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ABSTRACT
This article proposes a methodology that uses machine learning algorithms to extract
actions from structured chemical synthesis procedures, thereby bridging the gap
between chemistry and natural language processing. The proposed pipeline
combines ML algorithms and scripts to extract relevant data from USPTO and EPO
patents, which helps transform experimental procedures into structured actions. This
pipeline includes two primary tasks: classifying patent paragraphs to select chemical
procedures and converting chemical procedure sentences into a structured,
simplified format. We employ artificial neural networks such as long short-term
memory, bidirectional LSTMs, transformers, and fine-tuned T5. Our results show
that the bidirectional LSTM classifier achieved the highest accuracy of 0.939 in the
first task, while the Transformer model attained the highest BLEU score of 0.951 in
the second task. The developed pipeline enables the creation of a dataset of chemical
reactions and their procedures in a structured format, facilitating the application of
AI-based approaches to streamline synthetic pathways, predict reaction outcomes,
and optimize experimental conditions. Furthermore, the developed pipeline allows
for creating a structured dataset of chemical reactions and procedures, making it
easier for researchers to access and utilize the valuable information in synthesis
procedures.

Subjects Artificial Intelligence, DataMining andMachine Learning, Natural Language and Speech,
Text Mining, Neural Networks
Keywords Deep learning, Synthesis procedures, Data mining, Data science, Artificial intelligence,
Machine learning, Organic chemistry, Text classification, Text generation, Natural language
processing

INTRODUCTION
Organic chemistry constitutes a crucial discipline within the scientific domain,
significantly influencing numerous aspects of human existence. As a result of its numerous
breakthroughs, this field has facilitated the synthesis of vital pharmaceuticals, energy
sources, and materials that underpin contemporary life. Instances of its contributions
range from the inception of antibiotics to the generation of synthetic polymers, thereby
underscoring the indispensable role of organic chemistry in propelling societal progress. In
recent years, the field of chemistry has witnessed an increasing integration with artificial
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intelligence (AI) and machine learning (ML) technologies, leading to the development of
novel tools and methodologies that harness the capabilities of AI and ML to expedite and
enhance chemical research (Segler, Preuss & Waller, 2018; Gómez-Bombarelli et al., 2018).
One notable application of this interdisciplinary approach is predicting chemical
properties and reactivity. By training ML algorithms on datasets of chemical structures and
their associated properties, researchers can predict the properties of novel molecules,
thereby conserving time and resources in the laboratory (Rupp et al., 2012). Chemistry and
AI have also been synergistically employed in optimizing synthetic pathways. ML
algorithms can analyze large datasets of chemical reactions, subsequently identifying
patterns and trends that facilitate the design of innovative synthesis pathways (Szymkuć
et al., 2016). Such models let us discover efficient and cost-effective routes to produce
target molecules, a crucial factor in developing new drugs and materials (Schwaller et al.,
2018). By capitalizing on ML algorithms, a deeper understanding of chemical reactions can
be attained, ultimately improving the efficiency and cost-effectiveness of chemical
synthesis.

Cheminformatics has emerged as an integral aspect of modern chemical research,
relying heavily on extensive datasets necessary to train ML algorithms, which can identify
patterns and trends in data that humans may not discern. In addition, large datasets are
needed to accurately represent the diversity of chemical structures worldwide, as millions
of known chemical compounds possess unique physical and chemical properties.
Comprehensive datasets offer an in-depth understanding of chemical phenomena, as they
facilitate the identification of patterns and trends that may not be apparent in less diverse
datasets, which lack coverage of a wide array of reactions. Our research mainly focuses on
synthesis procedures that provide a detailed description of the steps and conditions that
are required to carry out a chemical reaction or synthesis. These instructions serve as
resources for chemists seeking to replicate and expand upon experiments and AI and data
scientists aiming to extract information about reactants, products, synthesis conditions. By
harnessing the wealth of data in synthesis procedures, researchers can employ AI-based
approaches to streamline synthetic pathways, predict reaction outcomes, and optimize
experimental conditions, ultimately accelerating the pace of discovery in chemistry and
related fields.

This research aims to develop a methodology for extracting actions from structured
chemical synthesis procedures. The methodology includes a pipeline that combines
machine ML algorithms and scripts to extract relevant data from the United States Patent
and Trademark Office (USPTO) (https://www.uspto.gov, accessed 1 of September 2022)
and European Patent Office (https://www.epo.org, accessed on 3 of September 2022)
patents by collecting, processing, and transforming experimental procedures into a series
of structured actions. The pipeline has two primary tasks solved by ML algorithms: (1)
classification of patent paragraphs to select chemical procedures and (2) sequence-to-
sequence (seq2seq) generation of chemical procedure sentences into a structured,
simplified format. The designed pipeline enables the use of raw patent data to create a
dataset of chemical reactions and their procedures in a structured format, allowing for easy
modification or incorporation of new patents. This article describes the methods and
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algorithms used in ML-based tasks, such as vectorization, model fine-tuning, training, and
evaluation. Task 1 involves classifying input data, such as paragraphs of text, into chemical
synthesis procedures or other patent-related information. For this classification problem,
various types of artificial neural networks (ANNs) were experimentally investigated,
including gated recurrent units (GRU), long short-term memory (LSTM), bidirectional
LSTM (BiLSTM), and transformers. Task 2 focuses on converting sequential input data,
such as sentences of a procedure, into sequential output data consisting of structured
procedures with only actions and action parameters. Solving this seq2seq problem
required experimental investigation of such ANNs-based methodologies as LSTM,
BiLSTM, transformers, and T5 models. We explored various architectures and
methodologies for information extraction resulting in detecting the optimal ones, and
examined how researchers could effectively employ this pipeline to extract synthesis-
related information from patent documents.

RELATED WORK
This section reviews the literature related to our solving problem by focusing on these
topics: extraction of information from chemistry patents, usage of chemical data from
patents, text vectorization, and models for language tasks.

Most research about extracting chemical information from patents is based on
D. M. Lowe’s work. He has significantly contributed to cheminformatics by developing an
open-source toolkit for extracting chemical information from scientific literature,
including patents. The tool utilizes a combination of ML algorithms, natural language
processing, and rule-based techniques to identify and extract chemical entities, reactions,
and other relevant information from text and tables. In 2017 an open-source collection of
chemical reactions extracted from the USPTO patents issued from 1976–2016 was
published and contained compounds and actions extracted from synthesis procedures
(Lowe, 2017). The software has been adapted and elaborated by the NextMove Software
company, which offers a commercial dataset, Pistachio, containing millions of chemical
reactions that are used for reaction prediction, synthesis planning, and other
cheminformatics tasks (https://www.nextmovesoftware.com/pistachio.html, accessed 9 of
June 2022). Also, a highly curated commercial tool, Reaxys, is available for many similar
applications (Goodman, 2009). A Web-only chemical tool for retrieval is ChemSpider
SyntheticPages (Pence & Williams, 2010), which offers access to a large database of
synthetic chemistry.

Much of the available synthesis procedure data comes from patents because patent
applications often include detailed experimental procedures. This level of detail is crucial
for computational chemistry and cheminformatics, as it allows them to develop accurate
rule-based methods or train ML models for information extraction. The volume of patents
and their diverse sources make patent databases rich in synthesis procedures that can be
leveraged for computational chemistry and cheminformatics research. The development of
ChemPU, a tool for organizing structured reaction datasets, has been instrumental in this
regard (Hammer et al., 2021). Datasets and such tools provide opportunities for chemical
synthesis and exploration of the chemical space with automated synthesis robotics and
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instruments (Rohrbach et al., 2022). Researchers have progressed in various types of
chemical information extraction from patents in recent years. For example, a novel patent
information extraction framework uses two deep-learning models for entity identification
and semantic relation extraction (Chen et al., 2020). Another article describes an
automated system that extracts chemical entities from patents and classifies their
relevance, with high performance in compound recognition and relevancy classification.
The study highlights the importance of considering the relevancy of compounds in a
patent’s context and the potential of automatic text-mining approaches to extract and
annotate relevant chemical compounds (Akhondi et al., 2019). A deep-learning method
has been developed by IBM for the conversion of unstructured experimental procedures in
English into structured action sequences for chemical reactions using a transformer-based
seq2seq model. The model is pre-trained on large-scale data generated with a rule-based
natural language processing approach, yielding high accuracy in predicting action
sequences (Vaucher et al., 2020). A specialized tool, ChemU, has been developed for
identifying and extracting chemical entities and related information from unstructured
text, such as scientific literature and patents. It employs advanced natural language
processing techniques, including ML algorithms and pre-trained language models, to
accurately recognize chemical names, formulas, and properties (He et al., 2020; He et al.,
2021; He et al., 2021). There has been a significant amount of research on synthesis
procedures and patent extraction in natural language processing and AI. The studies
discussed above highlight the potential of ML algorithms for extracting relevant
information from patent databases, which can have important implications for chemistry
and beyond.

