications.
In hereditary diseases, genetic mutations affect ion transport in specific components of
the renal tubule, impairing adequate electrolyte reabsorption in the kidneys. Acquired
diseases, on the other hand, encompass all those caused by the malfunction of an ef-
fector organ or the endocrine system that controls it [68]. The most obvious example is
kidney disease, in which the degeneration of the renal tissue compromises electrolyte
and fluid excretion [77].

Inappropriate hormonal secretion or usage of certain medications, such as loop
and thiazide diuretics, also dysregulate renal function even if the kidney tissue is unin-
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jured and capable of normal excretion [2, 14, 68]. Low secretion of any hormone that
stimulates excretion (e.g., aldosterone) results in electrolyte retention. Conversely,
hormonal oversecretion (e.g., ADH) prompts increased renal excretion or inadequate
reabsorption, thus dropping electrolyte levels below their optimal range. Endocrine
diseases, such as Addison’s disease or Cushing’s syndrome, are examples of acquired
diseases that result in dysregulated electrolyte metabolism.

Low electrolyte levels are also a common side effect of diuretics and other med-
ications [5]. The usage of diuretics in settings of healthy kidney function works simi-
larly to hormonal oversecretion, causing the kidneys to eliminate fluid and electrolytes
excessively.

Extrarenal losses are other sources of electrolyte excretion, such as through the
skin (e.g., burns or sweat) or GI tract (e.g., chronic vomiting).

Inadequate intake

Inadequate dietary habits or impaired GI absorption (i.e., malabsorption) usually
cause electrolyte deficiencies rather than high blood electrolyte levels. Albeit possi-
ble, overconsumption of an electrolyte rarely leads to imbalance if renal function is
adequate. The kidneys can cope with copious amounts of electrolytes, provided that
only an excessive—but not unreasonably high—amount is ingested at once [2]. Thus,
excessive intake is mainly concerning in CKD. Insufficient dietary consumption can
induce electrolyte deficiencies, but only after prolonged periods of malnourishment,
as seen in anorexia nervosa [78], continuous poor diets, and alcoholism. However,
malabsorption hinders the body’s ability to obtain its daily electrolyte needs and can
lead to low levels regardless of the diet [2].

Transcellular shifts

Derangements in the internal distribution of ICF ions such as K* can lead to dys-
electrolytemia [71]. A release of large amounts of electrolytes from cells into the blood
can raise their levels above the normal range. By contrast, an increased cellular uptake
lowers blood electrolyte levels. Transcellular shifts arise from cell lysis provoked by
trauma or crush injuries or altered ion-transport activity in cell membranes [2], me-
diated by pathological dysregulations of hormones (e.g., insulin) or other electrolytes
(Table 1.2).

Acid-base imbalance

Another frequent cause of dysregulated electrolyte excretion is an acid-base im-
balance [79], often caused by metabolic disorders that alter blood [HCO3]. Acid-base
imbalance regularly co-occurs with dyselectrolytemia. Although the mechanisms are
not entirely understood, abnormal [HCO3] hampers the activity of the Na*/K*-ATPase
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Table 1.4. Reference values of blood electrolyte concentration for each classification of each
dyselectrolytemia.

lassificati 1
Dyselectrolytemia Classification (mmol/L)

Mild Moderate Severe

Potassium (K*): 3.6—5.4 mmol/L!

Hypokalemia 3.5-3.0 29-25 <25

Hyperkalemia 5.5-59 6.0-6.9 27.0

Calcium (Ca™): 1.15-1.31 mmol/L?

Hypocalcemia 1.14-1.00 0.99-0.8 <0.8

Hypercalcemia 1.32-1.50 1.51-1.75 > 1.75
Magnesium (Mg*):  0.71-0.94 mmol/L3

Hypomagnesemia 0.70-0.66 0.65-0.50 <0.50
Hypermagnesemia 0.95-2.0 2.1-50 >5.0
Sodium (Na): 137 -145 mmol/L

Hyponatremia 136-130 129-125 <125
Hypernatremia 146154 155-165 > 165
Bicarbonate (HCO;): 22-26 mmol/L

Metabolic acidosis 22-18 <18

Metabolic alkalosis > 26

! Reference value according to the European Society of Cardiology. The American Heart Association considers the
normal range of [K*] to be 3.5-5.0 mmol/L.

2 Jonized calcium. The values of total corrected calcium (Ca) differ.

3 Some clinicians are advocating for the reference range of Mg”* to be 0.75-0.85 mmol/L.

pump, perturbing the normal cellular uptake of K* and renal secretion of K*, Na*, and
water in the renal tubules [2].

1.3.2. Classification, symptoms, and treatment

Electrolyte disorders are named based on which ion is out of balance. Each disorder is
called: hypo/hyper +ion chemical name + emia, and can be classified as mild, moder-
ate, or severe. Emia means 'blood’, and the prefixes hypo or hyper define whether the
electrolyte level in the blood is foo low or too high. The exception to this nomencla-
ture is acid-base disorders, i.e., bicarbonate imbalance: low blood [HCO3] is known
as metabolic acidosis, whereas high blood [HCO3] is metabolic alkalosis. Table 1.4
outlines the classification of each dyselectrolytemia.

Symptomatology

The symptomatology of dyselectrolytemia is broad and usually nonspecific, vary-
ing from symptomless to general fatigue and malaise to neuromuscular paralysis and
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Table 1.5. Symptoms of moderate-to-severe dyselectrolytemia.

Symptoms
Dyselectrolytemia ymp
Neuromuscular and neurologic Cardiovascular Digestive Others
Sodium
Hyponatremia S'elzures, lethargy, confu- Possible heart failure Nausea Headache
sion, stupor, coma
Hypernatremia Confusion, stupor, coma Nausea Thirst
Potassium
Muscle weakness, ascend-  Palpitations, abnormal re- . . .
. . . o Paralytic Worsening diabetes
Hypokalemia ing paralysis, lethargy, polarization (flat T-waves), . -
L . ) ileus control, polyuria
delirium, depression arrhythmias
. Palpitations, abnormal re-
. Frank muscle paralysis, o Nausea,
Hyperkalemia aracsthesia. lethar polarization (peaked vomitin Dyspnea
p R 8y T-waves), arrhythmias g
Calcium
Tetany, dysphagia, circu-
moral numbness, seizures, ~ Systole prolongation, hy- Nausea, .
. . it Wheezing, dermatolog-
Hypocalcemia lethargy, syncope, depres-  potension, angina, heart heartburn, A .
. L . R . L ical issues (dry skin)
sion, cognitive impair- failure constipation
ment, personality changes
Nr seq
Muscle weakness, lethar- Shortened systole, |auto- dus-e.d, .
. . . . . vomiting, Renal stones, Turinary
Hypercalcemia gy, confusion, hallucina-  maticity, hypertension, ar- . .
; . . pancreatitis, ~ frequency, bone pain
tions, anxiety rhythmias
ulcers
Magnesium
Tetan}f, weakness, hYp,er' Elevated vascular tone, Nau§§a, .
. reflexia, muscle spasticity, . . o . vomiting, Hypokalemia, hypocal-
Hypomagnesemia . . impaired contractility, is- .
apathy, depression, delir- . ; decreased cemia
. . chemia, Torsade de Pointes .
ium, personality changes appetite
Weakness, facial paraly- . . . Impaired breathing and
. . Hypotension, bradycardia, Paralytic apnea, bladder paraly-
Hypermagnesemia sis, | deep tendon reflexes, h . o . .
atriovenctricular block ileus sis, cutenous flushing,

lethargy, confusion hypocalcemia

dangerous arrhythmias (Table 1.5). The symptoms of sodium imbalance are mainly
neurological, resulting in some form of brain dysfunction. In many situations, hypo-
and hypernatremia induce altered states of consciousness, such as stupor and coma.
Potassium and calcium imbalances impair cardiac and muscular contractility, leading
to muscle weakness and paralysis, including that of the smooth muscle in the lungs,
stomach, and intestines. Abnormal [Ca®*] induces tetany and circumoral paresthesia,
whereas [K*] mostly affects the cardiac function, engendering arrhythmias. Magne-
sium imbalance primarily affects deep tendon reflexes, muscular tone and spasticity,
and ion transport between cell membranes, frequently causing blood [K*] and [Ca**]
abnormalities. In addition to Na*, Ca?* and Mg?* imbalances can precipitate hemody-
namic and BP disturbances.

Many symptoms of each dyselectrolytemia overlap with the ones of other con-
ditions, hampering the ability to recognize electrolyte derangements at an early stage.
Patients with mild—and even moderate—dyselectrolytemia are often asymptomatic
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unless they are critically ill, or blood electrolyte levels are severely deranged or changed
too rapidly (sudden onset), leading to an acute dyselectrolytemia episode. The clinical
manifestations of electrolyte imbalance depend on four factors:

1. Severity level, i.e., the degree of deviation from the homeostatic range. Ex-
treme deviations in either direction always represent a medical emergency, with pa-
tients manifesting evident signs of sickness.

2. The pace of imbalance onset. Sudden onset or acute dyselectrolytemia
episodes are more likely to manifest prominent clinical signs (even at mild levels) than
those that develop gradually or are chronic.

3. The presence of concomitant electrolyte or acid-base imbalance. Patients
with more than one electrolyte derangement tend to display more evident symptoms
than those with isolated imbalances, regardless of severity. The exception is when the
concomitant imbalance is of two antagonists electrolytes, where one countervails the
adverse physiological effects of the other, e.g., K* and Ca**. Even at the same [K']
and [Ca®*] levels, patients with hyperkalemia and hypercalcemia are less predisposed
to show signs of dyselectrolytemia than those with isolated [K*] and [Ca**] abnormal-
ities.

4. The health status and pre-existent cardiovascular disease. Critically ill pa-
tients or those with cardiac structural, hemodynamic, or conduction disturbances are
more susceptible to the physiological consequences of electrolyte imbalance and, thereby,
more likely to manifest symptoms even at mild levels.

Treatment of dyselectrolytemia

Alongside the severity level, the patient’s health status and their cardiovascular
and renal capacity dictate the best treatment for dyselectrolytemia. Moderate to severe
dyselectrolytemia requires treatment in a healthcare facility, while mild abnormalities
can be corrected at home. However, dyselectrolytemia must always be treated under
the supervision of healthcare professionals for patients with renal or cardiovascular
disease, independently of its severity level.

Replacement of electrolytes is necessary to rectify low electrolyte levels and min-
imize further losses. Oral supplementation over a few days to weeks usually corrects
mild hypoelectrolytemia, but moderate to severe imbalance entails the administration
of intravenous electrolyte solutions. Hyperelectrolytemia warrants rectification by ex-
cretion and cessation of any exogenous electrolyte sources (diet or medication). Pro-
moting excretion via diuresis is the preferable treatment for mild and moderate im-
balance in patients with adequate renal function. Dialysis is the necessary course of
action for those with renal disease or with severe imbalance.
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1.3.3. Comorbidities and risk factors

Patients most susceptible to dyselectrolytemia are those that display renal dysfunc-
tion [5]. Without adequate functioning of the body’s primary fluid and electrolyte
regulator, homeostasis inevitably becomes compromised, and the likelihood of devel-
oping dyselectrolytemia increases. Renal dysfunction naturally stems from kidney de-
generation or failure, as seen in chronic kidney disease (CKD) or acute kidney injury,
with end-stage renal disease (ESRD) patients having an exacerbated risk of dyselec-
trolytemia [77]. Higher degrees of renal failure represent a higher risk of electrolyte
imbalance.

However, other factors that dysregulate the homeostatic extrinsic control systems
of the kidney function can also engender renal dysfunction. For instance, endocrine
dysregulation of the hormones listed in Sec. 1.2.1, such as aldosterone, alters elec-
trolyte reabsorption at the tubules, which results in renal dysfunction even if the kidney
tissue itself is healthy. Thus, patients with endocrine disorders in the secretion sites of
such hormones are also at risk of dyselectrolytemia [68].

Since the heart and the kidneys work in tandem to regulate BP, cardiovascu-
lar disease (CVD), namely, hypertension and HF, is another substantial risk factor for
dyselectrolytemia [5, 14,26, 76]. If the kidney function is not yet fully compromised,
electrolyte derangements in CVD arise primarily due to therapeutical drugs that in-
stigate renal dysfunction similar to endocrine dysregulation. Antihypertensive drugs
(ACE inhibitors, diuretics) and B-adrenergic blockers to treat angina and arrhythmias
predispose patients to electrolyte imbalance. Other medications that affect electrolyte
homeostasis are g-agonists prescribed for rheumatological or pulmonary diseases (e.g.,
asthma), antibiotics, corticosteroids, chemotherapy, and psychiatric drugs.

Alongside kidney and heart diseases, liver disease (e.g., cirrhosis) and alco-
holism, metabolic disorders (e.g., diabetes) [80], and malignancy (i.e., cancer) [81] are
long-term conditions with a high risk of abnormal electrolyte levels. Comparatively to
CKD, the incidence of dyselectrolytemia usually increases with the clinical progres-
sion of such diseases, mainly because of maladaptive homeostatic compensations that
deteriorate kidney function.

Other risk factors are age, severe burns, prolonged fever, eating disorders, mal-
nutrition (including intoxication) [78], and excessive diarrhea or vomiting. Critically
ill patients, such as those with sepsis, grave infections, severe trauma, or any condition
requiring treatment in the intensive care unit (ICU), frequently display several elec-
trolyte and fluid disorders [76].
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1.3.4. Epidemiology

The epidemiology of dyselectrolytemia varies for each electrolyte and level (hypo- or
hyper) in different populations. Although the worldwide incidence of dyselectrolytemia
in the general population is underestimated due to the lack of routine blood electrolyte
monitoring, recent studies reported that 15% of community people above 55 years have
at least one electrolyte disorder [5]. Most are ascribed to the usage of diuretics. The
epidemiology for each electrolyte imbalance is summarized below.

Sodium

Hyponatremia is the most frequently encountered dyselectrolytemia in clinical
practice, often as a complication of chronic diseases. It is found in 7.7% of the gen-
eral population [5], 27% of CVD [26], 26% of CKD [12], and 22.5% of cancer pa-
tients [82]. Nearly half (44%) of hospitalized [83] and 38% of ICU [76] patients have
hyponatremia.

Hypernatremia mainly emerges in the elderly and children, affecting 3.4% of
community subjects [5]. About 4% of hospitalized patients display high [Na*] [84].
This number is up to 9% in the ICU, but it has been reported as high as 26% [76].

Potassium

Hypokalemia occurs in 14% of the general population [18], in 4.6—19.7% of out-
patients with eating disorders [85], but only in 1-2.7% of healthy individuals [5]. More
than 20% of hospitalized patients develop hypokalemia during their hospital stay, pri-
marily due to diuretic therapy [19]. In the ICU, 50-60% of trauma patients develop
hypokalemia after injury resolution [76]. Low blood [K*] is common in those receiv-
ing diuretics, with up to 80% of patients on non-potassium-sparing diuretic therapy
displaying recurrent hypokalemia episodes [14]. Up to 14.9% of cancer patients also
present hypokalemia [K*] [82].

Hyperkalemia is present in 1.5-5% of the general population and is most frequent
in CKD patients [86]. Its incidence depends on CKD progression but is reported in
5.9% of early-stage CKD patients and 11% in ESRD [12]. It is observed in up to 19%
of hypertensive patients on potassium-sparing diuretics [18].

Calcium

Hypocalcemia incidence is difficult to determine, but it is present mainly in CKD
(14.2-25.1% depending on the CKD stage) [87], vitamin D or Mg** deficiency set-
tings, and acute pancreatitis. Low [Ca®*] is frequent in hospitalized (27.2%) [76], ICU
(90%) [76], and cancer (27.8%) [82] patients.

Hypercalcemia is relatively common and often mild but chronic. About 90%
of cases are caused by hyperparathyroidism or malignancy [88], with incidence rates
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ranging from 2.8% [82] to 30% [89] among cancer patients. In the ICU, 15% exhibit
high blood [Ca**] [76].

Magnesium

Hypomagnesemia is found in less than 2% of the general population, but it occurs
in 20% of hospitalized and 50% of ICU patients, 25% of diabetic outpatients, and 30—
80% of persons suffering from alcoholism [5, 90]. Low [Mg2+] is more frequent in
patients with hematologic/oncological disorders. Hypomagnesemia is associated with
hypokalemia and hypocalcemia.

Hypermagnesemia is rare, occurring only in critically ill patients with renal fail-
ure (15%) [86] and malignancy (10%) [82]. Some other risk factors include lithium
therapy, hypothyroidism, and Addison’s disease.

Bicarbonate

Metabolic acidosis is prevalent in 17.3% of CKD [77] and 12.8% of cancer pa-
tients [82]. Metabolic alkalosis is seen in 22.1% of malignancy cases [82], 51% of
hospitalized patients, and 37% of CVD patients in advanced stages [26].

1.3.5. Clinical consequences of electrolyte imbalance

Dyselectrolytemia is associated with a risk of adverse events, including morbidity,
mortality, and healthcare economic burden [5, 6,91]. The clinical consequences of
electrolyte imbalance depend on the severity level, patient health status, and episode
duration, i.e., whether it is acute or chronic. Extreme deviations in the homeostatic
range in either direction of any electrolyte lead to death, while moderate deviations
engender sickness and limit the quality of life [2]. Thus, electrolyte imbalance can
have health ramifications both in the short and long term.

Implications in short-term health

The most worrisome short-term consequence of dyselectrolytemia is arrhythmias
with the potential to instigate SCD [7-9]. While derangements of any electrolyte can
contribute to arrhythmogenesis in individuals with fragile hearts, potassium imbalance
(i.e., dyskalemia) is the first and foremost pro-arrhythmogenic [7,91]. Both acute and
chronic hypo- and hyperkalemia can trigger fatal arrhythmias and are known major
death causes in people with hypertension, diabetes, HF, and CKD [91], hence making
timely correction of blood potassium derangements of utmost importance.

It is well-recognized that hyperkalemia is a common complication that warrants
regular monitoring among CVD and CKD patients, especially those under maintenance
hemodialysis (HD) [79,92]. However, the effects of chronic or recurrent hypokalemia
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episodes on the long-term health of those treated with g-blockers and RAAS inhibitors
(RAAS:I) are less appreciated, despite current research [91]. For instance, hypokalemia
in patients with early-stage CKD has recently been associated with increased mortal-
ity risk and faster progression to ESRD [93]. A U-shaped relationship between blood
[K*] on hospitalization and 90-day mortality has been reported in many populations,
even those without CKD [94]. Alarmingly, only 52.8% of hypokalemic and 49% of
hyperkalemic hospitalized patients are normokalemic at discharge [20]. While none
of these studies have established a causal link between dyskalemia and death, they still
point to the necessity of regularly monitoring blood potassium levels [91].

Implications in long-term health

Recent studies also speculate that recurrent mild dyselectrolytemia episodes in-
duced by suboptimal dosages of RAASI, diuretics, and other therapeutical drugs for
CVD can have long-lasting health ramifications [5]. Albeit not yet proven, these re-
current episodes may be involved in the genesis of cardiorenal syndrome (CRS) due
to a maladaptive cascade of compensatory responses that the body activates to re-
store homeostasis, as so frequently seen in congestive HF [26]. For example, mild
dyskalemia can cause abnormal (but not necessarily fatal) heart rhythms, which can
lead to structural and electrical remodeling of the heart and, subsequently, decreased
cardiac output. This cardiac output insufficiency alters renal blood flow and perfu-
sion, which may damage the kidneys, further impairing renal [K™] excretion [95]. The
body then continuously activates the RAAS, the SNS, and other neurohormonal fac-
tors to promote blood [K*] correction, which, in turn, prompts vasoconstriction and
other hemodynamic disturbances in BP that can put additional strain on the heart.
When patients still display sufficient renal and cardiac function, these compensatory
mechanisms restore homeostasis. However, if activated for prolonged periods or re-
currently, these compensatory mechanisms lead to a vicious cycle of cardiac and renal
dysfunction, ultimately resulting in kidney and heart deterioration and failure [24].
Consequently, the clinical progression of the initial chronic disease is accelerated, and
patients become susceptible to developing CVD, CKD, and even ESRD.

While clinicians tend to watch out for possible asymptomatic dyskalemia to avert
unfavorable events, they frequently disregard other electrolyte imbalances unless they
are severe. Still, mild episodes of other dyselectrolytemias can affect general health
and cardiovascular function in the long term. Chronic mild episodes of sodium im-
balance predispose hypertensive patients to syncope and falls [5], whereas those with
chronic calcium imbalance can develop dermatological and bone complications (e.g.,
osteoporosis), kidney stones, ulcers, and pancreatitis [96]. In a recent cross-sectional
and longitudinal study, high blood calcium was found to be a strong predictor of fu-
ture hypertension and linked to a higher risk of developing diabetes, hypertension,
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and metabolic syndrome [97]. Both calcium and magnesium imbalances are linked
to a higher risk of atrial fibrillation [98]. In addition to frequently causing blood K*
and Ca®* abnormalities [7], magnesium imbalance precipitates hemodynamic and BP
disturbances, and anomalous aldosterone production [99]. For instance, magnesium
deficiency is known to cause hypertension and an increase in aldosterone production.

Considering the potential lifelong effects of electrolyte imbalance on the re-
nal and cardiovascular functions, regular blood electrolyte monitoring is warranted
in high-risk populations, such as those with CVD, CKD, diabetes, and hypertension.
Besides enabling a prompt correction of electrolyte derangements before the onset of
SCD-triggering arrhythmias [39], regular monitoring could facilitate drug titration,
helping clinicians to continually adjust the dosage of life-saving medications for the
maximum benefits without adverse effects [25]. In those at risk of drug-induced dyse-
lectrolytemia, regular monitoring could delay—or even prevent—the development of
CRS and the disease progression, thus promoting general long-term health.

1.4. Conclusions of the Chapter

1. Electrolytes (i.e., ions) are one of the many variables that must be kept within
pre-defined limits in the blood to maintain homeostasis. They play a vital role in vari-
ous physiological processes, including generating and conducting action potentials and
balancing blood volume and pH. The most important electrolytes for cellular processes
are Na*, K*, Ca®*, Mg?*, and HCO5.

2. Optimal cell functioning depends on the ECF (i.e., blood) and ICF compart-
ments having different ionic profiles. Na*, Ca**, and HCOj; are more abundant in the
ECF, whereas K*, and Mg** are more concentrated in the ICF. Na* is essential for fluid
balance, BP regulation, and transmission of electrical impulses in the nervous system.
K" is pivotal in establishing the adequate resting membrane potential to spur action
potentials and elicit proper contractility of both skeletal and cardiac myocytes. Ca* is
essential for bone strength, muscular contraction, and the release of neurotransmitters
and hormones. Mg** is involved in energy-production metabolism and neurotransmit-
ter release, and also in the regulation of ion transport in cell membranes. HCO3 acts
as a buffer of acidic metabolic waste products to maintain an adequate blood pH.

3. Homeostatic regulation of blood electrolytes and fluids falls primarily—but
not exclusively—under the responsibility of the kidneys, mediated by RAAS, ADH,
natriuretic peptides, PTH, and the SNS. Insulin, vitamin D, and calcitonin are other
hormones that regulate blood electrolyte levels.

4. Electrolyte imbalance, or dyselectrolytemia, occurs when blood electrolyte
levels fall outside their homeostatic range. It emerges primarily from inadequate in-
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take, dysregulated excretion, and transcellular shifts in the case of ICF ions. Dysregu-
lated excretion is the most frequent etiology of electrolyte imbalance, and it is typically
caused by renal dysfunction due to direct damage/failure of the kidneys or dysregula-
tion of their hormonal control centers (e.g., RAAS overactivation). Endocrine diseases
and medications, namely antihypertensive drugs, engender this hormonal dysregula-
tion.

5. The symptomatology of electrolyte imbalance is broad and usually nonspe-
cific, varying from symptomless to general fatigue and malaise to neuromuscular paral-
ysis and dangerous arrhythmias. The likelihood of clinical manifestations of dyselec-
trolytemia depends on their severity level, the pace of imbalance onset (i.e., whether
the episode is chronic or sudden-onset), concomitant electrolyte or acid-based imbal-
ance, and pre-existent CVD. Dyselectrolytemia is diagnosed with a blood test, and
moderate-to-severe episodes require treatment in a healthcare facility.

6. Risk factors of dyselectrolytemia are CKD, CVD, metabolic disorders, such
as diabetes, and the usage of certain medications, such as antihypertensive drugs (di-
uretics and RAASI), g-adrenergic blockers or g-agnostic, corticosteroids, chemother-
apy drugs, and psychiatric drugs. Age, cancer, liver disease, and eating disorders also
increase the risk of dyselectrolytemia.

7. Dyselectrolytemia has consequences for short- and long-term health. Elec-
trolyte imbalance, particularly that of potassium, can precipitate fatal arrhythmias. In
patients with chronic diseases, mild and recurrent dyselectrolytemia episodes induced
by suboptimal dosages of antihypertensive and other essential drugs can initiate a vi-
cious cycle of compensatory mechanisms, resulting in the deterioration of the cardiac
and renal functions. This deterioration threatens long-term health. Thus, regular blood
electrolyte monitoring is essential, not only for preventing fatal arrhythmias in the short
term, but also for maintaining homeostasis and promoting general health in the long
term.
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2. OVERVIEW OF EXISTING APPROACHES FOR ASSESSING BLOOD
ELECTROLYTE LEVELS

2.1. Electrolytes and the Heart: Theoretical Framework behind Noninvasive
Monitoring of Blood Electrolyte Levels

2.1.1. The heart and its electrical conduction system

The heart is a muscular organ located in the center of the thoracic cavity respon-
sible for pumping nutrient- and oxygen-rich blood through the circulatory system.
Anatomically, the heart consists of four chambers, two on each of the left and right
sides (Fig. 2.1): the atria (upper chambers) and the ventricles (lower chambers) [100].
These four chambers contract synchronously to pump blood into the lungs (pulmonary
circulation) and throughout the body (systemic circulation). The heart wall is com-
posed of three layers: endocardium (inner), myocardium (middle), and epicardium
(outer) [100]. The myocardium is mainly composed of involuntary striated muscle
cells known as cardiomyocytes, which are the contractile force of the heart [62]. A
specialized group of cardiomyocytes with weak contractile properties, called the pace-
maker cells, is located primarily in the sinoatrial (SA) node on the right atrium wall
near the junction of the superior vena cava [62]. Pacemaker cells spontaneously gener-
ate the electrical impulses that orchestrate the contraction and relaxation of cardiomy-
ocytes across the myocardium during each heartbeat.
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Fig. 2.1. Anatomy (left) of the heart and its electrical conduction system (right). Adapted from: [2].

One heartbeat, or cardiac cycle, is the period from the beginning of one contrac-
tion to the onset of the next [2]. Each cycle comprises two phases: diastole, during
which the heart muscle relaxes and refills with blood, and the subsequent contraction
to pump the blood, known as systole. In a healthy heart, the cardiac cycle begins in

46



the SA node with the genesis of electrical impulses by the pacemaker cells [62]. The
wave of the generated impulses then propagates through the cardiac conduction sys-
tem (Fig. 2.1) to activate cardiomyocytes [101]. The atrial myocytes are activated first,
starting at the right atrium. The right atrial myocytes are triggered slightly earlier than
the left ones and complete their cycle just before left atrial activation [62, 101]. The
impulse wave next travels throughout the atrioventricular (AV) node, where conduc-
tion is delayed momentarily to allow optimal filling of the ventricles with the blood
flowing from the atria. Once the impulse wave passes through the AV node, it spreads
swiftly through the His bundle and the right and left bundles, activating the ventricles
rapidly and almost simultaneously via a branching network of specialized conducting
cells known as the Purkinje system [62, 101].

The atria and ventricles are separated by an electrically inert structure of dense
connective tissue designated as anuli fibrosi, or the cardiac skeleton. This anatomi-
cal framework, along with the electrical delay within the AV node, ensures that the
atria and ventricles beat in a synchronized fashion, minimizing the chance of electrical
feedback between the chambers [62].

2.1.2. Principles of cardiac electrophysiology

Like any other excitable cells, the contractile forces of cardiomyocytes are activated by
oscillations in the cell membrane potential (or voltage), an electrophysiological phe-
nomenon known as an action potential. Action potentials (APs) arise from the sequen-
tial opening and closing of voltage-gated ion channels embedded in the cell mem-
brane [62]. At different times during the cardiac cycle, the permeability of the cell
membrane to specific ions varies, allowing those ions to flow between the intra- and
extracellular mediums for a brief moment. This flow of ions creates an electrochemi-
cal gradient that alters the membrane potential (),,) at that given time, triggering the
actin-myosin cycling that results in cardiomyocyte contraction [63].

The electrochemical gradient of ions that catalyzes an action potential stems from
the potential energy created by the non-equilibrium of ICF and ECF ions. As described
in Sec. 1.1.1, the ionic profile between the two fluids is different, which is maintained
by cell membranes. Na®, Ca**, and HCO3 are more abundant in the ECF, whereas the
concentration of K*, Mg®*, and large anionic proteins are higher inside the cells [2].
Two main forces drive ions across the membrane [102]:

* Chemical: the ion moves down its concentration gradient from high to low;
e Electrical: the ion moves away from molecules of identical charge.
In the resting state of a cell, membranes are impermeable to Na* and Ca®*, while K*
can travel *freely’ via the open channels 7, . K* is at equilibrium, as the outward flow
down the K™ concentration gradient is balanced by an inward flow of K* created by the
electrical forces exerted by the anionic proteins that cannot cross the membrane. How-
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Fig. 2.2. Tonic profile (top) of a cardiac cell membrane at rest, and cardiomyocytes action potentials
(bottom) of non-pacemaker cells in the myocardium (left) and pacemaker (right) cells in the SA node.
Adapted from: [62] and [74].

ever, Na* and Ca”* are not at equilibrium and represent potential energy [62]. When
ion-selective channels open, Na* and Ca’* can flow from the extracellular space, caus-
ing V,, to rise from its negative resting membrane potential (V,.,,). This sharp rise in
V,, is known as depolarization. After reaching its peak potential, the cell membrane
undergoes repolarization, during which the membrane returns to its static V,,,.
Cardiac action potentials

Two AP types can be distinguished in cardiomyocytes: fast response action po-
tentials, characterized by their rapid depolarization and prolonged plateau phase, ob-
served in atrial and ventricular myocytes; and slow response action potentials found
in pacemaker cells that exhibit a slow depolarization and no plateau phase [62]. Both
types differ considerably from the APs of other excitable cells: an AP lasts for about
I ms in neurons, 2-5ms in skeletal muscle cells, and 200-400ms in cardiomy-
ocytes [103]. The influx of Ca** prolongs the AP duration in cardiomyocytes, pro-
ducing a distinctive plateau phase that other types of excitable cells do not display.

Myocardial action potential

The myocardial AP, also referred to as fast response action potential, comprises
five phases. It begins and ends with Phase 4 [103], as illustrated in Fig. 2.2. Briefly,
each phase is depicted by the following events:
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* Phase 4 denotes the resting state of a cardiomyocyte. The cell membrane is
impermeable to most positive ions, including Na* and Ca**, while K* is at equilibrium,
yielding a resting potential of V,,,, ~ —90mV.

* Phase 0 is the rapid depolarization phase triggered by a neighboring cardiomy-
ocyte. The permeability to K* drops abruptly as K* channels close, and fast Na* chan-
nels begin to open, slowly leaking Na™ into the cell. Once V,, rises to the threshold
voltage of ~ —~70mV, the Na* voltage-gated channels open and allow a precipitous in-
flow of Na* until V,,~ 10mV. These fast Na* channels close a fraction of a second after
opening, and L-type Ca®* channels open once V,, > ~40mV, resulting in a small but
steady inflow of Ca®".

» Phase 1 represents a partial repolarization due to a decrease in Na* permeabil-
ity. Transient K* channels open briefly, and K* flows to the outside of the cell, lowering
V,, to about 0 mV.

* Phase 2 marks the plateau phase, during which the membrane permeability
to Ca?* increases, maintaining depolarization and prolonging the action potential. An
efflux of K* co-occurs with the influx of Ca®* in an electrically balanced countercurrent,
and V,, is maintained slightly below 0 mV throughout this phase. The constant inward
current of Ca?* activates several physiological mechanisms in the excitation-contraction
coupling process, eliciting muscular contraction [2, 103].

 Phase 3 is the cell membrane repolarization that gradually inactivates Ca**
channels. The persistent outflow of K* eventually exceeds the Ca** inflow and brings
the V,, back towards its V,,,, * —90mV, so the cell is ready for a new cycle of de-
polarization. Several pumps (e.g., Na*/K*-ATPase) return the Na* and Ca®* ions to
the ECF in exchange for K*, restoring the cardiomyocyte electrochemical potential.
These ionic movements are against the electrochemical gradient and require cellular
metabolism energy [42].

Phase 4, also termed the recovery phase, occurs in diastole, whereas depolarization
and repolarization (Phases 0-3) occur during systole [42]. The period between the
start of depolarization and the activation of the Na*/K*~ATPase pumps is known as the
absolute refractory period, during which the cell is incapable of generating another
AP. As more Na* channels start to recover, the cell enters its relative refractory period
during Phase 3. The cell is not yet fully repolarized, but it can generate another AP
with more inward Na* current.

Pacemaker action potential

Pacemaker APs, or slow response action potential, are characteristic of pace-
maker cells in the SA and AV nodes. These cells display automaticity and are thus
capable of self-initializing depolarization in a rhythmic fashion, in which the cell with
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the highest inherent depolarization rate takes over as the primary pacemaker and de-
termines the heart rate [103]. The autonomic nervous system controls the frequency
of AP firing: the sympathetic accelerates, whereas the parasympathetic slows the heart
rate.

Pacemaker cells have fewer inward I, channels than the other cardiomyocytes,
so their baseline potential is never lower than —60 mV. Since fast Na* channels need
V,.s:® —90mV to reconfigure into an active state, these channels are permanently deac-
tivated in pacemaker cells, and no rapid depolarization can occur [103]. The pacemaker
AP comprises three phases (4, 0, and 3):

* Phase 4 represents the gradual and initial depolarization of pacemaker cells.
The spontaneous inward flow of Na* through slow Na* channels depolarizes the mem-
brane from —60 mV to less than —55 mV. This small current is known as funny current.
At V,, ~ -55mV, T-type Ca®* channels open and continue slow depolarization. The
slope of Phase 4 dictates the heart rate and varies for pacemaker cells in different re-
gions.

* Phase 0 is the 'true’ depolarization phase, and it starts once V,, > ~40mV. L-
type Ca** channels open to enable an influx of Ca®* ions, depolarizing the membrane
to V,,~ 10mV. Because Ca?* channels are slower than Na* channels, the upstroke is not
as steep as Phase 0 of cardiomyocytes.

* Phase 3 marks the repolarization stage. K* channels open to counteract the
inward Ca** flow for a brief plateau phase and then return V,,,,~ 60 mV.
Heterogeneity of ventricular repolarization

Myocardial repolarization is vastly different from depolarization [62]. For in-
stance, repolarization occurs more gradually than depolarization. For ventricular ac-
tivation, depolarization arises from the sudden opening of Na* channels. In contrast,
repolarization occurs with a gradual decrease in Na* and Ca>* permeability while more
K" ions progressively flow inside the cell to restore V,,,, [62]. Under normal condi-
tions, when the depolarization wave that originated in the SA node reaches the ventric-
ular myocardium, the His-Purkinje system helps to germinate the electrical impulse
throughout all ventricular cells, depolarizing all cardiomyocytes almost simultane-
ously. However, there is significant ventricular repolarization heterogeneity observed
within cell populations of different myocardium regions, each presenting distinct AP
duration, morphology, and activation times [48]. Therefore, cardiac repolarization
varies not only between cells of different heart chambers (i.e., atria vs. ventricles), but
also between cell populations within different regions of the ventricular wall [48,62].

Anatomically, the ventricular depolarization wave moves from the apex to the
base and the endocardium to the epicardium, whereas the repolarization wave moves
in the opposite direction, from the epicardium to the endocardium [2]. Thus, cardiomy-
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have an 7, current. Epicardial cells have the shortest action potential duration due to /, and 7, currents

(increased K* permeability). M-cells have a smaller I,, current than epicardial cells and slower activation
of I,. Adapted from: [62].

ocytes near the epicardium depolarize last but repolarize first. This repolarization het-
erogeneity stems from dissimilarities in ion channels within each cell population [62],
making some cells more permeable to K* than others (Fig. 2.3). Epicardial cells, for
example, have two K* currents (/, and ;) and an increased K* permeability, displaying
shorter APs than endocardium cells, which present only one current (7)) [62]. In addi-
tion, a specialized group of cells in the *'mid-myocardium’ called M-cells have slower
activation of /, currents, displaying longer APs, particularly at slower heart rates [62].

