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A B S T R A C T   

State of charge (SoC) estimation is critical for the safe and efficient operation of electric vehicles (EVs). This work 
proposes a hybrid multi-layer deep neural network (HMDNN)-based approach for SoC estimation in EVs. This 
HMDNN uses Mountain Gazelle Optimizer (MGO) as a training algorithm for the deep neural network. Our 
method leverages the intrinsic relationship between the SoC and the voltage/current measurements of the EV 
battery to accurately estimate the SoC in real time. We evaluate our approach on a large dataset of real-world EV 
charging data and demonstrate its effectiveness in comparison to traditional SoC estimation methods. Four 
diverse Li-ion battery datasets of electric vehicles are employed which are the dynamic stress test (DST), Beijing 
dynamic stress test (BJDST), federal urban driving schedule (FUDS), and highway driving schedule (US06) with 
different temperatures of 0oC, 25oC, 45oC. The comparison is made with Mayfly Optimization Algorithm based 
DNN, Particle Swarm Optimization based DNN and Back-Propagation based DNN. The evaluation indices used 
are normalized mean square error (NMSE), root mean square error (RMSE), mean absolute error (MAE), and 
relative error (RE). The proposed algorithm achieves 0.1% NMSE and 0.3% RMSE on average on all datasets, 
which validates the effective performance of the proposed model. The results show that the proposed neural 
network-based approach can achieve higher accuracy and faster convergence than existing methods. This can 
enable more efficient EV operation and improved battery life.   

1. Introduction 

The state of charge (SoC) of a battery refers to the amount of elec
trical energy stored in the battery at a given time. Accurately estimating 
the SoC is important for a variety of applications, including battery 
management, electric vehicle range prediction, and renewable energy 
systems scheduling [1]. To effectively manage and control a battery, it is 
important to have an accurate estimate of its SoC [2]. This information 
can optimize charging and discharging operations, prevent over
charging or over-discharging, and extend the overall battery life. 

In the context of electric vehicles (EV), accurate SoC estimation is 

crucial for predicting the vehicle’s range and ensuring that the driver 
has sufficient energy to reach their destination improving the EV driving 
experience. SoC adds optimum battery management, enhanced energy 
efficiency, and battery monitoring in real-time considering the operating 
condition in the long and short term. This information can also be used 
by the vehicle’s control system to optimize energy usage and extend the 
vehicle’s range [3]. In renewable energy systems, such as solar or wind 
power systems, accurate SoC estimation is important for optimizing the 
use of stored energy and ensuring sufficient energy is available to meet 
demand [4]. Overall, the ability to accurately estimate the SoC of a 
battery is important for a wide range of applications and continues to be 
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an active area of research in the fields of electrical engineering and 
battery technology. The use of EVs is growing in popularity due to their 
potential for reducing greenhouse gas emissions and dependence on 
fossil fuels [5]. Accurate estimation SoC of the battery is essential for the 
proper operation of an EV, as it indicates the amount of energy 
remaining in the battery and can affect the performance and range of the 
vehicle. 

Traditionally, SoC estimation has been performed using mathemat
ical models based on the electrochemical characteristics of the battery. 
However, these models can be complex and may not accurately reflect 
the real-world behavior of the battery, especially in cases where the 
battery has aged or experienced other factors that can affect its 
performance. 

1.1. Literature review 

State of charge consequently reveals how much energy is still in the 
battery. It must, however, be implicitly calculated from the apparent 
battery characteristics and factors since it cannot be specifically defined. 
Due to its uses in EV range prediction, SoC estimation is thus of utmost 
relevance. The literature has throughout the years presented a broad 
variety of battery SoC estimation techniques, which may be roughly 
classified into four categories: lookup table approach, ampere-hour in
tegral method, model-based estimation method, and model-free 
parameter estimation. 

The lookup table techniques have well-known drawbacks and have 
gradually given way to more advanced techniques like the Model-Based 
estimate method. By combining them with nonlinear state estimating 
algorithms, several studies have also sought to increase the estimation 
capability of Lookup Table (LUT), Coulomb-Counting [6], and Model 
based techniques [7]. The Kalman filter [8], Luenberger observer [9], 
proportional integral viewer [10], and sliding mode viewer [11] are 
examples of common algorithms cited in the literature. 

The traditional Kalman filter is sensitive to the intricate non-linear 
process, temperature, and battery charging/discharging since it is only 
appropriate for linear systems. Extended Kalman filter (EKF), the un
scented Kalman filter (UKF) have been effectively used to estimate SoC 
to overcome this challenge [12–14]. Fuzzy logic is a popular artificial 
intelligence approach that uses multi-valued logic to compute SoC while 
also taking into consideration a variety of other factors, like age, tem
perature, noise, and many more [15]. Fuzzy logic technique requires a 
huge amount of training data as well as long-term experience in data 
collection to develop a reliable rule. Support vector machine (SVM) 
[16], Gaussian process regression (GPR) [17] perform adequately, 
especially in nonlinear battery modeling. Multi-input parameters can be 
well handled by SVM and GPR extensions have been modified and 
improvised in recent research works. Additionally, recommended for 
clustering and battery state prediction is the Greenwald-Khanna method 
[18], where the entropy weight method is employed to determine the 
weight using Kernal functions and genetic evolution. These approaches 
provide more accurate capacity, battery cells package clustering, and 

energy estimates. Overly complex computing is a significant issue that 
prevents the procedure from being carried out in the battery manage
ment system (BMS). 

