
Citation: Liutkus, J.; Kriukas, A.;

Stragyte, D.; Mazeika, E.; Raudonis, V.;

Galetzka, W.; Stang, A.;

Valiukeviciene, S. Accuracy of a

Smartphone-Based Artificial

Intelligence Application for

Classification of Melanomas,

Melanocytic Nevi, and Seborrheic

Keratoses. Diagnostics 2023, 13, 2139.

https://doi.org/10.3390/

diagnostics13132139

Academic Editor: Dechang Chen

Received: 30 May 2023

Revised: 16 June 2023

Accepted: 20 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Accuracy of a Smartphone-Based Artificial Intelligence
Application for Classification of Melanomas, Melanocytic
Nevi, and Seborrheic Keratoses
Jokubas Liutkus 1,2, Arturas Kriukas 1,2, Dominyka Stragyte 1,2, Erikas Mazeika 1,2, Vidas Raudonis 3,
Wolfgang Galetzka 4, Andreas Stang 4 and Skaidra Valiukeviciene 1,2,*

1 Department of Skin and Venereal Diseases, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
2 Department of Skin and Venereal Diseases, Hospital of Lithuanian University of Health Sciences Kauno

Klinikos, 50161 Kaunas, Lithuania
3 Artificial Intelligence Center, Kaunas University of Technology, 51423 Kaunas, Lithuania
4 Institute of Medical Informatics, Biometrics and Epidemiology, University Hospital Essen,

45130 Essen, Germany
* Correspondence: skaidra.valiukeviciene@kaunoklinikos.lt

Abstract: Current artificial intelligence algorithms can classify melanomas at a level equivalent
to that of experienced dermatologists. The objective of this study was to assess the accuracy of a
smartphone-based “You Only Look Once” neural network model for the classification of melanomas,
melanocytic nevi, and seborrheic keratoses. The algorithm was trained using 59,090 dermatoscopic
images. Testing was performed on histologically confirmed lesions: 32 melanomas, 35 melanocytic
nevi, and 33 seborrheic keratoses. The results of the algorithm’s decisions were compared with
those of two skilled dermatologists and five beginners in dermatoscopy. The algorithm’s sensitivity
and specificity for melanomas were 0.88 (0.71–0.96) and 0.87 (0.76–0.94), respectively. The algo-
rithm surpassed the beginner dermatologists, who achieved a sensitivity of 0.83 (0.77–0.87). For
melanocytic nevi, the algorithm outclassed each group of dermatologists, attaining a sensitivity
of 0.77 (0.60–0.90). The algorithm’s sensitivity for seborrheic keratoses was 0.52 (0.34–0.69). The
smartphone-based “You Only Look Once” neural network model achieved a high sensitivity and
specificity in the classification of melanomas and melanocytic nevi with an accuracy similar to that
of skilled dermatologists. However, a bigger dataset is required in order to increase the algorithm’s
sensitivity for seborrheic keratoses.

Keywords: melanoma; nevus; seborrheic keratosis; dermatoscopy; artificial intelligence; smartphone

1. Introduction

Melanoma continues to be a burden on healthcare systems, and it has a projected
50% increase in incidence and a 68% increase in mortality by 2040 [1]. Early and accurate
diagnoses are crucial for improving patient outcomes and reducing mortality rates associ-
ated with this aggressive malignancy. Melanoma diagnostics are based on dermatoscopy
before a histopathological confirmation [2]. Thus, it is important to accurately distinguish
melanomas from benign lesions, such as melanocytic nevi and seborrheic keratoses. Sebor-
rheic keratoses are the most common type of skin lesion encountered among the elderly [3].
However, the adoption of dermatoscopy in primary care remains low. Only 8.3% of family
physicians apply dermatoscopy in their daily practice [4], although its use increases the
sensitivity of the diagnosis of melanomas from 57.8% to 75.9% [5]. The primary barriers
to a wider adoption in primary care are a lack of training and the perceived difficulty of
dermatoscopy [6].

