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Abstract: A substantial body of research has demonstrated the relationships between cardiac ar-
rhythmias and geomagnetic activity. In this work, the idea is centered on finding the relationship
between the local magnetic field (LMF) and acute myocardial infarction (AMI). It is hypothesized
and demonstrated via a series of statistical analyses that the relationship between the LMF and AMI
is maintained over long-term observation windows. The data are collected from the two hospitals
and one public institute of health in Lithuania from 2014 till 2019. The data are categorized into
(1) daily average of the Schumann resonance for the local magnetic field measured by the Lithuanian
magnetometer, which is used as the input variable; and (2) the total number of patients hospitalized
in Lithuania per day with the diagnosis of AMI (the output variable). The data are classified both
weekly as well as by gender. Following the data categorization and classification, the data were
subjected to rigorous statistical analysis to determine the relationship between the input and output
variables. This paper shows that only the beta and gamma (S-beta, S-gamma) frequency ranges of
the Schumann resonances contribute to maintaining the long-term relationship between the LMF
and AMI.

Keywords: acute myocardial infarction; local earth magnetic field; statistical analysis; Schumann
resonances

1. Introduction

Heart disorders are the leading cause of mortality worldwide and research studies on
the numerous cardiovascular diseases have long been a major topic of interest. One of the
most pressing study topics in cardiovascular disease is acute myocardial infarction (AMI)
and the worldwide mortality it causes. AMI is a major cause of hospital admissions and
deaths worldwide [1,2]. It is well-known that risk factors such as stress, smoking, obesity,
comorbidities, and unhealthy lifestyle are accountable for AMI pathogenesis. However,
there is growing evidence showing the existence of other, more complex factors which
are also responsible for AMI, such as ambient temperature fluctuations, humidity, and
atmospheric pressure [3–9].

Low ambient temperature is one of the essential factors for the onset of AMI for
medium-latitude populations and is more critical than physical exertion or psychological
stress. Increased mortality due to AMI in association with fluctuations in ambient tem-
perature have been reported around the world [10–12]. An alternative study claims that a
decrease in the ambient temperature by 10 degrees Celsius increases the risk of AMI by
10 percent [13]. The last observation is also confirmed in [14].
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The importance of atmospheric pressure on cardiovascular events has been highlighted
in [15]. A 10-bar decrease or increase in pressure below or above 1016 mbar is associated
with 12 and 11 percent increased incidences, respectively. Ozheredov et al. reported in [16]
that increasing atmospheric pressure positively correlates with arterial blood pressure,
indicating the influence of atmospheric pressure on AMI.

Studies from China found that cold weather, in combination with air pollution, has
the strongest effect on cardiovascular mortality [17]. Consistent with this, air and water
pollution are considered factors severely triggering AMI in addition to strokes, cardiac
arrhythmias, and pulmonary diseases [17].

It is well-known that environmental factors such as daylight (and circadian rhythms
in general) have a pronounced effect on human mental and physical condition [18]. The
disruption of circadian rhythms has a negative effect on morbidity and mortality due
to heart diseases. AMI has a significant correlation to the circadian rhythm [19]. The
relationship between the circadian periodicity and AMI has been repeatedly proven in
several studies [20,21].

It was found that GSs may significantly increase platelet aggregation, blood coagula-
tion, and its viscosity in addition to decreased blood flow in small and medium vessels [21].
It is also reported that solar activity and its wind-forming geomagnetic storms (GSs) may
have effects on human health [22,23]. In contrast, the increased LMF activity in higher
frequency ranges yields a positive correlation with ischemic cardiac events. The impact
of the local earth magnetic field (LMF) on cardiovascular events has also been reported in
the scientific literature during recent years. For instance, it is reported that increased LMF
activity at various frequencies can have effects on individuals, for example, increased LMF
activity in low-frequency ranges is related with an increased occurrence of acute cardiac
arrhythmias [23].

