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Simple Summary: This paper introduces a new method for cleaning impaired speech by combining
Pareto-optimized deep learning with Non-negative Matrix Factorization (NMF). The approach
effectively reduces noise in impaired speech while preserving the desired speech quality. The method
involves calculating the spectrogram of a noisy voice clip, determining a noise threshold, computing
a noise-to-signal mask, and smoothing it to avoid abrupt transitions. Using a Pareto-optimized NMF,
the modified spectrogram is decomposed into basis functions and weights, allowing for reconstruction
of the clean speech spectrogram. The final result is a noise-reduced waveform achieved by inverting
the clean speech spectrogram. Experimental results validate the method’s effectiveness in cleaning
alaryngeal speech signals, indicating its potential for real-world applications.

Abstract: The problem of cleaning impaired speech is crucial for various applications such as speech
recognition, telecommunication, and assistive technologies. In this paper, we propose a novel
approach that combines Pareto-optimized deep learning with non-negative matrix factorization
(NMF) to effectively reduce noise in impaired speech signals while preserving the quality of the
desired speech. Our method begins by calculating the spectrogram of a noisy voice clip and extracting
frequency statistics. A threshold is then determined based on the desired noise sensitivity, and a
noise-to-signal mask is computed. This mask is smoothed to avoid abrupt transitions in noise levels,
and the modified spectrogram is obtained by applying the smoothed mask to the signal spectrogram.
We then employ a Pareto-optimized NMF to decompose the modified spectrogram into basis functions
and corresponding weights, which are used to reconstruct the clean speech spectrogram. The final
noise-reduced waveform is obtained by inverting the clean speech spectrogram. Our proposed
method achieves a balance between various objectives, such as noise suppression, speech quality
preservation, and computational efficiency, by leveraging Pareto optimization in the deep learning
model. The experimental results demonstrate the effectiveness of our approach in cleaning alaryngeal
speech signals, making it a promising solution for various real-world applications.

Keywords: alaryngeal; voice quality; voice cleaning; voice disorders; Pareto optimization

1. Introduction

Laryngeal cancer remains the most common malignant tumor in the upper respiratory
tract [1]. Despite the decreasing incidence, approximately 60% of patients present with stage
III or IV disease at the initial workup [2,3]. Surgery or surgery combined with chemoradio-
therapy remains the preferred treatment method for laryngeal cancer, offering an optimal
5-year survival rate [4,5]. The surgical treatment options are laryngeal-preserving or radical
surgery. Laryngeal-preserving surgery options can range from endolaryngeal cordectomy
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with a laser to partial removal of the larynx—partial laryngectomy. The complete removal
of the larynx, also known as a total laryngectomy, is the radical option. The more advanced
the disease, the more radical the treatment required to achieve remission. Advanced la-
ryngeal cancer stages limit the treatment options that can be offered to patients. In most
cases, the complete removal of the larynx—total laryngectomy—is advised. Such surgery
leaves the patient without the larynx, the main part of the vocal apparatus, and their vocal
function is significantly impaired. Long-term voice and speech function rehabilitation is
required, often with unsatisfactory results. Total laryngectomy results in the complete
and permanent separation of the upper and lower airways and requires the creation of
a terminal tracheostoma to breathe. The complete removal of the larynx and lack of air
movement through the mouth results in patients’ total loss of phonatory function [6]. After
the removal of the larynx, the patient has to rely on alaryngeal speech to communicate.
Alaryngeal speech can be achieved in three ways: esophageal speech, an electrolarynx, or a
tracheoesophageal prosthesis (TEP). Esophageal speech and an electrolarynx benefit from
low maintenance and do not require additional surgery. The TEP outperforms both methods
by providing better perceptual (voice quality and intelligibility) and acoustic (maximum
phonation time, fundamental frequency, and intensity) speech outcomes [7]. A TEP can be
implanted through a tracheoesophageal fistula formed during laryngectomy or later [8].
It functions as a one-way valve that allows the air to move from the trachea to the esophagus
but keeps the food and liquids from entering the lungs (see Figure 1).

Figure 1. Types of speech production after total laryngectomy. (A) Esophageal speech: air is pulled
in and released from the esophagus; (B) vibrations created by an electrolarynx; (C) the patient is
occluding a tracheostoma to allow air to pass through the mouth. Adapted from Hurren 2015 [9].

The air moving through the TEP creates vibrations in the mucosa and generates
speech [10]. The use of a pulmonary air supply to speak increases fluency and utterance
lengths [11]. Despite its higher maintenance costs, the TEP is the preferred method for
speech rehabilitation after total laryngectomy [12]. Alaryngeal (esophageal or TEP) speech
is a patient’s only verbal communication option after a total laryngectomy. Although the
patient retains the ability to speak, the body begins to adapt and substitutes vocal folds with
structures (aryepiglottic/ventricular folds, pharyngeal mucosa) that were not naturally
intended for voice production. The downside of this adaptation is that the speech generated
in this manner features frequent unintended phonatory breaks, frequency shifts, unvoiced
segments, and high irregularity, and might be aperiodic (see Figure 2) [13]. It becomes even
more problematic when the patient has to use the phone or speak in a loud environment,
which may lead to social isolation [14,15]. The inability to communicate is most prominent
in the early postoperative period before any speech rehabilitation occurs when patients
have to rely on written text to communicate with their physician and family.
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Figure 2. (A) Normal speech; (B) Speech after total laryngectomy with a tracheoesophageal prosthesis.
Cochleagram deterioration and blurring between different words caused by aperiodicity, phonatory
breaks, and additive noise.