Ventricular repolarization heterogeneity is crucial for efficient cardiac contractil-
ity and pumping in a normal heart. However, exceeding the physiologically reasonable
level of heterogeneity can precipitate life-threatening ventricular arrhythmias [48]. The
intrinsic heterogeneity property of ventricular myocytes is the primary reason repolar-
ization is more sensitive than depolarization to changes in the internal environment,
such as temperature and electrolyte fluctuations [48]. Thus, abnormal blood electrolyte
fluctuations can elicit pathological dispersion of ventricular repolarization, which may
have dire consequences.

2.1.3. Physics of electrocardiography

When the depolarization and repolarization waves move throughout the heart, a differ-
ential voltage between depolarized cells and adjacent areas still at rest is generated [2].
Since a small portion of this generated electrical current travels all the way to the sur-
face of the body, these differential voltages can be recorded by placing electrodes at
strategic points on the skin [62]. The recorded signal is known as the electrocardio-
gram (ECQG). The ECG depicts the electrical activity of cardiomyocytes in time across
the heart. ECGs are typically displayed in millivolts (mV) and seconds (s) and show a
series of peaks and waveforms, each reflecting a specific stage of the cardiac cycle.
An ECG s essentially the sum of all electrical signals produced by depolarization
and repolarization, that is, the APs of various cells [62]. As illustrated in Fig. 2.4a,
a positive signal is recorded when a wave of depolarization approaches the positive
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Fig. 2.4. Recording of a depolarization, isoelectric, and repolarization wave (a) from a cardiomyocyte
and simultaneous recording (b) of a myocardial AP and the ECG. Adapted from: [2].

electrode of a recording device. Conversely, a negative signal is registered when the
wave moves away from the positive electrode. Isoelectric signals are registered when
cells have similar voltages. The amplitude of the recorded signal depends on three
variables: (i) the amount of depolarized tissue, (ii) the direction of depolarization, and
(iii) the presence of counteracting forces [62]. A wave moving directly toward the
positive electrode in a large volume of tissue without any other wave simultaneously
traveling away from the same positive electrode will have the largest amplitude.

ECG waveforms

A heartbeat is primarily composed of three waveforms (Fig. 2.4b): the P-wave,
the QRS complex, and the T-wave, and one segment: the ST segment. The P-wave de-
picts the coordinated depolarization of the right and left atria and the onset of atrial
contraction. The QRS complex reflects the ventricular depolarization after the activa-
tion of the His-Purkinje system and is followed by the ST segment, which indicates the
period of ventricular contraction. After depolarization, the ventricles begin repolariz-
ing, which is depicted by the T-wave.

In a healthy heart, an isoelectric line usually follows these waveforms. This line
is the baseline of an ECG tracing and denotes the resting membrane potentials (the
plateau phase). Occasionally, ECG tracings can display a U-wave ensuing the T-wave.
U-waves are of small amplitude and are thought to represent delayed repolarization of
the Purkinje fibers, although their exact source is unclear.
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Other three regions of clinical importance in the ECG waveform are the RR in-
terval, the PR interval, and the QT interval. The RR interval is measured between
two successive R-waves and indicates the length of a ventricular cardiac cycle, i.e., the
heart rate (HR). The PR interval is measured from the P-wave onset to the QRS onset
and indicates the time required for an AP to travel through the atria. The QT inter-
val measures the time between the QRS onset and the T-wave end, i.e., the duration
of ventricular depolarization and repolarization. A more thorough description of each
waveform and its relationship to the cardiomyocyte AP is outlined in Sec. 2.1.4.

Lead systems and anatomical planes

An ECG waveform is the differential recording between two points on the body,
and each differential recording is termed a lead [104]. In clinical practice, lead config-
urations with standardized electrode positions are used to assess the electrical activity
in the heart from various planes [62], with the standard 12-lead ECG being the most
widely used configuration. The selection of a particular lead configuration depends
on the type of desired clinical information. For instance, 12-lead ECGs are neces-
sary to evaluate the whole heart structure, but two-to-three leads suffice to assess heart
rate and rhythm disorders [104]. For ambulatory monitoring, the patient’s comfort
throughout the recording period is another factor to be considered when selecting a
lead configuration. A higher number of leads permits more accurate diagnoses but re-
quires more electrodes to be placed on the skin. It is discomforting and inconvenient
for patients to wear several electrodes for prolonged periods and can result in premature
self-termination of the recording in long-term monitoring scenarios.

The standard 12-lead system

The standard 12-lead ECG is the most popular lead configuration used in routine
care as it provides a three-dimensional (3D) representation of the electrical activity
of the heart [62]. Six frontal leads record the cardiac electrical activity in the frontal
(vertical) plane (Fig. 2.5). In contrast, the other six precordial leads (Fig. 2.5) explore
the flow of depolarization and repolarization in the transverse (horizontal) plane [104].

Frontal leads

The frontal leads are divided into two groups of three: the standard limb leads
{111,111}, and the augmented voltage leads {aVR,aVF,aVL}. Since these leads are
mathematically interdependent, registration of only leads 7 and I suffices to derive
the remaining frontal leads [2]. According to Einthoven’s law:

Lead /7 = Lead I + Lead I11. 2.1)

Lead I, positioned at 0°, is the reference lead and shows the electric impulse con-
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Fig. 2.5. Standard 12-lead ECG in the frontal (left) and horizontal (right) planes.

duction from a subject’s left-hand side. Leads /I and 71/ look at the heart at respective
angles of 60° and 120° clockwise from lead 1. aVL shows the heart from the left (L stands
for left) and is placed at 30° anticlockwise from lead 7. By convention, anticlockwise
movement is negative. aVR is positioned at —150° from lead 7, is orthogonal to lead
111, and looks at the from the right side (R is for right). Both aVL and aVR are set at
30° off the horizontal plane. aVF is perpendicular to lead I clockwise and looks at the
heart straight up from the feet (F stands for feet) [104]. Leads I, aVL, and —aVR are
often designated as lateral leads, and leads 11, aVF, and III as known as the inferior
leads [62].

Precordial leads

The precordial leads, VI-V6, are placed anteriorly on the surface chest wall in
an arc. VI and V2 are the septal leads and are placed in the fourth intercostal space to
the right and left of the sternum, respectively. V/-V2 primarily observe the ventricular
septum. V3, positioned diagonally between V2 and V4, and V4, placed between the
fifth and the sixth ribs in the midclavicular line, are the anterior leads and examine the
anterior wall of the left ventricle. V5 and V6 are the anterolateral leads and observe
the lateral wall of the left ventricle. V5-V6 are positioned on the same level as V4, with
V5 in the anterior axillary and V6 in the midaxillary lines.

Since the precordial leads only examine the electrical activity of the left ven-
tricle, supplementary right chest leads V3R-V6R can be placed on the anatomical lo-
cations of the left-sided counterparts if there is suspicion of right ventricular infarc-
tion [62, 104].

The orthogonal-lead system

An orthogonal-lead system reflects the electrical activity of the heart in three
orthogonal planes [104, 105]: frontal (XY), transverse (XZ), and sagittal (YZ). Lead X
examines the heart in the right-left axis, lead Y explores the head-to-feet axis, and lead
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Fig. 2.6. Electrical activity of the heart in the frontal, transverse, and sagittal planes of an orthogonal-lead
system. Dashed arrows represent the mean electrical axis of a normal and an ischemic heart. Adapted
from: [106].

Z investigates the front-back axis (Fig. 2.6 and Fig. 2.7). Leads XYZ are used to obtain
a vectocardiogram (VCG) which depicts the trajectory of the conduction vector of the
depolarization and repolarization waves during the cardiac cycle. The ECG waveforms
are represented as loops in the VCG.

The conduction vector changes rapidly in length and direction as the electrical
impulse spreads through the heart [2]. It increases and decreases in magnitude (length)
as the voltage of the vector varies and changes direction according to the average direc-
tion of the electrical potential from the heart. As depicted in Fig. 2.7, the vector (V')
extends downward toward the apex when the septum first becomes depolarized. This
initial vector is relatively weak and denotes the first portion of the ventricular VCG.
As more of the ventricular muscle depolarizes, the vector becomes stronger (v, to
V,), changing in direction as the depolarization wave spreads through the myocardium.
Once the ventricles have become fully depolarized, the vector becomes zero (V'5) since
there is no electrical potential [2]. The figure generated by the positive ends of the vec-
tor renders the VCG loop.

The most recognized orthogonal-lead system is the Frank lead system [107],
which is derived as linear combinations of seven electrodes on the chest, back, neck,
and left foot (Fig. 2.7). However, leads XYZ are not routinely used in clinical prac-
tice, and orthogonalization methods [108, 109] are typically applied to 12-lead ECGs
to reconstruct leads XYZ when orthogonal leads are required.

Cardiac electrical axis

During most of the ventricular depolarization cycle, the direction of the con-
duction vector is from the base of the ventricles toward the apex. This preponderant
direction is known as the mean electrical axis of the ventricles (Fig. 2.8), and it pro-
vides clinically important information about their musculature and structure [2]. In
a normal heart, the mean electrical axis averages at about 59°, although it can swing
from 20° to 100°. Axis deviations beyond the normal range are associated with various
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heart conditions, depending on which ventricle they affect. For instance, a left axis
deviation (-30° to —90°) is present in left ventricular hypertrophy (LVH), hypertension,
and hyperkalemia. Conversely, a right axis deviation (90° to 180°) is observed in right
ventricular hypertrophy, right bundle branch block, and ventricular ectopic rhythms.
Extreme deviations (180° and —90°) rarely occur in clinical practice.

Although the electrical axis should be determined in orthogonal-lead systems,
the standard limb leads are usually used as an alternative [2]. If the QRS wave is
biphasic, the electrical axis is directed to the front or back in the transverse plane and
cannot be determined without lead Z.

2.1.4. Influence of blood electrolytes on ECG morphology

As outlined in Sec. 2.1.3, the ECG reflects the sum of all electrical signals of car-
diomyocytes at a given time throughout their depolarization and repolarization cycle.
The cycles (i.e., APs) require blood electrolyte levels to be maintained within specific
values to preserve the normal V,,,,. Alterations in V,,, interfere with the normal flow
of ions across cell membranes required to generate and conduct APs to elicit a healthy
and synchronous heart contraction. When V,,, is altered, cells become either hyper-

polarized (more negative V

re.

) or hyperexcitable (less negative V,,,,), and either of
these issues can lead to an abnormal cardiac output, heart rate, and dangerous arrhyth-
mias. Hyperpolarization can precipitate bradycardia since cells with a more negative
V,.s; Tequire a higher voltage to be stimulated and initiate muscle contraction. Con-
versely, less negative V,.,, in hyperexcitability translates into a perpetuating flow of
ions and spontaneous AP generation, causing the heart to contract too fast and ineffi-
ciently [7,62].

FRANK LEAD SYSTEM SEQUENCE OF DEPOLARIZATION

SRR

Depolarization loop
" (QRS)

— Repolarization loop

v

Electrodes

Fig. 2.7. Electrode placement (left) of Frank lead system for VCG registration. Changes in the magnitude

and direction of the conduction vector (right) during the sequence of ventricular depolarization and its

respective VCG loop. V', is the vector at the start of depolarization in the septum. V,, ¥, and V', represent

the state of depolarization 0.02s, 0.04s, and 0.05 s after V,. V5 marks the complete depolarization of
ventricles. Adapted from: [2].
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Fig. 2.8. Illustration of the ranges of normal, left, right, and extreme electrical axis of the heart.

Abnormal blood electrolyte levels derange the normal cycle of depolarization
and repolarization by altering V,.,,, engendering either hyperpolarization or hyperex-
citability. Since the ECG reflects the cardiomyocyte APs, morphology deviations from
the typical ECG waveform can indicate electrolyte imbalance [42,62]. Thus, ECGs can
be a tool for noninvasive blood electrolyte monitoring.

To properly grasp the association between ECG patterns and blood electrolytes,
it is vital to understand the modulating relationship between a specific electrolyte and
the AP shape and duration throughout the cardiac conduction system. This Section
describes the influence of blood electrolytes on ECG morphology. The ECG patterns
of homeostatic blood electrolyte levels, i.e., the patterns that relay a healthy generation
and conduction of APs in the heart, are introduced first, and the patterns of electrolyte
imbalance are presented afterwards.

ECG patterns of electrolyte balance

When blood electrolyte levels are within their homeostatic range, the cardiomy-
ocyte AP, whether of a fast or slow response, unrolls as described in Sec. 2.1.2. Pro-
vided that no structural heart disease is present, the electrical impulse generated in the
SA node travels through the cardiac electrical system, rendering an ECG waveform
resembling the one illustrated in Fig. 2.9. The relationship of each ECG component
with the cardiac AP is as follows.

Atrial depolarization—the P-wave

The P-wave reflects atrial depolarization of pacemaker cells, which initiates at the
SA node. Since the right atrium depolarizes earlier than the left one, the first portion
of the P-wave corresponds to right atrial depolarization, whereas the terminal portion
reflects the left one [62]. Atrial depolarization (and hence P wave duration) generally
lasts 0.1s [103]. Atrial repolarization is not observable in the ECG [62].
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Fig. 2.9. Genesis of a normal ECG waveform in electrolyte balance. Adapated from: [74].

Atrioventricular conduction—the PR interval

The PR interval measures the time between the onsets of atrial and ventricular
depolarization, usually ranging from 0.12-0.2 s [103]. The brief isoelectric period after
the P-wave conveys the time the atria are fully depolarized, and the impulse travels
within the AV node, where the conduction speed drops [103] due to the absence of Na*
channels. The activation of the AV node begins at some point in the middle-terminal
portion of the P-wave [62].

Ventricular depolarization—the QRS complex

The QRS complex typically comprises three waves: Q (negative deflection), R
(large positive deflection), and S (negative deflection). It reflects ventricular depolar-
ization after activation of the His-Purkinje system and is usually the largest amplitude
waveform in the ECG (5-15mV) [62]. It lasts 0.06-0.1s [103]. The sum of Phases 0
and 1 of the ventricular AP, characterized mainly by the inflow of Na®, yields the total
duration and amplitude of the QRS complex [42]. Depolarization of the His-Purkinje
system cannot be measured from the surface ECG as the total mass of the cardiac tissue
is too small, unlike ventricular depolarization [62].

Beginning of ventricular contraction—the ST segment

The ST segment marks Phase 2 (plateau) of the AP [42] in which an influx of
Ca* occurs, and the ventricles begin to contract. It is generally isoelectric in healthy
hearts, although some healthy individuals also display a non-pathological elevated ST
segment [62].

58



ECG

Epicardium
Endocardium

M-cell

Fig. 2.10. Cellular explanations for T-wave genesis. In experimental preparations, the T-wave onset (7,,,)

coincides with the beginning of the separation of Phase 3 of the AP of epicardial and endocardial cells

since repolarization starts earlier in the epicardium. The T-wave peak (7,,,,) and offset (T,,) coincide
with complete repolarization of the epicardial and M-cells, respectively. Adapted from: [62].

Ventricular repolarization—the T-wave

The T-wave reflects ventricular repolarization and is of comparable duration to
that of Phase 3 of the cardiomyocyte AP [42], in which an outward flux K* occurs to
restore V,,,,. The slope of the terminal portion of the T-wave is analogous to the slope
of Phase 3 [42]. In experimental studies, the T-wave onset seems to coincide with the
separation of the repolarization phase of the epicardium from the endocardium and
M-cells [62]. This gradual separation is why the accurate identification of the T-wave
onset is often challenging. The T-wave peak matches the ending of epicardial repo-
larization, whereas the offset corresponds to the completion of M-cells repolarization
(Fig. 2.10) and ventricular ejection [42].

T-waves are generally lower in amplitude than the QRS complex due to several
factors. First, the repolarization rate is slower than depolarization as the opening of
Na* channels involved in depolarization is sudden, whereas repolarization occurs with
a gradual increase in K* permeability and ejection of Na* and Ca** to the ECF. Second,
the His-Purkinje system facilitates simultaneous depolarization so that several cells
initiate Phase 0 almost concurrently. In contrast, ventricular repolarization is hetero-
geneous as different cell populations repolarize at different times (Sec. 2.1.2).

Ventricular AP duration—the QT interval
The QT interval indicates the ventricular AP duration and is measured from the
Q-wave onset to the T-wave offset. Its duration ranges from 0.2—0.4 s and depends on

the heart rate. Higher heart rates entail fast contraction and, thus, shorter ventricular
APs and QT intervals.
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ECG patterns of electrolyte imbalance

Abnormal blood electrolyte levels predominantly affect the electrical activity of
the ventricles, disturbing the shape and duration of the ventricular AP [42], in par-
ticular, that of repolarization. The intrinsic heterogeneity property of ventricular re-
polarization makes it much more vulnerable than depolarization to derangements in
the internal environment, even in settings of only minor deviations from the homeo-
static range [48]. Thus, the ECG patterns of dyselectrolytemia generally involve some
form of morphological alterations in the post-depolarization ECG components—the
ST segment (Phase 2) and the T-wave (Phase 3).

Out of all ions playing a role in AP generation and propagation, Ca** and K*,
i.e., the central ions in Phase 2 and Phase 3, are the ones that exert the most prominent
effects on the ventricular AP [62]. For this reason, potassium and calcium imbalances
produce the most specific changes in the ventricular AP morphology and are the dys-
electrolytemias with the most characteristic ECG patterns [42].

However, the electrocardiographic patterns of dyselectrolytemia vastly depend
on the complete blood electrolyte profile. The ECG manifestations of isolated dyse-
lectrolytemia (i.e., imbalance of only one electrolyte) do not always correlate with the
anticipated patterns of the same dyselectrolytemia when concomitant with other elec-
trolyte imbalances. Furthermore, the effects of the same dyselectrolytemia can differ
within separate heart regions [7]. The mechanisms behind the ECG patterns of vari-
ous dyselectrolytemias, their effects on the cardiac AP, and their interrelationship with
other ions are elucidated below.

Potassium

The most determining ion of V,,,, and repolarization is K*. Tt exerts its electro-
physiological effects directly on the membrane permeability to K™ as the conductance
of the I, channels is proportional to the square root of blood [K*] [7]. Higher [K*]
signifies that more ions flow into the cell until a less negative V,,,, is reached [62],
shortening the AP duration and increasing hyperexcitability. Conversely, low [K']
does not allow an adequate inward flow of K, resulting in hyperpolarization and sub-
sequent longer AP [7]. Potassium imbalance disturbs Phase 3, leading to delayed (in
the case of hypokalemia) or accelerated (in the case of hyperkalemia) repolarization
rates that alter the T-wave morphology. Both hypo- and hyperkalemia decrease the AV

conduction velocity and can exacerbate AV block [42].

Hyperkalemia

Cells become hyperexcitable when K* accumulates in the blood. Hyperkalemia
produces three changes in the AP: (i) shortened duration, (ii) accelerated repolarization
rate, reflected by a steeper curve of Phase 3, and (iii) a progressively less negative
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Fig. 2.11. Diagram of an atrial and ventricular AP superimposed on the ECG with different extracellular
blood potassium concentrations: (a) potassium balance and (b) mild-to-moderate, (¢) moderate-to-severe,
(d) severe, and (e) life-threatening hyperkalemia. Adapted from: [7].

V,es: @s [K'] rises, leading to partial membrane depolarization [42,62]. Such partial
depolarization reduces the number of Na* channels available to open in the resting state,
thus impairing normal depolarization (Phase 0) of some cells [62]. Fig. 2.11 illustrates
the ECG manifestations of hyperkalemia.

Hyperkalemia shortens the plateau phase of Purkinje fibers, decreasing the dis-
persion and heterogeneity of ventricular repolarization [7]. The atrial myocardium is
the most vulnerable to high [K*], the ventricular myocardium is mildly vulnerable,
and the specialized tissue (SA node and His bundle) is the least sensitive to hyper-
kalemia [7]. Thus, the excitability and conduction in the atria decrease at milder hy-
perkalemia levels than in other types of myocardial tissue [42].

ECG patterns of mild hyperkalemia. = Prominent and narrow (i.e., peaked) T-waves
are the earliest manifestation of hyperkalemia, occurring when [K*] > 5.5 mmol/L and
usually before any concomitant QRS changes [42]. Such peaked T-waves are typically
visible in precordial leads [62]. If no cardiac structural abnormalities exist and the ST
segment is regular, the QT interval is either normal or slightly decreased [42].

ECG patterns of moderate hyperkalemia. = QRS changes usually become percepti-
ble when [K*]>6.5mmol/L. The progressive lowering of V,,,, slows intraventricu-
lar AP conduction, resulting in a less sharp Phase 0 and a uniform widening of the
QRS [7,42]. Widened initial and terminal portions characterize the QRS in hyper-
kalemia, differing from the one seen in bundle branch block, in which only one portion
of the QRS widens. Such uniformly widened QRS is recognizable by deep S waves
in leads 7 and aVL [62]. Despite the shortened AP duration, the QRS length roughly
correlates with the degree of hyperkalemia [42].
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ECG patterns of severe hyperkalemia. ~ When [K™] > 7.0 mmol/L, atrial excitability
and AV conduction decrease, altering the P-wave amplitude () and duration (T) while
prolonging the PR interval. At [K*]> 8.8 mmol/L, the P-wave is usually invisible [7,42].
Low-amplitude or absent P-waves alongside wide QRS complexes help to distinguish
hyperkalemia from intraventricular conduction disturbances of other origins [42].

ECG patterns of life-threatening hyperkalemia. Ventricular repolarization becomes
extremely slow when [K*] > 10.0 mmol/L, with large portions of the myocardium un-
dergoing repolarization before depolarization is completed. At this stage, the delin-
eation of the QRS complex is difficult or impossible [42]. If [K*] continues to rise, the
QRS and T-waves merge into a ’sine wave’, a preterminal rhythm almost identical to
ventricular tachycardia or fibrillation [110].

Hypokalemia

Cells become hyperpolarized when blood [K*] drops below normal levels [7,42].
Hypokalemia produces three changes in the AP: (i) prolonged duration, (ii) delayed re-
polarization rate, marked by changes in the slope shape of Phase 3, and (iii) V,., to be-
low —90 mV. A more negative V,.,, causes cells to be less excitable, and a greater-than-
normal stimulus is required to spur depolarization. Without a sufficient inward flow
of K*, the repolarization rate is delayed, prolonging the AP. The repolarization slope
of Phase 3 decelerates gradually with the progressive decrease in blood [K*], changing
its morphology from convex to concave [42]. In contrast, the slope of Phase 2 steep-
ens [42]. In the ECG, these changes in the AP shape and duration translate into broader
and lower-amplitude T-waves, ST depression, and discernable U-waves (Fig. 2.12),
which become progressively more pronounced with decreasing blood [K*] [42, 110].

Repolarization delays essentially slow down the conduction velocity in the heart,
thus increasing the dispersion of ventricular repolarization. Hypokalemia decreases
membrane excitability during diastole, particularly in Purkinje fibers, which can induce
automaticity and potentially arrhythmogenic depolarizations in these cells [7].

ECG patterns of mild hypokalemia.  Broader and lower-amplitude T-waves are the
earliest ECG manifestation of mild hypokalemia (3.0 mmol/L<[K*]<3.5 mmol/L).
However, such ECG patterns do not usually emerge until there is a moderate degree of
hypokalemia.

ECG patterns of moderate hypokalemia. =~ Once blood [K*] < 2.7 mmol/L, the elec-
trocardiographic patterns of hypokalemia become more prominent [42]. T-waves begin
to broaden and flatten, P-waves increase in amplitude, and the PR interval elongates.
In some patients, T-wave inversion is also observable. ST depression becomes no-
ticeable alongside U-waves in leads V2-V3. These two leads usually show the most
pronounced elevation of U-waves, which also become more negative in leads that al-
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Fig. 2.12. Diagram of the ventricular AP superimposed on the ECG with different extracellular blood
potassium concentrations: (a) potassium balance, and (b) mild-to-moderate, (¢) moderate-to-severe and
(d) severe-to-dangerous hypokalemia. Adapted from: [7].

ready display inverted U-waves under normal conditions, such as in the lead aVR [42].
The QRS complex also widens and increases in amplitude, albeit seldom by more than
0.02 s [42]. Patients can begin to develop ventricular extrasystoles [110].

ECG patterns of severe hypokalemia. =~ The T- and U-waves fuse into one in more
advanced stages of hypokalemia, making the QT interval appear longer [7,42]. Nev-
ertheless, as long as a notch separates the two waves, the QT interval remains un-
changed [42]. The precise duration of the T-wave and the QT interval should be as-
sessed in the lead with the lowest U-wave voltage, typically aVL [42].

ECG patterns of life-threatening hypokalemia. Isolated hypokalemia becomes
dangerous once [K*]<1.9 mmol/L as patients develop ventricular fibrillation or supra-
ventricular tachyarrhythmias that can result in cardiac arrest. Moderate hypokalemia
with concomitant hypomagnesemia is also potentially fatal.

Some physicians suggest that the main ECG pattern of hypokalemia is a bi-
fid/notched T-wave rather than the emergence of U-waves, in which the onset, the
first and second peaks, and the offset of the T-wave (Fig. 2.13) correlate with the
hypokalemia-induced repolarization delay of the various cell populations within the
ventricular wall [62]. This rationale is grounded in the fact that the pattern of hy-
pokalemia corresponds to a gradual shift of the primary repolarization wave from sys-
tole (T-wave, Phase 3) into diastole (U-wave, Phase 4) caused by the prolongation of
ventricular repolarization [42]. Prominent “U-waves” result from an almost complete
split between the repolarization of the endocardium and myocardium cells [62] and can
therefore be considered an extension of ventricular repolarization rather than a separate
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Fig. 2.13. Cellular explanations for the genesis of ECG patterns of hyper- and hypokalemia in different

cell populations within the ventricular wall. In hyperkalemia, Phase 3 (repolarization) becomes steeper

for all three cell types, and AP duration becomes similar, leading to a narrower and peaked T-wave. In

hypokalemia, Phase 3 is less steep, and the differences in AP duration between the three cell types are

magnified, resulting in a bifid/notched T-wave. The first peak coincides with the separation between

endocardial and M-cell repolarization. The second peak occurs when the epicardium is fully repolarized.
Adapted from: [62].

cardiac event. The nomenclature of U-waves in hypokalemia is, nonetheless, widely
adopted in the literature and will continue to be employed throughout this thesis.

Calcium

While Ca®* has no appreciable effect on V,,,,, abnormal blood [Ca**] disrupts
Phase 2 and, consequently, the AP duration—hypocalcemia prolongs Phase 2, whereas
hypercalcemia shortens it. In the ECG, alterations in the ST segment morphology and
length usually reflect Phase 2 disturbances induced by abnormal [Ca®*] (Fig. 2.14).

Generally, only severe calcium imbalances produce clinically significant electro-
physiological effects in the heart if there is no concurrent imbalance of another elec-
trolyte [7]. However, blood [Ca**] can impair cardiac contractility and indirectly affect
repolarization. Ca®* controls the speed of time-dependent processes which eventu-
ally trigger repolarization and activate the conductance of K™ channels during Phase
3 [111]. The higher is the plateau voltage, the earlier the cell repolarizes [111].

Mild-to-moderate calcium imbalances become particularly relevant in blood
potassium abnormalities since Ca** and K* have antagonistic effects on the cardiac
electrical activity. Increased [Ca®*] reverses the intra- and atrioventricular conduction
disturbances induced by hyperkalemia, whereas, conversely, low [Ca**] countervail the
harmful effects of hypokalemia [42].

Hypercalcemia

Higher-than-normal blood [Ca*] favors earlier repolarization, producing two
changes in the AP: (i) shortened plateau and total AP durations [7]; and (ii) reconfig-
ured ventricular AP shape to one resembling that of a normal atrial AP [42]. Shorten-
ing of Phase 2 is a counterintuitive electrophysiological consequence of hypercalcemia
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Fig. 2.14. ST segment and QT interval differences in calcium balance and hyper- and hypocalcemia.

given that higher blood [Ca**] would, presumptively, increase the inward flow of Ca**
and prolong the AP plateau instead [112]. Animal studies suggest that a voltage de-
crease in the Na*-Ca’* exchange current and the earlier activation of the potassium / K,
channels are the primary underlying mechanisms for the AP shortening and impaired
cardiac contractility in hypercalcemia [7, 112].

In contrast to hyperkalemia, hypercalcemia leads to hyperpolarization. If cells
are hyperexcitable due to a less negative V,,,, as in hyperkalemia, elevated blood [Ca**]
stabilizes the membrane by shifting the threshold potential to lower values. Thus, a
higher magnitude of depolarization is required to elicit contraction [7].

ECG patterns of mild-to-moderate hypercalcemia. A shortened or absent ST seg-
ment is the characteristic ECG pattern of hypercalcemia [7, 112]. The ST segment
shortening leads to a short QT interval of less than 0.4 s, often even shorter than 0.35s.
In moderate hypercalcemia ([Ca**] > 2.0 mmol/L), T-waves begin immediately after the
QRS complex. Occasionally, T-waves even emerge before the QRS returns to baseline,
and no intervening ST segment exists, resulting in an ECG pattern mimicking the ’ST
elevation’ observed in myocardial infarction [62].

ECG patterns of severe hypercalcemia. ~ When [Ca®*] > 2.5 mmol/L, changes in the
T-wave polarity and amplitude can occur [112]. Patients typically display prominent J
waves (Osborn waves) in precordial leads. These waves widen the QRS complex and
lengthen the QT interval back to its typical duration [62].

Hypocalcemia

Low blood [Ca®*] reduces the inward flow of Ca>* ions during Phase 2 [112],
prolonging the plateau and AP duration [112]. Hypocalcemia induces the opposite
effect of hypercalcemia in the AP duration but does not disturb Phase 3 if no other
concomitant electrolyte imbalances exist [42]. The ECG hallmark of hypocalcemia
is QT interval prolongation secondary to a lengthened ST segment, while the T-wave
duration remains unaltered [112]. No other metabolic abnormalities modify the ST
segment without simultaneously altering the T-wave duration [42].

Hypocalcemia causes neuromuscular hyperexcitability, leading to involuntary
muscle contraction and overly stimulated nerves. This hyperexcitability can counteract
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the hyperpolarization induced by hypokalemia. Smaller ICF [Ca**] also compromise
the excitation-extraction coupling mechanism and, consequently, cardiac and muscle
contractility [112].

ECG patterns of mild-to-moderate hypocalcemia. ~ When blood [Ca*] drops below
its homeostatic limits, the QT interval elongates due to ST-segment lengthening while
the T-wave duration is unaffected [112]. The severity of hypocalcemia correlates with
the degree of QT prolongation [62], but the QT interval rarely exceeds 140% of its
regular duration [42].

ECG patterns of severe hypocalcemia. In extreme cases of isolated hypocalcemia,
the T-wave polarity can reverse. For instance, the T-wave may become flat or inverted
(but never narrower or broader) in leads with an upright QRS complex, simulating the
ECG pattern of myocardial ischemia [42, 62].

Magnesium

Although Mg** is not explicitly involved in any phase of the AP, blood [Mg**]
abnormalities still affect cardiac function. Mg** is essential for stabilizing excitable
membranes as it regulates ion channels and the inward flow of Ca**, acting as a natural
Ca’* antagonist [113]. Its effects emulate those of Ca’*-channel blockers. In addi-
tion, Mg?* contributes to an effective activation of the Na*/K*-ATPase pumps [113],
which transport K* into and Na* out of cells during Phase 4. Thus, abnormal blood
[Mg**] dysregulates the normal functioning of ion channels and pumps, affecting the
transmembrane equilibrium of K* [7, 114], which then encumbers repolarization and
proper restitution of V,,.

The modulating relationship between Mg®* and the other ions often results in
Ca®* or K* imbalance alongside abnormal blood [Mg?*]. Since isolated magnesium
imbalance seldom occurs in clinical practice, and the knowledge of the influence of
Mg?* on the different phases of the cardiac AP is lacking [113], the ECG patterns
of magnesium imbalance are nonspecific [7], not yet clearly defined [113], and often
questioned. Nevertheless, the ECG patterns of magnesium imbalance reported thus far
are described below.

Hypomagnesemia

Hypomagnesemia increases cardiac excitability, leading to a higher frequency
of atrial and ventricular premature beats [7, 115]. However, failure to maintain intra-
cellular K* levels due to impaired activation of Na™/K*—-ATPase is believed to be the
primary cause of premature beat occurrence [115]. While low Mg** levels inhibit the
slow inward current of Ca** channels, thus shortening Phase 2 [114], some studies in-
dicate that magnesium deficiency had little effect on the AP in the presence of normal
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blood [Ca?*] [42]. Parallelly, hypomagnesemia exacerbates the effects of low blood
[Ca?*], further accentuating the ECG patterns of hypocalcemia [42].

Low blood [Mg®*] is associated with frequent premature beats [7] and sinus
tachycardia [114]. In a study performed in 2021, patients with isolated hypomagne-
semia displayed prolonged P-waves, QT intervals, T peak-to-end intervals (Tpe), and
a higher TPe/QT ratio [113], but other studies have not yet corroborated these ECG
findings. Flattened [115] or biphasic [7] T waves have also been reported.

Hypermagnesemia

High blood [Mg2+] depresses AV and intraventricular conduction [7] and pro-
longs the sinus recovery time. In the ECG, hypermagnesemia can manifest as a signif-
icantly prolonged PR interval, longer QT and JT intervals [116], peaked T-waves, and
bradycardia [115]. Since Mg>* exerts modulating effects on several K* currents and
blocks Ca®* channels, hypermagnesemia corrects the effects of hyperkalemia to some
degree [7,114].

Sodium

Na® is the primary determinant of the upstroke velocity and amplitude of Phase O
of the AP [7]. Na* conductance increases rapidly with AP initiation, allowing the Na*
gradient to dictate the first phase of the action potential and, consequently, its ultimate
configuration [7]. Thus, hypernatremia increases and hyponatremia decreases Phase 0
by altering the transmembrane Na* gradient [7,42].

When the intraventricular conduction velocity is delayed, high [Na*] restores its
normal velocity [42]. Accordingly, hypernatremia negates many of the electrophysio-
logical consequences of hyperkalemia [7], shortening the wide hyperkalemia-induced
QRS complex to its typical duration. Nevertheless, the effects of sodium on the elec-
trophysiologic properties of cardiomyocytes are rarely of clinical importance, despite
the high frequency of sodium imbalance in various populations [7]. In the absence of
intraventricular conduction disturbances, whether instigated by additional electrolyte
abnormalities or other causes, sodium imbalance does not appreciably affect the ECG
pattern [42].

Bicarbonate
Metabolic acidosis and alkalosis induce transmembrane K* shifts, leading to hy-
perkalemia and hypokalemia [117], respectively, thus modifying the ECG patterns
similarly to potassium imbalance [42]. Whether abnormal blood [HCO5] or pH have a
distinctive ECG pattern is difficult to determine, as patients regularly present concomi-
tant potassium or calcium imbalance that can explain any visible ECG change [118].
ECG changes in metabolic alkalosis are thought to be primarily due to underlying
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hypokalemia, with patients displaying decreased T wave amplitude, ST depression, and
prominent U waves [118].

However, metabolic acidosis has been shown to affect AP configuration [119].
Low [HCO3] impairs the L-type Ca®* channels, and a decreased blood pH slows up-
stroke velocity and Phase 0 amplitude [119]. Moreover, acidosis affects the K* currents
of Phases 3 and 4 [120], subsequently impacting repolarization. Isolated metabolic aci-
dosis can instigate T-wave morphology changes resembling those of hyperkalemia [117]
and changes in the PR interval identical to the third-degree AV block [121].

2.2. Existing Methods for Measuring Blood Electrolyte Levels

While blood tests are the only clinically valid method for assessing blood electrolyte
levels, the ECG is a potential noninvasive diagnostic tool for dyselectrolytemia [122].
As explained in Sec. 2.1, blood electrolyte derangements alter the electrophysiological
properties of cardiac cells, resulting in morphological changes in the ECG waveform.

The concept of using an ECG as a tool for capturing dyselectrolytemia has been
discussed over the last few years in several studies. Many have evaluated the frequency
of electrolyte-induced ECG changes in clinical practice [123-125], particularly that
of the anticipated patterns of each dyselectrolytemia described in Sec 2.1.4. In a re-
cent meta-analysis, clinicians reported a physiological association between blood elec-
trolyte levels (K*, Ca®*, Na*, Mg?*) and ECG intervals (RR, QR, PR, JT) and the QRS
duration [116]. Cardiac rhythm features, such as heart rate variability [7, 122] and
markers of ventricular repolarization (QT interval [126]) and heterogeneity (QT dis-
persion [127]), have also been shown to be correlated with pre- and post-HD shifts
in electrolyte levels of ESRD patients. Nevertheless, despite demonstrating that ECG-
based monitoring of electrolyte balance is empirically conceivable, none of these stud-
ies sought to quantify blood electrolyte levels from the ECG. Thus, no concrete tech-
nological solutions were proposed.

