KAROLIS RYSELIS

ALGORITHMS FOR
HUMAN BODY
SEGMENTATION AND
SKELETON FUSION

DOCTORAL DISSERTATION

N o
o c
N S
w o

KAUNAS UNIVERSITY OF TECHNOLOGY

KAROLIS RYSELIS

ALGORITHMS FOR HUMAN BODY
SEGMENTATION AND SKELETON FUSION

Doctoral dissertation
Natural Sciences, Informatics (N 009)

Kaunas, 2023

This doctoral dissertation was prepared at Kaunas University of Technology, Faculty
of Informatics, Department of Software Engineering during the period of 2017-2022.

The doctoral right has been granted to Kaunas University of Technology together with
Vytautas Magnus University and Vilnius Gediminas Technical University.

Scientific supervisor:
Prof. Dr. Tomas BLAZAUSKAS (Kaunas University of Technology, Technological
Sciences, Informatics Engineering, T 007).

Edited by: English language editor Armandas Rumsas (Publishing House Technologija),
Lithuanian language editor Aurelija Grazina Ruksaité (Publishing House Technologija).

Dissertation Defense Board of Informatics Science Field:

Prof. Dr. Hab. Rimantas BARAUSKAS (Kaunas University of Technology, Natural
Sciences, Informatics, N 009) — chairperson;

Prof. Dr. Hab. Gintautas DZEMYDA (Vilnius University, Natural Sciences, Infor-
matics, N 009);

Prof. Dr. Vacius JUSAS (Kaunas University of Technology, Natural Sciences, Infor-
matics, N 009);

Prof. Dr. Tomas KRILAVICIUS (Vytautas Magnus University, Natural Sciences, In-
formatics, N 009);

Prof. Dr. Alfonsas MISEVICIUS (Kaunas University of Technology, Natural Sci-
ences, Informatics, N 009).

The official defense of the dissertation will be held at 9 a.m. on 26 June, 2023 at the
public meeting of Dissertation Defense Board of Informatics Science Field in M7 Hall
at The Campus Library of Kaunas University of Technology.

Address: Studenty 48-M7, Kaunas, LT-51367, Lithuania.
Phone: +370 608 28 527; e-mail doktorantura@ktu.lt

Doctoral dissertation was sent out on 26 May, 2023.

The doctoral dissertation is available on the internet http://ktu.edu, at the library of
Kaunas University of Technology (Donelai¢io 20, Kaunas, LT-44239, Lithuania), at the
library of Vytautas Magnus University (Donelai¢io 52, Kaunas, L'T-44244, Lithuania),
and the library of Vilnius Gediminas Technical University (Saulétekio 14, Vilnius, LT-
10223, Lithuania).

© K. Ryselis, 2023

KAUNO TECHNOLOGIJOS UNIVERSITETAS

KAROLIS RYSELIS

ZMOGAUS KUNO SEGMENTAVIMO IR
SKELETU SALAJOS ALGORITMAI

Daktaro disertacija
Gamtos mokslai, informatika (N 009)

Kaunas, 2023

Disertacija rengta 2017-2022 metais Kauno technologijos universiteto Informatikos
fakultete, Programy inzinerijos katedroje.

Doktorantiiros teisé Kauno technologijos universitetui suteikta kartu su Vytauto Di-
dziojo universitetu ir Vilniaus Gedimino technikos universitetu.

Mokslinis vadovas:
prof. dr. Tomas BLAZAUSKAS (Kauno technologijos universitetas, technologijos
mokslai, informatikos inzinerija, T 007).

Redagavo: angly kalbos redaktorius Armandas Rumsas (leidykla ,,Technologija®), lie-
tuviy kalbos redaktoré Aurelija Grazina Ruksaité (leidykla ,,Technologija®).

Informatikos mokslo krypties disertacijos gynimo taryba:

prof. habil. dr. Rimantas BARAUSKAS (Kauno technologijos universitetas, gamtos
mokslai, informatika, N 009) — pirmininkas;

prof. habil. dr. Gintautas DZEMYDA (Vilniaus universitetas, gamtos mokslai, infor-
matika, N 009);

prof. dr. Vacius JUSAS (Kauno technologijos universitetas, gamtos mokslai, informa-
tika, N 009);

prof. dr. Tomas KRILAVICIUS (Vytauto DidZiojo universitetas, gamtos mokslai, in-
formatika, N 009);

prof. dr. Alfonsas MISEVICIUS (Kauno technologijos universitetas, gamtos mokslai,
informatika, N 009).

Disertacija bus ginama vieSame informatikos mokslo krypties disertacijos gynimo tary-
bos posédyje 2023 m. birzelio 26 d. 9 val. Kauno technologijos universiteto Studenty
miestelio bibliotekoje, salé¢je M7.

Adresas: Studenty g. 48-M7, Kaunas, LT-51367, Lietuva
Tel. +370 608 28 527; el. pastas doktorantura@ktu.lt

Disertacija iSsiysta 2023 m. geguzés 26 d.

Su disertacija galima susipazinti interneto svetainéje http://ktu.edu, Kauno technologi-
jos universiteto (K. Donelai¢io g. 20, Kaunas, LT-44239, Lietuva), Vytauto Didziojo
universiteto (K. Donelai¢io g. 52, Kaunas, LT-44244, Lietuva) ir Vilniaus Gedimino
technikos universiteto (Saulétekio al. 14, Vilnius, LT-10223, Lietuva) bibliotekose.

© K. Ryselis, 2023

CONTENTS

1 Introduction 13
1.1 Relevance ofthework 13
1.2 Problem statement, 15
1.3 Tasks 16
1.4 Scientificnovelty 17
1.5 Thesisstatements 17
1.6 Practical value 17

2 State of the art 19
2.1 Depth data acquisition and processing 19

2.1.1 Depth sensingdevices 19
2.1.2 Combining skeletal data from multiple sensors 23
2.1.3 Depth-related data structures 26
2.1.4 Noisereduction 30
2.2 Point cloud similarity metrics 31
2.3 Segmentation and clustering techniques 32
2.3.1 Geometrical segmentation and clustering techniques 33
2.3.2 Unsupervised clustering 36
2.3.3 Fully-manual segmentation. 37
2.3.4 Human body segmentation using neural networks 38
24 Randomforests 44
2.5 Summary of literature overview 44
2.5.1 General findings, 44
2.5.2 Motivation for algorithm selection 46

3 Point cloud and skeleton data processing methodology 48
3.1 High level process overview 48
3.2 Datasetcollection 50
3.3 Cross-set intersection metric 53
3.4 Semi-automatic segmentation 56

3.4.1 Point cloud segmentation via bounding boxes 56
3.4.2 Full-manual point cloud segmentation 76
3.4.3 Under-segmentation reduction using A recursive 2-Means split
algorithm with a random forest classifier for split acceptance . 82
3.5 Fully-automatic segmentation 87
3.5.1 Theoretical basis and hypothesis 87
3.5.2 Proposed neural network — Agrast-6 architecture 87
3.5.3 Agrast-6 training and training data split 89
3.6 Segmentation evaluation methodology 92

3.6.1 Accuracy evaluation methodology 93

3.6.2 Performance evaluation methodology 94
3.7 Multi-camera skeleton transformation and fusion 97
3.7.1 Skeleton transformation 97
3.7.2 Skeletonfusion L 101
3.8 Proposed framework for depth segmentation and skeleton fusion . . . 102
3.9 Summary e 103
Experimental results 106
4.1 Datasets e 107
4.2 Semi-automatic segmentation L. 107
421 Dataformats, 107
4.2.2 Experimental noise reduction analysis 108
4.2.3 Qualitative analysis of watershed segmentation 110

4.2.4 Experimental analysis of point cloud processing performance
IMProvements v v v v v v e e e e 112
4.2.5 Experimental analysis of point cloud processing accuracy . . 114
4.2.6 Total segmentation time cost analysis 125

4.3 Under-segmentation correction experimental evaluation of the recur-
sive 2-Means split algorithm with a random forest classifier for split

acceptance e e e 127
4.3.1 Experimental evaluation of the performance 127
4.3.2 Experimental evaluation of accuracy 128
4.3.3 Impact on the total segmentation time cost. 134
4.4 Agrast-6 training and evaluation 135
4.4.1 Agrast-6 training processo oo 135
4.4.2 Qualitative analysis of the training progress 136
4.4.3 Image processing analysis 141
4.4.4 Performance benchmark 142
445 Accuracyanalysis 142
4.5 Skeleton transformation and fusion experimental evaluation 151
4.5.1 Skeleton transformation and fusion accuracy experimental eval-
uation e 151
4.5.2 Skeleton transformation and fusion performance experimental
evaluation oL 153
4.6 SUMMATY e e e e e 153
Summary and conclusions 156
Santrauka 158
6.1 Izanga e 158
6.1.1 Darbo aktualumas 158
6.1.2 Problemos formuluote 160

6.1.3 Uzdaviniai 161

=)

a «® B

6.2

6.3

6.4

6.1.4 Mokslinisnaujumas 161

6.1.5 Ginamieji teiginiai 162
6.1.6 Praktinéverté 162
Literatiros apzvalga 162
6.2.1 Gylio duomeny surinkimas ir apdorojimas 162
6.2.2 Tasky debesy panasumo metrikos 164
6.2.3 Segmentavimo ir klasterizavimo metodai 164
6.2.4 Atsitiktiniaimiskai Lo 166
6.2.5 Literatliros apzvalgos apibendrinimas 166
Tasky debesy ir skeleto duomeny aprodojimo metodologija 166
6.3.1 Auksto lygio procesoapzvalga 166
6.3.2 Kryzminés aibiy sankirtos metrika 166
6.3.3 Pusiau automatinis segmentavimas 167
6.3.4 Automatinis segmentavimas naudojant ,,Agrast-6 architektiira 169
6.3.5 Keleto kamery skelety transformacija ir salaja 170
Eksperimentiniai rezultatai 171
6.4.1 Duomenyrinkiniai 171
6.4.2 Pusiau automatinis segmentavimas 171

6.4.3 Permazo segmentavimo mazinimo naudojant rekursini 2-vidurkiy
padalijimo algoritma su atsitiktinio misko klasifikatoriumi pa-

dalijimui priimti korekeijy ekperimentinis ivertinimas 173

6.4.4 , Agrast-6" mokymas ir jvertinimas 173

6.4.5 Skelety transformacijos ir salajos eksperimentinis jvertinimas 174

6.5 I8vados 174
List of publications and conferences 199
Acknowledgments 201
Proof that trees grow from the top 202
Activations of Agrast-6 neural network 203
List of poses captured in datasets 231
C.1 Full software solution for semi-automatic segmentation 233

LIST OF FIGURES

2.1

3.1
32
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

3.12

3.13
3.14
3.15
3.16
3.17

3.18
3.19
3.20
3.21
3.22
3.23
3.24

4.1
4.2
4.3

4.4

Euclidean clustering algorithm

Recording capture UML activity diagram
Kinect 2 depth stream capture activity diagram
Deployment of Kinect devices during the data collection
Metric comparison when |A| = |G|
Metric comparison in case of over-segmentation
Metric comparison in case of under-segmentation
Segmentation activity and relevant building blocks
Euclidean clustering adapted to semi-automatic segmentation
Bounding-box-based Euclidean segmentation UML activity diagram .
Marking nodes as removed. Left: iteration 1 ([27-32]), right: iteration

2 ([25-32]). Red — found nodes, green — search path, yellow — skipped

nodes
Marking subtrees as removed. Left: iteration 1 ([26-36]), right: iter-

ation 2 ([24-36]). Red — found nodes, green — search path, yellow —

skipped nodesand paths
Auto-expanding bounding-box-based Euclidean segmentation UML ac-
tivity diagram
Marking subtrees as removed. Red — found nodes, green — search path
Fully manual segmentation UML activity diagram
Mass segmentation UML activity diagram
Training data acquisition activity diagram
Segmentation correction using recursive 2-Means splits with a random

forest classifier integration in semi-automatic segmentation
UML activity diagram of neural network creation process
Architecture of the proposed Agrast-6 model
Accuracy benchmark UML activity diagram
Examples of depth images used for benchmark
Prediction using TensorFlow for Java sequence diagram
Rotation of sensor coordinate systems for data fusion
The proposed rules to select algorithms for depth or skeletal data pro-

CESSING o o e e e e e e

Example depth frames. Left — complex dataset, right — simple dataset

Binary search treedatamodel
Filter visual comparison: no filter, median filter, Gaussian filter, and
bilateral filter, respectively
Watershed-generated clusters

66

69

71
73
78
81
85

86
90
91
95
96
98
99

102

107
109

4.5 Simple dataset accuracy comparison. Left— Euclidean-clustering-based

segmentation, right — bounding-box-based segmentation 116
4.6 Complex dataset accuracy comparison. Left — Euclidean-clustering-

based, right — bounding-box-based segmentation 117
4.7 Euclidean-clustering-based segmentation accuracy histogram 118
4.8 Bounding box accuracy histogram 119
4.9 Euclidean-clustering-based segmentation error examples 120
4.10 Bounding-box-based segmentation error examples 121
4.11 Euclidean-clustering-based segmentation over 98% accuracy frame ex-

amples 121
4.12 Bounding-box-based segmentation over 98% accuracy examples . . . 122
4.13 Euclidean-clustering-based segmentation threshold accuracy frame per-

CENTAZES .+ . v v v v e e e e e e e e e e e e 122
4.14 Bounding box threshold accuracy frame percentages 123
4.15 Simple dataset accuracy comparison. Left — without corrections, right

—withcorrections L 129
4.16 Complex dataset accuracy comparison. Left — without corrections,

right — with corrections 130
4.17 Corrected segmentation accuracy histogram 130
4.18 Recursive 2-Means split algorithm with a random forest classifier for

split acceptance correction error examples 132
4.19 Recursive 2-Means split algorithm with a random forest classifier for

split acceptance correction accuracy frame percentages 133
4.20 Agrast-6 training progressdata, 137
4.21 Agrast-6 training progressdata L. L 138
4.22 Neural network output after training batches 0, 100, 8400 and 16200 . 139
4.23 Original depth frame used for qualitative testing 139
4.24 Neural network output after epochs2-9 140
4.25 Accuracy analysis for simple and complex datasets for Agrast-6 . . . 144
4.26 Agrast-6 segmentation accuracy histogram 145
4.27 Examples of low-accuracy segmentationoutputs 146
4.28 Examples of most typical segmentation accuracy images. Accuracies

of 86%, 88%, 89%, 90%, 91% and 92%, respectively 146
4.29 Examples of the best segmentation outputs (93% and above) 147
4.30 Agrast-6 accuracy frame percentages 148
4.31 ROC curve for Agrast-6 neural network 150
6.2.1 Euklidinio klasterizavimo algoritmas 165
6.3.1 Segmentavimo veikla ir jai reikalingi komponentai 167
6.3.2 Sitlomo ,,Agrast-6“ modelio architektira 170
A.1 An example of a real-life tree growing fromthetop 202
B.1 Layer O (input) activation (input image) 203

10

B.2 Layer lactivations, 204

B.3 Layer2activations 205
B.4 Layer4activations (part 1) 206
B.5 Layer 4 activations (part2) 207
B.6 Layer 6 activations(part1) 208
B.7 Layer 6 activations (part2) 209
B.8 Layer6activations(part3) 210
B.9 Layer 6 activations (part4) 211
B.10 Layer 6 activations (part5) 212
B.11 Layer 8 activations (part 1) 213
B.12 Layer 8 activations (part2), 214
B.13 Layer 8 activations (part3) 215
B.14 Layer 8 activations (part4) 216
B.15 Layer 8 activations (part5) 217
B.16 Layer 8 activations (part6) 218
B.17 Layer 8 activations (part7) 219
B.18 Layer 8 activations (part 8) 220
B.19 Layer 10 activations (part 1) 221
B.20 Layer 10 activations (part2) 222
B.21 Layer 10 activations (part3) 223
B.22 Layer 10 activations (part4) 224
B.23 Layer 11 activations (part 1) 225
B.24 Layer 11 activations (part2) 226
B.25 Layer 11 activations (part3) 227
B.26 Layer 11 activations (part4) 228
B.27 Layer 12 activations 229
B.28 Layer 13 activation (outputimage) 230
C.1 Use case diagram for semi-automatic segmentationtool 234
C.2 Screenshot of the software solution 234

LIST OF TABLES

2.1
2.2
23
2.4
2.5
2.6

3.1
3.2
33
34
3.5
3.6

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13

4.14

4.15
4.16
4.17
4.18
4.19
4.20

Comparison of transformation approaches 25
Comparison of common noise reduction techniques 31
Overview of previous work on semantic image segmentation 43
Comparison of deep learning model sizes 43
Comparison of popular depth sensors 45
Comparison of depth data representations 45
Comparison of search method algorithmic complexities 64
Comparison of number of list append operations 67
Random forest classificationreport 84
Agrast-6 training software and hardware details 89
The values of Agrast-6 model hyperparameters 92
Benchmark software and hardware specifications 96
Details of captured datasets 107
Denoise function accuracy impact and performance comparison . . . 110
Algorithm runtime and node traversal count comparison 114
Average accuracy compariSon e 0. 115
Pixel-wise confusion matrix for Euclidean-clustering-based segmenta-

tion (simpledataset) 123
Pixel-wise confusion matrix for Euclidean-clustering-based segmenta-

tion (complex dataset) 124
Pixel-wise confusion matrix for bounding-box-based segmentation (sim-
pledataset) 124
Pixel-wise confusion matrix for bounding-box-based segmentation (com-
plexdataset) 125
Sex-wise accuracy of Euclidean-clustering-based algorithms 125
Algorithm performance comparison 128
Computation time dissection by activity 128
Average accuracy compariSOn e e 128
Pixel-wise confusion matrix for random-forest-corrected segmentation
(simple dataset) 133
Pixel-wise confusion matrix for random-forest-corrected segmentation
(complex dataset) 134
Sex-wise accuracy of corrected segmentation 134
Average accuracy per dataset L. L 143
Pixel-wise confusion matrix for Agrast-6 segmentation (simple dataset) 149
Pixel-wise confusion matrix for Agrast-6 segmentation (complex dataset) 149
Male vs. female detection accuracy 151
Comparison of SegNet and the proposed Agrast-6 neural networks . . 151

11

12

4.21 Buffered values fusion method accuracy impact evaluation 152

4.22 Buffer size accuracy impact evaluation 152
4.23 Low confidence point accuracy impact evaluation 153
6.2.1 Giliojo masininio mokymosi modeliy dydziai 166
6.3.1 ,,Agrast-6“ modelio hiperparametry reikSmés 171
6.4.1 Euklidinés paieskos ir aprépties dézuc¢iy segmentavimo rezultaty paly-
INIMAS . . . o v v s e e e e e 172
6.4.2 ,,SegNet™ ir sitilomo ,,Agrast-6* neuroniniy tinkly palyginimas 174

1. INTRODUCTION

1.1. Relevance of the work

Various devices are used to capture diverse types of image-like information —
RGB, depth, infrared data, and others. RGB and depth data are often used for semantic
segmentation. With the privacy issues being raised more and more commonly, RGB
cameras capture a lot of data and pose security threats [1]. Depth data, on the other
side, carry less sensitive information, especially when humans are monitored. Depth
data segmentation is usually one of the building blocks in real-world applications. This
is a tempting area of research because low-cost devices such as depth cameras [2] or
lidars [3] are widely available. Segmentation of spatial data [4] provided by depth
sensing devices is researched a lot. It is also applied in multiple areas of research such
as 3D face recognition [5], fall detection [6], evaluation of upper extremity character-
istics [7], fitness applications [8, 9], exercise coaching [10], industrial worker activity
monitoring [11], robotic applications [12], obstacle detection for the visually impaired
[13], anthropometric measurements [14], posture recognition [15], general body track-
ing [16], and even image encryption [17]. However, there are multiple problems with
depth data processing depending on the area of application.

The fundamental issue of object segmentation itself has gained extensive atten-
tion, especially with machine learning solutions [18]. One of the key components in
this process is assigning labels to pixels, which usually means the type of object that
a particular pixel belongs to [19]. Deep learning methods, especially convolutional
neural networks (CNNs), are widely applied in object segmentation. They have largely
contributed to the amount of research dedicated to this field. One of the issues is under-
standing the images at the semantic level, however, only recent solutions are practical
to solve this issue [20]. Single-class (binary) segmentation is also sometimes useful.
It is applied in areas as different as cloud segmentation [21], medical images [22], or
human body segmentation [23].

If it is known that a certain object is already in the scene, the only issue to solve
is segmenting the object from the background. This could be done by the already
existing multi-class semantic segmentation systems, however, they are more complex
than needed, which means that they are also more difficult to train. The issues are
acknowledged by Shazeer et al. [24] who suggest a solution to disable some parts of
the network, or Huang et al. [25] who suggest a solution to train very large networks
more efficiently. However, the training time for large neural networks remains an issue,
so smaller architectures are still required to reduce the time to deploy the CNN-based
solution for some domains. Likewise, application domains are diverse [26]. However,
the current state-of-the-art networks are very complex. V'GG-16 is a network for image
classification. It is the base for many modern image segmentation networks. This
network has 133M trainable weights [27]. It means that a huge amount of images is
required to train such a network. The original research uses 1.45M images for training,

13

testing and validation. Since this is a supervised learning technique, all images must
have labels that are provided at least partially by a human. Segmentation tasks require
much more human input for data labeling because, instead of assigning classes, part of
the image has to be marked in some way. Large neural networks for segmentation also
tend to have high inference times. State of the art shows that modern most powerful
GPUs can only process relatively small images in real time (up to 256 x 128 resolution),
while classic neural networks take up to 180 ms per image [28]. Larger images are more
resource-demanding as the SegNet neural network processes a 1920 x 1080 image in
637 ms when using NVIDIA Titan X GPU. However, smaller architectures have been
shown as viable [29]. They make it possible to process larger images faster. This
enables new applications of such architectures — they can process data in real time,
reduce hardware requirements, improve power efficiency, and require less data to train
them.

Datasets suitable for image segmentation are therefore even more difficult to pre-
pare. Noh et al. used a dataset of 12.3k images [30] to train their Deconvnet architec-
ture. The dataset is called PASCAL and was already 5 years old at the time of the
research [31]. It was collected by selecting specific images available online and then
manually annotated by a team of annotators. Since the dataset was not large in the first
place, Deconvnet training was also a complex procedure. It involved batch normaliza-
tion to help the network escape the local minima and the creation of another sub-dataset
from the PASCAL dataset by limiting variations in space to help the network capture
the relevant properties of objects quicker, and only then learn spatial transformations.
If datasets for segmentation had been easier to obtain in the first place, the PASCAL
team could have created a larger dataset which, in turn, would have either made train-
ing Deconvnet easier, or applied techniques would have been more effective due to a
larger set of training images. As another example, Xu et al. required over 43k anno-
tated scans to conduct their research [32]. ShapeNet is a dataset which consists of 3M
models, however, at the time of release, only 220k models were annotated [33].

The datasets required for segmentation from video sequences are even more de-
manding. For example, a usual frame rate of modern cameras is 30 frames per sec-
ond. A one-minute-long video consists of 1800 frames. If such data has to be pre-
pared to train a neural network, it takes an infeasible amount of manual work to mark
foreground-background masks or object-label masks. However, such datasets are re-
quired for such applications as like real-time person segmentation in a browser [34].

The segmented human body can be used as a building block in a larger processing
pipeline. Segmented point clouds were used to approximate human pose likelihoods
[35]. Depth images were combined into a 3D human body model, which also includes
segmenting both images to extract the human body [36].

In addition to RGB and depth data, the Kinect sensor also provides its skeletal in-
formation output with 25 joints; however, this output is not accurate in many cases [37].
This skeletal stream is used in numerous applications. They include human tracking
solutions for activity recognition [38, 39], medical applications like balance recovery
assistance [40, 41], postural control [42, 43], and assistance with Parkinson’s disease

14

[44]. Other applications include gesture recognition [45]. Kinect is also used in multi-
sensor tracking systems with wearable sensors to increase the tracking accuracy [46].
All the presently mentioned areas of application rely on the high quality of skeletal
tracking. This problem may be solved by utilizing multiple sensors, however, two new
problems arise. First, each sensor has its coordinate system, and, therefore, the sensors
must be calibrated [47]. Next, the skeletons have to be fused into one [48]. However,
none of these problems has a single best solution as the state of the art provides wildly
different solutions.

1.2. Problem statement

Binary depth image segmentation is a problem of obtaining a mask for a depth
image representing the ‘foreground object’ and the ‘background’. When applied to the
human body, it constructs a binary mask which indicates the pixels that belong to a
human body. This is relevant in scenarios where the human body should be extracted
from the image — it can then be used instead of a green screen, for tracking the hu-
man body in games, for such medical applications as physical rehabilitation, or sports
activities like yoga. The applications, however, are not in the scope of this dissertation.

Binary depth image segmentation can be formulated as a problem where a binary
mask B has to be acquired for the depth image D:

D = S(B) (1.1)

Here, S is the segmentation function or algorithm, D is a depth image and B is a binary
image with two values — the object pixel or the background pixel. This function can be
defined in various ways and have more parameters depending on the area of application.
This research focuses on the following sub-problems and provides a framework for
solving them:

» Computer-aided semi-automatic segmentation;

* Fully-automatic segmentation.

Both types of segmentation may focus on general segmentation which can work
with any type of object or focus on segmenting a specific type of object. General
segmentation does not know in advance which object it should pick up; therefore, it
needs extra parameters to specify some information that could define the desired ob-
ject. Fully-automatic segmentation, by definition, cannot have extra parameters, it
has to infer everything from the data. In both cases, this research focuses on binary
segmentation where the object is a human body. This work focuses on applying semi-
automatic segmentation to prepare datasets for supervised segmentation neural net-
works, and fully-automatic segmentation is meant to be applied in a larger depth data
processing pipeline as a building block. Computer-aided semi-automatic segmentation
research focuses on the performance of the algorithms to accommodate the final goal
— reduction of the total time it takes to prepare a binary segmentation dataset. Fully-
automatic segmentation focuses on smaller architecture sizes to allow shorter training
times, a lower amount of training data, and, potentially, lower inference times with
larger images.

15

More formally, computer-aided semi-automatic segmentation can be defined as
a function with parameters of extra information and hyperparameters of a specific al-
gorithm compared to the function S from Formula (1.1):

D = S.(B,m,h) (1.2)

Parameter m is provided from outside, for example, manually by a human, while A is
a set of algorithm-specific hyperparameters. Fully-automatic segmentation, by defini-
tion, does not have the m parameter:

D = S.(B,h) (1.3)

Skeleton fusion is another problem related to human body tracking. It is used for
similar applications, however, the tracking principle is different — instead of working
with binary foreground-background masks, it operates with pre-acquired skeletal data
from human tracking devices and aims to improve the accuracy compared to single-
device tracking.

More formally, skeleton fusion is a problem where, given a human body in a
3D space monitored by multiple sensors from different angles, a single super-skeleton
has to be constructed, desirably with better accuracy than when using a single camera.
Skeleton fusion consists of two sub-problems: skeleton transformation to a common
coordinate system, and skeleton merge that outputs a single skeleton. Given a set of
skeleton representations from different angles K = { K3, K3, ..., K,}, a transforma-
tion function 7" and a merge function M should be proposed such that a super-skeleton
K is found with improved accuracy:

K, = M(T(K)) (1.4)

The goal of this work is:

* to provide an algorithm that outputs the result of the function S, that could re-
duce the total time taken to prepare datasets for binary segmentation training
compared to fully-manual segmentation;

* toprovide a lightweight neural network architecture as a function S, with a lower
number of parameters and a lower inference time than neural networks for multi-
class RGB segmentation;

¢ to provide functions 7" and M that would reduce fluctuations with the triple
Kinect setup compared to a single Kinect device.