It becomes even more problematic when the patient has to use the phone or speak in a
loud environment, which may lead to social isolation [13,14]. The inability to communicate
is most prominent in the early postoperative period before any speech rehabilitation occurs
when patients have to rely on written text to communicate with their physician and family.
Therefore, enhancing the signal quality of alaryngeal speech and improving a patient’s
speaking ability represent fundamental scientific/technical and clinical issues.

This may involve techniques such as breath control [16], pitch and tone modifica-
tions [17,18], and articulation exercises [19], including spectral subtraction [20], Wiener
filtering [21], and statistical prediction model-based [22] or machine learning-based ap-
proaches [23]. However, these traditional methods often suffer from drawbacks such as
introducing artifacts, suppressing the desired speech components, or being computationally
expensive. With the advent of deep learning, several new approaches have been proposed
that leverage the power of neural networks to address the limitations of traditional meth-
ods. Among these, non-negative matrix factorization (NMF) [24] has gained significant
attention for its ability to represent non-negative data such as audio spectrograms as a
linear combination of basis functions [25].

In this paper, we propose a novel approach for cleaning impaired speech signals by
combining Pareto-optimized deep learning with NMF. Our method aims to balance various
objectives, such as noise suppression, speech quality preservation, and computational
efficiency, by leveraging Pareto optimization in a deep learning model. By incorporating
Pareto optimization, we ensure that the trade-offs between different objectives are optimally
balanced, ultimately improving the performance of the noise-reduction process.

The proposed method consists of several steps. First, we calculate the spectrogram of
a noisy voice clip and extract its frequency statistics. Based on the desired noise sensitivity,
a threshold is calculated to distinguish between the signal and noise components in the
spectrogram. Next, we compute the noise-to-signal mask and smooth it to avoid abrupt
transitions in noise levels. The modified spectrogram is then obtained by applying the
smoothed mask to the signal spectrogram. To further enhance the speech signal, we employ
a Pareto-optimized NMF to decompose the modified spectrogram into basis functions and
corresponding weights. These basis functions and weights are learned to best represent the
clean speech signal while achieving a balance between various objectives. Finally, the clean
speech spectrogram is reconstructed using the learned basis functions and weights, and a
noise-reduced waveform is obtained by inverting the clean speech spectrogram.

The main contributions of this paper are as follows:

• We propose a novel method for cleaning impaired speech signals by combining Pareto-
optimized deep learning with NMF, addressing the limitations of traditional speech
enhancement techniques.

• We introduce a smoothing technique for the noise-to-signal mask to avoid abrupt
transitions in noise levels, resulting in a more natural-sounding output signal.

• We demonstrate the effectiveness of our approach through a series of experiments,
showing significant improvements in speech quality and intelligibility compared to
traditional methods.
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The remainder of this paper is organized as follows. Section 2 provides a review of the
related works in the field of speech enhancement. In Section 3, we describe our proposed
method. Section 4 presents the experimental setup and results, followed by a discussion of
the findings. Finally, Section 5 concludes the paper and suggests future research directions.

2. Review of State-of-the-Art Works

This overview of related works aims to help the reader explore the various approaches
to improving speech intelligibility and quality for individuals with speech disorders. Vari-
ous techniques, such as clear speech variants, adaptive filter structures, deep learning mod-
els, and speech enhancement algorithms, have been investigated to address the challenges
in speech enhancement. These studies demonstrate the potential of different methods,
including instruction-based interventions, signal processing, and machine learning tech-
niques, to enhance speech intelligibility and quality across various disorders and conditions.
The findings may help the reader better understand the complex relationship between
speech impairments and the effectiveness of different approaches in overcoming these
challenges, ultimately improving communication for affected individuals.

2.1. Assessing Speech-Signal Impairments

Evaluating the quality and intelligibility of alaryngeal speech can be difficult for
several reasons [26]. First, evaluating speech quality is inherently subjective, as different
people may have different opinions on what constitutes good or clear speech. Evaluators
may also have biases or preconceived notions about alaryngeal speech, which can affect
their judgment [27]. Second, alaryngeal speech can be complex and variable, depending
on the individual’s chosen method of alaryngeal speech and their level of proficiency [28],
among other factors. Evaluators may need to consider multiple aspects of speech, such as
pitch, tone, articulation, and prosody, which can make the evaluation more challenging [29].
Third, there is a limited amount of training data available for evaluating alaryngeal speech,
as it is a relatively rare condition [30]. This can make it difficult to develop standardized
evaluation methods and norms for different types of alaryngeal speech [31]. Finally,
alaryngeal speech can vary widely between individuals, depending on factors such as age,
gender, health status, and other individual characteristics [32]. This variability can make it
difficult to develop standardized evaluation methods that are applicable to all individuals
who have undergone a laryngectomy [33].