It is shown in [24] that an increased LMF does have a negative influence on the
sensitivity of baroreceptors, which are involved in the self-organization of heart rhythm
variability (HRV). It is shown in [25] that the diastolic blood pressure reduces at least
2 mmHg, and the capillary blood flow increases at least 17 percent, when patients are
placed into rooms isolated from LMF. The study in [26] also implies an assumption that
LMF may increase the blood vessel wall tone which is a negative factor for AMI. Data
gathered during recent years encouraged us to perform this epidemiological analysis
evaluating the causal links between changes in LMF and hospital admissions due to AMI
in Lithuania from August 2014 till September 2019.

While analyzing the cardiovascular diseases associated with the LMF, it is imperative
to recall the Earth’s natural rhythm. The frequency of the earth’s rhythm is 7.83 (Hz),
known as the first “Schumann Resonance” with a (day/night) fluctuation of approxi-
mately ±0.5 Hz. The higher frequencies include 14, 20, 26, 33, 39, and 45 (Hz), which
all overlap with human brain rhythms, alpha (8–12 Hz), beta (12–30 Hz), and gamma
(30–100 Hz) [27,28]. In our study, we have analyzed the Schumann frequencies in the same
ranges and used the letter S to indicate that we are referring to the Schumann frequencies
(SDelta, δ (0–3.5 Hz), STheta, θ (3.5–7 Hz), SAlpha, α (7–15 Hz), SBeta, β (15–32 Hz) and
SGamma, γ (32–65 Hz)) for the data.

As expounded upon in the preceding paragraphs, the correlation between LMF and
AMI is pronounced [29]. In this study, it is hypothesized that there exists a long-term
correlation between the LMF and AMI. The purpose of the study is to analyze the data
gathered from two Lithuanian hospitals and the public health institute to determine the
relationships between the LMF and the number of patients registered in hospitals with
AMI. Furthermore, the work is unique in that the existence of the association between the
AMI and LMF is observed across the lengthy period of the observation window, which
would otherwise be overlooked when considering small observation windows. It could
be possible that not all of the frequency ranges of the Schumann resonances contribute
to defining the relationship between AMI and LMF. Therefore, finding the Schumann
frequency ranges that tend to cause the AMI is also an important part of this study. The
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research methods are based on extensive statistical analysis and the data are analyzed by
the help of mathematical and statistical tools.

2. Methods
2.1. Ethics Statement

The research met all applicable standards for the ethics of experimentation in ac-
cordance with the Declaration of Helsinki as reflected in prior approval by the Regional
Biomedical Research Ethics Committee of the Lithuanian University of Health Sciences
(ID No. BE-2-21, 10 March 2021). Participants provided written informed consent prior to
the experiment.

2.2. Data Collection and Categorization

Our team conducted a retrospective analysis of AMI cases in Lithuania from 1 August
2014 to 29 September 2019. The range of collected dataset is exactly 5 years, 1 month,
29 days. In the following paragraphs, there is a comprehensive description of the data
classification. The measurement of the LMF and its explanation are also covered in more
detail in the sections that follow.

2.3. Grouping of the Patients

The first group consists of all the patients who were diagnosed with an AMI event
and were admitted to the Cardiology Department of University Hospital at Lithuanian
University of Health Sciences. The second group is comprised of the patients who were
diagnosed with an AMI event and were admitted to Siauliai Republic Hospital. The third
group includes the statistical data about the morbidity of AMI, which are taken from the
Institute of Hygiene in Lithuania.

2.4. Measurement of Local Magnetic Field

The LMF is measured with the Global Coherence Monitoring Network magnetometer,
which is located in the Radviliskis area of Lithuania, near the town of Baisogala. A well-
known group of spectrum peaks known as Schumann resonances are recorded as part
of the experiment protocol. The measured Schumann resonances serve as the data to be
analyzed in conjunction to the number of patients admitted to the hospital with AMI. The
LMF can be measured in two directions, north/south and east/west. We have used the
east/west detector for the LMF measurement [29]. The measurement procedure of the
local magnetic field intensity is explicitly explained in the study [30,31]. The details of the
different frequency ranges of the Schumann resonances are listed in Table 1.

Table 1. Description of the input Xn and output Y variables.

