
KAUNO TECHNOLOGIJOS UNIVERSITETAS

INFORMATIKOS FAKULTETAS

PROGRAMŲ INŽINERIJOS KATEDRA

Denis Strukov

Investigation and realization of the high school schedule

optimization model in the internet environment

Magistro darbas

Darbo vadovas

prof. habil.dr. J. Mockus

Kaunas, 2010

KAUNO TECHNOLOGIJOS UNIVERSITETAS

INFORMATIKOS FAKULTETAS

PROGRAMŲ INŽINERIJOS KATEDRA

Denis Strukov

Optimizacinio mokyklos tvarkaraščio modelio sudarymas ir

realizavimas interneto aplinkoje

Magistro darbas

Recenzentas

dr. Lina Pupeikienė

2010-05

Vadovas

prof. habil.dr. J. Mockus

2010-05

Atliko

IFM-4/1 gr. stud.

Denis Strukov

2010-05-01

Kaunas, 2010

Table of contents

Preface.. 6

1. Problem domain analysis .. 7

1.1. Problem ... 7

1.2. Possible problem solutions .. 8

1.2.1. Heuristic optimization algorithms ... 9

1.2.1.1. Monte-Carlo algorithm .. 9

1.2.1.2. Simulated Annealing algorithm .. 9

1.2.1.3. Bayesian algorithm .. 10

1.2.1.4. Genetic algorithm ... 11

1.3. Existing scheduling soluitions ... 11

1.3.1. Mimosa ... 12

1.3.2. aSc TimeTables .. 12

1.3.3. Rector 3 ... 12

1.4. Situation in Lithuania ... 13

1.5. Summary ... 15

2. Schools schedule creation and optimization distributed system prototype 16

2.1. Functional analysis ... 16

2.1.1. Conceptual overview ... 16

2.1.2. Business processes ... 17

2.1.3. System components ... 18

2.1.4. Core application structure .. 19

2.1.5. Scheduling framework model ... 20

2.1.6. School schedule creation platform model .. 23

2.1.7. School schedule evaluation ... 26

2.2. Summary ... 27

3. School schedule optimization ... 29

3.1. Initial data file ... 29

3.2. User interface .. 32

3.3. Results ... 33

3.4. Future development .. 33

3.5. Summary ... 34

4. Summary .. 35

5. References .. 36

6. Table of terms .. 39

Table of figures

Figure 1 General view of the system usability context .. 16

Figure 2 Business process diagram .. 17

Figure 3 System components ... 18

Figure 4 Package dependency diagram ... 19

Figure 5 Package dependencies. Scheduler framework ... 20

Figure 6 Scheduler framework model. Dependency diagram. 21

Figure 7 Model object collections. Dependency diagram. ... 22

Figure 8 Execution creation process diagram ... 23

Figure 9 Inheritance diagram. School schedule resources ... 24

Figure 10 Inheritance diagram. Resource owners... 24

Figure 11 School schedule inheritance diagram ... 27

Figure 12 Workbook sheets .. 30

Figure 13 Subject definition ... 30

Figure 14 Teachers data .. 31

Figure 15 Student data .. 31

Figure 16 User interface sample .. 32

Figure 17 Student schedule sample ... 33

MainDocument3.doc#_Toc262800785

5

Strukov D. Investigation and realization of the high school optimization model in

the internet environment; Master‘s paper in science of informatics, supervisor

Prof. J. Mockus; Department of Software Engineering, Faculty of Informatics,

Kaunas University of Technology, 2009.

SUMMARY

Every school, college and university has to deal with the scheduling task once or more

times a year. The school schedule creation on its own is a very difficult task,

furthermore, to make it convenient for students as well as for teachers makes it even

more complex.

The main aim of this paper is to present a flexible software system that is capable of

creating a schedule for a secondary school using the latest technologies and distributed

programming techniques.

The literature analyzed in the paper is related to solving the tasks of school scheduling.

Contemporary solutions are reviewed. The paper also contains analysis of existing

commercial and non commercial solutions. The new software system is presented. Its

advantages and disadvantages are analyzed. The optimization methods that can be

used in school schedule optimization are analyzed and some of them are employed in

the new software prototype in order to achieve better results.

6

PREFACE

School schedule creation is a difficult task that every school has to deal with on a

regular basis. In fact, it is relevant to any educational institution in any country. The problem

of schedule creation is that there is no single and uniform way to do that. Every country, or

even different institutions in the same country, may have distinct regulations, procedures and

rules on how a schedule has to be created and what is the criterion that makes it a good

schedule.

All secondary schools in Lithuania are very flexible, which means that the education

program of an individual student depends on his personal preferences and capabilities. This

set up makes it nearly impossible to divide students into uniform classes. As a result, every

student will end up with an individual study plan and a personal schedule.

A school schedule has to comply with physical restrictions such as:

 a teacher can only teach one lesson at the same time,

 a student can only attend one lesson at a time,

 a room can only be used for one lesson at a time,

 etc.

It also has to satisfy certain requirements, set by the ministry of education, such as:

 a maximum number of study hours per day/week,

 no extended gaps between lessons (maximum of 2 gaps),

 etc.

In addition to the above, there are teachers who also would like to have convenient

working conditions and their requirements met.

This level of complexity makes a creation of a convenient school schedule a non-

deterministic polynomial-time hard problem (NP-Hard) (Mockus, 2006). There are no

methods that can be used to solve this problem in polynomial time. The best option is to use

different heuristic methods to produce hopefully the closes to the best possible solution.

7

1. PROBLEM DOMAIN ANALYSIS

1.1. PROBLEM

Scheduling is a very common and difficult problem. People come across it in a variety

of fields such as industry, IT, educational, logistics and even everyday life of individual

people. But having just any schedule is not good enough. Optimal scheduling can increase

productivity and decrease time needed to accomplish certain series of tasks. That is the reason

why the optimal scheduling problem remained popular for decades.

In this paper a specific problem of optimal school scheduling is addressed. A new

scheduling platform prototype is presented which is targeting optimal school schedule

creation for Lithuanian schools in a distributed computing environment.

In order to define a school schedule, some basic objects and terms have to be defined.

Basic objects include:

 Subjects – the disciplines that are taught at school;

 Teachers – the employees that are able to teach certain subjects;

 Students – the consumers of information;

 Rooms – the specially equipped class rooms;

 Periods – the days of the week (weekdays);

 Time Frames –the timeslots when lessons can be taught (hours);

 When these objects are combined, they make a set of more complex entities, which, in

turn will be combined and bound by relationships to finally create a school schedule. The

main object of a school schedule is a lesson (or an execution). A lesson is dedicated to a

subject, needs a teacher, a classroom and a group of students. In other words, an execution (or

a lesson) is dedicated to a task and consists of a set of resources that include a server, an

execution environment and a set of jobs. The resources are the combinations of some simple

objects and a task. The combination of a teacher and a task makes a server, student and a task

make a job. The execution environment is a room and may or may not have a task bound to it

depending if the room is specialized for an execution of a certain task or subject.