A simple technique for calculating SoC is Coulomb counting [19], 
which accumulates the net charge at the most recent time in 
ampere-hours (Ah). Its effectiveness is heavily dependent on the accu
racy of the current sensors and the accuracy of the initial SoC calcula
tion. Coulomb counting is an open-loop estimator, though, thus it does 
not completely prevent the buildup of measurement errors and ambig
uous perturbations. It also cannot account for variations in the first SoC 
brought on by self-discharging or identify the initial SoC [20]. This 
strategy will result in growing SoC estimation mistakes without 
knowledge of the starting SoC [21]. 

The data-driven estimating approach, on the other hand, has also 
been used in several studies to estimate the SoC. Support vector ma
chines, fuzzy control, artificial neural networks (ANN) [22], and other 
combinations of the methods were often used in classical machine 
learning applications. Conventional machine learning methods typically 
involve no more than two layers of processing [23]. 

ANN is receiving increasing attention for state estimations under 
various battery dynamics, fluctuating load, and changing temperatures. 
The main advantage is that information fusion-based models properly 
represent the nonlinear behavior of the battery discharging and 
charging process because of the training process. There are difficulties in 
selecting the hidden nodes’ activation function, figuring out how many 
neurons are in the hidden layer, and adjusting the learning rate. 
Traditional neural networks often involve complex computations, and 
when the training data is scarce, the trained model is not accurate for a 
diverse range of operations. Conversely, when the training data is huge, 
the model is easily caught in a local minimum condition generating rigid 
solutions [24]. 

Nevertheless, several advancements in recent years have made the 
traditional ANN very effective. The capability of the conventional ANN 
is considerably improved by adding more computational layers than 
were previously conceivable owing to software and hardware limita
tions. The deep-neural-network (DNN) [25], which is simply an ANN 
with extra computational layers, is the enhanced form of the ANN. The 
DNN now holds the best performance in areas including computer 
vision, speech recognition, and natural language processing when 
combined with smarter training methods and adjustments. Despite 
recent advancement, an accurate estimation of SoC is essential to 
accommodate the variety of conditions and electrochemical properties 
of materials used by classical empirical techniques. Robust algorithms 
are core for collecting data to be analyzed and improvise SoC under 
diverse operating scenarios [26]. Most existing models do not accom
modate for aging health factors and cross-correlations of SoC with 
interdependent nonlinearities within collected data [27,28]. Modern 
SoC estimation is essential to ensure that EVs are equipped with accurate 
and reliable systems for monitoring and managing their batteries [29]. 

To estimate the SoC using DNN is a relatively recent concept, 
nonetheless. There aren’t many published papers on SoC estimation 

Fig. 1. Proposed SoC Estimation Process for Li-ion batteries in EV.  
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with DNN. In Ref. [30], the SoC of batteries has been correctly predicted 
by the authors using two distinct DNN variations. LSTM network was 
trained and tested on certain driving cycles that were adopted. Without 
the use of any filtering techniques, the data reveal very positive results. 
These authors suggested utilizing multilayer DNN to forecast the SoC in 
another paper. However, there are several DNN variations that haven’t 
been studied for the purpose of SoC estimation [31]. Numerous deep 
learning publications have emerged that offer various types of deep 
neural networks for SoC estimation [32]. This study is inspired by these 
most recent developments and trends. 

1.2. Contribution and paper organization 

In this paper, Hybrid Deep Neural Network structure is proposed for 
SoC estimation for Lithium-ion batteries in EV. The proposed general
ized structure of SoC estimation is presented in Fig. 1. Contributions of 
this work are.  

• Detailed Analysis of multilayer DNN structure for SoC estimation is 
presented.  

• Novel implementation of Mountain Gazelle Optimizer (MGO) based 
Deep Neural Network architecture is proposed for SoC Estimation.  

• MGO updates parameters i.e., weights and biases, of DNN according 
to the loss function.  

• Comparison is made with Mayfly Optimization based DNN 
(MFADNN), Particle Swarm Optimization based DNN (PSODNN), 
and Back-Propagation based DNN (BPDNN).  

• Four distinct Drive Cycle Tests at different temperatures are 
employed for Validation.  

• Evaluation indexes i.e., Normalized Mean Square Error (NMSE), 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and 
Relative Error (RE) are presented for comparison.  

• The proposed MGODNN shows better performance as compared to 
competing techniques. 

The rest of the paper is organized as follows: Section 2 includes the 
proposed technique in which the Mountain Gazelle Optimizer is 
explained. The DNN architecture and the training process is also out
lined. Section 3 explains the dataset generation of different drive cycles. 
Section 4 presents the estimation results of the proposed technique and a 
comparative analysis with competing techniques. Summary of results 
and conclusions are given in Section 5. 