Variable Different Frequency Ranges of the
Schumann Resonance Frequency Range (Hz)

X1 SDelta (δ) 0–3.5
X2 STheta (θ) 3.5–7
X3 SAlpha (α) 7–15
X4 SBeta (β) 15–32
X5 SGamma (γ) 32–65

Y The total number of patients hospitalized in
Lithuania per day with the diagnosis of AMI -
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2.5. Grouping of Patient Data Based on Hospitals

As previously stated, the data are gathered from two hospitals and one public institute
of health in Lithuania. The details of the hospitals and the public institute are as follows
(1) Cardiology Department of University Hospital at Lithuanian University of Health
Sciences, (2) Siauliai Republic Hospital, and (3) The Institute of Hygiene in Lithuania. The
demographical categorization of the data is explained below.

2.5.1. First Group

A total of 918 patients were analyzed in the Cardiology Department of University
Hospital at the Lithuanian University of Health Sciences. There were 429 males (46.7%)
and 489 females (53.3%).

2.5.2. Second Group

A total of 548 patients were hospitalized in Siauliai Republic Hospital—324 males
(59.1%) and 224 females (40.9%).

2.5.3. Third Group

Morbidity statistics are provided by the Lithuanian Institute of Hygiene. In total,
5917 patients had an AMI. A total of 3432 (58% of the patients) were male and 2485 (41%)
were female. A total of 493 patients on average per month were hospitalized in Lithuania
hospitals due to AMI within the described period.

The statistical approach, the governing model equations, the correlation between
variables, and the time-average model are all explained in depth in the sections that follow.

3. Results
3.1. Description of the Statistical Analysis

Let us begin with presenting a brief overview of the input and output variables used
in this study. The input variables are identified as Xn (where n varies from 1 to 5) and the
output variable is denoted as Y. In Table 1, the variable Xn is the input parameter which
describes the daily average of the Shumann resonances SDelta, δ (0–3.5 Hz), STheta, θ
(3.5–7 Hz), SAlpha, α (7–15 Hz), SBeta, β (15–32 Hz) and SGamma, γ (32–65 Hz). The
variable Y is the output parameter and represents the total number of patients hospitalized
per day (see Tables 1 and 2). In Figures 1–5, the x-axis shows the timeframe during which
the recordings were made, which is from 2014 to 2019. The y-axis shows the daily averages
of Schumann resonances observed for the local magnetic field. In Figure 6, the total number
of patients hospitalized each day is shown.

Table 2. The first few records of the dataset with input variable Xn and the corresponding output
variable Y with respect to the associated date.

Date X1 X2 X3 X4 X5 Y

1 August 2014 71.9816 32.8561 83.8413 104.1903 255.6396 11
2 August 2014 90.8082 48.7685 106.029 135.1208 274.8006 10
3 August 2014 108.8789 51.8121 95.4904 117.6708 249.9169 12
4 August 2014 94.6534 46.2272 86.5633 117.257 253.5175 11
5 August 2014 105.6558 67.4763 131.0236 196.8376 381.0183 14

· · · · · · · · · · · · · · · · · · · · ·
29 September 2019 20.8557 17.5268 41.7625 61.4899 119.1067 13
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Figure 1. The monitoring data for the daily average of the δ frequency (0–3.5 Hz) for the local mag-
netic field measured in an east–west direction. The x-axis represents the time t, whereas the y-axis 
represents the parameter 𝑋ଵ which is the SDelta band of the Schumann resonance. 

 
Figure 2. The monitoring data for the daily average of the 𝜃 frequency (3.5–7 Hz) for the local mag-
netic field measured in an east–west direction. The x-axis represents the time t, whereas the y-axis 
represents the parameter 𝑋ଶ which is the STheta band of the Schumann resonance. 