A school schedule can be defined by a set of executions (lessons) distributed in a three

dimensional space with periods and time frames on X/Y axis and a Z axis reserved for

8

simultaneous executions. Of course all objects have to satisfy a certain amount of constraints

in respect to each other and the environment they are in.

The complexity of the school schedule creation task directly depends on the amount of

constraints applied to the schedule and data that is being processed. There is a basic set of

constraints that cannot be ignored. This set includes such physical constraints as:

 A teacher can only teach a single lesson at a given moment of time;

 A student can only attend to a single lesson at a given moment of time;

 There is a maximum limit of hours per day (24);

 A room can be occupied by only one group at a given moment of time.

In additional to physical constraints, there are logical constraints, which must also be

satisfied in order to keep the schedule valid. Such constraints include:

 Only students of the same year can study together;

 Only students of the same level (chosen by student) can study together;

 Teachers can only teach subjects and levels that they are competent of

teaching;

 Once a group of students is formed for particular subject and a teacher is

assigned to them, this set up has to remain stable through the entire schedule.

Neither a teacher nor a student group content can change.

Due to the flexibility offered by the Lithuanian education system to the students,

school schedules became very complex. The complexity of the schedule also depends on the

amount of resources, such as teachers and classrooms, available to the school.

Alongside with the physical and logical constraints that are listed above, there is a list

of constraints defined by the ministry of education. In addition to that, every school has its

individual rules and needs that they want to meet thus creating more constraints. Most of

these constraints do not affect schedules validity, but certainly influence its quality.

1.2. POSSIBLE PROBLEM SOLUTIONS

School schedule creation and optimization is considered to be a problem with a NP-

Hard (Non-deterministic Polynomial time) complexity. It is possible to use simple solution

search algorithms to create a small school schedule from a small data set, but the time

required to solve the problem increases very quickly as the size of initial data set grows.

9

Since the optimal result is unknown, the only feasible way of creating and optimizing

a school schedule would be using heuristics to search for a solution and hope that the solution

found will be close to the best.

1.2.1. HEURISTIC OPTIMIZATION ALGORITHMS

 One way of finding a school schedule of acceptable quality is to create a valid school

schedule and then perform its optimization using heuristic algorithms trying to increase

school schedules quality. There are a several algorithms that could be successfully applied to

this particular problem. They include, but are not limited to:

 Monte-Carlo algorithm (MC)

 Simulated Annealing algorithm (SA)

 Bayesian algorithm

 Genetic Algorithm (GA)

1.2.1.1. MONTE-CARLO ALGORITHM

Monte-Carlo algorithm will repeatedly produce new valid solutions distinct from each

other. Every new solution is evaluated and its quality is compared to the current best result. If

the quality of a newly created solution is greater than the current best, then a new solution is

recorded as the best and the algorithm continues. The algorithm will stop when a certain stop

condition is detected. Stop conditions might include:

 Iteration limit is reached;

 No better results were found in the past several iterations;

 Time limit exceeded;

 Etc.

This algorithm proves to be useful if the time required to generate a new solution is

small. In case if a current best solution is modified to create a new result, which might have a

better quality, the time spent on modification is relatively small. This is convenient, as a

greater number of iterations can be made in the shorter period of time. The down side of this

approach is that the solution found will be a local optimum approximation.

1.2.1.2. SIMULATED ANNEALING ALGORITHM

In order to analyze a wider solution domain, a Simulated Annealing algorithm can be

employed. It is different from the MC method in the way of how the current best result is

10

being chosen. The current best result is also a solution that modifications are being made to.

In the case of MC, the algorithm moves on to the next result, only if it is better than the

current one. The SA algorithm, with a certain probability, will move on to a worst solution

and hope that the following modification will result in a much better result. The probability

for a cooling schedule is calculated using formula

,

otherwise ,1

0 when ,
)1ln(/ 21

i

Nxx

h

i
her

i

 (1)

Here x1 – initial temperature, x2 – cooling rate, N – iteration number, h – quality

difference between the previous result and a newly formed one.

Simulated Annealing algorithms’ performance in different problems depends on its

two optimization parameters:

 Initial temperature (energy)

 Cooling rate

Optimal values for these parameters are different to each problem. They cannot be

uniformly defined for school scheduling problem and will vary with each initial data set. The

Bayesian algorithm can be used to search for better SA parameters and optimize the work of a

SA algorithm for each school schedule individually.

1.2.1.3. BAYESIAN ALGORITHM

A significant amount of research in this field was done by professor J. Mockus in a

book „A set of examples of global and discrete optimization 2“ (Mockus 2004). The main

idea of the algorithm is by using Direct Bayesian Approach (DBA) (Mockus 2004) to predict

the function value in the next point. It is not feasible to calculate function value at every point.

That is why the next observation point is defined by minimizing the risk function R(x). The

risk is an expected deviation from the global minimum (Mockus 2004). The simplified

version of the risk function is

ni

i

ni
i

ni cxf

xx
xfxR

)(
min)(min)(

2

11

 (2)

Here cn = mini zi-ɛ; zi = f(xi); ɛ >0 – a correction parameter.

The goal is to minimize the risk function and calculate the actual value of the function

only at the point where the prediction is best.

11

1.2.1.4. GENETIC ALGORITHM

Genetic Algorithms (GA) present a general and visual way of permutation and

randomization (Mockus, 2006). GA is a methodology for searching a solution space in the

manner similar to the natural selection procedure in biological evolution (Holand, 1975). Each

candidate solution is represented by a string of symbols. The set of solutions at some state m

is called the population of the mth
 generation. The population evolves for a prescribed number

M of generations. The basic structure processed by GA is the string. Strings are composed of

a sequence of characters.

A simple GA consists of:

 One reproductive plan, defined as the fitness proportional reproduction;

 Two genetic operators, defined as crossover and mutation.

The probability of selection is defined in proportion to the fitness of individuals.

During the crossover operation one splits two selected strings at some random position

s. Then two new strings are created, by exchanging all the characters up to the split point s.

During the mutation operation one alters some string characters at random. A mutation is of lth

order, if one changes l elements during one mutation operation. Both the crossover and the

mutation are feasible, if they satisfy all constraints. It follows from this definition that GA

may be considered as a special case of the Permutation and Randomization. Thus, one may

include GA into the framework of Bayesian Heuristic Approach. (Mockus 2004)

1.3. EXISTING SCHEDULING SOLUITIONS

Despite the difficulty of the school schedule creation task, most schools are still

making their schedules manually. School staff spends hundreds of man hours to accomplish

this difficult task. Fortunately there are software solutions on the market that are able to aid in

school schedule creation. Lately more and more schools started using these software

solutions. A list of most popular applications includes:

 Mimosa

 aSc TimeTables

 Rector

These are the three leading applications on the Lithuanian market.