Nearly no ECG-based solutions for the noninvasive quantification of blood elec-
trolyte levels had been engineered before 2012. At the start of the research of this
doctoral dissertation in 2017, only three methods for enabling bloodless [K*] quantifi-
cation had been described in the literature, while methods for measuring other elec-
trolytes were not introduced until 2022. The state-of-the-art methods thus far can be
divided into two categories: semi-automatic and automatic, and machine-learning-
based, each summarized below in chronological order. A more in-depth review of the
state-of-the-art in noninvasive blood electrolyte monitoring can be found in [122].

Semi-automatic and automatic methods

Frohnert et al. made one of the earliest attempts to estimate blood electrolyte
levels from the ECG in 1970 by proposing a set of equations to derive [K*] based on
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T-wave morphology descriptors [128]. This method was not validated independently,
and noninvasive blood electrolyte monitoring research quickly disappeared until the
early 2000s.

Between 2009 and 2012, Corsi and Severi et al. introduced prototype methods
to estimate blood [K™] from 12-lead ECGs during HD sessions [129, 130], paving the
way for other researchers to create different solutions for facilitating noninvasive blood
electrolyte monitoring. Their final approach in 2017 relied on regression models and a
T-wave slope-to-amplitude ratio (7, ) descriptor to measure [K*] with a mean absolute
error of 0.46 + 0.39 mmol/L from ECGs of 45 HD patients [43].

Mayo Clinic researchers further enhanced the descriptor for use in a single-lead
ECQG, first in precordial [44, 45], and later in lead I acquired from a handheld de-
vice [131]. Their solutions yielded a respective mean absolute error of 0.36 + 0.34 and
0.38 + 0.32 mmol/L, but the authors evaluated the performance only in ECGs registered
during HD sessions.

Velagapudi et al. developed a computer-assisted image-processing model to de-
tect hyperkalemia from 12-lead ECGs with a specificity of 84% and a sensitivity of
63% [132]. Most of the derived T-wave morphology descriptors were equivalent to
those proposed by Frohnert ef al. in 1970 [128]. An important finding was that the
descending slope—but not the amplitude—of the T-wave was strongly correlated with
hyperkalemia, corroborating the initial results of Corsi and Severi et al. [43]. Further-
more, the authors reported that QRS widths above 100 ms improved the model perfor-
mance in predicting hyperkalemia.

In 2019, Krogager et al. quantified the degree of asymmetry, flatness, and notch-
ing of the T-wave with a descriptor called Morphoplogy Combination Score (MCS) and
evaluated the relationship of MCS and six other ECG parameters with blood [K*] in a
cohort of 163 547 primary care patients [133]. MCS and other ECG parameters were
derived from leads /7 and V5. The study reported a non-linear relationship between [K*]
and MCS, which was notably stronger in individuals displaying [K*] < 4.1 mmol/L.

Ambulatory monitoring of blood potassium levels

Investigation of ECG-based monitoring of blood [K*] in ambulatory settings
started in 2018 under the framework of the research project that funded this disserta-
tion. The first study exploring the feasibility of capturing blood potassium fluctuations
in ambulatory single-lead ECGs is part of this doctoral dissertation and is discussed
further in Chapter 3.

Between 2019 and 2021, researchers at the University of Zaragoza examined the
performance of time-warping-based descriptors of T-wave morphology in measuring
[K*] during and between HD sessions [52, 134]. Their proposed descriptors, previ-
ously found to be significant markers of ventricular repolarization dispersion in HF
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patients [135], were strongly associated with [K™] fluctuations. The team evaluated the
performance in a database comprising of 12-lead ECG Holter recordings of 29 ESRD
patients acquired during 48 h, starting at the beginning of one HD session until imme-
diately before the next one. Blood samples were collected six times: five times during
the first HD session and the sixth time right before the recording period ended. While
their proposed descriptors outperformed the performance of T,, the researchers ex-
amined the responsiveness of the descriptors to blood [K*] primarily throughout HD
sessions since no blood samples were collected during the ambulatory recording pe-
riod. Nevertheless, in 2021 and 2022, the same research team enhanced their T-wave
morphology descriptors to be more robust to noise [136] and developed a polynomial
model to measure the differences in [K*] between two points (i.e., the rate of [K*]
change) [51]. Although precise during HD, the model displayed overfitting in estimat-
ing [K*] fluctuations in ambulatory scenarios [52], despite using leads {I, II, VI-V6}.

Ambulatory monitoring of other electrolytes

To characterize ECG changes induced by blood [K*] and [Ca®*], the same team of
researchers at the University of Zaragoza explored other descriptors to aid in the non-
invasive monitoring of potassium and calcium imbalances in ESRD patients [137].
Their reported findings indicate that time-warping-based markers of T-wave morphol-
ogy are more robust for characterizing electrolyte-induced repolarization changes since
such markers account for the whole T-wave morphology instead of only local fea-
tures [52,53,138]. The authors also suggested other QRS-based markers to predict
[K*] and [Ca®*] with promising results during HD sessions but not so much in ambu-
latory settings [137]. While the authors recognized that the estimation errors may be
due to the small number of blood samples taken outside of HD, they did not consider
other variables that have been shown to affect the QRS morphology in intradialytic
scenarios, such as rapid hemodynamic and fluid fluctuations [139].

Machine-learning-based methods

In 2003 and 2005, two proof-of-concept studies employed machine-learning tech-
niques to classify hyperkalemic 12-lead ECGs. One of them proposed a two-stage neu-
ral network with an accuracy of 65.5%, a sensitivity of 60%, and a specificity of 65%
in a cohort of 60 patients [140]. The other used a two-stage K-means classifier with a
sensitivity of 85% and a specificity of 79% [141]. None of the authors tried improving
their algorithms any further.

Recently, Galloway et al. tested a deep-learning model to detect hyperkalemia
in two subsets of ECG leads: {I, IT} and {1, II, V3, V5} [54]. While the accuracy, sen-
sitivity, and specificity were above 75% for both subsets of ECG leads in their initial
dataset, the performance of the developed model suffered a toll when the authors at-
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tempted to detect hyperkalemia from ECGs of CKD patients (stage 3 and higher), with
the highest accuracy and specificity below 70%. The sensitivity was, however, higher
than 88.9%.

In 2020, Lin et al. introduced another deep-learning model named ECG2Net
to detect potassium imbalances from 12-lead ECGs [142]. The model comprised
864 meta-features from 66 321 ECG recordings with a [K*] measurement taken one
hour before and after the signal acquisition. Their model outperformed six cardiolo-
gists in detecting hypo- and hyperkalemia, showing a respective sensitivity of 96.7%
and 83.3% and specificity of 93.3% and 97.8%. Nevertheless, the authors noted that
the model showed a decreased sensitivity in detecting mild-to-moderate hypokalemia,
which is the most commonly observed hypokalemic episode in clinical practice.

Equivalently to many other clinical problems, deep learning may offer attrac-
tive solutions for facilitating noninvasive blood electrolyte monitoring. The presented
deep-learning-based solutions are recent, but more are expected to appear in the up-
coming years. Nevertheless, the lack of large annotated datasets containing ECGs with
simultaneous blood tests hinders the development of machine-learning approaches,
thus limiting their clinical application [122].

2.3. Current Challenges and Opportunities

Although the influence of blood electrolytes on the cardiac AP has been unambiguously
studied [7,116], identifying dyselectrolytemia from an ECG is challenging [123, 124],
especially if no baseline ECG is available for comparison [125]. The specific effects
of electrolytes on the ECG morphology are vastly dependent on previous structural
and conduction abnormalities in the heart, the pace of electrolyte fluctuations, and the
levels of antagonistic electrolytes that stabilize the cardiac AP [42]. This multitude of
factors that can mask or mimic many of the anticipated ECG changes of electrolyte
imbalance profoundly contributes to the low ECG specificity [123] in detecting dyse-
lectrolytemia, which is why most research focuses on developing new ventricular re-
polarization markers more specific to blood electrolyte levels.

While the methods mentioned in Sec. 2.2 demonstrate that ECG-based estima-
tion of electrolyte levels is conceivable and worthy of further research, none has yet
shed light on the feasibility of noninvasive blood electrolyte monitoring in ambula-
tory scenarios. All methods present at least one of the following limitations that can
encumber ambulatory blood electrolyte monitoring:

1. They require standard 12-lead or precordial-lead ECGs, which cannot be reg-
istered with practical consumer healthcare devices designed for ambulatory monitor-
ing.

2. They were developed and investigated in ECGs acquired throughout HD,
where electrolyte levels fluctuate more rapidly than in everyday ambulatory scenarios.
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Rapid fluctuations are known to induce noticeable ECG morphology changes [42], but
it is unclear whether ECGs can capture gradual fluctuations. Furthermore, other vari-
ables, such as hemodynamic instability, ultrafiltration rate, dialysate composition, and
fluid fluctuations, instigate electrophysiological disturbances similar to those attributed
to electrolytes [139]. Thus, the causality of the changes reported by the previous studies
needs deeper examination. For instance, the QRS-derived markers proposed in [137]
were associated with [K*] and [Ca**] fluctuations during—but not between—HD ses-
sions.

3. They do not account for possible confounding factors that can affect the per-
formance of the proposed markers, such as concomitant electrolyte imbalances [42,
125].

4. They entail precise delineation of low-amplitude waves, which can be chal-
lenging to achieve in noisy ambulatory signals.

The importance of reduced-lead ECGs for ambulatory monitoring

The fact that nearly all currently available methods or conventional approaches
for deriving ventricular repolarization markers require 12-lead or several precordial-
lead ECGs hinders the scientific-technological advancement of solutions for facilitat-
ing noninvasive ambulatory blood electrolyte monitoring. Standard 12-lead ECG sys-
tems are uncomfortable for long-term continuous monitoring applications, whereas
most consumer healthcare devices designed to provide maximum comfort wear reg-
ister only frontal-lead ECGs. Even the few devices that offer precordial lead ECG
registration are limited to one-to-two precordial leads.

Intermittent monitoring of blood electrolyte levels could be a viable option to
mitigate prolonged-wear discomfort. However, configuring eight-to-ten electrodes as
specified by clinical Holter monitors is usually an intricate task for the ordinary patient,
making it unfeasible to request patients to set up such devices at home. Conversely,
consumer healthcare devices are designed to ameliorate patient discomfort and are
compact, practical, and easy to configure, but, once again, they are constrained by the
number of ECG leads they can register.

The lack of practical solutions for ambulatory monitoring scenarios is arguably
the primary hurdle in the noninvasive blood electrolyte monitoring research pipeline.
First, it complicates the performance evaluation of existing methods in realistic ev-
eryday scenarios where electrolyte levels fluctuate gradually. In addition, the lack of
practical methods discourages the development of other potential solutions that could
harness the value of some of the well-established ventricular repolarization markers,
such as the spatial QRS-T angle, as blood electrolyte surrogates. Importantly, patient
adherence would be low without comfortable ECG recording systems.
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The tradeoffs of reduced-lead ECGs

Admittedly, reducing the number of leads to the ones that consumer healthcare
devices can register comes with tradeoffs. The availability of multiple ECG leads can
improve [K*] estimation [52] and enable the estimation of other multi-lead ventric-
ular repolarization markers. Furthermore, many of the anticipated ECG changes of
mild dyselectrolytemia are typically visible in precordial leads (V5-V6) [42,62,133].
Nevertheless, [K*] estimation from single-lead ECGs acquired before and after HD is
possible [131], suggesting that consumer healthcare devices may suffice for noninva-
sive ambulatory blood electrolyte monitoring.

Requirements for ambulatory monitoring

In addition to being restricted to reduced-lead ECGs, methods for facilitating
noninvasive blood electrolyte monitoring must face the other challenge shared by any
technological ECG-based solution for ambulatory applications—noise. Ambulatory
signals are prone to noise and artifacts that can negatively affect the performance of
these potential ECG-derived markers of blood electrolyte levels. Thus, to be suit-
able for ambulatory applications, ECG-based descriptors must be capable of capturing
gradual blood electrolyte fluctuations, robust to noise, and preferably estimated from
reduced-lead ECGs.

2.4. Conclusions of the Chapter

1. Abnormal blood electrolyte levels alter the electrophysiological properties
of cardiac cells, changing the shape and morphology of their AP, which can result in
morphological changes in the ECG waveform. Thus, ECGs are an appealing solution
for noninvasive blood electrolyte monitoring.

2. Because ventricular repolarization displays heterogeneity, it is more sensitive
than depolarization to blood electrolyte derangements. The ECG patterns of dyselec-
trolytemia, therefore, generally involve some form of morphological alterations in the
post-depolarization ECG components: the ST segment (influenced by [Ca**]) and T-
wave (influenced by [K*]).

3. Dyskalemias are the electrolyte disorders that most strongly correlate with
noticeable ECG changes. Hyperkalemia is characterized by peaked T-waves, espe-
cially in precordial leads. As blood [K*] increases, the QRS widens uniformly, the P-
wave decreases in amplitude, and the PR interval lengthens. In contrast, broad and flat
T-waves are visible in hypokalemia, and U-waves become prominent in leads V2-V3,
alongside ST depression. Some clinicians consider the bifid/notched T-waves rather
than the emergence of U-waves as the main ECG pattern of hypokalemia.

4. Calcium abnormalities affect the duration of the ST segment: hypercalcemia
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increases it, whereas hypocalcemia lengthens it. The T-wave duration is not altered in
hypocalcemia.

5. Identifying dyselectrolytemia from an ECG is challenging because many fac-
tors mask or mimic the anticipated ECG patterns of electrolyte imbalance. The specific
effects on the ECG morphology depend on pre-existent CVD, concomitant electrolyte
abnormalities, and the pace of electrolyte fluctuations.

6. Recently, novel T-wave morphology descriptors have been proposed to es-
timate blood [K*]. Albeit with promising results, the performance of such methods
was investigated exclusively during HD sessions, where electrolytes fluctuate much
more rapidly than in everyday ambulatory settings. Furthermore, the described meth-
ods require 12-lead or precordial-lead ECG systems impractical for ambulatory appli-
cations. Consequently, the feasibility of noninvasive blood electrolyte monitoring in
out-of-hospital scenarios remains unexplored.
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3. QUANTIFICATION OF T-WAVE MORPHOLOGY CHANGES IN SINGLE-
LEAD ECGS VIA MODEL-BASED PARAMETERIZATION

3.1. Rationale and Conceptual Framework

As explained in Sec. 2.1.4, ventricular repolarization is rather more sensitive than de-
polarization to changes in blood electrolyte levels due to its heterogeneity [48]. Since
K" is the central ion in repolarization, it is unsurprising that dyskalemia is a signifi-
cant catalyst of SCD-triggering arrhythmias [143], making adequate blood potassium
management a priority for clinicians treating chronic diseases.

One of the most vulnerable populations to dyskalemia is HD patients, who have
little to no renal function and rely exclusively on intermittent K* clearance provided
by HD to maintain the homeostatic blood electrolyte profile [144]. HD is typically
programmed at three weekly sessions (e.g., Monday-Wednesday-Friday), separated by
two 2-day- and one 3-day-long hiatus, known as the short and long interdialytic in-
tervals. Between HD sessions, patients can excrete only small amounts of K* through
the colon [145, 146], while most K™ accumulates in the blood, often engendering hy-
perkalemia. The prevalence of hyperkalemia during the short interdialytic interval is
already considerable at 16.3—-16.8 events per 100 patient months but it is 2.0-2.4 times
more likely to emerge during the long one [144]. Potassium fluctuations also pre-
cipitate more arrhythmogenic events throughout the long interdialytic interval [9, 10],
further aggravating the odds of SCD during this period [92, 147].

Even the treatment of hyperkalemia is fraught with clinical challenges. For in-
stance, increasing the K* clearance during HD is usually unavailing, often leading to
post-HD hypokalemia in 40% of patients [148]. Both hyper- and hypokalemia are re-
peatedly linked to adverse events in HD patients [144, 148], thus further alluding to the
clinical importance of regular blood [K*] monitoring in this population.

Given the high mortality risk and hyperkalemia prevalence in HD patients [92,
144], it is understandable that all current research on noninvasive blood electrolyte
monitoring focuses on quantifying [K*] in this population, leveraging on the fact that
hyperkalemia is more easily recognizable on the ECG than other dyselec-
trolytemias [149, 150]. Nearly all methods proposed in the literature use some form
of T-wave morphology descriptor to measure [K*] [43-45,51-53, 131, 138]. Albeit
with encouraging results, the methods rely on descriptors derived from ECG leads un-
suitable for ambulatory monitoring and were investigated exclusively during HD ses-
sions, where electrolyte levels fluctuate much more rapidly than in everyday scenarios.
Therefore, the feasibility of noninvasive ambulatory blood potassium monitoring of
blood is still unexplored.
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Research design

The study presented in this Chapter explores the feasibility of capturing blood
potassium fluctuations during activities of daily living from a single-lead ECG. It ex-
amines two of the four research questions underlined earlier in the dissertation:

* Canreduced-lead ECGs capture gradual blood electrolyte fluctuations in am-
bulatory settings?

* What possible confounding factors can affect the performance of potential
ECG-derived markers of blood electrolyte levels in ambulatory settings?

Since T-wave morphology descriptors can capture [K*] during HD sessions, the feasi-
bility of ECG-based blood electrolyte monitoring in ambulatory scenarios—and hence
the answer to the two previous questions—can be investigated by examining the re-
sponsiveness of T-wave morphology descriptors to gradual K* fluctuations during in-
terdialytic settings. To conduct this feasibility study, a database of single-lead ECGs
and blood samples was collected using a consumer healthcare device during the long
interdialytic interval. In contrast to other studies, this database includes ECGs of HD
patients with several cardiac diseases recorded in free-living conditions as a realistic
representation of the HD population. Information about external variables affecting
electrolyte levels, such as medications and meals, is also incorporated.

The response of patient-specific T-wave morphology changes to [K*] is evalu-
ated with two descriptors: (i) 65, a descriptor developed to account for the overall
T-wave morphology changes, and (ii) T,, the only available descriptor sensitive to
[K*] in single-lead ECGs during HD sessions. Given that the artifactual nature of am-
bulatory signals warrants for noise-robust descriptors, 6 is derived via model-based
parameterization. The performance of 6 ; and T, is evaluated case-by-case to identify
possible confounding factors and gain insights into what is necessary to address in the
future research on noninvasive blood electrolyte monitoring.

The concept of the proposed method

The proposed descriptor 65 quantifies ventricular repolarization changes in
single-lead ECGs via model-based parameterization of the T-wave morphology. 0 s
combines two parameters: an angle () and a temporal displacement (§) yielded by
the T-wave model. These two parameters act as surrogates for electrophysiological
traits of abnormal blood [K*] that cannot be straightforwardly determined—the T-wave
peakedness (0) and elongation (8), as explained in Sec. 2.1.4. Conceptually, as [K*]
rises, the T-wave becomes more peaked (|, 6) and shortens in duration (| ).

This Chapter presents the methodology applied to derive 6 and the results of
the first study attempting to monitor gradual potassium fluctuations in ambulatory set-
tings using single-lead ECGs. Parts of Sections 3.2-3.6 are quoted verbatim from the
previously published article: [59].
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3.2. Methods

The proposed descriptor 6 5 is derived from signal-averaged heartbeats of single-lead
ECGs. The pipeline consists of three stages: ECG preprocessing (Sec. 3.2.1), T-wave
parameterization (Sec. 3.2.2), and T-wave feature estimation (Sec. 3.2.3), each de-
scribed below.

3.2.1. ECG preprocessing

Single-lead ECGs are first preprocessed to obtain a signal-averaged heartbeat repre-
sentative of a predefined short period. The preprocessing stage consists of filtering,
signal quality assessment, heart-rate-based correction of T-wave duration, beat aver-
aging, and T-wave rectification (Fig. 3.1).

Signal qua.hty Heart rate Beat

Filtering assessment correction averaging
57BPM
. E B [Tross” g
Ll g V\— JolE
Reject
Raw ECG Time Time J

Fig. 3.1. Preprocessing of a single-lead ECG.

Filtering.  Baseline wandering and high-frequency noise are suppressed using high-
and low-pass finite impulse response (FIR) filters of high order with respective cutoff
frequencies of /. = 0.6 Hz and f, = 40 Hz. Although less computationally expensive fil-
ters (e.g., zero-phase Butterworth) are generally employed to filter ECGs, FIR filters
are selected instead to avoid instigating distortions in the ST-T segment and T-wave.

Signal quality assessment.  The signal quality index (SQI) criteria proposed in [151]
is applied to filtered ECGs to eliminate the beats of distinct morphology, such as ec-
topic beats or those corrupted by noise. Long-term ECGs should be segmented into
predefined short periods with a few-second-long overlap. In the study presented in this
dissertation, a 90 s-long sliding window with a 10 s overlap was employed to salvage
as many heartbeats as possible throughout the whole recording'. Segments with more
than 50% poor-quality beats are considered unanalyzable.

Heart rate correction.  Since the T-wave morphology is sensitive to heart rate os-
cillations, the ST-T complex is resampled to fit the current RR interval according to
Fridericia’s formula [153]. Resampling of the ST-T complex rectifies morphological

'It should be noted that the 90 s window length is necessary to rigorously examine in detail the response
of T-wave morphology changes to gradual electrolyte changes throughout the long interdialytic interval.
However, in future ambulatory monitoring applications, 20 s-long windows would realistically suffice to
obtain a good signal-quality averaged heartbeat [152].
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Fig. 3.2. T-wave rectification and parameterization for various ECG morphologies. After delineating the
T-waves for every valid averaged heartbeat, the T-wave is rectified, mirrored, resampled, normalized, and
subjected to parameterization.

alterations caused by heart rate to avoid misinterpreting them as alterations induced by
electrolyte fluctuations. Although hyperpolarization or hyperexcitability of cardiomy-
ocytes due to dyselectrolytemia can result in abnormal heart rhythms, its electrophysi-
ological effects on the heart rate are considered clinically relevant only during episodes
of arrhythmias [7,42], which are not analyzed in this study.

Beat averaging.  The high-quality resampled heartbeats are aligned and averaged,
resulting in a single signal-averaged heartbeat representative of each ECG segment.
The onset and offset of the QRS and T waves are delineated with the PQRST delin-
eation algorithm included in the ECGDeli [154] toolbox. The proposed descriptor 6 4
is then estimated from the delineated T-waves of each averaged heartbeat.

T-wave rectification.  Each delineated T-wave, T (n), undergoes a series of steps to
transform different waveforms as closely as possible into a positive T-wave (Fig. 3.2).
Accordingly, negative T-waves are inverted, 7'(n) = ~T (n). The T-wave onset (¢, ) and
offset (#;,) are amended to their local minimum amplitude point in waveforms with
ST-segment abnormalities. The T-wave baseline, estimated by linear interpolation be-
tween the amended onset and offset, is then subtracted from 7'(n) so that 7'(n) begins
and ends at zero amplitude. Finally, T(n) is standardized to counteract amplitude dis-
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crepancies caused by body position changes or pre-existent cardiac diseases:
T?(n) = —=——,Vn, 3.1

where T=(n) denotes the standardized T-wave, x, and S are the mean and standard devia-
tion of T'(n). From this point onwards, T (n) denotes the standardized T-wave, whereas
T (n) is the baseline-removed T-wave.

Although hypocalcemia can cause negative T-waves [42] and, therefore, inver-
sion of the T-wave polarity may hold meaningful value for noninvasive blood elec-
trolyte monitoring, the T-wave rectification stage is implemented to enable the inclu-
sion of patients with a history of ischemia and myocardial infarction, which are usually
excluded from studies due to displaying negative T-waves. Additionally, transforming
different waveforms into positive T-waves allows investigating the responsiveness of
T-wave morphology descriptors to blood [K*] in circumstances of concurrent calcium
imbalance that incurs T-wave polarity inversion.

3.2.2. T-wave model-based parameterization

The T-wave, composed of two asymmetrical slopes—upward and downward—is pa-
rameterized using a composite model of two functions to characterize each slope sep-
arately. The composite model, inspired by the models described in [155] and [156],
and briefly described in [58], comprises one Gaussian and one lognormal function
(Fig. 3.3). The Gaussian function construes the upward slope and is defined as:

T\ (15 0 1) = —— e(¥) 3.2)

2702

where n is the sample number, p, and o, are the location and scale parameters. The
lognormal function characterizes the downward slope and is expressed as:

_(umn—yd)—u ) )
o2
e R . (3.3)

Ty(n04, as 7 a) (n—7.) Ud\/ﬁ
where y,, u,, and o, are the respective location, scale, and shape parameters. Intro-
ducing the location parameter y , to the lognormal function allows for shifting 7, (n) in
time to always fit the downward slope without modifying the shape and scale parame-
ters. This approach ensures that x, and o, react unambiguously to morphological but
not temporal changes. 7'(n) is then characterized by combining (3.2) and (3.3) as:

T.(n) =w,T,(n) +w,T,;(n) +h. (3.4)

(&
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Fig. 3.3. T-wave composite model.

The subscript ¢ denotes the fitted composite model, whereas « and d indicate the up-
ward and downward slope parameters. Both functions are weighted by w, and w, and
balanced with an offset 4. All parameters are merged into the vector ¢ = [o,, 0 4, ft,» ity
Y 4»Wu»Wge, ] Which is estimated using the trust-region reflective least-squares algo-
rithm.

Similarly to all other curve-fitting algorithms, the trust-region-reflective least
squares algorithm entails initializing the elements of ¢ before starting the optimiza-
tion process. The lower and upper limits of ¢ also need to be specified prior to fitting.
Bounding the elements of ¢ aids in achieving computation efficiency by preventing
unnecessary additional computations and guarantees that the model fits as expected.
Instead of being determined empirically, as outlined in the published paper [59], the
initial values and boundaries of ¢ can be inferred from the physiological traits of the
T-wave slopes, in particular, the duration and position in time of 7, (n) and 7, (n). The
methodology for initializing and bounding ¢ is presented below. The superscripts 0,
L, and U denote the initial, lower, and upper limits of ¢ from this point onwards.

Parameter initialization

The preliminary values of the elements of $° construct the pre-parameterization
template 79(n). These values are dependent on the characteristics of T(n) and are
calibrated to ensure that 79(n) is below the peak of T (n) and there is a clear separation
(i.e., phase difference) between the initial functions 79 (n) and T9Y (n), as illustrated in
Fig. 3.4.

Since a Gaussian function construes the upward slope of the T-wave, yu,, controls
the time location (i.e., the horizontal shift in the time axis) of 79 (n), whereas o, indi-
rectly regulates its duration. A larger ¢, indicates a wider ’spread’ (scale) and ergo a
more elongated 79 (n). Thus, the initial parameters ;0 and ¢ can be straightforwardly
determined using the peak of 7T'(n) as a reference point:

1% =09 nz, and ¢% = 0.01s, where nz, = arg max (T(n)). (3.5)

The assigned value of ;9 situates 79 (n) just before the peak of 7'(n) and the arbitrary
value of ¢% = 0.01second suffices to construe the initial function while ensuring that
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Fig. 3.4. Initialization of the T-wave template 7. (n). Note the phase shift (a) between T, (n) and 7, (n)
and the initial values (b) of 1 and 10 and their lower and upper boundaries (¢) in relation to nz,.

T9 (n) stays within the upward portion of T (n). Since T (n) is the T-wave T (n) resampled
at 1000 samples, o2 needs to be converted to samples by multiplying it with F:

F = % where b = (3.6)

N
ma
where f; is the sampling frequency, and N is the number of samples in T'(n).
A similar rationale is applied to initialize 9 and ¢9 of the downward slope.
While the parameters of a lognormal function cannot be stipulated directly as those of
a Gaussian function, £9 and ¢9 can be derived from their Gaussian counterparts:

2 0-2
19 =1n M| and 0% =In (1 + ﬂ—;) (3.7)
ViR + 0% *

where p, and o, are the desired location and scale. Both parameters are selected
analogously to % and ¢9: pu, = 1.1 nz, to position T,;(n) after the peak of 7'(n) and
o, =09 =0.01s so that T, (n) stays underneath the downward portion of 7'(n).

For most T-waves, the initial location parameter of T,(n) can be set to y9 = 0,
as the described initialization of the u and ¢ parameters usually suffices to obtain the
necessary separation between 79 (n) and 7Y (n). However, in T-waves of exceptionally
short (or long) duration, 79 (n) and TY (n) can overlap (if short) or be too far apart (if
long). To mitigate such cases, yY can be determined iteratively until the phase differ-
ence between the peaks of 79 (n) and 79 (n) is within 15-30 ms apart (see Algorithm 1).
Confining the phase difference of 79 (n) and T9Y (n) to a specific time frame standard-
izes the preliminary template 72 (n) without adjusting any of the other initial x and o
parameters, which are more reactive to morphological differences and, therefore, more
difficult to define a priori. This constriction enables 79 (n) to adjust for a variety of T-
wave morphologies in an automated manner. The phase difference of [15-30] ms was
ascertained empirically.

The weight parameters w, and w, manipulate the amplitude of each function
without changing the location, scale, or shape parameters. Since empirical experi-
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ments demonstrated that initializing 79 (n) with a higher amplitude than 72 (n) yields
better results from the curve-fitting algorithm, 79 (n) is set to have twice the maximum
amplitude of 70(n). If w9 = 1, then:

max (T9(n))

We =% nax (T9(n))

(3.8)

Lastly, the offset & is set to the arbitrary value of 1° = 0.05 to shift 79(n) above the
baseline.

Algorithm 1: Initialization of )

Input: 79 (n), TY (n), u9, 09, 19, 09
Output: y9

1: search « true

2: 79«0

3: while search do

4: ny < argmax (T9(n; 69, 19, v9)
5: n, « argmax (T0(n; 69, pu9))

6: An < |nd - nu|

7: if A, > 30ms then

8: 79«79 -5ms

9: elseif A, < 15ms then

10: 79« % +5ms

11: else

12: search « false

13: end if

14: end while

Lower and upper limits

The lower and upper boundaries of ¢ constrain each function to their respective
slope. The boundaries of the location, shape, and scale parameters are set according
to physiological constraints, and their rationale is clarified below. Table 3.1 discloses
the boundaries for each element of ?5

Since the T-wave duration is typically not less than 100 ms, the lower boundaries
of the scale parameters ¢% and o must reflect this physiological constraint, i.e., o%
and o% must ensure that 7, (n) has a minimum duration of 0.10s. According to the
empirical rule, 99.7% of all observations of a Gaussian probability distribution P lie
within three standard deviations of the mean:

P(p—-30 <X, <p+30)=0.997, 3.9)

where & is an observation from a normally distributed random variable. Here, X; is
an instance in time. If the model was comprised of a single Gaussian function, ¢ could
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Table 3.1. Initial values and lower and upper boundaries.

T,(n) Ty(n)
Elements of ¢ I, o, w, 1, F o’ Ya wy h
Initial values 0.9n4 10* 1.0 1.1ng 10% Alg.1? 0.05
P P )
Lower boundaries 0.3n4 70% 1.0 ngs +7.5 ¥ 70+ -ng Eq. 3.8) 2.0
P P »
Upper boundaries  nz -7.5% 0.35n; 500 N, /2* 0.55N,* ngp 3.0
P 13 P

* Convert to its Lognormal counterpart using Equation (3.7).
# In milliseconds. Transform to samples with Equation (3.6).
* N = 1000 - nz. .

2 See Algorithm 1.

be estimated by manipulating Equation 3.9:

(i =30) + (4 +30) = 0.997X < o = %X, (3.10)

where X is the total number of observations. In this case, X would equal the T-wave
minimum duration (X = 100ms). However, because T, (n) is a composite model of
T, (n) and T, (n) with a minimum phase difference of 15 ms, ¢Z and o5 need to guar-
antee that T (n) is not longer than 100 ms when 7', (n) and T, (n) are separated by this
minimum phase shift. Thus, the total number of observations X for 7, (n) and T, (n) is
X =100-2x15 = 70 ms. o is then obtained using Equation (3.10) with X = 70 ms. o5
is estimated from o% using Equation (3.7), and ¢% = o¢L. Both % and ¢ are converted
to samples using Equation (3.6).

The upper boundaries of ¢¥ and ¢§ are defined as 35% and 55% of the length
of their respective slopes (Fig. 3.4).

The lower and upper boundaries of the x parameters position each function un-
derneath their respective slope. Thus, pZ = 0.3n7, and Y = Tp — 7.5ms. Conversely,
pk =T, +7.5ms to ensure the minimum phase of 15 ms separation between T, (n) and
T, (n), and pY is set at the midpoint (N,/2) of the downward slope (Fig. 3.4). ut and
uY are then employed in Equation (3.7) to derive p% and nY.

Since the model is devised to account for morphological—but not temporal—
T-wave changes, the location parameter y is allowed to shift around the peak of T'(n):
vi=-nz and yJ =nz .

The lower limits of the weight parameters w, and w, are the same as their initial
values. As for the upper limits, w{ = 500, and wY is calculated from Equation (3.8).
Lastly, the offset boundaries are defined as A~ = —2.0 and 4V = 3.0. These limits were
determined empirically.
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3.2.3. T-wave feature estimation

When blood [K™] rises above normal levels, the T-wave becomes more peaked and de-
creases in duration [7,42]. Variations in T-wave peakedness can be quantified with the
angle 6 between the upward and downward slopes: peaked T-waves render smaller 6
values, while a higher 0 equates to a flatter wave, as illustrated in Fig. 3.5a-b. Assum-
ing that each slope is defined as a line with gradient S, 6 can be calculated as:

0 = B — a = arctan(S,;) — arctan(S,,), 3.11)

where B and « are the angles between the temporal axis and the downward and upward
slope, and S, and S, are the gradients of the correspondent slopes (Fig. 3.5¢). S, and
S, are estimated from 7%(n) in a similar way as in [157]: two lines are computed in
an 8 ms window centered at the maximum gradient between T-onset and T-peak, and
at the minimum gradient between T-peak and T-offset (Fig. 3.5¢). S, and S, are the
gradients obtained from the fitted lines in a.u./s.

As the duration of repolarization shortens, the T-wave becomes less elongated.
Given that each function from the composite model depicts a slope, changes in T-wave
elongation can be characterized by a temporal displacement, §, between the points of
global maximum of 7, (n) and T,,(n) functions (Fig. 3.5d—e). Considering that the point
of global maximum of a probability distribution is its mode, § is given by:

S =my;—m,, (3.12)
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where m, and m,, are the modes of lognormal and Gaussian functions. The mode of
a Gaussian function is p,, whereas, for the three-parameter lognormal function, it is
calculated as follows:

my =7y + elHa=od), (3.13)

Given that & is derived from the resampled T(n), & has to be amended to the original
time scale:

5=5-0_ (3.14)

1000

where N is the number of samples in 7'(n). Conceptually, as blood [K"] starts to rise
slowly, the T-wave becomes narrower and more peaked, translating into lower values
of § (s) and 0 (°). Since 0 and & vary concordantly with each other, both decreasing
when [K'] increases, the descriptor 6 5 is proposed to amplify their response to blood
[K'] fluctuations:

0s =—log,,(0-96). (3.15)

The logarithm expands the dynamic range and ensures that 6 5 is positively correlated
with [K'] levels.

3.3. Data

Single-lead ECGs were collected from 17 HD patients (9 females, age 57.4+14.6 years),
hospitalized and ambulatory, during the long interdialytic interval using Bittium Faros
(Bittium Corporation, Oulu, Finland) ambulatory recorder at a sampling rate of 500 Hz.
The database contains a total of ~1078 hours of lead-I ECG signals, roughly 71 h per
patient.

Data collection

Data acquisition started before the last HD of the week and ended after the fol-
lowing HD (Fig. 3.6). From this point onwards, Friday HD refers to the last HD of the
week, whereas Monday HD denotes the following HD. Hospitalized patients were not
bedridden and were free to move inside the hospital facilities.

Blood samples were drawn twice (at the start and end) during each HD proce-
dure from hospitalized patients and thrice (at the start, mid, and end) from ambulatory
patients to assess blood [K*], [Ca], [Mg2+], and [HCO3] levels. At least one additional
blood sample between HD sessions was collected from hospitalized patients at a pre-
determined time instant, as decided by the physician on call. All patients were also
asked to register the time of meals and medication intake.
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Table 3.2. Patient and recording characteristics.