2. Proposed technique 

In this section, first, the Mountain Gazelle Optimizer algorithm is 
presented highlighting the use of this approach for optimization prob
lems. Successively, the architecture of the proposed DNN is explained. 
An important part of DNN is the hyperparameters, which are explained 
sub-sequentially. In the last part, DNN training using MGO is outlined. 

2.1. Mountain Gazelle Optimizer (MGO) 

This section presents an optimization method based on mountain 
gazelle social behavior and lifestyle [33]. A mathematical representa
tion of the MGO algorithm has been developed using the fundamental 
ideas underlying the community and grouping behavior of mountain 
gazelle. The four primary aspects of the mountain gazelle’s life
—bachelor male herds, maternity herds, solitary, territorial males, and 

Fig. 2. Optimization procedure of MGO algorithm.  
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movement in search of food—are used to execute optimization 
operations. 

Each gazelle (Xi) in the MGO algorithm has the potential to join a 
herd of maternity herds, a herd of solitary males, or a herd of lone, 
territorial males during the optimization procedure. One of these 3 herds 
may give birth to a young gazelle. Adult male gazelles in the herd’s 
domain are MGO’s greatest option for the entire world. Approximately 
one-third of the search population, which consists of male bachelor 
gazelles that are not yet mature or strong enough to reproduce or 

dominate females, will have the lowest fitness. This is because these 
gazelles are not yet fully developed or capable of reproducing or gaining 
control of female gazelles. 

Other options that are open to the entire populace are also regarded 
as gazelles in maternity herds. At the conclusion of each repeat, strong 
gazelles with viable alternatives are still there. Old and diseased gazelles 
are deemed to be eliminated from the population, whereas other alter
natives that are introduced to the overall population and cost consid
erably less are thought to be. The techniques used by MGO to carry out 
optimization operations are developed and described mathematically in 
the sections that follow. 

As compared to other metaheuristic algorithms, the exploitation and 
exploration stages of the proposed method are carried out simulta
neously employing four mechanisms. The exploitation and exploration 
stages are carried out concurrently. In other words, a solution may 
advance in the direction of the optimum solution while also carrying out 
the exploration operation in accordance with the four processes of the 
suggested model. These methods are presented in Fig. 2.  

i. Territorial Solitary Males 

Fig. 3. Proposed 3 Layer DNN structure with MGO as Training Algorithm to update weights and biases.  

Table 1 
Different hyperparameters of DNN and selected values.  

Hyperparameters Selected Values 

No. of Hidden Neurons 10 
No. of Hidden Layers 3 
Optimization Algorithm Mountain Gazelle Optimizer (MGO) 
Dropouts No 
Activation Function for Hidden Layers Radial Basis 
Activation Function for Output Layer Sigmoid 
No. of Weights and Biases 151  

Fig. 4. Flow Chart of Proposed Technique in which MGO uses to update Weights and Biases of DNN.  
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When adult alpine gazelles enter maturity and are physically able to 
defend themselves, they establish solitary regions, which are far apart. 
Adult male gazelles fight each other for control of the female’s territory 
or ownership. While the older males attempt to safeguard their sur
roundings, the adolescent males attempt to seize the territory or the 
female. This is expressed by the following equation: 

TSM =malegazelle − |(ri1 ×BH − ri2 ×X\(t))×F| × Cofr (1)  

where malegazelle is the global best solution in equation (1). Random in
tegers between 0 and 1make up the parameters ri1 and ri2. The young 
male herd coefficient vector, or BH, is determined using Equation (2). 
Equation (3) is used to calculate F. Additionally, to improve search ef
ficiency, Cofr is a randomly chosen coefficient vector that is updated 
after each iteration (4). The value of Cofr is calculated using Equation 
(4). 

BH =Xra × [ri1] +Mpr × [ri2], ra=
{[

N
3

]

⋯N
}

(2) 

In Equation (2), Xra represents random particle in the range of ra. Mpr 

is average number of particles selected randomly 
[

N
3

]
which are 

randomly selected. N is total population, while ri1 and ri2 are random 
values between 0 and 1. 

F =N1(D) × exp
(

2 − iter ×
(

2
Maxiter

))

(3)  

where N1 is random value from normal distribution in Equation (3)’s 
problem dimensions. Iter is the current iteration, Maxiter is the total it
erations, and exp is another name for the exponential function. 

Cofr =

⎧
⎪⎨

⎪⎩

(a + 1) + r3,

a × N2(D),

r4(D),

N3(D) × N4(D)
2
× cos((r4 × 2) × N4(D)),

(4) 

Equation (4) determines the value of “a" using Equation (5). Addi
tionally, r3," r4," are random numbers that fall within the range of 0 and 
1. “ N2," " N3," and " N4" are random numbers that are normally 
distributed within the dimensions of the problem. The symbol " cos " 
represents the cosine function. The parameter a is a controlling 
parameter which varies from − 1 to − 2 over the iterations and it is ob
tained as follows: 

a= − 1+ iter ×
(

− 1
Maxiter

)

(5)    

ii. Maternity Herds 

This stage is crucial to the mountain gazelle’s life cycle. Male gazelle 
can also be involved in the birth of gazelles and the attempts of young 
males to mate with females. Equation (6) is used to analyze this 
behavior: 

MH =
(
BH +Cof1,r

)
+
(
ri3 ×malegazelle − ri4 ×Xrand

)
× Cof2,r (6)  

In Equation (6), “BH” is young male’s influence value, as calculated in 
Equation (2). Cof1,r and Cof2,r are factors computed using Equation (4). 
ri3 and ri4 represents integer value either 1 or 2. malegazelle represents the 
best solution. Finally, Xrand is randomly selected particle. 