The advancement of deep learning in computer vision has led to artificial intelligence
(AI) algorithms that have shown a superior effectiveness to that of dermatoscopy [7] per-
formed by both beginner and expert dermatologists [8]. These algorithms are generally
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based on deep neural networks (DNNs), which automatically extract discriminating image
features during supervised learning from prelabeled data and compute diagnostic prob-
abilities. DNN-based algorithms generally perform better than other machine learning
algorithms, which are based on manually selected image features [9]. The process of feature
selection and labeling for machine learning algorithms is often labor-intensive and may
not capture all the relevant information. In contrast, DNNs are capable of automatically
learning to identify and extract relevant features from raw input images during the training
process. However, the primary drawback of DNNs is the requirement for large, labeled
training datasets of skin tumors, which need to be verified through histopathology [10].

In 2016, a particular type of DNN termed “You Only Look Once” (YOLO) was in-
troduced. Notably, this subclass of DNNs has demonstrated a superior efficacy in object
detection tasks, owing to its unique capacity to concurrently undertake both localization
and classification within a singular processing pass [11]. This allows YOLO networks
to process the entire image during both the training and testing phases, incorporating
contextual information about the object classes and their visual characteristics into its
decision-making process. This attribute is particularly beneficial in medical imaging, where
subtle contextual cues can often be crucial for accurate diagnoses. YOLO-based neural
networks have been assessed for the detection of vitiligo [12] and the segmentation of skin
lesions [13], including melanomas [14], and they have outclassed other DNN approaches.
However, the accuracy of skin lesion classification when using a YOLO-based neural net-
work has not been evaluated to date, nor has it been integrated into a smartphone health
application that is suitable for dermatoscopy.

Previous studies comparing other types of DNNs with dermatologists have frequently
used a binary lesion (malignant vs. benign) classification using convolutional neural
networks (CNNs) on dermatoscopic images [15–18]. In an early study, Brinker et al. [15]
assessed the performance of a CNN trained on open-source images, which outperformed
87% of the 157 participating dermatologists. Marchetti et al. [16,17] compared the results of
two international DNN lesion classification tournaments, each involving 25 and 23 teams,
with the classification performance of specialists. The top algorithms in each study achieved
higher accuracies than the dermatologists. In a recent study, Winkler et al. [18] evaluated
whether 22 dermatologists could benefit from cooperation with a market-approved CNN in
classifying prospectively collected images of melanocytic lesions. The accuracy significantly
improved when the dermatologists applied CNN results into decision making.

The benefit of CNNs in dermatological practice seems evident; however, in primary
care, family physicians and other care providers also encounter multiple types of skin
lesions. A tool that can correctly classify each skin tumor would be even more useful than
binary classification into malignant and benign lesions. Therefore, other researchers have
focused on dermatoscopic multiclass classification approaches for different skin tumors,
which allow the algorithm to display results for multiple disease categories [19,20]. In one
of the first studies, Esteva et al. used a CNN that achieved accuracies similar to those of
trained dermatologists [19]. The most recent study, describing an international CNN lesion
classification tournament, compared the performance of 129 different algorithms to that
of 18 dermatologists [20]. The algorithms performed better than the experts at classifying
melanomas, melanocytic nevi, and seborrheic keratoses.

The majority of the DNNs employed in the aforementioned studies ran on specialized
research software and hardware that is difficult and cumbersome to use in primary care.
However, several studies [21–28] employed smartphone-enabled approaches for classifying
skin tumors using CNNs, as mobile applications on portable devices are much easier to use
for both patients and physicians. Haenssle et al. [21–25] used the patented and approved
Moleanalyzer Pro® (FotoFinder Systems GmbH, Bad Birnbach, Germany) algorithm. It
determines a skin lesion’s “malignancy score”, which ranges from 0 to 1 and has an ar-
bitrary cutoff of >0.5 for classifying a skin lesion as malignant, with 95.0% sensitivity
and 76.7% specificity [22]. However, Moleanalyzer Pro® is only available on FotoFinder©
dermatoscopic devices, and thus requires a commitment to a hardware–software ecosystem.
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Similarly, Veronese et al. evaluated a CNN paired with a Nurugo© Derma (UNIONCOM-
MUNITY Co. Ltd., Seoul, Republic of Korea) smartphone dermatoscopic device, which
achieved 84.0% sensitivity and 81.6% specificity for melanomas [26]. Other smartphone-
application-based CNN studies were performed for the analysis of non-dermatoscopic
clinical images [27,28]. Therefore, there is an absence of studies showing the accuracy of a
multiclass classification algorithm that can be used on any smartphone device without the
need for specific dermatoscopic hardware.