12

1.3.1. MIMOSA

“Mimosa” is a scheduling and course planning software, created by Mimosa Software

LTD (Finland), which may be used in any kind of school or university (Mimosa, 2010). The

application interface is available in multiple languages. The structure of the application is

relatively simple and intuitive to an experienced user. The package allows creation of a

schedule automatically, manually or by mixing these techniques. “Mimosa” prevents the

creation of conflicts and gives hints of optimal actions when a schedule is being created

manually. Initial data input is fairly difficult and requires users to be trained. In order to

seamlessly integrate with already in place administration solutions, additional procedures

have to be implemented. “Mimosa” developers claim that their software is able to perform

optimization procedures on created schedules, but exact algorithms are not published. The

cost of a single user license is 500 EUR.

1.3.2. ASC TIMETABLES

The “aSc TimeTables” application, created by Slovakian company Applied Software

Consultants (aSc, 2010), is similar to Mimosa software by functionality, but is much more

user friendly. It also features a multilingual user interface, a convenient documentation and a

user support system. Data input is intuitive and straight forward. Schedules can be created

automatically or manually. A manual schedule creation or modification after an automatic

creation is made easy by employing drag and drop technique. The application also prevents

conflicts in the schedule while the user is making manual adjustments. During the automatic

schedule creation, the application claims to minimize the number of gaps in teachers’

schedule. No student schedule optimizations are performed. The “aSc TimeTables” software

also allows to constrain the schedule with additional constraints such as the definition of days

that a particular teacher wants to have free of lessons or the definition of classrooms, that can

be used for a particular subject only and so on. The software is supported by most popular MS

Windows platforms like MS Windows XP and later versions. The Applications’ price ranges

from 250 to 830 EUR depending on the version and other options.

1.3.3. RECTOR 3

Another popular software package developed by the Russian company - OptimeSoft,

is “Rector 3” (Rector, 2010). It is widely used in Russian schools. The software is available in

multiple languages. As well as the other two products described above, the application has

such functionality as automatic and manual scheduling, conflict prevention, teachers’

13

timetables gap minimization and other features. “Rector 3” is also able to work with profiled

schools, but it is mainly targeting the Russian education system and may not fit many

requirements of other countries. The software is priced at 300 EUR. There is a limited trial

version available for download.

1.4. SITUATION IN LITHUANIA

Statistics indicate that in 2008-2009 Lithuania had 1415 secondary schools that were

providing education to 464.906 students. All of Lithuanian schools offer high flexibility. It is

an enormous task to create flexible schedules manually every year. To simplify the process of

scheduling, schools employ specific software. The most widely used software packages in

Lithuania are “Mimosa” and “aSc Timetables”.

“aSc Timetables” is able to automatically create schedules of relatively good quality.

The simple user interface allows easy adjustments to a generated schedule and prevents

conflict occurrences. The data input is relatively simple and allows data import from XML.

The application has good user support features. The Work flow is easy and intuitive. The

downside of the application is that it does not take student gaps into account. “aSc

Timetables” is more suited for the less flexible education systems. The software does not

feature advanced post generation optimization algorithms.

The school schedule generated by the “Mimosa” application, most of the time, does

not satisfy most of the schools and cannot be used off the shelf. That is why “Mimosa” is used

a lot to just assist manual schedule creation instead of generating it automatically. The

software proves to be useful in lesson conflict prevention and other constraint monitoring.

The user interface is found to be non user friendly and difficult to understand. The data input

proves to be complicated and time consuming. The application does not seem to use any

advanced optimization algorithms.

There are many other software solutions on the market, but most of them either do not

have decent automatic schedule creation features or are very complicated, non user friendly as

well as expensive. Alongside with commercial solutions, there are a few open source

prototype applications made by Lithuanian students while researching school schedule

optimization. These applications were explicitly targeting Lithuanian schools and educational

system. To my knowledge there are two base projects currently available:

 “School – Complete”

 “Schools schedule creation and optimization program”

14

All other applications are derivatives of the above applications.

“School – Complete” was the first attempt (2003) of Lithuanian students to create a

school schedule creation application, but due to its complexity of use it was never used in real

world environment. This application has two successors, which added additional functionality

to the program as well as new schedule optimization procedures. The “School Schedule

optimization program by Auris” program modification was the last one to use CSV (Comma separated

values) file format as input. The following version called “School Schedule optimization program by

Vidunas” added XML input and an optimization method based on genetic algorithm. Later research

showed a lack of basic constraints, which means that the application can be used only for

research purpose and not in a real school environment. The poor extensibility of the

application and a big amount of bugs in the code led to creation of a new school schedule

creation and optimization program.

The “Schools schedule creation and optimization program” core was programmed by

me as my bachelor diploma work (2007). A web based user interface was developed. Later,

the application was completed and extended by Dr. Lina Pupeikiene thus creating a new

modification called “Optima”. Additional constraints, optimization methods and other

features were added. The “Schools schedule creation and optimization program” modification

by Kristina (2009) added a Java “Web Start” interface and didactical constraints.

All of the applications, described above, lack a number of necessary constraints and

thus are not able to create a valid schedule. The application code analysis revealed

programming and logical errors.

15

1.5. SUMMARY

The school schedule creation and optimization is very difficult and time consuming

task. It requires an enormous amount of time and effort to create a school schedule manually.

Due to flexibility of Lithuanian education system, not many commercial software solutions

may be adopted to automatically create a school schedule of desired quality. That was the

reason to create a school schedule creation and optimization software specifically design to fit

the requirements of a Lithuanian high school. The attempts made previously resulted in the

creation of several distinct software systems described in previous chapter. None of the

systems were able to create a valid school schedule. Due to the poor design and architecture

of the initial software, each later modification, such as addition of new constraints or

optimization method, resulted in the increase of code complexity and the decrease of its

maintainability.

In order to achieve better results, a new software system is required. It must feature a

better architecture and the design that allows easy future modifications without the increase of

complexity. Additionally, the software must be fast. That is achieved by utilizing the power of

multiple processors, computers or even computer networks.

16

2. SCHOOLS SCHEDULE CREATION AND OPTIMIZATION DISTRIBUTED

SYSTEM PROTOTYPE

The new system is meant to replace the previous school scheduling platforms. The

advanced architecture, based on a newly developed scheduling framework, will simplify

further research in the schedule creation and optimization field. In order to minimize the time

of experiments, the system employs a specially developed distributed computing subsystem.

It also features easy addition of new and modification of existing constraints and other

essentials to the research functionality.

2.1. FUNCTIONAL ANALYSIS

The developed schedule creation and optimization system prototype is a fast and

expandable platform for research in the scheduling field. It can be used to create school

schedules. The application features a web interface and can be accessed through internet.

In order to successfully use the system, the user must be a computer literate and be

able to use the Microsoft Office “Excel” application as well as a web browser. To expand the

system, one must be familiar with system architecture and be able to program in Java

programming language.

2.1.1. CONCEPTUAL OVERVIEW

A general view of the system usability context is presented below (Figure 1)

School schedule creation and

optimization system

Users

Researchers

Load initial data Set optimization

parameters

Schedule

Extend system

Analyze results

Figure 1 General view of the system usability context

17

From the users’ perspective, a user accesses the web interface of the application and

loads the initial data in the form of a MS Office Excel spreadsheet. The user also supplies the

optimization parameters that will be used during the optimization. The results are presented to

the user at the end of execution.