1.3. Tasks

The following tasks have to be accomplished to solve the problem of this disser-
tation:
1. Analyze the already existing solutions for geometrical image segmentation,
machine-learning-based image segmentation, and skeleton fusion algorithms;
2. Propose performance-improving modifications for the geometrical image seg-
mentation algorithm selected based on the analysis of the already existing solu-

16

tions;
3. Propose a machine learning model for automatic image segmentation;
4. Propose a novel skeleton fusion algorithm;
5. Evaluate all created algorithms in terms of accuracy and performance.

1.4. Scientific novelty

This dissertation provides the following scientific novelty:

* A bounding-box-based segmentation algorithm that is faster than Euclidean-
clustering-based [49] by 367 times with the selected dataset.

» A recursive 2-Means split algorithm with a random forest classifier for split ac-
ceptance that reduces under-segmentation by 2.5 times on average on a selected
dataset.

» A fast multiple Kinect skeleton calibration and fusion algorithm which reduces
skeletal data fluctuations produced by Kinect from 10% to 2%.

* A novel abridged convolutional neural network architecture for human body seg-
mentation which requires 27 times fewer parameters and has a 2 times lower
inference time than the SegNet neural network [50] with a 40% larger image
size.

1.5. Thesis statements

* The total human-supervised point cloud segmentation time can be reduced by 66
times by applying an optimized bounding-box-based technique compared to full-
manual segmentation and by 12% compared to the use of Euclidean-clustering-
based segmentation [49].

» An abridged binary depth segmentation neural network can achieve similar ac-
curacy to the state-of-the-art large neural networks for multi-object RGB seg-
mentation.

* Bounding-box-based under-segmentation area can be reduced by 2.5 times by
cutting part of the point cloud while using the proposed recursive 2-Means split
and the proposed metrics of the split.

1.6. Practical value

The proposed semi-automatic segmentation algorithms with their improvments
have been implemented in a software tool to mark binary masks for Kinect depth im-
ages. They helped to reduce the total computer-aided segmentation time and made it
feasible to create the binary masks for a dataset of 220k depth images by only two
people. Therefore, the primary application of the algorithms is to be implemented in
data labeling for supervised machine learning architectures. However, they could also
potentially be applied for unsupervised clustering tasks. This tool carries the most sci-
entific novelty as there are novel variations of algorithms in use.

The proposed Agrast-6 neural network architecture could be applied in larger
depth data processing pipelines where the network could be used as one of the building
blocks. One potential application of such a neural network is human silhouette com-
parison by using such metrics as the Hausdorff distance. This could be applied in yoga

17

training, rehabilitation activities, and other human tracking. Trained Agrast-6 model
is the ultimate result of this dissertation as all research about segmentation leads to this
model and its training.

Lastly, the proposed skeleton fusion algorithm has been applied for human mo-
tion analysis [9]. More accurate measurements were made to determine the load of
human joints during various activities. The algorithm could also be used as a means of

capturing a more accurate representation of a human skeleton by using multiple Kinect
devices.

18

2. STATE OF THE ART

This chapter presents the current state of the art of the areas related to this dis-
sertation. The whole research focuses on depth information processing.

Section 2.1 introduces the state-of-the-art research related to depth sensors and
depth data processing methods. First, depth-sensing devices are presented and com-
pared. These devices capture the depth and human body skeletal information. Both
skeletal (transformation and fusion) and depth (depth maps, 3D search trees) data pro-
cessing is reviewed in this section. Finally, noise reduction methods for these devices
are presented. There are several metrics to assess the accuracy of segmentation. They
are presented in Section 2.2. The main focal point of this dissertation is human body
segmentation. While segmentation and clustering are different tasks, they are both
related. Therefore, segmentation and clustering techniques are overviewed in Sec-
tion 2.3. This section reviews geometrical segmentation techniques, which are used
as a baseline for semi-automatic segmentation research, as well as unsupervised clus-
tering, full manual segmentation, and neural-network-based segmentation. Random
forest techniques may also be used in combination with other techniques to solve clas-
sification tasks. They are overviewed in Section 2.4. Finally, Section 2.5 concludes
this chapter and provides an overview in terms of whichever existing solutions can be
used, adapted, or used as a baseline for the proposed segmentation framework or its
components.

2.1. Depth data acquisition and processing
2.1.1. Depth sensing devices

There are two types of data analyzed in this work — depth data (distances between
a sensor and an object at all pixels) and skeletal data (a set of human joint positions
in a 3D space monitored by a sensor). The only widely-available device providing
skeletal data is Microsoft Kinect, but there are many available depth-sensing devices.
This section overviews the most-commonly-used devices for capturing depth data —
different versions of Microsoft Kinect and RealSense devices. These devices have dif-
ferent resolutions, different amounts and even types of noise. Choosing a better device
to capture the data might make it easier to work with the data. Properties of Kinects
skeletal stream are also reviewed. Stereo cameras are also used in computer vision,
and, therefore, they are discussed in this section as well.

2.1.1.1. Microsoft Kinect and depth data

The most popular depth-sensing device is Microsoft Kinect. It was initially re-
leased in 2010 and made available for PC (Windows) in 2012. Its depth camera had a
depth resolution of 320 x 240. It was the first depth device to become widely avail-
able among home users. Kinect was included in the Guinness Book of Records as
the “fastest selling gaming peripheral” with 8M units sold in the first 60 days [51]. It
was superseded by its next iteration Kinect 2 in 2014. This variant offered a better

19

depth resolution of 512 x 424 and has been proven to be more accurate by different
researchers. It yielded better accuracy for karate technique recognition [52], respira-
tory motion tracking [53], and rehabilitation of stroke patients [54]. Both versions of
Kinect have been investigated and used by a plethora of researchers and across exten-
sive areas. Azure Kinect is the latest iteration of the sensor released in 2019, however,
it does not seem to be utilized as much as Kinect 2. A disadvantage of Azure Kinect is
its non-rectangular fields of view (circular or hexagonal) [55]. While hexagonal neu-
ral networks have been proposed [56, 57], they are not widely supported by standard
machine learning frameworks. An alternative is to utilize a larger rectangular neural
network, however, this approach is less efficient because part of a depth image will
always be empty. It was also shown not to have better human tracking accuracy for
mid and upper body parts [58].

The Kinect 2 sensor provides multiple data sources — RGB, depth, IR video
streams. Its SDK also provides a human body index stream that tracks up to 6 peo-
ple at once. Skeletal tracking with 25 supported points is also available. However,
the reliability of the latter streams is questionable as the device is meant primarily for
games where the human is in an upward pose. This is also apparent in related studies
using this type of data. The Kinect 2 sensor was used for a virtual dressing room, and
measurement errors were within 10%, however, the tracked subjects were all in stand-
ing poses [59]. It was also implemented in a sign language recognition system utilizing
skeletal tracking, however, 15% top-1 match accuracy is not high [60].

All versions of the sensor have some type of noise in their depth images. Mallick
et al. analyzed the types of noise present in Kinect vi [61] and found that 9 types of
noise should be accounted for. Depth image quality was shown to be improved by a
hole-filling pixel interpolation and a bilateral filter [62, 63]. The tracking quality was
also shown to be affected by the background clutter and lighting conditions for the older
Kinect sensor [64]. However, the noise levels of Kinect 2 and Azure Kinect are much
lower and more predictable as shown by Tolgyessy et al. [55]. Kinect 2 was shown
to have varying levels of lateral and axial noise [65] as well as spatial, and temporal
artifacts and holes [66] and scene-dependent pixel-wise dropouts and distortions [67].
It also adds shadows on the object’s edge, which affects the shape recognition [68].
Another general issue with depth-sensing devices is the capturing of quick topological
changes [69]. This is an important drawback for this research because it limits the
application areas to static scenes.

2.1.1.2. Microsoft Kinect and skeletal data

Kinect sensors also offer their solution for multi-human segmentation and the es-
timation of specific body points. Unfortunately, this seems to work well only under the
right conditions. Object occlusion is one of the problematic areas for the Kinect soft-
ware. This problem may be tackled by applying reliability measurements for tracked
body parts and correcting the pose according to natural human body constraints [70].
Another solution is suggested by Ho et al. [71]. The researchers also suggest a relia-
bility assessment methodology for detecting human body joints. However, this propo-
sition relies on the related depth and RGB data rather than predefined human body

20

model constraints. Occlusion of the human body may also be solved by utilizing neu-
ral networks. A deep recurrent hierarchical neural network was proposed to elimi-
nate posture detection problems [72]. It achieved over 91% accuracy, however, it is
a resource-demanding solution capable of processing only 10 frames per second for
sitting poses. Another problem is the low accuracy or even completely invalid results
when the tracked human is in a non-standard pose such as standing on his hands or
bent forward [37, 73]. This shows that standard algorithms have a limited area of ap-
plication and either must be used together with some correcting techniques or replaced
completely if the original performance is not satisfactory. This was proven possible by
PointSkelCNN —this is a deep learning architecture to extract the human body skeleton
points [74]. Skeleton extraction was also proposed via an adversarial architecture [75].

2.1.1.3. Microsoft Kinect’s data capturing principles

Kinect devices capture depth data by using infrared illumination. The device il-
luminates the scene, and an infrared sensor captures the reflected infrared light. The
illumination forms a pattern that is deformed by the illuminated structures in the scene.
These deformations are then interpreted by measuring the light phase shift [76]. The
phase shift is caused by the time it takes for the light to travel to the object and back.
The device can then compute the distance that the light traveled. This approach is called
the time-of-flight approach [77]. The device has the means to distinguish its reflected
signal from an external infrared source. This is accomplished by using several correla-
tion measurements with varying illumination. Device interference is another possible
source of errors, however, this is solved by using different modulation frequencies for
different devices. Despite that, some decrease in the image quality is observed when
multiple sensors are used [78]. This decrease does not limit the usage of multiple
Kinect devices in the same environment as depth loss is minimal. Depth values at ob-
ject boundaries are usually distorted because the light reflects from different distances
in the area of the same pixel. These pixels are referred to as ‘flying pixels’. This is
also related to light scattering, where the light can be reflected more than once before
reaching the sensor. This leads to incorrect depth values and also produces flying pix-
els. Kinect cameras are also affected by motion because the time it takes for the light
to arrive at the sensor depends on the distance to the object, which may change during
that time. The device tries to solve this by using several correlation images per frame.
The sensor also provides no depth data if an object absorbs infrared light as no light
travels back to the sensor [78, 79]. In the light of this research, a case of black jeans is
important to note [80] since this material absorbs infrared illumination.

2.1.1.4. Intel RealSense

Intel released a series of depth-sensing devices called RealSense. The camera
models available in 2022 are D455, D435, D415 and D405. They all work in both
indoor and outdoor settings but have different working ranges — RealSense D405 is
adapted to short-range videos (up to 50 cm) while RealSense D455 has the longest
range of 6 m. Earlier devices include the L500 series and SR300. Even earlier devices
that had their support dropped with RealSense SDK 2.0 in 2018 are £200, R200, LR200

21

and ZR300.

RealSense and Kinect sensors were both used in the same research for sign lan-
guage recognition and provided similar results with RealSense having a slight edge
[81]. Unfortunately, the researchers did not state which version of RealSense they
used. Neupane et al. conducted an in-depth sensor comparison and found that Azure
Kinect was the most accurate, Kinect 2 was less accurate, and different variants of Re-
alSense were less accurate than Kinect 2 [82]. Yin et al. showed that RealSense R200
device suffers very heavily from noise in human body tracking and introduced a whole
pipeline to reduce it [83]. RealSense D435 was also shown to have higher noise levels
than Kinect 2 [84, 85].

2.1.1.5. Stereo cameras

Another type of device is the stereo camera. This is a system of two cameras that
can both view the same volume of space similar to human eyes. They are widely used in
robotics. The applications in this area include SLAM (Simultaneous Localization and
Mapping) [86] and robot position estimation [87]. One of the open-source solutions
for SLAM, ORB-SLAM?2, also integrates algorithms for SLAM for stereo cameras [88].
Depth stereo cameras are also used for robot position estimation [89]. Specialized
devices like thermal stereo cameras are also used [90]. One of the main challenges
with stereo cameras is camera calibration since two devices are involved. This is a
process where the camera parameters are determined, including the positions of the
cameras. Specialized patterns are often used to solve this problem, the most common
being a calibration grid. They are analyzed by using different geometrical methods
[91, 92, 93], and other computer vision methods are also involved, for example, Otsu
thresholding [94]. However, these devices are more prone to image blurring while
moving [95]. Since they are widely used in SLAM, this has to be solved by image
deblurring techniques. While stereo cameras are useful in SLAM, they are not widely
used in other computer-vision-related research. There is some research on image and
video segmentation using depth cameras [96, 97], however, the proposed methods are
usually geometrical. Machine learning methods, such as neural networks are hard to
adapt since there are no machine learning architectures for camera calibration. End-
to-end learning solutions are also, to the best of the knowledge of the author, not yet
available, because the nature of ever-varying extrinsic camera parameters adds a whole
extra dimension of features to learn. Therefore, stereo cameras seem to only be easily
applied in robotics, mainly SLAM.

2.1.1.6. Summary

To sum up, Kinect devices provide the best quality of depth images, however,
the latest Azure Kinect has a hexagonal image shape, which makes it more difficult to
process it compared to rectangular images. Images from stereo cameras need calibra-
tion, which complicates the processing of their images. Kinect 2, therefore, is the best
fit for capturing depth data for the purposes of this research. Kinects working princi-
ples suggest that it may not be accurate in all conditions, especially when observing
light-absorbing materials. Kinect s skeletal stream is inaccurate, however, its accuracy

22

may be improved by combining the output of multiple sensors.
2.1.2. Combining skeletal data from multiple sensors

This research aims to improve the shortcomings of the Kinect device’s skeletal
data accuracy by using several sensors and combining the outputs. This involves two
problems — transforming the outputs to a common coordinate space, and then fusing the
transformed outputs into a single, presumably, more accurate skeleton representation.

2.1.2.1. Skeleton transformation

The most common methods to transform skeletons into a common coordinate
space are:
* Iterative closest point algorithm;
* Matrix transformations;
» Marker-object-based transformations;
* Geometric transformations;

The main idea of the iterative closest point algorithm [98] is minimizing the dif-

ference between two point clouds P; and P. It consists of the following steps:

1. Find the closest point in P for each point from P;.

2. Estimate rotation and translation by using a distance minimization technique.

3. Transform P; according to the obtained translation and rotation.

4. Repeat from Step 1.
This technique was employed in dance analysis using multiple Kinect devices [99],
3D object detection in a kitchen environment [100], and 3D face recognition [101].
However, this algorithm involves multiple iterations, and there is no best indicator of
convergence.

A matrix-transformation-based algorithm is proposed in the human motion es-
timation research [102]. The researchers observed that the torso is a rigid part of the
human body and is usually detected with high confidence. Therefore, it is selected as a
reference joint, a matrix of inter-skeleton differences is constructed, and a rotation ma-
trix is computed by using singular value decomposition. The inter-skeleton difference
matrix H is computed as

H =3}, (2)° — ko) (af — k)" 2.1)

Here, kg is the reference skeleton, a:f is the coordinates of joint [of skeleton k (I €
{1,2,3} and represents the torso and two shoulders). Singular value decomposition
yields values [U, S, V], and VU is used to construct a 4 x 4 rotation matrix

Dy ake \ ([VUT 0N [Iz —ako
T‘(0 1>< 0 1 0 1 22)

All skeletons are then rotated by using this matrix. Unfortunately, the authors do not
disclose the meaning of k..
One more possibility is the use of marker objects in the scene. The viability of this

23

approach was demonstrated in the Livescan3D system to acquire data from multiple
Kinect sensors [103]. An easily recognizable object is placed in the scene and then
found in the output of each sensor. Then it is used as a reference to find the correct
transformation. Since this object is the key to data transformation, it has to be visible by
all sensors and not occluded, which limits its area of application. The transformation
may then be refined by using the iterative closest point technique. A similar approach
was proposed in a 3D human skeleton tracking solution [104]. The researchers used a
cuboid calibration box with different images on different sides of the box. An iterative
algorithm for skeleton transformation is used as well.

Geometric transformation is also possible as shown by automatic multiple Kinect
cameras settings for walking posture analysis [105]. A rotation matrix 12, . for angles
0, 0y, and 0. is required as well as a translation matrix 7" for translation distances ¢,
ty and t.. The full transformation matrix M can then be defined as

M=T-. Rzyz(9m7 Qy, 92) (2'3)
Transformations for x, y, and z coordinates are then defined as

' = x(cosb,cosby) + y(cos b, sinf, sin b, — sinf, cos b,)+

z(cos B, sin 6, sin, — sinf, cosb,) +t, (2.4)
y = x(sinf, cosby) + y(sin 6, sin 6, sin 6, + cos 6 cos 0)+
Ot . 2.5)
z(sinf, sin 6, cos f, — cos b, sinb,) + t,
2" = x(—sinb,) + y(cos B, sin ;) + z(cos B, cos 0;) + ¢, (2.6)

A similar geometric solution is used for dance analysis, however, the authors do not
reveal the fine details of the transformation [106].

The presently mentioned techniques can also be combined as shown by the fusion
of information from multiple Kinect sensors research [107]. They use marker objects
with the iterative closest point algorithm. After that, they refine the transformation
parameters by using a technique similar to that defined in Equations (2.1) and (2.2).

The skeleton transformation techniques are summarized in Table 2.1. Iterative al-
gorithms (iterative closest point and rotation-matrix-based) require multiple iterations
until the result skeleton converges. The amount of iterations is unknown beforehand.
On the other hand, matrix-transformation-based and marker-object-based algorithms
have a fixed amount of computations to perform. The iterative closest point algorithm
seems to be the most widely used, and it provides good accuracy compared to other
analyzed methods, but it is slower due to its iterative nature. The matrix transforma-
tions method requires singular value decomposition which has a time complexity of
O(mn?), where m is the larger dimension size of the matrix, and n is the lower size
[108]. For Kinect 2 skeletal stream, m = 25,n = 3. Geometric solutions do not
suffer from the disadvantage of high computational complexity, however, they require
calibrated sensors.

This review suggests that a rigid body part may be used to calibrate the sensors

24

Table 2.1. Comparison of transformation approaches

Iterative closest Matrix Marker object Rotation matrix
point[98] transforma- based[103] based[105]
tions[102]
Base object Whole skeleton Rigid body part Known extra Whole skeleton
object
Amount of cal- Higher Higher Lower Higher
culations
Reported accu- 94%[99], im- 89% (indirect Not provided 10 cm error
racy proved indirect metric)
output accuracy
from 62% to
69%][100]
Disadvantage Performance Performance Requires extra Performance
(iterative) (singular val- objects in scene (iterative)
ues)

similarly to the matrix-based proposals, but the transformation itself could be found
via geometrical means to maximize the performance.

2.1.2.2. Skeleton fusion

The second step — skeleton fusion — determines the final position of the skeleton
joint based on the transformed values from all Kinect devices. The simplest option
is to compute the average joint position across all sensors [105]. Another option is
to estimate the confidence levels. Dance analysis research proposes a solution of this
type [99]. Fusion is performed by selecting the best skeleton by the confidence level,
and the joints with non-high confidence are combined with the same joints from the
other skeletons by using a weighted average based on the confidence levels. Unfor-
tunately, the paper does not go into much detail on the confidence level estimation.
Human motion estimation research proposes a similar approach to this problem, how-
ever, the researchers have a slightly different task — to eliminate occlusion by using
several sensors [102]. Similarly to the previous paper, confidence levels are used to
fuse the skeletons. An estimate of the overall activation of the joint is computed as
the standard deviation from its position derivatives over time. Another indicator for
confidence was the depth value at the location of the joint — in the case of occlusion,
it will be different from the rest of the body. One more possible approach to deter-
mine the confidence is to estimate the measurement noise based on the predicted state
and joint motion continuity [109]. The prediction is made by using the Kalman filter
which minimizes estimate covariance. Motion continuity is computed from the joint
positions over time for each sensor separately. Then all sensors vote whether the move-
ment was fast or slow. A similar technique with Kalman filters was also implemented
for human-robot collation collision detection [110] and gait analysis [111].

25

2.1.3. Depth-related data structures

There are multiple ways to represent depth data. The most common data struc-
tures are these:
* Depth map;
» Three-dimensional binary tree;
* Octree.
These data structures have different properties and might be useful for solving different
problems. They are reviewed in this section.

2.1.3.1. Depth maps

Depth data can be represented in various formats. The most commonly used for-
mat returned by depth sensors is a depth map. It has an immediate advantage because it
does not need to be constructed — this is a direct output from the sensor’s software. This
is a picture-like data representation which consists of one channel, and the values of
pixels represent a distance from the sensor rather than color. Depth maps share many
properties with the regular RGB and other images, and, therefore, are a viable input for
convolutional neural networks. Couprie et al. applied neural networks to perform the
semantic segmentation of depth images [112]. Their machine learning model achieved
52% pixel-wise accuracy when classifying depth scenes into 14 categories. Xu et al.
have shown that the depth data from LIDAR sensors can be segmented by using their
proposed neural network architecture SqueezeSegV’3 [32]. This network consists of 5
convolutional stages and an upsampling layer. This solution yields 55.9% mean inter-
section over union (mloU) accuracy. Another CNN-based solution is RGCNN [113].
This model is also used for semantic segmentation and reaches 84.3% mloU, ranging
from 44 to 95% for different classes. Wang et al. suggest their RGBD segmenta-
tion CNN (convolutional neural network) which yields 49-61% accuracy [114]. This
model works with any object. Depth images of pigs were successfully used with the
YOLOY000 neural network to find bounding boxes of them so that to identify touching
pigs in a closed environment [115].

Depth maps can be processed by using non-machine learning methods similar to
regular images as well. Mussi et al. investigated ear segmentation from depth map
images [116]. The researchers used different classic algorithms for image processing
— Canny detector, the local adaptive threshold as well as analyzing histograms to de-
termine contrast corrections. They managed to achieve a similarity of 98% and more
in ear segmentation. Their results show that the classic image processing algorithms
apply to depth images as well. Li et al. proposed a three-step algorithm based on re-
gion growing, which is another algorithm widely used for RGB image segmentation
[117]. Their area of application is the plant leaf segmentation, and it reached 95-96%
F-measure. A combination of a watershed and K-Means clustering has been used to
segment LIDAR point clouds [118]. This approach increased the segmentation accu-
racy of the available watershed-based solutions. Li et al. proposed a technique based
on human body part models and graph cuts and computed pixel probabilities [119].
This works directly with depth data. These examples demonstrate that the classic RGB

26

image analysis algorithms can be successfully applied to depth maps as well.

Depth maps are most widely used together with other image or image-like in-
formation. Common candidates are RGB images and thermal images. Using multiple
types of data tends to increase both the accuracy and complexity of solutions. Hsieh
et al. have applied RGBD data to apply semantic segmentation of the sidewalk [120].
They adapted a Fast-SCNN neural network that was originally intended to use high-
resolution RGB images to work with RGBD images [121]. Their research showed
95% pixel-wise accuracy in semantic segmentation. Kang et al. also used RGBD data
with their neural network add-on for semantic segmentation [122]. Their results also
suggest that different types of neural networks can be used with both RGB and RGBD
data. Sun et al. used RGBD and long-wave infrared data for hand segmentation [123].
This research showed a 5% accuracy increase in segmentation over using only RGB
data. Palmero et al. also used RGBD and thermal data for human body segmentation
[124]. They proposed 4 different descriptors and fused them by using random forest.
Their approach showed an accuracy of up to 79%, which confirms that a combination
of different techniques can be applied for segmentation. Huang et al. implemented a
robust human body segmentation algorithm based on part appearance and spatial con-
straint [125]. They create body part models and compute the probability of the pixels
belonging to each part, then construct a cut-graph, and segment the image based on it.
The solution works with RGB images and is created specifically for human body seg-
mentation. Zhao et al. combined it with RGB data to recognize human activity [126].
The combination of RGB and depth data is also used in a variety of other solutions for
object detection [127], and especially semantic object segmentation [128, 129, 130,
131].

Despite being more prevalent, adding extra information compared to depth data
involves some disadvantages. First, the data becomes more complex than depth-only.
In the case of semi-automatic segmentation, one type of data is easy to process for a hu-
man (depth, IR, or RGB), however, their combination is difficult to interpret. Multiple
modalities are introduced into manual segmentation workflows by displaying differ-
ent data types as separate images [132], however, this increases the amount of manual
work, and the segmentation outputs have to be merged afterwards, which is a new
challenge. An alternative approach is to merge the modalities into a single represen-
tation [133]. However, this can greatly impact the data processing time depending on
the merge algorithm. Ultimately, the quality of segmentation then also depends on
the quality of the merger. The reduced amount of data tends to speed up automatic
neural-network-based segmentation. However, a reduction in accuracy is not always
observed. It was shown that changing RGB data to grayscale data did not reduce the ob-
ject recognition accuracy [134]. Depth data, added to RGB images, tends to improve
the data processing accuracy, however, the difference in accuracy is usually within
5 percentage points [135, 136]. Neural networks, on the other hand, have to either
accept high-dimensional inputs or combine the results from different modality inputs,
thus making the architecture larger, and therefore potentially slower and harder to train.
The Kinect device captures depth data by illuminating the scene and collecting the re-

27

flected IR waves, while RGB and IR streams are captured by registering light and IR
waves emitted by the object or reflected from the outside source. This makes the depth
stream much less reliant on external factors and more consistent, thereby introducing
less variance to the data. Meanwhile, low lighting conditions affect RGB accuracy
[137, 138]. Therefore, depth data is analyzed in this research for segmentation pur-
poses as the depth stream is more consistent regarding the external conditions, carries
less information, which makes faster processing possible, and it is easier to analyze for
the human than multi-modal data.

2.1.3.2. Three-dimensional binary search trees

Multidimensional search trees were first introduced by Bentley in 1975 [139].
This data structure has useful properties for point cloud analysis. It has O(logn) search
complexity. This is important because two points that are in neighbor pixels in a depth
map can be far away from each other in 3D space and vice versa. Space-local search
is therefore slower in a depth map and faster in a three-dimensional tree. Therefore,
three-dimensional trees are often used when the neighbor point search is important.
Good search complexity is an important property because close points are the basis of
a plethora of algorithms that have been developed to work with this data structure. Ex-
amples include segmentation [140, 113, 141], clustering [142, 143, 144], classification
[145, 146, 147], and others.

A binary search tree is constructed by selecting a pivot and splitting the list of
items into two parts — smaller than the pivot and larger than the pivot. The smaller ele-
ments are moved before the pivot, while the larger elements are moved after the pivot.
This idea comes from the quick sort algorithm originally introduced by Hoare [148].
However, finding a good pivot influences the performance of both the tree creation and
search. If a pivot is good, it splits the original list into almost equal-sized parts. This
allows the creation of a nearly-balanced search tree that will, as a result, have nearly
O(logn) search time. If a pivot is bad, the two parts of the list have very different sizes.
In an extreme, where the minimum or maximum is selected, an unnecessary extra layer
in the tree is added, which leads to increased search times. The best-case scenario is
the median value because it splits the list into equal parts.

Unfortunately, finding a median in an unsorted collection is computationally ex-
pensive. In the most straightforward case, the list of items is sorted, and the middle
element is selected. However, this usually leads to O(n logn) complexity for a single
split. The splits are required for all layers of the tree except the last one (only one item,
so nothing to split). Sorting the list is impossible for a multidimensional case since
the ordering is different at different depths of the tree, so the list has to be re-sorted
after each split. Therefore, there will be one O(nlogn) sort for the first layer, two
(O(%)log %), and so on. The total complexity of all sorts will be Z;O:gln _1% log %.