Researchers working on computational chemistry have utilized information from
synthesis procedure datasets to predict the outcomes of chemical reactions, design new
compounds with desired properties, and optimize reaction conditions. ML techniques,
such as ANNs and decision trees, have been employed to analyze the wealth of data
available in these datasets, enabling the development of predictive models for various
chemical processes (Keith et al., 2021). For example, Segler, Preuss & Waller (2018) used a
Monte Carlo tree search algorithm and a deep neural network to perform retrosynthetic
analysis and suggest synthetic routes for target molecules. Furthermore, studies have
explored the optimization of reaction conditions using data-driven approaches, such as the
work by Ahneman et al. (2018) where they applied ML to predict the optimal conditions
for photocatalytic reactions. The USPTO dataset was used to train the Molecular
Transformer, a seq2seq model based on the Transformer architecture, to predict chemical
reaction outcomes. The model demonstrated high accuracy and robustness in predicting
reaction products, even in the presence of uncertainty (Schwaller et al., 2019). Another
study used the USPTO dataset to train ML models to predict reaction outcomes. The
authors compared various algorithms, including feed-forward neural networks, random
forests, and graph convolutional neural networks (Coley et al., 2017). A natural language
processing architecture was proposed to predict reaction yields using an encoder
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transformer model combined with a regression layer and demonstrated outstanding
prediction performance on two high-throughput experiment reaction sets (Schwaller et al.,
2021). A new approach called RetroTRAE for predicting efficient synthetic routes for a
target molecule was presented and yields a top-1 accuracy of 58.3% on the USPTO test
dataset and outperforms other state-of-the-art neural machine translation-based methods
(Ucak et al., 2022). Another article proposes a deep learning model that combines a
popular cheminformatics reaction representation called the condensed graph of reaction
(CGR) with a recent graph convolutional neural network (GCNN) architecture to estimate
chemical reaction properties. The approach outperforms current state-of-the-art models in
accuracy, applies even to imbalanced reactions, and possesses excellent predictive
capabilities for diverse target properties, and curated benchmark data sets are made
available online, free of charge, and open source (Heid & Green, 2021). Overall, the use of
ML with synthesis procedure datasets and chemical information has shown great promise
for advancing our understanding of chemical processes and accelerating the discovery of
new compounds with desired properties.

Text vectorization is a process by which texts are converted into numeric vectors, thus
becoming suitable input for ML algorithms. The methods have evolved through several
stages, starting from one-hot representation (Al-Shehari & Alsowail, 2021) and bag-of-
words (BoW) (Wu & Hoi, 2011), moving to Word2Vec (Mikolov et al., 2013), GloVe
(Pennington, Socher & Manning, 2014), FastText (Bojanowski et al., 2017), and
SentencePiece (Kudo & Richardson, 2018). One-hot representation employs binary coding
for generating word vectors, where each dimension indicates the presence or absence of a
corresponding word from the pre-defined dictionary. BoW improves upon one-hot
representation by incorporating information about word frequencies. However, both
vectorization techniques produce discrete embeddings suffering from high dimensionality,
data sparsity problems, and an inability to capture text semantics. Word2Vec, Glove,
FastText, SentencePiece approaches vectorize words in the distributional representation
manner: i.e., produced word vectors contain real numbers and are of the predetermined
fixed-length N. These vectorization approaches consider a small context window around
the target word and thus learn to project words into N-dimensional space according to
their similarity. FastText and SentencePiece learn to vectorize subwords (by providing a
more flexible and granular representation of words) that are later used to compose words
and create their vectors. Due to this additional mechanism, methods can vectorize
morphologically rich texts and even out-of-vocabulary (OOV) words; moreover, their
vectors are very similar to the correct equivalents. Although distributional vectorization
techniques solve high dimensionality and data sparsity problems, they still cannot capture
all the semantics as words written the same but have the same vectors that vectorize
different meanings. On the contrary, word embeddings such as ELMo (Peters et al., 2018),
BERT (Wang et al., 2019), and GPT (Radford et al., 2018) provide more accurate
representations because words with multiple meanings are vectorized differently
considering their larger context (within one or several sentences). These advanced text
vectorization methods have significantly improved natural language processing tasks
across various applications and domains. Despite many options, a common technique
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used for chemical text remains SentencePiece: it uses a byte-pair-encoding algorithm as an
effective mechanism to handle OOV words, such as chemical nomenclature.

Modern deep learning methods have significantly advanced in text classification and
text generation fields, with various offered modifications and state-of-the-art architectures
demonstrating high performance. Within this space, recurrent neural networks (RNNs)
and long short-term memory (LSTM) (Nowak, Taspinar & Scherer, 2017) or gated
recurrent units (GRU) are taking a significant position as methods adjusted to process
sequences and, therefore, suitable for dealing with texts. Moreover, LSTMs and GRUs are
improved versions of RNNs (no longer suffering from the vanishing gradient problem)
with larger memory and are better adjusted to process longer sequences (Cho et al., 2014).
The Transformer architecture has gained prominence due to its self-attention mechanism,
enabling efficient modeling of long-range dependencies. Pre-trained language models (like
BERT (Devlin et al., 2018), Roberta (Liu et al., 2019), XLNet (Yang et al., 2019)) or text-to-
text transformers (like T5 (Raffel et al., 2019)) have revolutionized the field of natural
language processing. These models are already pre-trained on large text corpora to
understand language and, therefore, only need fine-tuning for specific tasks, usually
demonstrating state-of-the-art performance across a wide range of benchmarks. BERT,
RoBERTa, and XLNet are all bidirectional transformer models; BERT uses static masking
with the following sentence prediction, whereas RoBERT only dynamic masking (where
masked tokens change during training epochs); XLNet utilizes a permutation-based
training strategy (where all tokens are predicted, but in random order). T5 extends the
concept by formulating all NLP tasks (even classification) as text-to-text problems and
employs a denoising autoencoder for pre-training. When fine-tuned on specific tasks, these
models achieve state-of-the-art performance across various NLP benchmarks.

This article’s primary contributions examine two critical tasks for extracting actions
from chemistry patents. The first task (the text classification problem) isolates synthesis
procedures within patent documents. We have developed a methodology that learns the
model from the newly labeled dataset explicitly created for this purpose. The second task
(the text generation problem) converts unstructured synthesis procedures into structured
formats to extract compounds, actions, and action parameters. For this purpose, a deep
learning-based methodology has been developed, surpassing previous work on text
conversion in the number of parameters that can be extracted. In addition, all datasets and
models are open-source, allowing for improvements and research applications. The
models can be executed locally in a GPU environment, facilitating processes vital in the
chemistry and cheminformatics fields due to substantial data volumes. We also present a
novel dataset of synthesis procedures derived from USPTO and EPO patent data. This
dataset employs the code and models discussed in the article and represents the largest
open-source synthesis procedures dataset combining both data sources, containing
3,058,295 unique synthesis procedures in original and structured formats. Our research
findings pave the way for chemists, AI researchers, and data scientists to tackle more
complex tasks.
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The formal definition of the task
Task 1–classification of paragraphs
Task 1 is a binary classification problem that aims to automatically classify paragraphs as
either relevant or irrelevant to a given topic. Let P be a set of paragraphs, where each
paragraph p ∈ P consists of a sequence of tokens (words, numbers). Let T be a single target
topic, representing the information we want to extract from the paragraphs. Let Y = {0, 1}
be a binary space of class labels, where 0 represents irrelevant, and 1 represents relevant
paragraphs with respect to the topic T. Let η be a mapping function η(p) → Y which, for
each paragraph, can predict whether it is relevant or not to the topic T.

Let Γ be an ML algorithm that could learn an approximation (denoted as η′) of function
η from the training dataset DP ⊂ P. The goal of Γ is to learn which model is able to predict,
as accurately as possible, the class labels from their inputs automatically on the testing
dataset DT, DT = P − DP. The DP and DT datasets are not overlapping (DP ∩ DT = f); both
have enough diversity and are correctly distributed in the space. If both conditions are met,
the evaluation results will be considered reliable. The objective of the task is to find the best
possible mapping function g that can accurately classify paragraphs as relevant or
irrelevant to the topic T.

Task 2–conversion of paragraphs
Given a source language sentence s = (s1, s2,…, sn) in language L1 (natural English
language), the task is to generate a target language sentence t = (t1, t2,…, tm) in language L2
(a formal language with specific notation) that conveys the same meaning as the input
sentence. Rather than mapping specific sentences from the input to the output, the process
involves analyzing the input sentence word by word and generating the output sentence in
a similar manner.

Let S be the space of all possible source sentences in language L1 and T be the space of all
possible target sentences in language L2. Let Γ be an ML algorithm that could learn a
function η(S) → T, which maps a source sentence to its corresponding target sentence.

The goal of Γ is to learn an approximation (denoted as η′) of the function g from a
training dataset DS ⊂ S, where each source sentence s in DS has a corresponding target
sentence t in a target language L2. The learned function η′ is evaluated on a separate testing
dataset DT ⊂ S, which consists of source sentences that have not been seen during the
training phase. Finally, the model’s performance is evaluated based on the accuracy and
fluency of the generated target sentences.