Researchers are able to make additions or modifications to the system and monitor the

actual progress of the schedule optimization. The history of the optimization can also be

reviewed and analyzed.

2.1.2. BUSINESS PROCESSES

On a big scale, there is a single business process in the whole application. The

business process diagram presented below (Figure 2) shows three steps involved in the

process:

 Upload initial data file

 Set optimization parameters

 Retrieve Schedule

Figure 2 Business process diagram

Each step of the process may be considered to be a single user interface screen.

In the first step, the user is required to upload a specially compiled MS Office Excel

file containing the initial data about subjects, teachers, their work hours, students and their

study plans. Based on that information a school schedule will be created.

In the following step, the optimization parameter may be customized. In order to

evaluate the quality of a schedule, penalty point values are assigned to each constraint type.

The optimization method and its parameters are set. The system employs Monte-Carlo

algorithm.

18

Lastly, the resulting schedule is presented to a user along with other information about

the optimization process and schedule quality.

2.1.3. SYSTEM COMPONENTS

At the highest level, there are 4 components that make up the system:

 User interface

 Central

 Executing node

 Core application

Figure 3 System components

Most of the components presented above are communicating through Java Remote

Method Invocation (Java RMI). This system allows communication between distributed

applications. Another interface that can be found in component diagram is Application

Programming Interface (API). The API is an interface, exposed by an application, which can

be directly used by other application.

A web application developed specially for this system is acting as a user interface. It

provides the means for transferring the initial data file and optimization parameters to the

server. It also acts as a progress monitoring tool and result visualization platform.

The central module is responsible for the work distribution and result evaluation. It is

dispatching tasks and collecting results from executing nodes over the network. The results

and progress information is stored available in the central module and can be requested at any

time by the user through the web interface.

19

The executing nodes are acting as an interface to the core application. They receive

information from the central module and initiate schedule creation and optimization upon

request from the central. The nodes also extract information from the core application and

report it to the central. Each node is deployed on a separate computer in the network. Several

nodes can be deployed on one machine, depending on its processing capabilities and

processor core count.

The core application is responsible for the actual creation of the school schedule. It has

an API interface that enables the executing nodes to initiate procedures and extract the results.

The core is the main and the largest part of the whole system.

2.1.4. CORE APPLICATION STRUCTURE

The core application is build on a specially designed scheduling framework. It extends

its functionality to the requirements of a school. The module consists of two packages:

 Scheduling framework (Scheduler)

 School schedule creation platform (School Scheduler)

Figure 4 Package dependency diagram

The scheduling framework incorporates the schedule compilation logic. It is

responsible for the collection of all required resources for a task execution to be created. In

the context of school schedule creation resources are:

 Students

 Teachers

20

 Rooms

A single task execution can be described as a lesson of a certain subject. The

scheduling framework is responsible for the creation of these task executions and their

placement in the time frames within periods. Here – periods are days and a time frame is a

quantum of a day.

The school schedule creation platform is an extension of the scheduler framework. All

the resources described above are defined inside the school schedule creation platform. It also

contains constraint definitions and all the rules of the resource interaction. The scheduling

framework, by design, is unaware of these details. The framework consists of several

packages:

Figure 5 Package dependencies. Scheduler framework

2.1.5. SCHEDULING FRAMEWORK MODEL

The “model” package is the main package in the framework. It contains all the

necessary business objects required to define a simple schedule almost in any context. The list

of most important objects includes:

 Schedule – represents a schedule;

 Period – represents a day;

 Time Frame – represents a time period within a period;

 Task – represents a type of task that can be executed;

 Resource – represents a resource, required for something to be scheduled;

 Resource Owner – a resource owning object;

 Execution – represents an instance of something that can be scheduled.

21

All these objects either depend or consist of each other. The dependency diagram is

presented below (Figure 5). Some of the helper classes were left out of the diagram for better

readability. Some of them are worth of mentioning for further references:

 The “Data” class contains references to all the collections of resources,

resource owners, tasks and resource requirement map.

 The “MinMaxRequirement” class, which is mapped to every resource

collection, is meant to indicate the minimum and the maximum quantity

requirements for each resource in order to create an execution.

 The “AbstractBase” class contains a functionality that is common to almost all

objects in the framework.

Figure 6 Scheduler framework model. Dependency diagram.

The “Schedule” object is a top level container. It contains collections of periods, time

frames and executions. Each of these objects is a container on its own. A “Period” serves as a

container for time frames, time frame serves as a container for execution. “Execution” in turn

contains a task and a list of resources. Most of the instances hold a reference to each other for

easier navigation.

When an instance of a The Schedule class is instantiated, a process of schedule

creation is initiated. It is worth to note that Schedule is an abstract class, which means that

some of the functionality and parameters have to be defined in a deriving system. For instance

22

the amount of periods and time frames that have to be instantiated and the penalty function

must be defined in the deriving system.

The “Resource” and “ResourceOwner” classes complete the set of abstract classes in

the model. As well as the “Schedule” class, these abstract classes require deriving system to

provide specific functionality such as resource and resource owner compatibility check

routines. Every resource has an owner and a task. The deriving system must specify which

resource has to be exhausted before the schedule can be declared complete.

In the model there is another important package containing definitions of model object

collections.

Figure 7 Model object collections. Dependency diagram.

These collections are responsible for storage of resources, resource owners and tasks.

They also provide easy access to any of the model objects.

The execution creation process requires access to all the above collections. These are

available through the “Data” object that stores required references. An execution object can

be created in a given timeframe and for a given task. Additional information, such as resource

requirements for an execution and concrete resources themselves must be provided by the

deriving system.

23

Figure 8 Execution creation process diagram

The above execution process diagram illustrates the algorithm used to create an

execution. An execution is being created for a given task and a particular time frame. The first

few steps filter the resources that are dedicated to the task and are available in that time frame.

Then a loop is being started that picks out the required amount of resources of each type.

Every resource has to be compatible with the previously selected resources. The order of

resource types is defined in the deriving system. When all the resource requirements are met,

execution is being created and placed in the time frame. This event registers all resources in

the schedule and removes them from the list of available resources.

2.1.6. SCHOOL SCHEDULE CREATION PLATFORM MODEL

In this paper – a school schedule creation platform is discussed. By extending the

framework described in the chapter above, a schedule creation platform may be created for

almost any context. For the school schedule context, the list of resources, defined in the

system, includes:

 Servers. A single server represents a teacher, teaching a single hour of a

particular subject.

 Jobs. Here, a single job represents a student, studying a single hour of a subject

 Environments. An environment, represents a class room.

24

Figure 9 Inheritance diagram. School schedule resources

Every resource has its task compatibility rules and resource compatibility check

algorithms. Alongside with individual functionality, every resource must have an owner. The

list of resource owners includes:

 Teacher;

 Student;

 Room.

The inheritance diagram below (Figure 10) illustrates the relation of these objects to

the scheduling framework.