One of the ways to solve this problem is to use a median-of-three algorithm [149].
It suggests selecting three random elements from the list and finding a median for them.
This significantly reduces the amount of work to sort the elements, but the computa-
tional overhead is small compared to the actual median computation.

Other researchers have suggested different techniques to construct a k-

28

dimensional search tree. Brown suggested pre-sorting data in all dimensions before
building the tree [150]. The ordering is then preserved when constructing the tree.
He has also shown that the complexity of this approach is O(nlogn) as re-sorting of
the whole tree is not required. It was also suggested to build a k-dimensional tree by
utilizing GPU parallelism [151]. The researchers showed that it is possible to reach a
speedup of a factor of 30.5 by using NVidia GTX 660 GPU and their algorithm com-
pared to a sequential algorithm on /ntel Core i7-960 CPU. Another GPU-based tree
construction algorithm was able to construct the tree of 200k points in about 6 ms
when using NVidia Titan X GPU [152]. The speedup is achieved by a massively par-
allel adaptive sorting algorithm. One more approach to the tree construction on GPU
is to move all points to the leaves of the tree so that the internal nodes only contain
split information [153]. A tree with 100k nodes is constructed in 321 ms when using
this approach, however, the tree has 512 dimensions rather than 3. One GPU thread
works for each split to create the initial representation, and the nodes are moved to the
leaves after that. However, all approaches also require CUDA. In addition to that, if
further processing has to be done by using the CPU, the tree has to be reconstructed
back from the GPU representation. While this is faster than creating a full search en-
tirely on the CPU, the reconstruction is still a task that has to be performed. ikd-tree
was also suggested [154]. A partial search tree is constructed and then updated with
new coming points. This process involves rebalancing the tree, and it also leaves data
from the previous depth scans. Essentially, this approach updates an existing search
tree. This avoids the problem of creating many search trees at the cost of extra used
space and a slightly worse search performance.

2.1.3.3. Octrees

An octree is a data structure that divides the 3D space into cubical subsections
[155]. It also has the same search complexity as the k-dimensional tree — O(logn).
They are also widely used in similar areas, such as segmentation [156, 157, 158] or
classification [159, 160, 161]. On the other hand, this data structure is not commonly
used for clustering tasks. It is more difficult to build clusters in the case the points of
the cluster fall into separate subdivisions of the octree.

An octree is constructed by dividing the whole space into 8 (usually) equal parts
recursively. A challenge for octree construction is when to stop dividing the space. If
more than one point stays in a ‘leaf” octant, search complexity grows as it is not enough
to only find an octant, but also to find a point in this octant. On the other hand, if there
is at most one point per octant, it could lead to many empty octants in cases where 2-7
points remain in an octant, and it has to be subdivided into 8 sub-octants. This would
lead to higher memory requirements per point on average. Indeed, high memory usage
is a recognized downside of an octree [162, 163, 164].

2.1.3.4. Conclusion

It is evident from the state of the art that depth maps are a good fit for most
of the problems. Their image-like properties make it easy to use them with neural
networks. However, they are also different from images because they represent spatial

29

data — it is not a flat image like RGB data. Search trees and octrees better represent the
spatial aspect, however, search trees tend to use less memory while other properties
are similar. Therefore, three-dimensional binary search trees could be useful in semi-
automatic segmentation tasks, where spatial data analysis is required. Depth maps
can be processed directly by neural networks, which makes them suitable for fully-
automatic segmentation.

2.1.4. Noise reduction

Since regular image processing techniques can be applied to depth maps, noise
reduction techniques also apply. Usually, one of the filtering algorithms is used because
they are fast to compute and tend to provide decent results. Different noise reduction
algorithms should be used for different types of noise and have different properties.

Mean and median filters are the simplest noise reduction techniques. They com-
pute a kernel of a predefined size by averaging the values of computing a median of
the values. These types of filters have been observed to work well with the salt and
pepper type of noise [165, 166]. However, a small kernel size tends to not reduce the
noise enough, while a larger kernel size loses more details of the original image. This
problem has been addressed in different ways. Zhu et al. suggested computing the
kernel size adaptively depending on the values and combining the median and mean
filters [144]. This technique reduces the noise better while keeping more details of
the original image. Another implementation of an improved median filter has shown
good results even at high noise levels [167]. The algorithm may also be used in image
segmentation to some extent. It was applied with Otsu segmentation to segment RGB
images [168]. An image is segmented three times for each channel and then merged,
however, the image remains distorted which is solved by applying a median filter. The
median filter is useful for the salt-and-pepper type of noise reduction [169], however,
this filter and its variations blur the edges of the image [170]. Both median and mean
filters were also shown to successfully improve the peak signal-to-noise ratio (PSNR)
for Gaussian and speckle noise, however, the median filter worked better in all exper-
iments [171, 172]. This filter has O(n?) time complexity for an n x n sized image. It
was also shown to fail at removing a large amount of noise [173]. However, variations
of mean and median filters tend to work well only on some types of noise.

The Gaussian filter is a more complex algorithm of noise reduction. Instead of
treating all neighbor pixels equally, this filter gives more weight to the closer pixels.
The weights are defined by a Gaussian curve. This filter tends to be more effective
than the mean or the median in most situations, however, it is more computationally
expensive. The Gaussian filter was used to smooth intermediate data representation
in plane detection in point clouds [174] and to pre-process images for the tree crown
segmentation [175]. A Gaussian-based filter was shown to produce a better PSNR
when reducing the speckle noise than the median filter [176]. It allowed more robust
individual point contributions. This type of filter was also implemented in 3D point
cloud matching [177]. Its purpose was smoothing voxels in a predefined voxel grid.
However, none of those researches further investigated the effect of this filter on the
accuracy of the experimental results.

30

Table 2.2. Comparison of common noise reduction techniques

Filter Performance Preserves edges PSNR improvement
Mean Very fast To some extent Lower
Median Fast To some extent Lower
Gaussian Slow No Higher
Bilateral Very slow Yes Higher
Machine learning N/A Can learn specific types of N/A
noise

Another type of image noise reduction is a bilateral filter first introduced by
Tomasi et al. [178]. It adds range weight to the Gaussian filter. This property en-
ables the filter to better preserve the edges [179]. As aresult, it is widely used in image
segmentation. A variation of the bilateral filter was used as a building block in noisy
image segmentation [180]. The filter was also implemented in a fuzzy C-Means seg-
mentation algorithm [181]. A bilateral filter is suitable to point cloud denoising when
high-frequency noise is present in the data [182]. It was also shown that the applica-
tion of a bilateral filter reduced the error of the fetal length estimation using watershed
segmentation [183]. Unfortunately, this filter is slower to compute than the Gaussian,
median of mean filters. There were numerous attempts to make it faster by subsampling
the image [184], decomposing the filter into a set of 3D box filters [185], or utilizing
field-programmable gate arrays [186], however, they either sacrifice some accuracy,
need other techniques in combination, or use custom-made hardware. For images sized
512 x 512, even the optimized approximated variant of this filter produces its output
in 75-186 ms depending on the parameters [187].

Noise reduction is also possible by using machine-learning-based solutions. Ad-
versarial neural networks are applied for noise reduction tasks. There are different
approaches to solving this problem, however, noise reduction is usually integrated into
the overall solution. One such example is an adversarial auto-refiner network that en-
codes the point cloud, and extracts and cleans up the features that are then processed
further [188]. However, the noise reduction step using machine learning is a viable
option when the data is processed further by using machine learning methods. Ge-
ometrical methods tend to work well enough and do not require a complex learning
process. The comparison of all the reviewed noise reduction algorithms is presented
in Table 2.2.

2.2. Point cloud similarity metrics

One of the most popular set similarity metrics is Dice’s coefficient, also known
as the Sgrensen-Dice index [189]. Given two sets A and B, it is defined as

2|AN B|

DSC = ————
Al +[B]

2.7)

It compares the sizes of the sets to the intersection of the sets. Therefore, if A and
B are non-intersecting sets, their Dice’s coefficient is 0, and if they are equal, Dice’s

31

coefficient is 1. However, this metric gives a low penalty if the sets have different
sizes. If A is a subset of B representing a fraction of k points, the coefficient would be

equal to
2k|B| 2k
DSC = = 2.8
(1+k)Bl 1+k 28

In that case, DSC(0.5) = 2, DSC(3) = 0.5 and DSC(0.25) = 0.4. These
values, while showing the relative similarity level, are not very intuitive because they
do not correspond to the actual similarity in a linear sense.

Another possible metric is the Jaccard index [190]. It is defined as

_AnB]

= A0 2.9)

It does not skew the values of similarity like Dice’s score. Given the same A and
B sets, the Jaccard index would be equal to

_ kBJ _

J = =k (2.10)
| B|

However, if one set is not a subset of the other, this index considers their union. If
the sets are highly similar, this score will enhance this similarity since the denominator
will be smaller than in the Dice’s score.

Despite these minor differences, both metrics are widely used in image segmen-
tation evaluation. Indeed, Bertels et al. showed that there is no significant difference
between the use of these metrics [191]. Cappabianco et al., however, pointed out that
both metrics do not factor in true negatives [192]. Therefore, both metrics tend to be
more sensitive to under-segmentation than over-segmentation. They provide an exam-
ple where an image of 100k points is segmented with 0 false negatives and 20k false
positives. It will have 0.83 Jaccard index and 0.91 Dice’s coefficient, but 20k false
negatives and 0 false positives will provide the scores of 0.80 and 0.89, respectively.
In other cases, marking nothing in the image will correctly give both metric values of 0,
however, the whole image marked as an object may yield large values in these scores,
namely, 0.67 and 0.5.

2.3. Segmentation and clustering techniques

Segmentation and clustering are two distinct but related tasks. The goal of seg-
mentation is to extract segments (usually separate objects) from an image, while clus-
tering is diving the whole image into distinct clusters. However, segmentation is usu-
ally a task of supervised learning — it is solved by defining the objects and then find-
ing them in the scene, while clustering is usually an unsupervised learning technique.
While both problems can be solved by using machine learning, geometrical techniques
also exist. They are all reviewed in this section.

32

2.3.1. Geometrical segmentation and clustering techniques
2.3.1.1. Euclidean clustering

Euclidean clustering is an algorithm introduced by Rusu [49]. It is used to di-
vide a point cloud represented by a three-dimensional tree into separate clusters. The
algorithm is outlined as a UML activity diagram in Figure 2.1. It relies on the low
logarithmic complexity of the search and runs it for each point, making the complexity
of full point cloud clustering O(n logn). This algorithm has a hyperparameter d which
is the radius in the radius search action. The radius search is an algorithm that, given
a starting point p, finds all points with the Euclidean distance from p less than d. Eu-
clidean clustering takes a point from a point cloud, finds all neighbor points for it, and
repeats this search for each neighbor point until no new neighbor points are found. This
collection of points is considered a cluster. When the cluster is finished, another un-
processed point is taken, and the process is repeated until all points have been assigned
to a cluster. The purple color in Figure 2.1 shows Euclidean clustering actions, orange
represents updating the search queue, and yellow indicates finalizing the cluster. This
algorithm is included in a C++-based open-source library Point Cloud Library.

Euclidean cluster extraction has been utilized in different areas of research as
one of the building blocks. The Treeseg algorithm uses Euclidean cluster extraction
to split a point cloud into several smaller clusters [193]. The algorithm has also been
applied in the rigid body pose estimation [194]. It was also used as a benchmark for
SLAM reconstruction [195]. Euclidean cluster extraction was used directly to segment
buildings and terrain of urban areas [196]. Euclidean cluster extraction was success-
fully sped up by Nguyen et al. by using GPUs [197], however, their solution uses a lot
of memory, which makes it infeasible for large point clouds. On the other hand, this
algorithm is not suitable for overlapping object segmentation [198].

Euclidean clustering utilizes the cluster itself as an object-defining feature. An-
other such feature is a bounding box, however, it is more commonly used for segmenta-
tion tasks than for clustering. It was used for collision detection [199]. The researchers
implemented various techniques with a high-performance goal, one of them being the
estimation of object bounding boxes. Another performance-oriented research tried to
parallelize the detection of bounding boxes in a k-dimensional tree [151]. Bounding
boxes are also often predicted by using neural networks. 3D-BoNet architecture was
introduced to predict the bounding boxes from point clouds [200]. This architecture
also emphasizes the efficiency of computation. YOLO3D was introduced as an ex-
tension to the existing YOLO v2 network and adapted to predict 3D bounding boxes
[201]. This research is also no exception as it focuses on efficiency and real-time
performance. Point clouds are also processed by extracting bounding boxes for 3D ob-
jects. Xu et al. implemented a neural network solution to estimate the bounding boxes
[202]. They process both color data and point clouds to achieve better results. How-
ever, since this is a machine-learning solution, the researchers used publicly available
datasets for training. Another solution for a similar problem was suggested by Zhou
and Tuzel [203]. They implemented an end-to-end learning neural network architec-
ture which processes depth data to get the bounding boxes. The researchers also used

33

Setupa quaua'
of points to
check Q@

Figure 2.1. Euclidean clustering algorithm

34

publicly available datasets for training. A plethora of other neural networks have been
proposed to find 3D bounding boxes for different types of objects: a point-level super-
vised network to find bounding boxes in lidar data [204], a fully convolutional neural
network to find bounding boxes for vehicles in point clouds [205], or a graph neural
network for point clouds [206]. However, all the presently mentioned methods are
based on machine learning and use publicly available datasets for training. Most of
them use the KITTI dataset [207] which was captured in 2013 and consists of 6 hours
of traffic scenes. It is still widely used in current research because it takes a lot of
time and effort to create a new dataset of that size. Even the bounding box annota-
tion process, which is easier to perform for a human than segmentation masks, took
409 man-hours for 2806 aerial images with the 655k objects total to create the iSAID
dataset, which is considerably newer than KITTI [208]. To sum up, it is evident that
computing or predicting bounding boxes in depth data is a task that could be solved
very efficiently. However, the state of the art does not reveal what accuracy benefits or
drawbacks it introduces when compared to Euclidean cluster extraction, and machine
learning solutions for this problem require hard-to-get datasets.

2.3.1.2. Bounding boxes in clustering

Bounding boxes are also used in clustering. However, the bounding box is usu-
ally used as a defining feature of an already-existing cluster instead of being required
to find the clusters themselves. In other words, the object is found by using some
method, and the bounding box is only constructed after that for a different reason. For
example, the clustering method used for brain tumor detection in magnetic resonance
images generates multiple candidate bounding boxes and then analyzes them by using
a score function [209]. Bounding boxes are also used for deformable object tracking,
however, they are merely used as the output of a whole data processing pipeline [210].
They are also applied in top-down detection methods [211, 156]. In contrast, Euclidean
clustering is a bottom-up technique that starts from a single point and grows the cluster
from there.

Bounding-box-based segmentation has its advantages as well as disadvantages.
Some advantages of bounding-box-based segmentation include:

» Simplicity: The data model for the box is simple [212], and it is easy to represent
it in memory — it requires a fixed (and small) amount of memory.

» Speed: Bounding-box-based segmentation is generally faster than more complex
segmentation methods, as it only involves drawing a single box around the object
rather than segmenting the entire image [213, 214].

* Flexibility: Bounding boxes can be easily resized or repositioned to better fit
the object of interest, thus making it a flexible method for segmenting objects of
various shapes and sizes [215, 216].

However, there are also some disadvantages to bounding-box-based segmenta-
tion:

* Inaccuracy: Bounding boxes may not always accurately enclose the entire object
of interest, which would lead to incomplete or inaccurate segmentation [217].

 Limitations: Bounding boxes are not well-suited for segmenting objects with

35

complex shapes or for separating closely-spaced objects [218].
* Human intervention: Bounding-box-based segmentation typically requires man-

ual annotation, which can be time-consuming and prone to human error [219].

Given these points, bounding boxes can be effectively used to segment non-
touching separated objects in a scene. More complex scenes would require other means
of Euclidean clustering and segmentation techniques. The applicability of bounding-
box-based segmentation then depends on the use case. This research focuses on a single
human segmentation from the background, therefore, the limitations are not as impor-
tant. However, in cases where the human also touches another object, for example, sits
on a chair, manual corrections to the segmentation output will be required.

2.3.1.3. Segmentation techniques

Segmentation is a related topic of research, however, instead of dividing the
whole image into separate objects, specific classes of objects are found in an image.
Related research shows that clustering techniques can be adapted for segmentation as
well [220, 221, 222]. Euclidean clustering is no exception as researchers utilize it
for segmentation purposes. It can be used to group points, thus essentially building a
segment (or a cluster, depending on a point of view) [223] or splitting a segment into
separate sub-clusters [224]. In all cases, the output must be interpreted further to decide
which segment is the desired output.

An alternative method for object segmentation is the watershed [225]. This
method considers an image as a topographic surface where pixel values can be imag-
ined as height. The ‘valleys’ are filled with water until they start merging and the
remaining ‘hills’ and ‘valleys’ are considered separate objects. This technique is used
in combination with other techniques, for instance, the ResNet50 neural network [226]
or K-Means clustering [227]. In the first case, the watershed method is used to find
contour points which are then processed by the ResNet50 model. In the second case,
it is applied to the output of K-Means clustering. However, watershed was shown
to lead to over-segmentation with noisy images, local irregularities, and low contrast
[228]. Watershed has recently been mostly applied to lidar data since it is natural to
apply topological algorithms for such a type of data [229, 230, 231].

One of the challenges when working with watershed-based segmentation is the
selection of the starting points. One possibility is to compute gradients over the image
and find the local minima points. However, this usually leads to the too fine output
of segmentation [232]. Alternatively, markers can be placed on the image [233]. This
usually involves computing gradient magnitudes and reconstructing the minima and
maxima in the image by applying dilation or erosion [234]. Finally, connected com-
ponents analysis can be applied to find the markers [235]. The image is binarized,
and then the connectedness of the components is analyzed. This step labels separated
objects in the image, and these objects can then be used as the watershed initial minima.

2.3.2. Unsupervised clustering

The K-Means algorithm first defined by MacQueen [236] is a widely used unsu-
pervised machine learning solution to segment point clouds. It has one hyperparameter

36

k (which is in the name of the algorithm) that defines the number of clusters to find in
the point cloud (or other sets of points since it is not limited to point clouds). Initial
points are selected as centroids, and each point is assigned to the segment of the closest
centroid. Centroids are then recomputed to match the actual centroids of the segments,
and the process is repeated until centroids converge, or another termination condition
has been reached.

One of the issues with the K-Means algorithm is finding the optimal value of k if
it is unknown beforehand. It matches the number of the expected segments. The elbow
method has been suggested to find the best value of k£ [237]. It is based on the idea that
the best amount of clusters is such that adding one more cluster does not give a lot of
extra variance. Usually, the initial value of k£ = 2 is selected, clustering is performed,
and the cost function is computed. k is increased with each iteration, and the cost
is recomputed. The algorithm stops when the cost function value does not improve
by a predefined margin with an increase of k. The cost function should be based on
the variance of the clusters. Low added variance means that two clusters are next to
each other, and £ could be considered optimal. However, if the spatial deviation of the
objects is low, the cost function changes will never be large, and the elbow algorithm
will perform sub-optimally.

K-Means clustering is used in various segmentation tasks. Sauglam et al.
achieved over 80% accuracy in building segmentation [238]. Zhou et al. also showed
that the K-Means algorithm works best for background removal [239]. The algorithm
was used for automated bridge deck detection [240]. The researchers used standard
Matlab K-Means implementation. The algorithm may also be used together with other
solutions. It was used with the YOLO3D network to improve its accuracy [241]. K-
Means was applied to the output of YOLO-based detection and added a little accuracy
(73.0% vs 72.8%) with a small performance cost (856 ms vs 848 ms).

These results suggest that K-Means could also be used to further segment the
output of the existing segmentation algorithm since part of it may belong to the back-
ground.

2.3.3. Fully-manual segmentation

The segmentation of any image or other data is possible for a human given the
right tool to mark the objects. Various studies show that this is the most reliable method
of segmentation for now. A comparison between full-manual segmentation and two
software solutions revealed that, while there is a correlation between the results, the
software solutions do not outperform manual segmentation [242]. A different team of
researchers also performed similar research with similar results [243]. They concluded
that the analyzed software-based segmentation solutions overestimate the actual rele-
vance of a medical image. Another analysis showed a similar picture — ICC values
acquired from a software segmentation — are acceptable at best, not better, or at the
same level [244]. Manual segmentation also was more accurate than machine learning
models for prostate segmentation in MRI [245]. The accuracy of manual segmentation
for human neurons is highlighted in a manual segmentation tool analysis [246]. The
researchers state that automatic segmentation cannot yet compete with the segmenta-

37

tion performed by an expert. They show that the human segmentation accuracy ranges
from 95% to 99% in this area of application.

On the other hand, this type of segmentation is prohitively time-consuming. Wild
et al. suggested a 3D tool to mark contours in medical images [247]. It utilizes mod-
ern web technologies, and the user interface allows a highly visual segmentation output
view. However, their research concludes that it takes about 35 minutes of manual work
to create an accurate segmentation output. Other medical segmentation tasks can be
even more time-consuming. For example, manual liver segmentation was estimated
to take about 90 minutes [248]. A similar segmentation time was also reported by an-
other study focusing on medical images for aortic walls [249]. However, this research
also states that manual segmentation was 16% more accurate as well. Finally, a review
of automatic segmentation techniques also highlights the issue of a large human time
consumption for image segmentation [250]. The researchers also note that this is a rou-
tinely performed task. This shows that any time reduction would save a large amount
of time over multiple segmentations. It is evident in a semi-automatic segmentation
solution for MRI scans, which reduces the total time of segmentation from 479 to 167
seconds [251].

One of the issues with manual segmentation is the human bias. Research for
manual segmentation of the prostate showed that there is a difference for some parts of
the objects [252]. On the other hand, another medical manual segmentation research
showed that the quality and other properties of the scan had more impact on the seg-
mentation accuracy than the human bias [253].

The analyzed sources suggest that, while manual segmentation is the most accu-
rate, it is highly time-consuming for a human. Therefore, even semi-automatic methods
can save a large amount of time. This allows either more segmentation per human, or
the saved time can be spent on other work. This also translates into financial savings
if the segmentation is a paid activity.

2.3.4. Human body segmentation using neural networks

Neural networks is the most popular solution to segmentation tasks in the state
of the art. Their main advantage is that they can extract features automatically. Hand-
crafted features are used in different segmentation techniques, however, this is a chal-
lenging task for the human, which has to be solved separately for each domain [254].
Neural networks and their working principles are reviewed in this section.

2.3.4.1. Image processing principles using neural networks

There are several neural-network-based approaches to segmentation tasks:
* Region-based methods;
» Encoder-decoder neural networks;
* U-shaped neural networks.

All techniques are a combination of a classifier and a segmenter — the features are
extracted by a classifier and then processed by a segmenter. Therefore, segmentation
CNNs are derived from classification CNNs.

One type of segmentation using neural networks the use of region-based methods.

38

They extract a region from an image and describe it with features. After that, a region
classifier is trained. These data processing pipelines are complex as they are composed
of multiple steps. One such method is the RCNN architecture [255], which proposes
a three-stage pipeline. First, the regions are proposed by using selective search [256].
Then, a convolutional neural network processes the proposals and extracts features
for the regions. Finally, a set of support vector machines is used to predict the object
category. Another region-based architecture uses pre-processed images as the input
for a convolutional neural network [257]. The network outputs features which are
then interpreted by using a proposed algorithm. A variation of RCNN, Fast RCNN,
introduces Region-of-Interest pooling, which is performed by analyzing regions of the
output of the neural network [258]. Finally, the Mask RCNN architecture was proposed
to segment instances rather than just detect objects [259]. The masks are extracted from
the regions found in the image. The disadvantage of the region-based technique is the
amount of work involved. A lot of regions have to be evaluated to correctly detect or
segment the object in the image.

This problem is solved by combining fully-convolutional CNNs (CNNs with only
convolutional layers) with a fully-connected network. The convolutional part of the ar-
chitecture acts as a region-based feature extractor which is then processed (e.g., classi-
fied) by fully-connected layers. They provide the possibility to combine all activations
of the previous layer. Therefore, they can extract global features which are useful for
such tasks as image classification. This property makes the network trainable end-
to-end for such tasks. A fully-connected layer is employed in a 3D CNN for brain
lesion segmentation where it was shown to make predictions more structured [260].
The importance of a fully-connected layer is greater with shallower networks because
the receptive field of an output neuron does not cover the whole input image. On the
other hand, these layers add a lot of parameters to the network. For example, 89% of
all parameters in the VG G-16 network come from a fully-connected layer [27]. It was
also shown that a fully-connected layer needs to have more nodes for shallower CNNs
than for deeper CNNs [261]. In addition to that, convolutional and fully-connected
layers provide different properties for the networks. Fully-convolutional architectures
tend to achieve better translation invariance, which is useful for image classification
— it does not matter where the object is localized in the image to determine its class.
On the other hand, fully-connected layers add translation variance, which is useful for
object localization tasks [262].

All types of convolutional neural networks are used to extract certain features
from the original image. Usually, each successive layer has higher-level features than
the previous layer. This is achieved by the non-linearity of the neural networks which
is achieved by using such non-linear activation functions as SoftMax [263] or ReLU
(rectified linear unit) [264]. Both activation functions were shown to be able to approx-
imate any function up to arbitrary precision [265]. These functions, combined with the
linear functions provided by the neurons themselves, approximate a function from a
higher-level feature space than the previous layer.

Segmentation neural networks are usually derived from classification neural net-

39

works. A common architecture is an encoder-decoder network. The encoder processes
data similarly to the classic fully convolutional networks — it extracts features from the
original image. The decoder part then creates the image of segmentation masks from
those features [266]. A common strategy in such networks is to add a skip connection
— the decoder gets information not only from the previous layer but also from a layer
of an encoder. These types of networks are called U-shaped CNNs or U-Nets. They
were designed to bridge the semantic gap between the encoder and the decoder parts
of the network [267]. This technique is widely used for many tasks like localization
of image manipulations [268], computer tomography image analysis [269], image de-
noising [270], or cleaning image artifacts [271]. On the other hand, its effectiveness
is disputed as it was shown that removing skip connections reduces the accuracy of
segmentation by a small margin [272].

2.3.4.2. State-of-the-art neural networks for segmentation and classification

Tracking and separating human bodies from other objects requires a different
approach compared to tracking and separating general objects because of the way the
human body is shaped. Research has shown that the human body has a predictable
geometric shape [273], unlike general objects which can have any shape [274]. This
makes it harder for machines to recognize general objects compared to recognizing
the human body. Therefore, segmentation using neural networks is usually domain-
specific as one architecture to segment everything seems infeasible nowadays.

AlexNet is a type of neural network that was created in 2012 for image classifi-
cation in the ImageNet competition [275]. It has 8 layers in total, with 5 convolutional
layers and 3 fully-connected layers. Convolutional layers are used to process the image
data and extract features, while fully-connected layers analyze these features and pro-
duce a final output. AlexNet s success was due in part to the availability of large datasets
and improved GPU capabilities. Its performance demonstrated that convolutional neu-
ral networks could handle complex tasks. However, the use of fully-connected layers
comes with a higher computational cost, as each neuron in the previous layer is evalu-
ated for every neuron in the next layer [276]. AlexNet has many trainable parameters
(62.3 million) due to fully-connected layers. LeNet, which was introduced in 1989, had
only 0.4 million trainable parameters [277]. However, the hardware of the time was
not capable of supporting larger networks. LeNet is still used today as a basis for other
networks due to its light weight. For example, LeNet-5, a variant of LeNet, was used to
detect COVID-19 from lung CT images [278]. It has only 82,000 trainable parameters
but achieved an 86% classification accuracy.