The data
Task 1 dataset
In this study, we utilized a subset of the organic chemistry patent dataset from USPTO and
EPO patents (as detailed in the Materials andMethods section) to create a dataset prepared
explicitly for ML algorithms employed in Task 1. The instances were manually labeled for
the classification task, resulting in a dataset comprising 20,199 paragraphs with binary
labels. Each paragraph is categorized as either an organic synthesis procedure (labeled 1) or
a non-synthesis paragraph from patent documents (labeled 0). A paragraph is considered
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accurate for a procedure if it explicitly outlines the chemical compounds, actions, and
action parameters involved in chemical synthesis. Generally, patents encompass 5 to 80 or
more paragraphs, with a significant portion dedicated to compound usage processes, new
drug formulations, chemical and physical properties of compounds, laboratory setups,
devices, and in-depth chemical reaction mechanisms. Approximately 5–7% of all
paragraphs within a patent specifically describe chemical reaction procedures, including
the chemical compounds, steps, and actions involved.

Synthesis procedure paragraphs typically follow a consistent structure, starting with the
description of reactants and reaction conditions, followed by chemical manipulations such
as quenching, crystallization, filtration, purification, and ultimately naming the resulting
compound along with its yield. While complexity may vary, the general structure is
maintained. Several criteria have been established to minimize the occurrence of irregular
procedures. For instance, a procedure description should contain at least 10 words, as no
shorter examples were identified. Procedure descriptions should not end abruptly, as there
are cases where, for unknown reasons, a procedure is only a fragment of the complete one.
Additionally, procedure instructions must not reference methods or procedures, e.g.,
Following general procedure A or as described in. Finally, compounds should not be
referenced in the procedure description, such as Compound 1 or INTERMEDIATE 2.
Instead, each compound must adhere to the International Union of Pure and Applied
Chemistry (IUPAC) chemical nomenclature. This requirement is particularly relevant to
product names, as approximately 10–20% of procedures do not explicitly state the product
name, referring to it with terms like title compound, resultant compound, white solid, yellow
crystals, or black powder. The product may be referenced if the proper compound name is
also provided. Procedures that did not meet these criteria were considered non-organic
synthesis procedures and were labeled accordingly.

The dataset comprises 20,199 instances, divided into training (80%, 16,159), validation
(10%, 2,020), and testing (10%, 2,020) subsets. Each instance contains an input-output
pair, with the input being a sentence or paragraph and the output being a binary label
represented as one or zero. The dataset features a wide range of sentence lengths, with the
shortest being 11 words and the longest being 1,053 words. Despite this range, the average
sentence length is 86.93 words overall, with 87.08 words for the training subset, 85.13 for
the testing subset, and 87.5 for the validation subset. The subsets were randomly selected,
and their similar sentence lengths ensured reliable results during testing. The output labels
are unevenly distributed, with 15,114 zeros and 5,085 ones, corresponding to 33.6% of the
total instances. The training, validation, and testing subsets maintain a similar ratio
between the two classes.

The datasets will be used for supervised learning algorithms, and the models must be
compared to random and majority baselines. To be considered appropriate for our
problem-solving task, the method’s accuracy must surpass both the random baseline,
which denotes the minimum accuracy required to differentiate the method from a random
labeler, and the majority baseline, which indicates the accuracy that would be achieved if
all instances were assigned to the most frequent class.
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Random baseline ¼
Xn
i¼1

ðP yið ÞÞ2 (1)

n—number of classes, (P(yi))–the probability of yi class.

Majority baseline ¼ max P yið Þð Þ (2)

The calculated random and majority baselines for both datasets equal 0.553 and 0.664.

TASK 2 dataset
The primary objective of Task 2 is to develop a method for converting unstructured
synthesis procedure text into a structured format. For this purpose, we have selected
supervised ML algorithms requiring a dataset of input-output example pairs. The input
data comprises sentences from synthesis procedures, while the output data are their
structured counterparts. A structured sentence simplifies the original by representing the
action with a single word, followed by specific action parameters. The possible actions
include Add, CollectLayer, Concentrate, Degas, DrySolid, DrySolution, Extract, Filter,
FollowOtherProcedure, MakeSolution, Microwave, OtherLanguage, Partition, PH,
PhaseSeparation, InvalidAction, Purify, Quench, Recrystallize, NoAction, Reflux,
SetTemperature, Sonicate, Stir, Triturate, Wait, Wash, and Yield. Each action name
streamlines a sentence, making it more human-readable and understandable. We use the
schema for the names of the actions proposed by IBM because it is currently the most
comprehensive for this task (Vaucher et al., 2020). A detailed explanation of each step can
be found in Appendix S1. Training ML models for tasks involving text translation typically
requires large datasets. Consequently, two datasets are employed for this task: the pre-
training and annotated datasets, which are described in greater detail in a subsequent
section. Table 1 provides examples from the dataset.

The pre-training dataset was created using Lowe’s (2017) and NextMove’s open-source
collection of chemical reactions extracted from US patents issued between 1976 and 2016,
which served as the primary source of synthesis procedure paragraphs. Initially,
paragraphs were split into sentences using the SPACY (https://spacy.io, accessed 18 March
2022) natural language processing library. Subsequently, the IBM RXN API (https://rxn.
res.ibm.com, accessed 22 April 2022) was employed to convert the sentences into a
structured format. The obtained data is licensed under CC-BY (https://creativecommons.
org/licenses/by/4.0/). In total, 4,994,532 examples were collected over 7 months. Some
examples were discarded because the sentences were only a few words long, contained just
numbers, or were incomplete sentences. In addition, because the dataset was generated by
a neural network model without human annotation, it may contain noise. To assess data
quality, 300 randomly selected examples were sampled, corrected, and evaluated using the
BLEU metric (4-gram with uniform weights), yielding a score of 0.913. Although the score
was relatively high, the pre-training dataset is a silver standard. The dataset’s size allows for
the initial training stage of ML models. It is composed of 3,074,038 instances, with input-
output pairs where the input corresponds to a sentence. The minimum original sentence
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length is one word, while the maximum is 850. On average, sentences are 22.6 words long
overall, with 22.7 (training subset), 22.6 (testing subset), and 22.4 (validation subset). The
subsets were randomly selected, maintaining similar sentence lengths for reliable testing
results. The output consists of a structured version of a synthesis procedure sentence. The
dataset was randomly divided into training (80%, 2,459,230), validation (10%, 307,404),
and testing (10%, 307,404) subsets. The frequency of the action was observed to be very
similar among the subsets. Although synthesis action parameters can vary considerably,
the frequency of actions is observable, as shown in Table 2. Note that a single sentence may
contain multiple actions, so the total number of actions may exceed the number of
instances.

The pre-training dataset was further enhanced by incorporating parameters for the
Purify action. In addition, a custom script was developed to extract information about
solvents and their ratios. Initially, the structured representation lacked information on the
Purify action, but the pre-training dataset was later augmented with the action’s
parameters. The additional parameters describe the ratio and the solvents used for the
purification process.

The annotated gold standard dataset was created using a portion of synthesis procedures
not included in the pre-training dataset and was annotated by an experienced chemist.
This dataset was also enriched with the Purify action parameters. Naturally, the annotated
dataset is significantly smaller, with 1,008 instances. It has been divided into training
(80%), validation (10%), and testing (10%) subsets. The average length of input sentences
in the pre-training and annotated datasets was similar (pre-training–22.6, annotated–
22.06). The two datasets’ action frequency was also comparable, indicating their similarity.
The annotated dataset was employed in the second stage of model training, while the
testing dataset was used to assess the final performance metrics.

In this study, we employ various data augmentation techniques to expand the datasets.
First, the sentences are converted from the original to a structured version. Data
augmentation is used in this chemistry-related task to increase the diversity and size of the

Table 1 An excerpt from the dataset presents five examples of input and output pairs.

Original sentence Structured format

To a solution of 3-cyano-4-((1-methylethyl)oxy)benzoic acid (200 mg) in
tetrahydrofuran (THF) (10 mL) was added EDC (374 mg) and HOBt
(299 mg).

MAKESOLUTION with 3-cyano-4-((1-methylethyl)oxy)benzoic acid
(200 mg) and tetrahydrofuran (THF) (10 mL); ADD SLN; ADD EDC (374
mg); ADD HOBt (299 mg).

The resulting orange solution was partitioned between dichloromethane
(10 mL) and water (10 mL)

PARTITION with dichloromethane (10 mL) and water (10 mL).

Ethanol and water are added to produce a solid which is collected by
filtration.

ADD Ethanol; ADD water; FILTER keep precipitate.

The solution was quenched with saturated aqueous NH4Cl and extracted
with CH2Cl2.

QUENCH with saturated aqueous NH4Cl; EXTRACT with CH2Cl2.

The resulting mixture was filtered and the filtrate was concentrated and the
residue was purified by flash column chromatography (ethylacetate/
petroleum ether gradient) to afford 1-benzyl-2-(chloromethyl)pyrrolidine.