Numerous researchers have stressed the significance of selecting relevant character-
istics for differentiating damaged speech [34–36]. Some researchers have investigated
how speech difficulties caused by cerebral palsy and hearing impairment affect prosody,
pronunciation, and voice quality. According to their findings, these factors are statisti-
cally significant for increasing the detection ability of impaired talks, with voice quality
being the strongest discriminative feature for identifying speech intelligibility in damaged
speech. Malini and Chandrakala [37] suggested a regularized self-representation-based
compact supervector technique for assessing the intelligibility of damaged speech. On
the UA-SPEECH database, their approach outperformed other methods such as hybrid
GMM/SVM, supervector, x-vector, i-vector, and bag-of-models-based approaches. Albaqshi
and Sagheer [38] emphasized the difficulties in dysarthric speech recognition owing to in-
comprehensible speech, irregular phoneme articulation, and data scarcity. Bessell et al. [39]
found that a changed accent has a slower speech pace, greater consonant and vowel length,
syllable-timed rhythm, and other characteristics. Moon et al. [40] sought to define the
speech patterns of those suffering from hepatic encephalopathy as a possible diagnostic
and monitoring tool. The subjects’ maintained and damaged speech patterns, on the other
hand, did not follow patterns normally linked with organic brain problems, suggesting
that left-handed preference may contribute to distinctions between singing and reading
vs. recitation, repetition, and spontaneous speaking. This is also often the case after an
ischemic stroke. De Cock et al. [41] investigated speech features, dysarthria type, and
severity, showing that unilateral upper motor neuron dysarthria is the most common type,
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with the majority of subjects having mild dysarthria. Similarly, Rowe et al. [42] found that
variable expressions of dysarthria may impact speech performance, whereas Stipancic and
Tjaden [43] found the least detectable change in sentence intelligibility in speakers with
multiple sclerosis and Parkinson’s disease. Rosdi et al. [44] presented fuzzy Petri nets to
increase the classification accuracy of speech-intelligibility detection systems. Maskeliunas
et al. suggested applying a convolutional network to help classify and asses impaired
speech signals [45]. Kim et al. [46] used one- and two-dimensional convolutional neural
networks to classify alaryngeal speech. Feng et al. [47] found that acoustic investigations
can reveal that impaired speech has a substantially shorter voice start time for aspirated
consonants, as well as a smaller vowel spacing. Vieira et al. [48] presented a non-intrusive
voice-quality classifier based on the tree convolutional neural network for measuring user
satisfaction with speech communication platforms. Poncelet et al. [49] suggested using an
end-to-end spoken language understanding system that can be trained by the user through
demonstrations and can translate impaired speech directly into semantics.

Numerous speech recognition-oriented techniques can also be used to help detect and
asses speech impairment [50,51]. Gupta et al. [52] suggested a residual network-based
approach for detecting dysarthria severity level based on short speech segments, whereas
Latha et al. [53] employed deep learning and several acoustic cues to recognize dysarthric
speech and generate discernible speech. Vishnika Veni and Chandrakala [54] researched
the application of the deep neural network-hidden Markov model and lattice maximum
mutual information technique for the successful identification of damaged speech. In [55],
the authors suggested a histogram of states-based strategy for learning compact and
discriminative embeddings for dysarthric voice detection using the deep neural network-
hidden Markov model. Srinivasan et al. [56] proposed a multi-view representation-based
disordered speech recognition system based on auditory image-based features and cepstral
characteristics, showing improved performance in recognizing very low intelligibility
words compared to conventional methods. Chandrakala et al. [57] presented a bag-of-
models (BoM)-based approach that uses adjusted Gaussian mixture model (AGMM)-based
embeddings for impaired speech-intelligibility evaluation. They tested the method on two
datasets and discovered that it outperformed the supervector, hybrid GMM/SVM, i-vector,
and x-vector-based techniques in terms of prediction error and reliability for intelligibility-
level evaluation and score predictions. Fu et al. [58] created a Sch-net neural network built
on a convolutional neural network for end-to-end schizophrenia speech identification using
deep learning techniques, implying that it has the potential to help in the diagnosis of a
particular language disability. Marini et al. [59] verified the efficacy of a speech analysis
approach for dysarthria speakers by modifying the size and shift parameters of the spectral
analysis window to increase ASR system performance.

2.2. Algorithms for Alaryngeal Speech Enhancement

The majority of voice restoration treatments result in hushed and monotonous speech.
Aside from reduced intelligibility, this type of speech lacks expressiveness and naturalness
due to (a) a lack of pitch, which results in whispered speech, and (b) artificial pitch produc-
tion, which results in monotone speech. Algorithms for alaryngeal speech enhancement
can be classified into two categories: classic digital signal processing (DSP) methods and
methods based on artificial intelligence (AI) and machine learning (ML) [60].

The first category is the most popular as it includes filtering-based methods originally
developed for noise reduction, as background noise can interfere with the clarity of ala-
ryngeal speech [61]. DSP techniques, such as spectral subtraction, Wiener filtering, and
adaptive filtering, can be used to reduce background noise and improve speech quality [62].
For example, Jaiswal et al. [63] suggested a concealed Wiener filter-based technique for
voice augmentation to improve the common spectral subtraction algorithm. Pauline and
Dhanalakshmi [64] presented an efficient adaptive filter structure for noise reduction in
voice signals that utilized the least mean square (LMS) and normalized LMS algorithms.
They evaluated the proposed filter model on both normal speech signals and speech signals