The success of AlexNet inspired a lot of convolutional neural network research.
VGG-16 network was the next iteration of heavyweight network architectures [27]. It
was proposed in 2014 and intended to explore the capabilities of very deep neural net-
works. This is even in the title of the original article — Very deep convolutional networks
for large-scale image recognition. This was a fully convolutional neural network that
utilized small 3 x 3 filters (4/exNet used much larger 11 x 11 filters). The network
consists of 16 layers (hence the name of the network) that are grouped into 5 blocks.
Each block consists of 2 or 3 convolutional layers with ReLLU activation followed by

40

a max-pooling layer. Each max-pooling reduces the dimensions of the previous layer
by a factor of 2. The final layer is softmax to produce the final prediction. Since the
network is very deep, it has a whopping number of parameters — 134M, which is two
times more than AlexNet. This is one of the largest networks to date. It is still widely
used in recent research. Examples include COVID-19 detection from X-Ray images
[279], thyroid disease detection from cytological images [280], and lung segmentation
[281]. The results presented in the mentioned research are very good, reaching an ac-
curacy of over 97%. Research by Yu et al [282] has shown that V'GG-16 is better than
AlexNet at removing background information. However, benchmarks performed by
Canziani et al [283] have shown that VGG and AlexNet carry a small amount of accu-
racy per parameter. This is a disadvantage of these models as the researchers state that
VGG and AlexNet are clearly oversized. VGG-16 accuracy density was evaluated to be
~0.5% per million parameters, AlexNet was evaluated at 0.8% per million parameters.
It was discovered that the parameter bottleneck is in the fully-connected layers and the
network can be optimized by using dropout layers instead [281]. It was later shown
that smaller architectures are possible and still provide reasonable accuracy [29].

The popularity of the V'GG-16 network inspired many other architectures. The
SegNet neural network is one of the networks based on VGG-16 [50]. It suggests an
encoder-decoder architecture for semantic image segmentation — it takes RGB im-
ages as inputs and produces labels of semantic segmentation. Encoder-Decoder (ED)
architectures are divided into two halves and are often referred to as U-nets in ref-
erence to the groundbreaking research by [267]. The spatial dimension is gradually
decreased by the encoder using pooling layers, and the spatial dimension is gradually
recovered by the decoder. By leveraging skip connections, each feature map in the
decoder portion only gets data directly from the feature maps at the same level as the
encoder part, thus enabling EDs to produce abstract hierarchical features with fine lo-
calization. V'GG-16 acts as an encoder in SegNet. The decoder is the reverse of the
encoder — it has the same layers, but in the reverse order, and max pooling layers
are replaced with upsampling layers. The authors introduced the idea of using pooling
indices computed in the max-pooling step in the encoder. The network was trained to
segment objects on the road into 11 classes. SegNet was also applied in other areas
of research, such as brain tumor segmentation [284], detection of cracks in pavement
[285], and semantic segmentation using event-based cameras [286]. SegNet was also
shown to achieve low errors in ultrasound images [287]. This shows that SegNet is a
very versatile architecture that can be applied in different areas. Mou et al also sug-
gest a V'GG-16 encoder-decoder architecture based on V'GG-16 with relation modules
[288]. They include spatial relation and channel relation modules that are then aggre-
gated. They help to identify long-term relations in the images. However, U-Net is
criticized due to the blurring of the extracted features and low-resolution information
duplication [289]. SegNet is also a lighter architecture compared to VGG or AlexNet
with 30M trainable parameters. The encoder-decoder architecture is popular for seg-
mentation tasks as it has been used in numerous other solutions like TernausNet [290],
DeepLabv3+ [291], a high-resolution multi-scale encoder-decoder network for blurry

41

image segmentation [292], UNet++ for medical image segmentation [293] and many
others. However, these networks are known to suffer from structural stereotypes and
are difficult to train due to their depth [294]. The structural stereotype occurs when
images are cut into smaller pieces due to hardware limitations, and then the labels are
combined. This results in edge deterioration in predicted labels, and the edge area of
the patches is incorrectly inferred. While SegNet is an encoder-decoder-based archi-
tecture, it was shown that a decoder is not required to achieve high accuracy in binary
segmentation [295].

Segmenting the body posture is important, but using many features for a large
dataset can take up a lot of memory. Some researchers have suggested using two dif-
ferent ways to reduce the number of features. They call this method “biview learning”
[296]. They use two different views to show the differences in depth and the position
between the body parts. This helps to simplify the features and use a support vector
machine to analyze the data more easily.

An empirical study showed that CNNs U-Net, SegNet, ResNet and Desenet all
perform with a similar accuracy for liver segmentation [297]. They all achieved Dice
scores between 89.5% and 91.4%. U-Net and SegNet show a lower accuracy, however,
SegNet has a simpler, more efficient architecture than other networks. Given the small
difference between accuracies, SegNet seems to have the best accuracy and efficiency
ratio.

Binary image segmentation is a sub-problem of segmentation where the image
is segmented into the foreground and the background. It is a less-explored area of re-
search because the goal is usually different from that for multi-class segmentation. The
latter aims to understand the scene as each pixel usually is given a label. Binary seg-
mentation, on the other hand, focuses on a specific type of object as it only segments
the image into the foreground and the background. For example, given a scene with a
human in a room, multi-class segmentation would try to label the human and each ob-
ject in the room. It may find a wall, a floor, a chair, and a human. Binary segmentation,
on the other hand, would find the human and label everything else as the background.
Therefore, each binary segmentation solution is usually trained separately only with the
type of data it has to recognize. An example of such an application is satellite image
analysis which is solved via binary masks [298]. TernausNet v2 network is proposed
to detect buildings in satellite images. Therefore, the goal of such a network is to learn
the features of buildings as all other types of objects are not relevant in the area of
application. Other examples include melanoma detection in images [299], brain tumor
detection [300], or fire detection for embedded devices [301]. However, state-of-the-
art solutions tend to use the same techniques for multi-class and binary segmentation.
Even the already existing multi-class segmentation neural networks like SegNet can be
adapted for binary segmentation efficiently [302].

There are other solutions for segmentation as well. A solution for binary image
segmentation is SoftSeg [303]. The authors suggest that linear ReLU-based activation
should be used instead of a sigmoid function to soften the boundary of the two classes.
Spatial pyramid pooling was proposed by He et al. [304]. It produces a representation

42

Table 2.3. Overview of previous work on semantic image segmentation

Year Model Novelty Major drawback

2012 AlexNet[275] Depth of the model Ineffective and lower accuracy
than later models

2014 VGG-16[27] Small receptive fields Heavy model, computationally
expensive

2015 U-Net[267] Encoder-decoder architecture Blurred features, slower due to
decoder

2015 SPP-Net[304] Variable image size adaptation Cannot fine-tune convolutional
layers before SPP layer

2015 FCNNJ[310] Adaptation into fully convolu- -

tional networks

2016 ReSeg[3006] Recurrent layer Features must be extracted by
using other techniques

2017 SegNet[50] Decoder non-linear upsampling ~ Slower due to decoder

2021 SoftSeg[303] Normalized ReLU activation Hard to evaluate due to fuzzy

and regression loss function

boundaries

Table 2.4. Comparison of deep learning model sizes

Model Purpose Parameters Model file size
AlexNet [275] RGB classification 62M 233 MB
VGG-16 [27] RGB classification 134M 528 MB
SegNet [50] Semantic RGB segmentation 32M 117 MB
U-Net [267] RGB binary segmentation 30M 386 MB

of features that is independent of the input size. This is achieved by setting stride val-
ues of a pooling layer to be proportional to the input size. However, fine-tuning layers
before the pyramid pooling layer is not possible with such an architecture. A hybrid of
U-Net and SegNet neural networks was also shown to be a viable option [305]. The au-
thors replaced deconvolution filters in U-Net with a SegNet-like decoder. It achieved
up to 85% dice score in myocardium segmentation. A ReSeg model combined recur-
rent and convolutional neural networks [306]. This architecture has a classic encoder
that produces its output which is then processed by recurrent layers. Another solution
utilizing recurrent layers is DAG-RNN [307]. However, recurrent neural networks are
not widely used for image segmentation.

Image sequences contain temporal information, however, sometimes the net-
works tend to learn more from other types of information, such as the background
[308]. Some common challenges are present for object segmentation. They include
object occlusion, deformation, motion blur, and scale variation. A related area of re-
search is object tracking, which itself finds it difficult to track fast-motion, out-of-view
situations. It was shown by a survey of video object segmentation and tracking that
these problems are best solved by combined techniques [309].

An overview of the most important models presented in this overview is outlined
in Tables 2.3 and 2.4.

43

2.4. Random forests

There is a set of classification problems where some rules have to be inferred
to select an appropriate class. A common supervised machine-learning approach to
this problem is the random forest [311]. It is an ensemble of some decision trees that
are each trained with a different sub-sample of training data. This mechanism was
shown to improve robustness and generalization while reducing overfitting, the prop-
erties sought-after in the machine learning community [312]. It has low training and,
importantly, prediction times, has few parameters to tune, and, by nature, infers a set
of rules for decision [313, 314]. They are used in different areas of application where
such rules are possible to make [315].

Random forests can be applied to image segmentation as well. One of the related
techniques is the graph cut. It is utilized in a plethora of applications where random
forests learn the rules for graph cuts. It was used for image segmentation accuracy
improvements [316], a random forest classifier for supervoxels/superpixels [317, 318,
319], and human limb segmentation in depth maps [320]. Random forests are used
in segmentation by extracting some features from the image and training the classifier
using those features. If the classifier works on the voxel basis, the possible features
are the intensity, and the derivatives of the voxel and its neighbors [321]. However,
the features seem to only be limited by the insight limitations of the researchers as it is
necessary to find the features that carry information required to infer the classes. The
features in state-of-the-art literature include projection ratios, eigenvalues of a covari-
ance matrix, domain-specific features like elevation metrics, area and slope in airborne
laser scanning [322], features learned by another machine learning method, such as
a convolutional neural network [323], coordinates in standard space, gradient mag-
nitudes [324], intensity [325] or a combination of learned and hand-crafted features
[326]. These examples show that, generally, random forests can make good predic-
tions if they are trained by using features that carry information to infer the desired
classes.

2.5. Summary of literature overview
2.5.1. General findings

Kinect and RealSense sensors are the most popular among researchers, however,
while RealSense devices offer a higher resolution, they tend to suffer from very high
levels of noise. The comparison is outlined in Table 2.5. Results from related research
suggest that Kinect, despite having a lower resolution, provides a more reliable depth
stream, therefore, it makes more sense to use this device. While Azure Kinect has a
lower level of noise, its non-rectangular field of view makes it more difficult to integrate
it with state-of-the-art machine learning approaches efficiently. On the other hand, the
noise levels in Kinect 2 depth data are usually low enough and can be further reduced
by using noise reduction techniques.

Depth maps and search trees both have their advantages and disadvantages.
Therefore, they fit into different application areas. Depth maps are arrays of depth
values, which makes it easy for applying the classic image noise reduction techniques.

44

Table 2.5. Comparison of popular depth sensors

Device Kinect v2 RealSense D435 Azure Kinect
Depth resolution 512x424 1280x720 640x576
Noise Lower Higher Lowest
Image shape Rectangular ~ Rectangular Hexagonal

Table 2.6. Comparison of depth data representations

Data representation Depth map 3D binary tree

Easy to reduce noise easy difficult
2D search complexity O(1) O(logn)
3D search complexity O(n) O(logn)

Its depth values can be accessed in constant time if the 2D coordinates are known.
However, searching for neighbors in 3D space is complicated because a large portion
of the map has to be scanned. A 3D binary tree solves this problem. Both 2D and
3D search involves the same complexity for the binary search tree because the search
is performed in the same way. On the other hand, noise reduction is more complex
due to the higher search complexity in 2D space in comparison to depth maps. This
dissertation focuses on two problems that requiring representations — automatic binary
segmentation and semi-automatic binary segmentation. These can be solved in differ-
ent ways, and both data structures may be useful. Geometrical methods depending on
local search may benefit from the low 3D search complexity of a 3D binary search tree.
On the other hand, convolutional neural networks are easier to use with an image-like
structure, which, in our case, is a depth map.

Euclidean clustering is a widely popular algorithm. Bounding-box-based seg-
mentation is often used because of its good performance, however, its effects on the
accuracy have not been widely researched yet. Both algorithms have different proper-
ties, and they will be one of the focal points of this research. Related work may suggest
that they might both be useful in different scenarios, which is going to be investigated
in the following chapters.

Random forests were shown to apply to segmentation tasks, however, the means
of application are different from the other reviewed methods. They operate on higher-
level features that have to be provided to them. The usual approach is to extract features
from the image either by applying predefined rules or via other machine learning so-
lutions and then use the random forest to drop a part of an image. In the case of depth
images, point clouds are usually used for this task. However, there are no universal
rules on how to select the features as each research suggests its own features. Feature
selection shall be explored further in this dissertation.

A bilateral filter is the best-suiting algorithm for segmentation because it pre-
serves object edges best. However, other classic noise reduction algorithms like me-
dian or Gaussian filters are also used for this task. Since it was shown by related
research that the Kinect depth stream has a moderate amount of noise, the effects of

45

the most common noise reduction techniques shall be investigated further in this work.

K-dimensional tree construction is a complex task since it either involves a lot of
computations, or the tree is not well-balanced. The median-of-three algorithm seems
to offer a good balance between the tree construction performance and the balanced-
ness of the resulting tree, therefore, it was decided to use this algorithm further in this
dissertation.

Convolutional neural networks (CNNs) are the most popular solutions to image
segmentation. Encoder-decoder and U-shaped architectures achieve the best accuracy
levels for this task. The most popular CNNs achieve a similar accuracy for segmen-
tation tasks, therefore, model efficiency should be the decisive factor for base model
selection. SegNet is the most attractive candidate as it is denoted by a lower parameter
count and an efficient architecture.

Full manual segmentation is an accurate but highly time-consuming segmen-
tation method. Any time reduction allows either a larger amount of data processed
or less work, which also means lower financial costs for paid segmentation. How-
ever, related research suggests that this kind of segmentation is the most accurate,
and semi-automatic (human-supervised) segmentation methods are more accurate than
fully-automatic segmentation while being less time-consuming than fully manual seg-
mentation. This once again confirms the relevance of the proposed semi-automatic
segmentation solutions.

These are the most relevant pieces of information for this dissertation:

» The Microsoft Kinect 2 device offers the best combination of the depth image
quality and compatibility with currently available depth processing algorithms;

* The bilateral filter seems to be the best noise reduction technique for segmenta-
tion tasks, however, this needs confirmation;

* The Euclidean clustering technique is a commonly used algorithm, widely used
to process depth data;

* Encoder-decoder neural networks and their derivatives are the most successful
types of architecture in the state of the art, and SegNet seems to provide the best
accuracy and efficiency ratio;

* The Microsoft Kinect's skeletal data accuracy can be improved by using mul-
tiple sensors, however, the already existing skeleton transformation and fusion
techniques either require a lot of computations, marker objects, or lack deeper
investigation.

* Random forests and K-Means clustering are viable options for segmentation and
cluster, however, their parameters have to be considered beforehand.

2.5.2. Motivation for algorithm selection

Euclidean clustering and watershed are widely popular and successful algorithms
for clustering and segmentation. Both algorithms seem applicable for segmentation and
are both investigated in this research. However, as shown in Section 4.2.3, watershed
segmentation did not yield the expected results, therefore, this dissertation focuses on
Euclidean clustering and the possibilities to apply it for segmentation purposes. This
algorithm naturally fits the problem of depth segmentation as it works with a spatial

46

data representation (a three-dimensional search tree) as it is not derived from other al-
gorithms for RGB segmentation. The use of bounding boxes promises better algorithm
performance, therefore, this research tries to combine existing Euclidean clustering and
bounding-box-based segmentation ideas.

Conducted experiments, presented in Section 4.2.4, have shown that both ex-
isting and proposed solutions lead to under-segmentation. K-Means, an unsupervised
clustering algorithm, has been shown to work well for background removal. Since
under-segmentation means that the segmented object is the desired object with some
part of the background, this algorithm seems to be a good fit. Therefore, this algorithm
has been chosen to be used for further processing of the segmentation output.

The biggest challenge when applying the K-Means algorithm is selecting its pa-
rameter K. Given the high complexity of the analyzed scenes, creating rules for this
selection is very difficult. Usually, when such a situation is encountered, machine-
learning solutions are used. The best machine-learning approach for creating rules is
the decision tree or the random forest. Since random forests tend to provide a higher
accuracy and there is enough data to train them, it was selected instead of trying to
create hand-crafted rules.

CNNs are, without much competition, currently the most popular and success-
ful methods for RGB image segmentation. These networks can also be applied for
depth segmentation since a depth map is an image-like data structure. This research
also involves capturing and annotating a dataset of binary human body foreground-
background masks. Given the dataset and the success of CNNs, it is reasonable to
adapt the so-far-developed ideas of CNNs for depth data. This research, therefore, at-
tempts to improve the already existing multi-class RGB segmentation CNN for binary
depth segmentation. The SegNet neural network has been selected due to the following
advantages:

* It is designed for high-resolution image segmentation — the analyzed images are
of a higher resolution than most CNNs are designed to process;

* It is efficient compared to other popular CNN architectures for RGB segmenta-
tion — efficiency was one of its goals;

* It offers similar accuracy to other popular CNN architectures;

* Its variations have been shown to provide good accuracy for binary segmenta-
tion.

47

3. POINT CLOUD AND SKELETON DATA PROCESSING METHODOLOGY

This chapter presents the relevant theoretical grounds for the proposed algorithms
as well as all other background relevant to this dissertation. First, a high-level process
overview is provided in Section 3.1 as an introduction to the rest of the chapter. Next,
a new metric for segmentation evaluation is introduced in Section 3.3. It is then used
to evaluate all the proposed algorithms for segmentation in the further sections. Next,
semi-automatic segmentation proposals are presented. Section 3.4 provides in-depth
theoretical grounds and insights for a novel optimized bounding-box-based algorithm
and compares it with a classic Euclidean clustering algorithm. This is a deep analysis
that provides the overview of the required building blocks for semi-automatic segmen-
tation, noise reduction analysis, the proposed bounding-box-based segmentation algo-
rithm with three improvements and their theoretical performance and accuracy impact
evaluation. It also describes how the algorithms can be extended for depth video se-
quences and how they can be adapted to work with large depth video files. Appendix
C.1 is closely related as it explains how the algorithms are integrated into the software
solution.

The proposed bounding-box-based semi-automatic segmentation algorithm was
observed to suffer from under-segmentation errors. Section 3.4.3 proposes a machine-
learning-based solution to reduce these errors.

Since a tool for semi-automatic segmentation was created, it has been possible to
create a new dataset for a supervised machine learning architecture with a reasonable
amount of human resources. Agrast-6 architecture is proposed for this task, and its
theoretical ground is presented in Section 3.5.

A skeleton transformation algorithm for multi-camera skeleton fusion is intro-
duced in Section 3.7.

3.1. High level process overview

There are three main problems tackled in this dissertation:

1. How to assist the human in manual depth image segmentation to reduce the total
time it takes to prepare a dataset for supervised neural networks;

2. How to automatically segment a human from depth images faster than when
using state-of-the-art RGB-based semantic segmentation neural networks;

3. How to increase the accuracy of the Kinect skeletal data by using multiple de-
vices.

The first two problems are related: to train a segmenting supervised neural net-
work, a dataset is required. However, since creating such a dataset is extremely time-
consuming [250], fast-performing assisting algorithms could be adopted for this task.
Therefore, to both create a dataset and then train the neural network, the same data is
processed twice — once with human supervision and then by the neural network which
uses the output of the human-supervised segmentation. The last problem is only re-
lated to the Kinect device itself and focuses on accuracy improvements. The datasets

48

Kinect device Software solution

S

Recording
finished?
e ™) (Save
Emit infrared
recordings to
L light pattern disk
l b
(Capture (%)
reflected light |
\ r
- *If - Accept
Estimate depth | depth
frame frame
l _J 2
Emitdepth B .
frame Add frame to
: frame
collection)

Figure 3.1. Recording capture UML activity diagram

captured for the first two problems utilized three Kinect sensors in the same way as
required for the third problem, however, for a different reason.
The full process for setting up and then using automatic human segmentation:

1. A recording of depth data is captured by using custom software (the process
from the device point of view is shown in Figure 3.1, and the process from the
recording point of view is shown in Section 3.2, Figure 3.2).

2. Human-supervised semi-automatic segmentation is applied on the recording to
get files of annotated recordings where human masks are marked on the frames
(the process for one frame is shown in Section 3.4.1.5 in Figure 3.12, while the
whole process is outlined in Figure 3.7).

3. A neural network is trained by using the produced labels and masks.

4. The neural network then gets depth frames from the sensor similarly to Figure
3.1, but, instead of just capturing depth data, it predicts and outputs human body
masks that can be further used in a larger data processing pipeline.

49

The process for fusing the skeletal information from multiple Kinect devices is
similar, however, instead of estimating and emitting depth frames, skeletal information
is estimated and emitted by each Kinect device, collected to a single computer, and
combined into a single, more accurate skeleton, and can then be used in a larger data
processing pipeline.

This research focuses on the following details of the outlined processes and in-
vestigates them in-depth:

» High-performance semi-automatic depth data segmentation algorithm;

» Small neural network architecture (compared to state-of-the-art RGB semantic
segmentation neural networks) for automatic depth data segmentation;

» Skeletal data fusion algorithm.

The fine details of each step of both processes are outlined in the following sec-
tions of this chapter.

3.2. Dataset collection

Two datasets have been collected for this research. Both datasets have been cap-
tured by using three Kinect 2 cameras simultaneously. Special software has been im-
plemented by using C# programming language to synchronize the recording of all sen-
sors. Three computers were connected via a high-speed local network. One computer
is considered the main piece, it has the user interface to start and stop recording. Other
computers are instructed by the main computer — it sends a signal to the other computers
to start and stop recording upon user interaction. The recording files are generated by
using Kinect Studio AP1 which is a part of Kinect 2 SDK. XEF files are generated and
saved on each computer locally with time stamps. The recording activity is outlined in
Figure 3.2.

Recordings took place in closed environments with Kinect devices deployed
around a person. Schematic deployment of the devices is shown in Figure 3.3. The
sensors surround the person so that all the human’s sides are visible. They are deployed
at a height of approx. 1 meter, below the adult human chest level. The environments
are indoors with a mix of natural and artificial light.

Both datasets were saved as XEF files, however, they can only be processed by
using Kinect Studio as it is a proprietary file format. File sizes are large as well, 10-
second recording takes 0.9-1.0 GB of disk space. Kinect Studio can capture a lot of
information — RGB, depth, infrared, and other types of data. All the possible infor-
mation was recorded during the recording sessions. However, only depth data was
required for this research, which is only a small part of the whole data saved by the
Kinect Studio. Another issue is that XEF files cannot be processed directly, and they
have to be streamed by Kinect Studio, and then the stream can be consumed by other
software. This is extremely inconvenient for research since the data is streamed at the
same pace it was recorded. Therefore, custom software was implemented to convert
XEF recordings into a different format. The converter is a custom-made software so-
lution that captures depth frames provided by Kinect Studio. Each frame is added to
the frame collection, and after all frames have been captured, the converter serializes
the frames to a file. The frame consists of its dimensions and contents as a byte ar-

50

User

Main com puter

Other com puter

Start recording

M
Start recording Send start
using Kinect recoding
studio message

J

[

Stop recording

{

Stop recording

Send stop
recording
message

Get start
recording
message

Start recording
using Kinect
studio

Get stop
recording
message

Stop recording

Figure 3.2. Kinect 2 depth stream capture activity diagram

51

Kinect data packaoges

Kinect data packages 3
e -

M

Main server

Kinect data packages

Client #2

T 14
*Q)
=
Clisht #1
N{naqtm
Rl
R
L 4 S e
N
" Actor /
)
L :lt Kinect #2

Kinect #3

Figure 3.3. Deployment of Kinect devices during the data collection

52

ray. Depth maps were extracted from the recordings and serialized to files by using the
Protobuf library. This reduced the size of the files to 160-190 MB per recording and
made it possible to process data as needed as no streaming is required.

The datasets are stored as a set of files (one file per recording). They are used
in combination with the semi-automatic segmentation solution. Binary masks are ob-
tained with the combined efforts of the software and human supervision and stored in
new files, again using the Protobuf library. The file consists of two video recordings —
the original depth frame and the obtained binary mask. Since the depth frame is prepro-
cessed by using a bilateral filter, the frame with this filter applied is saved. These files
can then be loaded into a neural network training pipeline. Since the neural network
proposed in this work learned binary masks from depth images, the two components
are the input and the expected output of the network. If data is loaded directly from the
Kinect sensor, it requires the bilateral filter beforehand for training or predicting the
binary masks using the proposed neural network.

3.3. Cross-set intersection metric

Let us say we have two sets of points — G (ground truth) and A (segmented
image). Then the cross-set intersection coefficient could be defined as

_|AnGP?

“= Al G.D

This metric introduces a non-linear relationship between the sets and their inter-
section. The square in the numerator originates from the idea to compute fractions of
A and G that belong to this intersection. Formula (3.1) represents the product of those
two fractions. Other metrics introduced in the literature overview are linear in this
sense — they operate with values and their sums, not products. This metric is therefore
stricter than the linear Dice’s coefficient or the Jaccard index — if one of the fractions
is low, the whole product will be reduced. In contrast, reducing the size of one part
cannot reduce the overall score to a lower value than for the other components.

The cross-set intersection has an advantage over the Dice’s coefficient because
the metric carries an easily interpretable value when one set is a subsection of the other.
This is important with semi-automatic segmentation in the case of under-segmentation.
If the human body has been under-segmented (the whole body and some background
have been captured), a manual correction is required. The size of the correction is then
easy to estimate from the cross-set intersection — if the value is C, the area of the whole
selection is C' times larger than the actual ground truth. More formally, the amount of
manual correction a is equal to

a =

1
c 1 (3.2)
This property makes it easy to estimate a. However, this also holds for the Jaccard
index since both metrics have the same values when one set is a subset of the other.
The cross-set intersection has an advantage over the Jaccard score as well. If two
sets are given, their size evaluation is usually constant time operation. The intersection

53

Al = 1G]

1.0 — pice
—— Jaccard

0.8 — Cross-set

o
o
|

Score values
o
=y
L

0.0 02 0.4 0.6 08 10
|IANG]| / |G|

Figure 3.4. Metric comparison when |A| = |G|

is required for both the Jaccard score and the cross-set intersection, however, the Jac-
card score also requires the size of the union of the sets which takes non-constant time
to compute. Therefore, the cross-set intersection is guaranteed to be computed faster
than the Jaccard score.

The cross-set intersection is denoted by one more interesting property. Since it
is a product of part of the true positives in the predicted image and the true positives
in the ground truth and both fractions are always in the range [0; 1], it means that the
cross-set intersection always fulfills the following criterion:

ANIG| |ANG]| _, 53)

0<C< , <
4] |Gl

This means that the cross-set intersection is capped at the lower value of the two frac-
tions. This property prevents relatively high scores if one of the errors is very large.

Let us consider three cases: where the ground truth and the predicted sets have
the same size, the predicted frames are smaller (over-segmentation), and the predicted
frames are larger (under-segmentation). Let us analyze these cases by using the Dice’s
code, the Jaccard index and the cross-set intersection metrics. In the case of the same
frame size, all metrics yield the same result for 0 intersection and full intersection (the
frames are equal). This is expected because all three metrics may have values from 0
to 1, and the edge cases represent the full prediction miss and the full prediction hit.
However, when the intersection size is increased, the Dice’s coefficient grows linearly
since the denominator in Formula (2.7) is constant if the sizes of the sets are constant
and the numerator is simply the intersection itself. The Jaccard score, on the other hand,
is non-linear, while the cross-set intersection is parabolic. These results are outlined in
Figure 3.4.