The aim of the current study was to evaluate the accuracy of a YOLO neural network
model (NNM) that is fully embedded into a smartphone application for the multiclass dermato-
scopic classification of melanomas, melanocytic nevi, and seborrheic keratoses. In addition
to evaluating the NNM’s performance against histopathologically confirmed diagnoses, this
study compared its accuracy with that of skilled dermatologists and beginner raters.

2. Materials and Methods
2.1. Ethical Approval

This study was approved by the local ethics committee, approval number P2-BE-2-
25/2009, and was carried out in accordance with the Declaration of Helsinki.

2.2. Skin Lesion Classification Model and Dataset

The YOLO model (NNM) used a one-stage model, in which object detection (localiza-
tion) and classification were performed in a dense sampling layer (Figure 1). The proposed
model was designed to automatically extract features from input images; then, from these
features, the prediction layers determined the location and class of each skin lesion. The
structure of the applied model consisted of three main parts—the backbone, head, and
detection elements. The backbone was used to extract discriminative features from the
input image. It was mainly based on a BottleNeckCSP convolutional neural network that
aggregated and formed image features at different granularities. BottleNeckCSP models are
based on a DenseNet network [29], which is designed to connect neural layers with the goals
of avoiding the vanishing gradient problem, bolstering feature propagation, and reducing
the number of network parameters. The head component of the YOLO model extracted
fusion features and passed them forward to the classification and detection parts. The head
element consisted of a series of convolutional layers, such as Conv1 × 1 (convolution using
a 1 × 1 filter), Conv3 × 3 (convolution using a 3 × 3 filter), a merging concatenation neural
layer, an upscaling layer (UpSample), and the previously described BottleNeckCSP layer.
Detection was achieved in the last part of the model structure. The detection analyzed
features by using a fully connected layer (Conv1 × 1) and a sigmoidal transfer function;
finally, it had location boxes with prediction values as its output. The detection employed
the total loss function of the bounding box and non-maximum suppression [30].

Binary cross-entropy with the logits loss function was used as a metric to evaluate how
well the proposed skin lesion detection and classification model was trained. When the
predictions of the YOLO model are closer to the true annotated values, the selected metric
(loss function) will be at a minimum. If the predictions do not correspond with actual values,
the loss function value will reach the maximum. The training parameters of the YOLO
model are updated based on the values of the loss function. The binary cross-entropy
loss function was used to measure the dissimilarity between the predicted probability
distribution and the true labels in the training dataset. The predicted probabilities were
compared to the actual class values by calculating the score that penalized the probabilities
based on the distance from the expected value. The binary cross-entropy value (Loss) was
calculated using the formula given below:

Loss =
1
N

N

∑
i=1

−[y i·log(p(yi)) + (1 − yi)·log(1 − p(yi))] (1)
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where N is the number of samples in the training dataset (or output size when used in
training with data batches), y is a class label, and p(y) is the model output or prediction that
the given input corresponds to the actual label.
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The given loss function was adapted for the multiclass classification problem and the
loss value was calculated using the following formula:

mLoss = − 1
N

N

∑
i

M

∑
j

yij·log
(

p
(
yij

))
(2)

where N is the number of samples, M is the number of classes, y is a class label, and p(y) is
the predicted probability of the YOLO model.

The average difference between the actual and predicted probability distributions for
all classes was calculated using Equation (2).

The proposed YOLO detection and classification model was trained using the gradient
descent optimization algorithm (SGD). The SGD is one of the most common ways to
optimize deep neural networks, and it is used as a black-box optimizer. Gradient descent is
a way to minimize an objective function, described using the neural network model, by
updating the parameters in the opposite direction of the gradient.

The training hardware environment consisted of a single NVIDIA GeForce RTX3080
Ti (Santa Clara, CA, USA) graphical card with 12 GB of memory and an Intel i9 (Santa
Clara, CA, USA) CPU processor. The NNM was implemented using a torch 1.81 + cu101
CUDA python library. Hyperparameters, such as a number of epochs of 300, a batch size
ranging from 4 to 16, an input image of 640 × 640 pixels, and initial and final learning rates
of l0 = 0.01 and lf = 0.2, were used in training.