Figure 1. The monitoring data for the daily average of the δ frequency (0–3.5 Hz) for the local
magnetic field measured in an east–west direction. The x-axis represents the time t, whereas the
y-axis represents the parameter X1 which is the SDelta band of the Schumann resonance.
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Figure 2. The monitoring data for the daily average of the θ frequency (3.5–7 Hz) for the local
magnetic field measured in an east–west direction. The x-axis represents the time t, whereas the
y-axis represents the parameter X2 which is the STheta band of the Schumann resonance.
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Figure 3. The monitoring data for the daily average of the 𝛼 frequency (7–15 Hz) for the local mag-
netic field measured in an east–west direction. The x-axis represents the time t, whereas the y-axis 
represents the parameter 𝑋ଷ which is the SAlpha band of the Schumann resonance. 

 
Figure 4. The monitoring data for the daily average of the 𝛽 frequency (15–32 Hz) for the local 
magnetic field measured in an east–west direction. The x-axis represents the time t, whereas the y-
axis represents the parameter 𝑋ସ which is the SBeta band of the Schumann resonance. 

Figure 3. The monitoring data for the daily average of the α frequency (7–15 Hz) for the local
magnetic field measured in an east–west direction. The x-axis represents the time t, whereas the
y-axis represents the parameter X3 which is the SAlpha band of the Schumann resonance.
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Figure 4. The monitoring data for the daily average of the 𝛽 frequency (15–32 Hz) for the local 
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Figure 4. The monitoring data for the daily average of the β frequency (15–32 Hz) for the local
magnetic field measured in an east–west direction. The x-axis represents the time t, whereas the
y-axis represents the parameter X4 which is the SBeta band of the Schumann resonance.
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represents time (input parameter) whereas the y-axis represents the parameter 𝑌 (the output pa-
rameter which represents the total number of patients hospitalized in Lithuania per day with the 
diagnosis of AMI). 
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The main objective of this study is to identify the relationship between 𝑌 (output) 
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are employed. The linear regression model is used to analyze the relationship between the 
input and the output variables. To begin with, the relationship between the output varia-
ble 𝑌 and the input 𝑋௡ can be expressed as: 𝑌 = 𝑏଴ + 𝑏ଵ𝑋ଵ + 𝑏ଶ𝑋ଶ + 𝑏ଷ𝑋ଷ + 𝑏ସ𝑋ସ + 𝑏ହ𝑋ହ + 𝜀 (1)

where 𝑏଴, 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝑏ସ, 𝑏ହ ∈ ℝ; 𝜀 is the residual of approximation; 𝜀~𝑁(0, 𝜎ଶ). 

Figure 5. The monitoring data for the daily average of the γ frequency (32–65 Hz) for the local
magnetic field measured in an east–west direction. The x-axis represents the time t which is the input
variable, whereas the y-axis represents the parameter X5 which is the SGamma band of the Schumann
resonance.
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Figure 6. The total number of patients hospitalized per day with the diagnosis of AMI. The x-
axis represents time (input parameter) whereas the y-axis represents the parameter Y (the output
parameter which represents the total number of patients hospitalized in Lithuania per day with the
diagnosis of AMI).

3.2. The Governing Model Equations and Explanations

The main objective of this study is to identify the relationship between Y (output) and
X1, X2, X3, X4, and X5 (input) variables. To accomplish this task, statistical techniques are
employed. The linear regression model is used to analyze the relationship between the
input and the output variables. To begin with, the relationship between the output variable
Y and the input Xn can be expressed as:

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + ε (1)



Atmosphere 2023, 14, 1234 8 of 14

where b0, b1, b2, b3, b4, b5 ∈ R; ε is the residual of approximation; ε ∼ N
(
0, σ2).

Let us denote the observable values of Y as y1, y2 , . . . , yn, where n is the number of
days available in the dataset. The considered linear regression model then reads:

yi = b0 + b1xi1 + b2xi2 + b3xi3 + b4xi4 + b5xi5 + εi (2)

where xij is the i-th observation of variable Xj (j = 1, 2, . . . , 5); εi is the i-th residual
( i = 1, 2, . . . , n). The model can be expressed in matrix form:

Y = XB + ε (3)

where Y =


y1
y2
...

yn

, X =


1 x11 x12 . . . x15
1 x21 x22 . . . x25
...