For the case of over-segmentation, zero intersection means that the prediction
has no intersection with the ground truth, and the maximum intersection means that the
prediction is a subset of the ground truth. Two cases are considered — the prediction is
two times smaller than the ground truth and five times smaller than the ground truth.
In this case, the Dice’s score gives the best scores capping at 0.67 and 0.33, while the

54

0.7

0.6

0.5+

Score values

0.2

0.14

0.0+

0.7

0.6 4

0.5+

Al = 0.5[G|

0.4+

0.31

—— Dice
—— Jaccard
—— Cross-set

0.0 01 02 03 0.4 05
|IAnG| /|G|

Score values

0.00

Al = 0.2/G|

4 —— Jaccard

—— Dice

—— Cross-set

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
|IAnG| /|G|

Figure 3.5. Metric comparison in case of over-segmentation

|Al = 2|G|

—— Dice
—— Jaccard
—— Cross-set

|Al = 5|6

4 —— Jaccard

—— Dice

—— Cross-set

0.4+

0.3+

Score values
Score values

0.2+

0:L

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
|AnG| / |G| |AnG| / |G|

Figure 3.6. Metric comparison in case of under-segmentation

other two metrics cap at 0.5 and 0.2. Over-segmentation means that the segmenter
missed some part of the object, however, the Dice’s score is still relatively high. On
the other hand, values of 0.5 and 0.2 carry some meaningful information that could be
interpreted, and the part of the image that was captured successfully. However, this
value is achieved differently for the Jaccard score and the cross-set intersection. In the
case of the Jaccard score, this means that the intersection is 2 or 5 times smaller than
the union. In the case of the cross-set intersection, it is a product of two values — the
whole predicted image matches the ground truth (thus, the value is 1) and a fraction of
0.2 or 0.5 of the ground truth was predicted correctly. Therefore, this metric penalizes
partial results more — if both parts are partially correct, the product of the partial results
is smaller than for the linear metrics. The results are shown in Figure 3.5.

The metric behavior in the case of under-segmentation is similar to the results
with over-segmentation. The Dice’s score is again giving the highest scores where the
Jaccard index and the cross-set intersection are stricter and easier to interpret. The
results are visualized in Figure 3.6.

The analysis shows that all functions are monotonic with regard to the intersec-
tion size given fixed set sizes. This is a desirable property, and the cross-set intersection
has it. However, in contrast to the other metrics, the suggested metric is stricter when
the predicted set has both the true negatives and the true positives than the other metrics.

55

The cross-set intersection will give higher penalties to predictions that fail in multiple
ways because it accounts for two types of errors, and if one of them is low, the total
score will not exceed the lower score.

Since the cross-set intersection metric is quick to compute and is monotonic, the
value in pure over-segmentation and under-segmentation is easy to interpret and use for
manual work amount analysis, it will be used throughout the segmentation experiments.

3.4. Semi-automatic segmentation
3.4.1. Point cloud segmentation via bounding boxes

This section describes a novel proposed modification of an existing Euclidean
clustering algorithm:

 The Euclidean clustering algorithm is adapted for semi-automatic segmentation
in a conceptually novel way — instead of performing full clustering, segments are
extracted from the point cloud directly;

* The key building block of the algorithm (the Euclidean radius search) is replaced
by a less accurate and more performant piece (the bounding box search). The
bounding boxes are applied in a novel way — they are used for segmentation
directly instead of just describing the output of segmentation;

» The algorithm’s internal state is moved inside the search tree, which enables
existing improvements without modifying the structure of the search tree;

» The use of bounding boxes enables a novel improvement (an auto-expanding
bounding box) which is only possible when the shape used for the search is de-
fined by a fixed amount of values.

The following sections provide all the fine details of the problematics, adaptation
of the algorithm and improvements.

3.4.1.1. Problem statement

Let us say we have a sequence of video frames (a depth video)
S=A{ly,Ii,...,.I,} (3.4)

Here, n is the number of frames (depth images) in the video. The goal is to find a
binary mask for each frame that indicates the foreground and the background:

Sy = {Mpo, Mp1,...,Mp,} (3.5)

Each mask in S, is found from the corresponding frame in S. Therefore, the goal is
to find such an algorithm that acts as function S¢ from Formula (1.2). The algorithm
should have a combination of performance and accuracy which reduces the compu-
tation time of computer-aided segmentation compared to the baseline PCL Euclidean
segmentation as well as fully manual segmentation. Multiple variations of the algo-
rithm may be viable for different scenarios and will also be considered.

56

. > 1

W another
B segment
; Heducle noise required?
4 ‘é—— =
Convert to
search tree | yes
' W
Get starting
-/ point From user
no W
| Get segment For]
int —
Convert i #
ted tree J

to binary mask

Figure 3.7. Segmentation activity and relevant building blocks

3.4.1.2. Overview of required building blocks

Semi-automatic depth image segmentation can be imagined as a sequence of
steps. One of the steps is performed by a human — he has to select a starting point
that corresponds to parameter m in Formula (1.2). The other steps are performed by
the segmentation algorithm and are outlined in Figure 3.7. The input for the activity
is a depth map. First, the depth map is denoised. The denoised map is then converted
into a binary search tree. When the human requests more segments, a starting point
m is retrieved from the human, and a segment is constructed for this point. When the
segmentation is done, the collected segments are converted into a binary mask which
is the output of the activity.

The purple blocks in Figure 3.7 are considered in this section. Noise reduction
and segmentation can be done by using different algorithms and are investigated in
this research. Each solution has a different performance and a different impact on the
segmentation accuracy. Therefore, based on the experimental results, guidelines for
algorithm selection for purple actions shall be provided.

3.4.1.3. Noise reduction

The literature overview has shown that the bilateral filter is the best noise-
reducing filter for the depth map segmentation. However, it has two sensitivity pa-
rameters op and or. The optimal values of these parameters depend on the data being
denoised. In addition to that, it is more computationally expensive than the Gaussian
or median filter. It is also common to apply a hole-filling algorithm for the depth data
originating from the Kinect sensor.

3.4.1.4. Depth map segmentation using watershed

Watershed is originally a clustering algorithm. It could be adapted to segmenta-
tion tasks by clustering the scene and then selecting the correct cluster.

The clustering stage is performed by utilizing the watershed algorithm. The lo-
cal minima are selected, and then water is filled from each minimum point. As the

57

water level rises, the waters of different starting points meet. These meeting lines are
considered object boundaries.

The data processing pipeline consists of image preprocessing, connected com-
ponents estimation, and watershed segmentation. The image is smoothed. Connected
components are estimated for the smoothed images and then the watershed segmenta-
tion is performed.

The next step is selecting the cluster that will be considered as the object. Since
this algorithm is applied for semi-automatic segmentation, this can be picked by the
supervising human. In other words, the watershed algorithm provides its output to the
human, and the human selects which segments of the image should be considered as
the foreground.

The advantage of this segmentation algorithm is that it processes depth maps
directly. Since this data structure is the output of depth sensing devices, no conversions
to other data structures are required, and standard programming tools for regular image
processing can be used to implement this variant of watershed segmentation.

3.4.1.5. Point cloud segmentation using Euclidean metrics

Definition and theoretical analysis of semi-automatic and Euclidean segmen-
tation

Extracting a segment from a point cloud while using the input from the human
corresponds to Formula (1.2). It requires a parameter m from the user. Since general
segmentation algorithms carry no semantic information about the objects being seg-
mented, this parameter provides this information. It is required because, in the case of
binary segmentation, only one object must be segmented from the whole scene. Say
that there are a total of n distinct objects in the scene. Then there must be at least n
values of parameter m that map to all possible objects in the scene. However, each
object in the scene may be mapped to by an unlimited amount of parameter m values.
More formally, given a scene with a set of distinct objects S = S1,53,...,5, ina
depth image B, the segmentation parameter m;; from the space of the possible values
M must satisfy the following condition:

(Elmij S M) : (Sz = SC(B,mij,h)VSi S S) (36)

Since each object occupies a subset of the depth image, one of the ways to select
parameter m is to use one of the pixels of the object as the defining feature. If it is
assumed that one pixel cannot belong to two objects at once, i.e., all objects are non-
intersecting, taking any point that belongs to the object will map the pixel to the object.
More formally, we can use one of the pixels as parameter m if we assume that

()5i=0 (3.7)

The nice property of selecting any pixel of the object is that it is generally very
easy to determine by a human if they see the image. For example, when looking at the
right image in Figure 4.1, it is quite easy for a human to tell where a person or a chair is

58

located in the image. Therefore, a pixel from the object is a parameter that both fulfills
the formal requirements and is easy to determine from an image for a human.

The segmentation can be performed by selecting a Euclidean metric to define the
boundaries of the object. More generally, point cloud segmentation has to define the
boundaries of the object. One of the ways to achieve this is to define a maximum value
(a distance). This value is acquired by computing the distance from the object (this is
defined by specific implementation of the segmentation) and a point. If the distance
is computed as a Euclidean distance metric, the segmentation is considered Euclidean
segmentation. If the distance is lower than a predefined value, the point is considered
to be a part of the object. Since we have already defined parameter m to be one of the
points of the object, this point is always a part of the object. However, after adding a
new point to the object, the object itself is updated. Therefore, it must be accounted
for when segmenting the object — the distance between a point and the object must
be evaluated, but the object keeps changing during the process of segmentation. The
segmentation is finished when the object converges.

One of the tasks is to determine the correct maximum distance. This depends on
the data being analyzed and is represented by the hyperparameter 4 in Formulas (1.2)
and (3.6). If the distance limit A is too low, this will lead to over-segmentation because
the object boundary will be found too early. More formally, if the actual maximum
distance between a point and the object during segmentation is h,,q, and h < Apmaz,
this point will not be added to the object, which will lead to over-segmentation. On
the other hand, if the distance between the object and the point that belongs to another
object is h, < h, this point will be falsely added to the object, and this will lead to
under-segmentation. Therefore, the selection of h value directly impacts the quality of
segmentation.

One more limitation arises for Euclidean segmentation. If there are points that
belong to the object and have a smaller distance from the object during segmentation
than a point that does not belong to the object, Euclidean segmentation will always
either over-segment or under-segment the image. This can be inferred from the under-
segmentation and over-segmentation definitions in the previous paragraph. A possible
scenario is when both conditions hold:

ho < h < hmaz (3.8)

This will lead to both under-segmentation and over-segmentation at the same time. De-
creasing h may eliminate under-segmentation, but it will not solve over-segmentation
or will even make it worse. Increasing h may eliminate over-segmentation, but it will
not solve under-segmentation or will make it worse as well. Therefore, some cases are
impossible to segment correctly by using Euclidean segmentation without data prepro-
cessing.

Segmentation derived from Euclidean clustering

The Euclidean clustering algorithm introduced by Rusu [49] and presented in
Figure 2.1 can be easily adapted for semi-automatic segmentation tasks. This variant
of clustering uses the radius search — a small sphere with radius / is constructed around

59

each point. If any of the spheres includes the analyzed point, it is added to the object.
This solution treats the boundaries of the object to be a superset of all spheres around all
points. Since the clustering starts by picking one point and, therefore, one sphere, and
the point may only be added to the object if it is inside this sphere, this means that the
object is fully-connected. In other words, for each sphere in the object, there is at least
one sphere that it intersects with, and it is always possible to find a set of intersecting
spheres that connect any two spheres. Segmentation is essentially a step of clustering
— an initial point is selected, and a cluster is found for this point. This cluster can be
considered a segment of the image, and if no further segments are constructed, this
becomes a segmentation algorithm with a parameter — the initial point.

Radius search yields a complex shape of the object. If the object already consists
of n points, the shape consists of n spheres. Each sphere is a separate object, and a
containment check must be performed for each sphere separately. This means that the
algorithmic complexity of the radius search is O(n), where n is the current number of
points.

Since the object is changing during segmentation, rejecting a point does not mean
that it does not belong to the object. If there are 3 points p1, po, p3 and the distances
between them are D(p1,p2) = 2.5, D(p2,p3) = 2, D(p1,p3) =2, h =2.2and m =
p1, at first, the object consists of one point, p;. p2 is rejected because D(p1, p2) > h.
Next, p3 is added, which means that ps also has to be added. This property means that
the radius search must be repeated for all added points to account for the whole object.

These two properties mean that the runtime of segmentation largely depends on
the data. In the best-case scenario, all points are in the sphere of the initial point 1, and
no other points are added. If the total amount of points is k£ and the amount of points in
the object is [, first we run a radius search around m. The complexity of this operation
also depends on the data. It was shown by Lee and Wong that the worst-case range
search complexity in a 3D search tree is O(3n%) [327]. The best-case scenario is that
all the required nodes are visited, and that no non-required nodes are visited, which
yields the algorithmic complexity of ©(k). Next, a radius search for all other found
points must be performed. Since the number of points is & and the single search best-
case scenario complexity is ©2(k), this gives the algorithmic complexity for the whole
segmentation (k?). The worst-case scenario complexity, therefore, is O(Skn%). For
a Kinect 2 depth frame with 217k points and an object of 20k pixels, this means at least
400k node traversals and at most 216M node traversals. However, both best and worst
cases are not likely to happen with real data, therefore, the node traversal count could
be expected to be in between those values.

Radius-search-based Euclidean clustering can be adapted for semi-automatic
human-supervised segmentation. Figure 2.1 includes the action ‘Take point p from
P’. This action can be implemented as a user input — the user provides the point p
manually, and the segmentation may then be performed. The figure shows the original
segmentation scheme which segments the whole point cloud into different segments,
however, in binary segmentation, only one object is required. It may be required to
repeat the segmentation in the case of over-segmentation — if only part of the object is

60

-
user
decided to
. add to

h o5

(" Createa | < ¥
3D-tree
representation
. of point cloud | 4 ™ .
- E “ | ConcatenateC |
£ W&i’f’ from | into a single |
- g | cluster y
Set up an empty |
| Iistafclusterscj |

I

" set up a queue |
of points to
check Q

yes

Al found
points
checked?
Take pointp | '\
.. NN g ,;| AddQteC |
no T
| Check if point | .
has already wr‘:frw.the Y
been processed QR " ResetQto
y | neighbors of p in Q
a sphere of | emnty state
radius = d [

yes & Add point to Q _;'

-

Figure 3.8. Euclidean clustering adapted to semi-automatic segmentation

segmented, the user may select another point, and the segment could be concatenated
to an existing segment. Thus, the end of the algorithm is reached when the user decides
on it. The adapted UML activity diagram is shown in Figure 3.8. The changes are in
two actions — getting points from the user and cluster concatenation, and one decision
— it is now performed by the user.

This kind of algorithm, while having suboptimal worst-case algorithmic com-
plexity, provides fine-grained control of the object boundaries during segmentation.
Each point must be in proximity (closer than h) to another point that belongs to the
object to be accepted as a part of the object. This means that the algorithm may be ap-
plicable in some cases, especially in non-performance-critical applications, complex
datasets, or where a higher accuracy is preferred over fast runtime. The downside re-
mains the unsuitability to overlapping object segmentation [198].

Segmentation using bounding boxes

The main issue with the radius-search-based Euclidean segmentation is its per-

61

formance. This problem arises from the fact that each point has to be checked for neigh-
bors separately. This, in turn, is caused by the complex shape of the object defined by
the spheres. Simplifying this shape could reduce the complexity of the segmentation.

To solve the search complexity problem, the object boundaries could be simpli-
fied. A neighbor search has to be performed for each point in the object because this
is the only way to define the shape. This requires & tree traversals. The algorithm per-
formance would increase if the number of traversals were reduced to log k or even to
a constant time.

To have a lower search complexity, the shape should be defined globally for the
whole object rather than combined from its parts. One of the most prevalent shapes
in image processing is a bounding box. In the case of the classic 2D image, this is a
rectangular box in the image. In a 3D world, this is a rectangular cuboid in the point
cloud. It can be defined as different representations. The simplest representation is two
points — the opposite corners of a rectangular cuboid. If an object consists of multiple
points, the smallest possible bounding box could be considered an object boundary.
This adds an extra assumption — the bounding box of the object that is being segmented
should not intersect with the bounding boxes of other objects. More formally, the
condition in Formula (3.7) must hold, but, this time, the bounding boxes of the objects
have to be considered instead of the objects themselves. This may lead to a lower
segmentation accuracy because using a bounding box instead of the spheres will tend to
under-segment more often, especially when the environment is cluttered, or the object
only takes a small proportion of the volume of its bounding box.

Using a bounding box for the segmentation requires a slightly different algorithm
from the radius-search-based segmentation. There is no need to check a bounding box
for each point since the bounding box is object-global. However, since the object
changes with the search, this search must be performed multiple times because the
bounding box may also have to be updated to fully contain the object. The algorithm
is outlined in the UML activity diagram in Figure 3.9. First, an empty list of points is
created. A bounding box for the initial point is created. Similarly to the radius-based
search, parameter h is involved: the bounding box is increased by / in all directions.
Thus, if the initial point has coordinates in 3D space (z, y, z), the bounding box oppo-
site corners coordinates will be equal to

BB(p) =[(x — h,y —h,z—h);(z + h,y + h,z + h)] (3.9)

Then, instead of performing a radius search, the bounding box search is performed. If
some new points have been found, they are added to the list of the found points. The
bounding box is then expanded to be the smallest possible bounding box for the point
list, expanded by h. First, the minimum and maximum values for each coordinate are
found across the point list. Then, the new bounding box is computed as

This search-expand loop continues until the search converges. In other words,

62

. User w ants to add new

segment
[N y
% no
Create a | . W I
3D-tree Get peint p from -)
representation user .P«Fidall points
of point cloud - - ~ from L.tc c
2 Initial;e an ¥oa
Set up empty | 2
point cluster € emgﬂl:tl-of @
[\/Y.\ - &
Get bounding
box For point p >
no -)
h
~ Find points in
g | | boundingbox
W
yes | Check if new
'~ points have been
‘ound
W
Exvandmboudlng S v

tol

Figure 3.9. Bounding-box-based Euclidean segmentation UML activity diagram

the smallest bounding box such that if expanded by h in any direction and contain the
same subset of the point cloud as without the expansion for an initial point m is found
and all the points contained in this bounding box are considered a single cluster.

This approach may save a lot of tree traversals compared to the radius search.
In the best-case scenario, all points fit into the initial bounding box. Then, only 2
searches have to be performed — the first iteration collects all points, the bounding box
is expanded, and the second iteration confirms that there are no new points to add. The
bounding box search has the same complexity as the radius search since the algorithms
are similar in their nature — the only difference is the containment check, which, in both
cases, is a constant time operation. Therefore, the best-case scenario would require
Q(2k) iterations over the search tree if k is the number of points in the cluster and n
is the total amount of points. The worst-case scenario complexity is the same as in
the radius search, however, the data for this scenario has to be specially crafted — each
bounding box expansion has to add exactly one new point until all points have been
found. This is extremely unlikely when segmenting real localized objects, however, it
is still possible for special cases. If the amount of bounding box expansions is logk,
the complexity of the search becomes at least Q2(k log k) and at worst O(3 log k:n%),
which in both cases will be much less than with the radius search. However, an average
pass will likely be slower for a bounding box search since it will become much larger
than the small sphere in the radius search, and a larger portion of the search tree will
have to be traversed. Despite that, it is still expected to benefit more from the lower

63

Table 3.1. Comparison of search method algorithmic complexities

Search method Best case complex- Worst case com- Average complexity
ity plexity

Radius search Q(k?) O(Bkn%) O(klogn)

Bounding-box Q(2k) O(3kn?) O(log klogn)

search

number of searches which lose due to a slower single pass on average.

A summary of algorithmic complexities is shown in Table 3.1. It is assumed that
both the radius search and the bounding box search will have ©(log n) complexity on
average, and that the bounding box search will be performed log & times.

This proposal is a novel application of the bounding box. Usually, bounding
boxes are used as a result of segmentation, however, the bounding box is just an inter-
mediate representation of fast cluster growing, and the output is a subset of the point
cloud. The bounding box is used as a prediction target in many neural-network-based
segmentation methods [328, 329, 330] and other solutions presented in Section 2.3.1.

Bounding-box-based segmentation improvement 1: marking nodes as al-
ready removed

As discussed in the previous section, the bounding box search has to be performed
multiple times with an increasing bounding box. This leads to the repetitive tree node
traversal, and the same points are returned multiple times as a result of the bounding
box search. This adds to the computation time. Figure 3.9 contains actions ‘find points
in bounding box’ and ‘check if new points have been found’. These actions perform
more computations that are required to collect all the points contained in the bounding
boxes.

The action ‘find points in bounding box’ is repeated in a loop. Since all points
found in the bounding box must be returned as a result, the type of the result, in the Java
type system, is List<Point> (see Figure 4.2). If the segmentation output consists of k
points, the points have to be added to the result list k& times during the search. However,
the search is repeated multiple times with an expanding bounding box. Bounding box
expansion, as defined in Formula (3.10), leads to the following property:

BB(Sl) - BB(SQ) — Sl - SQ (3.11)

In other words, if one set of points is a proper subset or equal to another set of points, its
bounding box will be smaller than or equal to the bounding box of the second set. The
condition S; C S will always hold during the iterations of the bounding-box-based
search, therefore, if the points were included in one iteration, they are guaranteed to
be included in all subsequent iterations. This leads to the fact that these points will be
added to the result list multiple times, however, it would be enough to only add them
once, which would reduce the amount of work done by the search algorithm.

The action ‘check if new points have been found’ also suffers in terms of perfor-
mance for the same reasons. Two sets must be kept in memory and compared — if the

64

sizes are the same, no new points have been found, and vice versa.

This problem cannot be solved without any modifications to the search algorithm.
It is not enough to only have the search tree because it carries no information on whether
the node has already been found in a previous iteration. This leaves two options — either
we add a parameter that carries information about the already found points, or we add
an extra state to the tree itself.

The first option involves adding the list or a set of the already collected points
as a parameter to the search function. This would then involve the case if the point
is already among the collected points, and if yes, it could be skipped. However, this
search would have to be performed for each analyzed point. While hash sets have a
low containment check complexity, their creation requires extra work, and the hash
function must be highly efficient. This means that extra development work needs to
be done to have a well-balanced hash set, and it would still decrease the performance
because the set has to be created in the first place.

The second option does not have any of the downsides that the first option suffers
from. One of the ways to add a state to the search tree is to have a Boolean flag for
each node. The flag would indicate whether the point has already been collected in
a previous iteration or not. The Boolean flag check is faster than any containment in
any data structure and requires no hash computation. Its downside is that the Boolean
flag is required for every node in the tree, which increases the memory consumption.
This solution has another implication — if the search tree has to be reused for a new
search, its state has to be reset, which is an O(n) complexity operation — it is required
to traverse all nodes and update their flags.

The introduction of improvements has implications on the implementation of the
algorithm. When no improvements are used, all the state of the algorithm must be
tracked outside of the search tree. The algorithm starts with an empty cluster and fills
it with points as the algorithm progresses. It has to keep track of the processed and
unprocessed points to know which point has to be processed next, which points should
be discarded, etc. The implementation uses HashSet to effectively track the found
and processed points, however, the amount of the required set updates and containment
checks is very large because the same points can be found during different passes over
the tree. The proposed improvements do not need this type of state tracking as the state
is stored inside the search tree — the removed flag has to be changed instead. This
flag is then checked for every node in the tree during the passes over the search tree.

The internal workings of the improvements can be visualized by using a one-
dimensional search tree as shown in Figure 3.10'. In the case of one dimension, a
bounding box search is just a range search. In Iteration One, the search range is [27; 32].
The root node is 50, so it is only required to check the left branch. 25 is found, the
right branch is selected. Then, the whole branch must be checked because 30 is in the
search range, and the values of 28 and 30 are marked as removed. The bounding box
is expanded to [25; 32] because 28 was close to the end of the range. Iteration Two is
similar, except that it checks a wider range, and the nodes with values 28 and 30 are
not checked, they are skipped, and only their children are examined.

65

50 50

75 257 75
/N VRN VRN
20 30 0 20
/NN
15 24 28 35

7 80 70 80
65 75 78 85 15 24 35 65 75 78 85
Figure 3.10. Marking nodes as removed. Left: iteration 1 ([27-32]), right: iteration 2
([25-32]). Red — found nodes, green — search path, yellow — skipped nodes

Given the advantages and disadvantages of both solutions, adding a state directly
to the tree promises more performance gains at a cost of some extra memory consump-
tion. This seems like a trade-off that is worth making, therefore, it has been chosen for
the final implementation.

The performance impact of these improvements, however, largely depends on
the data and the implementation itself. Let us consider three scenarios and analyze the
impact of these improvements in those scenarios. All scenarios will assume the point
cloud size n = 217.088 and the cluster size k£ = 20.000. Only the result list collection
will be considered because the other parts of the algorithm remain the same.

The first scenario is where all points are found in one go. This requires two it-
erations over the search tree — first to find all points, and second to confirm that the
expanded bounding box adds no new points. Without the improvement, this would
mean that the resulting list of points is the same for both iterations, and that size is k.
This means O(2k) complexity of filling the list with the found items. With the im-
provement implemented, this would decrease to O(k) because the first iteration would
be the same, but the second one would find no new points, which means that no addi-
tions to the list will be required.

The second scenario is where log k iterations are required to find all points, with

each iteration adding £ new points. Without the improvement, this would mean

log k
that the list will have to be appended a total of slogh; _k

i—1 ogx times. Given the assumed
scenario, this would result in about 92k list append operations. With the improvement
enabled, this would stay at O(k), which is 20k list append operations.

The third scenario, which is the worst-case scenario, is where only one point is
added in each iteration. Without the improvement, this would mean that there are k
iterations required, and the list size in iteration ¢ is equal to ¢. Therefore, the total
amount of list append operations is Elei. This is an arithmetic progression, which
means that the sum can be rewritten as k# For k£ = 20.000, this means about 200M
appends. Without the improvement, only one point will be appended per iteration,
which again yields O(k) appends.

A summary of the performance impact on list append operations is provided in
Table 3.2.

IProof that trees grow from the top is presented in Figure A.1 in Appendix A.

66

Table 3.2. Comparison of number of list append operations

Optimization enabled Yes No
Best case complexity? O(k) O(2k)
Average case complexity — O(k) Z;‘ff i lo’; .
Worst case complexity O(k) kitk

Another problem with a trivial bounding-box-based algorithm, as well as the
Euclidean-clustering-based algorithm, is segment concatenation. If a segment is ex-
tracted from the point cloud and the user decides that another segment should be added
as well, the second segment may intersect with the first one. The segments have to be
concatenated, however, duplicates have to be removed. This essentially means that a
set union has to be found. Another possible application is the full segmentation of the
point cloud. In that case, if some points already belong to one segment, they cannot
be added to another segment. This essentially means that a set difference has to be
found. In both cases, extra work has to be performed to be able to work with multiple
segments. To make matters worse, if one segment is already constructed and a second
segment is being built, the second segment has no reason to include points already ex-
isting in the second segment. These problems can also be prevented by the suggested
improvement. The nodes are marked as removed and will not be considered for other
segments.

However, there is a possible difference in the output of segmentation in the case
of bounding boxes. If one segment is already constructed and another segment is being
constructed, some points may be omitted as already removed. This omission may lead
to a different-sized bounding box which, in turn, may lead to a different segmentation
output. However, whether this is an advantage or disadvantage, it depends on the use
case. The research focuses on semi-automatic human body segmentation. In this case,
if one segment, for example, the human torso, has been segmented, and the user selects
an arm, it is more intuitive to select only the arm and the body part up to the torso, but
not a leg which is on the other side of the torso. Therefore, this property of the removed
point improvement will be viewed as an advantage in the scope of this research.