Cancers 2023, 15, 3644 6 of 19

from Parkinson’s disease patients. In terms of the SNR, MSE, and PSNR values, their filter
model outperformed existing cascaded LMS filter models. Doi et al studied how the LPC
spectrum of alaryngeal speech could be used to determine the impulse response of the
vocal tract. Modified harmonic amplitudes calculated using the transformation function
were interpolated at the desired harmonics of the target pitch, and the transformation
function was then computed using the line spectral frequencies rather than the harmonic
amplitudes [65]. Pauline et al. [66] presented cascaded adaptive filter construction for
speech-signal de-noising, where the best variable-stage cascaded adaptive filter model
outperformed existing cascaded filter architectures, with an output SNR that was 10–15 dB
higher. Panda et al. [67] suggested using spectral subtraction to improve alaryngeal speech,
which was modified by Hamed et al. to include the power of noise [68]. Wei suggested
using the Mel Frequency Scale as an alternative [69]. Another approach is pitch and formant
manipulation, as alaryngeal speech can have a monotonous or robotic quality due to a lack
of natural pitch and formant variation. DSP techniques such as pitch shifting and formant
manipulation can also be used to add more natural-sounding variation to speech [70]. Giri
and Rayavarapu [71] presented a combined approach for modifying the key frequency,
intensity, and speech rate of dysarthric speech by utilizing time-domain pitch-synchronous
overlap. They discovered that the improvement in intelligibility was significant in speakers
with low initial intelligibility and modest in speakers with high intelligibility. Additionally,
there are methods for articulation enhancement, as alaryngeal speech can also suffer from
poor articulation, making it difficult to distinguish between different sounds. This can
be combated by utilizing dynamic range compression, and equalization can be used to
enhance the clarity and intelligibility of specific consonant sounds [72]. Finally, prosody
modification is common, as it can help process the patterns of stress, intonation, and rhythm
in speech. Alaryngeal speech can sometimes lack the natural prosody found in normal
speech and prosody modification can be used to add more natural-sounding patterns of
stress, intonation, and rhythm to speech [73].

The second category includes AI and ML methods that can be used for alaryngeal
speech enhancement. Currently, the most popular methods are deep learning models [74],
such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
generative adversarial networks (GANs), which can be trained on large datasets of ala-
ryngeal speech to learn patterns and relationships between speech features and speech
quality. These models can be used to perform classic DSP tasks such as noise reduc-
tion, pitch and formant manipulation, and prosody modification [75]. Saleem et al. [76]
suggested a computationally efficient deep learning model for improving noisy voice.
For magnitude estimation, their model used a U-shaped fuzzy long short-term mem-
ory, which outperformed other deep learning models and significantly enhanced speech
intelligibility and quality. In contrast to traditional GAN-based approaches [77], Sant-
jago et al. [78] suggested using a speaker-dependent GAN to enhance generated speech.
Others have proposed that an adversarial acoustic regression loss should be added to
encourage better extraction of features at the discriminator and employ a two-step ad-
versarial training schedule that serves as a warm-up and fine-tune sequence. Both the
objective and subjective assessments indicated that these two enhancements improved
speech reconstruction by better matching the original speaker’s identity and natural-
ness [79]. Amarjuf combined the predicted phase with deep learning approaches to in-
crease the overall quality [80]. Reinforcement learning can be applied to train speech
enhancement systems that adapt to changing environments or input signals, as well as
optimize speech enhancement systems based on a reward signal that reflects the quality
of the enhanced speech [81]. Gaussian mixture models are also common, as they can
work as a type of generative model that can be used to model the statistical distribution of
speech features such as the spectral envelope or the fundamental frequency [82]. GMMs
can also be used to separate speech from noise or modify the pitch and formant of speech.
Ming et al. [83] suggested a hybrid technique that includes non-negative matrix factoriza-
tion with GMM. According to Xui, the Gaussian mixture model approach is also beneficial
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for detecting vocal nodules and laryngitis [84]. Support vector machines can be used to
classify impaired speech signals into different categories such as normal speech or ala-
ryngeal speech produced using different methods [85]. SVMs can also be used for noise
reduction and speech enhancement [86]. Hidden Markov models can also be used as a
generative model that models the statistical distribution of speech features over time, often
to classify speech signals into different categories or generate new speech signals based on
the statistical distribution of the input speech [87].

3. Materials and Methods
3.1. Dataset

Thirty native Lithuanian-speaking male patients surgically treated for histologically
confirmed laryngeal cancer at the Lithuanian University of Health Sciences Department
of Otorhinolaryngology provided speech samples for this study. The patients in this
group had undergone a total laryngectomy with secondary TEP implantation [88,89].
These individuals were chosen because they had no larynx or vocal folds and relied
solely on alaryngeal speech to communicate. The complete removal of the larynx and
speech production using a TEP often result in distinct speech abnormalities with a fairly
uniform functional speech handicap compared to neurodegenerative disorders, where
speech patterns are more diverse and less distinct. The average age of the patients was
63.1 years (standard deviation = 28.8). The patients were free of common colds, upper
respiratory infections, or other conditions that may have affected speech quality at the
time of recording. Only male participants’ speech samples were collected since advanced
laryngeal cancer is less common in women, and recruiting an adequate number of female
participants was not feasible. Endoscopic evaluation of the neopharynx, TEP canal, and
trachea was performed prior to recording. Faulty or leaking prostheses were replaced prior
to recording. This examination was carried out as part of standard clinical practice and
contributed to the speech sample database exclusively containing speech samples from
patients in remission. For at least six months following surgery, speech recordings were
acquired. This ensured enough time for healing, speech adaptation, and rehabilitation [90].