...
...

...
...

1 xn1 xn2 . . . xn5

, B =


b0
b1
...

b5

, ε =


ε1
ε2
...

εn

.

The vector of model parameters B are determined by the method of least squares:

B̂ =
(

XTX
)−1

XTY (4)

Following this, the regression equation reads:

Ŷ = X B̂ (5)

3.3. Correlations between Input Variables X1, X2, X3, X4, and X5

The model of the multi-parameter linear regression is valid when variables X1, X2, X3,
X4, and X5 do not correlate in pairs. This condition is validated by computing Pearson
correlation coefficients between the variables:

rXiXj =
∑n

k=1(xki − xi)
(

xkj − xj

)
√

∑n
k=1 (xki − xi)

2∑n
k=1

(
xkj − xj

)2
(6)

where xi =
1
n ∑n

k=1 xki. The computational results are presented in Table 3.

Table 3. Pearson correlation coefficients between variables X1, X2, X3, X4, X5.

rXiXj X1 X2 X3 X4 X5

X1 1 0.90 0.84 0.79 0.20
X2 0.90 1 0.90 0.95 0.16
X3 0.84 0.90 1 0.90 0.32
X4 0.79 0.95 0.90 1 0.26
X5 0.20 0.16 0.32 0.26 1

From Table 3, it can be observed that variables X1, X2, X3, X4 are linked by a strong
positive linear relationship. However, relationships between X5 and X1, X2, X3, X4 are
weak. According to the hypothesis test, the correlation value between the variables is
equal to zero and they are rejected with a significance level (p-value) < 0.05. Therefore, the
Pearson correlation coefficients are statistically significant. The three regression equations
listed in Table 4 describe the relationship between the input variables.
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Table 4. Equations defining the relationship between the input variables.

Formula (1) Formula (2) Formula (3)

x̂2 = −1.26 + 0.49x1

(R 2 ≈ 0.8
) x̂3 = 24.32 + 0.71x1

(R 2 ≈ 0.71
) x̂4 = 24.17 + 0.98x1

(R 2 ≈ 0.63
)

The null hypothesis about the coefficients being equal to zero is rejected with a sig-
nificance level (p-value) of <0.05. Therefore, the alternative hypothesis that the model
coefficients do not equal zero is accepted. The hypotheses about the equality of model
coefficients with zero are dropped with a significance level (p-value) of <0.05. Thus, the
model coefficients statistically significantly differ from zero. Therefore, some of the vari-
ables X1, X2, X3, X4 must be dropped from the regression equation because those variables
are multi-colinear, and those correlations are strong. After dropping the variables X2, X3,
and X4, the regression equations reads.

Y = b0 + b1X1 + b2X5 + ε (7)

3.4. The Time-Average Model

It appears that the instantaneous relationship between variables Y and X1 and X5 is
insignificant. The linear regression model (Equation (7)) yields insignificant coefficients,
and the coefficient of determination is very small. However, it would be strange to expect
to observe an instantaneous causal relationship between the local magnetic field and the
number of hospitalized patients with myocardial infarction. Otherwise, one could expect to
observe a sharp increase in the number of myocardial infarctions at the day of the increased
geomagnetic activity. However, such relationships have not been reported (our study
also does not reveal instantaneous relationships between the local magnetic field and the
number of infarctions).

In this work, the influence of the averaged magnetic field on the individuals experi-
encing the heart attack becomes evident over long observation windows [32]. One could
consider the well-known effect of nonlinear chaotic synchronization. For example, the
magnitude of the diffusive coupling between two chaotic oscillators can be below the noise
level—but chaotic synchronization can be detected between two (or more) coupled nonlin-
ear oscillators after long transients. A paradigmatic example of such coupled systems is the
synchronization of Huygens pendulum clocks discovered more than 300 years ago [33],
but still studied in scientific literature today [34,35].

Keeping such small possible interactions in mind, we transform the governing regres-
sion equation model (Equation (7)) into a time-average regression model. The instantaneous
(24-h based values) are replaced by their overlapping moving averages. The length of the
observation window used for the averaging L is set to 90, 120, and 180 days.