Bounding-box-based segmentation improvement 2: skipping fully removed
branches

The first improvement, as defined in the previous subsection, solves problems
of too many containment checks and list append operations. However, the search still
performs more actions than required in some cases. If a tree branch already belongs
to an already found segment, there is no point to check the nodes again — they can be
skipped altogether. Even though this is a cheap operation, some time savings are still
possible, especially for large branches. Due to the nature of the search trees, the nodes
under the same root node are more likely to be spatially closer than under different
nodes. Therefore, it is more likely that the nodes that belong to the same branch are

2As a fun note, complexity of O(k) is actually OK in this context

67

going to be included in the same segment.

The exact node traversal reduction effect is difficult to measure, and it heavily
depends on the data. A balanced three-dimensional search tree is constructed by se-
lecting a pivot and putting all points lower than the pivot to the left branch, and the
points larger than the pivot to the right branch. The pivot selection is a compromise
between the tree creation performance and how well-balanced the tree is. If the pivot
is the median value, the tree will be balanced. However, finding the median is not a
trivial operation in an unsorted collection — it requires sorting the collection, which
usually has O(nlogn) complexity. An implementation suggested by Gashler [331]
utilizes a three-median approach which was first introduced by Kirschenhofer [149].
This yields a nearly balanced search tree, so let us assume the balanced search tree
search complexity.

The improvement will yield the best results with larger subtrees removed during
the search. The probability of this happening is very difficult to estimate for real-life
data. It depends on the object, the selected pivots during the tree construction, the
initial point m provided by the user, the bounding box expansion parameter h, and the
surroundings of the object. The segmentation starting from points m; and m2 may lead
to the same segmentation result, but the path to achieve it may be wildly different. This
means that even if the object is conveniently placed in its subtree inside the search tree,
m1 may immediately mark the whole branch as removed, while my will collect points
from different branches first, and it will not be possible to rule out a large subtree until
the final iterations of the search. On the other hand, if the same object is in a different
environment, its points may be distributed in the search tree in different ways. Even the
same scene can be represented by different search trees if the pivot is selected randomly.
Since the nature of k-dimensional trees is that unpredictable, analytical analysis of this
improvement is skipped, and only experimental results will be provided in the next
chapter.

The improvement can be implemented in one of two possible ways, similar to
marking points as removed. This information can be stored as the internal or external
state of the search tree. If the external state is used, it needs to have a collection of
already removed branches. However, collecting only branches is non-trivial because
the branch is considered removed when the root of the branch as well as both child sub-
branches are fully removed. Thus, if a node is removed, but its children are not, the
branch is not removed. However, it has to be tracked which children are removed, and
if a smaller subtree has been removed and its parent also got fully removed, the child
also should be removed from the collection of the removed branches. The alternative
is to just check the list of the already collected points, but this is a computationally
expensive operation if the list of points gets large. Another alternative is to also keep
a hash set of the points, but this consumes more memory, and the hash function has to
yield few collisions.

Keeping this information in an internal state of the tree is, again, simpler. Each
node only has to track its two children — if the node has been removed and both chil-
dren are fully removed, the node is also considered fully removed. Leaf nodes are

68

50 50

75 257 75
/N VRN VRN
20 30 0 20
/\

15 24

7 80 70 80
65 65
Figure 3.11. Marking subtrees as removed. Left: iteration 1 ([26-36]), right: iteration 2

28 35 75 78 85 15 24 75 78 85
([24-36]). Red — found nodes, green — search path, yellow — skipped nodes and paths

fully removed when they are removed by themselves. This is trivial to implement for
recursive data structures. When running the search, if a child is fully removed, it is not
traversed at all since no new information will be found anyway. This, again, adds one
Boolean flag to the search tree node — it indicates whether the branch that this node is
aroot of is fully collected or not.

This improvement can only be used together with marking points as removed.
Otherwise, there is no way to know if the whole tree is removed without actually
traversing it, which defeats the purpose of this improvement in the first place.

The internal working of the algorithm is depicted in Figure 3.11. During the
first iteration, a bounding box [24-36] is used. This finds the values 28, 30, and 35.
Conveniently, they all make up a whole subtree. Nodes 28 and 35 are marked as fully
removed because they have no child nodes and are removed by themselves. Node 30, in
turn, is marked as fully removed because all of its children are marked as fully removed
as well as the node itself. During the second iteration, node 30 is reached again, but
the search immediately terminates for that branch since it is already known to be fully
removed. As a result, three nodes and two edges are completely skipped during the
second iteration.

This extra improvement is guaranteed not to change the output of the segmenta-
tion in comparison to only having the first improvement enabled. The nodes that are
skipped are already removed anyway, so this improvement simply skips the parts of
the tree that are guaranteed to yield no new points.

Bounding-box-based segmentation improvement 3: auto-expanding bound-
ing box

The bounding box search is based on the idea that an initial small bounding box
will expand and converge to the bounding of a distinct object. However, given the
bounding box expansion h, if the total size of an object in one of the tree dimensions
is H, at least % bounding box expansions are required. Thus, since the complexity of

the tree search may reach O(3kn§), the total complexity of the search is
H
O(3ﬁkn%) (3.12)

If H is much larger than i, many bounding box expansions are required to capture the

69

object. However, Formula (3.12) shows the best-case scenario of expansion where the
bounding box is expanded by A or a very close value. Unfortunately, this is not guar-
anteed, and the number of expansions may be even larger. In the worst-case scenario,
each expansion may only add one point making the total complexity

O(3k2n3) (3.13)

However, an improvement is possible. Figure 3.9 shows the bounding box ex-
pansion after running the search. This is not the only possible algorithm. What if we
expanded the bounding box not after the search, but during the search?

In a general sense, the search shape is a parameter of the search. This parameter
is recalculated and passed again in the next iteration. In the case of a bounding box
search, the box size in the next iteration is defined by Expression (3.10). Values i,
Ymins Zmins Lmazs Ymaz> Zmaz can be defined in terms of the found points. Given a set
of found points S = p1, ps, . .., Pn, an extremum z,,,;, can be defined as

Tmin = min(p1x7p2337 cee 7pnx) (314)

Formula (3.14) can be rewritten as

LTmin = min(plm (min(pra e)apnx)) (315)

This means that the local minima may be computed in steps and combined into a global
minimum. If we define the minimum of the first ¢ elements of the sequence as M, it
can be expressed as

Mz’ = min(Mi_l,pi) (316)

Formula (3.16) essentially means that the minimum can either be computed for the
whole sequence at once, or by iteratively updating the minimum value for each point.
Both versions of calculations will yield the same minimum value. The same holds for
all other minimum and maximum values.

Formula (3.16) can be utilized for optimizing the bounding box expansions.
Since it has already been shown that the global extremum is equal to the iterative ex-
tremum over the whole set, it means that, if the bounding box is expanded with each
found point, its size will be the same as when expanding it by finding the extremum
over the whole segment if the segment is the same. However, this allows for an extra
feature. If the bounding box is expanded during the search, it means that an expan-
sion of % per iteration is not the limit since a larger bounding box may include extra
points. This means that the complexity defined in Formulas (3.12) and (3.13) would
be improved.

The introduction of auto-expanding bounding boxes alters the activity diagram
defined in Figure 3.9. The action ‘expand bounding box’ is no longer performed after
finding all points. Therefore, it is removed and merged with the action ‘find points in
bounding box’. The updated UML activity diagram is shown in Figure 3.12.

While this approach expands the bounding box to a greater extent per iteration, it

70

r_G_lt bounding
. box For point p

R
Check if new :""'P‘*'“di h‘"
points have been T 4 4 OX

= Found and expand

box
with each point

Figure 3.12. Auto-expanding bounding-box-based Euclidean segmentation UML activity
diagram

71

is not guaranteed to collect all the points that belong to the bounding box computed at
the end of an iteration. If the initial bounding box size in one dimension at the start of
iteration is H1, in the middle of the iteration it may be H; + Ahy, and, at the end, it may
be Hi + Aho, where Ahy; < Aho. If a point at the distance Ah; < hg < Ahs from
the center of the bounding box in the selected dimension is traversed before reaching
the middle of the iteration, it will be skipped. Moreover, the whole branch may be
prematurely cut during an early stage of iteration because it is unknown how large the
bounding box is going to get.

The disadvantages may be well worth it though. The problems with missing
some points during the search may be overcome by simply running the bounding box
search one more time. Since the box cannot shrink, the second iteration is guaranteed
to collect all points skipped in the first iteration. In addition to that, this second iteration
is required anyway to confirm that the bounding box does not expand any further. This
means that if the bounding box search is run iteratively until the bounding box has
converged, this disadvantage becomes an advantage. Having the full-sized bounding
box in the first iteration is impossible if the size of the object is larger than the bounding
box increment h, which is true for all real-life applications — h should be on the scale
of point cloud resolution, not the whole objects. This means that many iterations are
required to have the full object. Let us analyze the case with one expansion for the sake
of simplicity. Without the auto-expanding bounding box, three iterations are required
— the first iteration traverses a part of the tree; the second iteration traverses a larger
part of the tree which fully includes all nodes from the first iteration (given that the
improvements from the previous sections have not been implemented). Introducing
the auto-expanding bounding box may lead to a case where Iteration One yields the
full-sized bounding box, however, a full subset of the tree for this bounding box may
not be traversed depending on the order of traversal. The second iteration is the same
as the third iteration without an auto-expanding bounding box. This means that the
first and the second iterations are replaced with one iteration with a traversal count
between those two iterations, and the third iteration remains as the second iteration with
the auto-expanding bounding box. This scenario is not guaranteed, but the example
is oversimplified. If many bounding box expansions are required, the probability of
saving some iterations increases.

In the best-case scenario, the bounding box grows with every point in such a
way that all points are collected in a single pass. The second iteration is then only
required to check that no points have been missed. This was described as the worst-case
scenario for a traditional Euclidean bounding box search with k iterations. Introducing
auto-expanding bounding boxes leaves only 2 iterations in this case. The worst-case
scenario is where expanding the bounding box adds one point but misses other points
due to the order of traversal. This will still give k iterations, the same as without
the auto-expanding bounding box, i.e., it does not get worse with the auto-expanding
bounding box than without it.

The average scenario is difficult to predict precisely since it depends largely on
the data. If the point cloud is dense, there is a high chance of adding new points early

72

50

25 \ 75

20 30

15 24 28 35 75 78 85

Figure 3.13. Marking subtrees as removed. Red — found nodes, green — search path

in the search, and expansions are more likely. If the point cloud is very sparse, for
example, there are fewer points found during a single iteration than the required amount
of bounding box expansions, the improvement will yield a diminishing performance
increase.

Figure 3.13 visualizes an example of a good scenario of the expanding bounding
box. The initial bounding box is [25 — 30], and the bounding box expansion sensitivity
equals A = 2. Then the following nodes are analyzed:

1. Node ‘25’ is found; the search range is updated to [23 — 30].

2. Node ‘24’ is found; the search range is updated to [22 — 30].

3. Node 30’ is found; the search range is updated to [22 — 32].

4. Node ‘28’ is found; the search range remains unchanged.
A second iteration will be required, but it will find the same points again and conclude
that the search is finished.

The nature of node traversal in point clouds has some impact on the bounding box
expansions. It has already been noted that the algorithm performs best if the bound-
ing box is expanded as much as possible during a single iteration. The search tree
traversal is usually performed from the left to the right. However, other options are
also available. For example, the root may be checked first, and the child nodes can be
checked after that (a combination of left-to-right search and top-to-bottom search). A
full top-to-bottom search is also available, however, it is not recursion-friendly. Since
the search tree is a recursive data structure, it is efficient to use recursive algorithms
for it. If the search is performed fully left to right, the first captured node will be the
left-most node available for the bounding box. Such a value has a high chance to be
closer to the boundary of the bounding box because the extremes of the search tree
tend to appear near the sides of the tree. However, this is close to the extreme of the
initial bounding box, so it might miss the values lower than the initial bounding box
boundary completely. On the other hand, selecting the root node before the children
does not suffer from this issue as much because the left-most values will be analyzed
later in the search, usually after log n nodes (the path is root — left child — left sub-child,
etc.). However, this has to be confirmed experimentally since real large search trees
are complex and difficult to analyze theoretically.

Combination of improvements

73

It has already been mentioned that marking tree nodes as removed and mark-
ing whole branches as fully removed are related as the latter cannot be implemented
without the former. Tree node removal can be implemented separately. The automatic
bounding box expansion is orthogonal to the other improvements in the sense that it
can be applied in combination with the others as an extra measure or separately. This is
possible because the improvements exploit different properties of the search tree and
the search itself. The node and branch removal techniques are possible because the
tree allows an extra state per node at a cost of extra memory to hold it and the fact
that the same node cannot be added to the results twice. The auto-expanding bounding
box, on the other hand, depends on the mutability of the bounding box, which is an
external state to the search tree, and the property of the minima defined in Formula
(3.16). Since these properties do not depend on each other, it is possible to combine
the improvement techniques.

Combining the auto-expanding bounding box with the marking nodes as removed
combines the benefits of both improvements. This also guarantees the same bounding
box expansion path as visiting the same node for the second time will not change the
bounding box which has already been expanded according to this point. The same
applies to marking whole branches as removed — if a branch has been removed, it
means that the bounding box has already been expanded according to the points of that
branch. On the other hand, the size of the bounding box does not change the fact that
if a point has been found, there is no need to visit it again. Therefore, all techniques
can be combined without one negatively impacting the other in any way.

The full final algorithm is outlined as Algorithms 1 - 3. Its parameter A is the
hyperparameter which defines the bounding box increment size.

Algorithm 1 Algorithm to find a cluster

Require: h > 0// bounding box increment size
Require: firstPoint € pointCloud
Output: cluster
currentPoints = [firstPoint]
boundingBox = point.coordinates + h
newPointsAdded = true
while newPointsAdded do
closePoints = fcp(boundingBox,h,root)
if closePoints.size = 0 then
newPointsAdded = false
end if
currentPoints U= closePoints
: end while
return cluster(currentPoints)

SS90 O U W

—

74

Algorithm 2 Algorithm to find close points

Output: points

1: procedure fcp(boundingBox,h,node,result=[])

2 if node.depth = 0 then

3 currentLocation = node.location.x

4: else

5: if node.depth = 1 then

6: currentLocation = node.location.y

7 else

8: currentLocation = node.location.z

9: end if
10: end if
11: if Inode.removed and boundingBox.contains(node) then
12: result U= node
13: node.removed = true
14: boundingBox = expand(boundingBox, node, h)
15: end if

16: result U= fcp(boundingBox,h,node.left,result)
17: result U= fcp(boundingBox,h,node.right,result)
18: return result

19: end procedure

Algorithm 3 Algorithm to expand the bounding box

Require: h > 0 // bounding box increment size

1: procedure expand(boundingBox, node, h)
2 boundingBox.minX = min(boundingBox.minX, node.x - h)
3 boundingBox.maxX = min(boundingBox.maxX, node.x + h)
4: boundingBox.minY = min(boundingBox.minY, node.y - h)
S: boundingBox.maxY = min(boundingBox.maxY, node.y + h)
6: boundingBox.minZ = min(boundingBox.minZ, node.z - h)
7 boundingBox.maxZ = min(boundingBox.maxZ, node.z + h)
8: end procedure

75

3.4.2. Full-manual point cloud segmentation

Segmentation can be performed by humans fully manually. This is the most
straightforward solution to the segmentation problem. Its advantage is accuracy — a
human can easily identify a distinct object. This is also evident when looking at Figure
4.1. It does not take any sizable effort for an average person to identify that each
image contains a human body and the location of the body. The boundaries are also
quite clearly visible in Kinect depth images preprocessed by a bilateral filter.

The only challenge is to efficiently get the object segmentation mask from the
person who performs the segmentation. It is clear from the current state of the art that
this process can be extremely time-consuming for a human. This is only one of the
reasons why there is a limited amount of datasets for segmentation — they are very time-
consuming to create. On the other hand, automatic segmentation may produce incorrect
output. This also requires human input. In the case of depth images with everyday
objects that are distinct in space, depth maps were selected as the data representation for
manual segmentation. It is easy to process for a human and to visualize for a computer
(it is a regular image on the screen). Segmentation errors are also visible and can be
identified easily. However, a tool to mark segments manually is required to complete
this task.

One of the classic ways to mark something on the screen is by using a mouse
cursor. Selecting an area of the image with a mouse while holding its left button down
is a common and intuitive way of selecting a segment. However, depending on the
situation, differently sized areas must be marked. If the area is large, a large ‘brush’
allows marking it quicker. If the area is small or the shape is complex, a smaller ‘brush’
would be more useful. Therefore, it was decided to implement three square-shaped
brushes with sizes of 5x5, 10x10, and 15x15 pixels of the depth map. The user may
choose their own best size depending on the situation. Internally, the point cloud search
tree has to have the same state as if the segment marked by the user was marked by
any automatic algorithm. This allows combining multiple techniques — if automatic
segmentation over-segments the object, the user may add a cluster to the segmentation
output manually. Alternatively, if the algorithm tends to under-segment an object, the
user may mark an edge of the object, and this would work as a virtual boundary — the
segmentation algorithm would skip the points marked by the user since they already
belong to the object.

The internal state update involves finding all points selected by the user and
changing their state to ‘removed’. There are two ways to do this. The points can
be marked one by one. If the user marked & points, since the search complexity in a
tree of size n is O(logn), the total marking complexity would be O(klogn). Alter-
natively, it could be done by passing the whole point list and traversing the whole tree
once. If the list is large, it should be sorted, which is O(k log k) operation, to utilize
binary search, which is O(log k) operation. The search would be performed n times.
This means that the complexity of this approach is O(klogk + nlogk). Since k is
usually much smaller than n, the first component has a diminishing weight and can be

76

skipped. The first approach is better than the second when
klogn < nlogk 3.17)

Since k < n, k can be expressed as k = yn,0 < ~ < 1. Thus, the first approach is
better when
ynlogn < nlog(vyn) (3.18)

or, if simplified
v <log L +1 (3.19)
n

Since is at most 1 and 7 is at least 1, log() is at least 0. The whole right-hand
expression is then at least 1, which means that the first approach is better always except
when k£ = n as they are equal in this case.

Another common operation is the removal of segments marked by mistake. This
can be done the same way as marking segments. The user selects an area to exclude
from segmentation by using a mouse, and the selection is removed from the segmenta-
tion output. However, this carries some extra information compared to just selecting a
segment on the first try. Since the area is specifically selected as excluded, this means
that it cannot belong to the final segmentation output. Therefore, if combined with the
automatic segmentation methods, this zone should be excluded anyway. This extra
information can be preserved to prevent mis-segmentation later. One of the ways to do
it is to mark the ‘erased’ as removed but not include them in the segmentation output.
This prevents analyzing the nodes later, and they are not added by the segmentation
algorithm. However, if segmentation is again re-added manually, this overrides the
erased segmentation.

The full-manual segmentation activity diagram is depicted in Figure 3.14. The
user selects the brush size and type (draw or erase) and marks an area. This is repeated
until the segmentation output is satisfactory. The system either adds or removes the
selected points from the segmentation output, marks the points removed, and updates
the segmentation output shown to the user.

3.4.2.1. Combining semi-automatic and full-manual segmentation

Automatic and manual segmentation techniques can be combined into a single
segmentation workflow. Related research has shown that, while manual segmentation
is the most accurate, automatic segmentation is much faster. A combination of manual
and automatic segmentation has also been proven to be a successful technique. As a
result, these techniques are also combined to implement a segmentation solution for
binary human body segmentation.

The propositions made in the previous subsection lead to the following segmen-
tation possibilities:

* Run automatic segmentation by selecting an initial point;
* Add a segment to the point cloud manually;

* Add an ‘erased’ segment to the point cloud manually;

* Undo an action.

77

Segmenter

78

Brush
size is
OK

no

Select brush
size

Update cursor

=
Which

action is

?
< required? no action

extra segment needs to be tsting segment needs to be removed
Eraser
selected
Brush selected? 7

Salect brush Salect araser

Select part of
image using
araser

Select part of
image using
brush

Remove
selection from
cluster

=) & Ts 2

)

Add selection

to cluster

Figure 3.14. Fully manual segmentation UML activity diagram

These techniques can be combined to get the correct segmentation output as fast as
possible. Automatic segmentation is faster than manual segmentation in all related
research, therefore, it may be worth trying the automatic solution and then correcting
its output. Automatic segmentation may also be applied several times. This is useful
in the case of over-segmentation. Given a selected segment A and ground truth G,
if A C G, oratleast G\ A # (), there is a segment in G that can be added to the
segmentation output by applying automatic segmentation on one of its points. This
should be faster than trying to add the segment manually.

Manual segmentation is an alternative way to correct the output of the segmen-
tation. If automatic segmentation fails to capture a part of the object, it can be marked
manually. This may be useful for scenarios where automatic segmentation heavily
under-segments a small part of the object — it may then be easier to mark it manually
instead. Manually marking a segment may also be useful to create boundaries in space
to help segment the rest of the object automatically. It has already been explained above
that finding a segment in the point cloud marks the selected tree nodes as removed. The
nodes are ignored during further segmentation and do not expand the bounding box.
If the segment is selected manually, the same rules apply. Therefore, if the user sus-
pects why under-segmentation has happened, they may draw a boundary segment and
prevent this under-segmentation.

Erased segments work similarly to manually marked segments. The only differ-
ence is that their points are specifically excluded from the segmentation output. Their
primary use is to correct under-segmentation. If a part of the segmentation output does
not belong to the object, the user may manually mark this segment as erased, and the
segmentation will be excluded from the output.

3.4.2.2. Extending the segmentation to video sequences

If the frames originate from the same depth video sequence, they are most likely
related to each other. This is an important property for analyzing video sequences.
Let us say that a video sequence .S consists of frames sy, So, . . ., S, where the indices
correspond to the order number in time, i.e., a higher frame number means that it was
taken later. The Kinect 2 sensor has a fixed frame rate of 30 frames per second. There-
fore, each frame is taken 33 ms later than the previous frame. This period is short in
macroscopic measures. The normal human walking speed at ages 20 to 69 years is
about 1.3 m/s, as shown via research conducted by Schimpl et al. [332]. This means
that a human is expected to walk about 4.3 cm between two frames. This is a small
change compared to the size of the human body. If the video sequence is static, the
changes will be even smaller. Therefore, frames s; and s; 1 can be considered similar
to some extent. It could then be hypothesized that if two frames are similar, the same
segmentation inputs should produce similar segmentation outputs.

This hypothesis leads to a solution for segmenting video sequences quicker. It has
already been described above that image segmentation is the total output of automatic
and manual segmentation steps. Let us say that the segmentation process P consisted
of actions py, pa, ..., pn. Each action p; is either automatic segmentation with user-
provided parameters h and m, manual segmentation, or manual erasing. The full output

79

of the segmentation is the result of a pipeline of actions with a depth image as the input.
These actions can be repeated for the next frame in the same order to produce a similar
result. This does not guarantee the correct segmentation, however, the chance of it
being correct should correlate with the similarity of the frames. Even further, if the
scene is static, the same segmentation pipeline can be applied to multiple images. If
the whole sequence is static, the same segmentation pipeline may even work for the
whole sequence.

An alternative strategy would be to use the whole bounding box from a previous
frame, however, when manual annotations are involved, the resulting shape cannot be
described by using a bounding box. If two objects touch each other, their bounding
boxes are likely to overlap, however, the objects are distinct. Simply drawing a bound-
ing box in the next frame would ignore this fact and result in the same mistakes in each
frame.

With these assumptions and limitations in mind, the solution shown in Figure
3.15 was implemented. The user can see multiple images on the screen at once. When
the first frame is segmented via the selected techniques, the user selects to transfer
segmentation to the subsequent frames. The segmentation is repeated for all the subse-
quent frames that are visible on the screen. This is done by applying the same segmen-
tation pipeline for each frame. Segmentation is repeated by treating the depth frame
as an image. Automatic segmentation is transferred by selecting the same point m in
the 2D image space. Manual segmentation is transferred by selecting the points that
correspond to the same pixels in the 2D image space. The output may then be up-
dated further by the user if needed, but this should give a viable starting point for faster
segmentation.

Since the video sequence consists of more frames than is visible at once, the
segmentation view is paginated. When the user is done with the current page, the
segmentation is also automatically transferred to the whole next page. The last frame
is selected as the base segmentation pipeline provider since it should be the most similar
to the frames on the next page. If the segmentation is OK for the whole page, the only
required thing is to validate the output and go to the next page. In the ideal scenario, the
user would select automatic segmentation, click on the object, transfer segmentation
to all frames, cycle through the pages, and the segmentation would be finished for the
frame sequence.

3.4.2.3. Working with large image sequences

The data structures described in Section 4.2.1 consume a noticeable amount of
memory. The loaded frame is represented by a search tree and a depth map simulta-
neously. This totals at about 11.3 MB of memory per frame. In addition to that, the
segmentation output also has to be stored in the memory. The size depends on the seg-
mentation output — a list of references to points is stored where each reference takes
8 bytes of memory. In the case of a segment that is 10% of the original point cloud,
this is an extra 170 kB of memory. The whole application, however, requires more
memory to show the depth visually. Without this extra overhead, a 300-frame-long
video sequence (10 seconds at 30 frames per second) would take ~3.4 GB of mem-

80

Figure 3.15. Mass segmentation UML activity diagram

81

ory. Since the software is implemented in Java, this memory requirement should be
somewhat relaxed to prevent frequent garbage collection. Related research showed
that a performance penalty in memory-hungry applications, where large datasets are
processed, garbage collection may contribute to low performance [333]. It was exper-
imentally found that an increase of the memory to ~42 MB? per frame greatly reduces
the runtime of the segmentation tool (this includes all other parts of the system, not
just the segmentation classes). Therefore, 12.6 GB RAM is needed to segment a full
300-frame sequence without performance degradation.

This memory size requires working with the point cloud in batches. The batch
size is determined by checking the memory limit of the application (provided by -Xmx
JVM parameter) and dividing it by 42 MB. The user may change this parameter if
required. The frames are then loaded to the memory until the limit has been reached,
processed by the user, and the output is saved to the disk in a temporary files folder.
When all the batches have been processed, all segmentation outputs are loaded (they
are pairs of the original depth and the binary mask, 340 kB per frame), concatenated
into a single sequence, and recorded in the disk as one sequence of frames.

3.4.3. Under-segmentation reduction using A recursive 2-Means split algorithm
with a random forest classifier for split acceptance

This section provides a solution to the under-segmentation problem by cutting a
part of the segmentation output. This is achieved by a proposed modification of the
classic K-Means algorithm:

* The clustering is repeated recursively with two clusters instead of testing the
output with a different amount of clusters;
 The best amount of splits is decided by a random forest classifier from the pro-
posed metrics.
The following sections provide the details of all the employed algorithms.

3.4.3.1. Under-segmentation problem

Section 4.2.5.1 provides the experimental findings of applying the Euclidean-
search-based algorithms for human body segmentation. These results showed that the
algorithms are prone to under-segmentation (see Figure 4.10). Formally, the output
seen in the examples can be defined as

ArNAp=0:As=ArUAp (3.20)

Here, A7 is the actual human body (the ground truth, which is also a subset of the
segmentation output), A g is the background (the false positive part of the segmentation
output). Then there exists such function R that

Ar = R(As) (3.21)

3This memory constraint may or may not be related to the fact that 42 is the answer
to life, the universe and everything [334, 335]

82

The goal is to find an approximation of the function R that would cut the false-positives
from the output of the segmentation in the case of under-segmentation. The algorithm
that approximates the output of function R is presented in the following sections.

3.4.3.2. 2-Means split and metrics of the split

One possible way to find function R is to apply K-Means clustering and reject
clusters that are not human. However, parameter & is unknown beforehand since the
number of the captured objects is variable. Another challenge is to determine whether
the clustering output should be rejected at all — the clustering may provide worse results
than without it, or the split may not even be required at all if the segmentation results
are already good.