From a computational point of view, the feasibility of the results depended on the
implementation. It involved a complex algorithm, such as the largest YOLO structure,
and different operating systems. In addition, the processing of color images of the lesions
required substantial computational resources and time (which depended on the processor’s
CPU or GPU) to produce accurate results. The computation complexity of the results was
evaluated using several important factors, such as the number of inquiries (number of
images that should be processed) and the computational resources available. The dataset
was very large; thus, the use of parallel processing and distributed computing were required
to achieve feasible results within a reasonable timeframe. We tested several machines: (1) a
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desktop computer with a 12th Gen Intel CPU i9, 64 GB of RAM, and NVIDIA RTX4090
with 24 GB of RAM; (2) a laptop computer with an Intel i5 1.60 GHz CPU and 16 GB
of RAM (no dedicated GPU processor); (3) an Apple iPhone X (Cupertino, CA, USA);
and (4) a Samsung Galaxy A25 (Seoul, Republic of Korea). The highest image-processing
response rates (on average, less than 0.15 s) were acquired using the desktop computer.
Approximately less than 0.7 s were needed to process the images using either smartphone.
The lowest processing rate was 1.5 s, achieved using a laptop computer.

Ultimately, the results were presented in the form of a data vector, which held in-
formation about the detected object’s class, score (confidence level ranging from 0.0 to
1.0), location (x, y), and size (width, height). The YOLO model within SmartVisSolution©
(Kaunas, Lithuania) is available as a closed beta on personal computers and the Apple
Inc. iOS (Cupertino, CA, USA) and Open Handset Alliance Android (Mountain View, CA,
USA) smartphone operating systems. SmartVisSolution© was developed by a consulting
and software development company named “Dts solutions” (Kaunas, Lithuania) and the
Lithuanian University of Health Sciences.

The NNM training dataset was formed by using dermatoscopic images from the
International Skin Imaging Collaboration (ISIC) archive (n = 58,457) [31–33], which con-
sisted of 5106 melanomas, 18,068 melanocytic nevi, 1525 seborrheic keratoses, 3323 basal
cell carcinomas (BCCs), 628 squamous cell carcinomas, and 29,807 uncategorized benign
tumors that were captured by using various dermatoscopic devices. The ISIC archive’s
MSK [34,35] and UDA [36] sub-databases were excluded from training. The dataset was
subsequently expanded with dermatoscopic images (n = 633; 183 melanomas, 68 BCCs,
353 melanocytic nevi, and 29 seborrheic keratoses), which were collected with a FotoFinder
© dermatoscopic device. The dermatoscopic images were retrospectively gathered from
2010 to 2020. All 251 of the dermatoscopic images of melanomas and BCCs were verified
through histopathology. The remaining skin lesions were confirmed as benign by the expert
opinion of two experienced dermatologists. Image augmentation techniques, such as image
rotation, changes in illumination, and noise correction, were used to increase the size and
diversity of the training data.

2.3. Test Dataset

The testing of the NNM was performed on 100 dermatoscopic images (Figure 2) of
histologically confirmed melanomas (n = 32), melanocytic nevi (n = 35), and seborrheic
keratoses (n = 33). The results of the NNM classification were compared with a histologically
confirmed diagnosis, and with a blinded evaluation by two dermatologists who were skilled
in dermatoscopy and five beginners in dermatoscopy. The dermatoscopic images were
randomly selected from the HAM10000 [31], MSK-1, MSK-2, MSK-3, MSK-4, MSK-5 [34,35],
and UDA2 [36] databases (Table 1). There was no overlap between the classification model’s
training and testing datasets. To avoid image duplication within the ISIC datasets, the
MSK and UDA databases were exclusively utilized for testing and were not included in the
training dataset. For the HAM10000 dataset, 38 images were randomly selected from the
HAM10000 dataset and excluded prior to training.

The chosen dermatoscopic images were uploaded to the smartphone application and
were cropped by using automatic selection of the skin tumor. The smartphone application
resized each image to a resolution of 640 × 640 and output the classification probabili-
ties and locations of four skin lesion classes—melanomas, melanocytic nevi, seborrheic
keratoses, and BCCs (Figure 3).



Diagnostics 2023, 13, 2139 6 of 14

Diagnostics 2023, 13, 2139 6 of 15 
 

 

classification model’s training and testing datasets. To avoid image duplication within the 
ISIC datasets, the MSK and UDA databases were exclusively utilized for testing and were 
not included in the training dataset. For the HAM10000 dataset, 38 images were randomly 
selected from the HAM10000 dataset and excluded prior to training. 