Fig. 5. Voltage, Current, Temperature and SoC of Battery for: (a) DST Dataset with 0 Degree Temp (b) FUDS Dataset with 0 Degree Temp (c) BJDST Dataset with 
0 Degree Temp (d) US06 Dataset with 0 Degree Temp. 

Table 2 
Battery Specs used in Experimental Setup for Generation of Different Datasets.  

Type Capacity 
(Ah) 

Voltage 
(V) 

Cut off 
Voltage. 

Maximum 
Current (A) 

Life Cycle 

18,650 
NMC 

2.0 3.60 2.4/4.2 22 1000–2000  
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iii. Bachelor Male Herd 

Male gazelles tend to establish territories and seize control of female 
gazelles as they get older. Young male gazelles start fighting older males 
for dominance of the females at this point, and there may be a lot of 
violence involved. Equation (7) is utilized to mathematically represent 
this behavior of gazelles: 

BMH =(X(t) − D)+
(
ri5 ×malegazelle − ri6 ×BH

)
× Cofr (7)  

In Equation (7), X(t) represents current particle. The value of D is 
determined using Equation (8). ri5 and ri6 represents integer value either 
1 or 2. Cofr is selected randomly used using Equation (4). 

D=
(
|X(t)| +

⃒
⃒malegazelle

⃒
⃒
)
× (2× r6 − 1) (8) 

Fig. 6. (a–d) The data correlation Matrix at STC conditions for 4-main data clusters for SoC w.r.t. Voltage, current and Discharge.  

Table 3 
Evaluation of proposed training algorithm on different hidden layers of DNN 
(DST drive cycle).  

Hidden Layers NMSE RMSE MAE RE Time (s) 

1 0.0980 0.023 4.27 0.215 101.1 
2 0.0013 0.009 0.57 0.047 124.5 
3 0.0010 0.003 0.15 0.017 152.3 
4 0.0016 0.007 0.68 0.024 178.6 
5 0.0053 0.042 1.15 0.026 213.3  
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iv. Migration (Movement) in Search of Food 

These animals are known for their extreme running pace and strong 
jumping abilities. Equation (9) has been used to mathematically model 
these behaviors of mountain gazelles: 

MSF =(ub − lb)× r7 + lb (9) 

In Equation (9), ub and lb are upper and lower limits. Finally, r7 is a 
number between 0 and 1 chosen randomly. To produce new populations 
of gazelles, the four above explained mechanisms are applied to all ga
zelles. Each generation is equivalent to one replication, and each period 
increases the total population. Additionally, towards the conclusion of 
each era, all gazelles are sorted in increasing order. The best gazelles are 
those that offer high-caliber, promising solutions in the population. 
Older or weaker gazelles are culled from the population. The adult male 
gazelle who controls the territory is also thought to be the best gazelle. 

2.2. DNN architecture 

The DNN is a type of neural network that consists of at least four 
layers: input layer, two hidden layer and one output layer [34]. In this 
study, we investigate the use of DNNs for estimating SoC of battery. 
Rather than relying on expert knowledge of battery chemistry, we use a 
data-driven approach in which the DNN is trained on a dataset of battery 
parameters measured under controlled laboratory conditions. This 
dataset includes measurements of voltage, current, and temperature, 
which are used to estimate the SoC. While this method requires precise 

sensor calibration and accuracy, it offers an alternative to model-based 
approaches that rely on mathematical models of battery behavior. 

In this case, DNN is trained to model the behavior of battery by 
mapping inputs, which are a vector of battery parameters (voltage, 
current, and temperature), to a scalar output representing the calculated 
SoC. Mathematically, the input vector is defined as X = [Vk, Ik,Tk] and 
the output as Y = SoCk, where Vk is the instantaneous voltage, Ik is the 
instantaneous current, Tk is the instantaneous temperature, and SoCk is 
the SoC value. The input vector is provided to the input layer of DNN, 
and the resulting value of the SoC is obtained at the output layer. The 
proposed three-layer DNN structure is shown in Fig. 3. 

To get the output YK i.e., SoC from the DNN, input must go through 
multiplication of matrix in hidden layers. hk is the activation in hidden 
layers, wk are the weights, bk are the biases. Activation in hidden layer 
can be calculated as Equation (10): 

hk =Ω
(∑(

wkhk− 1 + bk)
)

(10)  

where Ω is the activation function i.e., Radial Basis Function (RBF) and 
this RBF Is mathematically represented in Equation (11): 

Fig. 7. Comparison of Best Cost vs Epochs for Multilayer DNN Structures on 
DST Drive Cycle Dataset using MGO as Training Algorithm. 

Fig. 8. Cost vs Epochs Comparative Analysis of all Techniques on: (a) DST Drive Cycle (b) BJDST Drive Cycle (c) FUDS Drive Cycle (d) US06 Drive Cycle.  