Alaryngeal speech samples were recorded in a T-series quiet room (T-room, CA Tegner
AB, Bromma, Sweden) using a D60S Dynamic Vocal microphone (AKG Acoustics, Vienna,
Austria) placed 10.0 cm from the lips at a comfortable (about 90°) microphone-to-mouth
angle. Two different speaking assignments were completed. The patient began by reading
a phonetically balanced Lithuanian line: “Turėjo senelė žilą oželį” (Old grandma had a
billy goat). The relative frequencies of the phonemes in the phrase were made as close
as possible to the distribution of speech sounds in Lithuanian. The patient then counted
from one to ten at a rate appropriate for their respiratory function. All speech activities
were performed at a comfortable volume level and at the patient’s own tempo. Speech
was recorded at 44,100 samples per second and saved as uncompressed 16-bit waveform
audio format files. Using Praat version 6.0.53, the recordings were manually prepared and
contained no more than 300 ms of an unvoiced fragment at the beginning and conclusion
of the recordings. To ensure the security of participants’ personal data, serial numbers were
assigned to the speech recordings.

3.2. Alaryngeal Speech Assessment

Several approaches were used to measure objective alaryngeal speech:

1. The artificial intelligence-based automated classifier for substitution voicing ResNet
118 was used to assign speech samples to the following classes: normal speech—
Probability 0; speech with a single vocal fold—Probability 1; and alaryngeal speech
with TEP—Probability 2 [91].

2. The acoustic parameter of alaryngeal speech (average voicing evidence (AVE), avail-
able in the AMPEX software [92]) was utilized to compare the alaryngeal speech
samples before and after optimization using Pareto-optimized NMF software. The
AVE parameter describes the average voicing evidence and the degree of regular-
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ity/periodicity in the voiced frames. Since the actual background frames are usually
unvoiced, the analysis is performed on all frames, not just speech frames. This ap-
proach is more robust against possible errors of the speech/background classification,
which is purely energy-based. In contrast, the voicing evidence is derived from
analyzing all the sub-band signals created by the auditory model.

3. The AI-based acoustic substitution voicing index (ASVI) parameter [93] was employed
to quantitatively evaluate the alaryngeal speech samples before and after optimiza-
tion using Pareto-optimized NMF software. This parameter includes the constant
combined with statistically significant parameters from ResNet 118 (Probability 0,
Probability 1, and Probability 2) combined with the AVE and mean fundamental
frequency. The possible ASVI values ranged from 0 to 30, with better speech quality
indicated by higher scores.

3.3. Methodology

Our approach used Pareto-optimized deep learning to evaluate the possibility of
cleaning the impaired speech. The approach started by calculating the spectrogram over
the entire noisy voice clip, based on which the frequency statistics were calculated. Once
the statistics were calculated, a threshold based on the desired noise sensitivity was then
calculated. Afterward, a signal spectrogram was calculated based on the same input
noisy voice clip, which, in combination with the calculated threshold, was then used to
determine the noise-to-signal mask. The mask was then smoothed by applying a filter in
both frequency and time to avoid sudden jumps in noise levels. Finally, the smoothed mask
was then applied to the spectrogram of the signal and inverted creating a noise-reduced
waveform.

3.3.1. Non-Negative Matrix Factorization (NMF)

Given a non-negative matrix V ∈ Rm×n
≥0 , non-negative matrix factorization (NMF)

aims to find two non-negative matrices W ∈ Rm×k
≥0 and H ∈ Rk×n

≥0 such that their product
approximates the original matrix V:

V ≈WH (1)

The objective is to minimize the distance between V and WH, typically measured by
the Frobenius norm or another divergence measure:

min
W≥0,H≥0

‖V−−−WH‖ (2)

where ‖·‖ denotes the Frobenius norm or another divergence measure, and k is the desired
dimensionality of the factorization (typically, k� min(m, n)).

3.3.2. Pareto-Optimized Non-Negative Matrix Factorization (PONMF)

We define Pareto-optimized NMF as the problem of approximating a non-negative
matrix V with the product of two non-negative matrices W and H, considering multiple
objectives f1, f2, . . . , fp. The Pareto-optimized NMF formulation seeks a solution that
balances the trade-offs among these objectives, achieving a Pareto optimal solution where
no objective can be improved without worsening at least one other objective.

Given a non-negative matrix V ∈ Rm×n
≥0 , Pareto-optimized non-negative matrix factor-

ization (NMF) aims to find two non-negative matrices W ∈ Rm×k
≥0 and H ∈ Rk×n

≥0 such that
their product approximates the original matrix V:

V ≈WH (3)

The objective is to find a Pareto optimal solution, considering multiple objectives
f1, f2, . . . , fp. A Pareto optimal solution is one where it is not possible to improve any
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objective without worsening at least one other objective. The Pareto-optimized NMF can
be formulated as:

min
W≥0,H≥0

(
f1(V, W, H), f2(V, W, H), . . . , fp(V, W, H)

)
(4)

subject to Pareto optimality. Here, fi(V, W, H) represents the i-th objective such as mini-
mizing the reconstruction error, promoting sparsity, or reducing computational complexity.
The goal is to find a solution that balances the trade-offs among these objectives.