 
Figure 2. Example of a histologically confirmed melanocytic nevus in a dermatoscopic image from 
the test dataset (10× magnification, 1 scale bar = 1 mm). 

Table 1. Characteristics of the test dataset. 

Characteristics Number Percent 
Patients 100  

Mean age (SD), years 55.4 (±15.8)  

Sex   
Male 54 54 

Female 46 46 
Assessed lesions 100  
Image datasets *   

HAM 10000 38 38 
MSK-1 23 23 
MSK-2 14 14 
MSK-3 3 3 
MSK-4 16 16 
MSK-5 5 5 
UDA2 1 1 

Lesion classes   
Melanoma 32 32 

Melanocytic nevus 35 35 
Seborrheic keratosis 33 33 

Localization    
Head and neck 4 4 

Upper extremities 19 19 
Lower extremities 20 20 

Anterior torso 16 16 
Lateral torso 2 2 

Posterior torso 26 26 
Not specified 6 6 

SD—standard deviation. *—data sources for the test dataset. 

Figure 2. Example of a histologically confirmed melanocytic nevus in a dermatoscopic image from
the test dataset (10× magnification, 1 scale bar = 1 mm).

Table 1. Characteristics of the test dataset.

Characteristics Number Percent

Patients 100
Mean age (SD), years 55.4 (±15.8)

Sex
Male 54 54

Female 46 46
Assessed lesions 100
Image datasets *

HAM 10000 38 38
MSK-1 23 23
MSK-2 14 14
MSK-3 3 3
MSK-4 16 16
MSK-5 5 5
UDA2 1 1

Lesion classes
Melanoma 32 32

Melanocytic nevus 35 35
Seborrheic keratosis 33 33

Localization
Head and neck 4 4

Upper extremities 19 19
Lower extremities 20 20

Anterior torso 16 16
Lateral torso 2 2

Posterior torso 26 26
Not specified 6 6

SD—standard deviation. *—data sources for the test dataset.
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Figure 3. Demonstration of the smartphone application in use. A dermatoscopic image of a seborrheic
keratosis was uploaded to the SmartVisSolution© application for classification. The outcome value
was displayed by using the ICD-10 classification system. L82—seborrheic keratosis with a prognostic
value of 70%.

The performance of the raters was evaluated by using a multiclass classification task.
Each participant received a dermatoscopic image from the test dataset in a randomized
order and was asked to assign one of the three diagnoses (melanoma, melanocytic nevus,
or seborrheic keratosis) for all 100 images. The raters were also required to indicate the
number of months of their experience in dermatoscopy for their placement in the “skilled”
(>2 years of experience in dermatoscopy) or “beginner” (≤2 years of experience) groups.

2.4. Statistical Analysis

The outcome of interest was the sensitivity and specificity of the NNM and raters for
the classification of melanomas, melanocytic nevi, and seborrheic keratoses. In addition, we
computed the NNM’s area under the curve (AUC) of the receiver operating characteristic
(ROC) curve. The raters’ sensitivity and specificity were analyzed within the “skilled”
and “beginner” groups, in addition to an analysis of the pooled data presented as “all
raters”. The chance-corrected inter-rater agreement was estimated with the Fleiss kappa.
Performance was assessed by using the “one-vs-all” multiclass classification approach with
absolute probability values.

To measure the accuracy of the NNM, we used a cutoff for the predicted probability
such that the specificity of the model was equal to the mean specificity of the raters for the
particular lesion (melanoma, melanocytic nevus, or seborrheic keratosis).

Point estimates are presented with a 95% confidence interval. The statistical analysis was
carried out by using R, version 4.1.1 (R Foundation for Statistical Computing©, Vienna, Austria).

3. Results

Of the three skin lesion classes, the NNM achieved the highest sensitivity of 0.88 (0.71–0.96)
when classifying melanomas, with a specificity of 0.87 (0.76–0.94) (Table 2). When assess-
ing melanocytic nevi, the NNM achieved a sensitivity of 0.77 (0.60–0.90) and a specificity of
0.91 (0.81–0.97). The NNM’s sensitivity for seborrheic keratoses was 0.52 (0.34–0.69), with a
high specificity of 0.93 (0.83–0.98). The differences in the sensitivity and specificity between
the NNM and the raters are presented in Table 3. A negative value indicated that human
raters outperformed the NNM. The biggest difference, favoring the NNM, was in the sensitivity
of melanoma classification (0.11 (−0.08, 0.26)), while the lowest difference, favoring human
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raters, was in the sensitivity of seborrheic keratoses (−0.38 (−0.58, −0.02)). The sensitivities and
specificities of each rater participating in the study are shown in Table 4.