Figure 10 Inheritance diagram. Resource owners

25

As stated above, every resource has a resource owner. Every resource owner can have

multiple resources. A resource can be defined as a single instance of a particular service

provided by the resource owner. For example – a study plan of a certain student indicates that

a student has to follow 5 hours of mathematics a week. With this set up, we have a single

resource owner – a student, and 5 jobs – five combinations of the resource owner and a task

(mathematics).

In order for the model to create a valid school schedule, all the compatibility check

procedures have to be carefully implemented. Every resource must implement task

compatibility and other resource compatibility check procedures.

The school schedule constraints implemented in the school schedule creation platform

are individual to each resource. That means that depending on the type of the resource that the

check is being executed against, different aspects are being checked. The table below

illustrates the complexity of each check. The white cells represent the checks that have almost

no logic behind them. The procedures represented by the blank cells marked with a minus

sign will always fail the compatibility check. Those marked with the plus sign will always

pass the compatibility check. The light grey cells represent the compatibility check

procedures that require a single check before making a decision. The dark grey cell requires

more than one check and thus is more complex.

 Server Job Environment

Server -

Job +

Environment + -

Table 1 Resource compatibility checks

In the lists below, a more detail description of all compatibility constraints is

presented. Each list describes a one way check against all the other resources, including itself.

The “Server” compatibility checks include:

 With another “Server” – nothing. There is no execution requiring more than

one “Server” resource, thus the check procedure is not necessary.

 With a “Job” – verify that the server owning teacher can teach the job owning

student.

 Environment – verify that the “Server” owning teacher is allowed to use the

“Environment” owning class room.

26

The “Job” compatibility checks include:

 With a “Server” – in case if the teacher for a particular subject has already been

assigned for the “Job” owning student, it has to be the same teacher through

the entire schedule teaching that subject.

 With another “Job” – this set up requires multiple checks:

o The other “Job” owning student must be of the same level.

o In case if the student group for the particular subject has already been

formed, the student has to stay with that group through the entire

schedule.

 With an “Environment” – all jobs are compatible with all environments.

The “Environment” resource compatibility check insures that:

 With a “Server” – verify that the class room can be used by “Server” owning

teacher.

 With a “Job” – nothing has to be verified. Any “Job” can be executed in the

“Environment”.

 With an “Environment” – nothing to verify. There are no executions, requiring

more than one environment.

2.1.7. SCHOOL SCHEDULE EVALUATION

The resources described in the previous chapter alongside with the resource

compatibility constraints implemented on the scheduling framework, make up a school

schedule creation platform that is able to create a valid school schedule while satisfying the

basic needs of a basic school. But schools require more than just a valid schedule, they require

a good schedule.

The list of factors, that influence the quality of the schedule, include:

 Gaps between the lessons in teachers’ schedule;

 Gaps between the lessons in students’ schedule;

 Violation of the maximum working hours per day for teacher;

 Violation of the maximum lessons per day for student;

 Violation of the teachers day off.

27

The understanding of a “good” schedule differs from school to school or even from

employee to employee within the same school. For some schools, the gap between lessons in

a teachers’ schedule is not a big deal, but for others it a no-go.

In order to calculate the quality of a schedule, a penalty point system is employed. The

more violations are found in the schedule, the more penalty points are assigned to it. The

application provides the flexibility of assigning the values of the severity of a certain

violation. That enables the system to distinguish between heavy and light violations. With this

setup, a penalty function can be derived:

i

ii NcP (2)

Here the P is a variable representing the schedule quality; ci is i-th violations

occurrence count in the schedule; Ni is the i-th violations severity value assigned by the user

to this certain violation. As we can see from the formula – the larger is the value of P, the

worse is the schedule.

Figure 11 School schedule inheritance diagram

The procedure responsible for calculating the value of the penalty function and

evaluating the quality of a schedule is implemented in the model of the school schedule

creation platform.

2.2. SUMMARY

The way that a piece of software is designed defines its usability and extensibility.

These two qualities are very important and have to be maintained at a very high level in order

to release a software packet of good quality. During the creation of the new school schedule

creation and optimization software, extensibility and usability were the main attention points.

28

The application design made of loosely coupled components. That keeps the

maintainability of the software at the high level. It also makes possible the modification of

each separate component independently.

29

3. SCHOOL SCHEDULE OPTIMIZATION

Since it is possible to evaluate a school schedule, it should also be possible to make it

better. In order to make it better, something has to be improved or in other words changed. By

attempting to eliminate the violations that the penalty function is based on, we might reduce

the overall penalty count P (2). As we have more than one schedule quality factors, the

process of school schedule optimization can reach very high complexity levels. In order to

keep it simple and effective, a single line of optimization has been chosen – gaps between

lessons in teachers’ schedule. The modifying algorithm will target specifically this violation

and try to close the gaps by moving a whole lesson from some other place in the schedule.

When a lesson is being moved, its whole content must move along with it, otherwise it is

likely to result in violations of mandatory constraints all over the schedule. If a whole lesson

and its content are moved with an exception of the environment, there is a moderate chance of

the operation to be valid. This is an important factor in a schedule optimization as the amount

of constraints drastically reduces the amount of simple modifications possible. Other possible

modifications, that are likely to initiate a chain reaction of modifications, are not feasible due

to their complexity and the chance of final modifications to be invalid, thus scrapping all

previous operations.

3.1. INITIAL DATA FILE

The initial data file was originally compiled by Dr.Lina Pupeikiene in 2006 for use

with the previous versions of the “school schedule creation and optimization program”. Since

then, the structure of the file has undergone several improvements and modifications.

The file is basically a XML file compiled using the Microsoft Office 2003 standards.

It can be created and edited using the MS Office Excel or the OpenOffice Calc applications.

There are several types of data required in order to create a school schedule:

 The data about the subjects taught in school

 The data about the teachers and their working in school

 The data about the students and their study plans

 The data about available rooms

30

The structure of the workbook consists of several sheets each dedicated to a concrete

type of data (Figure 12). The first two sheets are fixed. Starting the third sheet and further, all

the sheets are dedicated to the students. The sheet name identifies the student group. The last

sheet in the workbook contains a template of the students sheet.

Figure 12 Workbook sheets

 The first sheet is dedicated to the subjects. Here, each row contains a single subject

definition.

Figure 13 Subject definition

In order to define a subject, a subject code, group, priority and a maximum amount of

students has to be defined. This data has to be entered to the columns A, B, C, and D

respectively (see Figure 13) for each subject.

The subject code acts like a unique identifier for a subject. It has to remain unique

through the entire subject list. Same codes will have to be used in the definition of the

teachers in order to define the subjects that a teacher can teach.

A subject can also have a group. The subject grouping may be used to introduce extra

logic in the schedule creation. This is useful if some subjects have to be scheduled in a

particular time frame or order. The subject priority caries out a similar role. It defines the

order, in which the subject will be scheduled. The last property in the list defines the

maximum amount of students that can attend a lesson of this subject simultaneously

The next sheet in the work book contains information about the teachers (Figure 14).