Table 4 
Comparative analysis of all competing techniques with proposed technique.  

Drive 
Cycles 

Technique NMSE RMSE MAE Mean RE Time (s) 

DST MGO- 
DNN 

0.0010 0.0021 0.15 0.017 197.3 

MFA-DNN 0.0063 0.005 0.38 0.036 758.4 
PSO-DNN 0.0241 0.011 1.45 0.561 247.1 
BP-DNN 0.0157 0.078 0.79 0.651 181.2 

BJDST MGO- 
DNN 

0.0021 0.0024 0.24 0.052 220.6 

MFA-DNN 0.0056 0.047 0.53 0.075 876.9 
PSO-DNN 0.0320 0.112 1.03 0.89 261.3 
BP-DNN 0.0345 0.120 1.87 1.67 198.4 

FUDS MGO- 
DNN 

0.0002 0.0004 0.023 0.0021 138.7 

MFA-DNN 0.0031 0.0035 0.101 0.0065 387.2 
PSO-DNN 0.0254 0.072 1.22 0.0765 256.3 
BP-DNN 0.0165 0.023 0.91 0.019 118.2 

US06 MGO- 
DNN 

0.0009 0.0019 0.13 0.006 132.6 

MFA-DNN 0.0066 0.0530 1.43 0.023 654.9 
PSO-DNN 0.0148 0.811 2.37 0.061 189.3 
BP-DNN 0.0660 0.967 1.87 0.073 101.3  
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Ω(x)= e−
(x− c)2

r2 (11)  

where x is the input, c is center, and r is radius of the represented dataset. 
The output vector for the output layer neurons is computed as fol

lows: 

YK = SoCK =Ω
(∑(

wKhK− 1 + bK)
)

(12)  

where K represents the last hidden layer. 

2.3. Hyperparameters of DNN 

Deep learning algorithms often have a variety of hyperparameters 
that can affect their behavior and performance [35]. When using a DNN, 
it is necessary to choose the values of these hyperparameters. Table 1 
lists some of the most important hyperparameters and their selected 
values for this work. As shown in the table, the number of possible 
combinations of these values is very large. Search space for hyper
parameters rises exponentially with the increase in number of hidden 
layers and neurons. This makes it difficult and time-consuming to find 
the optimal combination of hyperparameters for a given task. There are 
various algorithms that can assist with hyperparameter optimization, 
but this is an active area of research and is outside the scope of this study 
[36]. In this study, we will focus on two important hyperparameters that 
have a significant impact on the behavior of a deep neural network: the 
number of hidden layers and the weights and biases of the layers. 

It is well-known that increasing the number of neurons and hidden 
layers in a deep neural network model can improve its expressiveness, if 
overfitting is avoided. This study will examine the effects of increasing 
the number of hidden layers on the performance of the DNN. However, 

one major concern with adding more hidden layers and neurons is the 
risk of overfitting. To limit the danger of overfitting, a batch normali
zation (BN) layer is introduced after each consecutive hidden layer. By 
minimizing internal covariance shift, using BN layers has also been 
proven to drastically cut down on training time. In the following sec
tions, a comparative analysis will be presented, which demonstrates that 
a model with 3 hidden layers is the best balance between accuracy and 
time. 

2.4. DNN training using MGO 

The most important hyperparameters of DNN are the Weights and 
Biases which need to be updated according to the Dataset for best ac
curacy. In this work MGO algorithm is used to update the Weights and 
biases of the DNN. 

MGO is a computer technique for minimizing a problem by repeat
edly attempting to raise a candidate solution’s quality score. In an MGO- 
based neural network training algorithm, the individual particles in the 
population represent different potential solutions to the optimization 
problem, which in this case is the configuration of the network’s weights 
and biases that will result in the best performance on a given dataset. 
Each particle has a position in the search space that corresponds to a 
particular set of network weights and biases, as well as a velocity that 
determines how the particle moves through the space. The MGO algo
rithm continues iterating until some stopping criteria is met, such as a 
maximum number of iterations or a satisfactory level of performance on 
the training dataset. By using the collective intelligence of the particles 
to search for good solutions, the MGO-based training algorithm finds 
high-quality network configurations more quickly than other methods. 
In this work NMSE [37] as a Cost Function is used to train DNN structure 

Fig. 9. SoC Estimation of MGODNN for DST Drive Cycle. (a) Drive cycle at 0◦ Temp (b) Drive cycle at 25◦ Temp (c) Drive cycle at 45◦ Temp.  

M.H. Zafar et al.                                                                                                                                                                                                                                



Energy 282 (2023) 128317

9

using MGO optimization algorithm which is presented in Equation (13): 

COST =
1
N

∑N

i=1

(SoC(T) − SoC(P))2

(SoC(T))2 (13)  

where N is total quantity of samples, SoC(T) is the actual SoC Value, SoC 
(P) is the predicted SoC by DNN. The flow chart of MGO-based DNN 
training is presented below in Fig. 4. 