Patient characteristics

Recording characteristics

#/ Sex¥ L3 3 4 Total duration / 3
Type! Age Comorbidities Electrolyte imbalance High quality Other notes
#1/A F/69 Hypertension Hyperkalemia 732h/ Frequent PVCs
History of AF Hypermagnesemia 92.6%
Diabetes
#2/A F/68 Hypertension Hyperkalemia 73.4h/ Frequent PVCs
Ischemic heart disease: ~ Hypocalcemia (severe) 93.2%
stable angina pectoris
#3/H F/52 Hypertension Hyperkalemia 75.6,h/
LVH Hypocalcemia (mild) 95.3%
- Hyperparathyroidism
S‘ #4/A M/32 History of AF Metabolic acidosis 73.7h/
S LVH Hypermagnesemia 56.8%
#5/H F/70 Hypertension Hypocalcemia (severe) 55.8h/ 1V iron infusions
Severe anemia Metabolic acidosis 77.2% Blood transfusion
Urgent start of HD
#6/A M/50 Hypertension Hypocalcemia (mild) 74.7h/
LVH Hypermagnesemia 92.0%
Ischemic heart disease
Diabetes
Blood transfusion before Fri-
#7/H F/65 Hypertension Hypocalcemia (mild) 73.8h/ day HD
Ischemic heart disease: 73.1%
stable angina pectoris
LVH
Severe anemia
#38/H F/69 Hypertension Hyperkalemia 73.4h/ Paroxysmal AF
Hypocalcemia (mild) 65.1%
#9/H F/78 Ischemic heart disease ~ Hyperkalemia 69.8h/ PACs; Tachycardia
Hypocalcemia (mild) 79.7% Use of Sorbisterit
#10/H  M/29 Hypertension Hyperkalemia 77.6h/ Tachycardia
LVH Hypocalcemia (mild) 44.9% Use of Sorbisterit
Metabolic acidosis
#11/H M/51 Hypertension Hyperkalemia 75.2h/ Use of Sorbisterit
Hypocalcemia (severe) 97.2%
Metabolic acidosis
~
=
s #12H  M/64 Hypertension Hypocalcemia (severe) 759h/
S Diabetes Hypomagnesemia 79.8%
Concomitant electrolyte im-
#13/H  M/47 Hypertension Hyperkalemia 75.8h/ balance
Stroke Hypocalcemia (mild) 94.9% during the whole recording
Metabolic acidosis
#14/H  F/54 None Hypocalcemia (mild) 54.7h/ Thrombosis during Friday HD
Hypomagnesemia 41.0% Taken to minor surgery
Tachycardia
Urgent start of HD
#15/A M/79 Hypertension Metabolic alkalosis 75.6h/
Chronic heart failure Hypermagnesemia 96.2%

Ischemic heart disease
LVH
Diabetes

! A: ambulatory; H: hospitalized.
2 F: female; M: male.

3 AF: atrial fibrillation; LVH: left ventricular hypertrophy; PVCs: premature ventricular contractions; PACs: premature atrial contractions; IV: intravenous;
Sorbisterit (calcium polystyrene sulphonate) is a potassium-lowering medication.
4 Imbalances displayed at the start of Monday HD. Hyperkalemia: [K*]>5.5 mmol L-'; Hypocalcemia (severe): [Ca] < 1.9 mmol/L;

Hypocalcemia (mild): 1.9 < [Ca] < 2.23mmol L~!; Hypermagnesemia: IMgz‘] >1.03 mmol L-'; Hypomagnesemia: IMgz'] <0.74 mmol L5
Metabolic acidosis: [HCO3 <22 mmol L-1; Metabolic alkalosis: [HCO31>26 mmolL-1.
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Fig. 3.6. Data acquisition protocol. Lead-I ECG signals of hospitalized and ambulatory patients were

acquired throughout the long interdialytic interval using an ambulatory recorder. Blood samples of hos-

pitalized patients were collected twice during each HD (at the start and end) and at least once during the

long interdialytic interval. Blood samples of ambulatory patients were collected only through the course
of each HD (at the start, mid, and end).

Patient and recording characteristics

Out of 17 patients, two were excluded from the analysis. One patient presented
ventricular tachycardia episodes during the recording and was taken to the ICU, while
the other terminated recording just a few hours after Friday HD due to discomfort. Two
hospitalized patients required urgent HD one day earlier. The patients were divided
into two groups: Group I comprises patients with regular sinus rhythm and high signal
quality over the whole recording period, whereas Group II includes patients whose
recordings were noisy, or affected by arrhythmia or ingestion of potassium-lowering
medication (Sorbisterit). Patients in both groups manifested concomitant electrolyte
imbalances. Table 3.2 provides the patient and recording characteristics.

Each ECG was divided into three days: Day 0, covering the remaining hours of
the same day after Friday HD (until 22:00), Day I, and Day 2 as the ensuing and last
days of the long interdialytic interval, respectively. Since lying positions can consid-
erably alter the ECG morphology [158], Day I and Day 2 range from 07:00 till 22:00
as patients were usually awake within this period, and the likelihood of encountering a
lying position was reasonably low. ECG segments within episodes of arrhythmogenic
events were excluded from the analysis.

3.4. Experiments and Performance Evaluation

The performance of 65 is compared to the descriptor, T, introduced in [44,45,131].
Thus far, Ty, is the only available descriptor of blood [K*] that has been evaluated in
single-lead ECGs. Ty, is estimated as:

(3.16)

Tsq =

Sa_
VT
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where S, (in a.u./s) is the downward slope and T, is the peak-to-peak amplitude be-
tween the T-wave peak and offset. S, and T, were computed from the non-mirrored
T (n), normalized by the signal energy of its correspondent QRS-wave, as described
in [45]. It should be noted that T, is not applicable for negative T-waves [45]. De-
spite being often used by clinicians to identify potassium abnormalities, the T-wave
amplitude was not included for comparison since it shows an inferior performance to
that of T, [44]. Statistical descriptors of the T-wave morphology, such as skewness
and kurtosis, were outperformed by other asymmetry metrics [132,133] and, therefore,
not included for comparison.

Evaluation of potassium-induced T-wave morphology changes

The daily variation of 6 and Ty, relative to the [K'] reference values of each
individual is examined with distributions of 6560,  and Ty, —Ts,  obtained using
kernel density estimations. The reference values are calculated at 7, by finding the
mean during the first 30 min following Friday HD termination. Within this 30 min
period, [K"] remains nearly unchanged as none of the patients had a meal, thus avoiding
insulin spikes that drive blood [K] into the intracellular space [159].

The overlapping index 5 [160] is used to quantify similarities between the daily
distributions of 0 5 and Ts,. The index 5 can take values between zero and one, where
n=1 indicates that two distributions are identical. Intuitively, it is expected that higher
[K™] fluctuations will translate into smaller 5 values. The relationship between 7 and
A[K"]is assessed with the Pearson’s correlation coefficient (), where A[K'] is expected
to be negatively correlated with . The index 75 is calculated between the days with
assessed [K"], which, for the majority of patients, is solely between Day 0 and Day 2.
Since blood was collected at the start of Monday HD, the distribution of Day 2 includes
2 h preceding Monday HD as well. The subscript of 5 specifies the days between which
7 is evaluated, whereas A[K'] denotes the difference of [K*] between two days.

Evaluation of noise robustness

The robustness to noise of 6 5 and T, is investigated by comparing the coefficient
of variation ¢, of each descriptor within periods during which [K'] remains nearly
unchanged, but the signal quality was expected to vary. ¢, is estimated for each patient

as follows:
¢, = S; (3.17)

where s, and x are the standard deviation and mean of either 6 5 or T, within a given
period. Lower ¢, values within periods of low signal quality indicate a higher descrip-
tor stability and, therefore, more robustness to noise. The rationale behind using c,
as a noise robustness metric is as follows. Periods of low signal quality render more
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noisy averaged heartbeats, which can influence the estimation of T-wave descriptors.
If the descriptors are noise-robust, they will display little to no variation (i.e., |c,)
within periods during which the T-wave morphology will not be expectedly affected
by physiological conditions such as electrolyte fluctuations, body position changes, or
heart rate, despite the low signal quality. Conversely, a high variability (T¢,) in such
periods indicates that the descriptor reacts to noise rather than physiological causes.

Since ambulatory signals are recorded in an unsupervised fashion, ¢, is measured
in two different periods: ¢, = [21:00-22:00] of Day I and ¢, =[00:00-01:00] of Day 2.
During 7, patients were still awake, and the ECGs are expected to be of a lower quality
due to movement (e.g., walking around the house). Conversely, during 7,, patients
were asleep, and their physical activity was minimal, thereby increasing the quality.
This was confirmed through accelerometer signals recorded synchronously with the
ECGs. The periods ¢, and ¢, are chosen for two reasons:

* Intra- and intercellular K* shifts are likely more stable during Day I and Day
2, unlike during the same day after HD [161].

» The circadian variability of blood [K*] in patients with impaired renal func-
tion indicates that [K™] levels between 21:00 till 01:00 increase, on average,
only by 0.06 mmol L=! [162], which is minimal.

Although the circadian variability of blood [K"] in HD patients has not been studied, it
was observed that 6 ; responded similarly to the findings in [162] (see Fig. 3.10), thus
implying that the circadian rhythm is maintained.

3.5. Results
3.5.1. T-wave morphology responsiveness to potassium fluctuations

Figure 3.7 depicts the variation of 5 and T, in the patients of Group I. As expected,
05 and Ty, rise with the increase of [K*]. Note the low trendline steepness for pa-
tient #6, which corresponds well with little change in [K"]. Interestingly, T, varies
in the opposite direction in patient #4, who displayed positive and negative T-waves
and occasional ST depression. The proposed descriptor 60 5 appears to better deal with
alternating T-wave morphologies than T,.

Figure 3.8 shows the variation of 6 5 and T, in the patients of Group II of prob-
lematic recordings. Unsurprisingly, 6 s and T, show trends discordant with [K'] in
patients with: atrial fibrillation (#8), premature atrial contractions (#9), and tachycar-
dia (#9, #10, #14). Nevertheless, in periods of sinus rhythm, during which the T-wave
morphology stabilizes, both descriptors vary agreeably with [K'].

89



L3 q136r q125- Q119 Q127R qL15p 097 270
N7
. e 1V iron
- ~
£ 008} ~ o} Z—int L& Jow} /41.07/1.06»—-—-;—:'10.84/5.0
A P = —~
< 7 - | B )
7 'd - - =)
. L L AL S L L g
0.83 85 99 0.80 0.860—- 98 72 30 £
cgative
1nr qlo.ir S10.6 5 99- 2108 1106 1270 1702
_ N1 f £
= ~ Negative i =
2 ]
2 s} 3 -7.2-///-7.7- o 63} _ A st 4 88k ____‘7.3-/5.0
< 7 “ y B —
[_.m 7 Y - -
' ) ) o r . .
59 43 49 27 24 7.0 2.8 3.0
0 34 68 0 35 70 0 34 6 0 33 60 24 490 34 68 0 35 70
Time (h) Time (h) Time (h) Time (h) Time (h) Time (h) Time (h)

Fig. 3.7. Variation of 65 (top row) and T, (bottom row) together with the estimated linear trend (solid
blue line) and [K"] values (red dots, dashed line) for individual patients of Group I. The linear trends are
estimated using the best-fit linear polynomial between the consecutive time instances of [K'] assessments.
Grey patches depict periods of negative T-waves, during which 6 5 is computed without any correspondent
T, values. Yellow patches depict periods of intravenous (IV) iron infusion which may affect the T-wave
morphology. Patient #5 was taken to HD one day earlier, and thus no blood was taken between HD
sessions. The blood samples from Friday HD of patient #7 were misplaced; hence the absent trendline.
Dots of different colors highlight patients with metabolic acidosis (yellow) or severe hypocalcemia and
metabolic acidosis (blue and yellow).
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Fig. 3.8. Variation of ¢ (top row) and T, (bottom row) together with the estimated linear trend (solid
blue line) and [K'] values (red dots, dashed line) for individual patients of Group II. The linear trends are
estimated using the best-fit linear polynomial between the consecutive time instances of [K'] assessments.
Grey patches depict periods of negative T-waves, during which 6 ; is computed without any correspon-
dent T, values. Red patches depict periods of arrhythmias: atrial fibrillation (AF) and premature atrial
contractions (PACs). Patient #14 was taken to HD one day earlier. The blood sample at the end of Friday
HD of patient #10 was misplaced. The dashed vertical line denotes the time of Sorbisterit (Sorb) intake,
whereas blue patches depict the duration of the Sorbisterit eftect. Dots of different colors highlight the
patients who displayed metabolic acidosis (yellow), severe hypocalcemia (blue), or both.

Impact of concomitant electrolyte imbalance on T-wave morphology
Flat or negative T-waves prevailed in patients #5 and #12, who manifested severe
isolated hypocalcemia. T, could only be computed during the short time intervals in
which the T-wave was positive. Curiously, both patients displayed discrepantly high 6 4
values despite the absence of hyperkalemia, likely due to T-wave narrowing during ST-
T complex resampling used for the correction of heart-rate induced T-wave changes.
In patients with hyperkalemia concomitant with metabolic acidosis (#10, #11,
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Fig. 3.9. Distribution of 6,5 — 65  (left) and T, - T, , (right) of Group I and Group II during the long

interdialytic interval. 5,_, is the overlapping index between the distributions of Day 0 and Day 2, whereas

[K*],_, is the increment of [K*] between the end of Friday HD and the start of Monday HD. The number

of intervals during Day 2 is small in patients #5 and #14 who were taken to HD one day earlier. The blood

samples from Friday HD of patients #7 and #10 were misplaced (ND stands for no data). For patient #10,
blood was collected on Day 1.

#13), T, showed a more prominent trendline steepness, possibly due to the overlaying
effects of both electrolytes on the T-wave downward slope.

Daily variation of T-wave morphology

The daily distributions of 6 5 -0 5  and Ty, — T,  are givenin Fig. 3.9. As antic-
ipated, 5 responds inversely to [K*] variations, i.e., lower 5 values (patients #1-4, #8,
and #12) indicate a higher increase in [K*] and, thus, a smaller overlap of distributions,
and vice versa (patients #6, #10). The Pearson’s correlation coefficient shows that both
descriptors are moderately correlated with the changes in [K*], being r=-0.56 (p<0.01)
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for 0 5 and r=-0.57 (p<0.01) for Ts,.

When calculated for each group separately, the correlation is much stronger in
Group I with r=-0.81 (p>0.01) for 05 and r=-0.79 (p>0.01) for Ts,, with Group II
showing a weaker correlation of r=-0.45 (p>0.01) for 6 5 and r=-0.44 (p>0.1) for T,.
It appears that 6 5 is more stable than T, except for #9, #14, and #15, for whom 7,_,
shows unexpected values compared to A[K'],_,. In those patients who displayed both
metabolic acidosis and hyperkalemia (#10, #11, and #13), T, shows lower 75,_, values
for A[K™],_,.

Broader distributions are observed in patients #4, #5, #9, #12, and #15, who
exhibited T-wave morphologies across the long interdialytic interval different from
those used to estimate 65, and Ts, . A decrease of 6 5 and T, during Day 0 is visible
in the majority of patients, possibly due to insulin spikes during meals which can drive
[K'] inside the cells.

Circadian variability of T-wave morphology descriptors

Figure 3.10 shows the mean of 6 5 from 07:00 till 22:00. During Day I and Day
2, 05 shows higher values in the morning, peaks around lunchtime ([12:00-14:00]),
and decreases across the afternoon until the evening. Also, 6, increases during the
night as 6 5 is higher at 07:00 of Day 2 compared to 22:00 of Day 1.

3.5.2. Impact of signal quality on performance

Figure 3.11 shows the dispersion of ¢, for 6 and T, within the periods of low (z,)
and high (z,) signal quality. Both 6, and T, show higher ¢, during 7,. However, 05
displays lower ¢, during ¢,, which suggests a greater stability in noisy conditions than
Ts,. While the median difference of T, is minimal between ¢, and ¢,, T, exhibits a
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Fig. 3.11. Boxplot of coeflicient of variation ¢, computed for each patient during two different signal
quality periods: 7, = [21:00-22:00] of Day I (lower signal quality) and 7, = [00:00-01:00] of Day 2 (higher
signal quality).

large dispersion during z,. In contrast, 6 s seems more constant in less noisy conditions.
Patients #8 and #12 were excluded from this analysis as #12 displayed T-wave inversion
(for which T, cannot be estimated), and #8 displayed atrial fibrillation during 7, and

t,.

3.6. Discussion

Gradual electrolyte-induced T-wave morphology changes were quantified using model-
based parameterization. The yielded parameters of such models can act as surrogates
of important physiological traits that cannot be straightforwardly determined (e.g., T-
wave duration) [163]. Additionally, model-based parameterization enables a global
evaluation of the T-wave morphology and may increase robustness to noise [164].

T-wave responsiveness to gradual blood potassium fluctuations

Changes in the T-wave morphology were tracked using two descriptors: 65 and
Ts,. The progression of 6 5 and T, during the long interdialytic interval is promising,
with both showing an appealing potential to become estimators of blood [K*]. Evenin a
group of patients with various underlying cardiac diseases, 0 s and T, are responsive to
[K'] fluctuations, indicating that long-term monitoring of such fluctuations is feasible.
Furthermore, 65 exhibited a higher stability during noisy periods than 7,, which is
advantageous for ambulatory monitoring.

Interestingly, the descriptors showed an increased variability during Day 0 com-
pared to Day I or Day 2. Such variability is plausible since the effects of HD-induced
hemodynamic stress could presumably be felt for hours after HD, thus affecting the
T-wave morphology. The existence of such a brief period, during which the T-wave
morphology can differ from the one manifested during the long interdialytic interval,
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may have substantial implications on [K"] estimation. One approach for ECG-based
estimation of [K*] levels can be the use of a reference T-wave of each individual at a
known [K'] level. Indeed, previous studies have shown a decrease in the error of [K']
estimation after patient-specific calibration [43,45]. However, these studies focused
on assessing [K'] levels during HD exclusively, where the same T-wave morphology—
similar to that used to estimate the reference values—persists throughout HD. Using
T-waves acquired during or immediately after HD as a reference may result in [K'] es-
timation errors when the morphology alters. Thus, days between HD sessions should
preferably be used for reference T-wave assessment.

Another finding is the apparent circadian periodicity of 6 5, suggesting that [K"]
naturally fluctuates during the day in HD patients similarly to healthy subjects [162].
Although there is a lack of studies examining the circadian rhythm of blood [K'] levels
in HD patients, such circadian variability in these patients is still plausible. With little
to no renal function left, as an attempt to maintain homeostasis, HD patients heavily
rely on aldosterone-regulated colonic K* secretion [145, 146]. While the circadian
rhythm of aldosterone is well understood in healthy subjects [165], it is unclear whether
HD patients maintain such circadian rhythm.

Both 6, and Ty, started to decrease 2 h after the intake of potassium-lowering
medication (Sorbisterit), which is compatible with its onset of action. The decrease of
0 s and T, lasted about 10 h, which is within the expected range of the Sorbisterit effect
duration. This observation needs to be considered to understand how Sorbisterit, or
other standard medications prescribed to HD patients, alter(s) the T-wave morphology.

Evaluation of blood potassium with concomitant calcium imbalance

Compared to T,, the range of 6 5 values is narrower and more consistent across
the dataset, except for patients with isolated severe hypocalcemia (#5 and #12), both
free from any pre-existent cardiac issues. Intriguingly, these patients exhibited high 6 4
values without hyperkalemia. Atypically low values of § were found in these patients,
which indicates T-wave narrowing as, conceptually, § mostly depends on the T-wave
duration. Considering that the T-wave duration is not affected by calcium imbalance
with normal [K'] levels [42], § should not have reacted in this manner. Resampling
of the ST-T complex, which is distinctively prolonged in hypocalcemia [42], may have
affected the T-wave duration.

While flattened or negative T-waves can be prominent in isolated calcium ab-
normalities [42,166], particularly in severe levels, changes in the ST-segment duration
are the most discernible marker of [Ca] levels [42]. Although this study did not ana-
lyze the effects of [Ca] on the ECG in detail, a prolonged ST segment was observed
in three patients who displayed severe hypocalcemia. However, ambulatory estima-
tion of the ST-segment duration is challenging, particularly in pathological conditions
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of ST-segment deviations, as frequently encountered in HD patients. For instance, in
patient #10, with ST-elevation characteristic of left ventricular hypertrophy (LVH), the
ST-elongation was not as blatant in lead-I as in patients #5 and #12, both without ST-
deviations. In cases of ST-segment deviations, perhaps relying on other ECG leads can
mitigate this problem.

Recognizing abnormal calcium levels may improve the detection of dangerous
blood [K"] levels for twofold reasons. Firstly, isolated calcium imbalance can alter the
T-wave morphology [42], thus interfering with the assessment of potassium-induced T-
wave changes. Secondly, [Ca] and [K'] have a complex relationship, which affects the
intra- and atrioventricular conduction within the heart [42], meaning that the harm-
fulness of [K'] levels, either in hypo- or hyperkalemia, is tightly dependent on [Ca]
levels [7]. For instance, hypercalcemia antagonizes, whereas hypocalcemia exacer-
bates the consequences of hyperkalemia [47]. Determining the presence of calcium
imbalance can aid in ascertaining whether the measured [K"] level is alarming.

Evaluation of blood potassium with concomitant acid-base imbalance

Along with concurrent calcium imbalance, the detection of [K*] fluctuations can
be hampered by an acid-base disturbance. When acidosis emerges, the electrophysi-
ological effects of hyperkalemia are, expectedly, aggravated [47]. Consequently, one
would anticipate 6 5 and T, to respond with higher values in such conditions, which
was not entirely the case in patients with hyperkalemia and acidosis. Though rare,
severe hyperkalemia with minimal T-wave changes has been reported in patients with
concomitant acidosis [167]. Although noisy recordings or LVH could justify such an
unexpected variation of 6 5 and T, the impact of acidosis in [K"] estimation should not
be neglected. Acidosis can instigate T-wave morphology changes resembling those of
hyperkalemia [117]. The use of solely T-wave-derived features to evaluate [K"] levels
when acidosis arises may either under- or overestimate [K'] levels.

A compelling case to mention is patient #15 whose values of 65 and T, de-
creased during the long interdialytic interval. Besides being the patient with the most
complicated medical history, including chronic heart failure (HF), LVH, and ischemic
heart disease, he was the only patient who experienced metabolic alkalosis. Even
though alkalosis does not usually cause hypokalemia in HD patients [168], it is pe-
culiar to see that 65 and T, decreased. Such a behavior of 65 and T, is something
we would expect in the case of [K'] depletion as in hypokalemia. Since alkalosis-
related ECG changes resemble those of hypokalemia [169], one must ask whether this
unusual descriptor variation is an inherent result of the HF condition or a consequence
of alkalosis.

While blood pH imbalance is seldom life-threatening in itself if not in severe lev-
els [67], identifying acid-base disturbances may not only improve [K*] monitoring, but
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also aid in assessing the arrhythmogenic potential of [K*]. In addition to being vastly
prevalent in HD patients, acid-base imbalances can encourage the onset of arrhythmias
by (i) impairing vascular and myocardial function [79], and (7i) influencing the levels of
various electrolytes, including [K'], [Na], and [Ca] [67, 117]. For instance, metabolic
acidosis induces [K"] shifts from the intracellular to the extracellular space, potentially
leading to hyperkalemia [67]. Thus, the identification of [HCO5] levels could enable a
better management of blood [K']. Nevertheless, with [K'] and [HCO3] compounding
their effects on the T-wave morphology, the feasibility of utilizing a single-lead ECG
to monitor [K'] fluctuations in the presence of abnormal [HCO3] levels is, at the very
least, contentious. Future studies should address the confounding potential of [HCO3 ]
by exploring other descriptors of [HCO5] levels.

Evaluation of blood potassium in alternating T-wave morphologies

In addition to concomitant calcium and bicarbonate imbalances, the performance
of the T-wave morphology descriptors for estimating blood [K*] can be affected by
alternating T-wave morphologies. Independently of whether different physiological
conditions instigate morphology variations, the disparity in the observed T-wave mor-
phologies, even in the same patient, further demonstrates the importance of dealing
with various T-wave morphologies. With previous studies having used exclusively in-
tradialytic T-waves to seed models for the quantification of blood [K "], the performance
of such models is, arguably, affected by different interdialytic morphologies. While es-
timating [K"] levels from T-waves identical to the patient-specific reference is ideal, it
may not always be attainable to do so during activities of daily living. The availabil-
ity of multiple ECG leads and lead-reduction techniques could ameliorate the problem
of alternating T-wave morphologies [170]; however, 12-lead ECG recorders are often
uncomfortable to wear and are hence unsuitable for long-term monitoring. Handling
various ECG morphologies is thus indispensable for the noninvasive monitoring of
electrolyte fluctuations. Indeed, in a highly susceptible group of HD patients, the dis-
crepancy in T-wave morphologies can stem from many sources, either psychological
stress [171], changes in body position [158], physical activity [172], other electrolyte
imbalances [42], or due to some pre-existent cardiac comorbidities. Understanding the
causes of morphology changes in HD patients is pivotal to avoiding the misclassifica-
tion of other pathologies and electrolyte imbalance.

Limitations and future directions

Despite the encouraging results, deriving 6 and T, in ambulatory conditions
still poses some obstacles that must be tackled, with one of them being the innate com-
plexity of determining T-wave boundaries in noisy conditions. When tachycardia or
an episode of premature atrial contractions (PACs) occurs, the P-wave can partially
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hide within the preceding T-wave, resulting in either a disturbed T-wave morphology
or a misguided delineation of the T-wave. The accuracy of most PQRST delineators,
including the one used in this study, is hindered during tachycardia or PAC episodes.
Even though an SQI detector should have disregarded ECG segments with premature
heartbeats, the SQI applied in this work failed to identify PAC episodes, eliminating
exclusively ventricular ectopic beats and noisy segments. Premature heartbeats, atrial
or ventricular, must be detected for two reasons: (i) to avoid delineation errors of the T-
wave; and (ii) blood [K*] and [Mg**] imbalance can trigger ectopy and, consequently,
arrhythmias [143]. The frequency of ectopy occurrence might, therefore, indicate ab-
normal electrolyte fluctuations.

The small number of patients included in this study, albeit a realistic representa-
tion of the HD population, certainly restricts the generalization of the outlined findings,
especially to other populations susceptible to potassium imbalance. Furthermore, the
lack of patients with severe hypo- or hyperkalemia encumbers the evaluation of the
performance of 65 and T, in extreme cases with distinctive ECG morphologies.

The exploration of additional electrolyte markers is needed. Having markers of
blood [K], [Ca], and [HCO;3] can facilitate routine electrolyte monitoring, aid in ascer-
taining the harmfulness of [K'] levels, and possibly avert life-threatening conditions.
Thus, future studies should focus on developing descriptors of [Ca] and [HCO5] levels
and optimize [K"] estimation under concomitant electrolyte imbalance. Future studies
should also strive to collect blood samples on days between HD sessions and extend
the research to other populations susceptible to [K*] imbalance (e.g., HF patients).

3.7. Conclusions of the Chapter

1. Noninvasive ambulatory monitoring of blood electrolytes using single-lead
ECGs is feasible even in complicated HD patients with comorbid heart disease.

2. Patient-specific T-wave morphology changes are responsive to blood potas-
sium fluctuations during the long-interdialytic interval. The relationship between T-
wave morphology changes and blood potassium fluctuations was examined using two
descriptors: (i) 05, a model-based parameterization descriptor developed to account
for the overall T-wave morphology changes, and (ii) Ts,, the only available descriptor
sensitive to [K*] in single-lead ECGs during HD sessions.

3. 04 and Ty, responded concordantly with [K*] fluctuations in a database of
15 ECGs and blood samples acquired over the long interdialytic interval (~3 days).
Both descriptors also reacted to potassium-lowering medications and insulin spikes
after meals. The overlapping indexes of the daily distribution (7) of 6, and T, are
moderately correlated with the changes in [K*] (+ = -0.56 and r = —0.57, respectively).
0 s exhibited a daily variability similar to the circadian variation of blood [K*] in healthy
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subjects, peaking amidst morning and decreasing until evening.

4. Although both 6 5 and T, can be estimated from ECGs registered with con-
sumer healthcare devices, 0 5 is less affected than T, by motion-induced noise, which
is preferable for ambulatory monitoring.

5. Concomitant electrolyte imbalance, namely that of calcium and bicarbonate,
and alternating T-wave morphologies were two confounding factors that affected the
performance of 65 and T,. Since the curve-fitting algorithm standardizes the T-wave
template prior to parameterization, 6 5 performed better than T, in alternating T-wave
morphologies. Nonetheless, future research must find technological solutions to han-
dle alternating T-wave morphologies.

6. Given the preponderance of alternating T-wave morphologies that can differ
from those exhibited during HD, reference T-waves should preferably be assessed in
conditions that mimic the everyday monitoring scenario, i.e., in interdialytic settings.
Future studies should strive to collect blood samples in such scenarios (and not just
during HD) and extend to other patient populations susceptible to potassium imbal-
ance.
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4. DEEP-LEARNING-BASED ESTIMATION OF THE SPATIAL QRS-T AN-
GLE FROM REDUCED-LEAD ECGS

4.1. Rationale and Conceptual Framework

Ventricular repolarization and electrical conduction disturbances are well-documented
consequences of electrolyte imbalance [48, 116]. One clinically significant aspect of
ventricular repolarization is its heterogeneity. As pointed out in Sec. 2.1.2, the distri-
bution of repolarization currents across the ventricular myocardium is heterogeneous,
with cells in distinct ventricular regions having different activation times and AP dura-
tions [48,62]. While a certain level of repolarization heterogeneity is crucial to ensure
adequate cardiac function, exceeding the physiologically reasonable level of hetero-
geneity can precipitate SCD-triggering ventricular arrhythmias [143, 173]. Abnormal
electrolyte levels amplify this repolarization heterogeneity, resulting in a pathological
dispersion of ventricular repolarization [48]. Thus, assessing repolarization hetero-
geneity in the ECG could add value to noninvasive blood electrolyte monitoring.

One of the most well-established markers of repolarization heterogeneity is the
spatial QRS-T angle [49]. The QRS-T angle measures the similarity between the di-
rection of depolarization (QRS) and repolarization (T-wave). It is defined as the angle
between the QRS- and T-vectors in the 3D space [57] and is deemed one of the most
promising markers for SCD risk stratification in various patient populations, includ-
ing the general population [50]. While the link between the spatial QRS-T angle and
blood electrolyte levels has not yet been investigated, it is plausible to hypothesize that
daily QRS-T angle variations could be related to repolarization disturbances caused by
electrolyte fluctuations. Therefore, the spatial QRS-T angle may be a potential marker
of blood electrolyte levels.

Unfortunately, spatial QRS-T angle estimation is restricted to clinical settings.
The conventional approach for estimating the angle requires orthogonal signals, either
the VCG from the Frank lead system [57], or orthogonalized 12-lead ECGs that resem-
ble the VCG [174]. The registration of 12-lead ECGs, or even Frank VCG, requires
patients to use eight or ten electrodes [108], causing considerable discomfort for am-
bulatory or long-term monitoring applications. Consumer healthcare devices are prac-
tical, comfortable, and hence suitable for out-of-hospital monitoring applications and
could be a viable option for noninvasive blood electrolyte monitoring. However, the
sets of ECG leads registered by these devices are insufficient to reconstruct the VCG,
thus precluding the estimation of the spatial QRS-T angle in such ambulatory scenar-
ios. Methods for estimating the spatial QRS-T angle from reduced-lead ECGs could
be deployed in consumer healthcare devices and facilitate out-of-hospital QRS-T angle
monitoring.

99



Research design

The lack of methods for estimating the spatial QRS-T angle suitable for ambu-
latory applications hinders the scientific investigation of the relationship between the
QRS-T angle and blood electrolytes. For instance, the number of ECG-leads regis-
tered in the database (Sec. 3.3) collected for examining the feasibility of noninvasive
blood electrolyte monitoring in Chapter 3 is insufficient to estimate the QRS-T angle
using the conventional (i.e., gold standard) approach. Therefore, the first step toward
examining the clinical value of the spatial QRS-T angle as a potential blood electrolyte
surrogate is to develop technological solutions to derive the angle from sets of ECG
leads that can be conveniently recorded with consumer healthcare devices. Thus far, no
other solutions have been proposed to estimate the spatial QRS-T angle from reduced-
lead ECGs, ergo raising the following question:

* Can well-established ventricular repolarization markers, such as the spatial
QRS-T angle, be derived from reduced-lead ECGs with sufficient accuracy to
be prospective solutions for ambulatory noninvasive blood electrolyte moni-
toring?

Deep neural networks have demonstrated tremendous capabilities to extract key data
insights from sets of reduced-lead ECGs [175]. For instance, 1D convolutional neural
networks (CNNs) can detect arrhythmias in clinical [176] and ambulatory [177, 178]
single-lead ECGs, and even sleep apnea with up to 97.1% accuracy [179] with just
one lead ECG. CNNs have also reconstructed the standard 12-lead ECG from a few
measured leads [180, 181]. The ostensible potential of CNNs opens the hypothesis of
whether the spatial QRS-T angle can be estimated from a set of reduced-lead ECGs.
Accordingly, this dissertation proposes a 1D convolutional neural network (CNN1D)
for estimating the QRS-T angle from reduced-lead ECGs to tackle the aforementioned
research question.

The concept of the proposed method

The premise behind the proposed deep-learning-based approach is simple. With
12-lead ECGs, a model can be trained to predict the reference (i.e., VCG-derived)
QRS and T vectors (output) from a specific subset of ECG leads (input) that consumer
healthcare devices can register. The angle between the estimated vectors yields the
spatial QRS-T angle, and the reference vectors are computed using the 12-lead-based
conventional approach. Since the spatial location of QRS and T vectors is vastly de-
pendent on the cardiac conduction axis (Sec. 2.1.3), the model is designed to return the
coordinates of both vectors as the output, using an original composite loss comprised
of the Euclidean distance and absolute mean error between the vectors and the angle.
This loss function guides the model throughout the 3D space to locate the vectors in
the X, Y, and Z axes.
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This Chapter presents a CNN1D model for estimating the spatial QRS-T angle «
from reduced-lead ECGs. A gradual reduction of ECG leads from the largest publicly
available dataset of clinical 12-lead ECGs (PTB-XL [182]) was used for training and
validation to find the best subset of ECG leads for deriving «. While the relationship
between the spatial QRS-T angle and blood electrolyte levels was not evaluated, the
results presented in this dissertation examine whether the deep-learning model can es-
timate the spatial QRS-T angle with sufficient accuracy to be a prospective solution for
noninvasive ambulatory monitoring of blood electrolyte levels. The presented method
is the first proposed for deriving the angle without requiring 12-lead ECGs.

Parts of Sections 4.2—4.7 and the paragraphs above are quoted verbatim from the
previously published article: [60].

4.2. Conventional Approach for QRS-T Angle Estimation

The spatial QRS-T angle is estimated from a set of three orthogonal leads, obtained
either by applying orthogonalization methods to 12-lead ECGs [174, 183], or, con-
ventionally, the VCG (see Sec. 2.1.3). The VCG, composed of leads XYZ, reflects the
electrical activity of the heart in the orthogonal planes [105]: frontal (XY), transverse
(XZ), and sagittal (YZ). In essence, the VCG depicts heartbeats as a trajectory of XYZ
leads over time:

V(1) = [x(1),y(1),2(0], 4.1)

in which the depolarization (QRS) and repolarization (T) phases of a heartbeat are
represented as two loops:

Vors(t) = V(1) = Vo, Witht € {1prs - Tors, ) (4.2)
v

(t) = Vo, withr € {1 ,.... 17}, 4.3)

where toks » 7, tors,» and ¢ are the onset and offset of the QRS and T loops. Fol-
lowing the guidelines of [184], the origin of both loops V', is estimated as:

Vo = median (V(1)) , where 1 € {tors, ~To, -+ Igrs,} and 7o =25ms. 4.4)

Since inaccuracies in heartbeat delineation can generate significant errors in the esti-
mation of the QRS-T angle, the onsets t,rs , 17, and offsets 7, , 1, are adjusted as
instructed in [184].

The spatial QRS-T angle measures the dissimilarity between the orientation of
the QRS and T loops in the XYZ space and is calculated as:

|7 ors < 4|
a = arctan 4—), 4.5)

=
UWops " UT
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where i/ ;s and i, are vectors that depict the dominant orientation of the QRS and T
loops, respectively. The loop orientation is most commonly defined in the time instance
t=t,,,, Where the maximum magnitude [57] of V ,xg(7) or V,(¢) is verified:

— — -
W ors = V ors(lors,,,)» Where fogs, = arg max (I ors(®)

). (4.6)

r = Vr(ty ), where 1, =arg max (I 7)) - 4.7

Although intuitive, defining the loop spatial orientation as the vector having the
maximal magnitude at a single-time instance is an oversimplification, as it assumes
that the morphology of the QRS and T loops is unambiguous enough to have a well-
defined spatial orientation. In abnormal ECGs, the spatial orientation of the loops
(particularly the one of the QRS loop) is too complex to be represented by a vector in a
single instance in time. In fact, the estimation of the QRS-T angle using Vs (1ogs,,. )
) has been associated with higher errors and poorer reproducibility [185],
namely in unhealthy ECGs.