FILTER keep filtrate; CONCENTRATE; PURIFY: ethyl acetate:petroleum
ether; YIELD 1-benzyl-2-(chloromethyl)pyrrolidine.
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training data, which can help improve the model’s generalization and robustness to
variations in input. The augmentation is achieved in four different aspects: (1) substituting
temperature parameters in both the original and structured versions with randomly
selected numbers and temperature notations from the original dataset (e.g., C, Celsius); (2)
replacing duration parameters with randomly chosen numbers and corresponding units
(e.g., hours, s); (3) modifying solvents used in actions such as Wash or Extract with
randomly selected solvents or combinations of solvents and (4) exchanging compound
names with alternative compounds. To maximize efficiency, we implement these
augmentation methods in conjunction, utilizing extensive lists of temperature and
duration notations, compounds, and solvents available in the project repository on GitHub
(https://github.com/Mantas-it/ActionExtraction). We apply these data augmentation
techniques to both the pre-training and annotated datasets, limiting each instance’s
augmentation to four times to maintain a manageable training dataset size and reasonable
use of processing resources. The pre-training dataset has 15,503,534 instances, while the
fine-tuning dataset has 19,642 instances.

MATERIALS AND METHODS
Vectorization
Vectorization is a crucial technique that involves transforming raw data into a numerical
form that can be fed into ML algorithms. Vectorization, in our case, is necessary as we use
neural networks that rely on mathematical operations to process the data and make
predictions. Our research objective is texts (which we have in both tasks’ input and output
for Task 2). The section below describes each task’s applied vectorization process in more
detail.

Table 2 The total number of each action in the pre-training dataset.

Action name Total count Action name Total count

Add 2,249,260 Filter 352,100

Stir 671,005 DrySolution 336,816

Concentrate 656,695 Purify 323,716

Yield 618,280 SetTemperature 275,622

Wash 506,832 Extract 245,546

MakeSolution 476,329 NoAction 207,310

CollectLayer 364,382 FollowOtherProcedure 168,541

Reflux 102,683 InvalidAction 44,904

PH 95,297 Partition 34,534

PhaseSeparation 67,165 Triturate 29,702

Wait 65,751 Degas 24,100

DrySolid 64,692 Microwave 11,988

Recrystallize 62,959 OtherLanguage 1,936

Quench 49,396 Sonicate 1,447
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Vectorization for Task 1
The difficulty of vectorizing text about organic chemistry is because it contains many rare
or unseen terms, such as newly discovered compounds or experimental results, molecular
formulas, and chemical reactions that are not included in existing vocabularies (Perera,
Dehmer & Emmert-Streib, 2020). The problem is generally called an open vocabulary
problem and refers to the challenge of dealing with an infinite or unknown set of possible
inputs. Open vocabulary problems can pose significant challenges for ML models,
requiring them to handle previously unseen inputs that may not conform to known
patterns or rules (Eichstaedt et al., 2021;Mielke et al., 2021). It also automatically excludes
standard closed vocabulary methods, such as Bag-of-Words (BoW) (Qader, Ameen &
Ahmed, 2019) or one-hot encoding (Zhang & LeCun, 2017). One possible approach is to
use SentencePiece tokenizer, a method that breaks down the text into smaller subunits,
such as individual characters or word pieces, and then represents these subunits as
numerical vectors. It is also consistent with the fact that chemical nomenclature is
composed of word fragments that describe specific functional groups and the sub-structure
of the molecule. For this reason, the SentencePiece tokenizer has been selected as one of the
most appropriate for the project (Mugisha & Paik, 2022; Abdel-Aty & Gould, 2022).
Another possibility would be to use character-level embeddings when text is represented as
a sequence of vectors, where each vector corresponds to a character in the text (Gajendran
& Sugumaran, 2020). However, vectorizing long paragraphs can be computationally
expensive and may not be the most efficient way to represent text data, so it is not
considered in our research article.

Preparing a SentencePiece tokenizer starts with collecting the entire corpus of text data,
preprocessing by removing any non-textual elements, such as HTML tags or special
characters, and converting the text to lowercase if necessary. The sentencepiece library was
used in our research article. Next, the text is segmented into variable-length subword units
using unigram language modeling (Park et al., 2021). The subword units are then sorted
based on their frequency of occurrence in the corpus, and a predefined number of units are
selected to form the final vocabulary. Next, the training process starts, and the subword
segmentation and vocabulary generation steps are repeated iteratively on the corpus until
convergence to maximize the likelihood of the observed text data given the subword
vocabulary. The SentencePiece algorithm has several essential parameters that can be
customized for optimal performance. This research tested six vocabulary sizes, i.e., 2,500,
5,000, 10,000, 16,000, 32,000, and 64,000. The larger vocabulary can potentially improve
the accuracy (because even rare subwords can be recognized and vectorized), but it also
requires more computational resources. The algorithm can also split digits so that
individual digits and corresponding numerical integers encode each number. However,
texts with formulas and complex nomenclature often have several numbers in a single
sentence. Therefore, it is advisable not to vectorize with split digits to preserve the size of
the final vector. The process generates a vocabulary of set size which then was used to
vectorize the input data. The output is a binary label and does not require any additional
processing.
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Vectorization for Task 2
For the second task, we used the same vectorization technique, i.e., the SentencePiece
tokenizer, to vectorize both input and output data. This method was chosen because,
similarly to the first task, the input data is in text form and contains several unique and
domain-specific terms related to organic chemistry procedures, compounds, and solvent
names. The output data is also text-based but structured, representing actions and
parameters of actions. Therefore, a suitable vectorization method was necessary to
represent the text data in a way ML methods could process. The vocabulary of input and
output is almost identical; therefore, the SentencePiece model has been trained from the
entire dataset. Due to it, shared embedding layers with Transformers may be used for ML
methods. The SentencePiece vectorization method effectively and efficiently represents the
input and output data for translating organic chemistry procedure sentences into
structured sentences.

Deep learning methods
Deep learning (DL) is a type of ML that has gained significant attention in recent years due
to its ability to approximate the relationships between input and output data. DL models
are composed of multiple layers of interconnected units, which can learn hierarchical
representations of the input data. The DL has applications in various research fields,
including computer vision, natural language processing, and drug discovery. However, the
effectiveness of DL methods can vary significantly depending on various factors, such as
the nature of the solving task, dataset diversity, and other important characteristics. In the
context of our research, we aim to classify and convert text sequences, so it is essential to
carefully consider the types of methods used to train DL models. In the following section,
we present the most suitable ones for our solving tasks.

Deep learning methods for Task 1
For classifying patent paragraphs into chemical procedures or other descriptions, we
explored the following types of ANNs:

• GRU (gated recurrent unit) is a type of recurrent neural network introduced to
address some of the limitations of standard RNNs in processing sequential data. One of the
main limitations of standard RNNs is the vanishing gradient problem (Rehmer & Kroll,
2020), which can make it difficult for the network to learn long-term dependencies in the
data. GRUs use gated units to control the flow of information through the network.
However, GRUs have few parameters, making them more computationally efficient and
easier to train. GRUs also have a relatively simple architecture, making them a good choice
for modeling short-term dependencies in the data. In particular, the reset and update gates
in GRUs allow the network to selectively forget or update information from the previous
time step, which can help model sequential data (Gruber & Jockisch, 2020). Therefore,
GRUs have been chosen as the most basic type of architecture for this task.

• LSTM (long short-term memory) is a recurrent neural network for handling
sequential data with long-term dependencies. Similarly, to RNNs, LSTMs have a short-
term memory connected to weights and biases, but unlike standard RNNs, LSTMs have
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cell states where memories flow through time steps and do not affect the gradient. The
memory cell in LSTMs has three gates that allow it to selectively add, remove, or retain
information at each time step. These gates are known as the input gate, forget gate, and
output gate (Staudemeyer & Morris, 2019). The input gate determines how much new
information is added to the memory cell at each time step, the forget gate decides what
information is removed from the memory cell, and the output gate controls how much of
the memory cell is used to generate the output at each time step.

• BiLSTM (bidirectional LSTM) is a variation of LSTM that processes input data in both
forward (from past to future) and backward (from future to past) directions (Alawneh
et al., 2020). In addition, BiLSTMs have mechanisms allowing to merge models of both
input directions, making this feature particularly useful for tasks where context and
dependencies from both directions are important.

• Transformer. The traditional transformer neural network architecture (Lakew,
Cettolo & Federico, 2018; Shao et al., 2019) consists of the encoder and decoder blocks and
relies on attention mechanisms. Self-attention (used in encoder and decoder blocks) allows
the model to better “understand” how tokens in the sequence depend on each other. This is
done by computing a set of attention scores between each token in the sequence and every
other token, which are then used to compute a weighted sum of the input embeddings. The
encoder-decoder attention is responsible for focusing on the appropriate parts in the input
sequence when making the predictions (Liu et al., 2018). In addition to attention, the
transformer also uses residual connections and layer normalization, which help mitigate
the vanishing gradient problem and improve the stability of the training process. For this
task, we trained the transformer model from scratch, which consists of an encoder
connected to the feed-forward layer. Afterward, the feed-forward layer is connected to the
output layer, producing a single numerical value for binary classification. Finally, each
model was explored to determine the best fit for the classification task.

Deep learning methods for Task 2
For converting sentences of chemical procedures to structured and simplified formats, we
explored the following types of ANNs.

• Seq2seq LSTM is a type of neural network architecture designed to learn mappings
from an input sequence to an output sequence of variable length. This is achieved using
two separate LSTMs: an encoder network that processes the input sequence and generates
a fixed-length context vector and a decoder network that uses the context vector to
generate the output sequence.