Several error metrics can be used to evaluate the performance of 
deep neural network (DNN) models, which are also called Loos or Cost 
Function. These include the NMSE, RMSE, and MAE [38]. The equations 
for these error metrics are as follows: 

MSE =
1
N

∑N

i=1
(SoC(T) − SoC(P))2 (14)  

NMSE =
1
N

∑N

i=1

(SoC(T) − SoC(P))2

(SoC(T))2 (15)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(SoC(T) − SoC(P))2

√
√
√
√ (16)  

MAE =
1
N

∑N

i=1
|SoC(T) − SoC(P)| (17)  

3. Experimental setup 

In this work, we used MATLAB 2021a as for implementation of 
Hybrid Deep Learning Models for SoC estimation and the hardware used 
is AMD Ryzen 5 5500U with Radeon Graphics 2.10 GHz. The depth of a 

DNN (number of computational layers) can affect its performance in 
estimating the SoC. To study this, we trained a DNN with different 
hidden layers using the parameters in Table 1. Then, we evaluated the 
selected 3-layer DNN’s performance in predicting the SoC on different 
drive cycles using the mean squared error (MSE), root mean squared 
error (RMSE), mean absolute error (MAE), and mean absolute percent
age error (MAPE) error metrics [39]. We repeated this process with 
increasing the depth of the DNN. 

3.1. Drives cycles of EV 

Drive cycles are a standard method of evaluating the characteristics 
of electric vehicles (EVs), e.g. energy utilization and releases [40]. Some 
common drive cycles used in EV testing include the FUDS, US06, BJDST, 
DST [41]. Fig. 5 illustrates sample plots of current, voltage, temperature, 
and state of charge for the different drive cycles used in this work. 

3.2. SoC dataset 

In this study, we utilized data from the CALCE Research Group, 
which was made available to us [41]. The data was collected using 
various drive cycles on a cylindrical INR 1865020 R LiNiMnCoO2/NMC 
Li-ion battery cell, using standard charging and discharging protocols. 
The cell was first charged using a constant current/constant voltage 
protocol and then discharged at three different temperatures (0 ◦C, 
25 ◦C, and 45 ◦C). The specifications of the battery used in the study are 
included in Table 2. 

3.3. Data diversity 

To generate a superior training environment, multiple data sets are 

Fig. 10. SoC Estimation of MGODNN for BJDST Drive Cycle. (a) Drive cycle at 0◦ Temp (b) Drive cycle at 25◦ Temp (c) Drive cycle at 45◦ Temp.  
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highly effective [42]. 16 distinct cases for data are utilized using com
bination of four drive cycle data sets and training models. The correla
tion matrix (CM) is employed to show the relationship between several 
variables to highlight strong association between multiple variables 
with strength and direction of the relationships. Each cell in the matrix 
contains a correlation coefficient ranging between − 1 and 1. When the 
correlation coefficient is 1, it means that as one variable rises, the other 
variable rises as well and for − 1 vice versa. There is no connection be
tween the variables when the correlation coefficient is 0. CM advocates 
for the identification of patterns and trends in the data while identifying 
multicollinearity in multiple regression models. The analysis shows a 
strong positive relationship SoC with voltage and discharge capacity 
(Disch) as compared to current density. Moreover, urban settings 
(BJDST and US06) impact the SoC more comparatively. Lower tem
peratures, repeated discharging and charging also impacts the SoC in 
long run. Fig. 6 below shows the strong diversity of datasets at STC 
conditions. 

4. Results and discussion 

In this section first the evaluation of different layer DNN structure is 
presented on DST dataset. From the comparative analysis, the 3-layer 
DNN structure is selected for SoC estimation and then tested on all 
drive cycle tests. In the last, comparative analysis is presented with the 
competing techniques, which shows that proposed Hybrid model out
performs in SoC estimation. 

4.1. Evaluation of DNN architectures 

For effective training and testing of DNN models, the number of 

hidden layers plays an important role. In this work, we investigated DNN 
models with up to 5 hidden layers to check the performance and select 
the best performing model. The evaluation indices used are NMSE, 
RMSE, MAE, RE and Time taken for training the model. Comparative 
evaluation of different DNN models is presented in Table 3 and cost vs 
epochs analysis is presented in Fig. 7. 

In single layer neural network structure, the training and testing time 
is very low as compared to other models, but the evaluation indices 
values are very high which indicates that the single layer neural network 
doesn’t perform well in this estimation problem. 2-layer, 3-layer and 4- 
layer DNN models perform well on SoC estimation dataset with the cost 
of higher time. The lowest evaluation indices value is achieved by 3- 
layer DNN structure which is also a good trade-off between cost value 
and time. 3-layer DNN achieves NMSE value 0.0010 which is up to 80% 
less as compared to other structures. Therefore, 3-layer DNN structure is 
proposed for SoC estimation in this work. All these structures are trained 
using the proposed MGO algorithm. 

After the selection of DNN structure, the proposed MGO-DNN needs 
to train on dataset to check the training performance. All the 4 datasets 
are divided into 80-20% training and testing data. Fig. 8 shows the 
comparison of cost vs epochs by competing techniques with proposed 
MGO-DNN. In all 4 drive cycle datasets, MGO-DNN effectively reduces 
the cost function over the iterations and achieves less cost as compared 
to MFA-DNN, PSO-DNN and BP-DNN. Fast reduction of cost function by 
MGO-DNN shows that MGO is very effective to update the weights and 
biases. BP-DNN permanently stuck in local minima while training the 
DNN and MFA-DNN reduces the cost function effectively. Therefore, 
MGO as a DNN training algorithm for SoC estimation is validated. 