Table 2. The effectiveness of the neural network model in comparison with the classification perfor-
mance of dermatologists.

Rater Level
Melanoma Melanocytic Nevus Seborrheic Keratosis

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Skilled 0.98 (0.92–1.00) 0.84 (0.51–0.96) 0.73 (0.33–0.94) 0.98 (0.88–1.00) 0.89 (0.58–0.98) 0.99 (0.92–1.00)
Beginners 0.83 (0.77–0.87) 0.85 (0.77–0.90) 0.66 (0.57–0.74) 0.87 (0.80–0.92) 0.73 (0.52–0.87) 0.89 (0.83–0.93)
All raters 0.87 (0.79–0.92) 0.84 (0.76–0.90) 0.68 (0.56–0.78) 0.90 (0.83–0.95) 0.78 (0.60–0.89) 0.91 (0.85–0.95)

NNM 0.88 (0.71–0.96) 0.87 (0.76–0.94) 0.77 (0.60–0.90) 0.91 (0.81–0.97) 0.52 (0.34–0.69) 0.93 (0.83–0.98)

Data are presented with a 95% confidence interval given in the parentheses.

Table 3. The estimated difference between the classification performance of the neural network model
and human raters.

Rater
Level

Melanoma Melanocytic Nevus Seborrheic Keratosis

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Skilled −0.11 (−0.27, 0.00) 0.03 (−0.13, 0.37) 0.04 (−0.23, 0.46) −0.07 (−0.17, 0.04) −0.38 (−0.58, −0.02) −0.06 (−0.15, 0.02)
Beginners 0.05 (−0.12, 0.15) 0.02 (−0.10, 0.13) 0.11 (−0.08, 0.26) 0.03 (−0.08, 0.13) −0.22 (−0.45, 0.06) 0.04 (−0.06, 0.12)
All raters 0.00 (−0.17, 0.12) 0.02 (−0.10, 0.13) 0.09 (−0.11, 0.26) 0.00 (−0.10, 0.10) −0.26 (−0.48, −0.01) 0.01 (−0.09, 0.09)

Data are presented with a 95% confidence interval given in the parentheses.

Table 4. Sensitivity and specificity of each individual human rater.

Rater Level
Melanoma Melanocytic Nevus Seborrheic Keratosis

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Beginner 1 0.91 (0.75–0.98) 0.93 (0.84–0.98) 0.57 (0.39–0.74) 0.97 (0.89–1.00) 0.97 (0.84–1.00) 0.82 (0.71–0.90)
Beginner 2 0.84 (0.67–0.95) 0.84 (0.73–0.92) 0.80 (0.63–0.92) 0.82 (0.70–0.90) 0.58 (0.39–0.75) 0.96 (0.87–0.99)
Beginner 3 0.78 (0.60–0.91) 0.90 (0.80–0.96) 0.60 (0.42–0.76) 0.92 (0.83–0.97) 0.97 (0.84–1.00) 0.85 (0.74–0.93)
Beginner 4 0.78 (0.60–0.91) 0.85 (0.75–0.93) 0.74 (0.57–0.88) 0.86 (0.75–0.93) 0.64 (0.45–0.80) 0.87 (0.76–0.94)
Beginner 5 0.81 (0.64–0.93) 0.72 (0.60–0.82) 0.60 (0.42–0.76) 0.80 (0.68–0.89) 0.52 (0.34–0.69) 0.94 (0.85–0.98)
Skilled 1 0.97 (0.84–1.00) 0.71 (0.58–0.81) 0.51 (0.34–0.69) 0.95 (0.87–0.99) 0.79 (0.61–0.91) 0.97 (0.90–1.00)
Skilled 2 1.00 (0.89–0.96) 0.97 (0.90–1.00) 0.94 (0.81–0.99) 1.00 (0.94–1.00) 1.00 (0.89–1.00) 1.00 (0.95–1.00)

Data are presented with a 95% confidence interval given in the parentheses.