The first step is to calculate the spectrogram over the entire noisy voice clip to obtain
a representation of the frequency spectrum of a signal over time. The noisy voice clip is
windowed and its Fourier transform is calculated to obtain a spectrogram.

Once the spectrogram is calculated, frequency statistics are calculated to obtain a better
understanding of the frequency distribution of the signal. This is achieved by calculating
the mean and standard deviation of the magnitude of each frequency bin over time.

Based on the desired noise sensitivity, a threshold is calculated to distinguish between
the signal and noise in the spectrogram. A signal spectrogram (see an example in Figure 3)
is then calculated based on the same input noisy voice clip. This is achieved by windowing
the noisy voice clip and taking its Fourier transform over time. The threshold calculated
earlier is used to determine the noise-to-signal mask. The mask is a binary value for
each frequency bin and time frame of the spectrogram, where 1 indicates the signal and
0 indicates noise. To avoid sudden jumps in noise levels, the mask is smoothed by applying
a filter in both the frequency and time domains, making the noise-to-signal mask more
continuous and less abrupt. Next, the smoothed mask is applied to the spectrogram of
the signal, and the signal is inverted to create a noise-reduced waveform. This is achieved
by multiplying the spectrogram of the signal with the smoothed mask and then taking
the inverse Fourier transform over time to obtain the noise-reduced waveform. Then, a
Pareto-optimized non-negative matrix factorization (NMF)-based method is applied to
decompose the spectrogram into a set of basis functions and their corresponding weights.
NMF-based methods for speech enhancement involve learning the basis functions and
Pareto-optimized weights that best represent the clean speech signal and then using these
to reconstruct the clean speech from a noisy input signal (Algorithm 1).

Figure 3. An example of a voice spectrogram.
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Algorithm 1 Pareto-Optimized Deep Learning for Impaired Speech Cleaning

Require: Noisy voice clip V
Ensure: Noise-reduced waveform W

1: Calculate spectrogram S of noisy voice clip V
2: Compute frequency statistics F from spectrogram S
3: Calculate threshold T based on the desired noise sensitivity using frequency statistics F

4: Determine signal spectrogram Ssignal using noisy voice clip V
5: Compute noise-to-signal mask M using threshold T and signal spectrogram Ssignal
6: Smooth mask M by applying a filter in both the frequency and time domains to obtain

smoothed mask Msmooth
7: Apply smoothed mask Msmooth to the spectrogram of signal Ssignal to obtain modified

spectrogram Smod
8: Invert modified spectrogram Smod to create noise-reduced waveform W
9: return W

3.3.3. Speech-Signal Cleaning

The updated approach to cleaning impaired speech using Pareto-optimized deep
learning and non-negative matrix factorization (NMF) involves the following steps:

1. Calculate the spectrogram of the entire noisy voice clip. This is achieved by win-
dowing the noisy voice clip and taking its Fourier transform over time to obtain a
spectrogram, which is a representation of the frequency spectrum of a signal over
time.

2. Compute the frequency statistics from the spectrogram. This is achieved by calculating
the mean and standard deviation of the magnitude of each frequency bin over time.
These statistics help in understanding the distribution and characteristics of the noise
present in the voice clip.

3. Calculate a threshold based on the desired noise sensitivity. This threshold helps
differentiate between the noise and signal components in the spectrogram.

4. Determine the signal spectrogram using the same input noisy voice clip. This is
achieved by windowing the noisy voice clip and taking its Fourier transform over
time.

5. Compute the noise-to-signal mask using the calculated threshold. The mask is a
binary value for each frequency bin and time frame of the spectrogram, where 1
indicates the signal and 0 indicates noise.

6. Smooth the noise-to-signal mask by applying a filter in both the frequency and
time domains. This helps avoid sudden jumps in noise levels and produces a more
continuous and less abrupt mask.

7. Apply the smoothed mask to the spectrogram of the signal. This step effectively sup-
presses the noise components in the spectrogram while retaining the desired signal.

8. Decompose the modified spectrogram using Pareto-optimized non-negative matrix
factorization (NMF). NMF-based methods for speech enhancement involve learn-
ing the basis functions and Pareto-optimized weights that best represent the clean
speech signal.

9. Reconstruct the clean speech from the noisy input signal using the learned basis
functions and Pareto-optimized weights.

10. Invert the reconstructed spectrogram to create a noise-reduced waveform. This final
output is a cleaned version of the original impaired speech, with the noise components
significantly reduced or removed.

3.3.4. Pareto-Optimized Deep Learning with NMF for Impaired Speech Cleaning

Using Pareto optimization in the deep learning model and incorporating NMF-based
methods can ensure that the trade-offs between different objectives (e.g., noise suppression,
speech quality, and computational efficiency) are balanced in the best possible way, ulti-
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mately improving the performance of the noise-reduction process (Algorithm 2).