31

Figure 14 Teachers data

The first four columns are pure informative and don’t carry any critical information

for the schedule. They may be used to increase output readability. The next four properties are

closely related to each other. The information about subjects that the teacher can teach is

entered in the G column. It is worth noticing that a single teacher is able to teach several

subjects. In case when a teacher is teaching two subjects, the subject codes are separated with

a semicolon (Figure 14, row 3, column G). For each subject, the maximum amount of hours

per week has to be defined (Figure 14, column F). The multiple values are separated with

semicolons. Alongside with other properties, a list of student groups (column H) and a list of

rooms (column E) have to be defined for each subject that a teacher can teach. In case of

multiple subjects, the lists are separated by a hash sign (#). The list of student groups defines

which student groups can be taught the subject by a particular teacher. Same stands for rooms.

Each subject taught by a teacher is restricted to a number of rooms which are listed in column

E. The last column in the sheet (column I) defines teachers’ desired days off.

Starting the third sheet and further, the workbook contains information about students

and their study plans.

Figure 15 Student data

Each sheet represents a single student group. The name of the sheet is used as a group

name. It also contains the information about the level of students in that group. The group 11b

32

would consist of students of 11
th

 grade. This is important, as the students from the different

levels cannot be studying together.

The students’ study plan is entered in a special table which is widely used in the

Lithuanian schools. Each student occupies a single row in the table. The first two columns, A

and B, contain information about the student. The rest of columns, except the last one, contain

an individual study plan for each student. Each column represents a subject. The cell that is

located at the intersection of a student row and a subject column may contain a number or a

number with a letter. The number represents the amount of hours per week that the student

chose to study the corresponding subject. The letter indicates the subjects’ difficulty level

chosen by the student. If no letter is indicated, the default difficulty level is assumed.

The order in which the subjects are arranged in this table is important. It has to

correspond to the order the subjects entered in the first sheet of the workbook.

The examples of full tables with data are available in the appendix.

3.2. USER INTERFACE

The application user interface is implemented using Java Server Faces (JSF) and

Asynchronous JavaScript and XML (AJAX) technologies. Such additional tools as Google

Charts and DOJO framework were employed in order to not reinvent the wheel and aid the

development procedure.

The user interface is implemented in a form of wizard. That means that the whole

workflow is divided into several basic steps. A single screen is dedicated to each of the steps.

Each screen contains user input, accompanied by detail information about the content of the

screen.

Figure 16 User interface sample

The user interface is a web application that is hosted in a JBoss server environment.

JBoss is a free, java enterprise application container build around Apache Tomcat server. It

33

comes with a number of tools which make the application easy to develop and deploy. The

JBoss server also allows RMI naming service to run within the application container. The

Enterprise Java Beans (EJB3) technology is supported by the JBoss application server. That

makes room for further improvements and modernizations of the application.

3.3. RESULTS

The new school schedule creation and optimization program proves to be much faster

than its predecessors. The new application design allows running the optimization code on

several machines simultaneously. That increases the speed of optimization by the factor N,

where N is a number of processors available on the network (assuming that all processors

have the same processing power).

Currently, only the Monte-Carlo local optimization algorithm is implemented in the

system. This particular algorithm was chosen due to its simplicity.

The resulting schedule is presented to the user in an XML format. A single XML file

is created for each student. The same is done for the teachers. A sample of a student schedule

is presented below.

Figure 17 Student schedule sample

3.4. FUTURE DEVELOPMENT

The newly developed system is fresh and still needs a lot of work. The main points

that need to be addressed in the future are:

 User interface;

34

 Optimization algorithms;

 Improvements on the distributed optimization;

 Output;

 Parallelizing application code.

The user interface has to be improved and modified. Additional interface languages

should be added. The current user interface is primitive and covers only the basic application

control.

The addition of the new optimization algorithms would possibly improve the quality

of resulting schedule. The global optimization algorithms, such as SA, should most definitely

be implemented and tested. Not only the algorithms have to be implemented, but the

distributed version of each of them should be developed.

The output of the application is also on the primitive level. There are endless

possibilities to expand. Such options as HTML interactive output using AJAX or even PDF

reports would complement the application and increase the quality of a user experience.

The code parallelization would be a great improvement of the application. This would

drastically increase the performance of the application on a multi-core system.

3.5. SUMMARY

The new application architecture provides the researchers with a steady platform to

develop new ways of creating and optimizing the school schedules. The ability to run the

schedule optimization on several machines simultaneously enables the user to seamlessly

utilize most of the processing power available. The software can be installed as on a single

multi-core system or on a local network.

User Interface is simple and easy to use. No advanced computer skills required in

order to operate the software. This makes the scheduling software available to an average

computer user. In that way, the scheduling system may be used as a tool to generate real

school schedules in the Lithuanian high school.

Input and output uses an open XML format. The data can be viewed by MS Office

Excel or a free OpenOffice Calc package. The majority of the users are already familiar with

the system. That eliminates the need of additional training.

35

4. SUMMARY

The school schedule creation and optimization is a very complex and time consuming

task. The complexity rises exponentially with the increase of the amount of initial data and the

amount of constraints applied to the schedule. There are no known ways of finding the best

schedule. This is the reason why heuristic algorithms are being employed in order to find the

closest to the best solution.

Currently, the Lithuanian high schools are using commercial software packages in

order to aid the school schedule creation. The majority of this software packages are not able

to cope with the flexibility offered by the Lithuanian education system. In order to bring the

effort of creating a school schedule to the minimum, specialized software is required,

specially created for the Lithuanian high schools.

The analysis of the school schedule creation and optimization software packages

created previously, uncovered major flaws in the schedule creation algorithms. The essential

constraints were missing, thus making the creation of the valid school schedule impossible.

The new distributed scheduling software platform was created. The modern design and

architecture allows the researchers to modify the application, add new constraints, create and

test new optimization algorithms without overloading the application code. The ability to run

the optimization of the school schedule on multiple machines simultaneously drastically

decreases the time required to run the schedule optimization.

36

5. REFERENCES

Abramson, D. 1991. Constructing school timetables using simulated annealing:

sequential and parallel algorithms, Management Science, vol. 37, no. 1, 98-113.

Action. ACTion Scheduling Software, [viewed on 2007-11-22]. Internet access:

<http://www.timetable.co.za/>

Alaburdienė, R.; Dovidauskaitė, S.; Nekiūnienė, V.; Rekerta, G.; Alaburda, M.

Pamokų tvarkaraščiai, [viewed on 2009-10-25]. Internet access:

<http://www.soften.ktu.lt/~mockus/mimosa/index.htm>

Alexandrov, V.; Dimov, I.; Karaivanova, A.; K.Tan, C. J. 2003. Parallel Monte Carlo

algorithms for information retrieval. Mathematics and Computers in Simulation, Vol

62, Issues 3–6.

Apynis, A., 2005. Optimizavimo metodai. Vilniaus universiteto leidykla, Vilnius,

ISBN 9986-19-828-3.

aSc. aSc Timetables, [viewed on 2010-01-25]. Internet access:

<http://help.asctimetables.com/index.php?lang_id=10>

Bilgin, B.; Ozcan, E.; Korkmaz, E. E. 2007. An Experimental Study on Hyper-

Heuristics and Exam Scheduling, PATAT2006, Springer-Verlag, selected papers,

LNCS 3867, 394–412.