• Seq2seq BiLSTM. Similarly to seq2seq LSTM, this approach used BiLSTMs instead of
LSTMs by processing the input in the encoder in both directions (Ro et al., 2022;
Egonmwan & Chali, 2019). We anticipate that the bidirectional aspect of the model should
better capture the context and dependencies in the input sequence, which can lead to
improved performance. The decoder layer contained LSTM.

• Transformer. We have used the traditional transformer architecture adjusted for our
seq2seq problem (Chi et al., 2021; Jawahar et al., 2021), allowing input and output
sequences of different lengths, such as used in, e.g., machine translation (Garg et al., 2021;
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Senadeera & Ive, 2022). In this architecture, the encoder takes the input sequence and
generates a series of context vectors, one for each time step in the input sequence. The
decoder then takes these context vectors as input and generates the output sequence one
token at a time. At each time step, the decoder uses an attention mechanism to focus on the
relevant parts of the input sequence, allowing it to generate an output token informed by
the entire input sequence. One of the key advantages of this architecture is its ability to
handle long-range dependencies in data, allowing it to capture complex patterns in
sequences of arbitrary length. We have utilized the model described in an article by
Vaswani et al. (2017) for this task. An open-source Python library OpenNMT-tf was
utilized to implement the tokenization algorithms and training.

• T5 (text-to-text transfer transformer) architecture is one of the most advanced in the
field of natural language processing (NLP), offering an adaptable approach to various tasks
(Mars, 2022). T5 employs an encoder-decoder architecture like other seq2seq transformer
models. The encoder processes input text and generates a series of context vectors, while
the decoder attends to these context vectors to produce the output text (Hui et al., 2022).
Incorporating self-attention mechanisms enables the model to effectively capture long-
range dependencies and relationships between words in input and output sequences. An
essential aspect of the T5 architecture is implementing a masked language modeling
technique during the pre-training phase (Young & You, 2023; Wettig et al., 2022). This
method involves masking specific input text segments, and the model predicts the omitted
words. As a result, the model acquires an understanding of language structure and
semantics. A pre-trained model is often used to fine-tune a particular task to bypass the
computationally intense task of training the model from scratch. Its capacity to capture
long-range dependencies and understand complex language patterns makes it an optimal
choice for numerous NLP applications (Bird, Ekárt & Faria, 2021; Najafi & Tavan, 2022),
such as text translation for our task. We have utilized the HuggingFace library for this task:
base model-(https://huggingface.co/t5-base, accessed 12 December 2022), small model-
(https://huggingface.co/t5-small, accessed 12 December 2022).

Hyper-parameters and optimization
After correctly defining the task (see “The formal definition of the task” section) and
choosing promising types of methods (see the “Materials & Methods” section), the choices
of their hyper-parameter values are no less important. Moreover, the optimal values of
hyper-parameters play a crucial role in the model training process (Yu & Zhu, 2020) as
they directly affect the model’s evaluation results. In this research, we have investigated the
following hyper-parameters and their values:

• Activation functions (investigated values: ReLU, GELU, SELU, ReLU, ELU, and tanH)
(Hendrycks & Gimpel, 2016; Rasamoelina, Adjailia & Sincak, 2020). Activation functions
determine how the model will process and transform input data.

• Optimizer (Adam, Nadam, SGD, Adamax, and RMSprop) (Bischl et al., 2023). The
optimizer is responsible for updating the model weights during training, and different
optimizers can affect the speed and quality of the learning process.
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• Batch size (16, 32, 64, 128, 256, 512). The batch size determines how many samples are
processed in each training process iteration. Therefore, different batch sizes can affect the
speed and quality of the learning process (Smith et al., 2017).

• Attention heads (2, 4, 6, 8) (for Transformer only) Varying the number of attention
heads impacts the model’s capacity to process information efficiently, with a trade-off
between performance and computational resources.

• Neural network layer size (16, 32, 64, 128, 256, 512) Layer size influences the model’s
complexity and expressive power, with larger sizes potentially offering better performance
at the cost of increased computational resources and overfitting risk.

Hyperparameter optimization in deep learning models involves systematically
searching and selecting optimal hyperparameters. This process used a grid search
technique to navigate the hyperparameter space and evaluate various configurations. The
goal is to identify the hyperparameter combination that minimizes the model’s
generalization error and maximizes its performance on unseen data. We have utilized a
technique of early stopping to stop the training process if the validation accuracy did not
increase in the seven latest epochs. All models used a loss function of binary cross-entropy
in the output layer. We used the wanDB platform (www.wandb.ai, accessed on 6
September 2022), which provides visualization of multiple runs and is convenient for
navigation and analysis. The following hyper-parameters were optimized:

Optimized parameters for Task 1
Neural network layer size: 16, 32, 64, 128, 256, 512.

Embedding dimensions: 4, 6, 8, 16, 32.
Activation functions: GELU, SELU, ReLU, ELU, and tanH.
Optimizers: Adam, Nadam, SGD, Adamax, and RMSprop.
Dropout: an interval of 0.1 to 0.8.
Sample importance factor: interval of 0.5 – 3.0.
Batch sizes: 32, 64, 128, 256.
Only for transformer architecture. The number of heads: 2, 4, 6, 8 and the number of

layers 1, 2, 3, 4.

Optimized parameters for Task 2
Neural network layer size: 16, 32, 64, 128, and 256.

Embedding dimensions: 4, 6, 8, 16 and 32.
Activation functions: GELU, SELU, ReLU, ELU, and tanH.
Optimizers: Adam, Nadam, SGD, Adamax, and RMSprop.
Batch sizes: 32, 64, 128, 256.
Transformer architectures were not additionally optimized due to a significantly higher

computational cost, and only different vocabulary sizes were tested. A pre-trained T5
model was used, and therefore hyper-parameters were not changed.
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Optimal method architectures and hyper-parameters
The models were trained to employ the most suitable parameters and architectures
identified through the optimization process for evaluation. This section describes the
optimal parameters and respective architectures for both tasks. The GitHub repository
(https://github.com/Mantas-it/ActionExtraction) provides access to the corresponding
models and their optimal parameter combinations.

Summary of optimal hyper-parameters for Task 1
The GRU, LSTM, and BiLSTM neural network architectures are composed of the
embedding layer, a dropout layer, a corresponding GRU/LSTM/BiLSTM layer, and a feed-
forward (FF) layer connected to the output in sequence. Table 3 illustrates the optimal
hyper-parameters for all combinations with different vocabulary sized. The optimal
activation function of the FF layer was found to be ReLU in all cases. Similarly, a batch size
of 64 led to the best performance and is not displayed in the table. The embedding
dimension represents the number of dimensions the embedding layer uses. The
importance value signifies how much more important are the samples that belong to the
class of real procedures because the training dataset is not balanced.

The transformer neural networks for Task 1 consist of the embedding layer and one or
more blocks of multi-head attention layer combined with the normalization layer. Table 4
presents relevant hyper-parameters for various vocabulary sizes. The dropout was set to

Table 3 Optimal hyper-parameters for GRU, LSTM, and BiLSTM neural networks architectures for Task 1.

Vocabulary size Embedding dimension Dropout LSTM/GRU layer size FF layer size Importance Optimizer

GRU 2,500 8 0.199 32 8 1.282 RMSprop

5,000 8 0.367 4 32 1.016 RMSprop

10,000 8 0.681 64 256 1.228 RMSprop

16,000 8 0.677 8 8 1.046 Nadam

32,000 8 0.649 4 256 1.042 Nadam

64,000 8 0.593 4 64 1.195 Adamax

LSTM 2,500 8 0.340 8 256 2.423 Nadam

5,000 8 0.650 16 16 1.268 Nadam

10,000 8 0.594 16 64 1.598 Adam

16,000 8 0.189 64 8 1.055 Adamax

32,000 8 0.643 64 32 2.187 Adam

64,000 8 0.207 64 8 2.173 Adam

BiLSTM 2,500 6 0.646 8 256 1.519 Adamax

5,000 8 0.678 16 8 1.622 RMSprop

10,000 8 0.405 8 8 1.860 Adam

16,000 8 0.639 16 8 2.493 RMSprop

32,000 8 0.279 16 16 1.039 Adamax

64,000 8 0.430 16 16 1.870 RMSprop
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zero because higher values led to an unstable training process. The attention layers number
describes how many multi-head attention layers were used.

Summary of optimal hyper-parameters for Task 2
The seq2seq LSTM and BiLSTM architectures are constructed by connection encoder and
decoder, which themselves are made up of an input layer, an embedding layer, and a
corresponding LSTM or BiLSTM layer. Table 5 describes the hyper parameters that were
found to be optimal for different vocabulary sizes. A batch size of 64 was used for the
training process to conserve memory use.

The transformer model for the translation task was implemented via the OpenNMT-tf
library (Materials & Methods). Although the models were only trained with a vocabulary
of different sizes, the model architecture was not optimized. The model consists of an
encoder and a decoder, each with six stacks. Each stack consists of a multi-head attention
layer (eight heads and a size of 512), a normalization layer, and a feed-forward layer (of size
2,048). Other values were left as default, and only the learning rate (0.005), batch size
(4,096), and effective batch size (32,768) were modified. The T5 small and base models
(Materials & Methods) were only fine-tuned and were not subjected to hyperparameter
optimization.