One strategy to tackle the problem of defining the underlying spatial orienta-
tion of the QRS loop is the total cosine R-to-T (TCRT) [174] method. The TCRT
defines the QRS-T angle as the average cosine of all angles between V' (r, ) and ev-
ery vector within the QRS loop that exceeds 70% of the maximum vector magnitude
Vors(tors,,.) [186]. However, the computation of an averaged angle can become
problematic in sets of reduced-lead ECGs, which do not carry the same amount of
spatial information as the VCG. Thus, a strategy similar to TCRT is adopted. Instead
of deriving the average cosine, u ,s and i/, are defined as the average of all vectors
exceeding 70% of the maximum vector magnitude within the corresponding loops:

L (48)

@ ops = mean (Vg (1) where 1 € {1 | |V ors (0] 2 0.7V s (tors,,.)

)

W7 =mean (Vr (1) wherer € {t| V(0] 20.7]V7

}. (4.9)

Tnax

By defining /s and ', with Equations (4.8) and (4.9), the spatial QRS-T angle a
is then calculated as the angle between  ,xs and %, using Equation (4.5).

4.3. Deep-learning-based Approach for QRS-T Angle Estimation

A deep-learning model is proposed to estimate the spatial QRS-T angle from reduced-
lead ECGs. The model takes the signal-averaged beats from a set of leads as the input
and produces the three coordinates of W s and Wy, i.., ¥ ors = (Xors: Yors: Zors)
and @, = (x;, y7, z7), as the output. The subset of the input leads varies in different
experiments, as discussed in Sec. 4.5.

When using 12-lead ECGs, the reference (target) VCG vectors @ s and i,
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Fig. 4.1. Overview of the proposed deep learning model for estimating the QRS-T angle from reduced-
lead ECGs. The model is composed of two parts: feature extraction and regression. The target vectors
U prs and %, and the spatial QRS-T angle « are computed from VCGs.

can be computed using the conventional approach described in Sec. 4.2, and train the
model to produce the estimates /_u\’QRS and ¥, of the targets from specific subsets of
ECG leads. The estimated QRS-T angle can then be calculated as the angle between
the estimated vectors ?QRS and , using Equation (4.5). The model is purposely
designed to produce the vectors instead of the angle to harness the available spatial
information during model training (see Sec. 4.3.2). Figure 4.1 illustrates an overview
of the proposed deep-learning-based approach.

From this point onwards, the circumflex symbol denotes variables estimated by
the model: ?QRS, %, and the QRS-T angle @ between them; whereas U ors and W
are the VCG target vectors, and « is the angle between them.

4.3.1. Model architecture

A 1D convolutional neural network (CNN1D) with a regression output is the baseline
architecture for the proposed deep-learning model. The model is trained end-to-end
using error backpropagation and gradient descent. It can conceptually be divided into
two main networks: feature extraction and regression.

Since distinct subsets of ECG leads may entail different configurations, this Sec.
solely describes the baseline architecture of the model. Hyperparameter tuning is de-
tailed in Sec. 4.5.

Feature extraction network

The feature extraction network is composed of D blocks of layers connected se-
quentially. Each block consists of two ’layer structures’, except for the first block,
which includes only one. Each layer structure is a sequence of a full 1D convolutional
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Fig. 4.2. Detailed representation of the three types of blocks employed in the feature extraction network:
(a) first block, (b) last block, and (¢) blocks with residual connections.

layer with k feature kernels of size 3 x 1 and a stride of 1, followed by layer normal-
ization and an activation function (Fig. 4.2b). The layer normalization balances the
intermediate features to have a mean close to 0.0 and a standard deviation close to 1.0
using trainable scale and shift parameters for each feature map. Leaky Rectified Linear
Unit (Leaky ReLU) with the negative slope coefficient of 0.1 is the chosen activation
function.

A depthwise convolutional layer is employed in the first block instead of a full
convolution (Fig. 4.2a). A depthwise convolution allows the model to learn lead-
specific features separately, as each lead can carry relevant information on the position
of each coordinate of s and ;. Because depthwise convolution layers gener-
ate feature maps for each lead, the initial number of kernels & is distributed across all
leads, giving %/;-1 each, where j is the number of input leads. This avoids having a
larger feature map in the first layer than in the second one.

Residual connections (Fig. 4.2¢) are introduced from the second block d =2 to
the block number d =D - 1 to maintain the data flow throughout the network and avoid
gradient degradation during training. Prior to addition, a 1 x 1 convolution is used on
the residual connection to equalize the number of feature maps between the layers.
The number of filters increases by a factor of 2 in every subsequent residual block.
Abstraction of the most significant features is performed with max pooling at the end
of blocks d =[2:D - 1], whereas global average pooling is implemented to finalize the
last block d =D of the feature extraction network. To avoid overfitting, dropout with a
probability of 0.25 is applied after feature extraction.

Regression network

The resultant feature map is connected to the fully-connected layers (regression),
which learns to associate the abstracted features with the six neurons in its output: one
for each of the three coordinates of ﬁ’QRS = (Xorss Yors Zors) and Ur= (% Y7 27).
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The regression network consists of three dense layers, the first two followed by layer
normalization and Leaky ReLLU activation function. The output layer consisting of six
neurons is followed by linear activation. Since ECGs can exhibit sex- and age-related
dissimilarities in morphology [187] that can affect QRS-T angle estimation [188,189],
metadata about sex (0 for males, or / for females) and age (scaled from 0.0 to 1.0) is
concatenated to the first layer of the regression network. Providing hints to the model
about a possible association between ECGs and the metadata may be valuable when
the available spatial information in the input leads is reduced.

4.3.2. Loss function

Since the end goal is to determine the QRS-T angle, the most straightforward approach
would be to train the model to estimate the VCG-derived o directly instead of % ,pg
and %, optimizing it with the mean absolute error loss between the target o and the
estimated &

s

(la; = @), (4.10)

Lolad) =1

—_

i=

where 0° < £, <180° and n is the batch size.

Direct estimation of the QRS-T angle, albeit intuitive and straightforward, over-
looks crucial information about the spatial orientation and position of the QRS and T
loops, trivializing the problem of QRS-T angle estimation as explained in Sec. 4.2. In
sets of reduced-lead ECGs that only carry fragments of all spatial information con-
tained in the VCG, this approach can produce errors in ECGs with visible differences
in morphology but similar QRS-T angles. Morphologically different ECGs with QRS-
T angles of an equivalent range can occur in patients in which the electrical activity of
the heart is not conducted in the same direction—that is, the cardiac conduction axis is
nonidentical. In two patients with distinct cardiac conduction axes but similar QRS-T
angles, the corresponding vectors i/ s and i/, of each patient are located in different
planes (octants) in the 3D space, but the angle between them is still alike (Fig. 4.3a).

To address these scenarios, the model is designed to locate the coordinates of
U ors and U, instead of a directly, allowing the model to harness any spatial infor-
mation available in the input leads. The model is guided throughout the 3D space
using the Euclidean distance as the parameter to be minimized in the backpropagation
algorithm. The 3D Euclidean distance (d) between @ and % is computed as:

L, (0,7) = Z\/ (x; = X;) -2+ (z; -2 (4.11)

where 0<£,< 2 if ¥ and % have a magnitude of 1 (i.e., unit vectors)'.

'"Two unit vectors @ and & with opposite directions are circumscribed by an angle of 180°, thus
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Fig. 4.3. Case scenarios of: (a) similar QRS-T angles a of two i s and %7, located in two different

planes; (b) correct location of one vector (i) but not the other (i ,zs), yielding large errors in the

estimated QRS-T angle a; (¢) compromise between minor errors in the location of both %7 .5 and % to
achieve a more accurate QRS-T angle estimation.

For @ to be equal to «, only the direction—but not the magnitude—of the esti-
mated @ has to match the target 7. Given that the Euclidean distance between two
vectors also accounts for differences in magnitude, which is undesirable in this case,
% and % are transformed to unit vectors prior to calculating £,. Calculating the Eu-
clidean distance between unit vectors avoids the wrongful calculation of a high loss in
cases of two vectors with the same direction but discrepant magnitudes, which should
be zero in this application. The principle is similar to the cosine similarity. How-
ever, the Euclidean distance is preferable for this case scenario as it permits navigating
throughout each axis in the XYZ plane, whereas the cosine similarity only discerns one
axis?.

Another problem left to address during the training process is the cases in which
one of the vectors is less complicated to determine than the other (Fig. 4.3b), i.e.,
the model properly locates one vector but not the other (e.g., £,(#,, %) = 0 and
L4 ors 7QR5) = 1.2). Significant errors in estimating one vector will inherently
affect the accuracy of the QRS-T angle. Since the angle between ?Q = and 7, needs
to be equivalent to «, such cases are mitigated by confining the model’s search grid to
preserve the angle @ between ?QRS and %, as close as possible to . Thus, the overall
loss is defined as a composite function of Equations (4.10) and (4.11):

L=w, (Ld(T[QRS’ /f;QRS) + Ly (W 7, 7T)) +wy L, (a,a), (4.12)

where w, and w, are hyperparameters which weigh the penalization factor of £, and
L,. The proposed composite loss function safeguards the overall accuracy of the model
by avoiding cases in which £, of one vector is substantially higher than £, of the other,
with the tradeoff of allowing minor errors in the location of both vectors (i.e., £, =0.1

translating into a Euclidean distance equal to the sum of their magnitudes: ||| + |\7;|\ =1+1=2.
*In the 2D space, the cosine can distinguish quadrant / from /1, or IV from /11, but not / from IV or I/
from I11.
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Fig. 4.4. Data preparation and labeling. Signals undergo preprocessing comprised of filtering and signal
quality assessment to generate the input signal-averaged beats.

instead of £, =0), as long as the angle @ between them is close to « (see Fig. 4.3¢). To
equalize the scales of £, and £, £, («, @) is estimated in radians rather than degrees.

4.4. Data

The deep-learning model was developed and validated on the Physionet [190] PTB-XL
dataset [182], the currently largest publicly available dataset of 12-lead ECG record-
ings. PTB-XL comprises 21,837 clinical recordings of 10s-long ECGs, upsampled to
500 Hz, from 18,885 patients (48% females) with ages ranging from 0 to 95 years. In-
formation on the diagnosis, form, rhythm, and signal quality is provided for all record-
ings. As to diagnosis, the ECGs are categorized into five different superclasses: Nor-
mal (NORM), Myocardial Infarction (MI), Conduction Disturbance (CD), ST/T change
(STTC), and Hypertrophy (HYP). The superclasses are branched into several subclasses,
apart from NORM.

4.4.1. Data preparation and labeling

Leads X, Y, and Z (VCG) are derived from raw ECGs by applying the Kors regres-
sion matrix [109], the mathematical transformation that more accurately reconstructs
Frank’s VCG from an ECG [108]. The generated 15-lead signals undergo preprocess-
ing comprised of filtering, signal quality assessment, and beat averaging, resulting in a
signal-averaged heartbeat representative of each lead. The target vectors i/ ;s and 7,
are finally computed from the generated signal-averaged VCG leads to label the data.
Figure 4.4 illustrates the data preparation process.
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Signal preprocessing

The pipeline of signal preprocessing is simple and similar to the one described
in Sec. 3.2.1: ECGs are firstly filtered to remove noise, and then undergo signal quality
assessment. Lastly, the beats deemed analyzable are signal-averaged.

Filtering. High-frequency noise and baseline wandering are filtered with zero-phase
low- and high-pass Butterworth filters with cut-off frequencies of 45 Hz and 0.5 Hz to
match the filtering protocol of other studies which derived the QRS-T angle using the
conventional methodology [174, 184].

Signal quality assessment.  The SQI criterion proposed in [151] is applied to each
lead individually to eliminate beats of dissimilar morphology, such as ectopic beats,
or those corrupted by noise. Recordings with at least one lead that contains more
than 50% poor-quality beats within the 10 s ECG are considered unanalyzable and dis-
carded. ECGs with discernible rhythm disturbances, such as atrial or ventricular flutter
or fibrillation, are also excluded from the analysis, given their greater predisposition to
PQRST delineation errors, which can affect the reliability of i/ s and @, [184]. In
the case of rhythm disturbances, such as bradycardia, tachycardia, or sinus arrhythmia,
PQRST delineation can be less problematic when signals are of a high quality; thus,
such ECGs are still considered analyzable if 70% of all beats satisfy the SQI criteria.
Annotations regarding rhythm are provided in the PTB-XL dataset.

Beat averaging.  High-quality beats are aligned using the R-peak as the reference
point and averaged, resulting in a single-averaged heartbeat representative of each cho-
sen lead.

Data labeling

The training labels, i.e., the target VCG vectors i ,s and i, are computed
from the three averaged beats of leads XYZ using the conventional approach described
in Sec. 4.2. The QRS and T loops onset and offset, t,s , t7,, tors,» and ¢, and R-
peaks are identified with the multilead PQRST delineation algorithm available in the
ECGDeli [154] toolbox®. The onset and offset of the loops are adjusted as instructed
in [184].

Lastly, the averaged beats are downsampled to 250 Hz and zero-padded to 550
samples to equalize their length, as deep-learning models require inputs of an identical
size. Since the standard clinical ECG bandwidth is 0.05 Hz to 100 Hz [191], downsam-
pling the average beats to 250 Hz reduces the computational complexity of the model
and the resources necessary for training (e.g., RAM) without compromising crucial

*Note that robust PQRST delineation algorithms are critical for computing reliable training labels to
develop the model but are not necessary for future applications in which only averaged heartbeats and
metadata are required as input.
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signal information. Patient metadata is also added to the training labels: information
about the sex is specified as 0 for males and / for females, and the age is scaled from
0.0 (0 years) to 1.0 (100 years).

Of 21 837 clinical recordings, 18,618 are eligible for labeling and analysis. In ad-
dition to poor-quality ECGs or complicated rhythm disturbances, recordings in which
the assigned subclass is underrepresented in the dataset, having less than 100 record-
ings that meet the SQI criteria, are excluded. ECGs of rare subclasses have such un-
usual morphologies that errors can be accidentally introduced into the model due to
the scarcity of recordings.

4.4.2. Exploratory data analysis

Exploratory data analysis is performed on the labeled recordings before splitting the
data between the training and validation sets. The goal is to eliminate any statistical
bias by ensuring that both sets preserve the same distribution of sex, morphological
classes, and the spatial QRS-T angle in the ranges of « =[0:5:180]°, as in the original
dataset. The exploratory data analysis (and the subsequent splitting) is centered around
these three attributes due to the following:

* Sex-related morphological differences in the ECG may influence the deci-
sion of the regression network (see Sec. 4.3.1); thus, the training set must be
proportioned in terms of sex.

* Each of the morphological classes is characterized by distinctive morpho-
logical traits. Since contrastive ECG morphologies can still exhibit QRS-T
angles of a comparable range, the training set must include a diversity of mor-
phologies to prevent the model from associating a specific range of QRS-T
angles with just one subset of particular morphological traits.

* Randomly splitting the data without considering the uneven distribution of «
within specific ranges could result in a disproportionate depiction of specific
ranges in the training set, which would lead to higher estimation errors in
other ranges.

Recordings are divided into six morphological classes: the same five diagnos-
tic superclasses stipulated in the PTB-XL dataset, NORM, MI, CD, STTC, HYP, and
low magnitude T-waves (LOWM). A recording is deemed LOWM if the ratio between
@] and | @ pgs < 0.1. Although signals with low magnitude T-waves seem to have a
higher propensity to QRS-T angle errors [184] and are often discarded [184,192], it is
reasonable to incorporate them into this study, given that low magnitude T-waves are
routinely found in clinical practice.

Figure 4.5 shows the distribution of « across the ranges of « =[0:5:180]° ac-
cording to sex and the morphological class. The dataset has a median of 52.9° (in-
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Fig. 4.5. Distribution of spatial QRS-T angle across the ranges of « =[0:5:180]° according to sex (over-
lapped) for all eligible recordings in the dataset (left) and for each morphological class (right). « is the
angle between the VCG vectors @ s and . The dashed line is the median « for each class.

terquartile range of 63.3°). The distribution of «, albeit balanced between males and
females, varies considerably for each morphological class. Although spatial QRS-T
angles 15° < @ <90° comprise the vast majority of the eligible recordings, all other
ranges of « are represented by at least 100 recordings, which may be sufficient for
deep-learning-based estimation of the QRS-T angle with an acceptable error.

4.4.3. Training and validation sets

The data is split separately for females and males in each morphological class to ensure
an appropriate data allocation between the training and validation sets. The split is
performed as follows. For any given morphological class, 80% of female ECGs and
80% of male ECGs with « =[i:i + 5[ for every i =[0:5:175]°, are randomly assigned
to the training set. Given the propensity of LOWM signals to display larger a errors,
the 50:50 partition ratio is used for this class instead of 80:20. A smaller partition of
the LOWM class still enables the class to be adequately represented in the training set
without excessively misleading the model. Figure 4.6 shows that both the training and
validation sets preserve the original distribution of «.

It should be noted that the data split described above was performed once, and
no k-folds cross-validation was employed, meaning that no single recording of the val-
idation dataset was used during training. Thus, the validation dataset is essentially
a testing dataset comprised of only 'unseen’ data. Since the results presented in the
dissertation are the ones yielded by the best combination of hyperparameters for each
subset of leads, the term ’validation dataset’ is preferable.

4.5. Experiments and Performance Evaluation

The model is written in Python (v3.8.10) using the Keras abstraction layer on 7Ten-
sorflow 2.8.0 backend. Training and validation are performed on a desktop com-
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puter under a Windows 10 environment with the following hardware specifications:
Intel® Core® i7-8700k 3.70 GHz CPU with six cores (12-threads), 32 GB of RAM, and
NVIDIA® GeForce® GTX 1080Ti.

Tuning of hyperparameters

Several experiments are conducted to find the best architecture for each of the
tested subsets of leads according to the hyperparameters w, and w, (Sec. 4.3.2), depth
D, and the initial number of kernels k (Sec. 4.3.1). The hyperparameters are chosen
among the following options:

e D={2,3,4,5};

* k={8,16};

o w,={0.5,0.8,1.0,1.2, 1.5} Aw, =|1 — w,|;

o w,={0.5,0.8,1.0,1.2, 1.5} Aw, =|1 — w,|.
The hyperparameters D and k are constrained to the above values due to the follow-
ing. First, complex CNNs employed for image-based applications are likely an ov-
erengineered solution for 1D signals. Second, smaller CNN architectures enhanced
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with residual connections and case-specific loss functions can outperform architec-
tures based on regular convolutional blocks [193, 194]. Third, lightweight and low-
complexity models are preferable for deployment in devices with hardware and com-
putational constraints, such as consumer healthcare devices.

Training is performed with a batch size of n=8 at an initial learning rate of 0.001
for 100 epochs. After every 20 epochs, the learning rate is reduced by half. Although
the model was always trained for 100 epochs, the final weights are the ones that yielded
the lowest loss and not those rendered at the end of the training process.

Selection of subsets of ECG leads

The performance of the deep learning model to estimate the spatial QRS-T an-
gle is investigated in various subsets of ECG leads. The goal is to identify how many
leads suffice to estimate the QRS-T angle with acceptable accuracy without sacrific-
ing the patient comfort. The baseline architecture of the model is first configured
using the leads that contain all the 3D spatial information, XYZ, from which the tar-
get i prs and i, are derived. Next, the number of precordial leads carrying insights
about the spatial position of @ . and ¥, in each of the X, Y, and Z axes are progres-
sively trimmed. The baseline model architecture is optimized for sets of reduced-lead
ECGs that incorporate a minimum of one lead shown to reflect each orthogonal axis:
XC {1, V5 V6}; YC{II, I, aVF}; and Z C {VI, V2, V3} [195].

Since the ultimate goal is to develop a method to facilitate QRS-T angle monitor-
ing in free-living conditions, only sets of reduced-lead ECGs that can be acquired from
commercialized consumer healthcare devices are tested. The registration of frontal
leads is straightforward: all six frontal leads ({1, I1, Ill, aVL, aVR, aVF }) can be derived
from any device with two-frontal channels. However, most consumer healthcare de-
vices equipped for frontal and precordial lead registration offer no more than two pre-
cordial leads: V2 and V6. Thus, the experiments are limited to the subsets of leads
Sc{I,II,1I,aVL,aVR,aVF,V2,V6}.

While a decline in performance is anticipated as the number of precordial leads
decreases, the ability of the proposed model to estimate the spatial QRS-T angle from
subsets of exclusively frontal leads is also explored as a proof-of-concept. Section 4.6
presents the results of the best subset of leads: first XYZ, then few-frontal-and-two-
precordial leads, few-frontal-and-one-precordial leads, and, lastly, exclusively frontal
leads.

Performance metrics

The accuracy of the proposed model is evaluated with four performance metrics:
the absolute mean (¢) and median (¢) estimation errors, the root-mean-squared-error
(RMSE), and the Spearman’s rank correlation coefficient (p) between the target o and
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the estimated @ angles. The absolute estimation error between an observation i is quan-
tified as: ¢, = |@; — a;|, whereas ¢, ¢, and RMSE as:

r

(4.13)

™
1

€ :

i
i=1

N | =

; € = median(e,,...,€,); RMSE =

and r is the number of recordings (3,873) in the validation dataset.

Since the Kolmogorov-Smirnov test shows a non-normal distribution of ¢, ¢ and &
are computed with the nonparametric bootstrap method [ 196] with resampling of 5,000
times. Other metrics shown in the diagrams displayed in the next two subsections are
also approximated with bootstrap: the 95% confidence intervals of ¢ estimated with
the bias-corrected percentile method [197], and the bias and interquartile ranges (igr)
to define the limits-of-agreement (1.45 igr) in the Bland-Altman plots.

4.6. Results

All the presented results are obtained from the validation dataset. Sec. 4.6.1 discloses
the influence of various hyperparameters on the model performance, whereas Sec. 4.6.2
displays the performance of the best model configuration for each set of leads. The
presented subsets of leads are the ones with the lowest error €. The recordings in the
validation dataset are divided into healthy (class NORM) and cardiac disease (classes
MI, CD, STTC, HYP, and LOWM).

4.6.1. Assessment of the best model configuration

Figures 4.7 and 4.8 display the model’s performance in estimating « from leads XYZ
when trained with various combinations of w, and w,. An initial number of kernels
k =38 suffices to obtain a satisfactory accuracy from leads XYZ. Only the depth at which
the lowest median error ¢ was obtained for each combination of w, and w, is shown.

Although the lowest ¢ was reached with {w, = 1.2,w, =0.2} at D=3 (¢ = 3.1°),
the model trained with {w, =0.8,w, = 0.2} at D =4 (¢ = 3.3°) achieved the narrowest
interquartile range (4.6° vs. 5.1°, see Fig. 4.7) and the best overall results throughout all
ranges of «. In particular, this configuration outperformed the others for ¢ > 90°, show-
ing lower absolute mean errors € (Fig. 4.8) despite the smaller number of recordings
(samples) in the training dataset for such ranges.

As hypothesized, prioritizing the Euclidean distance (w, £,) over the QRS-T an-
gle (w, L) as the predominant penalization factor (i.e., w, >w, ) results in smaller errors.
The combination of the the Euclidean distance and the angle in the loss function yields
better results than the use of each metric alone ({w, =1.0, w, =0.0} and vice versa).

The model trained with the same hyperparameters {w, = 0.8, w, = 0.2} achieved
the lowest ¢ at a smaller depth (D = 3) for all investigated sets of reduced-lead ECGs,
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Table 4.1. Performance of the deep-learning model on estimating the spatial QRS-T angle «
from various subsets of leads in the whole validation dataset and ECGs with healthy (NORM)
and diseased cardiac function.

Subset of Leads

Xvz {I,aVF,V2,V6} {I,I1,aVF,V2} {I,1I,aVL,aVR}

Recordings Rangesof ¢ RMSE ¢ € RMSE 3 € RMSE 3 € RMSE 3 €

0°<a<180° 122° 58° 3.3° 17.2° 103° 64° 184° 114> 7.3° 254° 17.9° 12.7°
5°<a<115°! 9.2°  47° 29 154° 98° 6.3° 16.0° 105° 7.1° 22.8° 16.6° 12.2°
0°<a<180° 6.1°  34° 25 135° 83° 55° 141° 9.0° 6.1° 21.0° 149° 11.1°
5°<a<70°! 4.6° 3.0° 24° 1100 72° 51° 11.1° 7.6° 57° 152° 11.7° 9.8°
0°<a<180° 16.8° 87° 4.9° 205° 122° 7.3° 21.8 13.7° 87° 29.1° 20.7° 14.3°
15°<a<115°! 12.8°  7.2° 42° 184° 12.1° 8.1° 19.6° 13.3° 9.5° 27.7° 20.6° 15.0°

All val. dataset

NORM

Cardiac disease

! Ranges of « adequately represented in the training dataset (>200 samples).

but required more initial kernels (k =16).

Concatenating metadata (sex and age) resulted in a lower ¢, especially for sub-
sets of reduced-lead ECGs, but the improvement in performance was not significant
(£1.5°).

4.6.2. Performance assessment in various subsets of ECG leads

Figures 4.9-4.11 detail the performance of the best model configuration in estimat-
ing « when using leads XYZ and various subsets of reduced-lead ECGs: two precor-
dial leads {7, aVF, V2, V6}, one precordial lead {1, II, aVF, V2}, and solely frontal leads
{I,11,aVL,aVR}. Table 4.1 discloses the obtained performance evaluation metrics for
each investigated set of leads in the validation dataset.

*Depth=4
“Depth=3

0
L5*1.2°1.0°0.8% 0.5 0.8%1.0°1.2%1.5%
W; < Wi=Wz——> W2
(w2=|1—wi|) (wi=|1—w:|)
Fig. 4.7. Boxplot of the obtained absolute error ¢ (outliers not shown) of various model configurations
tuned with different combinations of hyperparameters w, and w,. w, increases to the left side, whereas

w, to the right. The other hyperparameter value is obtained as |1 — w| on each side.
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Fig. 4.8. Performance of various model configurations tuned with different combinations of hyperparame-

ters w, and w, in estimating the spatial QRS-T angle « from leads XYZ in the validation dataset. The mean

absolute error ¢ and the respective 95% confidence interval are shown across the ranges of « =[0:5:180]°

for increasing w, (top row) and w, (bottom row). The rightmost column displays the number of training
samples for each range of «.

Estimation errors across all ranges of o

Figure 4.9 shows the agreement between the estimated @ and the target «. Even
though the estimation errors naturally increase with the reduction of the spatial infor-
mation available in the input leads, the results indicate that reduced-lead estimation
of the QRS-T angle is achievable. In the whole validation dataset, the correlation be-
tween @ and «, albeit strong, decreased from p =0.96 for leads XYZ which contain all
spatial information, to p =0.91 for leads {I,aVF, V2, V6} (two precordial), p = 0.9 for
{I,11,aVF,V2} (one precordial), and p =0.77 for {/,II,aVL,aVR} (solely frontal).

Despite RMSE, ¢, and ¢ always being higher in ECGs with cardiac disease than
the healthy ones, regardless of the subset of leads, @ and « are more strongly correlated
in all morphological classes with cardiac disease than NORM for sets of reduced-lead
ECGs. The agreement between @ and « decreases from p =0.86 (NORM) vs. p =0.91
(cardiac disease) for {I,aVF, V2,V6}; to p =0.85 (NORM) vs. p =0.9 (cardiac disease)
for {I,1I,aVF,V2}; and even smaller for {I,1I,aVL,aVF} with p = 0.55 (NORM) vs.
p =0.81 (cardiac disease). Since ¢ is much lower in the ranges of 5° < a < 70° which
are substantially more represented in the training dataset (Fig. 4.10), this correlation
decline may be ascribed to higher errors in the underrepresented ranges of «. In leads
XYZ, p=0.98 for NORM recordings, and p =0.95 for cardiac disease.

Estimation errors across different ranges of o

Figure 4.10 displays the variation of ¢ in the various sets of leads. The model
exhibited markedly higher estimation errors in the ranges of « underrepresented in the
training dataset (<200 recordings): « < 5° and « > 70° for healthy (NORM) ECGs;
and a < 15° and « > 115° for ECGs with cardiac disease. The downsizing of input
precordial leads exacerbated the drop in accuracy, with the set {1, I1, aVL, aVR} showing
the highest susceptibility to estimation errors in the underrepresented ranges of «. The
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Fig. 4.9. Scatter plot diagrams of the deep-learning-estimated @ vs. target « from various sets of leads for

(top row) all recordings, and ECGs with normal (middle row) NORM and (bottom row) cardiac disease

in the validation dataset. The estimation error € of every @ in the first row is color-grouped based on the
absolute median (¢), mean (¢), and standard deviation (o, ) error.

error ¢ is significantly lower in the ranges of « containing more than 200 samples in the
training dataset (see Table 4.1). Nevertheless, ¢ rises as anticipated with the reduction
of the available spatial information in the input leads.

Interestingly, in ECGS with cardiac disease, leads XYZ, as opposed to any subset
of reduced-lead ECGs, displayed the highest estimation errors in the ranges of « >
115°. The loss of crucial diagnostic information in diseased ECGs caused by the VCG
reconstruction method might explain such an unexpected result.

The Bland-Altman diagrams in Fig. 4.11 corroborate the abovementioned results.
The limits of agreement between @ — ¢ and « are narrower in the leads XYZ and start to
broaden as the number of precordial leads decreases, with recordings of the class NORM
having less variability from the median bias than those with cardiac disease. In {1, II,
aVL,aVF}, however, the model reveals an inversely proportional, yet homoscedastic
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Fig. 4.11. Bland-Altman diagrams of deep-learning-based estimation of @ from various sets of leads of
ECGs with (top) normal (NORM) and (bottom) diseased cardiac function.

bias, i.e., the variance across different ranges of « is similar. Homoscedasticity is char-
acteristic of models with a variable that has not been fully enclosed. In this case, the
missing variable is the information on the electrical activity of the heart in sagittal (¥YZ)
and transverse planes (XZ) that are provided by the front-back (Z) axis. Nevertheless,
the inversely proportional bias is not favorable for cardiovascular health assessment.
The model would underestimate the ranges of « > 110° associated with an increased
risk of dangerous cardiac events.
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Fig. 4.12. Distribution of the Euclidean distance £, (%, @) between @ ys and @ x5, and @, and @, in
each of the three planes: XY (frontal), XZ (transverse), and YZ (sagittal).

Estimation errors of the Euclidean distance across the anatomical body planes

Figure 4.12 displays the distribution of the Euclidean distance £,(%, %) be-
tween i/ ogs and 7QRS, and 7, and %, in each plane: XY (frontal), XZ (transverse),
and YZ (sagittal). The distance is calculated as the projection of % and ¥ in the re-
spective plane. £,(%, %) gradually lengthens in every plane from the leads XYZ to
{I,aVF,V2,V6} and {I,1I,aVF, V2}, but becomes discernibly higher in the XZ and YZ
planes in the frontal leads {/,1I,aVL,aVF} which only carry information in the XY
plane. Larger £,(%, ) suggests that the model encountered extra obstacles to locate
the vector’s coordinates within the specified plane.

4.7. Discussion

Monitoring the spatial QRS-T angle, evidenced as one of the most propitious mark-
ers for risk assessment of SCD [50, 57], was presumed to be impracticable in out-of-
hospital settings thus far. This doctoral dissertation introduces a deep-learning-based
method to measure the spatial QRS-T angle using a set of reduced-lead ECGs that
can conveniently be recorded with consumer healthcare devices. The proposed model,
albeit prototypal, sparks scientific interest in engineering methods for ambulatory mon-
itoring of the spatial QRS-T angle, which can lead to substantial contributions toward
harnessing the diagnostic value of the QRS-T angle for cardiovascular health assess-
ment in free-living conditions.

Considerations on the model architecture

The baseline architecture of the proposed model is engineered to be accurate yet
simple enough to be lightweight and have a sufficiently low computational power to
be integrated into consumer healthcare devices. Compared to other CNN1Ds for ECG
analysis, often comprised of 8-to-34 [176,178,179,198] blocks of layers, the proposed
baseline architecture of three-to-four blocks (D = {3,4}) and k = 16 suffices to get satis-
factory results. The model contains only 105,578 trainable parameters, nearly 12 times
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less than the CNN1D developed for classifying single-lead ambulatory ECGs [178].
While popular due to their high accuracy, deeper neural networks also entail larger
training datasets and computational resources that can hamper the deployment of the
network in devices with hardware and computational constraints such as wearables.
Furthermore, adopting deeper neural networks does not necessarily translate into sig-
nificant improvements in accuracy to justify the tradeoffs in resources if the goal ap-
plication is for out-of-hospital monitoring of the QRS-T angle.

Smaller networks, such as the one described in this research, or as in the one ap-
plied for automatic diagnosis of 12-lead ECGs [198], outperform their convolutional-
blocks-only counterparts when enhanced with custom blocks, such as residual con-
nections, squeeze-and-excitation, atrous spatial pooling, or case-specific loss func-
tions [193,194]. The strategy behind the proposed model involved residual blocks
with a predominant focus on an original loss function. The described loss function
(Sec. 4.3.2) combines two metrics, each with their penalization weight, to train the
model: the Euclidean distance (w,) and the QRS-T angle (w,). Prioritizing the Eu-
clidean distance over the QRS-T angle (i.e., w, >w,) as the main penalization factor
results in smaller errors, namely, in sets of reduced-leads ECGs. Optimization with
the Euclidean distance combined with the QRS-T angle instead of the QRS-T angle
alone allows the model to recognize that ECGs with visible differences in morphology
can still have similar QRS-T angles, minimizing the chances of the model associating
a specific morphology to a particular range of «. Morphologically different ECGs with
similar QRS-T angles are often the case in patients with distinctive cardiac conduction
axes in which the direction of the overall electrical activity of the heart is not the same.
In a 3D space, this means that the vectors u ,xs and ', of each patient are located
in different planes (octants), but the angle between them does not necessarily differ.
Searching for the coordinates of both target vectors helps the model leverage any avail-
able information to boost accuracy. Thus, adopting such metrics that guide the model
in the 3D space is a favorable choice.

Considerations on the attained results

The model has demonstrated a propensity to higher estimation errors in ranges
of QRS-T angle represented by less than 200 recordings (samples) per morphological
class in the training data. This propensity is amplified as the number of input precor-
dial leads decreases. Although an increase in estimation errors is anticipated with the
reduction of the spatial information available in the input leads, the interconnection be-
tween higher errors and fewer training samples suggests that additional recordings may
promote a more accurate QRS-T angle estimation from reduced-lead ECGs. When
the complete spatial information is accessible in leads XYZ, the model can straightfor-
wardly identify relevant data features from fewer recordings. Conversely, the relevant
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data features may be less conspicuous and more challenging to detect in reduced-lead
ECGs with limited spatial information. Thus, the model may necessitate more training
samples to identify relevant data features.

Surprisingly, leads XYZ—but not subsets of reduced-lead ECGs—showed the
highest estimation errors in ECGs with cardiac disease in the underrepresented ranges
of @ > 115°. Such an unexpected result may be attributed to possible signal distor-
tions caused during the VCG reconstruction process. In certain cardiac pathologies,
the mathematical transformations to derive the VCG can camouflage (or even elimi-
nate) distinctive data features [195,199], hindering the model’s ability to recognize any
feature patterns that point to the location of i/ ;¢ and ;. In contrast, these distinctive
data features are preserved in ECGs of cardiac pathology, even in frontal leads, hence
impelling the model to locate the target vectors more correctly.

An analogous argument can also explain the accuracy drop in the estimated @
from any subset of reduced-lead ECGs of class NORM, in which the estimation er-
rors were substantially higher in the underrepresented ranges of « >70°. Since wider
QRS-T angles are generally associated with severe cardiac diseases [50, 200], such a
surprising result raises the question of whether large values of « can occur in healthy
ECGs or are ascribed to label noise. However, label noise could only justify such a
result if leads XYZ displayed the same discrepancy in estimation errors in the ranges
of a observed in reduced-lead ECGs. A plausible explanation lies in the sagittal (YZ)
plane, which may contain the most indicative data features of wider QRS-T angles in
the absence of cardiac disease. With only fragments of sagittal information given in
reduced-lead ECGs, the model struggles to identify data features characteristic of wide
QRS-T angles in seemingly healthy ECGs if fewer training samples are provided.

The correct estimation of the location of @ ;s and %, in any plane incorporating
the orthogonal lead Z (sagittal and transverse) is challenging in reduced-lead ECGs
regardless of the morphological class. Reducing the amount of spatial information in
the input ECG-leads encumbers the search for the coordinates of @ ;s and %, namely
through the z-axis, as verified by an increase of the Euclidean distance between the
target and the estimated vectors. In parallel with additional recordings, decomposing
the Euclidean distance loss into each of the three planes could be a potential solution
to enhance the location accuracy of the z-coordinate. Isolating the planes in the loss
function enables tailoring the penalization factor to each plane, which may promote
better estimation results.