Algorithm 2 Pareto-Optimized Deep Learning with NMF for Impaired Speech Cleaning

Require: Noisy voice clip V
Ensure: Noise-reduced waveform W

1: Calculate spectrogram S of noisy voice clip V
2: Compute frequency statistics F from spectrogram S
3: Calculate threshold T based on the desired noise sensitivity using frequency statistics F
4: Determine signal spectrogram Ssignal using noisy voice clip V
5: Compute noise-to-signal mask M using threshold T and signal spectrogram Ssignal
6: Smooth mask M by applying a filter in both the frequency and time domains to obtain

smoothed mask Msmooth
7: Apply smoothed mask Msmooth to the spectrogram of signal Ssignal to obtain modified

spectrogram Smod
8: Decompose modified spectrogram Smod using Pareto-optimized non-negative matrix

factorization (NMF) to obtain basis functions B and optimized weights Wopt
9: Reconstruct clean speech spectrogram Sclean using basis functions B and optimized

weights Wopt
10: Invert clean speech spectrogram Sclean to create noise-reduced waveform W

4. Results

A statistically significant improvement in alaryngeal speech quality was observed
because after applying Pareto-optimized NMF, the alaryngeal speech samples were reclas-
sified into the lower speech disability category (see Table 1 and Figure 4).

Table 1. Evaluation results of original and optimized speech samples. Prob0—probability of
healthy speech; Prob1—probability of speech with a single vocal fold; Prob2—probability of tra-
cheoesophageal speech; AVE—average voicing evidence; ASVI—acoustic substitution voicing index;
NMF—non-negative matrix factorization.

Group N Mean Std.
Deviation p

Probability 0 Original 75 4.09 19.51 0.001
Pareto-optimized NMF 75 13.51 33.3 0.001

Probability 1 Original 75 56.18 48.66 0.454
Pareto-optimized NMF 75 57.28 47.83 0.454

Probability 2 Original 75 39.73 47.9 0.08
Pareto-optimized NMF 75 29.21 43.89 0.08

AVE Original 75 0.81 0.11 0.34
Pareto-optimized NMF 75 0.8 0.1 0.34

ASVI Original 75 8.8 4.94 0.166
Pareto-optimized NMF 75 10.17 6.09 0.166

To further test for improvements in the optimized speech samples, the Chi-squared
test [94] was utilized to test if the proportion of speech recordings considered improved
was large enough to be statistically significant. Only 4 out of 75 original speech recordings
were classified as healthy, whereas 10 out of 75 were classified as healthy speech after
optimization. This resulted in a statistically significant difference between the proportions
(p = 0.043). These findings can be observed in Table 2.
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Figure 4. A pie chart illustrating the proportion of speech recordings classified as normal/pathological
before and after speech-signal optimization.

Table 2. Comparison of original and optimized speech recordings. NMF—non-negative matrix
factorization.

Group Method N p χ2

Healthy speech Original 4 4.0 0.043
Pareto-optimized NMF 10 13.33

Speech after laryngeal
oncosurgery Original 72 96.0 4.097

Pareto-optimized NMF 65 86.67

An example of the result of the alaryngeal speech-signal optimization is presented in
Figure 5.

Figure 5. Cochleograms depicting a patient counting to ten with a tracheoesophageal prosthesis
before (A) and after (B) speech-signal optimization. Less additive noise between separate numbers
can be observed in the optimized cochleagram.

Table 3 presents the results of statistical tests (Levene’s test and t-test) performed on
several groups of data (Probability 0, Probability 1, Probability 2, AVE, and ASVI).

Levene’s test for equality of variances checks whether the variances are equal across
the groups. The null hypothesis is that the variances are equal. If the significance (sig.) is
less than the threshold level (commonly 0.05), the null hypothesis is rejected, indicating
that the variances are not equal. The choice between “equal variances assumed” and “equal
variances not assumed” is determined by the results of Levene’s test. If the variances are
found to be equal (sig. > 0.05 in Levene’s test), then we should refer to the t-test row for
“equal variances assumed”. If the variances are not equal (sig. < 0.05 in Levene’s test), we
should refer to the row “equal variances not assumed”. The significance for each group of
data was as follows:
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• Probability 0: sig. = 0.000, indicating that the variances were not equal across groups.
• Probability 1: sig. = 0.454, indicating that the variances were equal.
• Probability 2: sig. = 0.008, indicating that the variances were not equal.
• AVE: sig. = 0.340, indicating equal variances across groups.
• ASVI: sig. = 0.166, indicating equal variances across groups.

The t-test for equality of means checks whether the means of two groups are sta-
tistically significantly different. The null hypothesis is that the means are equal. If the
significance (two-tailed) is less than the threshold level (commonly 0.05), the null hypothesis
is rejected. The significance value for each group of data was as follows:

• Probability 0: sig. = 0.036 (for equal variances assumed) and 0.037 (for equal variances
not assumed), indicating that the means of the two groups were significantly different.

• Probability 1: sig. = 0.890 (both cases), indicating that the means were not significantly
different.

• Probability 2: sig. = 0.163 (both cases), indicating that the means are not significantly
different.

• AVE: sig. = 0.750 (both cases), indicating that the means are not significantly different.
• ASVI: sig. = 0.133 (for equal variances assumed) and 0.134 (for equal variances not

assumed), indicating that the means are not significantly different.

The mean difference, standard error difference, and 95% confidence interval of the
difference provide further details on how the means of the two groups differed and the
uncertainty surrounding that difference.

Table 3. Results of statistical tests.

Levene’s Test t-Test for Equality of Means

F Sig. t df Sig.
(2-Tailed)

Mean Dif-
ference

Std. Error
Differ-
ence

95% Conf. Int.