The NNM’s ROC AUC values are presented in Figures 4–6. The NNM classified
melanomas and melanocytic nevi better than the beginner raters did, although its classifica-
tion performance for seborrheic keratoses was lower than that of both groups of raters.

The inter-observer agreement using the Fleiss kappa values among different rater
groups and skin lesions is shown in Table 5. The highest chance-corrected agreement
was found among skilled raters for all three skin lesions. We used the most common
division of kappa agreement values according to Landis and Koch [37]. The highest kappa
value, achieving substantial rater agreement, was 0.79 (0.59–0.98) for the classification of
seborrheic keratoses, and the lowest was in the beginner subgroup for melanocytic nevi
(0.43 (0.37–0.50)), representing a moderate rater agreement. For all diagnoses combined,
the raters achieved moderate agreement—a kappa value of 0.53 (0.50–0.56).
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Table 5. The inter-observer agreement using the Fleiss kappa for different rater groups and skin
lesion classes.

Rater Level
Fleiss Kappa

Melanoma Melanocytic Nevus Seborrheic Keratosis All Lesion Classes

Skilled 0.57 (0.37–0.77) 0.49 (0.30–0.69) 0.79 (0.59–0.98) 0.62 (0.48–0.76)
Beginners 0.56 (0.50–0.62) 0.43 (0.37–0.50) 0.50 (0.44–0.56) 0.50 (0.46–0.54)
All raters 0.56 (0.51–0.60) 0.46 (0.42–0.50) 0.56 (0.52–0.61) 0.53 (0.50–0.56)

Data are presented with a 95% confidence interval given in the parentheses.

4. Discussion

Our study showed that the smartphone-based NNM achieved a high sensitivity
and specificity in the classification of melanomas and melanocytic nevi, with a similar
accuracy to that of skilled dermatologists. Conversely, the sensitivity was low for seborrheic
keratoses—there was a smaller amount of labeled training data available. Additionally, the
automatic selection of the skin tumor region by the NNM could have cropped important
dermatoscopic features that were found at the seborrheic keratoses’ edges, including sharp
demarcations or milia-like cysts [38]. In our analysis, the skilled dermatologists consistently
outperformed the beginners in terms of accuracy.

The strengths of our study were the histopathological confirmation of all malignant
skin lesions included in the test dataset and the use of multiclass classification, rather than
binary classification into malignant and benign skin lesions, as in other studies [21–25]. In
addition, we assessed raters of various skill levels; thus, we were able to provide multi-
rater statistics and compare the NNM’s results to those of both beginners and experienced
specialists. Furthermore, this is the first study describing the accuracy of the multiclass
classification of skin lesions using a YOLO neural network, which is additionally available
on a mobile application and not tied to specific dermatoscopic hardware.

The main weaknesses of the study were the assessment of raters in artificial settings
with no access to patient medical records or clinical features, the use of retrospectively
collected test data, and a disproportional sampling design without external validation.
Only seven raters participated in the study, as it was single-center. Furthermore, the test
dataset size was small in comparison to the training dataset, as human raters are unable to
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classify large numbers of dermatoscopic images. Our test dataset size (n = 100) was the
same size as that used in studies by Haenssle et al. [21–25]. The relatively small sample
size led to wide confidence intervals, which overlapped for most of the results.

An additional weakness was that only three types of skin lesions were used in the
test dataset, and certain melanoma subtypes, such as acral lentiginous or amelanotic
melanomas, were not included. Lesions were mostly located on the trunk and extremities.
Lesions on the face, scalp, and palmoplantar surfaces were not included in the test dataset.
Therefore, only the most common types and locations of melanomas were addressed in
the study. Lentigo maligna melanoma possesses a pigmented pseudonetwork and light
brown structureless areas, which indicates malignant melanocyte distribution in follicular
units [39]. Such dermatoscopic features were absent in the current test dataset. In addition,
certain age groups, such as adolescents, can present with certain melanoma subtypes more
frequently. Therefore, the inclusion of more variants, such as Spitzoid melanomas [40],
would be beneficial for a more inclusive NNM classification performance assessment.
Unfortunately, the HAM10000, MSK-1/5, and UDA2 databases that were used to form the
test dataset did not include information about the reasons for benign lesion removal, nor
about seborrheic keratosis subtypes. While the dermatoscopic features of most benign skin
lesions have been described [41], some can still present as melanoma mimickers [42]. The
performance on a test dataset of dermatoscopically equivocal lesions may herald lower
classification accuracies for both the NNM and dermatologists.