Suitability for ECG consumer healthcare devices

While the investigation presented in this dissertation consisted only of
non-ambulatory ECGs collected with clinical devices, the suitability of the proposed
model for consumer healthcare devices is plausible and merits further discussion. Con-
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ceptually, ambulatory estimation of the spatial QRS-T angle can be performed simi-
larly to KardiaMobile® [201] for arrhythmia detection or the prototype technology
developed to monitor electrolyte fluctuations in hemodialysis patients at home [152].
Preprocessing, heartbeat averaging, and the subsequent QRS-T angle computation is
feasible offline with some delay for short intermittent ECG recordings (15-to-60 s), or
through cloud processing for longer recordings. Cloud processing would also support
the transmission of estimated QRS-T angles to health professionals for remote verifi-
cation of potentially dangerous cardiac events.

An attractive attribute of the proposed deep-learning model is its simplicity.
When looking at the computational demands of the whole algorithm, the QRS-T angle
can be estimated swiftly, with the preprocessing stage exercising more computational
time and resources than the deep-learning model itself. In recordings scenarios that
assure that 10-to-15 s long ECGs are registered with sufficient quality to warrant low-
complexity filtering in the preprocessing stage, the spatial QRS-T angle can be calcu-
lated in a few seconds with the advantage of not needing PQRST delineation, which is
often problematic in ambulatory recordings due to noise.

The model measured the spatial QRS-T angle with reasonable accuracy from a
set of three frontal and one precordial leads ({1, I1, aVF, V2}) that can be registered with
three electrodes instead of the eight required to derive the QRS-T angle when using the
conventional approach. The requirement of one precordial lead evidently restricts the
type of consumer healthcare devices suitable for deploying the deep learning model
in future applications, precluding the use of devices that maximize comfort, such as
wrist-worn wearables [202] which only register frontal-lead ECGs. Nevertheless, the
market already offers a handful of practical devices that acquire frontal and one pre-
cordial lead ECGs with an acceptable degree of comfortableness [203], namely those
patch-based (e.g., Bittium OmegaSnap™ [204]), or contact-based textile (e.g., Viscero
ECG vest [205]) ECG electrodes. A downsize of eight to three electrodes is still a sub-
stantive improvement. Even if the comfort level of three electrodes is lower than that
of other wearables, the existing patch- or textile-based ECG devices are durable, easy
to configure, and may be adequate for intermittent monitoring of the QRS-T angle in
free-living conditions. Recent advancements in the reconstruction of the standard 12-
lead ECG from sets of reduced-lead ECGs have, however, demonstrated the possibility
to derive lead V2 from lead 17 [206] in healthy subjects. The encouraging preliminary
results indicate an appealing solution for estimating the spatial QRS-T angle with com-
fortable wearable devices in the future.

Most commercialized ECG consumer healthcare devices have technical specifi-
cations analogous to the clinical recordings used to develop the model: (i) a minimum
16-bit precision at a resolution of 1 uV/LSB; (ii) ECG bandwidth of 0.05 Hz to at least
100 Hz; and (iii) sampling rates starting at 200 Hz. However, since the estimation of
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the spatial QRS-T angles has been, to date, performed exclusively from clinical devices
with higher signal resolution and sampling rates, the minimal technical specifications
of devices suitable for ambulatory measurement still need to be defined. While the
model estimated QRS-T angles from heartbeats downsampled to 250 Hz with satisfac-
tory accuracy, the influence of different technical specifications on the estimation of
the QRS-T angle was not investigated, nor, to the best of the knowledge of the author
of this dissertation, do any studies exist that have examined this question. Although
higher ECG bandwidths and sampling rates > 500 Hz are pertinent for detecting ar-
rhythmias [191], and in pediatric ECGs [207]—and are indeed often recommended
for clinical ECGs [191]—deep-learning models can detect arrhythmias from ECGs
with sampling rates of 300 Hz [177], 200 Hz [178], and even 100 Hz [208]. Thus, a
minimum sampling rate of 200 Hz seems a reasonable compromise between adequate
deep-learning-based analysis of ambulatory ECGs without increasing the hardware
and computational complexity or draining the battery life of consumer healthcare de-
vices [209].

Prospective of the spatial QRS-T angle as a blood electrolyte marker

Although the results presented in this dissertation do not examine the relation-
ship between the spatial QRS-T angle and blood electrolyte levels, the proposed deep-
learning model can be a prospective solution for facilitating noninvasive ambulatory
monitoring of blood electrolyte levels. The model offers the first step toward exam-
ining the relationship between the spatial QRS-T angle and blood electrolyte levels in
everyday ambulatory scenarios.

The spatial QRS-T angle, albeit not yet investigated as a potential marker of
blood electrolyte balance, is a promising risk stratification index for SCD in various
populations [50] and an indicator of blood levels of anti-inflammatory heat shock pro-
teins [210] and troponin T* [211]. However, the effect of HD on the spatial QRS-T
angle has been variable in different studies [139]. Some report little-to-no variation
throughout the HD session, whereas one study documented an increase in the spatial
QRS-T angle before and after HD. While these findings can suggest a lack of respon-
siveness of the spatial QRS-T angle to electrolyte fluctuations, the variability—or lack
thereof—of ECG features observed during HD does not necessarily translate to the
same ECG changes in interdialytic settings. As discussed in Sec. 3.6, many patients
display ECG alterations during HD that are absent throughout the long interdialytic
interval. In addition, multiple other hemodynamic and biochemical variables which
can affect the cardiac function are rapidly changing during HD.

One plausible explanation for the lack of variability is the antagonist relationship
between K*, Ca®*, and Mg**. Since the spatial QRS-T angle measures the similarity

*Increased troponin-T levels in the blood are associated with CVD and heart failure.
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between depolarization and repolarization, the hyperpolarization/hyperexcitability ef-
fects of one ion may be counteracted by another, thereby stabilizing the cardiac APs
and protecting the normal repolarization heterogeneity (Sec. 2.1.4). If that is the case,
the spatial QRS-T angle may aid in ascertaining whether blood electrolyte levels mea-
sured by other ECG-derived descriptors are alarming, thus mitigating the confounding
factors described in Sec. 3.6. Thus, the relationship between the QRS-T angle and
blood electrolyte levels warrants investigation in out-of-hospital settings.

Limitations and future directions
When considering the ultimate application goal of this research, which is to fa-
cilitate ambulatory monitoring of the spatial QRS-T angle for cardiovascular health
research, one must pose two central questions:
* What is the maximum acceptable estimation error?
* What is the clinical value of an 1° increase?

All medical research regarding the QRS-T angle focuses on its prognostic value for
SCD, using observational studies [50,57] with follow-up periods of 2-to-30 years that
categorize the angle into subranges, most commonly as normal (< 110°) vs. dangerous
(=110°) [50,212]. While the optimal cut-off threshold for assessing the dangerousness
level of the spatial QRS-T angle depends on sex [188], age [189], medical history [57],
and even the methods to derive the /s and ', [185,199], no studies have investi-
gated thus far if day-to-day fluctuations of the QRS-T angle offer any clinical value.
Populations susceptible to cardiac repolarization disturbances, such as CKD and HF
patients, could benefit from daily monitoring of QRS-T angle fluctuations in which the
angle variation would be more auspicious than the absolute value itself. For instance,
QRS-T angle fluctuations may be related to abnormal repolarization heterogeneity in-
duced by electrolyte imbalance. Higher estimation errors may be acceptable for such
application scenarios, providing that the bias is constant. Oppositely, scenarios aim-
ing to classify subranges of spatial QRS-T angles per clinical importance may require
smaller estimation errors within the predefined cut-off ranges.

Unfortunately, the answer to the posed questions remains open and falls beyond
the scope of this research. Nevertheless, considering that intra-subject inaccuracies up
to 10° are to be expected [185] and that a 20° increase in the spatial QRS-T angle is
associated with a 4% aggravated risk of mortality [213], the estimation errors obtained
from the subset {7, I, aVF, V2} may suffice for detecting abnormal QRS-T angles with-
out compromising patient comfortability. Furthermore, measuring the spatial QRS-T
angle from subsets of solely frontal leads looks plausible in the future with further
refinements of the deep-learning prototype model.

A viable solution for boosting the estimation of the spatial QRS-T angle from
reduced-lead ECGs could be the adoption of ensemble methods in a hierarchical or-
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der. Ensemble methods could first classify ECGs into various subranges (classes) of
QRS-T angles and subsequently assign different regression networks to each separate
class. The designated classes could categorize ranges of spatial QRS-T angles by clin-
ical significance: narrow (0° < a < 30°), healthy (30° < a < 70°), borderline healthy
(70° < a < 110°), dangerous (110° < a < 135°), life-threatening (135° < a < 180°). This
strategy would narrow the scope of the angle to be measured, enabling the selection
of regression networks (or loss functions) better fitted to handle specific challenges
within each subrange of QRS-T angles. For instance, if the model struggles to locate
the z-coordinate only in ranges of a >70°, a higher penalization factor of the Euclidean
distance or a deeper regression network could be appropriate options to train the model
for such ranges of the QRS-T angle. Alternatively, other subranges of QRS-T angles
could benefit from different regression algorithms, such as ElasticNet. Cascading the
estimation of the QRS-T angle from reduced-lead ECGS is also a compelling solution
to mitigate the shortage of training data in the given ranges of the QRS-T angle—in
particular, in small (a < 15°) or wide (a > 135°) QRS-T angles. Accurate measurement
of the actual value of the QRS-T angle from reduced-lead ECGS for such ranges may
be unattainable if the number of recordings for training the model is low, but grouping
the recordings into different classes may yield satisfactory classification results. Con-
sidering that spatial QRS-T angles starting from « =[110:135]° are associated with an
elevated risk of SCD [50], correctly categorizing the ECG as a life-threatening QRS-T
angle (a >135°) would provide a sufficient clinical value.

The lack of ambulatory long-term 12-lead ECG signals is a limitation of this
research. The PTB-XL database, albeit comprehensive in terms of healthy controls and
cardiac pathologies, includes only short 10 s long ECGs; therefore, it is unclear how
noisy real-life ECG signals will impact the performance of the deep-learning-based
method for spatial QRS-T angle estimation. The frontal QRS-T angle is also useful
in predicting mortality [50] and ventricular arrhythmias [214]. Future studies should
also investigate monitoring of the frontal—along with the spatial—QRS-T angle from
areduced ECG lead system.

Future research should also consider supplementing the training data with addi-
tional recordings, namely, those of the underrepresented ranges of « <15° and a >115°,
either by data augmentation techniques, or by inclusion of other datasets of 12-lead
ECGs likely to display « >115° to complement the PTB-XL dataset.

4.8. Conclusions of the Chapter

1. A deep-learning model for deriving the spatial QRS-T angle from reduced-
lead ECGs has been proposed. The model measures the spatial QRS-T angle « with
reasonable accuracy (¢ = 11.4° and ¢ = 7.3°) from three frontal and one precordial
leads ({I,11,aVF, V2}) instead of the eight leads required to derive it when using the
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conventional approach ({7, 1I, VI-V6}). The accuracy suffices for detecting abnormal
angles without sacrificing the patient comfort.

2. A gradual reduction of ECG leads from the largest publicly available dataset
of clinical 12-lead ECGs (PTB-XL) was used for training and finding the best subset
({1,11,aVF,V2}) of ECG leads to estimate «. Although the prototype model showed
high estimation errors when using a subset of solely frontal ECG leads, measuring the
spatial QRS-T angle from frontal-lead ECGs looks plausible in the future with further
refinements to the model architecture.

3. The model locates the coordinates of . and @ in the X, ¥, and Z axes,
using an original composite loss function comprised of the 3D Euclidean distance and
the absolute mean error between the target and the estimated vectors and the QRS-T
angle. Adopting metrics that guide the model through the 3D space enables the estima-
tion of spatial ECG features even when the input leads provide limited spatial informa-
tion. A similar strategy could propel the development of solutions for estimating other
well-established 3D-based ventricular repolarization markers, such as the ventricular
gradient.

4. The model architecture is lightweight and requires low computational power.
It comprises D = 4 blocks of layers, k = 16 kernels, and 105,578 training parameters,
making the model appealing to be deployed in consumer healthcare devices.

5. The proposed model will enable exploring the clinical value of the spatial
QRS-T angle as a potential blood electrolyte surrogate in ambulatory scenarios. The
ECG lead subset {7, 1I,aVF, V2} can be registered with easy-to-use patch- or textile-
based consumer healthcare devices already available in the market. Even though the
requirement one precordial lead precludes the use of devices that would maximize
comfort, such as wrist-worn wearables, devices that register leads {I, II, aVF, V2} may
still facilitate intermittent monitoring of the spatial QRS-T angle in out-of-hospital
settings.

6. Future research can also validate the potential clinical benefits of this tech-
nology in populations at risk of SCD, such as CKD and CVD patients.
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5. SYMBOLIC CLUSTERING ALGORITHM FOR FASTER HEARTBEAT
ANALYSIS AND ANNOTATION IN LONG-TERM ECGS

5.1. Rationale and Conceptual Framework

Since the scientific research of noninvasive methods for monitoring blood electrolyte
levels is still in its infancy, researchers require large amounts of long-term data to study
how electrolyte fluctuations affect the physiological parameters of an ECG in everyday
ambulatory scenarios. While researchers ought to infer electrolyte-induced ECG mor-
phology changes from the cardiac electrophysiological principles, as noted throughout
this dissertation, such anticipated ECG findings are not always apparent, easily identifi-
able, or even specific to dyselectrolytemia (see Sec. 2.3 and Sec. 3.6). This ambiguity
of the emblematic electrolyte-related ECG features, coupled with other problematic
variables that can also impact the ECG morphology in ambulatory monitoring (e.g.,
noise, physical activity, psychological stress, or body position changes), put the sci-
entific development of technological solutions for noninvasive blood electrolyte mon-
itoring at an impasse.

Large amounts of data can (evidently) provide valuable insights that would
deepen the scientific knowledge of blood electrolytes and their relationship with the
ECG morphology. By collecting long-term ECGs, researchers can perform descrip-
tive and exploratory studies to identify what confounding factors are masking or mim-
icking the anticipated ECG features of electrolyte imbalance and even discover other
unexpected morphological ECG changes related to blood electrolyte fluctuations. Per-
forming such studies with large amounts of ambulatory data is paramount to: (i) propel
research and development of new ECG-derived surrogates for electrolytes, (ii) iden-
tify the external causes of ECG morphology changes (i.e., confounding factors), (iii)
devise and improve monitoring protocols, and ultimately (iv) perfect algorithms for an
accurate assessment of blood electrolyte balance.

Unfortunately, sizeable amounts of long-term data add another challenging layer
to the cardiovascular research pipeline—it requires manual analysis and annotation.
Data annotation is arduous and time-consuming, and important details may be missed
amidst the monotonousness of long-term signals. Machine-learning algorithms could
expedite the research and analysis of long-term ECGs but also entail large annotated
datasets and, in many cases, human supervision to develop and train such algorithms.
Accordingly, a system that balances the benefits of automated algorithms with the at-
tention of a human expert, in which the data is structured to be efficiently analyzed
and annotated, could expedite the cardiovascular research pipeline and the scientific-
technological development of methods for facilitating noninvasive blood electrolyte
monitoring.

Such a system, for instance, would aid in overcoming two challenges encoun-
tered in the feasibility study described in Chapter 3: detecting and pinpointing the in-
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stances in time when alternating T-wave morphologies and subtle ST-segment changes
occurred throughout the long interdialytic interval (Sec. 3.6). Alternating T-wave mor-
phologies impact the T-wave parameterization algorithm, whereas subtle ST-segment
changes can be related to blood [Ca®*] fluctuations. A fully annotated dataset would,
therefore, help to assemble a complete picture of the electrophysiological changes hap-
pening in the heart during periods of gradual blood electrolyte fluctuations.

Research design

Various algorithms have been proposed for heartbeat clustering [215,216]. The
authors of [216] selected representative heartbeats from each generated cluster for la-
beling, decreasing the time needed for annotation. While thriving in relatively short
ECG signals (up to 30 min long in [215] and 24 h long in [216]), the currently available
heartbeat clustering algorithms analyze every individual beat in the signal, thus con-
suming many computational resources, making them inefficient for long-term signals.
The lack of heartbeat clustering algorithms suitable for analyzing long-term ECGs
raises the following question:

* How can the efficiency of heartbeat annotation algorithms be improved so
that cardiovascular research of noninvasive blood electrolyte markers in long-
term ECGs can be expedited?

One strategy to lessen the computational resources of unsupervised clustering algo-
rithms is to decrease the number of heartbeats to be analyzed. One way to do so is to
reduce data dimensionality through data discretization techniques. Data discretization
is frequently employed to improve the accuracy and processing time of motif discovery
algorithms in time-series data mining problems which aim to find repeating patterns
(i.e., motifs) in data. In essence, such techniques simplify data description by dis-
cretizing the values of continuous time-series features into small intervals, where each
interval is mapped to a discrete symbol. Given that the goal is to identify morphological
ECG patterns, data discretization techniques employed in motif discovery algorithms
may enhance the efficiency of heartbeat annotations in long-term ECGs recordings.

The concept of the proposed method

Since ECGs are essentially time series with periodic patterns (heartbeats), a sim-
ilar principle to data discretization in motif discovery algorithms can be applied to clus-
ter heartbeats in long-term ECGs. Heartbeats can be compressed into symbols by us-
ing data discretization and subsequently grouped into same-symbol pre-clusters. Here,
the classic discretization technique described in [217] transforms heartbeats into short
strings. Instead of every individual heartbeat, hierarchical clustering is performed only
between heartbeats representative of each generated pre-cluster, thus lessening com-
putational demands by reducing the number of beats to be analyzed. Clusters can then
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be conveniently analyzed and annotated by the researcher.

This Chapter proposes a symbolic clustering algorithm for facilitating heartbeat
annotation in long-term ECGs, free from fatigue-caused errors or exorbitantly long
computations. As a proof-of-concept of its efficiency, the algorithm is applied to an-
notate ambulatory 3-day-long ECGs of HD patients (Sec. 3.3). The algorithm’s ac-
curacy is tested on the Physionet MIT-BIH database [218] with 13 manually labeled
classes. Parts of Sec. 5.2-5.5 and the paragraphs above are quoted verbatim from the
previously published conference paper: [61].

5.2. Methods

The pipeline of the symbolic clustering algorithm comprises five stages: preprocess-
ing, symbolic conversion, pre-clustering, hierarchical clustering, and manual investi-
gation and annotation, as illustrated in Fig. 5.1.

Pre-Clustering
cbed0 cda 1dgcbezc0

Preprocessed ECG Symbolic Conversion Hierarchical Manual Investigation

Clustering and Annotation

ala] Uik

Fig. 5.1. An overview of the symbolic-clustering-based approach for annotating heartbeats in long-term
ECG signals.
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5.2.1. ECG preprocessing

Long-term ECGs undergo preprocessing, consisting of four stages: filtering, detrend-
ing, standardization, and heartbeat delineation. Each stage is detailed below.

Filtering.  High-frequency noise and baseline wandering are removed using low-
and high-pass FIR filters, with respective cut-off frequencies of 40 Hz and 0.6 Hz.

Detrending.  Since data discretization techniques are amplitude-dependent, ECGs
must be detrended and demodulated to remove any trace of baseline wandering and
noise artifacts. A centered moving average is computed and subtracted from the fil-
tered ECGs to detrend the signals. Demodulation is performed similarly to the strategy
described in [219]. Periods contaminated with large amplitude deviations, such as mo-
tion artifacts, are discarded.

Standardization.  Long-term ECGs have to be segmented into periods of compara-
ble amplitude to minimize errors in the symbolic conversion stage (Sec. 5.2.2). The
segmentation window length w,,,, is arbitrary but should not be limited to a single
fixed value, i.e., the algorithm should not segment the whole ECG recording only into
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Abnormal-
sized beats

Fig. 5.2. RR-based beat delineation (left): a beat is outlined at 30% and 70% of its RR interval. Abnormal-
length beats are categorized as noise (right). Such beats usually emerge from incorrect R-peak detection
fails in noisy ECG periods.

one-hour-long periods. Instead, w,,, should depend on the signal amplitude trend to
ensure that all heartbeats within each segmented period have a homogeneous ampli-
tude. w,,,, = 30min is usually enough, providing that no motion artifacts are present.
Each ECG segment ) (n) is then standardized in amplitude (z-score):

Y(n) —x

Yi(n) = —g Vn, nelt,,...,t,}, 5.1

where )< (n) denotes the standardized ECG segment, x and S are the mean and standard
deviation of f (n), and 7, and ¢z, are the starting and end points of each ECG segment.

Heartbeat delineation.  Beats are roughly delineated based on their respective RR-
interval (Fig. 5.2) since the symbolic clustering algorithm does not entail precise and
computationally expensive PQRST detectors. Good-quality beats are aligned using
R-peak as a reference point and zero-padded to equalize their length.

5.2.2. Symbolic conversion

Heartbeats are individually compressed to short strings using the classical data dis-
cretization technique, Symbolic Aggregation approXimation (SAX) [217]. SAX con-
verts a time series into a set of equiprobable symbols (strings) that approximate the
original time series. SAX embodies two parts: discretization via Piecewise Aggregate
Approximation (PAA) [217], followed by symbol assignment (Fig. 5.3). PAA reduces
the dimensionality of a time series 7 of length n by splitting it into w segments of equal
size z. Each i-th segment 7 is calculated as:

w Z
K " (j-t’m‘z—nn 77) . 02

In other words, 7; is the mean value of the data contained within the segment.
The PAA-transformed time series is divided into a equiprobable symbols, where
a is an arbitrary alphabet size of 2 < a < 20 [217]. Since normalized time series have
a Gaussian distribution [217], the Gaussian curve can be split into equal-size regions,
B=1{B1»---» B._1}, such that the area under the curve between B, and 8,,, is !/a. B are
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Fig. 5.3. SAX Conversion: (a) PAA transformation of a heartbeat. PAA coeflicients are calculated starting

at 7/2 samples centered at the R-peak; (b) Symbol assignment. PAA coefficients are mapped out according

to the breakpoints g as follows. The symbol 'a’ is ascribed to the coefficients below B,; ‘b’ to the ones
above B, (= B,) but below B, (< 8,), and so forth.
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Fig. 5.4. (a) RR; of an abnormal beat (APB). (b) Addition of RR, information to distinguish strings of
APB from normal beats. The symbol "1’ is added to beats whose RR; is an outlier, and '0’ otherwise.

the breakpoints for assigning the symbols and are provided by a statistical table.

5.2.3. Pre-clustering

SAX-based data series motif-discovery algorithms aim to find motif pairs, i.e., pairs
of the most similar subsequences of a given length L using a distance function. When
using a sliding window approach, the algorithms typically search for motif pairs of
variable-length subsequences [L,,,,,,---,L,...] in the time series, thus computing the
L .. For each m, how-

min> *** > “max

distance function n — m + 1 times for each m = [L
ever, the algorithm measures the similarity only between subsequences represented by
different strings instead of comparing every possible subsequence of length L. In data
mining applications, this approach helps identify ’discords’, i.e., isolated subsequences
far from the rest of the data.

Since ECGs are periodical, the subsequences (i.e., heartbeats) to be analyzed are
of fixed length L; thus, SAX can be applied to each heartbeat directly instead of trying
to find the optimal length L which better identifies all motifs in the data. Heartbeats
are compressed into strings using R-peaks as reference points: the PAA coeflicients are
calculated starting at z/> samples centered at the R-peak and then mapped out according
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to the breakpoints g (Fig. 5.3). Every unique string then becomes a pre-cluster of all
beats the string represents.

The morphology of certain abnormal beats, such as premature atrial contractions
(PACs), resembles normal beats, except in the low-amplitude components (e.g., P-
waves), which SAX can envelop. Enveloping such components causes abnormal beats
to be represented by matching strings as beats of a different class (Fig. 5.4) and thereby
be wrongly pre-clustered. To minimize pre-clustering errors, for every i-th beat, an
extra symbol is added. This extra symbol represents the RR information of two neigh-
boring beats: RR;, = RR;, |,/RR;,, ;. The symbol ’I" is added to beats whose RR,, is
an outlier, and ’0’ otherwise.

i+1,i

The number of pre-clusters depends on the chosen a and z parameters. Increment-
ing either a or z lowers the compression rate but at the trade-off of a higher number of
pre-clusters, thus increasing the computational demands. Since ambulatory ECGs are
generally noisy, beats within the same pre-cluster are signal-averaged to enhance the
signal quality.

5.2.4. Hierarchical clustering

Hierarchical clustering is employed to cluster the signal-average beats representative
of each pre-cluster. In contrast to other heartbeat-clustering algorithms, the dissimi-
larity matrix D,, is calculated by combining dissimilarity matrices of various heartbeat
components:

D,, = D + Dprs + D3, (5.3)

D}, and Dy, ¢ measure the Spearman distance between the gradient of the PQ-interval
and the QRS-complex, and D,, is the complexity-invariant distance [220] of the whole
heartbeat. The combination of various dissimilarity matrices enables the clustering
algorithm to account for low-amplitude components of the ECG that could otherwise
be disregarded. Hyperparameter tuning of the symbolic clustering algorithm is detailed
in Sec. 5.3.

5.3. Data and Performance Evaluation

The performance of the proposed symbolic clustering algorithm is evaluated according
to its accuracy and efficiency in two separate databases. To evaluate efficiency, the
algorithm is applied to annotate long-term ambulatory ECG recordings (2-to-3 days
long, see Sec. 3.3). Accuracy is tested on the Physionet MIT-BIH [190,218] database
with 13 manually labeled classes.
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Fig. 5.5. Graphical summary of the MIT-BIH database in terms of percentage of annotated beats in
each of the 13 classes. The pie chart on the right is a magnified view of the seven classes that together
comprise 2.1% of all heartbeats. Acronyms: LFBB and RLBB—Ieft and right bundle branch block; VPB
and APB—uventricular and atrial premature beat; Fusion P-N—fusion of paced and normal beat; Fusion
V-N—fusion of ventricular and normal beat; VEB and AEB—ventricular and atrial escape beat.

MIT-BIH database

Since labeled ECGs are necessary for accuracy assessment and as no databases
of labeled long-term ECGs are currently available, the algorithm is developed and
tested on the MIT-BIH database. This database comprises 48 annotated ambulatory
30-minute-long ECG recordings and includes manual annotations of all heartbeats.
Each heartbeat is labeled according to 13 possible morphological classes (Fig. 5.5).
Recordings have 2307+437 beats on average, tallying 110,740 labeled beats in the
database. Every ECG contains at least two heartbeat classes (a median of four per
recording) with a maximum of nine.

Performance evaluation metrics

Five performance metrics are employed to evaluate the accuracy: misclassifica-
tion, recall, precision, Fowlkes-Mallows (FM) index, and Matthews Correlation Co-
efficient (MCC). Misclassification is the % of beats that end up in clusters where the
dominant class is a different one. The recall (i.e., sensitivity) and the precision range
are in [0, 1] and are calculated as follows:

TP TP

m; precision = W (54)

recall =

The similarity between two clusters is defined by the FM index, which combines the
previous two metrics:

FM = ‘/recall -precision, and FM=[0,1]. (5.5)
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FM =0 states that the model misclassified all the elements, whereas FM = 1 corresponds
to a perfect classification. The MCC is obtained as:

(TPxTN) - (FPxFN)
V(TP + FP) (TP + FN) (TN + FP) (TP+FN)’

MCC = (5.6)

and ranges in [-1,1]. MCC = 1 indicates a perfect prediction, MCC = 0 a random
prediction, and MCC = -1 corresponds to a total disagreement between the prediction
and the labels. The true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) are the number (#) of pairs of beats with:

e TP: the same class and cluster;

e TN: different classes and clusters;

e FP: different classes, but the same cluster;

e FN: the same class, but different clusters.

Note that although the MIT-BIH database only has 13 labeled classes, the clustering
algorithm can find as many relevant classes as it deems fit. The total # of classes found
by the algorithm is not a meaningful metric, and the human expert is tasked to decide
the final # of classes across all clusters by, for example, grouping two clusters into
the same class. Instead, the algorithm is deemed accurate if all beats within the same
cluster belong to the same class.

Tuning of the clustering hyperparameters

In supervised multi-class classification problems, accuracy is traditionally de-
fined by the number of elements correctly classified by the machine-learning model,
as the total number of classes is known a priori. However, the number of heartbeat
classes within a long-term ECG recording is not inferable beforehand. Thus, the algo-
rithm must cluster heartbeats in an unsupervised fashion, and the optimal number of
clusters (XC,,) needs to be estimated based on the internal information of the clustering
result. Internal clustering validation indices (CVIs) provide a quantitative measure of
the quality of a clustering result, enabling the choice of the appropriate K,, according
to the compactness and separation of the clusters. Three internal CVIs are evaluated
in this research: Calinski-Harabasz, Davies-Bouldin, and silhouette [221].

Another element of hierarchical clustering which requires investigation is the
linkage method, i.e., the method that specifies how the distance between two clusters is
calculated. This research examines three linkage types: complete, weighted, and aver-
age. Each of the three internal CVlIs is evaluated with all three linkage types, rendering
six possible combinations of hyperparameters to be tuned. The optimal hyperparame-
ters are chosen according to their accuracy performance in the MI7-BIH database.

The SAX parameters a and z (Sec. 5.2.3) are set to « = 4 and z = 0.1s. While
devising this algorithm, these parameters were found to be adequate for most case
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scenarios without escalating the computational complexity.

5.4. Results
5.4.1. Accuracy assessment in labeled ECGs

The compression rate for the MIT-BIH database was 26.2%, yielding on average
556.4+318.9 unique strings per recording. Recordings have an average of 2,258.6+440
heartbeats. Beat misclassification was 0.97+1.51% after SAX, with junctional and es-
cape beats being the most susceptible to being improperly pre-clustered.

Figure 5.6 shows boxplots of the performance evaluation metrics on the MIT-BIH
database. The results reveal a large variability of MCC for all combinations of linkage
and internal validation indexes, despite high precision and FM index, with a few MCC
values reaching near or below 0, likely caused by an increase in FNs (Fig. 5.7). Since
the symbolic clustering algorithm aims to facilitate heartbeat annotation, FNs are not
problematic, but rather the incidence of FPs. Thus, a low MCC does not indicate poor
clustering results if allied with a high FM index and a low rate of FPs.
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Fig. 5.6. Boxplots of the performance metrics obtained by the proposed algorithm in the MIT-BIH
database using various linkage and internal clustering validation indexes.

Combining the complete or weighted linkage with the Calinski-Harabasz index
produces the best precision, FM index, MCC, and misclassification results, with a re-
spective mean of 0.91, 0.91, 0.37, and 5.6%. This combination results in the lowest
misclassification and the highest FM index, indicating that, despite producing many
clusters for the same class (low MCC), the chances of wrongly annotating beats de-
crease. On average, beat misclassification was <2% over 13 labeled classes for each
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Assigned classes in manual annotation: Assigned clusters by the algorithm:

—VPB — Cluster | — Cluster 2
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Fig. 5.7. Examples of clustering results. Five beats labeled with the same class of ventricular premature

beats (VPB) from the MIT-BIH database are assigned to two different clusters by the proposed algorithm

(top). This is a case of FNs that is not fundamentally undesirable for manual annotation. Normal beats
from two distinct periods with subtle ST-changes from long-term ECG recordings (bottom).

combination above, respectively. In contrast, the large variance of the FM index, MCC,
and misclassification indicate that the Silhouette index is an inadequate CVI despite
having the best recall.

5.4.2. Efficiency assessment in long-term ECGs

As for efficiency, in one 3-days-long recording, more than 480,000 beats were reduced
to less than 30,000 unique strings, and further to 30 clusters, which were then anno-
tated as three classes plus noise. Heartbeats with subtle changes in the ST-T segment
morphology were grouped into different clusters, as displayed in Fig. 5.7. The com-
putations took less than an hour on an AMD Ryzen™5 3.6 GHz CPU with six cores
(12-threads) and 16 GB of RAM.

5.5. Discussion

This dissertation proposes a symbolic clustering algorithm for facilitating heartbeat
annotation in long-term ECG signals. Beats are compressed to short strings using
SAX and pre-clustered before performing hierarchical clustering of the generated pre-
clusters. A human expert then annotates the generated clusters.

A similar annotation strategy was adopted in [216], in which only selective heart-
beats representative of each cluster are labeled. Albeit precise, the clustering algorithm
is computationally demanding as it examines all beats within the recording. In contrast,
the proposed algorithm pre-clusters equal-string beats, performing hierarchical cluster-
ing only to signal-averaged beats of every pre-cluster. Moreover, signal-averaging may
also boost clustering results. It enables the inclusion of various low-amplitude com-
ponents, such as P-waves and ST-segments, into the dissimilarity matrix that would
otherwise be occluded by noise.
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The symbolic clustering algorithm is promising. While low MCC values tend
to suggest poor clustering results, it is not always the case, especially when paired
with high-precision values. MCC decreases when the # of FNs or FPs increases. An
increase in FNs, i.e., same-class beats categorized into different clusters, is not funda-
mentally undesirable for manual annotation. The algorithm categorized beats labeled
with the same class into various clusters if differences in beat morphology exist (see
Fig. 5.7). Categorizing same-class beats into various clusters allows researchers to ex-
plore how heartbeats fall into various classes naturally and even study the existence of
unexpected sub-classes. In ambulatory cardiovascular research, even modest changes
in the ECG morphology can hold meaningful value. For instance, as discussed in
Sec. 3.6, detecting variations in the ST-T morphology is pivotal for investigating non-
invasive markers of electrolyte fluctuations in out-of-hospital settings. Changes in the
ST-T segment can indicate calcium imbalance and therefore aid in developing blood
[Ca®*] markers. However, as observed in the feasibility study in Chapter 3, changes
in the ST-T segment (and alternating T-wave morphologies) are recurrent in ambula-
tory signals. Since these changes can stem from many other sources (e.g., body posi-
tion changes) besides electrolyte imbalance, categorizing same-class beats into various
clusters if differences in morphology exist enables researchers to identify the causes
of such morphological variations and avoid misclassifying them as electrolyte imbal-
ance. Another scenario of low MCC is ECGs with minimal abnormal beats (e.g., five
APBs occur amidst 2000 regular beats). Misclassifying one or two heartbeats in such
recordings increases FPs but is unlikely to compromise cardiovascular research.

Albeit beneficial for annotating long-term ECG recordings, pre-clustering using
SAX can increase the incidence of FPs by enveloping beats of different classes into the
same pre-cluster. Misclassification is higher in beats whose distinctive morphological
feature lies in subtle low-amplitude components, such as APBs, escape, or junctional
beats. Higher a and z values (see Sec. 5.2.3) could ameliorate beat misclassification
by allowing such components to be discernible by SAX but at the expense of higher
computational cost without necessarily producing better clustering results. Finding the
best compromise between a and z parameters, computational demands, and accuracy
is a subject of future research. Future studies should also explore other dissimilar-
ity metrics to improve precision and evaluate the most propitious combination of the
parameters of SAX.

5.6. Conclusions of the Chapter

1. A symbolic clustering algorithm has been proposed to enhance the efficiency
of heartbeat annotation and analysis in long-term ECGs. The algorithm compresses
heartbeats into short strings (symbols) using SAX, which is a classical data discretiza-
tion technique for time-series analysis and data mining. Every unique string becomes
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a pre-cluster of all beats represented by this string.

2. Instead of every individual heartbeat, the human expert is presented with the
hierarchical clustering results of the generated pre-clusters for manual investigation
and annotation. This strategy significantly reduces the computational demands of hi-
erarchical clustering. In a 3-day-long ECG, more than 480,000 beats were reduced to
30,000 unique strings and to 30 clusters, and then annotated as three classes plus noise.
Computations and labeling took less than one hour.

3. Accuracy was tested in a labeled database (MIT-BIH). The combination of
complete or weighted linkage with the Calinski-Harabasz index produced the best pre-
cision (0.91), FM index (0.91), MCC (0.37), and misclassification results (5.6%). The
algorithm misclassified 0.97£1.51% beats after SAX and displayed a compression rate
of 26.2% in the MIT-BIH database.

4. While low MCC values tend to suggest poor clustering results, the high pre-
cision values show that this is not the case. The algorithm categorized beats labeled
with the same class but with different morphological traits into several clusters (i.e., an
increased number of FNs). This feature is not fundamentally undesirable as it allows
researchers to explore how heartbeats naturally fall into other classes and even identify
unexpected sub-classes for further study.