Fig. 11. SoC Estimation of MGODNN for FUDS Drive Cycle. (a) Drive cycle at 0◦ Temp (b) Drive cycle at 25◦ Temp (c) Drive cycle at 45◦ Temp.  
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4.2. Testing evaluation of proposed technique 

With MGO as a training algorithm, the proposed DNN structure can 
perform well under different drive cycle tests for SoC approximation of 
Li-ion batteries in EV. Evaluation of proposed technique is presented in 
Table 4. MGO-DNN is compared with other hybrid DNN models i.e., 
Mayfly-based DNN (MFA-DNN), Particle Swarm Optimization based 
DNN (PSO-DNN), and classical Back Propagation based DNN (BP-DNN). 
The competing techniques are tested on 4 drive cycles datasets i.e., DST, 
BJDST, FUDS, and US06 at different temperatures (0oC,25oC,45oC). The 
parameters used to evaluate the testing performance are NMSE, RMSE, 
MAE, RE and Time. 

In case 1, which is SoC estimation for DST drive cycles, the estimated 
SoC for different temperatures by MGO-DNN is shown in Fig. 9. The 
NMSE achieved by MGO-DNN, MFA-DNN, PSO-DNN and BP-DNN is 
0.0010, 0.0063, 0.0241 and 0.0157 respectively. As shown in Table 4, 
MGO-DNN achieves low NMSE, RMSE, MAE and RE as compared to 
MFA-DNN, PSO-DNN and BP-DNN but the time taken by BP-DNN is low 
as compared to MGO-DNN and other techniques. Time utilized by MGO- 
DNN, MFA-DNN, BP-DNN and PSO-DNN is 197.3s, 758.4s, 247.1s, and 
181.2s respectively. As shown in Fig. 9, MGO-DNN performs very well 
for DST drive cycle at all temperatures. 

In case 2, which is SoC estimation for BJDST drive cycles, the esti
mated SoC for different temperatures by MGO-DNN is shown in Fig. 10. 
The NMSE achieved by MGO-DNN, MFA-DNN, PSO-DNN, and BP-DNN 
is 0.0021, 0.0056, 0.0320, and 0.0345 respectively. As shown in 
Table 4, MGO-DNN achieves low NMSE, RMSE, MAE, and RE as 
compared to MFA-DNN, PSO-DNN, and BP-DNN but time taken by BP- 
DNN is low as compared to MGO-DNN and other techniques. The time 
utilized by MGO-DNN, MFA-DNN, BP-DNN and PSO-DNN is 220.6s, 
876.9s, 261.3s, and 198.4s respectively. As shown in Fig. 9, MGO-DNN 

performs very well for BJDST drive cycle on all temperatures. 
The proposed MGO-DNN is also tested on FUDS and US06 drive 

cycles dataset which also validates that MGO-DNN achieves less error 
under all temperatures, but the time performance is second best after BP- 
DNN. The SoC estimation by MGO-DNN for FUDS and US06 datasets is 
shown in Figs. 11 and 12. 

To check the estimation performance of proposed MGO-DNN, the 
relative error is also calculated and shown in Fig. 13. This shows that the 
MGO-DNN performs well when the SoC value is high but estimated 
value starts deviating as discharging occurs. 

4.3. Comparative analysis 

In this work MGO based DNN model is presented for SoC estimation. 
Proposed work is compared with more estimation techniques. To vali
date the performance of proposed technique, it is also compared with 
state-of-the-art estimation techniques presented in literature. Table 5 
shows that multiple efforts are made by authors for accurate SoC esti
mation using long-short term memory recurrent neural network (LSTM- 
RNN) and Back Propagation based DNN. All the comparative techniques 
are tested on same drive cycle tests, and it is clear that MGO-DNN 
achieves less NMSE and RMSE errors (up to 66% less) as compared to 
LSTM-RNN architecture. 

4.4. Gragner causality test 

The Granger causality test (GCT) is a statistical hypothesis test that 
assesses whether past and present values of a set of m1 time series 
variables, called the “cause” variables, affect the predictive distribution 
of a distinct set of m2 time series variables, called the “effect” variables 
[44]. A cyclic process is modelled as a series of events. The estimation 

Fig. 12. SoC Estimation of MGODNN for US06 Drive Cycle. (a) Drive cycle at 0◦ Temp (b) Drive cycle at 25◦ Temp (c) Drive cycle at 45◦ Temp.  
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solidifies the time series behavior in SoC prediction. Data should be 
transformed to eliminate the possibility of autocorrelation and unit roots 
should be removed as these roots skew the test results. The core steps of 
Granger causality are given in Table 6. The GCT results are summarized 
in Table 7. The value of βj = 0 is calculated for all lags (j) using Equation 
(18) and Equation (19) 

y(t)=
∑∞

i=1
αiy(t − i)+ c1 + v1(t) (18) 

Fig. 13. Relative Error comparison of MGODNN on different Drive cycle tests. (a) US06 Drive Cycle (b) (b) DST Drive Cycle (c) BJDST Drive Cycle (d) FUDS 
Drive Cycle. 