For example, the least squares method for the regression model (Equation (7)) yields
the following estimates of the model parameters at L = 180:

B̂ =

 18.0921
−0.0314
−0.0004


The following hypothesis is tested with the significance level α = 0.05:{

H0 : b0 = b1 = b2 = 0 ,
Ha : at least one bi (i = 0, 1, 2) is not equal to zero.

Additionally, hypotheses about the equality of individual coefficients with zero are
tested separately: {

H0 : bk = 0,
Ha : bk 6= 0.

k = 0, 1, 2.
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In all cases, the main hypotheses H0 are rejected (p-value < 0.05). Therefore, the
coefficients of the regression equation b0, b1, b2 differ significantly from zero. The results
of hypothesis testing and parameter estimates are given in Table 5.

Table 5. Results of hypothesis testing and parameter estimates.

Coefficients Estimate Std. Error t Value Pr(|T|>|t|)

Intercept 18.0920587 0.0412784 438.294 <2 × 10−16

X1 −0.0313948 0.0004666 −67.281 <2 × 10−16

X5 −0.0004143 0.0001872 −2.213 0.0271

In Table 5, the R2 value is 0.744 and R2
adjusted value is 0.7437. The F-statistics are 2474

and 1702 degrees of freedom, and the p-value is less than 2.2e−16.

3.5. The Derived Model and Statistical Estimates

The derived regression equation with 180-day moving averaging interval reads:

ŷ = 18.0921− 0.0314x1 − 0.0004x5

The variation intervals of variable x1 is [18.5; 68.3] and x5 is [131.2; 297.2] accordingly.
The suitability of the model and special variants of this model are discussed in this subsection.

The variance inflation factor (VIF) is computed for each variable. VIF = 1.0734 < 4 for
both variables X1 and X5. Therefore, those variables are not multi-colinear (see Table 6).

Table 6. Variance inflation factor (VIF) is computed for each variable.

Variable VIF Detection *

X1 1.0734 0
X5 1.0734 0

* 0-collinearity is not detected by the test.

In Table 6, the 0-multicollinearity criterion marks that the quantities are not multi-
collinear. Multicollinearity is a statistical phenomenon that occurs when two or more
independent variables in a regression model are highly correlated with each other. In
other words, multicollinearity indicates a strong linear relationship among the predictor
variables. It is possible that the pairwise correlations are small, and yet a linear dependence
exists among three or even more variables, for example, if X3 = 3X1 + 2X2 + error.

If VIF < 4 for some variable (in this case, the criterion acquires a value/mark of 0), it
means that the variable is not correlated or weakly correlated with other variables, so it is
appropriate to include this variable in the regression model.

The determination coefficient of the time-averaged model (L = 180) is R2 ≈ 0.74.
Therefore, the moving averages of X1 and X5 well describe the variation in the moving
average of Y (see also Figure 7).

The limitation of the derived model is that the residual errors are not distributed ac-
cording to the normal distribution. However, this distribution is close to normal. Therefore,
it is likely that the problem would vanish if the number of observations n were enlarged.

The time-average model at L = 90 reads:

ŷ = 18.0339− 0.0333x1

The time-average model at L = 120 reads:

ŷ = 18.0526− 0.0326x1
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In both cases, the coefficient at X5 does not differ significantly from zero. Other
coefficients do differ significantly from zero (α = 0.05). The determination coefficient at
L = 90 is 0.6. The determination coefficient at L = 120 is 0.66. Those results prove that the
best linear regression model is derived at L = 180.

The time-average model at L = 180 is derived by dropping the variables X2, X3, and
X4. The model can be constructed by dropping other sets of multi-colinear variables.

The time-average model with dropped variables X1, X3, X4 at L = 180 reads.

ŷ = 18.7404− 0.0675x2 − 0.0037x5

and the determination coefficient of the model is 0.72.
Dropping variables X1, X2, X4 yields the time-average model (L = 180).