RESULTS
The following experiments were performed for two tasks (see “The formal definition of the
task” section), and the results of the testing dataset are presented in the tables below. In

Table 4 Optimal hyper-parameters for transformer neural networks architectures for Task 1.

Vocabulary size Embedding dimension Batch size Number of heads Attention layers Importance Optimizer

Transformer 2,500 16 32 2 1 1.245 RMSprop

5,000 8 128 4 2 1.928 RMSprop

10,000 8 64 8 4 1.594 Adam

16,000 8 32 2 2 1.117 Adamax

32,000 8 64 8 4 2.226 RMSprop

64,000 8 64 4 4 1.764 RMSprop

Table 5 Optimal hyper-parameters for seq2seq LSTM and BiLSTM architectures for Task 2.

Vocabulary size Embedding dimension LSTM/BiLSTM encoder size LSTM/BiLSTM decoder size Optimizer

seq2seq LSTM 8,000 32 256 256 Adam

16,000 64 128 128 Adamax

32,000 64 128 128 RMSprop

seq2seq BiLSTM 8,000 64 256 128 Adamax

16,000 64 256 128 Adam

32,000 64 128 128 Adam

Vaškevičius et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1511 18/34

http://dx.doi.org/10.7717/peerj-cs.1511
https://peerj.com/computer-science/


addition, each model has been trained and evaluated three times with optimal hyper-
parameter values (Materials & Methods).

Results of Task 1
As discussed in the Methods &Materials section, the binary classification task was solved,
and its performance was evaluated using four key metrics: Accuracy (Eq. (3)), Precision
(Eq. (4)), Recall (Eq. (5)), and F1-score (Eq.(6)). The true positive (TP) represents
instances where yi was accurately predicted as yi; true negative (TN) corresponds to cases
where yj was correctly identified as yj; false positive (FP) refers to instances where yj was
erroneously predicted as yi; and false negative (FN) denotes cases where yi was
inaccurately predicted as yj.

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

(3)

Precision ¼ TP
TP þ FP

(4)

Recall ¼ TP
TP þ FN

(5)

F1� score ¼ 2 � precision � recall
precision þ recall

(6)

For our evaluation, we have used precision, recall, and f1-score values. The results are
averaged from three runs and presented in Table 6.

Results of Task 2
As elaborated in the Methods & Materials section, we assessed the performance of our text
generation task using two key metrics: BLEU (Bilingual Evaluation Understudy) (Papineni
et al., 2001) and ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation-Longest
Common Subsequence) (Lin, 2004). These metrics are commonly used to evaluate the
quality of generated text compared to reference texts.

The BLEU score calculates the geometric mean of modified n-gram (N = 4) precision
(Pn) with a brevity penalty (BP) to account for differences in length between the generated
and reference texts:

BLEU ¼ BP � exp
X log Pnð Þ

N

� �� �
(7)

where N is the maximum order of n-grams considered, the brevity penalty (BP) is defined
as:

BP ¼ 1 if c > r
e 1�r=cð Þ if c � r

�
(8)

where r is the total length of the reference texts, and c is the total length of the generated
texts.
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The ROUGE-L score measures the longest common subsequence (LCS) between the
generated text and the reference text, taking into account recall and precision. The
ROUGE-L score is calculated as follows:

ROUGE � L ¼ 1 þ b2
� � � LCS Precision � LCS Recall

b2 � LCS Precision þ LCS Recall
� � (9)

where β = 1 is a weighting factor that adjusts the importance of precision relative to recall.
LCS Precision is the ratio of the length of the LCS to the length of the generated text, while
LCS Recall is the ratio of the length of the LCS to the length of the reference text.

The results are presented in Table 7.

Data processing methods for the EPO/USPTO dataset
This section delineates the methodology and steps employed in constructing a dataset
comprising synthesis procedures, their structured counterparts, reactants, and products
represented in IUPAC and SMILES notations, similar to the D. M. Lowe’s dataset. Given
the dataset’s potential value for chemists and AI researchers, describing the process in
detail is crucial. The procedure extends beyond conventional text preprocessing techniques
and requires more steps and data preparation methods. The two main tasks analyzed in the
article are included in the description, emphasizing that the outlined steps serve as one
possible approach, which may be adapted or enhanced to align with the specific objectives

Table 6 Evaluation results (averaged with calculated confidence intervals (95% confidence)) of Task 1 using the testing dataset. The best results
are presented in bold.

Vocabulary size

2,500 5,000 10,000 16,000 32,000 64,000

GRU Accuracy 0.920 ± 0.010 0.924 ± 0.013 0.920 ± 0.010 0.912 ± 0.006 0.912 ± 0.026 0.911 ± 0.020

Precision 0.911 ± 0.007 0.910 ± 0.006 0.911 ± 0.012 0.893 ± 0.006 0.896 ± 0.002 0.882 ± 0.004

Recall 0.889 ± 0.015 0.903 ± 0.022 0.899 ± 0.020 0.889 ± 0.026 0.890 ± 0.005 0.903 ± 0.008

F1-score 0.900 ± 0.006 0.907 ± 0.013 0.905 ± 0.028 0.891 ± 0.004 0.893 ± 0.001 0.892 ± 0.018

LSTM Accuracy 0.905 ± 0.001 0.909 ± 0.020 0.908 ± 0.001 0.900 ± 0.026 0.925 ± 0.006 0.903 ± 0.024

Precision 0.873 ± 0.024 0.893 ± 0.023 0.895 ± 0.018 0.871 ± 0.018 0.907 ± 0.025 0.873 ± 0.010

Recall 0.902 ± 0.022 0.880 ± 0.016 0.884 ± 0.010 0.885 ± 0.028 0.917 ± 0.027 0.894 ± 0.007

F1-score 0.886 ± 0.006 0.886 ± 0.019 0.889 ± 0.025 0.878 ± 0.002 0.912 ± 0.007 0.883 ± 0.010

BiLSTM Accuracy 0.761 ± 0.026 0.899 ± 0.001 0.919 ± 0.018 0.939 ± 0.005 0.928 ± 0.006 0.932 ± 0.012

Precision 0.721 ± 0.028 0.891 ± 0.026 0.901 ± 0.024 0.934 ± 0.004 0.914 ± 0.030 0.929 ± 0.005

Recall 0.789 ± 0.009 0.860 ± 0.018 0.907 ± 0.010 0.933 ± 0.005 0.912 ± 0.010 0.906 ± 0.003

F1-score 0.732 ± 0.011 0.874 ± 0.020 0.904 ± 0.026 0.932 ± 0.010 0.913 ± 0.011 0.917 ± 0.021

Transformer Accuracy 0.917 ± 0.004 0.917 ± 0.021 0.895 ± 0.011 0.917 ± 0.026 0.917 ± 0.024 0.903 ± 0.019

Precision 0.903 ± 0.015 0.903 ± 0.004 0.876 ± 0.008 0.903 ± 0.009 0.903 ± 0.016 0.893 ± 0.016

Recall 0.893 ± 0.012 0.893 ± 0.028 0.859 ± 0.003 0.893 ± 0.005 0.893 ± 0.009 0.888 ± 0.015

F1-score 0.898 ± 0.030 0.898 ± 0.023 0.867 ± 0.026 0.898 ± 0.024 0.898 ± 0.022 0.894 ± 0.013
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of researchers. Each step is also finished in such a manner that one would be able to
continue without starting at the first one to facilitate the research process. Throughout our
work, we utilize open-source data and code and provide access to our resources.

From raw patent data to organic chemistry patents
The data utilized in this study originate from patent records because of their availability
and structured format. Among the various patent databases available, the United States
Patent and Trademark Office (USPTO) and the European Patent Office (EPO) databases
were chosen for this research. The database selection criteria included: the database size,
accessibility in bulk and freedom of usage, and the absence of any costs associated with
accessing, using the data or license issues. This ensures that other researchers can replicate
our study using the same data without incurring additional costs. Other notable patent
databases include theWorld Intellectual Property Organization (WIPO) Patent Collection,
The Japan Patent Office (JPO) Database, The China National Intellectual Property
Administration (CNIPA) Database, and The Korean Intellectual Property Office (KIPO)
Database. However, some may have specific limitations or costs associated with accessing
bulk data.

The US Patent and Trademark Office (USPTO) makes a database of patent applications
and grants available via its bulk data storage system (https://bulkdata.uspto.gov, accessed
on 8 of March 2022), which can be accessed free of charge. This database covers patents
dating from 1971 and includes approximately 8.2 million patents with a total size of
approximately 700 GB. Utilizing scripts or software to aid in the downloading process is
recommended. The data is available for use, reuse, and distribution under the terms
outlined in the USPTO’s Open Data statement (https://developer.uspto.gov/about-open-
data, accessed on 8 of March 2022).