5. Although future research should explore other dissimilarity metrics to im-
prove precision, the symbolic clustering algorithm can expedite the cardiovascular
research pipeline and aid the scientific investigation of new ECG markers of blood
electrolytes.
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6. CONCLUSIONS

1. Regular blood electrolyte monitoring in chronic disease patients is essential
for their short- and long-term health. While severe dyselectrolytemia episodes can pre-
cipitate life-threatening arrhythmias and are thus dangerous in the short term, mild—
yet recurring—episodes can have long-lasting detrimental effects. Despite not posing
an imminent threat to the patients, such mild and recurring episodes can deteriorate
the cardiac and renal functions, which hastens disease progression and jeopardizes
long-term health. These episodes commonly result from suboptimal dosages of stan-
dard medications for chronic disease treatment, such as antihypertensive drugs. There-
fore, the timely detection and correction of dyselectrolytemia enabled by regular blood
electrolyte monitoring could avert dangerous arrhythmias and help clinicians titrate
life-saving medications for maintaining homeostasis and promoting general long-term
health.

2. Ambulatory monitoring of blood electrolyte levels using single-lead ECGs
is feasible for HD patients with comorbid heart diseases. Two T-wave morphology
descriptors, 65 and Ts,, responded to gradual potassium fluctuations during the long
interdialytic interval and are moderately correlated with changes in [K*] (»=-0.56 and
r =-0.57, respectively). 6, and T, also reacted to potassium-lowering medications
and insulin spikes after meals which drive K" inside the cells. The daily variability of
6 s is similar to the circadian variation of blood [K'] in healthy subjects. Compared
to Ts,, the proposed model-based parameterization descriptor 6, is less affected by
motion-induced noise, making it preferable for ambulatory applications. Nevertheless,
confounding factors, such as concomitant electrolyte imbalances, particularly calcium
and bicarbonate, and alternating T-wave morphologies, can affect the performance of
both descriptors.

3. A deep-learning model can accurately measure the spatial QRS-T angle «
from the reduced-lead ECG subset {I,1I,aVF,V2}, with absolute mean and median
errors of 11.4° and 7.3°. The model locates the 3D coordinates of the QRS and T vec-
tors (output) necessary for computing « from signal-averaged heartbeats (input) of
each lead within the subset {1, II,aVF, V2}. This subset can be registered with easy-
to-configure consumer healthcare devices already available on the market. An origi-
nal composite loss function which uses the angle and the 3D Euclidean distance be-
tween the vectors was employed to train the model to estimate « even when the input
ECG leads provided limited spatial information. The model architecture is lightweight
enough to be deployed in consumer healthcare devices. It is a promising solution for
ambulatory QRS-T angle monitoring and investigating its interrelationship with blood
electrolyte levels.

4. The proposed symbolic clustering algorithm can enhance the efficiency of
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heartbeat annotation and analysis in long-term ECGs. Compressing heartbeats into
short strings (symbols) enables grouping them into same-symbol pre-clusters to reduce
the computational demands of hierarchical clustering. E.g., in a 3-day-long ECG, more
than 480,000 beats were reduced to 30,000 unique strings and then to 30 clusters that
researchers can conveniently analyze and annotate. The combination of complete or
weighted linkage with the Calinski-Harabasz index produced the best precision (0.91),
FM index (0.91), MCC (0.37), and misclassification results (5.6%). The low MCC
values and the high precision indicate that the algorithm categorized beats labeled with
the same class but with different morphological traits into various clusters. This feature
allows researchers to explore how heartbeats naturally fall into different classes and
even identify unexpected sub-classes for further study.

139



SANTRAUKA
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Moksliniy tyrimy svarba

Elektrolity pusiausvyros sutrikimas, arba diselektrolitemija, pasireiskia, kai elek-
trolity kiekis kraujyje nukrenta uzZ homeostazés riby ir yra susijes su padidéjusiu serga-
mumu, mirtingumu dél visy prieZas¢iy ir staigia Sirdies mirtimi (SSM) jvairiose po-
puliacijose [3—6]. Pagrindiniai dielektrolitemijos rizikos veiksniai yra amzius, létinés
ligos, tokios kaip létiné inksty liga (LIL), medZiagy apykaitos sutrikimai (cukrinis dia-
betas), Sirdies ir kraujagysliy ligos (SKL), ir standartiniy vaisty $ioms ligoms gydyti,
t. y. antihipertenziniy vaisty, g-adrenerginiy blokatoriy arba agnostiky ir kortikos-
teroidy, vartojimas [14,26,76,77].

Daugeliui Zmoniy visame pasaulyje gresia elektrolity pusiausvyros sutrikimas,
nes LIL, hipertenzija ir SKL yra pasaulinés epidemijos. LIL serga daugiau kaip 10%
pasaulio gyventojy [27], o hipertenzija serga beveik 32% motery ir 34% vyry [28] ir
apie 60% vyresniy nei 60 mety Zmoniy [17]. Beveik pusei jy taikomas antihiperten-
zinis gydymas [28]. MaZdaug 8,8% pasaulio gyventojy serga cukriniu diabetu [29], o
70-80% jy ir gretutine hipertenzija [30]. JAV ir Jungtinéje Karalystéje nuo 5,5% [31]
iki 21,3% [32] suaugusiyjy serga SKL, ir tai jau yra 32% visy pasaulio mir¢iy prieZas-
tis [33], o nuo SKL kasmet mirsta apie 5-10 mln. Zmoniy [34]. Prognozuojama, kad
iki 2030 m. sergamumas Siomis létinémis ligomis, taigi ir pavojingos dielektrolitemi-
jos atvejy skaicius, dar labiau padidés dél senéjancios visuomeneés [27,34].

Be padidéjusios mirtingumo dél visy prieZasciy rizikos, elektrolity pusiausvy-
ros sutrikimas yra ekonominé nasta [35]. Dielektrolitemijos gydymas padidina ir taip
dideles sveikatos prieZiiiros i§laidas, susijusias su SKL ir LIL, ypa¢ sunkiais epizodais,
del kuriy reikia hospitalizuoti [36]. LIL sergantiems pacientams kiekvienas sunkus
dielektrolitemijos atvejis JAV kainuoja iki 31 212 JAV doleriy, o lengvam atvejui gy-
dyti pakanka tik 1782 JAV doleriy [35]. Apskaiciuota, kad hospitalizavimas dél dielek-
trolitemijos sukelia papildoma sveikatos priezitros iSlaidy nastg, kuri vidutiniSkai su-
daro 7-39% [37], o, JAV duomenimis, 2009 m. vien natrio disbalansui gydyti iSleista
1,6-3,6 mlrd. JAV doleriy [38].

Reguliarus elektrolity kiekio kraujyje stebé¢jimas gali padeti iSvengti nepalankiy
trumpalaikiy ir ilgalaikiy padariniy sveikatai. Reguliari stebésena ne tik leisty greitai
koreguoti elektrolity sutrikimus prie$ prasidedant SSM sukelian¢ioms aritmijoms [39],
bet ir palengvinty vaisty titravima, padédama gydytojams nuolat koreguoti gyvybe
gelbstinciy vaisty doze, kad bty pasiekta kuo didesné nauda be nepageidaujamo po-
veikio [25]. Ankstyvosios stadijos SKL pacientams laiku koreguojant dielektrolitemija
galima atitolinti ligos progresavima iki galutinés stadijos inksty ligos (GSIL) [93], kai
pacientams, norint, kad iSgyventy, kas dvi ar tris dienas reikia atlikti hemodializes
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(HD), arba net uzkirsti kelig ligos progresavimui [94]. Be to, reguliari kraujo elek-
trolity stebésena taip pat galéty sumaZinti ekonomine létiniy ligy nastg. PavyzdZiui,
laiku nustacius lengva dielektrolitemija, galima iSvengti bent 22 proc. vyresnio amZi-
aus pacienty hospitalizacijy [40], o, sustabdZius LIL progresavima iki GSIL, LIL i$lai-
dos gali sumazéti SeSis kartus [41]. Vidutinés metinés GSIL iSlaidos vienam pacientui
yra 100 593 JAV doleriai, o JAV LIL gydyti pakanka 16 112 JAV doleriy [41].

Nepaisant to, kad reguliari stebésena gali iSgelbéti gyvybe ir yra rekomenduotina
paZzeidZiamiems pacientams, klinikinéje praktikoje ji maZai taikoma, visy pirma dél
to, kad néra praktiniy metody elektrolity kiekiui kraujyje jvertinti. Kraujo tyrimai yra
vienintelis kliniSkai pagrjstas metodas elektrolity pusiausvyros sutrikimui nustatyti,
taciau kraujo tyrimai gali biiti brangis, o jy reguliarus atlikimas sveikatos prieziiiros
jstaigoms gali buti logistiSkai sudétingas. Be to, kraujo tyrimai yra nejmanomi ne-
klinikinéje aplinkoje, todél ambulatorinis elektrolity kiekio kraujyje stebéjimas yra
nejmanomas. Nebrangios, o geriausia — neinvazinés, technologijos elektrolity kie-
kiui kraujyje jvertinti galéty palengvinti reguliary tiek stacionare, tiek ambulatoriskai
gydomy pacienty stebéjima, todél buty kliniSkai svarbios [25,39].

Moksliné ir technologiné problema

D¢l nehomeostatinio elektrolity kiekio kraujyje sutrinka Sirdies lasteliy veikimo
potencialas [7], todél atsiranda skilveliy repoliarizacijos sutrikimy, kurie gali atsispin-
deti elektrokardiogramoje (EKG) [42]. PavyzdZiui, pakitusi T bangos morfologija yra
gerai Zinomas kalio sukelty repoliarizacijos sutrikimy pozZymis [42]. Taigi EKG skil-
veliy repoliarizacijos Zymenys gali buti panaudoti kraujo elektrolity lygiui netiesiogiai
vertinti.

Pastaraisiais metais buvo sukurti nauji elektrokardiogramos T bangy morfologi-
jos parametrai, leidZiantys kiekybiSkai jvertinti kalio kiekj kraujyje [43—45]. Nors Siy
parametry rezultatai daug Zadantys, jie buvo tiriami tik GSIL pacientams HD seansy
metu, kai elektrolity kiekis kinta daug greiciau nei kasdienéje ambulatorinéje aplinkoje.
Nors yra Zinoma, kad greiti elektrolity svyravimai sukelia pastebimus T bangos mor-
fologijos pokycius [46,47], vis dar neistirta, ar EKG gali uzfiksuoti laipsniskus elek-
trolity svyravimus, kuriy galima tikétis kasdienéje aplinkoje.

Be T bangos morfologijos, kaip skilveliy repoliarizacijos Zymenys pladiai tyrinéti
ir kiti EKG poZymiai, pavyzdZiui, erdvinis QRS-T kampas [48-50]. Nors jy rySys
su kraujo elektrolitais dar neaiskus, kai kurie i Siy Zymeny yra stiprus lasteliy elek-
trinio aktyvumo indikatoriai [48], todé¢l skatina mokslininky susidoméjima kaip per-
spektyvis neinvazinés kraujo elektrolity stebésenos sprendimai. Taciau beveik visi
esami T bangomis pagrijsti parametrai [43, 45,51-56] ir kiti skilveliy repoliarizacijos
Zymenys [48,57] apskaiciuojami tik i§ 12-os derivacijy arba krutinés EKG derivacijy
sistemy, todel juos sieja ta pati pagrindiné technologiné problema — jie nepraktiski
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ilgalaikiam ambulatoriniam naudojimui. Todél reikalingi metodai, leidZiantys jver-
tinti skilveliy repoliarizacijos Zymenis i§ sumaZinty EKG derivacijy rinkinio. Tokie
metodai galéty buti taikomi vartotojy sveikatos prieZitiros prietaisuose ir palengvinty
neinvazing elektrolity kiekio kraujyje stebéseng.

Tyrimo problema: praktiniy metody, skirty skilveliy Zymenims repoliarizacijos
ambulatoringje aplinkoje jvertinti, trikumas trukdo mokslinei ir technologinei nein-
vazinés elektrolity lygio stebésenos sprendimy pazangai. Tai trukdo: (i) esamy spren-
dimy veiksmingumo tyrimui kasdienéje ambulatorinéje aplinkoje; (ii) kity galimy
sprendimy, kuriuos bty galima panaudoti vertinant kai kuriuos gerai Zinomus skil-
velio repoliarizacijos Zymenis, pavyzdZziui, erdvinj QRS-T kampa, kiirimui.

Tyrimo klausimai

Kadangi néra tinkamy technologiniy sprendimy, skirty ambulatorinéms jstai-
goms, neinvazinés elektrolity kiekio kraujyje stebésenos galimybés kasdienéje ne ligo-
ninés aplinkoje yra sudétingos, todél kyla Sie pagrindiniai klausimai:

1. Ar gali sumaZinto derivacijy skai¢iaus EKG uZfiksuoti laipsniSkus kraujo
elektrolity svyravimus ambulatorinémis saglygomis?

2. Kokie galimi klaidinantys veiksniai gali turéti jtakos elektrolity kiekio krau-
jyje Zymenims, vertinamiems pagal i§ EKG, ambulatorinémis salygomis?

3. Ar gerai Zinomi skilveliy repoliarizacijos Zymenys, tokie kaip erdvinis QRS ir
T kampas, gali buti pakankamai tikslai jvertinti i§ sumaZinto skaiciaus EKG derivacijy
ir buti perspektyviais sprendimais neinvaziniam ambulatoriniam elektrolity kiekio
kraujyje stebéjimui?

4. Kaip pagerinti Sirdies ritmo anotavimo algoritmy efektyvuma, kad buty ga-
lima paspartinti Sirdies ir kraujagysliy tyrimus, atliekamus naudojant ilgalaikes EKG?

Darbo hipotezé

Skilveliy repoliarizacijos Zymenys gali buti pakankamai tiksliai jvertinti net ir
naudojant sumaZzinta, taciau ilgalaikei stebésenai tinkama EKG derivacijy skaiciy tuo
tikslu taikant modeliais pagrjstus parametrizavimo ir maSininio mokymosi metodus,
leidZiancius ilgalaike potencialiy kraujo elektrolity kiekio netiesioginiy jverciy ste-
béseng.

Tyrimo tikslas
Sios daktaro disertacijos tikslas — itirti ir sukurti metodus, palengvinan&ius nein-
vazinj ambulatorinj elektrolity kiekio kraujyje stebéjima.
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Tyrimo objektas
Tyrimuose daugiausia démesio skiriama signaly apdorojimo algoritmy, skirty
skilveliy repoliarizacijos pokyc¢iams uZfiksuoti i§ sumaZinty derivacijy EKG, kirimui.

Tyrimo tikslai

1. ISanalizuoti elektrolity pusiausvyros reikSme sveikatai ir aptarti reguliaraus
elektrolity kiekio kraujyje stebéjimo kliniking verte ilgalaikiams sveikatos rezultatams.

2. Pasialyti T bangy morfologijos deskriptorius, kuriuos galima jver-
tinti i§ vienos derivacijos EKG ir kurie buty tinkami ambulatoriniam stebéjimui. Tokie
deskriptoriai buitini norint iStirti galimybe fiksuoti laipsniSkus kalio koncentracijos po-
kyciy sukeltus repoliarizacijos sutrikimus ne ligoninéje ir taip nustatyti galimus klaid-
inancius veiksnius, kurie gali turéti jtakos neinvaziniam kraujo elektrolity stebéjimui.

3. Sukurti algoritmus, leidZiancius i§ sumaZinto derivacijy skai¢iaus EKG jver-
tinti Zinomus skilveliy repoliarizacijos Zymenis, tokius kaip erdvinis QRS-T kampas.
Tokie metodai gali padéti iSnaudoti Siy Zymeny kliniking verte ir paskatinti naujy tech-
nologiniy sprendimy, skirty neinvaziniam kraujo elektrolity stebéjimui, mokslinius
tyrimus.

4. Sukurti metodus, skirtus ilgalaikiy EKG signaly analizei ir anotavimui pa-
greitinti. Tokie metodai pagreitinty naujy EKG elektrolity kiekio kraujyje Zymeny
mokslinius tyrimus.

Mokslinis naujumas

Sioje daktaro disertacijoje iSsamiai apZvelgiamos klinikinés elektrolity disba-
lanso pasekmeés ilgalaikei sveikatai, nagrinéjant pasikartojanciy lengvos dielektrolitemi-
jos atvejy poveikj Sirdies ir inksty funkcijoms bei homeostazei. PrieSingai nei ankstes-
niuose neinvazinés elektrolity kiekio kraujyje stebésenos tyrimuose, Sioje disertacijoje
kontekstualizuojama reguliarios elektrolity kiekio kraujyje stebésenos svarba, neap-
siribojant tik poreikiu fiksuoti elektrolity sutrikimus SSM prevencijos tikslais. Sioje
disertacijoje teigiama, kad tikétina, jog pasikartojantys lengvi dielektrolitemijos epi-
zodai gali turéti ilgalaikiy pasekmiy sveikatai, o tai dar labiau sustiprina poreikj plésti
mokslinius ir technologinius tyrimus bei kurti metodus, kurie palengvinty neinvazinj
ambulatorinj elektrolity kiekio kraujyje stebéjima.

Sioje daktaro disertacijoje siilomi du metodai skilveliy repoliarizacijos Zyme-
nims gauti i§ sumazinty derivacijy EKG. Abu metodus sudaro algoritmai, sukurti taip,
kad palengvinty ambulatorinj elektrolity kiekio kraujyje stebéjima. Pirmajame metode
naudojamas modeliu pagrjstas parametrizavimo metodas T bangos morfologijos para-
metrui jvertinti i§ vienos derivacijos EKG. Skirtingai nuo kity T bangy parametry,
pasialytame deskriptoriuje atsizZvelgiama j bendraja T bangos morfologija, o ne tik j
lokalias T bangos savybes. Be to, deskriptorius yra atsparesnis triuk§Smui, o tai palanku
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ambulatorinéje sveikatos stebésenoje.

Antrasis metodas naudoja giliuoju mokymusi pagrjsta algoritmg vertinant erd-
vinj QRS-T kampag i§ sumaZzinto EKG derivacijy skaiciaus rinkiniy. Kadangi QRS-T
kampas atspindi kampg tarp QRS ir T vektoriy trimatéje (3D) erdvéje, modelis buvo
sukurtas taip, kad kaip iSvestj buty galima gauti kiekvieno vektoriaus koordinates.
Buvo pasiilyta originali sudétiné algoritmo mokymo nuostoliy funkcija, kuri sujun-
gia QRS-T kampg ir Euklido atstuma, kad buty galima vadovautis modeliu visoje 3D
erdvéje. Sioje disertacijoje ne tik pasiiilytas pirmasis erdvinio QRS-T kampo jverti-
nimo i§ sumazinty derivacijy EKG metodas, bet ir iStirta galimybé jvertinti kampa tik
i§ priekiniy krutininiy derivacijy EKG.

Sioje daktaro disertacijoje taip pat pateikiamas pirmasis tyrimas, kuriame na-
griné¢jama galimybeé fiksuoti laipsniSkus kalio kiekio kraujyje svyravimus ambulato-
rin¢je aplinkoje naudojant vienos derivacijos EKG. Jokiame kitame tyrime dar nebuvo
tirta galimybé neinvaziniu budu stebéti elektrolity kiekj ne HD seansy metu. Kalio
fluktuacijy sukeltiems skilveliy repoliarizacijos pokyc¢iams kiekybiSkai jvertinti buvo
naudojami du T bangy morfologijos deskriptoriai: pasitllytas modeliu pagristas des-
kriptorius ir vienintelis Siuo metu prieinamas vienos derivacijos EKG deskriptorius,
jautrus kalio kiekiui kraujyje HD seansy metu. Pateiktame tyrime nustatyta, kokie
galimi klaidinantys veiksniai gali turéti jtakos potencialiy EKG iSvestiniy kalio kiekio
kraujyje Zymeny veikimui, atskleidZiant neinvazinio elektrolity kiekio kraujyje ste-
dar tik jsibégéja, tokie galimybiy tyrimai suteikia vertingy jZvalgy busimiems plataus
masto tyrimams, todél yra butini siekiant pagilinti mokslines Zinias ir paskatinti tolesne
tyrimy srities plétra.

Galiausiai, paskutiniame disertacijos skyriuje pateikiamas simboliniu klasteri-
zavimu pagristas algoritmas, skirtas spartesniam pusiau automatiniam Sirdies diiZiy
anotavimui ilgalaikése EKG. Algoritmas sukoncentruoja Sirdies diiZius j trumpas sekas,
naudodamas klasikinj diskretizacijos metoda, taikoma sprendZiant daugelj laiko seky
duomeny gavybos problemy. Vienodomis sekomis atvaizduoti diiZiai grupuojami j
tuos pacius klasterius siekiant sumazinti skaiciavimo reikalavimus. Vietoj kiekvieno
atskiro Sirdies duZio ekspertui pateikiami hierarchinio klasterizavimo rezultatai, gauti
i§ sukurty iSankstiniy klasteriy, kuriuos jis turi iStirti ir anotuoti rankiniu budu. Al-
goritmas, klasterizuodamas Sirdies diiZius nekontroliuojamu budu, leidZia tyréjams
atrasti netikéty morfologiniy EKG pokyciy, kurie gali biti susij¢ su kraujo elektrolity
svyravimais.

Praktiné reikSmeé

1. Metodai, leidziantys tiksliai jvertinti elektrolity profilj ambulatorinémis sg-
lygomis, gali:
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(a)

(b)

(©)

(d)

Laiku nustatyti sunkia dielektrolitemija prie§ prasidedant SSM sukelian-
¢ioms aritmijoms.

Padéti titruojant ir individualiai parenkant vaistus pacientams, kuriems gre-
sia vaisty sukelta dielektrolitemija.

Padéti iSsiaiskinti prieZastinj rysj tarp elektrolity svyravimy ir aritmijos at-
siradimo bei progresavimo.

Padéti tiriant Sirdies ir inksty funkcijos, homeostazés, kraujo elektrolity ir
ju ilgalaikiy pasekmiy sveikatai sasajas.

2. Sioje disertacijoje sukurti algoritmai ir metodai gali biiti naudojami Siose

srityse:

(a)

(b)

(©)

(d)

(e)

®

(2

Sitllomas T bangos morfologijos deskriptorius gali palengvinti technolo-
giniy sprendimy, skirty kiekybiniam kalio kiekio kraujyje nustatymui am-
bulatorinémis salygomis, kiirima.

Kadangi sitlomam T bangy morfologijos deskriptoriui gauti pakanka
vienos derivacijos EKG, ilgalaikiams duomenims rinkti vietoj Holterio
prietaisy galima naudoti patogius vartotojy sveikatos prieZiiiros prietaisus.
Ilgalaikiy EKG ir sinchroniniy kraujo méginiy duomeny bazés vis dar i§
esmeés neprieinamos, o jos yra labai svarbios neinvazinés kraujo elektrolity
svyravimy stebésenos moksliniy tyrimy srityje.

Galima iStirti erdvinio QRS-T kampo ir elektrolity kiekio kraujyje rysj, nes
sillomas giliuoju mokymusi pagrjstas metodas jvertina kampg i§ sumaZinty
derivacijy EKG rinkiniy. Erdvinis QRS-T kampas galéty buti potencialus
neinvazinés kraujo elektrolity stebésenos sprendimas.

Erdvinio QRS-T kampo jvertinimas i§ sumaZzinty derivacijy EKG atkarpy
atveria galimybe panaudoti gerai Zinoma jo diagnostine verte SSM rizikos
vertinimui ir ankstyvam pavojingy Sirdies jvykiy aptikimui pazeidZiamose
populiacijose, pavyzdZiui, sergantiesiems LIL ir SKL.

Panasiai j sitilomg giliojo mokymosi modelj galéty bti sukurti ir kiti algo-
ritmai, pagristi 3D repoliarizacijos analize, pavyzdZiui, skilveliniam gradi-
entui iSvesti.

Simbolinis klasterizavimo algoritmas leidZia tyréjams daug greiciau
anotuoti ilgalaikius biosignalus. Didelés anotuotos duomeny bazés gali pa-
lengvinti maSininio mokymosi modeliy, skirty EKG signalams interpre-
tuoti, kiirima.

Simbolinis klasterizavimo algoritmas gali padéti tyréjams atrasti netikétus
morfologinius EKG poky¢ius, susijusius su kraujo elektrolity svyravimais.

3. Galimybiy tyrimo rezultatai suteikia vertingy jZvalgy, padésianciy tobulinti
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tolesnius neinvazinio elektrolity kiekio kraujyje stebé¢jimo tyrimus, t. y. apie klai-
dinancius veiksnius, galincius turéti jtakos galimy EKG nustatomy kraujo elektrolity
Zymeny veikimui.

4. Siame darbe aprasyti algoritmai buvo sukurti jgyvendinant Europos regio-
ninés plétros fondo kartu su Lietuvos mokslo taryba (LMTLT) 2018-2022 m. finan-
suojama projekta ,,Personalizuotos dévimos technologijos gyvybei pavojingoms sveika-
tos busenoms jvertinti létine inksty liga sergantiems pacientams — KidneyLife*, pro-
jekto Nr. 01.2.2-LMT-K-718-01-0030.

Rezultaty patvirtinimas

Daktaro disertacija grindZiama dviem pagrindiniais straipsniais, paskelbtais tarp-
tautiniuose mokslo Zurnaluose, kuriy citavimo indeksas nurodytas ,,Clarivate Ana-
Iytics Web of Science* duomeny bazéje. Pagrindiniai rezultatai buvo pristatyti ke-
turiose tarptautinése konferencijose, pripaZintose visame pasaulyje: 2017 m. IEEE
Biomedicininiy grandiniy ir sistemy konferencijoje (BioCAS), 45-oje ir 48-oje ,,Com-
puting in Cardiology* (CinC) konferencijose ir 15-oje tarptautinéje konferencijoje
,,Bio-inspired Systems ir Signal Processing, Biosignals* (BIOSTEC 2022).

Tyrimas buvo jvertintas tiek tarptautiniu mastu, tiek Lietuvoje. 2018 m. Kauno
technologijos universitetas apdovanojo kaip vieng aktyviausiy Elektros ir elektronikos
inZinerijos krypties doktoranty. Konferencijoje ,,45th Computing in Cardiology** mok-
sliniai tyrimai buvo apdovanoti Gary ir Bill Sanders Poster Award. 2021 m. tyrimui
skirta Lietuvos mokslo tarybos skatinamoji stipendija uz akademinius rezultatus.

Ginamieji teiginiai

1. Klinikinés elektrolity pusiausvyros sutrikimo pasekmés yra ne tik pavojin-
gos aritmijos. Létinémis ligomis sergantiems pacientams net trumpi ir pasikartojan-
tys dielektrolitemijos epizodai gali sukelti neadaptyviy kompensaciniy mechanizmy
kaskada, dél kurios pablogéja Sirdies ir inksty funkcijos. Sis pablogéjimas galiausiai
gali sukelti grésme ilgalaikei sveikatai ir pagreitinti ligos progresavimg. Tod¢l regu-
liarus elektrolity kiekio kraujyje stebéjimas yra labai svarbus ne tik siekiant i§vengti
staigios Sirdies mirties trumpuoju laikotarpiu, bet ir siekiant palaikyti homeostaze¢ bei
skatinti bendra sveikatg ilguoju laikotarpiu.

2. T bangy morfologijos deskriptoriai gali uzfiksuoti skilveliy repoliarizacijos
sutrikimus, kuriuos sukelia laipsniski kalio kiekio kraujyje svyravimai ambulatorinése
vienos derivacijos EKG. Taciau ambulatoriniai jrasai yra jautras triukSmui, todél EKG
parametrams jvertinti butina atlikti modeliais pagrjsta parametrizavima. Nepaisant
to, tuo pat metu vykstantis elektrolity disbalansas ir kintanti T bangy morfologija yra
klaidinantys veiksniai, kurie gali turéti jtakos galimy EKG kalio kiekio kraujyje Zy-
meny veiksmingumui.
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3. Pasitelkus giliojo mokymosi dirbtinius neuroninius tinklus galima pakanka-
mai patikimai jvertinti erdvinj QRS-T kampa, naudojant sumaZinto skaiciaus derivacijy
EKG rinkinj. Pritaikius metrikas, kuriomis modelis vadovaujasi 3D erdvéje, pageréja
modelio veikimas, tod¢l galima jvertinti erdvinius skilveliy repoliarizacijos Zymenis
net ir tada, kai jvesties EKG derivacijose pateikiama ribota erdviné informacija. Sis
metodas yra perspektyvus sprendimas ambulatorinei QRS-T kampo stebésenai.

4. Simboliniai klasterizavimo algoritmai gali padidinti Sirdies duZiy anotavimo
ir analizés efektyvuma ilgalaikése EKG. Sie algoritmai gerokai sumazina jvairiy ma-
Sininio mokymosi klasterizavimo metody skai¢iavimo reikalavimus. Be to, simbolinis
klasterizavimas leidZia tyréjams iStirti, kaip Sirdies duZiai naturaliai patenka j skirtin-
gas klases, ir netgi nustatyti netikétus poklasius, kuriuos biity galima toliau tirti.
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1. KLINIKINIS ELEKTROLITU FIZIOLOGIJOS IR HOMEOSTAZES PA-
GRINDIMAS

Elektrolitai — tai kraujyje ir organizmo skysc¢iuose iStirpe elektringi mineralai, bu-
tini homeostazei palaikyti [1]. Elektrolitai dalyvauja jvairiuose fiziologiniuose proce-
suose, jskaitant veikimo potencialo susidaryma, uztikrinantj tinkama nervy laidumg ir
Sirdies raumens susitraukimga [2]. Kaip ir daugelis kity gyvybiSkai svarbiy Zmogaus
biologinés sistemos kintamuyjy, elektrolity kiekis kraujyje turi buti grieZtai reguliuoja-
mas pagal i§ anksto nustatytas ribas, kad lastelés galéty normaliai funkcionuoti [2]. Kai
elektrolity kiekis nukrypsta nuo idealaus intervalo, gali smarkiai sutrikti neurologinés
ir Sirdies bei kraujagysliy funkcijos, todél gali sutrikti homeostazé, o tai gali turéti
pasekmiy visam gyvenimui ar net baigtis mirtimi [1,2].

Gyvosios sistemos pasisavina daug elektrolity, taciau vieni svarbiausiy lasteliy
procesams yra natris (Na®), kalis (K*), kalcis (Ca®*), magnis (Mg?*) ir bikarbonatas
(HCO3). Siy elektrolity koncentracija vidiniuose ir tarplasteliniuose skys¢iuose ski-
riasi (1.1 pav.), o optimalus Igsteliy funkcionavimas labai priklauso nuo to, ar abiejy
skysciy joninis profilis skiriasi. Patikimi homeostazés mechanizmai grieZtai regu-
livoja elektrolity kiekj ekstralasteliniame skystyje (t. y. kraujyje), pirmiausia inkstai
ir renino-angiotenzino-aldosterono sistema (RAAS).

mEq/L
150 100 50 0 50 100 150
2] Na*
=
-2
8 Mgz+
Cal+
g
‘g HCOs
< Proteins
Intracellular Extracellular

1.1 pav. Pagrindiniai vidiniy ir iSoriniy lasteliy skys¢iy katijonai ir anijonai. Parengta pagal [2]

Elektrolity pusiausvyros sutrikimas — sutrikusios homeostazés Salutinis produk-
tas

Diselektrolitemija atsiranda dél dviejy ar trijy etiologijy (1.2 pav.). DaZniau-
siai diselektrolitemija yra Salutinis patologijos, kuri dél inksty funkcijos sutrikimo
sutrikdo homeostatinius elektrolity reguliavimo mechanizmus, produktas. Todél pa-
cientai, kuriy inksty funkcija sutrikusi, yra jautriausi diselektrolitemijai. Inksty paZei-
dimas, pasireiSkiantis LIL, akivaizdZiai apsunkina inksty funkcija, todél LIL sergantys
pacientai yra ypa¢ paZeidZiami SSM sukelianciy elektrolity sutrikimy [6, 12]. Beveik
39,5-74,2 proc. pacienty pasireiskia bent viena diselektrolitemija [13], nors serga-
mumo daZnis skiriasi esant kiekvienai konkreciai elektrolity ir LIL stadijai [12]. Inksty
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ETIOLOGY OF DYSELECTROLYTEMIA
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1.2 pav. Grafiné trijy elektrolity disbalanso etiologijy apzvalga

paZeidimo laipsnis dar labiau padidina polinkj j elektrolity pusiausvyros sutrikimus, o
GSIL sergantiems pacientams yra didZiausia rizika [77].

Taciau kasdienéje klinikinéje praktikoje dazniausiai pasitaikanti dielektrolitemi-
jos prieZastis yra terapiniai vaistai [14, 15]. Daugelis jprastiniy terapijy, skirty jvai-
rioms létinéms ligoms gydyti, sukelia inksty funkcijos sutrikimus, net jei inksty au-
dinys yra sveikas [16]. Vienas ryskus pavyzdys — antihipertenziniai vaistai ir kiti nuo
SKL skiriami vaistai, pavyzdZiui, diuretikai ir g-blokatoriai. MaZdaug 10% pacienty
per metus nuo hipertenzijos gydymo pradZios pasireiSkia vienas dielektrolitemijos
epizodas [14], 0 26,8% pacienty natrio pusiausvyros sutrikimas pasireiskia pakartoti-
nai [17]. Lengvas kalio nuokrypis btina 19% [18] ir net 80% [14] diuretiky vartojanciy
pacienty, priklausomai nuo paskirty diuretiky klasés. Taip pat manoma, kad panaSus
gydymo budai skatina dielektrolitemijag 20-48% pacienty hospitalizavimo metu, nors

tik 3-8% 1S jy priémimo j ligoning metu buvo nustatytas nenormalus diuramino
kiekis [19,20].

Klinikinés elektrolity pusiausvyros sutrikimo pasekmés

Viena i§ labiausiai nerima kelianciy elektrolity , ypac kalio, disbalanso [7] pasek-
miy yra aritmijos, galin¢ios sukelti SSM [8, 9]. Deja, tokios pavojingos aritmijos
paprastai atsiranda be jokiy akivaizdZiy elektrolity disbalanso poZymiy, kurie galéty
jspéti pacientus, kad jie kreiptysi dél prevencinio medicininio gydymo [10]. Ankstyvo-
sios (ir lengvos) dielektrolitemijos simptomatika yra plati ir daznai nespecifiné — nuo
besimptomés iki bendro nuovargio ir blogos savijautos bei jprasty vir§kinimo prob-
lemy [11]. Taigi, neatlikus kraujo tyrimo, lengvos dielektrolitemijos praktiskai nej-
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manoma nustatyti. Kai pacientams pasireiskia rySkesni klinikiniai poZymiai, kraujo
elektrolitai jau buna pasieke gyvybei pavojingg lygij, todél biitina skubi pagalba.

Nors pavieniai nedidelés dielektrolitemijos epizodai paprastai nekelia tiesioginés
grésmeés pacientui, naujausi tyrimai rodo, kad pasikartojantys epizodai gali turéti il-
galaikiy pasekmiy sveikatai [5]. Létiné lengva diselektrolitemija lemia hipertenzija
serganciy pacienty polinkj i sinkope ir kritimus [5], o hospitalizuoty pacienty, iSraSyty
i§ ligoninés esant nekoreguotam lengvam elektrolity disbalansui, pakartotinés hospi-
talizacijos ir 60 dieny [21], 90 dieny [22] bei vieny mety [23] mirtingumo rodikliai yra
didesni. Nors dar nejrodyta, Sie pasikartojantys lengvos dielektrolitemijos epizodai
gali buiti susije su kardiorenalinio sindromo (KRS), kuriam, kaip rodo jo pavadinimas,
biidingas §irdies ir inksty funkcijy pablogéjimas, atsiradimu. Sis sindromas blogina
ilgalaike sveikatg ne tik dél to, kad pagreitina jau esamos létinés ligos klinikinj pro-
gresavima, bet ir dél to, kad sudaro prielaidas pacientams susirgti SKL, LIL ir net
GSIL [24]. Be to, lengva diselektrolitemija gali padidinti mirtinos baigties tikimybe
labiau progresavusiose 1étinés ligos stadijose, ypac jei ji pasireiskia kartu su gretutine
SKL [21]. Taigi, norint i§vengti nepalankiy pasekmiy, labai svarbu skubiai koreguoti
nenormaly elektrolity kiekj.

Kai kurie gydytojai tokius lengvus epizodus laiko nekenksmingais — daznai jy
nepastebi, kol jie neperauga j sunkius, o daugelis kity gydytojy, bijodami nepageidau-
jamy poveikiy, skiria per maZai arba per maza nepakeic¢iamy vaisty doze¢ [25]. Taciau
ilgainiui nepakankamas vaisty skyrimas tampa ,,dviaSmeniu kardu®, dar labiau ap-
sunkinanciu létiniy ligy valdyma. Be tinkamo vaisty vartojimo reZimo organizmas
negali palaikyti homeostazés ir suaktyvina neadaptyvius kompensacinius mechaniz-
mus, kurie galiausiai pazeidZia daugelj organy [2,26], todé¢l atsiranda KRS ir blogéja
sveikatos buklé [1].
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2. ESAMU ELEKTROLITU KIEKIO KRAUJYJE VERTINIMO METODU
APZVALGA

Kol kas kraujo tyrimai yra vienintelis kliniSkai pagrjstas metodas dielektrolitemijai
nustatyti. Nepaisant to, pastaraisiais metais diskutuojama apie EKG panaudojimag
elektrolity pusiausvyros sutrikimams fiksuoti [122]. Jo koncepcija remiasi teoriniu pa-
grindu, kad nenormalus elektrolity kiekis kraujyje keicia Sirdies lgsteliy elektrofiziolo-
gines savybes [7], ypac repoliarizacija [48], dél ko atsiranda morfologiniai EKG ban-
gos formos pokyciai [42].