Birbas, T.;Daskalaki, S.; Housos, E. 2009. School timetabling for quality student and

teacher schedules, Journal of Scheduling, vol. 12, Issue 2, 177-197.

Burke, E.K.; Petrovic, S. 2002. Recent research directions in automated timetabling,

European Journal of Operational Research 140, 266–280.

Cooper, T.B.; Kingston, J.H. 1996. The complexity of timetable construction

problems. In: Proceedings of the 1st International Conference on Practice and Theory

of Automated Timetabling (PATAT 1995), LNCS 1153, Springer-Verlag, 283-295.

Costa, D. 1994. A tabu search algorithm for computing an operational timetable,

European Journal of Operational Research, vol. 76, 98-110.

Erben, W.; Keppler, J. 1996. A genetic algorithm solving a weekly coursetimetabling

problem, in: E. Burke, P. Ross (Eds.), The Practice and Theory of Automated

37

Timetabling: Selected Papers from the First International Conference, Lecture Notes in

Computer Science, Springer, Berlin, vol. 1153, 198–211.

Felinskas, G.; Sakalauskas, L. 2003. Pareto tipo modeliai modeliuojamojo atkaitinimo

algoritmuose. Lietuvos Matematikos rinkinys, T.43, spec.nr., 573-578. (ISSN 0132-

2818) (Duomenu bazse: CIS, MatSciNet, VINITI, Zentralblatt MATH).

Gaidukevičienė, R.; Kurilovas, E. 2005. Comparative study of profiled school

scheduling programs in Lithuania, Informatics in education. ISSN 1648-5831. Vol. 4,

Nr.1.

Glibovec, N.N.; Medvidj, S.A. 2003 Генетические алгоритмы и их исползование

для решения задачи составления расписания, Kибернетика и системныйанализ,

No.1.

Glover, F.; Laguna, M.; Marti, R. 2003. Scatter Search, Advances in Evolutionary

Computation: Theory and Applications, A. Ghosh and S. Tsutsui (Eds.), Springer-

Verlag, New York.

Hoos, H.H.; Stutzle, Th. 2004. Stochastic Local Search. Foundations and Applications.

Morgan Kaufmann/Elsevier.

Laumanns, M.; Bayesian, J.O. 2004. Optimization Algorithms for Multi-objective

Optimization, ISSN 0302-9743 (Print) 1611-3349 (Online)

Machado, J.M.; Shiyou, Y.; Ho, S.L.; Peihong, N. 2001. A common Tabu search

algorithm for the global optimization of engineering problems, Computer methods in

applied mechanins and engineering, Vol.190.

Mimosa. Mimosa Scheduling Software, [viewed on 2008-10-25]. Internet access:

<http://www.mimosasoftware.com/>

Misevičius, A.; Bukšnaitis, V; Blonskis, J. 2006. Euristiniai algoritmai: tikslai,

iššūkiai, metodologija, perspektyvos, Informacijos mokslai. ISSN 1392–0561.

Mockus, J. 2000. A Set of Examples of Global and Discrete Optimization: Application

of Bayesian Heuristic Approach. Kluwer Academic Publishers. ISBN 0-7923-6359-0.

Mockus, J. A Set of Examples of Global and Discrete Optimization by Jonas Mockus,

[viewed on 2009-01-22]. Internet access: <http://www.soften.ktu.lt/~mockus/>

Pupeikienė, L. 2006. Mokyklos profiliuotų klasių tvarkaraščių optimizavimo sistema.

Informacinės technologijos 2006: konferencijos pranešimų medžiaga; Kauno

technologijos universitetas. T.1. Kaunas: ISBN 9955-09-993-3.

38

Rector. Pamokų tvarkaraštis "Rector", [viewed on 2008-10-25]. Internet access:

<http://www.rector.spb.ru/lt/index.html>

Sakalauskas, L.; Bartkutė, V.; Felinskas, G., 2006. Optimality testing in stochastic and

heuristic algorithms, Technological and economic development of economy, t. XII,

Nr.1, p. 4-10, ISSN 1392-8619.

Sakalauskas, L.; Felinskas, G. 2006. Tvarkaraščių su ribotais ištekliais sudarymo

euristiniai algoritmai, jų tyrimas bei taikymai, Informacijos mokslai, 38 tomas, 90 -

103. ISSN 1392-1487.

Statistics. Statistikos departamentas, [viewed on 2009-04-21]. Internet access:

<http://www.stat.gov.lt >

Žvirdauskas, D.; Adaškevičienė, V.; Tarnauskas, K.; Žvirdauskienė, R. [interatyvus].

2006. Priemonių, skirtų vyresniųjų klasių mokinių mokymosi krūvio mažinimui,

veiksmingumas. Lietuvos Respublikos švietimo ir mokslo ministerijos tyrimas,

[viewed on 2009-10-15 d.]. Internet access:

<http://www.smm.lt/svietimo_bukle/docs/tyrimai/Kruviu_ataskaita_0702.pdf >

http://www.rector.spb.ru/lt/index.html
http://www.rector.spb.ru/lt/index.html
http://www.stat.gov.lt/
http://www.stat.gov.lt/
http://www.smm.lt/svietimo_bukle/docs/tyrimai/Kruviu_ataskaita_0702.pdf

39

6. TABLE OF TERMS

Heuristics – a technique designed to solve a problem that ignores whether the solution

can be proven to be correct, but which usually produces a good solution or solves a

simpler problem that contains or intersects with the solution of the more complex

problem.

NP – NP is one of the most fundamental complexity classes. The abbreviation NP

refers to "nondeterministic polynomial time"

Objective parameters are the parameters defined by the school. The rules defined by

these parameters may be violated, but each violation will result in addition of penalty

points.

Penalty points are the points assigned for each violation of objective constraints.

XML - (Extensible Markup Language) is a set of rules for encoding documents

electronically. It is defined in the XML 1.0 Specification[3] produced by the W3C,

and several other related specifications, all gratis open standards

Java – object orientated programming language.

Java Server Faces (JSF) – is a Java-based Web application framework intended to

simplify development integration of web-based user interfaces.

Enterprise Java Beans (EJB) – is a managed, server-side component architecture for

modular construction of enterprise applications.

SA - Simulated Annealing optimization method.

MC – Monte-Carlo optimization method.

GA – Genetic algorithm.