The summarized sensitivities and specificities of smartphone-based artificial intel-
ligence algorithms are presented in Table 6. Our NNM achieved a higher melanoma
classification performance than that of the dermatoscopic image-based CNN from the study
by Veronese et al. [26]. The study assessed a similar number (n = 97) of dermatoscopic
images from the ISIC archive to evaluate the accuracy of a CNN algorithm, trained on
600 images. Thus, we believe that our multiclass-classification NNM would be a better
aid for beginners in dermatoscopy and family physicians, as it also has a wider hardware
compatibility. Sangers et al. [28] prospectively validated a previously tested smartphone-
based CNN that was trained on clinical images [27] for the classification of 18 different
skin tumor types. The algorithm achieved a sensitivity and specificity of 81.8% and 73.3%
for melanocytic skin lesions, respectively, as well as an overall 86.9% sensitivity and 70.4%
specificity for all skin tumors. Although the range of included skin lesions was greater than
that in our study, only clinical images were used. Therefore, it is difficult to directly compare
its accuracy with that of our classification model, which used dermatoscopic images.

Table 6. Sensitivity and specificity of the neural network model and other studies employing
smartphone-based artificial intelligence algorithms for dermatoscopic images.

Study
Melanoma Melanocytic Nevus Seborrheic Keratosis

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

NNM 0.88 (0.71–0.96) 0.87 (0.76–0.94) 0.77 (0.60–0.90) 0.91 (0.81–0.97) 0.52 (0.34–0.69) 0.93 (0.83–0.98)
Veronese et al. [18] 0.84 0.82 N/A N/A N/A N/A
Udrea et al. [19] * 0.93 (0.88–0.96) N/A N/A 0.78 (0.77–0.79) N/A 0.78 (0.77–0.79)

Sangers et al. [20] * 0.82 (0.59–0.95) 0.73 (0.66, 0.80) N/A 0.80 (0.76–0.84) N/A 0.80 (0.76–0.84)

Where available, data are presented with a 95% confidence interval given in the parentheses. NNM—neural
network model. * Non-dermatoscopic images. N/A—data not available.

While the adoption rate of dermatoscopy amongst primary care physicians continues
to be limited, the expanding domains of artificial intelligence and teledermatology warrant
further research, with the aim of introducing cutting-edge technical assistance [4]. The
remarkable potential of contemporary smartphone cameras, combined with breakthroughs
in machine learning, enables the seamless integration of these technologies into handheld
systems, optimized for use in primary care environments. Such accessibility would equip
family practitioners with the capability of performing the dermatologist-equivalent cate-
gorization of benign and malignant skin lesions. Consequently, this would considerably
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enhance patient accessibility [43], in addition to curtailing healthcare costs [44]. This is
particularly important in rural areas where the access to dermatologists may be limited.

The primary goal of this study was the demonstration of the real-life application
possibilities of state-of-the-art deep learning algorithms implemented in common devices.
Our results show that the proposed solution can give very promising results and lead
to the development of self-monitoring technologies. As we already demonstrated, the
proposed algorithm can be used as a mobile application—individual users can perform
self-examinations of skin lesions using any image acquisition device. This can help raise
the awareness of skin cancer and encourage early detection. The proposed solution can be
employed in public health campaigns to screen large populations and identify high-risk
individuals who may require a more detailed examination.

Our study assessed the accuracy of an NNM in classifying melanomas, melanocytic
nevi, and seborrheic keratoses. However, the algorithm should be improved in order
to increase the sensitivity for seborrheic keratoses and to include more non-melanocytic
skin lesions and different melanoma subtypes, including those in difficult-to-assess lo-
cations, such as the face and palmoplantar surfaces. Additionally, further validation of
the smartphone-based YOLO network is needed through the use of external datasets, a
greater number of dermatoscopic images, and, ultimately, prospective multicenter studies.
Future research should assess whether the classification performance of family physicians
improves when using smartphone-based artificial intelligence algorithms in a prospective
study, in order to display the clear benefit of such technologies in daily clinical practice.
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