The European Union (EU) Patent Database is hosted on the Google Cloud Platform
(GCP). Information on downloading the database and a user manual can be found on the

Table 7 Evaluation results (averaged with calculated confidence intervals) of Task 2 using the testing
dataset. The best results are presented in bold.

Vocab size

8,000 16,000 32,000

LSTM BLEU 0.560 ± 0.009 0.574 ± 0.006 0.592 ± 0.006

ROUGE 0.596 ± 0.011 0.602 ± 0.005 0.623 ± 0.007

BiLSTM BLEU 0.612 ± 0.009 0.649 ± 0.003 0.671 ± 0.011

ROUGE 0.635 ± 0.015 0.673 ± 0.008 0.695 ± 0.005

Transformer BLEU 0.912 ± 0.011 0.946 ± 0.006 0.927 ± 0.011

ROUGE 0.932 ± 0.014 0.950 ± 0.010 0.949 ± 0.004

T5 small BLEU – – 0.906 ± 0.005

ROUGE – – 0.928 ± 0.009

T5 base BLEU – – 0.902 ± 0.004

ROUGE – – 0.937 ± 0.008

Vaškevičius et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1511 21/34

https://bulkdata.uspto.gov
https://developer.uspto.gov/about-open-data
https://developer.uspto.gov/about-open-data
http://dx.doi.org/10.7717/peerj-cs.1511
https://peerj.com/computer-science/


European Patent Office’s website (https://www.epo.org/searching-for-patents/data/bulk-
data-sets/text-analytics.html, accessed on 8 of March 2022). While the data is available at
no cost, there are charges associated with transferring it from GCP to local storage. The
database includes a total of 3.7 million patents in English, with a total size of approximately
255 GB. Earliest patents in the database date back to 1978. The data is available under the
Creative Commons Attribution 4.0 International Public License.

In order to utilize the patent data in a programming environment, it was first necessary
to convert the data into a format that could be processed. While the European Patent
Office (EPO) data set is in a uniform format and structure, the United States Patent and
Trademark Office (USPTO) data set employs a variety of formats. Therefore, specialized
scripts were written for each format to facilitate subsequent processing steps. The second
major step involved extracting patents that pertained to a specific classification tag of
organic chemistry. The USPTO data set includes classification identifiers, while the EPO
data set does not. To overcome this, the EPO’s freely available Application Programming
Interface (API) was utilized to collect the classification data separately, resulting in a list of
patent IDs with the organic chemistry classification tag. After this step, 230,594 EPO
patents and 511,959 USPTO patents remained for further analysis. It is recommended for
researchers to start with the dataset created after this step because it is significantly smaller,
and the progress up to this step has been just the collection of data by straightforward
programming algorithms.

From organic chemistry patents to procedure paragraphs
We developed a methodology for classifying individual paragraphs within patterns to
separate chemical synthesis procedures from other texts. This approach leverages deep
neural networks and has been specifically designed by our research team for this purpose
(referred to as Task 1). We successfully classified 182,315,235 paragraphs through this
process, identifying 3,564,546 as relevant synthesis procedures after removing duplicate
procedures. The paragraphs were additionally processed, removing unsuitable paragraphs
that reference other procedures or do not contain full names of reactants or products.

Subsequently, we converted each paragraph into a more accessible format using a model
developed during our research (Task 2). This new format facilitated more efficient
processing, allowing easy access to distinct actions, action parameters, and chemical name
extraction. Each paragraph was split into sentences using the spaCy library (Honnibal &
Montani, 2017) and transformed the text into a structured format, which could then be
reconstructed into a complete paragraph. As a result, our dataset comprised 3,058,295
unique synthesis procedures.

From procedure paragraphs to the EPO/USPTO dataset
Structured paragraphs were used to extract the names of reactants and products in
chemical synthesis processes. Reactants were identified through the ADD and
MAKESOLUTION actions, while the YIELD action denoted the product. The extracted
compound names were either in the IUPAC nomenclature or had trivial naming. These
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actions were chosen because they represented the addition of reactants, while the action
YIELD provided access to the products.

A multi-step process was developed to convert all compound names SMILES notation,
which enables compound and substructure searching and is compatible with popular
chemical programming libraries. Three translation methods were identified as helpful for
this task based on their accuracy and coverage: (1) the PubChem application programming
interface (API), which provides a robust platform for translating compound names in both
trivial and IUPAC forms (Kim et al., 2022); (2) Open Parser for Systematic IUPAC
Nomenclature (OPSIN), a versatile open-source name-to-structure conversion tool that
excels in handling complex IUPAC names (Lowe et al., 2011); and (3) the ChemAxon
application Instant JChem, a robust structure database management tool that supports
various naming conventions (http://www.chemaxon.com, accessed on 5 December 2022).

The chemical entity detector ChemDataExtractor 2.0 facilitated the process due to its
compatibility with Python, extensive documentation, and GPU-accelerated usage
(Mavračić et al., 2021). This tool scans text and returns chemical entities, specifically
compound names. These features were crucial in efficiently processing large volumes of
text while minimizing errors. Using ChemDataExtractor 2.0, a comprehensive list of all
compounds was generated from procedure paragraphs in the dataset. Subsequently, a
dictionary mapping IUPAC or trivial names to SMILES was created using the three
translation methods. This approach increased the total number of translated names, as
each method individually translated only about 60 to 70% of the input names. No known
solutions exist for IUPAC to SMILES translation other than manual methods, which are
infeasible for a large vocabulary of 3,709,454 items. The generated vocabulary was
employed to convert the names of reactants and products to SMILES notation and are put
into separate columns in the final dataset. Lastly, common solvents (e.g., water or ethyl
acetate) were removed from the reactant column, as they occasionally appeared in the
ADD or MakeSolution steps and served only as the synthesis medium. This step ensured
that only the reactants and products remained, rather than various solvents facilitating the
synthesis and the work-up process. To enable further research and investigation, we've
made our final dataset and the source code for our extraction and transformation scripts
available to the public. The dataset, in a machine-readable format, and the Python scripts
can be accessed from our project repository on GitHub (https://github.com/Mantas-it/
ActionExtraction). Description and examples are provided within the repository to
facilitate the understanding and utilization of both the dataset and the models.

The dataset encompasses a comprehensive range of organic compounds with varied
structural characteristics. These include small organic molecules, organometallics, and
biomolecules, each with distinct functional groups, including but not limited to, carbonyls,
amines, alkenes, alkynes, and aromatic systems. Each of these functional groups can
partake in various types of organic reactions such as addition, substitution, elimination,
and rearrangement reactions, providing a broad coverage of synthetic pathways. These
compounds participate in an assortment of organic reactions, reflecting a comprehensive
representation of the reaction landscape in organic synthesis. From foundational reaction
types such as substitution, addition (electrophilic, nucleophilic), and elimination, to more
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advanced and specialized reactions such as pericyclic reactions, cross-coupling reactions
and photochemical transformations, our dataset captures a spectrum of mechanistic
possibilities.

DISCUSSION
Task 1: overall results
Table 6 presents the results for Task 1, where a BiLSTM classifier with a vocabulary size of
16,000 words achieved the highest accuracy of 0.939. This accuracy significantly surpasses
the random (accuracy-0.553) and majority (accuracy-0.664) baselines, demonstrating the
method’s suitability for the solving task. Classifiers with a vocabulary size of 10,000
underperformed, likely due to a lack of expressiveness or the presence of out-of-vocabulary
words. On the other hand, classifiers with vocabulary sizes larger than 16,000 did not yield
better results due to data sparsity, as the probability of observing specific words decreases
when the vocabulary size increases. It is worth noting that the dataset utilized for this task
is considerably smaller than those commonly used in NLP tasks, which typically consist of
millions of examples. The superiority of the BiLSTM model can be credited to its
distinctive architecture that effectively utilizes the input in two directions, specifically
from-past-to-future (forward) and from-future-to-past (backward) information. This
bidirectional context assimilation is critical in making sense of complex chemical
procedures where dependencies can exist in either direction. The application of LSTM
within this architecture contributes significantly to the model's effectiveness. Firstly,
LSTMs ensure more stable learning by controlling the flow of gradients throughout time,
which alleviates the prevalent vanishing/exploding gradient problem. This feature is
particularly important in capturing long-term dependencies across words and sentences, a
common characteristic in scientific text. Secondly, LSTMs are designed to be more robust
to noise or incomplete data. Their memory cells selectively retain, or discard information
based on the determined importance of the input. This capability allows them to filter out
noise and accurately capture the information conveyed in the data. Lastly, LSTMs’
inherent capacity to retain or forget information as required, serves as a critical function in
discerning the intricate details embedded in chemical procedures. The architectures of
models can be found in the project’s repository (https://github.com/Mantas-it/
ActionExtraction).

A direct comparison of our results with previously reported findings is not feasible, as
we employed a custom training dataset for this task. However, we also compared our
approach with traditional ML methods such as naïve Bayes (accuracy-0.810, precision-
0.753, recall-0.799, F1-score-0.768) and support vector machines (SVM) (accuracy-0.885,
precision-0.837, recall-0.882, F1-score-0.855), both of which yielded considerably high
results (especially SVM) but significantly worse compared to our best BiLSTM model.
Although the optimal BiLSTM classifier’s accuracy is relatively close to traditional ML
methods, improving the scores further remains challenging due to the difficulty in
distinguishing similar paragraphs. An essential metric to consider is recalled, as high scores
in other metrics coupled with a low recall could indicate a substantial proportion of
paragraphs being falsely identified as procedures. In this context, it is preferable to miss
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actual procedures rather than have various paragraphs mixed in, as this would complicate
downstream processing when preparing the dataset.