Table 5 
Comparative Analysis of MGO-DNN with Recently Proposed Techniques for SoC 
estimation.  

Technique Drive Cycles Temperature Error % 

Proposed (MGO- 
DNN) 

DST, BJDST, FUDS, 
US06 

0oC,25oC,45oC NMSE, 0.1% 
RMSE, 0.2% 

LSTM-ACKF [43] FUDS, US06 0oC,25oC,40oC RMSE, 0.9% 
BP-DNN [41] DST, BJDST, FUDS, 

US06 
0oC,25oC,45oC NMSE, 

0.49% 
LSTM-RNN [30] US06, FUDS 0oC,25oC,40oC RMSE, 0.4%  

Table 6 
Granger causality test comparison.  

Step # Explanation 

Step 1: State the null hypothesis and alternate hypothesis i.e. y(t) confines 
Granger-cause x(t) 

Step 2: Choose the lags: The results should not be sensitive to lags. It is 
convenient to pick several values and run the Granger test several 
times to see if the results are the same for different lag levels. 

Step 3: Calculate the f-value using Eq. (20) and Eq. (21), 
Step 4: Calculate f-statistic using Eq. (22) 
Hypothesis: (for X and Y data arrays) 

H0: lagged values of X do not Granger-cause Y 
Ha: lagged values of X do Granger-cause Y  

Table 7 
Granger causality test comparison of RE.  

Drive Cycle Technique F-Value SE T statistic P = value 

DST MGO-DNN 0.6328 0.150 0.0103 0.1039 
MFA-DNN 0.8258 0.380 0.0344 0.1007 
PSO-DNN 1.2014 1.450 0.0469 0.0950 
BP-DNN 1.2837 0.790 0.0234 0.1272 

BJDST MGO-DNN 0.7662 0.240 0.0103 0.1039 
MFA-DNN 0.8938 0.530 0.0344 0.1007 
PSO-DNN 1.2183 1.030 0.0469 0.0950 
BP-DNN 1.2837 1.870 0.0234 0.1272 

FUDS MGO-DNN 0.6328 0.020 0.0103 0.1039 
MFA-DNN 0.8258 0.110 0.0344 0.1007 
PSO-DNN 1.3092 1.220 0.0469 0.0950 
BP-DNN 1.2837 0.910 0.0234 0.1272 

US06 MGO-DNN 0.6332 0.150 0.0103 0.1039 
MFA-DNN 0.8258 1.430 0.0344 0.1007 
PSO-DNN 1.3092 1.220 0.0469 0.0950 
BP-DNN 1.2837 1.870 0.0234 0.1272  
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y(t)=
∑∞

i=1
αiy(t − i)+

∑∞

i=1
βiy(t − j)+ c2 + v2(t) (19)  

With Equation (20) and Equation (21) check y(t) Granger-causes x(t) as: 

y(t)=
∑∞

i=1
αiy(t − i)+ c1 + u1(t) (20)  

y(t)=
∑∞

i=1
αiy(t − i)+

∑∞

i=1
βiy(t − j)+ c2 + u2(t) (21) 

Equation (22) provides the f-statistic as: 

F =
(ESSR − ESSUR)/q

ESSUR/(n − k)
(22) 

The results are summarized in Table 7 below. The proposed MGO- 
DNN closely associated SoC with an estimated value over all drive cy
cles as depicted by GCT. 

5. Conclusions 

In this work, the Mountain Gazelle Optimizer was used to train Deep 
Neural Networks for SoC estimation of Lithium-ion Battery for Electric 
vehicles. For the training and testing of the proposed model, MGO-DNN, 
four publicly available drive cycle datasets were used i.e., DST, BJDST, 
FUDS, and US06. The proposed model using MGO-trained DNN was able 
to accurately estimate the SoC of the lithium-ion battery in the electric 
vehicle. The use of MGO to train the DNN resulted in improved per
formance compared to other training methods, as demonstrated by the 
higher accuracy and lower error rates obtained. The proposed model 
was evaluated using several performance metrics, including NMSE, RE, 
EMSE, MAE and GCT. The results of the evaluation showed that the 
proposed model achieved a low NMSE, RMSE, MAE, and RE, indicating a 
high level of accuracy in the SoC estimation. For DST the NMSE, RMSE, 
MAE and RE are 0.0010, 0.002, 0.15, and 0.017. Achieving 12–170% 
lower error margins. Same performance is achieved in BJDST, FUDS and 
US06 drive cycles. Quantitative results demonstrate the effectiveness of 
the proposed model in estimating the SoC of a lithium-ion battery for an 
electric vehicle using INR 1865020 R LiNiMnCoO2/NMC Li-ion battery 
cell. Granger causality test also shows the minimum differential between 
actual and predicted SoC. The use of multiple performance metrics helps 
to provide a more comprehensive evaluation of the model’s perfor
mance. The proposed model has the potential to be applied in real-time 
monitoring and control systems for electric vehicles, enabling more 
efficient and reliable operation. 

Further research could be conducted to optimize the performance of 
the proposed model and explore its potential for use in other 
applications. 
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