Elektrolity kiekio kraujyje jtaka EKG morfologijai

Kai kraujo elektrolity kiekis atitinka homeostazés ribas, elektros impulsas, kurj
generuoja stimuliatoriaus Igstelés sinuatrialiniame mazge, keliauja per Sirdies elektrine
sistema ir sukuria EKG bangos forma, panasia j pavaizduotg 2.1 pav. Kadangi skilveliy
repoliarizacija yra jautresné kraujo elektrolity disfunkcijai, o ne depoliarizacijai, elek-
trolity disbalanso EKG modeliai paprastai susije su tam tikrais morfologiniais pokyci-
ais po depoliarizacijos EKG komponentuose: ST segmente (Ca®*, Zr. 2.3 pav.) ir T
bangoje (K, Zr. 2.2 pav.).

Dabartiniai neinvazinés kraujo elektrolity stebésenos iSSuikiai

Kelivose medicininiuose tyrimuose buvo vertinamas elektrolity sukelty EKG
pokyc¢iy daZznumas klinikingje praktikoje [116, 122,124, 125]. Nors né viename is jy
nesiekta kiekybiSkai jvertinti kraujo elektrolity kiekj pagal EKG, Sie tyrimai rodo, kad

SA Node AP

AV node AP

Ventricular AP

QT interval
—_—_—

i R RRinterval
PR interval |— |

T

P

PR
segment

ST segment

2.1 pav. Normalios EKG bangos genezé elektrolity pusiausvyros poziiiriu. QRS kompleksas atitinka

skilvelio depoliarizacija, kuriai daugiausia bidingas Na* jtekéjimas. ST segmentas atspindi Ca> antplidj,

kuris sukelia skilvelio susitraukimg. T banga atspindi skilvelio repoliarizacijg, kurios metu vyksta K*
srautas j iSore, siekiant atkurti kardiomiocity ramybés membranos potencialg. Parengta pagal: [74]
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—— Atrial AP —— Ventricular AP
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(mmol/L)

2.2 pav. PrieSirdZiy ir skilveliy veikimo potencialo diagrama, uzdéta ant EKG, esant skirtingoms kraujo
[K™]: (a) normokalemijai; (b) lengvai ar vidutinio sunkumo; (c) vidutinio sunkumo ar sunkiai; (d) sunkiai;
(e) gyvybei pavojingai hiperkalemijai. Parengta pagal [7]

HYPERCALCEMIA NORMAL HYPOCALCEMIA

Osborn
waves
/ ST ST ST ST
= 2 ST ST
— —
QT QT QT QT

2.3 pav. ST segmento ir QT intervalo skirtumai esant kalcio balansui ir hiper- bei hipokalcemijai

QT QT

elektrolity balanso stebéjimas pagal EKG yra empiriskai jmanomas. Neseniai atliktoje
metaanalizéje gydytojai pranesé apie fiziologinj rysj tarp elektrolity kiekio kraujyje,
EKG intervaly ir skilveliy repoliarizacijos Zymeny [116], taip patvirtindami dauge-
lio EKG poZymiy, kaip perspektyviy bekraujy elektrolity kiekio Zymeny, neiSnaudota
potenciala.

Nepaisant mokslinio susidoméjimo, EKG pagrjstos kraujo elektrolity stebésenos
technologiniy tyrimy sritis vis dar yra pradinés stadijos, nes iki 2012 m. nebuvo pasiu-
lyta beveik jokiy konkreciy inZineriniy sprendimy [122]. Nuo 2016 m. §i sritis émé
jgauti vis didesnj pagreitj, kai keliuose tyrimuose buvo pristatyti nauji T bangy mor-
fologijos deskriptoriai, skirti kiekybiniam kraujo kalio [K*] kiekiui nustatyti, ir gauti
daug Zadantys rezultatai [43-45, 52, 128, 131-133, 137]. Taciau né viename i§ jy
nebuvo atskleista neinvazinés kraujo elektrolity stebésenos ambulatorinémis sglygomis
galimybe. Be to, visi silomi metodai turi bent vieng i§ toliau iSvardyty apribojimy,
kurie gali apsunkinti ambulatoring kraujo elektrolity stebésena:

1. Jiems reikia standartiniy 12-os derivacijos elektrokardiogramy, kurios yra
nepraktiSkos naudoti ambulatoriskai.

2. Jie buvo tiriami tik HD metu, kai elektrolity kiekis svyruoja grei¢iau nei kas-
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dienéje ambulatorinéje aplinkoje.

3. Juose neatsiZvelgiama j galimus klaidinancius veiksnius, kurie gali turéti
jtakos siulomy Zymeny veikimui, pavyzdZiui, gretutines Sirdies ligas, vaistus ir gre-
tutinius elektrolity pusiausvyros sutrikimus [42, 125].

4. Jy metu reikia tiksliai i§skirti mazos amplitudés bangas, o tai gali buti sudé-
tinga pasiekti triukSminguose ambulatoriniuose signaluose.

Pagrindiné neinvazinés kraujo elektrolity stebésenos moksliniy tyrimy klittis
yra praktiniy sprendimy ambulatorinés stebésenos scenarijams trikumas. Pirma, tai
apsunkina esamy metody veiksmingumo vertinima pagal realius ambulatorinés ste-
bésenos scenarijus. Tai taip pat neskatina kurti kity galimy sprendimy, kurie galéty
panaudoti kai kuriy gerai Zinomy skilvelio repoliarizacijos Zymeny (pvz., erdvinio
QRS-T kampo) verte kaip perspektyviy kraujo elektrolity pakaitaly. Svarbu ir tai, kad
be tokiy metody pacientai menkai laikytysi reikalavimy, nes EKG jraSymo prietaisus
biity per daug nepatogu neSiotis. Kad deskriptoriai buty tinkami naudoti ambula-
toriskai, jie turi gebeéti fiksuoti laipsniSkus kraujo elektrolity svyravimus, buti atspariis
triukSmui ir, pageidautina, turi tenkintis sumazintu EKG derivacijy skai¢iumi.
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3. T BANGOS MORFOLOGIJOS POKYCIU KIEKYBINIS IVERTINIMAS
VIENOS DERIVACIJOS EKG, TAIKANT MODELIU PAGRISTA PARAME-
TRIZAVIMA

Hemodializés (HD) pacientai yra jautriis gyvybei pavojingoms aritmijoms, kuriy daznu-
mas yra daug didesnis trijy dieny pertraukos tarp HD seansy metu, vadinamuoju il-
guoju tarpdializiniu intervalu [9, 10,147]. Manoma, kad elektrolity, ypac kalio, svyra-
vimai yra vieni i§ pagrindiniy Siy pavojingy aritmijy sukéléjy [9]. Todél neinvazinis
ambulatorinis kalio svyravimy stebéjimas tarp HD seansy yra kliniSkai svarbus Siai
populiacijai [39].

Naujausiuose tyrimuose buvo pasiiilyta jvairiy T bangos morfologijos deskrip-
toriy [K'] kiekybiniam jvertinimui ir gauta daug Zadanciy rezultaty [43-45, 131]. Ta-
¢iau tokiy deskriptoriy efektyvumas buvo tiriamas tik HD metu, todél EKG pagrijstos
kraujo elektrolity stebésenos ambulatoriniais atvejais galimybés liko neistirtos. Siame
tyrime nagrinéjama galimybe fiksuoti kalio svyravimus per ilgg tarpdializinj intervala.

3.1. Metodai

Kadangi kraujas [K*] veikia ne tik vietines T bangos savybes, bet ir bendra T bangos
morfologija [42], taikant modeliu pagristq parametrizavimg buvo sukurtas deskripto-
rius 64, kuriuo atsiZvelgiama j globalius T bangos morfologijos pokycius. 65 efek-
tyvumas lyginamas su T,. Ty, matuoja T bangos nuolydZio ir amplitudés santykj (vi-
etiniai poZymiai) ir yra vienintelis turimas deskriptorius, jautrus [K*] poky¢iams HD
metu vienos derivacijos EKG [131]. 6 ir T, iSvedami i$ i§ anksto apdoroty signalo
vidurkiy Sirdies duziy (3.1 pav.).

T bangos parametry nustatymas ir poZymiy jvertinimas

T banga T'(n), sudaryta i$ vieno didéjancio (S,) ir vieno mazéjancio (S,) nuoly-
dzio, parametrizuojama naudojant sudétinj modelj (7.(n)), kurj sudaro viena Gauso
(T, (n)) ir viena lognormaliné (T, (n)) funkcija, apibudinanti kiekvieng nuolydj. 6 ; su-
jungia du parametrus, gaunamus pagal T bangos modelj: kampg 6 (°) ir laiko poslinkj
5 (8), t. y. fazés poslinkj tarp T, (n) ir T, (n) rezimy (3.2 pav.). Sie du parametrai veikia
kaip elektrofiziologiniy nenormalaus kraujo [K*] poZymiy, kuriy negalima tiesiogiai

Signal quality Heart rate Beat
Filtering assessment correction averaging
Valid
57 BPM

2 i % [Tross E

g = = =
£ : B

E l Re}'ect 5

1
Raw ECG Time Time Time Time

3.1 pav. Pirminis vienos derivacijos EKG apdorojimas. EKG segmentuoti buvo naudojamas 90 s slankio-
jantis langas su 10 s persidengimu
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3.2 pav. T bangos poZymiy jvertinimas: (a) T bangos esant skirtingiems kraujo [K'] lygiams be norma-
lizavimo; b) variacija & normalizuotose T bangose; (¢) S,, S, ir 6 radimas. § pokytis esant skirtingiems
kraujo [K'] lygiams: (d) [K*] =5,5mmol L-! ir (¢) [K'] = 3,2mmol L'

nustatyti, pakaitalai — T bangos smailumo () ir pailgéjimo (&) [42]. 65 principas yra
toks: kai [K*] pakyla vir§ normos, T banga tampa statesné ir aukStesné (], 6), taip pat
sutrumpéja jos trukme (] 8). 6 sustiprina 6 ir & atsaka j kalio svyravimus ir apskai-
¢iuojamas taip:

05 =—log,,(0-8). (3.1)

Logaritmas iSple¢ia dinaminj diapazong ir uZtikrina teigiama 65 koreliacija su kalio
svyravimais. Daugiau informacijos apie siilomg metodg galima rasti straipsnyje: [59].

Duomenys

Per ilgg tarpdializinj intervalg (3.3 pav.) naudojant vartotojy sveikatos prieZitiros
prietaisa buvo surinkta 17 HD pacienty (9 moterys, amzZius 57,4 + 14,6 mety), ser-
ganciy gretutinémis Sirdies ligomis, vienos derivacijos EKG ir kraujo méginiy duomeny
bazé. Duomeny bazéje yra ~1078 valandy EKG I derivacijos signaly, mazdaug 71 val.
vienam pacientui i§ ambulatoriniy arba neguldomy hospitalizuoty pacienty. Taip pat
jtraukta informacija apie iSorinius kintamuosius, darancius jtaka elektrolity kiekiui,
pavyzdZiui, vaistus ir maistg. Pacientai, kuriems budingas reguliarus sinusinis ritmas
ir aukSta signaly kokybeé, priskiriami / grupei, o pacientai, kuriy jrasai buvo triukSmingi
arba su aritmijomis, — /I grupei. Du pacientai j analiz¢ nebuvo jtraukti.
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3.3 pav. Duomeny rinkimo protokolas. Hospitalizuoty ir ambulatoriniy pacienty EKG I derivacijos sig-

nalai buvo gaunami per visg ilga tarpdializinj intervalg naudojant ambulatorinj registratoriy. Hospita-

lizuoty pacienty kraujo méginiai buvo imami du kartus per kiekvieng HD (pradZioje ir pabaigoje) ir bent

kartg per ilgaji interdializinj intervala. Ambulatoriniy pacienty kraujo méginiai buvo imami tik kiekvieno
HD metu (pradZioje, viduryje ir pabaigoje)

3.2. Rezultatai ir aptarimas

Neinvazinis ambulatorinis kraujo elektrolity stebéjimas naudojant vienos derivacijos
EKG yra jmanomas net ir sudétingy HD pacienty, serganciy gretutinémis Sirdies ligo-
mis, atveju. Paros 6 ir T, pasiskirstymai kiekvieno paciento [K*] etaloniniy verciy
atzvilgiu (3.5 pav.) rodo, kad abu deskriptoriai vidutini$kai koreliuoja su [K*] pokyci-
ais (atitinkamai r=-0,56 ir r=-0,57). Apskaiciavus kiekvienai grupei atskirai, ko-
reliacija yra daug stipresné I grupéje — r=-0,81 05 ir r=-0,79 Ts,, o Il grupéje —
r=-0,450,irr=-0,44Tg,. Tiek 0, tiek T, taip pat reagavo j kalj mazinancius vais-
tus ir insulino Suolius po valgio. 65 paros kintamumas buvo panaSus j sveiky Zmoniy
cirkadinj kraujo [K*] kintamumg (3.4 pav.).

Nors tiek 6, tiek T, galima jvertinti iS EKG, uZregistruoty vartotojy sveikatos
prieZiiiros prietaisais, 6 ; maZiau nei T, veikia judesiy sukeltas triuk§mas, o tai geriau

Day 1 Day 2
110 110

1.05 1.05
= =
< 1.00 < 1.00
BN EN

0.95 0.95 -

0.90 1 1 1 1 1 ] 0.90 1 1 1 1 1 ]
07:00 09:30 12:00 14:30 17:00 19:30 22:00 07:00 09:30 12:00 14:30 17:00 19:30 22:00
Time of the day Time of the day

3.4 pav. Visy pacienty 6 5 (taskai) vidurkis nesikartojanciais 10 min. intervalais nuo 07.00 iki 22.00 val.
1 ir 2 dieng. Itisiné linija yra pritaikytas 7 eilés polinomas, rodantis tolygesnj 6 5 kitima. VirSutiné ir
apatiné ribos rodo pritaikyto polinomo standartinj nuokrypj
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3.5 pav. Pasiskirstymas 0,-0 5 (kaireje) ir T, — T, , (deSin€je) I grupés (virSuje) ir I grupés (apacioje).

Atskaitos vertés apskaiciuotos 7,. 7,_, — sutapimo indeksas [160] tarp 0 ir 2 dienos pasiskirstymy, kadangi

[K*],_, yra [K*] prieaugis tarp $iy dviejy dieny. ND reiskia, kad duomeny néra. 10 paciento kraujas buvo
paimtas / dieng

tinka ambulatorinei stebésenai.

Du klaidinantys veiksniai turéjo jtakos 65 ir T,: gretutinis kalcio ir bikarbo-
nato elektrolity pusiausvyros sutrikimui bei kintancios T bangy morfologijos rodik-
liams. 60 5 rezultatai buvo patikimesni nei 7,. T bangos morfologijos rodikliai turéty
biiti vertinami tokiomis saglygomis, kurios imituoja kasdienio stebéjimo scenarijy, vienoj
eilutéj tarpdializinése sesijose. Ateities tyrimuose turéty biti stengiamasi rinkti kraujo
meéginius tokiomis salygomis (ne tik HD metu) ir apimti kitas pacienty populiacijas,
jautrias kalio disbalansui.
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4. GILIUOJU MOKYMUSI PAGRISTAS ERDVINIO QRS-T KAMPO IVER-
TINIMAS IS SUMAZINTO DERIVACIJU SKAICIAUS EKG

Skilveliy repoliarizacijos ir elektrinio laidumo sutrikimai yra gerai dokumentuotos
elektrolity disbalanso pasekmés [48, 116]. Vienas i$ kliniSkai reikSmingy skilveliy re-
poliarizacijos aspekty yra jos heterogeniskumas, kuris gali sustipréti virs fiziologiSkai
pagristo lygio dél nenormalaus elektrolity kiekio. Taigi gerai Zinomi skilveliy repolia-
rizacijos heterogeniSkumo Zymenys, tokie kaip erdvinis QRS-T kampas, skatina mok-
slininky susidoméjimg kaip perspektyvis neinvazinés kraujo elektrolity stebésenos
sprendimai. Taciau QRS-T kampo vertinimas yra nepraktiSkas ambulatoriniam ste-
béjimui, nes tam reikalingos nepatogios 12-os derivacijy EKG sistemos [57], o tai
trukdo moksliSkai tirti erdvinio QRS-T kampo ir elektrolity rysj. Todél reikia metody,
leidZianciy i§vesti QRS-T kampa i§ sumaZinty derivacijy EKG rinkiniy, kuriuos galima
jraSyti ambulatoriniam stebéjimui tinkamais prietaisais.

4.1. Metodai

Erdvinis QRS-T kampas « matuoja depoliarizacijos (QRS bangos) ir repoliarizacijos
(T bangos) krypties panasumag ir apibréZiamas kaip kampas tarp QRS ir T vektoriy 3D
erdveje [57]. Jis apskaic¢iuojamas taip:

|7 ors < .|

a =arctan | —.————— |, (42)
Uprs  UT

¢ia i ygs ir U, yra vektoriai, vaizduojantys dominuojancia QRS ir T bangy orientacija.

U prs it W, paprastai apskaiCiuojami i§ vektokardiogramos (VCG), sudarytos i§ XYZ

derivacijy, paprastai gaunamos ortogonalizuojant standartine 12 derivacijy EKG.

Giliuoju mokymusi pagristas QRS-T kampo jvertinimo metodas

Sitlomas 1D konvoliucinis neuroninis tinklas (CNN1D) su regresijos iSvestimi,
skirtas erdviniam QRS-T kampui jvertinti i§ sumaZzinty derivacijy EKG. Modelis kaip
jvestj ima signalo vidurkj i$ keliy derivacijy rinkinio ir kaip i§vestj pateikia tris i/ ;g
ir 10 7 koordinates, t. y. ¥ prs = (Xors: Yorss Zors) it U7 = (X7, yr, 27), Kaip isvestis.

Naudojant 12 EKG derivacijy, etaloninius (ttksliniy) VGR vektorius i, it W,
galima apskaiciuoti taikant jprastinj metodg ir iSmokyti modelj gauti jvercius ?QRS ir
%, i% konkre¢iy EKG derivacijy poaibiy. Tada jvertinta QRS-T kampg @ galima ap-
skaiCiuoti kaip kampg tarp jvertinty vektoriy ?QRS ir i, taikant (4.2) lygtj. 4.1 pav.
pavaizduota siiilomo giliuoju mokymusi pagrjsto metodo apzvalga. Daugiau informa-
cijos apie modelio struktiirg pateikiama: [60].
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4.1 pav. Siilomo gilaus mokymosi modelio, skirto erdviniam QRS-T kampui jvertinti i sumaZinty
derivacijy EKG, apZvalga. Modelj sudaro dvi dalys: poZymiy i§skyrimas ir regresija. Vektoriai % ,zs
ir @, bei erdvinis QRS-T kampas « apskaiciuojami i§ EKG

Nuostoliy funkcija

Modelis specialiai sukurtas taip, kad biity galima tiesiogiai nustatyti ne «, 0 @ gz
ir %, koordinates, kad buty galima panaudoti bet kokig jvesties derivacijy erdving
informacijg. Sitloma originali sudétiné nuostoliy funkcija £, kuri modelio mokymo
metu yra minimizuojama. £ apima Euklido atstumg (£,) tarp @ ir @ koordina¢iy ir
viduting absoliuciaja paklaida (£, ) tarp « ir @. Ji apibréZiama taip:

L=w ([fd(VQRS» /l.}QRS) + Ly (i 7, 7T)) +wy L, (a,a), (4.3)

¢ia w, ir w, yra svertiniai hiperparametrai, kurie nulemia nuostoliy funkcijos kompo-
nenty L, ir £, svarba.

4.2. Duomenys

Modelis buvo sukurtas ir patikrintas naudojant ,,Physionet* [190] PTB-XL duomeny
rinkinj [182] — didZiausia Siuo metu vieSai prieinamg 12-os EKG derivacijy duomeny
rinkinj. X, Y, ir Z derivacijos (VCG) i§vedamos i neapdoroty EKG jrasy taikant Korso
regresijos matricg [109]. 4.2 pav. pavaizduotas duomeny parengimo modeliui iSmokyti
procesas.

Duomenys padalijami j mokymo ir tikrinimo aibes taikant 80:20 padalijimo san-
tykj. Abiejuose rinkiniuose iSsaugomas pradinis « pasiskirstymas visame a =[0:5:180]°
intervale.
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4.2 pav. Duomeny paruosimas ir Zenklinimas. Atliekamas pirminis signaly apdorojimas, kurj sudaro
filtravimas ir signaly kokybés vertinimas, kad biity gauti jvesties signaly vidurkiai

4.3. Rezultatai ir aptarimas

Iki Siol buvo manoma, kad stebéti erdvinj QRS-T kampa, kuris yra vienas i§ perspek-
tyviausiy SSM rizikos vertinimo rodikliy [50, 57], ne ligoninés salygomis yra nej-
manoma. Sidlomas modelis, nors ir prototipinis, skatina mokslinj susidoméjima in-
Zineriniais ambulatorinio erdvinio QRS-T kampo stebésenos metodais, kurie gali labai
prisidéti prie jo diagnostinés vertés panaudojimo ambulatoriniam Sirdies ir kraujagys-
liy sveikatos vertinimui ir kraujo elektrolity stebésenai.

Modelis gana tiksliai nustaté « (¢= 11,4° ir ¢ =7,3°) i§ trijy frontaliniy ir vienos
kratines derivacijy ({1, II,aVF, V2}) vietoj standartiniy 12, kuriy reikalaujama taikant
jprastinj metoda, kaip parodyta 4.3 pav. ir 4.4 pav. Modelis pasiZyméjo pastebimai
didesnémis jvertinimo klaidomis « diapazonuose, kurie nepakankamai reprezentuo-
jami mokymo duomeny rinkinyje (< 200 jraSy): a <5° ir « >70° sveiky (NORM) EKG;
a <15°ir ¢ > 115° EKG su Sirdies ligomis. Nors jvertinimo paklaidos nattraliai didéja
mazéjant jvesties derivacijy turimai erdvinei informacijai, rezultatai rodo, kad erdvinio
QRS-T kampo jvertinimas sumaZintu derivacijy rinkiniu yra jmanomas.

EKG derivacijy pogrupj {I, I, aVF, V2} galima registruoti lengvai konfigliruoja-
mais vartotojy sveikatos prieZziuros prietaisais, kurie jau yra rinkoje. Nors reikalavi-
mas turéti vieng prieSirding derivacija neleidZia naudoti prietaisy, kurie maksimaliai
padidina patoguma, pavyzdziui, ant rieSo neSiojamy prietaisy, prietaisai, registruojan-
tys {I,1I,aVF,V2}, vis tiek gali palengvinti protarpinj « stebéjimg. Nepaisant to, «
matavimas naudojant tik priekiniy EKG derivacijy pogrupj ({7, I, aVL,aVF}) atrodo
tikétinas ateityje, toliau tobulinant modelio architektiirg.

Modelis nustato i . ir @, koordinates X, Y ir Z aSyse, naudodamas originalig
sudetine nuostoliy funkcija £, kurios minimizavimas leidZia iSmokyti neuroninj tinkla.
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4.3 pav. « ir tikslo « sklaidos diagramos i§ jvairiy dariniy rinkiniy (virSutiné eiluté) visiems jrasams ir

sveikiems EKG (viduriné eiluté) bei EKG su Sirdies liga (apatiné eiluté) patvirtinimo duomeny rinkinyje.
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kitimas « =[0:5:180]° diapazonuose EKG su normalia (NORM) ir sutrikusia §irdies funkcija. DeSingje
aSyje nurodytas mokymo pavyzdZiy skaicius kiekviename « intervale, kadangi NORM tiriamyjy, kuriy
a>120°, skaiCius yra nereik§mingas, ¢ Siems « intervalams nepateikiamas
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Si strategija leidZia jvertinti erdvinius EKG poZymius net ir tada, kai jvesties derivaci-
jos suteikia ribotg erdvine informacija.

Ateityje buty galima istirti erdvinio QRS-T kampo, kaip perspektyvinio kraujo
elektrolity Zymens, kliniking vert¢ ambulatoriniais atvejais, taip pat patvirtinti galima
Sios technologijos nauda populiacijose, kurioms gresia SSM.
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5. SIMBOLINIS KLASTERIZAVIMO ALGORITMAS,SKIRTAS GREI-

TESNEI SIRDIES RITMO ANALIZEI IR ANOTACIJAI ILGALAIKEJE
EKG

Kadangi neinvaziniy elektrolity kiekio kraujyje stebéjimo metody moksliniai tyrimai
dar tik pradedami, mokslininkams reikia didelio kiekio ilgalaikiy duomeny, kad galéty
istirti, kaip elektrolity svyravimai veikia fiziologinius EKG parametrus kasdienéje am-
bulatorinéje aplinkoje. Deja, dideli ilgalaikiy duomeny kiekiai Sirdies ir kraujagys-
liy tyrimy procesa papildo dar vienu sudétingu sluoksniu — juos reikia analizuoti ir
anotuoti rankiniu budu. Rankinis duomeny anotavimas yra varginantis ir uZima daug
laiko, o monotoniskuose ilgalaikiuose signaluose gali biiti praleistos svarbios detalés
ir jvykiai. MaSininio mokymosi algoritmai galéty pagreitinti ilgalaikiy EKG tyrimus
ir analize, taciau taip pat reikalauja dideliy anotuoty duomeny rinkiniy, o daugeliu
atvejy tokiy algoritmy kurimui ir mokymui reikalinga Zmogaus prieziura. Todél sis-
tema, kurioje automatiniy algoritmy privalumai derinami su Zmogaus eksperto déme-
siu, o duomenys yra struktiirizuoti taip, kad juos buty galima efektyviai analizuoti ir
anotuoti, galéty pagreitinti neinvazinés kraujo elektrolity stebésenos Sirdies ir krau-
jagysliy sistemos moksliniy tyrimy procesa.

5.1. Metodai

Sitlomas simbolinis klasterizavimo algoritmas, kuriuo siekiama padidinti Sirdies
ritmo anotavimo ir analizés efektyvumg ilgalaikése EKG. Algoritmg sudaro penki eta-
pai, kaip parodyta 5.1 pav. ISsamesnés informacijos galima rasti: [61].

Pre-Clustering
cbed0 coa 1 dgcbeged
i |

Preprocessed ECG Symbolic Conversion Hierarchical Manual Investigation

Clustering and Annotation
{
Beat

7 Ll el

5.1 pav. Simboliniu klasterizavimu pagrjsto metodo, skirto Sirdies diiZiams anotuoti ilgalaikiuose EKG
signaluose, apZvalga

| N AN

Sirdies diiziai suspaudZiami j trumpas sekas (simbolius) naudojant simbolinio
agregavimo metoda (SAX) [217] — diskretizavimo metoda, pagal kurj kiekviename
laiko intervale seky vidutinés vertés paverciamos simboliais. SAX apima dvi dalis:
daliné agreguota aproksimacija (angl. Piecewise Aggregate Approximation (PAA))
[217] ir po jos vykstantis simboliy priskyrimas (5.2 pav.).

Kiekviena unikali seka tampa iSankstiniu visy Sia seka Zymimy Sirdies duZiy
klasteriu, todél sumazéja diiziy, kurie bus klasterizuojami, skai¢ius. Si strategija gero-
kai sumaZina klasterizavimo algoritmy skaic¢iavimo reikalavimus. Kadangi SAX gali
apgaubti maZos amplitudés EKG komponentus (pvz., P bangas), prie sekos pridedamas
papildomas simbolis, Zymintis dviejy kaimyniniy diiZziy RR informacijg, kad bty su-
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5.2 pav. SAX konversija: (a) PAA transformacija. PAA koeficientai skai¢iuojami pradedant nuo />
meéginiy, kuriy centras yra R virSiiné; (b) simboliy priskyrimas. PAA koeficientai atvaizduojami pagal

luzio taskus B taip. “a” priskiriamas koeficientams, esantiems Zemiau g,; b — koeficientams, auksciau
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5.3 pav. (a) RR, nenormalus ritmas (APB). (b) RR; informacijos pridé¢jimas, siekiant atskirti APB eilutes
nuo normaliy ritmy. Kiekvienam ritmui RR; = RR,;,_,,/RR;,, . Simbolis ”I”" pridedamas prie ritmy,
kuriy RR yra nuokrypis, o kitu atveju — 0"

mazintos iSankstinio klasterizavimo klaidos (5.3 pav.).

Toliau atlieckamas hierarchinis kiekvieno iSankstinio klasterio signaly vidurkiy
Sirdies duZiy klasterizavimas. Taip vietoj kiekvieno atskiro Sirdies duZio ekspertui
pateikiami hierarchinio klasterizavimo rezultatai, kuriuos jis gali iStirti ir anotuoti rank-
iniu budu.

5.2. Rezultatai ir aptarimas

Sitlomo algoritmo efektyvumui itirti naudojamos dvi atskiros duomeny bazeés.
Tikslumas tikrinamas ,,Physionet* MIT-BIH duomeny bazéje su 13 rankiniu budu pa-
zymety klasiy [190, 218], o veiksmingumas — ambulatoriniuose ilgalaikiuose EKG
jraSuose (Zr. 3.1 skirsnj).

Svertinio susiejimo derinys su Calinski-Harabasz indeksu parodé geriausius
tikslumo (0,91), Fowlkes-Mallows indekso (0,91), Matthews koreliacijos koeficiento
(0,37) ir klaidingo klasifikavimo rezultatus (5,6%), kaip rodo 5.4 pav. Algoritmas po
SAX klaidingai klasifikavo 0,97 + 1,51% ritmy ir parodé 26,2% suspaudimo lygj MIT-
BIH duomeny bazei. Klaidingas klasifikavimas apibréZiamas kaip ritmy, patekusiy j
klasterius, kuriuose dominuojanti klasé yra kita, skaicius.

Nors mazos Matthewso koreliacijos koeficiento (MKK) reikSmés paprastai rodo
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5.4 pav. Sitlomo algoritmo MIT-BIH duomeny bazéje gauty efektyvumo rodikliy, naudojant jvairius
susiejimo ir vidinio klasterizavimo patvirtinimo indeksus, sta¢iakampés diagramos

Assigned classes in manual annotation: Assigned clusters by the algorithm:
—VPB — Cluster 1 — Cluster 2

5.5 pav. Klasterizavimo rezultaty pavyzdZziai. Penki diZiai, paZzyméti ta pacia skilvelio prieSlaikiniy

daziy (VPB) klase i§ MIT-BIH duomeny bazés, pagal pasiiilyta algoritma priskiriami dviem skirtingiems

klasteriams (virSuje). Tai atvejis, kuris néra i§ esmés nepageidautinas anotuojant rankiniu budu. Normalus
dviejy skirtingy laikotarpiy ritmai su nedideliais ST poky¢iais iS ilgalaikiy EKG jrasy (apacioje)

prastus klasterizavimo rezultatus, didelés tikslumo reik§més rodo, kad taip néra. Al-
goritmas suskirsté Sirdies diiZius, paZymétus ta pacia klase, bet pasiZymincius skirtin-
gais morfologiniais poZymiais, j jvairias grupes (5.5 pav.). Si savybé néra i§ esmés
nepageidautina, nes ji leidZia tyréjams istirti, kaip Sirdies duZiai naturaliai patenka j
kitas klases, ir netgi nustatyti netikétus poklasius tolesniems tyrimams, o tai gali pas-
partinti naujy EKG elektrolity kraujyje Zymeny mokslinius tyrimus.

Efektyvumo poZitriu 3 dienas trukusiame EKG tyrime daugiau kaip 480 000
duziy buvo redukuota j 30 000 unikaliy seky, o véliau — j 30 klasteriy ir anotuota kaip
trys klasés ir triukSmas, o skai¢iavimams ir anotavimui prireiké maZiau nei vienos
valandos.
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ISVADOS

1. Létinémis ligomis sergantiems pacientams biitina reguliariai stebéti elek-
trolity kiekj kraujyje, kad buity uztikrinta jy trumpalaike ir ilgalaike sveikata. Sunkds
dielektrolitemijos epizodai gali sukelti gyvybei pavojingas aritmijas, todél yra pavo-
jingi trumpuoju laikotarpiu, o lengvi, taiau pasikartojantys epizodai gali turéti il-
galaikj Zalingg poveikj. Nepaisant to, kad tokie lengvi ir pasikartojantys epizodai neke-
lia tiesioginés grésmeés pacientams, jie gali pabloginti Sirdies ir inksty funkcijas, o tai
pagreitina ligos progresavimg ir kelia pavojy ilgalaikei sveikatai. Sie epizodai daZ-
niausiai atsiranda dél neoptimaliy standartiniy vaisty, skirty létinéms ligoms gydyti,
pavyzdZiui, antihipertenziniy vaisty, doziy. Todél, laiku nustacius ir iStaisius dielek-
trolitemija, kurig galima nustatyti reguliariai stebint elektrolity kiekj kraujyje, biity
galima iSvengti pavojingy aritmijy ir padéti gydytojams titruoti gyvybe gelbstincius
vaistus homeostazei palaikyti ir bendrai ilgalaikei sveikatai stiprinti.

2. Ambulatorinis elektrolity kiekio kraujyje stebéjimas naudojant vienos deri-
vacijos EKG yra jmanomas HD pacientams, sergantiems gretutinémis Sirdies ligomis.
Du T bangos morfologijos deskriptoriai, 6 5 ir Ts,, reagavo j laipsniskus kalio svyra-
vimus per ilgg tarpdializinj intervalg ir yra vidutiniskai susij¢ su [K*] poky¢iais (kore-
liacijos koeficientai atitinkamai »=-0, 56 ir r=-0,57). 6 ir Ty, taip pat reagavo j kalj
mazinancius vaistus ir insulino Suolius po valgio, kurie skatina K* lastelése. 6 5 paros
kintamumas panasus j sveiky Zmoniy cirkadinj kraujo [K*] kintamumg. Palyginti su
Ts,, pasitilytam modeliu pagrjstam deskriptoriui 6 ; maZiau jtakos turi judesiy sukeltas
triuk§mas, todél jj geriau naudoti ambulatorinése programose. Nepaisant to, abiejy
deskriptoriy veikimg gali paveikti tokie klaidinantys veiksniai, kaip kartu vykstantis
elektrolity, ypac¢ kalcio ir bikarbonaty, disbalansas ir kintanti T bangy morfologija.

3. Gilaus mokymosi modelis gali patikimai jvertinti erdvinj QRS-T kampa « i
sumaZzinto EKG derivacijy skaiiaus {1, II, aVF, V2}, o absoliucios vidutinés ir vidutinés
paklaidos yra 11.4° ir 7.3°. Modelis jvertina QRS ir T vektoriy 3D koordinates (iSvestis),
reikalingas « kampui apskaiciuoti i$ kiekvienos derivacijos signaly vidurkiy (jvestis),
esanciy {1, I, aVF, V2} poaibyje. Sj poaibj galima uZregistruoti paprastai konfigiiruo-
jamuose vartotojy sveikatos prieZitiros prietaisuose, kuriy jau yra rinkoje. Modeliui
iSmokyti buvo pasiulyta originali sudétiné nuostoliy funkcija, kurioje naudojamas kam-
pas ir 3D Euklido atstumas tarp vektoriy, kad jis jvertinty « net tada, kai jvesties EKG
derivacijos teikia ribotg erdving informacija. Modelio strukttra yra nesudétinga, kad
ja buty galima jdiegti vartotojy sveikatos prieZitros prietaisuose. Tai perspektyvus
sprendimas QRS-T kampg stebéti ambulatoriSkai ir tirti jo sasajas su elektrolity kiekiu
kraujyje.

4. Siulomas simbolinis klasterizavimo algoritmas gali padidinti Sirdies duZiy
anotavimo ir analizés efektyvuma ilgalaikése EKG. Sirdies diizius suspaudus j trumpas
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sekas (simbolius), juos galima grupuoti j vienody simboliy klasterius ir taip sumaZinti
skaic¢iavimo reikalavimus hierarchiniam klasterizavimui. PavyzdZiui, 3 dieny trukmés
EKG daugiau kaip 480 000 duziy buvo suglaudinta iki 30 000 unikaliy seky, o Sios
— iki 30 klasteriy, kuriuos tyréjai gali patogiai analizuoti ir anotuoti. Si savybé lei-
dZia tyréjams iStirti, kaip Sirdies duZiai naturaliai patenka j skirtingas klases, ir netgi
nustatyti netikétus poklasius tolesniems tyrimams.
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