With their attention layers, transformer neural networks are capable of handling long-
term dependencies, making them seemingly ideal for tasks involving paragraph inputs.
However, as observed in Table 6, the performance of transformer networks ranks second
best. Notably, during the training process, these networks exhibited rapid overfitting. One
potential explanation for this phenomenon is that the training dataset might be too small
for transformer neural networks to train effectively, given that they possess a substantially
larger number of weights than the other classifiers tested in our research. Considering the
superior performance of transformer networks in numerous other NLP tasks, it can be
hypothesized that a larger dataset would enable transformers to outperform other
classifiers. Besides, instead of training our transformer models, existing pre-trained ones
(e.g., BERT or sentence transformers) can be incorporated and later fine-tuned for our
classification problems. This research direction is in our immediate plans. Despite it, there
is always a risk that the available models may have too little chemistry knowledge.

Task 1: error analysis and important observations
When analyzing the mislabeled instances, we found that the top-performing BiLSTM
classifier can effectively differentiate between synthesis procedures and other paragraphs
with high confidence. However, most errors occur when synthesis paragraphs deviate from
the expected format. As outlined in section describing the data, paragraphs should contain
full names of products and reactants without references to other procedures or
compounds. The task’s complexity increases when phrases such as title compound or the
desired product are used with the product name. While the classifier can handle such cases
to some extent, it is not consistently successful. Rare instances where title compound is
followed by the full compound name—provided the remainder of the paragraph is
reasonable—require nuanced classification. Increasing the dataset size with more instances
could potentially enhance accuracy scores. In practical terms, the existing errors are
somewhat mitigated during further processing of identified procedures when synthesis
paragraphs containing specific key phrases are excluded from the resulting database.

The top BiLSTM classifier is approximately 3–5 times faster when used in an interface
mode than the top transformer classifier, allowing it to classify the current dataset of 170
million paragraphs in about 12 h using a single GPU. Processing speed is crucial, as the
next potential iteration of this task involves developing a similar methodology for open-
source chemistry research articles to source more synthesis procedures, likely necessitating
the processing of a far greater number of paragraphs than those available from patents.

Task 2: overall results
Table 7 describes the results for Task 2, in which a transformer with a vocabulary size of
16,000 words attains the highest BLEU score of 0.951. As observed in the first task, a
vocabulary of 16,000 words allows models to achieve the best performance. LSTM and
BiLSTM models are less suitable for this task, as the optimal BiLSTM model only achieves
a BLEU score of 0.671, significantly lower than the transformer model’s score. Table 7 does
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not include T5 small and base test scores with any other vocabulary sizes other than the
32,000 vocabulary size column because a pre-trained T5 model and its tokenizer, which has
a vocabulary of 32,128, were utilized. The fine-tuned T5 models produced BLEU scores
comparable to the best model (T5 small–0.906, T5 base–0.902). Although the T5 model is
considered more advanced for NLP tasks, its pre-trained status on a large corpus with
limited relevance to the task at hand may not provide significant advantages. In contrast,
transformer networks trained from scratch can efficiently learn to translate unstructured
synthesis procedure text into a structured format. Transformers outperform other models
mainly due to their unique architecture that enables the capture of dependencies regardless
of their distance in the text, courtesy of the self-attention mechanism. This feature is
particularly crucial in deciphering scientific language, where the context is often dependent
on non-local interactions within the text. Moreover, the transformer model does not
necessitate the sequential processing of data, which allows for better utilization of parallel
computing resources, consequently enabling efficient model training. Also, the multi-head
attention within transformers is able to focus on different parts of the input sequence while
translating, allowing the model to handle varying contexts effectively, thus enhancing the
quality of translation. These results are comparable to scores achieved by a transformer
model (BLEU–0.850) (Vaucher et al., 2020) and a fine-tuned T5 small model trained for
multiple chemistry-related tasks (BLEU–0.953) (Liu et al., 2019). It is important to note
that our study employed a distinct dataset specifically created for this task, which includes
additional parameters for one step, as described in the data section. The achieved high
BLUE value encourages us to experiment with this problem even more. Input texts can be
modified (paraphrasing, summarizing, back-translating, or by hand) by making them even
less formalized and, therefore, better comprehensible for non-chemistry specialists. On the
other hand, the output can become even more formalized and understandable to robots.
However, the existence of such a method could bring chemistry to a broader circle of
people (especially in the education sector). Thus, the gap between the level of formalization
between the input and the output would become much larger than it is right now, and
therefore the solving problem would become even more challenging. Nevertheless, it is an
exciting future research direction.

Task 2: error analysis and important observations
The optimal model for this task attains a BLEU score of 0.953 and generally makes very few
errors. Accuracy has been evaluated by measuring how many sentences are predicted
identically, as they are the testing dataset, and it achieved a score of 0.823. The most
common mistakes involve minor details, such as the order of additional actions when
multiple components are added successively. In some cases, the model fails to detect the
amount of the added compound and does not include it in the structured sentence format.
Errors mainly occur with the actions InvalidAction and FollowOtherProcedure, which are
highly specific and infrequent. It was possibly not provided with enough examples for the
model to learn each case effectively. InvalidActions refers to unfeasible actions, such as
when a sentence describes a reaction mechanism, while FollowOtherProcedure denotes a
step where another procedure or method is referenced in a patent. Moreover, certain

Vaškevičius et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1511 26/34

http://dx.doi.org/10.7717/peerj-cs.1511
https://peerj.com/computer-science/


sentences only partially describe a step and then reference a similar step in other
procedures, making translation challenging. The distinction between these two actions can
be subtle and difficult for an expert to discern during manual dataset labeling. In large-
scale data processing, it is advisable to exclude paragraphs with InvalidAction and
FollowOtherProcedure actions, as these include either incorrect operations or content that
surpasses the model's comprehension, thereby undermining the ability to generate sensible
translations. In the range of available procedure sources, these specific actions are
encountered in approximately 3 to 7% of all instances. Conversely, in an experimental
laboratory context where procedure processing is conducted on a smaller scale and manual
verification of translations is feasible, it becomes beneficial to conduct thorough
examinations of these instances. This is because not all occurrences of InvalidAction and
FollowOtherProcedure are necessarily detrimental to the structure of the converted
procedure. Most crucially, no instances of incorrectly converted compound titles have
been observed.

The fine-tuned T5 small model attains a lower BLEU score of 0.906. The tokenizer used
with the pre-trained T5 model can be fine-tuned by training it on a task-specific corpus and
adjusting the vocabulary to include unique characters and words that might appear.
Although such tests were conducted, the model achieved even lower scores (BLEU-0.780).
This outcome may be attributed to the tokenizer significantly altering the vocabulary when
trained on synthesis procedures, with only around 2,000 tokens out of 30,128 remaining
the same. This drastic change likely necessitates training the original embedding weights
alongside the rest of the model. Consequently, the model does not benefit from pre-
training and would need to be trained from scratch on a large chemistry text corpus, which
is beyond the scope of this article.

The fine-tuned T5 model can accurately translate unstructured procedure sentences
with minimal errors. Most of the mistakes resemble those previously described,
occasionally including incorrect quantities, such as copying the original expression from
the sentence as (about 98 mg) instead of (98 mg). However, it is worth noting that the
model can still be employed for applications in contexts where procedures are relatively
simple and devoid of complex or misleading information or expressions. Furthermore, the
T5 model is used with the Python library HuggingFace, which offers convenient tools for
setup, interface, and integration compared to transformer models trained with OpenNMT,
which require several steps for setup. However, the T5 model is significantly larger, and the
translation process is slower than the transformer models.

CONCLUSIONS AND FUTURE WORK
In conclusion, the article demonstrated the effectiveness of BiLSTM and Transformer
models in tackling the challenging tasks of identifying synthesis procedures (as a text
classification problem) and translating unstructured synthesis text into a structured format
(as a text generation problem). The BiLSTM classifier achieved the best classification
accuracy, equal to 0.939, outperforming traditional ML approaches and (random and
majority) baselines, proving its suitability and reliability. The Transformer model attained
the highest BLEU score, equal to 0.951 in the unstructured to structured text translation
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problem. We also provide the methodology, which utilizes the optimal neural network
models analyzed in the study, to construct a dataset comprising synthesis procedures, their
structured counterparts, reactants, and products. Moreover, we make this research’s
models, methods, and datasets publicly available.

Future work should focus on expanding the training dataset for both tasks because more
training data could potentially enhance the performance of Transformer models for our
classification problem and reduce errors associated with rare actions for our translation
problem. Furthermore, developing methods for open-source chemistry research articles
could enable sourcing more synthesis procedures, while continued research and
refinement of these models will contribute to a deeper understanding of their capabilities
and limitations in chemistry-related tasks.
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