ŷ = 19.3244− 0.0477x3

However, variable X5 becomes statistically insignificant in this model. The determina-
tion coefficient of the model is 0.75.

Finally, dropping X1, X2, X3 yields the time-average model (L = 180).

ŷ = 19.44− 0.0307x4 − 0.0037x5

The determination coefficient of this model is 0.66.

4. Discussion

As mentioned before, the purpose of the study is to find the long-term relationship
between the LMF and the AMI. To achieve the objective, the patients are investigated by the
variations of Schumann resonance namely (SDelta (0–3.5 Hz), STheta (3.5–7 Hz), SAlpha
(7–15 Hz), SBeta (15–32 Hz) and SGamma (32–65 Hz). The Schumann resonances as well
as the number of AMI patients registered in each of the hospitals are recorded each day.
The output (Y) represents the total number of patients hospitalized in Lithuania per day
with the diagnosis of AMI. The input variable X1, X2, X3, X4 and X5 represents the daily
averages of the Shuman resonance (δ, θ, α, β, γ) for the LMF measured by the Lithuanian
magnetometer. First, the linear regression model equation is posed in (Equation (1)) to
show the relationship between the input and output variables. The observable values of
the output variable Y reads y1, y2, . . . , yn, so (Equation (1)) translates to (Equation (2)).
For convenience, the matrix form of the same is also presented in (Equations (3)–(5)).
The proposed model of linear regression is based upon multi-parameters (due to having
different Schumann resonances and number of patients registered each day). Therefore,
the validity of the multiparameter model in linear regression is proved by computing the
Pearson correlation coefficients between the input variables X1, X2, X3, X4 and X5. The
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typical condition for adhering to the multi-parameter linear regression is “the variables
should not correlate in pairs”. Theoretically, this means finding out Schumann resonance
which have a weak relationship in pairs. The results of Table 3 indicate that the variables
X5 and X1, X2, X3, X4 are weak in their relationship under the significance level of 0.05.
This step provides a lead in formulating the equations that describe the relation between
variables (x1, x2), (x1, x3) and (x1, x4). However, the hypothesis about the equality of
model coefficients to zero is dropped, with a significance level 0.05 (p-value < 0.05). Some
of the variables, X1, X2, X3, X4, must be dropped from the regression equation because
these variables are multi-colinear, and correlations are strong. After dropping the variables
X2, X3, and X4, the regression equations reads (Equation (7)). However, (Equation (7))
produces results which are based upon the data which are observed for short term scales,
or in other words; the linear regression model presented in (Equation (7)) yields statistically
insignificant coefficients, and the coefficient of determination is very small.

This raises the question: Does the linear regression model in (Equation (7)) provide
enough information to determine the relationship between AMI and LMF? To answer
the question, it can be stated that (Equation (7)) happens to represent the instantaneous
causal relationship between the LMF and the number of hospitalized patients with AMI.
This demonstrates that a rise in geomagnetic activity will likewise increase the number of
individuals experiencing heart attacks, which is not possible.

As a result, the paucity of instantaneous correlations leads to the necessity to inves-
tigate the long-term relationship between AMI and LMF. Therefore, we transformed the
governing equations to a time-averaged regression model, which is the essence of the
study. The averages of the relevant Schumann resonances SBeta (15–32 Hz) and SGamma
(32–65 Hz) influence the average number of patients.

To shed light upon the various causes of AMI, it is reasonable to ponder whether the
LMF is the only cause of AMI. Again, the subject is vast and must be investigated from
other perspectives. AMI can perhaps also be due to trauma, excess demand on the heart, etc.
Additionally, the origin and the description of the pathomechanisms of this relationship are
out of the scope of this study. Detailed investigations of causes, origins, and mechanisms
involved remain a definite aim of future research. The study’s main objective is to prove
the statistical hypothesis on the existence of long-term relationships between LMF and the
number of hospitalized patients with the symptoms of AMI.