The first problem can be solved by a recursive 2-Means split algorithm. In the
area of application (semi-automatic human body segmentation), one point is already
known to be a part of the human body. This point will act as a fixed, non-moving
cluster center. Since the number of the required clusters & is unknown, a modification
of the Elbow algorithm [237] is proposed. The segmentation output Ay is split into two
clusters by using K-Means (hence the name 2-Means) recursively with the ‘correct’ part
of the cluster A7. The initial point for the second centroid is selected as the point that
is the furthest away from the first cluster center. A regular K-Means with 2 clusters is
performed with the exception that only the second centroid is updated. The algorithm
halts when it has converged (the second centroid does not move) or after 10 iterations to
prevent a long runtime. The elbow algorithm would then add another cluster and look
for convergence of the cost function. Instead, this dissertation proposes a different
solution — we estimate whether the split has improved the segmentation accuracy or
not, and if yes, repeat the same 2-Means clustering with the cluster that contains the
initial point. Otherwise, the clustering halts.

The remaining challenge is to estimate the quality of the split. There are five
pieces of data to analyze:

* The full cluster of points (the input for the split).

* The sub-cluster that includes the initial point.

* The sub-cluster that does not include the initial point.

* The original user-selected point (the first centroid).

* The second centroid.
There is no more data to analyze, so the information about the quality of the split must
exist within this data. Intuitively, the cluster sizes and their positions might contain
the answers to this problem. The distance between the clusters and the proportions
of the points could be used to infer the quality of the split. For example, it is evident
from the segmentation error analysis that, in the worst cases of under-segmentation, the
background segment would be a lot larger than the human itself. The human body also
has a defined body shape which may impact the distances between the first centroid
and the cluster points since only the human body surface points would be present in
the point cloud. Therefore, 8 pieces of data are extracted for further analysis:

» The average distance between all combinations of two centroids and three clus-

ters (six distances).

83

Table 3.3. Random forest classification report

Precision Recall Fl-score

Incorrect cuts 0.94 0.90 0.92
Correct cuts 0.95 0.97 0.96

Accuracy 0.95

* The sizes of both clusters (two sizes).

Their values were selected because they seem to represent different types of mis-
segmented clusters. If the original segmentation captured a single object, the distances
between both point clouds and both centroids will be much lower than in the case of
both clusters representing two distinct objects. If the whole background is captured, the
false cluster will also be much larger than the true cluster. If two very distinct objects
are in the cluster, the average distances between the sub-clusters and their centroids
will be much smaller than the the average distance between either sub-cluster and the
other centroid. These metrics are also relatively fast to compute. Unfortunately, the
rules for split correctness are difficult to analyze.

3.4.3.3. Random forest classifier for split acceptance

Since the rules to measure the quality of the split are difficult to determine, they
could instead be learned by a machine learning solution. This is a classification task
where the inputs are the metrics described in the previous subsection, and the output
is a decision on whether the split described by those features improves the accuracy of
the segmentation or not.

Training data has been collected by using the dataset of depth data and the ground
truth masks described in Section 4.1. The bounding-box-based segmentation was run,
and 2-Means splits were applied until the accuracy after the split became lower than
before the split. Splits were limited to a maximum of 10 per frame. All intermediate
samples were added to the training data collection. The training data collection consists
of 8 metric values and a Boolean label indicating if the split should be accepted or not.
The data acquisition activity diagram is shown in Figure 3.16. This is repeated for
every frame.

This methodology allowed fully-automatic training data acquisition after the la-
beled data became available. However, data proportions by classes depend on the data
and the segmentation quality. 72% of the data was for correct splits, whereas 28% for
incorrect splits. The total amount of samples used for the training was 70.4k.

The data was split into the train (80%) and test (20%) sets video-wise. This type
of split was selected to prevent too similar data in the test and train datasets since two
frames in the same video sequence may be almost identical. 9 tree estimators were
used to train the random forest because a higher amount of tree estimators showed
no improvement in accuracy, while a lower number of estimators even degraded the
accuracy. The classification report after the training is shown in Table 3.3.

The classifier achieved 95% accuracy. Correct cuts are classified better by all

84

. A

‘f Run bounding

box based
segmentation

|f Get accuracy
w ithout split

|/ Run 2-Means |
| split

|f Get accuracy
after split

accuracy did not imrprove accuracy improved

(" Label as - N
| e et [Label as correct J

) B Z—

|If Add to samples b |If Add to samples 2

Figure 3.16. Training data acquisition activity diagram

metrics, and this may have to do with the imbalance in the training data — the correct
cut sample size was larger. Despite that, incorrect cut detection has 90% recall, which
is the lowest number in the table. This means that 90% of all incorrect cuts were
labeled correctly, and other metrics are higher than this. 97% of all correct cuts were
classified correctly, which means than only 3% of the correct cuts were rejected. The
results suggest that this classifier is suitable for cluster split quality classification and
the metrics were selected correctly.

3.4.3.4. Integrating the correction into semi-automatic segmentation workflow

Figure 3.17 shows how this proposed segmentation correction algorithm can be
incorporated into the semi-automatic segmentation workflow. The purple blocks show
the newly added steps. The segmentation is applied as usual, and the segmentation
output is split into 2 clusters. The metrics are computed for the split, and the random
forest classifier predicts whether the split would improve or reduce the accuracy. The
process is repeated until the prediction comes as reducing the accuracy, and the last
split is rejected. Since the segmentation step marked some points as removed, and
now they have been rejected as not correct, the state of the search tree nodes has to be
reset as well.

85

correct

\ Ap) - (* spiitintoz) [Compute | \ ‘
Apply bilateral ply l - 5 Predict if split 1
.—) bounding bo: clusters using . - metrics for |
_ﬂller i se;m;ngatioxn -ﬁ»w K-Means I clusters | . Is correct r T
creai 0 T not correct
L
searchtree | r
. . Mark rejected L cutput -
points as non- | |—— > Segmented cluster '4"@)

| removed

Figure 3.17. Segmentation correction using recursive 2-Means splits with a random forest
classifier integration in semi-automatic segmentation

3.4.3.5. Performance implications

Since the points have to be marked as non-removed, this adds some extra work.
It was shown in Section 3.4.2 that the algorithmic complexity of this procedure is
O(klogn), where k is the number of points to mark as non-removed, and 7 is the
total amount of points in the tree.

Further extra work to do is the computation of the 8 metrics required to make
predictions, and splitting the clusters into two sub-clusters. Six distances have to be
evaluated. They are all computed by using not only the same principle, but even the
same Java method with two parameters — the point (centroid) and the cluster. It com-
putes the distance for each point in the cluster. The size of the original cluster is m, and
the sizes of sub-clusters m. and m also total m. Therefore, the total amount of work
for the distance metrics is O(4m). The cluster sizes are computed to have O(1) algo-
rithmic complexity. Therefore, extra work due to the metric evaluations has O(4m)
complexity.

Another piece of extra work is the 2-Means split itself. It involves the following
steps:

1. Get the furthest point from the initial point.

2. Partition points by centroids 1-10 times.

3. Get a new centroid in each partition.

4. If the split improves the accuracy, a collection of all excluded points is updated.

Finding the furthest point involves checking the distance for each point in the ini-
tial cluster, hence complexity O(m). Partitioning points by the centroid also involves
one iteration over the initial cluster and adding the point to one of the two lists (the
first or second cluster), hence complexity O(m) again. The new centroid only has to
be evaluated for one cluster and involves checking all the points in that cluster, which
has complexity O(ms). Updating the list of excluded points is also O(m) operation.
The three final operations can be repeated up to 10 times, however, this still leaves the
total complexity at O(m + mg).

There is also some extra time required to make the prediction, however, the pre-
diction time is constant. The prediction is made by using the JPMML-Evaluator* li-
brary for the Java programming language: the model is loaded from a PMML file

“https://github.com/jpmml/jpmml-evaluator

86

(during the startup once), and then predictions are made. The model definition takes
6.09 MB of the disk space.

3.5. Fully-automatic segmentation

Agrast-6 (Abridged VGG-based Reflected Architecture for Segmentation Train-
ing with 6 encoder layers) is proposed to solve the fully-automatic segmentation task.

3.5.1. Theoretical basis and hypothesis

The SegNet neural network [50] is one of the most successful neural networks
for image segmentation. It consists of an encoder and a decoder where the encoder
is based on the VGG-16 network and the decoder is the reverse of the encoder. Since
VGG-16 itself is a deep neural network, adding a decoder makes SegNet even deeper.
The network has 26 layers which allow good accuracy, however, the architecture itself
is huge and slow. It does not use any fully-connected layers, but the model size is still
117 MB, and a forward pass was estimated to take 422.5 ms with 360 x 480 resolution
images and NVidia Titan GPU.

While SegNet s segmentation accuracy for RGB images is good, it solves multi-
class segmentation for RGB images. The model originally was trained to recognize 37
classes of objects. This means that the features for those 37 classes have to be stored
inside the model. On the other hand, the binary segmentation task only requires one
class to be learned. This research focuses on the human body binary segmentation,
therefore, it has to only learn the features of a human. Moreover, the data that the
SegNet neural network processes is RGB, which means that the input consists of three
channels, and the features have to be inferred from them all. The depth data, on the
other hand, is simpler with only one channel that carries all input information.

It is possible to use the SegNet neural network for binary human body segmen-
tation. The number of classes has to be reduced to 2 (human and background), and the
depth channel is repeated across all input channels. However, it could be hypothesized
that a smaller, simpler architecture of the same type is possible. Smaller architectures
usually mean a smaller model size and a shorter inference time, therefore, such an ar-
chitecture could run faster or on lower-spec devices. The results could be achieved by
learning more aggressively as SegNet uses 13 layers for the encoder, but fewer features
could be learned when using a shorter network while keeping the other properties of
the network.

3.5.2. Proposed neural network — Agrast-6 architecture

The proposed neural network architecture is an Abridged V'GG-based Reflected
Architecture for Segmentation Training (abbreviated as Agrast-6°). SegNet neural net-
work is used as the ideological basis. SegNet itself is an encoder-decoder architec-
ture based on VGG, therefore, Agrast-6 is also based on VGG. It inherits the encoder-
decoder architecture where the decoder is a reflected (mirrored) encoder. However,
Agrast-6 is designed to be more lightweight, therefore, it is an abridged version com-

3¢ Agrastas’ means ‘gooseberry’ in Lithuanian, this abbreviation may or may not
be intentional.

87

pared to SegNet.

VGG-16 consists of 5 blocks of layers. Each block has 2 or 3 convolutional layers
with a 3 x 3 filter. The blocks also have a max-pooling layer at the end and reduce the
dimensions of the image by a factor of 2. The depth dimension of the convolutional
layers increases from 32 at the first layer and ends with 512 at the last layer. This high
dimensionality allows the network to learn more features. However, it is hypothesized
that there are fewer features to learn for binary segmentation. Therefore, the VGG
architecture is abridged in Agrast-6. The following simplifications are proposed:

» Three blocks of layers instead of five.

* One convolutional layer per block instead of three or two.

* A lower depth of convolutional layers (32, 128, and 256 instead of up to 512).
* More aggressive max-pooling (dimensionality reduction of factors 4, 4, and 2).

The block reduction comes from the idea that there are fewer features to encode.
The human body has distinct visual properties that are easily recognizable for a human
as opposed to analyzing road segments, which was done by the SegNet neural network.
Fewer convolutional layers come at a cost of fewer global features, however, the task
being solved is to localize a single object in a depth image, which should not require
as much global information as full multi-class segmentation. One convolutional layer
per block also simplifies the network due to the same reasons. This reduction in the
number of convolutional layers greatly reduces the complexity of the whole network. It
should reduce the accuracy of the network, however, the author believes that the effect
will not be large, and the model size reduction will be worth it. The convolutional
layer depth reduction comes from the fewer features required to learn. The depth is
required for SegNef to be able to learn more features, and this is simplified in Agrast-6.
Finally, VGG and, consequently, SegNet, reduce the dimension of the original input
by using max-pooling layers. Each layer reduces the dimension by a factor of 2, thus
totaling the reduction of 32 times over all 5 blocks. This property is kept in Agrast-6
via more aggressive max-pooling. Since there are only three max-pooling layers, they
reduce the dimensions by factors of 4, 4, and 2 to have the same total dimensionality
reduction of 32. There are 6 layers in the encoder (3 convolutional and 3 max-pooling,
not counting the input layer), hence the ‘6’ in Agrast-6.

The described first part acts as an encoder. The decoder is generated from the
encoder automatically to ensure that Agrast-6 is a reflected architecture. The process
is shown in the UML activity diagram in Figure 3.18. First, the encoder is constructed
with the layers described in the previous paragraph. Next, the decoder is generated.
For each layer in the encoder, a matching decoder layer is added in the reverse order.
An upsampling layer is added for the max-pooling layer, a transposed convolutional
layer is added for the regular convolutional layer, and a convolutional layer is added
for the input layer. The upsampling and transposed convolutional layers are reflected
operations from the encoder.

The final convolution is added to reduce the depth of the output back to one. In
the end, a bounded ReLU layer is added with a maximum value of 1. This is a de-
viation from the SegNet neural network which uses a softmax activation layer at the

88

Table 3.4. Agrast-6 training software and hardware details

CPU AMD Ryzen R9-3900X

GPU NVidia GTX 1660 Super (6 GB VRAM)
Graphics toolkit CUDA 10.1

Neural network accelerator cuDNN 7.6.5.32

Neural network library TensorFlow 2.2.0

Programming language Python 3.8.10

end. Softmax tends to produce better results with multi-class classification tasks [265].
However, Agarwal et al. showed that ReLU performs better for binary segmentation
problems [336]. Therefore, a ReLLU layer is used for the final prediction. Every con-
volutional layer in the network uses padding to keep the dimensions of the layer the
same size as the previous layer. Padding is done by using zero values on all sides of
the image. The Agrast-6 architecture is visualized in Figure 3.19. The resulting model
has 1.2M trainable parameters.

It is important to note that the SegNet neural network is characterized by its U-
net-like structure which includes direct connections between the layers of the encoding
and decoding parts of the same resolution. This helps to improve the accuracy and res-
olution of the segmentation results and has contributed to the success of SegNet in a
variety of image segmentation tasks. In developing the Agrast-6 architecture, the deci-
sion to simplify the architecture by removing these direct connections was made. This
made it possible to reduce the overall complexity of the network. While this simplifica-
tion does not provide a possibility for the decoder to utilize features not captured by the
decoder, the expected accuracy reduction should not be critical. Since the architecture
is different, pre-trained VGG encoder weights are not utilized, either.

3.5.3. Agrast-6 training and training data split

Agrast-6 was trained by using the datasets described in Section 4.1. The ground
truth labels were marked manually by two trained individuals and used for training. The
input for the model is the original depth image, and the expected output is a binary mask
where a human silhouette is marked as the foreground and other objects are marked as
the background. The Kinect depth frame dimensions are 424 x 512, however, Agrast-6
downscales and then upscales an image by a factor of 32. 424 does not divide by 32, so
the data was right-padded with zeros for depth images as well as ground truth masks.

The model was implemented by using the TensorFlow 2 library for Python. It
utilized GPU acceleration via the CUDA 10.1 library and the cuDNN 7 neural network
acceleration library. The training process was performed by using NVidia GTX 1660
Super GPU. The software and hardware details are presented in Table 3.4.

The whole dataset was split into the training and testing parts. 80% of the data
was used for training and 20% served for testing. The validation dataset was not
used because the model was observed to consistently improve on the test set, and hy-
perparameters were tuned manually by observing the learning curves. K-fold cross-
validation was not a viable solution, either, since the dataset is very large, and the

89

l{Add input layer]

(" Add three
convolutional-
m ax pooling
layer pairs

Encoder (7 layers total)

90

| b.udy_

convolutional
layer with ReLU

Create a
reversed copy
of encoder
layers

Check if all
layers.
processed

Take next layer

Check layer
type

input layer

max pooling

S

P

Create

activation

Create
transposed
convolutional
layer with the
same
param eters

Create
upsam pling
layer with the
same
param eters.

Add ReLUlayer
with m ax value

=1

Figure 3.18. UML activity diagram of neural network creation process

448x512

448x512

Figure 3.19. Architecture of the proposed Agrast-6 model

91

Table 3.5. The values of Agrast-6 model hyperparameters

Hyperparameter Value

Convolutional layer kernel size 3x3

Convolutional layer activation function ReLU

Max-pooling pool size 4 x 4,2 x 2 for final layer
Optimizer Adam

Optimizer learning rate 0.0001

Loss function Binary cross-entropy

training time would increase even further if this technique was applied. On the other
hand, the large amount of samples introduces a lot of variance in the data since the
frames are unique, hence, increasing it further between different epochs should not im-
prove the ability to generalize by a significant margin. The Adam optimizer was used
with a learning rate of 10~*. This optimizer has been shown by multiple researchers to
converge quicker than the alternatives, especially for neural networks [337, 338, 339].
The learning rate was selected by running the training process for a subset of data and
observing the training loss. The learning rate of 10~* was the highest learning rate that
does not lead to unstable training loss as higher rates lead to training loss oscillation
as the network is learning. Lower rates also worked, however, the training loss func-
tion was changing slower, which leads to longer training times. Binary cross-entropy
was used as a loss function. This function is suitable for binary classification problems
and is one of the most popular choices for such tasks [340, 341]. An overview of all
hyperparameters is presented in Table 3.5.

The dataset used for model training was large, therefore, it could not be loaded
all at once. The dataset size on the disk is over 150 GB. Therefore, it had to be loaded
and fed to the network in batches. The data is organized as one file per depth video
sequence. Unfortunately, reading and feeding the data sequentially leads to overfit-
ting very quickly because the frames are very similar if they are in the same video
sequence. Even shuffling the frames does not solve this problem. This was evident
during the training process as the loss function value quickly jumps down as a new
video sequence starts. This issue was solved by loading 20 video sequences at once
(the full dataset is 942 sequences), concatenating their frames, and then shuffling them.
When all the frames are processed, the next 20 video sequences are loaded, and the pro-
cess is repeated. After this fix, the problem of in-sequence was solved, and the dips in
the loss function did not occur anymore. The frames were fed to the training engine in
batches of 4 as the video memory was quite limited on the GPU. The same procedure
was used for the test dataset, except that the file batch size was 4 instead of 20 to reduce
the memory usage. One epoch of training took 5 hours + 1 hour for testing against the
test dataset.

3.6. Segmentation evaluation methodology

There are two categories of evaluated segmentation algorithms:
+ Semi-automatic segmentation algorithms;

92

* Fully-automatic segmentation neural networks.

There is a baseline algorithm selected for both categories. The semi-automatic
segmentation algorithms proposed in this dissertation are modifications of the Eu-
clidean clustering algorithm, therefore, it is selected as the baseline. All algorithms,
including the baseline algorithm, are implemented (or, in the case of the standard Eu-
clidean clustering, reimplemented) in the Java programming language. In addition
to that, a benchmark is also repeated with the PCL library directly, by utilizing its
EuclideanClusterExtraction class. This benchmark uses the same performance
measuring methodology, but it is implemented in the C++ programming language to
match the technology used by PCL. Therefore, a two-way comparison is made: the
performance of the proposed algorithms (Java) is compared to the implementations of
the baseline algorithm in the same technology (Java), which makes a fair comparison,
and the original implementation of the baseline algorithm (C++) serves to verify the
validity of the results. However, it should be noted that the Java code is expected to
have a lower performance. Informal benchmarks show that Java is about 2 times slower
than C++ with binary tree problems [342].

Fully-automatic segmentation evaluation uses the SegNet neural network as the
baseline because the proposed Agrast-6 architecture is a modification of this neural
network. An open-source TensorFlow implementation of SegNet is used [343] because
Agrast-6 is also implemented by using TensorFlow.

3.6.1. Accuracy evaluation methodology

The datasets described in Section 4.1 contain various scenes, people, and angles.
On the other hand, the dataset is large, and the depth images that are captured in the
same sequence are similar since the scenes are static. The scenes in different sequences
can be different because different people are captured, different camera angles are used,
and the people are in different poses. Every factor may impact the accuracy of the algo-
rithms. It was decided to use 10% of all data by selecting every tenth frame from each
sequence. This reduces the benchmarking time while preserving most of the variance
in the data.

The ground truth labels were acquired by using the full software utilizing algo-
rithms described in this dissertation. Two trained people performed the semi-automatic
segmentation and produced the labels for the whole dataset.

The output of the algorithms depends on the parameters m and h (the manually
selected point and search radius / bounding box size). Both parameters have to be
provided during the benchmark.

A manually selected point has been simulated for each frame. Since the ground
truth frames are known, the only hard requirement is to select a point that belongs to
the ground truth segmentation output. It was decided to sort the points in 2D space by
2 coordinate. This is relatively quick to compute, guaranteed to belong to the ground
truth, and has a low chance to be near the edge of the object vertically. This point
was used as the initial starting point for the benchmark, which corresponds to the user-
provided, parameter m.

Parameter h is difficult to automatically estimate, and this research leaves the

93

selection of this parameter out of its scope. It is provided and adjusted by the user as
they see fit. It was observed during the ground truth label collection that A values for
these datasets most often were in the range [2; 6]. Given these values, it was decided to
run the segmentation with all integer values h € [1;10] and select the output that best
matches the ground truth. This technique simulates the scenario where the best value
is selected by the user.

The segmentation quality was evaluated by using cross-set intersection metrics.
Since multiple segmentations with different A values were performed, the best segmen-
tation result was determined by using this value as well.

Segmentation with the real-world data does not have to happen when using just
one user click. It is common to select multiple points in the case of over-segmentation.
This is certainnly easy for a human to perform and is considered a part of the normal
segmentation process. For example, if the user waist pixel is selected, and the seg-
mentation output did not include an arm, it is quick and easy to click on the arm. It
would take much more effort to manually remove pixels that were under-segmented.
Therefore, the benchmark simulates this behavior.

The whole segmentation process is shown in a UML activity diagram in Figure
3.20. Since the original algorithm applies a bilateral filter, it is also applied before
segmentation. A 3D binary search tree is created from the filtered depth image. Each A
value is represented by a different segmenter in this process. For each segmenter, a hash
set of the ground truth indices and an empty list of clusters are created. A middle point
is taken from the remaining ground truth index set, and the segmentation is performed
using this point and the segmenter’s h value. All found points are removed from the
remaining ground truth index set and the cluster is added to a list of clusters. This
process is repeated until either 90% of the ground truth points have been included in
the output, or the algorithm has converged. This type of evaluation reduces the impact
of over-segmentation, which is easy to fix by a human and exposes under-segmentation,
which is difficult to fix for a human.

3.6.2. Performance evaluation methodology

The benchmark performs full point cloud segmentation as it divides the point
cloud into as many non-intersecting clusters as possible. Some parts are equal for all
implemented algorithms and their variations, for example, building the search tree.
These parts are omitted in the benchmark, and only segmentation and algorithm-
specific calculations are considered. The benchmark software was implemented in
the Java programming language. The software and hardware specifications are listed
in Table 3.6.

The benchmark is repeated for a total of 1000 randomly selected images from
both datasets. Four example images are shown in Figure 3.21. Two metrics were cal-
culated during the benchmark — the runtime of the algorithm, and the binary search tree
node traversal count. Time was measured by using the Java’s System.nanoTime ()
method and taking the difference between the times. The traversal count was deter-
mined by adding an extra state to the tree which that tracks the tree node traversals.
The time metric depends on the hardware and software that the benchmarks are per-

94

r

" Get ground
| truth indices

npplr bilateral
|_ Filter

(" Create 3D
| search tree

search tree

Get all matches

(" Create hash set
of ground truth
coordinates R

(" Create empty
| list of clusters C

1

Get mlddle pomt 1 (" Concatenate
. m from R | clusters From C

~ Run i ~\ . d]
segmentation | Evaluate match |
with h and m _/]
values

Remove Found
| points from R

|
|
| |
| |
| |
' |
|
| |
| |
| 7 l
| |
| R is bigger than 10% of ground truth and new points were found else |
| A
| |
| |
' |
|
| |
| |
| |
| |
|

| Add Found

cluster to C
. J

____________________ —
3[i match resutt list

" Select best
| makch

Figure 3.20. Accuracy benchmark UML activity diagram

95

Table 3.6. Benchmark software and hardware specifications

CPU AMD Ryzen 9-3900X (820 GFLOPS)

RAM 2 x Kingston HyperX Fury Black 3200MHz 16 GB

GPU NVidia GTX 1660 SUPER with 6GB of VRAM (5.0 TFLOPS)
Operating system Ubuntu 20.04.4 LTS

JIVM OpenJDK 11.0.15

Figure 3.21. Examples of depth images used for benchmark

formed on, but the node traversal count is the same across all devices as it measures
a property internal to the data structure and a related algorithm. The averages of both
metrics are computed over all 1000 images.

The performance benchmark is simpler for the neural network since it solves
fully-automatic segmentation tasks and does not require any human input. The model
was implemented in the Python programming language using the TensorFlow library
originally. Then it was saved by using the TensorFlow’s own saved model format and
loaded into a Java project via TensorFlow for Java. Predictions were made by using
this library. A detailed implementation UML sequence diagram is shown in Figure
3.22. AgrastSegmenter is a class implemented for the project. The other classes are
used from the library. Messages 1-2 correspond to loading the saved model from the
saved model file. This only has to be done once, therefore, this part of the sequence is
not added to performance benchmarks. Messages 10-17 run the Agrast-6 model. All

96

other messages are conversions to and from data types supported by TensorFlow. Since
this is required for predictions, the time taken is also added to the prediction time in
the benchmark.

3.7. Multi-camera skeleton transformation and fusion
3.7.1. Skeleton transformation

Suppose we have n Kinect sensors K1, Ko, ..., K, that all monitor the same
person. Each sensor has its coordinate system C'S,, and all received skeleton points
are in this coordinate system. For simplicity, let us consider two Kinect sensors K7 and
K> and two monitored reference joints J; and Js. Let us also define a transformation
to transform the data from C'S), to the common coordinate system C'Sy as T),. The
transformation consists of two steps:

1. Rotate the sensor coordinate space so that x0z plane matches the floor plane.
2. Apply the rotation and translation transformations to match the common coordi-
nate system.
The first step is required because each sensor may have different orientations relative
to the floor plane. This orientation is detected and reported automatically by the Kinect
sensor. Let us assume that all devices stand on the same floor plane because we already
assume they monitor the same volume of space.

The floor plane’s normal vector for sensor p in its coordinate system C'S), can be

defined as

P,=| B, (3.22)

The goal is to rotate the view so that the vertical direction matches the direction of
the y-axis. This means that transformation 7}, is required. This transformation could
then be applied to the whole point space of the sensor. After it, the sensor stays above
the floor at height D,,, which has to be subtracted to normalize the coordinate space to
the ground level. Given A, as the original sensor’s p space, 1) is the transformation
matrix, the transformed sensor’s p space Ay, is then

Ay = ATy — (0,D,,0) (3.23)

After Formula (3.23) is applied, a two-dimensional case remains to be solved
to rotate and translate all sensors to match the common coordinate space. We will
choose the sensor’s K coordinate system after Formula (3.23) as the base. First, we
must find the angle between the coordinate systems of both sensors. Let us denote the
vector JiJo as J (see Figure 3.23). Vector J coordinates can be defined as (R;, i) in
the C'S; polar coordinate space. Let us rotate vector J by angle —p;. The new angles
between the z-axes of C'S; and J are i — 1. Let us denote these angles ¢,;.