40

Appendix 1

Initial data file

Subjects‘ data sheet:

Subject group priority MaxStud

Ps e1 1 30

T e1 1 30

E e1 1 30

Lk but 5 30

A e2 3 20

V e2 3 20

R e2 3 20

Pr e2 3 20

A e3 3 20

V e3 3 20

R e3 3 20

Pr e3 3 20

Ist pas 4 30

Geo pas 4 30

Mat but 5 30

Inf pas 4 30

Biol pas 4 30

Fiz pas 5 30

Chem pas 5 30

Mu pas 1 30

Sok pas 1 30

Tea pas 1 30

Da pas 1 30

k.k. but 3 30

lot pas 2 30

isp pas 2 30

gp pas 2 30

br pas 4 30

pb pas 2 30

ek pas 4 30

pc pas 2 30

41

Teachers’ data sheet
grup Nr. Subject Name Room Hrs Subj Days off

1 1 Etika Martinaitiene Laura 212; 213; 201; 22; E

 2 Etika Patamsiene Jolanta 212; 213; 201; 16; E 1;2;

 3 Tikyba Maciuleviciene Natalija 213; 212; 201; 13; T 5;

 4 Tikyba Vasiliauskaite Nijole 213; 212; 201; 27; T

 5 Psicholigija Lasauskiene Lilija 201; 1; Ps

2 6 Leit.k. Bundoniene Orinta 202; 21; Lk

 7 Leit.k. Kalveliene Laima 203; 21; Lk

 8 Leit.k. Kucinskiene Anzelika 216; 219; 20; Lk

 9 Leit.k. Miliseviciute Sigita 212; 208; 23; Lk 5;

 10 Leit.k. Paradauskiene Asta 201; 207; 22; Lk

 11 Leit.k. Poskeviciute Dalia 212; 206; 20; Lk

 12 Leit.k. Ramoskiene Aukse 213; 218; 25; Lk

3 13 Anglu Kruopiene Ausra 204; 25; A 1;

 14 Anglu Bosulajeva Tatjana 205; 20; A

 15 Anglu Gontiene Ausra 206; 24; A

 16 Anglu Januskeviciute Irena 218; 25; A

 17 Anglu Januskiene Birute 219; 24; A

 18 Vokieciu Bieliauskiene Aldona 207; 219; 16; V 4;5;

 19 Vokieciu Kanapiene Zita 207; 202; 17; V 1;5;

 20 Rusu Mazintiene Birute 208; 27; R

 21 Rusu Smitaite Ona 221; 14; R 1;5;

 22 Rusu Zuravliova Nina 221; 208 26; R

 23 Prancuzu Bieliuniene Palma 209; 221; 16; Pr 3;4;

 24 Prancuzu Rudminiene Migle 213; 209; 18; Pr 1;

4 25 Istorija Abraitiene Danguole 210; 10; Ist

 26 Istorija Jonykiene Odeta 211; 11; Ist

 27 Istorija Guobiene Jurgita 221; 211; 23; Ist

 28 Istorija Kavaliauskaite Regina 221; 210; 14; Ist 1;5;

5 29 Geografija Butkute Karina 109; 30; Geo

6 30 Matematika Bukauskiene Rimante 102; 26; Mat

 31 Matematika Jankauskiene Zivile 101; 22; Mat

 32 Matematika Keniausiene Ada 115; 16; Mat 4;5;

 33 Matematika Medisauskiene Regina 113; 22; Mat

 34 Matematika; Informatika; Osipaviciute Ruta 115; #214; 18;5; Mat;Inf;

 35 Matematika Senulyte Sigita 113; 22; Mat

 36 Matematika; Informatika; Veikutyte Ramune 101; #214; 21;5; Mat;Inf;

 37 Matematika; Informatika; Velickiene Laima 101; #214; 4;5; Mat;Inf; 1;

8 38 Biologija Balseviciene Irma 106; 18; Biol

 39 Biologija Kanciauskas Vidmantas 107; 24; Biol

 40 Biologija Karoseviciene Ina 107; 9; Biol 1;5;

 41 Geografija Taraseviciene Rima 108; 30; Geo

9 42 Fizika Adomenas Algimantas 103; 21; Fiz

 43 Fizika Kavaliauskas Ovidijus 103; 24; Fiz

10 44 Chemija Atstopaite Nomeda 104; 28; Chem

 45 Chemija Vickackiene Lina 104; 24; Chem

11 46 Muzika Blinstubiene Dalia 105; 20; Mu

 47 Muzika Vaitkiene Vilija 105; 20; Mu 5;

 48 Sokis Aliaviene Daiva 110; 30; Sok

 49 Sokis Diliene Vida 203; 20; Sok

 50 Teatras Alkiene Vaida 222; 20; Tea 4;5;

 51 Teatras Juskeviciene Valda 222; 30; Tea

 52 Daile Daliene Sigita 113; 30; Da

 53 Daile Keriene Zita 115; 30; Da

 54 Daile Stanionis Vytas 113; 209; 30; Da

12 55 Kuno kultura Aliubavicius Rimgaudas 112; 20; k.k.

 56 Kuno kultura Bundonis Arunas 112; 10; k.k.

 57 Kuno kultura Gaina Giedrius 114; 26; k.k.

 58 Kuno kultura Kasiulynaite Aldona 112; 114; 12; k.k. 3;

13 59 Lotynu Leka Nika 203; 8; lot 1;2;

 60 Ispanu Sinkeviciene Ausra 202;203; 10; isp

 61 Geopolitika Martinkevicius Algis 203; 10; gp

 62 Braizyba Ramoniene Salvinija 116; 115; 20; br 1;

 63 PB Dainauskas Dainius 203; 6; pb 1;2;

 64 Ekonomika Sinkiene Laura 203; 27; ek

42

Single group students’ data sheet:

Eil. Pavarde Vardas
Dor. ugd. Leit.k. 1 užs.kalba 2 užs.kalba Ist Geo Mat Inf Biol Fiz Chem Menai

KK

Pasirenkami
Viso

Ps T E A V R Pr A V R Pr Mu Sok Tea Da lot isp gp br pb ek pc

1 3a_Pavarde_1 Vardas_1 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

2 3a_Pavarde_2 Vardas_2 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

3 3a_Pavarde_3 Vardas_3 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

4 3a_Pavarde_4 Vardas_4 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

5 3a_Pavarde_5 Vardas_4 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

6 3a_Pavarde_6 Vardas_5 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

7 3a_Pavarde_7 Vardas_6 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

8 3a_Pavarde_8 Vardas_7 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

9 3a_Pavarde_9 Vardas_8 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

10 3a_Pavarde_10 Vardas_9 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

11 3a_Pavarde_11 Vardas_10 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

12 3a_Pavarde_12 Vardas_11 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

13 3a_Pavarde_13 Vardas_12 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

14 3a_Pavarde_14 Vardas_13 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

15 3a_Pavarde_15 Vardas_14 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

16 3a_Pavarde_16 Vardas_15 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

17 3a_Pavarde_17 Vardas_16 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

18 3a_Pavarde_18 Vardas_17 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

19 3a_Pavarde_19 Vardas_18 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

20 3a_Pavarde_20 Vardas_19 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

21 3a_Pavarde_21 Vardas_20 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

22 3a_Pavarde_22 Vardas_21 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

23 3a_Pavarde_23 Vardas_22 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

24 3a_Pavarde_24 Vardas_23 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

25 3a_Pavarde_25 Vardas_24 1 6 4 2 4 2 3 1 2 1 1 1 1 2 31