Lower Upper

Probability 0
Equal variances

assumed 18.313 0.000 −2.113 148 0.036 −9.41893 4.45670 −18.22592 −0.61195

Equal variances not
assumed −2.113 119.448 0.037 −9.41893 4.45670 −18.24330 −0.59457

Probability 1
Equal variances

assumed 0.563 0.454 −0.139 148 0.890 −1.09627 7.87862 −16.66538 14.47284

Equal variances not
assumed −0.139 147.956 0.890 −1.09627 7.87862 −16.66542 14.47288

Probability 2
Equal variances

assumed 7.317 0.008 1.402 148 0.163 10.51547 7.50161 −4.30864 25.33957

Equal variances not
assumed 1.402 146.885 0.163 10.51547 7.50161 −4.30957 25.34050

AVE
Equal variances

assumed 0.918 0.340 0.319 148 0.750 0.005560 0.017451 −0.028926 0.040046

Equal variances not
assumed 0.319 147.237 0.750 0.005560 0.017451 −0.028927 0.040047

ASVI
Equal variances

assumed 1.941 0.166 −1.509 148 0.133 −1.36607 0.90525 −3.15495 0.42281

Equal variances not
assumed −1.509 141.961 0.134 −1.36607 0.90525 −3.15558 0.42343

To summarize, as shown in Table 1, the mean AVE of the alaryngeal speech samples
decreased from 81 to 80% after optimization. The AVE proportion remained statistically
significant and unchanged in the samples before and after Pareto–NMF optimization. This
is understandable and expected because the Pareto-optimized NMF approach removed
background noise without artificially improving the quality of the alaryngeal speech
recordings by filling in the unvoiced speech segments (pauses, intended phonatory breaks,
etc.).

Lastly, the speech samples were evaluated using the ASVI, which represents the scale
of the objective improvement of the alaryngeal speech signals when comparing the original
and Pareto-optimized NMF alaryngeal speech recordings. Although the ASVI was higher
in the group after optimization, the difference was not statistically significant. A description
of the aforementioned evaluation can be found in Table 1.
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5. Discussion

Speech is the complex result of several systems in the body working together. First,
the respiratory tract must move air through the larynx and mouth. The vocal folds need to
function correctly to produce voice. Speech is produced only when the articulation occurs
in the pharynx and mouth and is then processed by the speaker’s neural feedback loop,
which helps correct the pitch and loudness. Finally, speech is used to communicate, so it
has to be pleasant or, at the very least, intelligible to the listener [95]. Disturbances in any
of these steps cause various levels of speech impairment.

Total laryngectomy patients often undergo speech rehabilitation programs to learn
alternative methods of speech production such as esophageal speech, an electrolarynx, or
tracheoesophageal speech with a voice prosthesis. These techniques can generate additional
noise during speech production, thereby affecting speech quality and intelligibility. Imple-
menting noise-reduction strategies can help mitigate this issue by improving the overall
clarity and naturalness of the patient’s speech [7]. However, a speech handicap becomes
more problematic when the patient has to use the phone or speak in a loud environment,
which may lead to social isolation [14,15].

The suggested Pareto–NMF optimization approach helps mitigate the additive and
background noise problem that is common in alaryngeal speakers. The Pareto–NMF opti-
mization removes additive and background noise without impacting the AVE. Although
minuscule for a regular speaker, this improvement benefits the TEP speaker significantly.
Firstly, total laryngectomy patients often face challenges in making their speech intelligible,
especially in noisy environments. Excessive background noise can mask their already
limited vocal output, making it difficult for listeners to understand them. By reducing
the additional noise present in the environment, speech clarity and intelligibility can be
improved, allowing patients to communicate more effectively. Secondly, speaking on
the phone can be particularly challenging for individuals after laryngectomy [96]. Back-
ground noise, distortions, and limited vocal output can make it difficult for the listener
to comprehend the speech. Unwanted noise can be minimized by implementing noise-
reduction techniques, enabling clearer and more understandable phone conversations for
laryngectomy patients.

Minimal Pareto–NMF optimization impact on speech benefits perfect TEP speakers
more, as the spoken segments are largely unaltered and rely solely on the speaker’s ability
to speak clearly. Patients who have trouble articulating with a TEP could potentially benefit
more from Pareto–NMF optimization combined with a speech enhancement model that
addresses unvoiced segments, aperiodicity, and phonatory breaks that are more frequent in
less experienced alaryngeal speakers.

A typical laryngeal cancer patient eligible for total laryngectomy and TEP rehabili-
tation is between 50 and 70 years of age and rarely has significant comorbidities [97,98].
After successful treatment, it is reasonable to expect at least a 40% 5-year survival rate.
The combination of these conditions leads to a rather specific problem—a large group of
patients that are functionally able to return to completely normal life or even the workforce
but are held back by their speech disability. Alaryngeal speech enhancement techniques
can help mitigate this problem and to allow complete rehabilitation and reintegration for
patients after total laryngectomy.

6. Conclusions

Speech after surgical treatment for laryngeal cancer tends to suffer from aperiodicity,
phonatory breaks, and additive noise [90]. These findings become more common as more
laryngeal structures are removed. However, the adaptive capabilities of patients can
result in vastly different acoustical outcomes despite undergoing identical surgery. This is
reflected in the relatively high standard deviation observed when evaluating the ASVI of
original and optimized speech samples. With this in mind, studies on acoustic speech after
laryngeal oncosurgery should be carried out with a greater number of recordings.
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