5. Conclusions

The study’s findings revealed significant long-term relations between LMF and AMI.
Furthermore, it has been demonstrated that not all of the Schumann resonances contribute
to having an impact on individuals developing AMI. For example, the Schumann res-
onances from the SBeta (15–32 Hz) and SGamma (32–65 Hz) have been shown to play
an important role in determining long-term relationships. It is also part of the study’s
conclusion that the instantaneous relationships observed between geomagnetic variations
and AMI patients are not significant.

6. Limitations

This research study comes with limitations similar to any other scientific work. The
first constraint is that only data from individuals who have been diagnosed with AMI and
admitted to the hospital were collected. It is probable that there might be cases who have
developed the symptoms of AMI but have not been admitted to the hospitals. In other
words, off-the-record data are not taken into account.

Another limitation of the study is pertinent to the derived model of the study. It is
observed that with a derived model, the residual errors are not distributed according to the
normal distribution, although they might be close to the normal. Therefore, it is likely that
the problem would vanish if the number of observations were enlarged.
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14. Mirić, D.; Rumboldt, Z. The impact of meteorological factors on the onset of myocardial infarction in the coastal region of middle
Dalmatia. G. Ital. Cardiol. 1993, 23, 655–660.

15. Danet, S.; Richard, F.; Montaye, M.; Beauchant, S.; Lemaire, B.; Graux, C.; Cottel, D.; Marécaux, N.; Amouyel, P. Unhealthy effects
of atmospheric temperature and pressure on the occurrence of myocardial infarction and coronary deaths: A 10-year survey: The
Lille-World Health Organization MONICA project (Monitoring trends and determinants in cardiovascular disease). Circulation
1999, 100, e1–e7. [CrossRef]

16. Ozheredov, V.A.; Chibisov, S.M.; Blagonravov, M.L.; Khodorovich, N.A.; Demurov, E.A.; Goryachev, V.A.; Kharlitskaya, E.V.;
Eremina, I.S.; Meladze, Z.A. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in
young and healthy population. Int. J. Biometeorol. 2017, 61, 921–929. [CrossRef] [PubMed]

17. Qian, Z.; Lin, H.-M.; Stewart, W.F.; Kong, L.; Xu, F.; Zhou, D.; Zhu, Z.; Liang, S.; Chen, W.; Shah, N.; et al. Seasonal Pattern of the
Acute Mortality Effects of Air Pollution. J. Air Waste Manag. Assoc. 2010, 60, 481–488. [CrossRef] [PubMed]

18. Abbott, S.M.; Malkani, R.G.; Zee, P.C. Circadian disruption and human health: A bidirectional relationship. Eur. J. Neurosci. 2020,
51, 567–583. [CrossRef] [PubMed]

19. Willich, S.N.; Linderer, T.; Wegscheider, K.; Leizorovicz, A.; Alamercery, I.; Schröder, R. Increased morning incidence of myocardial
infarction in the ISAM Study: Absence with prior beta-adrenergic blockade. ISAM Study Group. Circ. 1989, 80, 853–858. [CrossRef]
[PubMed]

20. Wang, D.; Ruan, W.; Chen, Z.; Peng, Y.; Li, W. Shift work and risk of cardiovascular disease morbidity and mortality: A
dose–response meta-analysis of cohort studies. Eur. J. Prev. Cardiol. 2018, 25, 1293–1302. [CrossRef]

21. Fornasary, P.M. Circadian rhythms of clotting, fibrinolytic activators and inhibitors. In Proceedings of the XIII International
Conference International Society for Chronobiology, Pavia, Italy, 4–7 September 1977; pp. 625–675.

22. Cornélissen, G.; Tamura, K.; Tarquini, B.; Germanò, G.; Fersini, C.; Rostagno, C.; Zaslavskaya, R.M.; Carandente, O.; Carandente,
F.; Halberg, F. Differences in some circadian patterns of cardiac arrhythmia, myocardial infarctions and other adverse vascular
events. Chronobiologia 1994, 21, 79–88.

23. Cornélissen, G. Beyond circadian chronorisk: Worldwide circaseptancircasemiseptan patterns of myocardial infarctions, other
vascular events, and emergencies. Chronobiologia 1993, 20, 87–115.
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