To find the value of ©,;, we need to find the values of ;. According to the cosine

97

Agrast6Segm enter | | SavedModelBundle | | FloatDataBuffer | | Session | | Runner |

T T

! 1: load() !

| A [l

e — _2model |
3. getSegmgnidepthimage, height, width) :
o———

] |

5 w.rite(norr‘r‘a’iz.e.dlnﬁge)

|
62 imageViritten
e——————r—————]—r‘

7. createlnputTensor(buffer)
I

T

I

I

|

I

I

|

I

I

4 getNDrrmIizedIrmge{depfhlr‘r‘age: height, width) :
I I

| |

I
I
|

I
I
8- session() !

1y -

9. session '|_|
e ______

[.
. 10: runner()

IE
P—— L —

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|

I
]]
I 13 self I
s — — = — = = - — = = = = - | — — — — — — - —
| | |
| 14: fetch() | L
T T
! 15 self !
e — — — — — — - —_- - = = = - | — — = - — — - —
I 16: run() I I
| . |
e _ _ _ _ _ _ L 1_? Esurt_terEor_: _____
18: read(nﬂgArray] =
o _IQL;terEDrIEritt_en._ L]_‘

=
20 get(]usteredPoints.{_ndA]'rray)

]

Figure 3.22. Prediction using TensorFlow for Java sequence diagram

O X
K1

Figure 3.23. Rotation of sensor coordinate systems for data fusion

99

theorem, these values are

arccos ———, z; >0
pi = AR (3.24)
arccos(2m — =), i <0

3 3

Suppose that the original coordinates of point .J; are {x,, y,}. It is then needed
to rotate this by angle ¢,;. The resulting vector is equal to

{Rycos(pq — ¢ri), Rgsin(pg — ¢ri) (3.25)

Once the transformation 7},; and rotation ¢,; has been applied, the only trans-
formation left to do is to move the origins of both sensors’ coordinate systems to the
same point. Let us use the sensor’s K coordinate origin as the base. Let us choose any
point in space monitored by both sensors, say, J3. The vector connecting both origins
of the coordinate spaces is Kg_Kl =K. ; J3 — K f J3. This is the vector that C'Sy; must
be shifted by to match C'S;. Suppose that the coordinates of J5 are {13, y13} in C'S}
and {x23, y23}. Then the required transformation vector is

Tho = {23, Y23} — 13, Y13 (3.26)

In the general case, we are going to compare sensor K, against K. The required
transformation is

Tpo = {xp3, Yp3} — T13, Y13 (3.27)

Thus, the final calculations to transform a set of points B, from sensor’s K,
coordinate space C'S), to sensor’s K coordinate space C'Sy as By are as follows:

Bi1 = B, Ty — [0, D,,0] (3.28)

We choose any vector J of two points known by both sensors with coordinates [x1, 1]
in C'Sy and [z, yp| in CS).

Prp = ¥p — L1 (3.29)
where
arccos ———, x; >0
0 = Ve (3.30)
arccos(2m — \/m)7 x; <0
By = [Rq COS((Pq - (Pr2)a Rq Sin(‘Pq - Sor2)] (3.31)
Ry = /23 +y; (3.32)
Tp2 = [2p,0,1p] — [21,0, 1] (3.33)
B1 = By + T2 (3.34)

If the sensors do not move during the monitoring, the position of the sensors does
not need to be reevaluated for each calculation. It is then logical to precalculate trans-

100

formation parameters ¢,,, and 7},2. They can be calculated by using the same methods
as described above. Then the transformation could be simplified to the following al-
gorithm:

By = BTy — [0, Dy, 0] (3.35)
Vq € By : Bio = [/ 22 + yZ cos(¢q — pra), \ /T2 + y2 sin(pg — pr2)] (3.36)
By = By + Tpg (3.37)

This algorithm could be applied to any number of sensors. Base sensor K must
be chosen, and data from each other sensor K, could be transformed to coordinate
space ('S} by using the suggested algorithm one by one. The algorithm does not re-
quire one to know the positions of the sensors in advance, so any configuration of
Kinect sensors could be used. The only requirement is that all sensors must monitor
the common volume of space.

Related research has shown that Kinect skeletal tracking may suffer from large
fluctuations [37]. Therefore, the transformation computed from a single set of skele-
tons may be inaccurate. This accuracy could be improved by aggregating a buffer of
skeletons while using different techniques. Low computational complexity alterna-
tives are the mean and median values. THe buffer size is a hyperparameter of this
precision increase technique. A big buffer size means that the tracking may only start
after the buffer has been filled with the required values while a small buffer may suf-
fer from large fluctuations in the data. Since the Kinect 2 device tracks 25 joints, the
transformations in Formulas (3.35)-(3.37) are computed 25 times. This means that the
computational cost is low compared to any other suggested skeleton processing meth-
ods.

The proposed skeleton transformation algorithm is not iterative (there is a fixed
amount of computations per skeleton, and the computations are not repeated), and it
does not require marker objects in the scene. Complex mathematical transformations
like singular value decomposition are not used, either, and only trigonometry is in-
volved. Therefore, this approach is either less computationally expensive than the
methods presented in Table 2.1, or it does not require marker objects in the scene,
which makes it easier to apply in real-life scenes.

3.7.2. Skeleton fusion

Such computationally cheap methods as the average have been shown to be viable
for skeleton fusion. Therefore, two methods of fusion are tested in this dissertation — the
average and the median of each coordinate of each joint [105]. Average joint position
Im = [Tm), Ym, 2m] 1s defined as

Mg My X%

T = , , (3.38)
n n n

Here, [z, y;, ji] are the transformed coordinates of the joint as seen by sensor i, n is
the number of sensors. Similarly, the median would be computed by using Formula

101

which
praoblemis
salved?
~
skeleton fusion semi-autormatic segmentation fully-automatic segmentation
segmented
(B object
Apply proposed | S
skeleton | Applyf}ﬁliteral o WDES
transFormation || e
T —
medical hurman
- ” required
Apply median- | - ™ P \ accuracy
based skeleton Convert data to J (U-Net
Eisan I\. point cloud < Q
other More than 86% Up to 86%
o Vo e ~
[Use Agrast-6 |
else
. T
(" segment using | Segm;nli uscl'ng - Q
eite optimize: (" Use Seghet
optimized :
L Euclidean search bo;lll';‘l,llr'lig:r:x

Toa much
oversegmentation?

>

Apply random
Forest +
2-Means split
correction

k3

Figure 3.24. The proposed rules to select algorithms for depth or skeletal data processing

O

no.

(3.38), but the averages of each coordinate over the sensors would be replaced with the
median.

One more strategy used in state-of-the-art solutions is to only evaluate the joint
positions that the sensor itself reports as visible (non-occluded and high confidence)
[99]. This could also be combined with the previous proposition — only evaluating the
average or the median from a subset of the captured coordinates. However, all these
propositions require experimental evaluation of accuracy due to the uncertainty of the
skeletal data provided by Kinect.

3.8. Proposed framework for depth segmentation and skeleton fusion

The full framework for depth segmentation and skeleton fusion is proposed based
on the theoretical analysis provided in this chapter and the experimental results pro-
vided in Chapter 4. There are three distinct problems to solve — semi-automatic seg-
mentation, fully-automatic segmentation, and skeleton fusion. They are all considered
in this section, and the full framework with proposals for different scenarios is pro-
vided. The overview is provided in Figure 3.24.

First, the fully-automatic problem defined by (1.3) is best solved by machine

102

learning methods. The best-analyzed segmentation neural networks are the SegNet
neural network and U-Net. They are large architectures with over 30M trainable pa-
rameters. They also both solve a more complex task of semantic RGB segmentation.
Therefore, the proposed Agrast-6 network should be used if 86% accuracy for binary
segmentation is enough and the segmented object is a human. Otherwise, these larger
architectures could be utilized to achieve extremely high accuracy, however, this will
add a lot of inference time at a yield of a small improvement in accuracy. In that case,
U-Net is better suited for medical images, whereas SegNet is better suited for other
types of segmented objects.

Next, the semi-automatic problem defined by Formula (1.2) can be solved in dif-
ferent ways depending on the scenario. First, a bilateral filter should be used to denoise
the data since segmentation has been shown to perform much better when using this
filter. The depth data should then be converted to a point cloud. Next, Euclidean-
clustering-based or bounding-box-based segmentation should be selected. Euclidean
clustering is recommended in these scenarios where the data is complex and difficult
for a human to correct. This algorithm is slow, however, it should still be useful in such
scenarios since there will be fewer corrections required. In other cases, where the ob-
jects are separated in space, the bounding-box-based algorithm should be utilized since
it delivers a comparable accuracy in those scenarios and works much faster. However,
the proposed improvements should always be applied as they reduce the runtime of both
algorithms greatly without affecting their output. It may only be worth considering in
cases where the point cloud should be reused, however, resetting the internal state of
the point cloud might still be faster than not using the improvements. Finally, if the
bounding box was selected due to performance requirements, but under-segmentation
occurs too frequently, the proposed A recursive 2-Means split algorithm with a random
forest classifier for split acceptance should be used if a small performance decrease is
allowed. These possibilities are all included in the software solution described in Sec-
tion C.1. The user may choose between the presently mentioned algorithms depending
on the data being segmented.

The proposed skeleton fusion algorithm should be used in the cases where the
accuracy of a single sensor is not good enough and multiple sensors are possible to
install.

3.9. Summary

This dissertation proposes the following solutions to the dissertation problems:

* An adaptation of the Euclidean clustering algorithm for segmentation;

* A bounding-box-based segmentation algorithm;

* Two improvements for Euclidean-clustering-based and bounding-box-based
segmentation algorithms;

* One more improvement for the bounding-box-based segmentation algorithm
only;

* A recursive 2-Means split algorithm with a random forest classifier for split ac-
ceptance for under-segmentation reduction;

* Agrast-6 convolutional neural network architecture;

103

* Kinect skeletal data transformation and fusion algorithm.

First, to conduct the segmentation-related research, two datasets have been cap-
tured. These datasets consist of short depth video sequences, containing people in a va-
riety of poses. They have been captured by using three Kinect cameras simultaneously.
Next, a novel segmentation evaluation metric, cross-set intersection, is introduced. Its
analysis shows that it offers advantages over the currently available metrics:

* In cases where one of the segmentation output and the ground truth is a subset of
the other, cross-set intersection, unlike the Dice’s score, has an easy-to-interpret
numeric value (it is the ratio of the sizes).

* It is faster to compute than Jaccard score because the union of both sets does to
be computed.

« Its value never exceeds the ratio between the sizes of the set intersection and
either of the sets, for which the intersection was computed, thereby preventing
relatively high numeric values for low segmentation accuracies.

* It involves an extra penalty compared to both Dice and Jaccard metrics in cases
where both under-segmentation and over-segmentation may occur.

These properties make the cross-set intersection a good choice for segmentation quality
evaluation.

The semi-automatic segmentation problem can be solved by adapting an already
existing Euclidean clustering algorithm. The original algorithm is meant for clustering,
therefore, it selects a point from the point cloud and constructs a cluster by repeatedly
adding all the points that are closer to at least one point of the constructed cluster than
the predefined distance. When no more points can be added, an unprocessed point is
selected, and a new cluster is constructed. The algorithm terminates when all points
belong to the cluster. If point selection is replaced with a human-selected point and
only one cluster is selected, this becomes a segmentation algorithm.

Unfortunately, this algorithm is not efficient because the algorithm has its state
(thefound clusters) which is tracked separately from the point cloud. The nature of the
algorithm allows the same point to be found multiple times, however, it has to be a part
of a single cluster. This leads to the tracking of the found points and then checking if
the point already belongs to some cluster, which degrades the performance. Another
performance-related issue is the definition of the object shape — it is a super-set of
spheres around each point that belongs to the object. Checking if a point belongs to
such a shape is computationally expensive if the object consists of many points.

The latter issue is proposed to be solved by simplifying the object-defining shape.
A bounding box is a good candidate because its shape is simple to define and update,
and it is very easy to check if a point is inside of the bounding box. The former issue,
on the other hand, can be solved by moving the state of the algorithm inside the three-
dimensional binary tree. Instead of tracking the processed points separately, tree nodes
can be marked as removed. This has further advantages as, instead of finding poten-
tially too many points, checking which points should be discarded, and then discarding
the points, a flag is checked and flipped. Even more, if a whole branch of the tree be-
longs to a segment, it can be marked as removed, which means that it can be skipped

104

completely as if it has been cut from the tree, but without actually modifying it. One
final performance improvement is possible for the bounding-box-based segmentation.
If the original Euclidean clustering is followed and adapted to use bounding boxes, the
bounding box is defined, all points inside of the box are found, the bounding box is
expanded so that the minimum distance from any contained point to any side of the
box is not lower than the predefined minimum, and the process is repeated. However,
the bounding box can be expanded after adding each point rather than after a full pass
over the tree, which allows it to grow much faster and reduce the number of passes.
The datasets mentioned above have been segmented by using software that utilizes the
bounding-box-based segmentation algorithm.

Unfortunately, the bounding-box-based segmentation algorithm is more prone
to under-segmentation as it tends to include parts of the background, and not only
the object, more often than the Euclidean-clustering-based approach. However, the
Euclidean-clustering-based segmentation is not immune from this problem, either. It
can be solved by recursively repeating the 2-Means split of the segmentation output
and potentially discarding one of the segments. The output is split into parts by using
the K-Means algorithm where £ = 2. Then, 8 metrics are computed, specifically,
the distances between each combination of the two centroids and three clusters (both
sub-clusters and the original super-cluster), as well as the sizes of both sub-clusters. A
random forest classifier, trained on the values of those metrics, then decides if the split
improves the segmentation accuracy or not. The splits are repeated until the accuracy
has stopped improving.

The fully-automatic segmentation problem can be solved by using the already
existing neural networks for multi-class RGB segmentation, however, binary depth
segmentation is a simpler task that could be solved by using a smaller architecture.
Therefore, the Agrast-6 architecture is proposed. It is a smaller version of the SegNet
neural network (it has 13 layers instead of 26, and the layer depth is lower, but it keeps
the symmetry between the encoder and the decoder) without the skip connections. A
bounded ReLU layer is used instead of a Softmax layer because the pixel labels are
binary. This architecture has only 1.25M trainable parameters. The network has been
trained by using segmented datasets.

The skeleton fusion problem can be solved by using the proposed geometrical
algorithm. All the coordinate systems of Kinect sensors are transformed to match the
floor plane. A rigid human body part (two joints) is selected, and each sensor’s viewing
angle is estimated by using the coordinates of the vector representing this body part.
Then all views of the sensors can be rotated to match the first sensor. Skeletons can
then be fused by using the median or mean coordinates.

105

4. EXPERIMENTAL RESULTS

This chapter consists of an experimental evaluation of the algorithms proposed
in the previous chapter.

The same datasets were used for most of the research and are therefore presented
first in Section 4.1.

Section 4.2 presents in-depth analysis of the proposed bounding-box-based seg-
mentation algorithms and performance improvements and verifies if the proposed algo-
rithms can reduce the total human-supervised segmentation time. First, noise reduction
algorithms are compared through the lens of human body segmentation — their impact
on the final accuracy is measured as well as their runtime. Next, all the proposed
bounding-box-based search performance improvements are evaluated separately and
in combination and compared to Euclidean-clustering-based segmentation. Some per-
formance improvements are also applicable to Euclidean clustering, and their impact
on this algorithm is measured as well. It is shown in this subsection that the perfor-
mance improvements give a huge performance boost for binary segmentation. Next,
the accuracy of Euclidean segmentation and bounding box segmentation is analyzed
in multiple ways as the total average cross-set intersection is compared, the results are
also dissected by the camera angle and pose, accuracy histograms are provided and
qualitative error analysis is conducted. In addition to that, sex-wise accuracy measure-
ment is also provided. Finally, savings of human work are estimated, which is one of
the key focal points of this dissertation.

Section 4.3 provides in-depth analysis of the proposed recursive 2-Means
split algorithm with a random forest classifier for split acceptance to reduce under-
segmentation errors. The analysis follows a similar structure as the bounding box seg-
mentation. First, performance analysis is provided. Extra work required by this al-
gorithm is analyzed. Next, detailed accuracy analysis follows with the same structure
as the bounding box segmentation accuracy analysis. Finally, an estimate for the total
segmentation time cost is presented. This section tests the statement that the proposed
split, metrics, and classifier may reduce under-segmentation.

The machine learning architecture Agrast-6 is analyzed in Section 4.4. First,
the training progress is overviewed both qualitatively and quantitatively to verify that
the network is learning. Next, image processing analysis is provided to inspect how
Agrast-6 processes an image and how the features are encoded and decoded. This
is followed by performance measurements to estimate the prediction time. Accuracy
analysis is also presented in the same format as in other chapters. This section evaluates
the viability of the proposed smaller architecture and the hypothesis that an abridged
architecture may solve the binary human body segmentation task with accuracy com-
parable to state-of-the-art solutions for RGB segmentation.

Finally, Section 4.5 provides a comparison of accuracy of different algorithm
configurations as well as performance measurements.

106

Figure 4.1. Example depth frames. Left — complex dataset, right — simple dataset

Table 4.1. Details of captured datasets

Dataset name Complex Simple

Number of recordings 674 266

Number of frames 193k 69k

Number of viewing angles 3 3

Environment More cluttered classroom Less cluttered classroom
Number of participants 7 40

Participants by sex 5 males, 2 females 20 males, 20 females
Number of poses 30 2

4.1. Datasets

Two datasets were captured. The first dataset, further called ‘complex’, is 7
people in 30 different poses (various arm positions, standing, squatting, lying on the
ground, etc.). It consists of 674 recordings (193k depth images) from three different an-
gles (front, back at a small angle, and side at an angle). The surroundings are relatively
cluttered, the subjects had just enough space to perform their poses. The subjects were
almost static during the recording process which was about 10 seconds per recording.
The second dataset, further called ‘simple’, is 40 people in standing and sitting poses
(the latter include a chair). It consists of 266 recordings (69k depth images), also from
three angles (front, 120, and 240-degree angles). The surroundings were much less
cluttered with a couple of meters of free space around the subject. Example depth im-
ages from both datasets are shown in Figure 4.1. The datasets consist of static scenes
due to the limitations uncovered by related research [69]. A detailed comparison of
both datasets is provided in Table 4.1. A list of poses with their corresponding images
is provided in Appendix C.

4.2. Semi-automatic segmentation
4.2.1. Data formats

Both depth maps and 3D binary search trees have properties useful for depth data
processing. Therefore, both are utilized for a variety of purposes of this research. The

107

depth map is first utilized for noise reduction, then a 3D binary search tree is con-
structed from a denoised depth map. Since the Kinect 2 data stream is 512x424 pixels,
217088 pixels are stored in total. The depth values correspond to short integers, how-
ever, the RealSense depth pixels require coordinate remapping. Depth values may be
non-integer after remapping, therefore, it is reasonable to store them as double floating
point values. Since one double value takes 8 bytes of memory, the depth map takes
1.66 MB of memory. A binary search tree is a larger structure. It is implemented as a
structure of multiple values:

* x,y, and z coordinates, 8 bytes each make 24 bytes total;

» x and y coordinates in the original depth map for faster depth map reconstruction,

2 bytes each constitute 4 bytes total;

» references to the left and right tree branches, 8 bytes on a 64-bit system, 16 bytes
total;
* Boolean flags for removed and removed children, required for performance im-
provements, 1 byte each, 2 bytes total;
* the current depth of the tree, 1 byte
Thus, memory consumption is at least 47 bytes per point, or ~9.73 MB per frame. The
resulting data — the binary masks — are also stored as a one-channel image because it
takes much less space than a search tree. Both the input depth stream and the output
binary masks are serialized to and from the disk by using Protobuf library'.

The data structure is depicted as a UML class diagram in Figure 4.2. TreeNode
is a class that represents a tree structure. Since this is a binary tree, it has the left and
right children nodes which can have a null value for leaf nodes. However, no link to
the parent is required for the implementation. This is achieved by using a recursive
directed association between the objects of TreeNode. Each TreeNode also contains
a Point instance that holds the actual data contained by the tree. A reference to the
root node of the tree is used to process it.

While the memory consumption of a binary tree is already at 2.9 GB per 10
second long frame sequence, octrees have not been considered since the memory con-
sumption would have been even larger.

4.2.2. Experimental noise reduction analysis

Four variants of noise reduction have been tested — no noise reduction, median
filter with window size 3, the Gaussian filter with ¢ = 0.8, and the bilateral filter
with o = op = 0.8. All filters use their custom implementations. The filters were
run against both datasets by selecting every 10" image. The accuracy was measured
separately for both datasets. The runtime does not depend on the data, so it was av-
eraged throughout all images. All images were processed by the same segmentation
algorithm. Thus, only the ‘reduce noise’ action from Figure 3.7 was changed between
the experiments.

The results are shown in detail in Table 4.2. The table shows the first quartile
(Q1), the median (Q2), the third quartile (Q3), and the average accuracies per dataset

Thttps://developers.google.com/protocol-buffers/

108

Point Q
attributes
-x . double
-y double
-z double
-originalx: int.
-originalY : int

-location |1
-leftChild | 0.1 -rightChild |01 1
TreeNode Q

-removed : boolean
-hasNonRemovedChildren : boolean
-depth : byte

0.1 0.1

Figure 4.2. Binary search tree data model

type. The simple dataset is processed by a bilateral filter much more accurately as
its accuracy average reaches 81.6%, which is much higher that the runner-up median
filter, whereas no filter at all yields 67.7% accuracy. However, Q1 results suggest that
if the algorithm performance is low, no filter is going to change it. Complex dataset
results tell a similar story. Q1 results are similar across the board, while the bilateral
filter beats all other alternatives by a large margin.

The accuracy results suggest that the median filter has little impact on the output.
The Gaussian filter blurs the edges of the objects to the point where the boundaries of
these objects cannot be used for segmentation anymore. The bilateral filter, on the other
hand, enhances the edges of the object and therefore improves segmentation quality.

The performance results show that the bilateral filter is the most complex to com-
pute. Since the bilateral filter is a Gaussian filter with a point similarity weight, it is
apparent that the similarity weight is the difficult part of the computations. It takes
77% of the whole filtering time. The median filter is slower than Gaussian because it
involves sorting an array of neighbor pixels, which is more computationally expensive
than just applying the Gaussian kernel. No filter takes 1.4 ms because this is the time
required to convert a flat array into a 2D array. The results show that a bilateral filter
should always be used, except when the execution time is critical to the point that 32
ms savings are worth a lower performance — no filter should be used in that case.

Figure 4.3 provides a qualitative comparison of the filters. This image is se-
lected from the simple dataset and contains two problems. The subject was wearing
black jeans which absorbed signals emitted by the Kinect 2 sensor, and therefore the
depth values are present only in a part of the image. The image is also noisy around
the floor near the subject’s legs. The first sub-figure shows some fine-grained noise
on the trousers. The median filter reduces this noise by removing small blobs of the

109

Table 4.2. Denoise function accuracy impact and performance comparison

Denoise

function Dataset Ql Q2 Q3 Average Runtime, ms
Simple 72.0% 78.0% 80.7% 67.7%

None Complex 5.9% 7.8% 108% 10.5% 1*

. Simple 72.9% 77.9% 804% 67.7%

Median conlex 62% 8.0% 11.0% 12.2% 168

Ganssian SIWPle 24% 28% 41% 33%
Complex 4.5% 57% 82% 6.4% ’

Bilateral SIMPle 92.6% 97.4% 100.0% 816% 5,

Complex 7.3% 11.0% 16.4% 21.2%

actual depth values. The Gaussian filter does not do this and blurs the whole image
equally. However, the bilateral filter produced the most interesting effect. It com-
pletely removed the depth values on the trousers, which would be useful when training
a neural network; hence, the depth values are not there, however, the legs are still vi-
sually visible. However, this completely prevents semi-automatic segmentation on the
legs. Another effect is a very distinct border around the human body and other objects.
This new boundary makes it much easier for a segmenter to find the edges of the object.
Therefore, qualitatively, a bilateral filter seems to work best for binary segmentation,
which agrees with the experimental qualitative results.

In addition to that, the bilateral filter ‘draws’ a boundary around the object which
increases the distance between the object pixels and the surrounding pixels. This arti-
ficial boundary helps prevent the condition defined in Formula (3.8). h, is artificially
increased, and the chance of it being lower than h,;,,, is reduced. This also helps to
increase the quality of Euclidean segmentation.

4.2.3. Qualitative analysis of watershed segmentation

The classic watershed segmentation approach was implemented to process depth
data by using the OpenCV library [344]. However, since the data was noisy in the depth
frames coming from depth-sensing devices, the clusters generated by the watershed
were too fine. Different image noise reduction techniques were applied, and it was
observed qualitatively that erosion is the only preprocessing step that improves the
clustering, however, the results are acceptable only in a small subset of data. Some
output examples are provided in Figure 4.4. It is clear that the watershed is sometimes
capable of extracting the human body as a single cluster, however, some noise is also
included, or the cluster has many holes that have to be fixed by a post-processing step.
This confirms the problems stated in related research [228] — this algorithm has troubles
with noisy data. It was decided not to analyze this algorithm any further since not only
the segmentation accuracy is low, but it would also require the detection of the cluster
that is the human.

110

Figure 4.3. Filter visual comparison: no filter, median filter, Gaussian filter, and bilateral
filter, respectively

Figure 4.4. Watershed-generated clusters

111

4.2.4. Experimental analysis of point cloud processing performance improve-
ments

4.2.4.1. Benchmark results

Experimental analysis has shown that the basic bounding-box-based segmenta-
tion algorithm with node removal is a lot faster than the option with no performance
improvements. The difference in runtime is 23.4 times, whereas the difference in the
node traversal count is 8.76 times. These results suggest that the proposal improves the
results in two distinct ways. First, the node traversal count is reduced by a large mar-
gin. This translates into a better runtime. Second, since the removed nodes are stored
inside the tree itself, there is no need to keep track of the removed nodes separately,
which also consumes a very large portion of computation time. This is evident for all
results because any algorithm that tracks the segmentation state externally is slower
than any algorithm that tracks the state internally.

Auto-expanding bounding box improvements have shown a great effect on per-
formance. This variant of the algorithm does not move the state inside the tree, and
the performance increase is purely due to a reduced iteration count. The runtime has
been reduced by 11.7 times compared to the basic bounding-box-based search algo-
rithm, whereas node traversals have been reduced by 15.1 times. This shows that the
improvements of the auto-expanding bounding box reduces the search complexity by
an order of magnitude. The node traversal count reduction is achieved by an even
larger margin than by utilizing node removal improvements, however, the runtime still
suffers from extra work to manage the external state.

The branch-cutting improvement also has a positive outcome in terms of perfor-
mance. It reduces the runtime of the algorithm further by 13.5%, and the node traversal
count by 50.5%. The node traversal count improvement is significant, and it allows to
terminate the search earlier, thereby saving half of the tree node traversals required oth-
erwise. This shows that this improvement is worth implementing since the completely
removed subtrees are either common or get large. However, there is a small extra run-
time cost to check and update the removed subtrees, therefore, the time savings are not
proportional to the node traversal count reduction.

Switching between the left-to-right tree traversal and the root-first tree traversal
does not have much impact in real-world scenarios. It is unexpected that, while the
differences in the runtime are small, the node traversal count is always lower in the
left-to-right traversal. However, the left-to-right tree traversal requires a little extra
work. The traversal of the search tree eliminates all branches that are known to be
outside the search range. If the root node is visited before its children, both lower
and upper boundaries can be computed together. However, if an expanding bounding
box is used with the left-to-right traversal, the minimum boundary must be checked
before the bounding box expansion, and the maximum boundary after the expansion.
K-dimensional trees split their data by alternating dimensions at each level, therefore,
different bounding box properties have to be checked. For example, if the depth is 0
(the root node), the x coordinate of a 3D point has to be checked, but the y coordinate
has to be checked at depth 1. If the left-to-right traversal is used, this check has to be

112

performed twice, which adds extra work. This extra work, however, is not compensated
by a lower tree node visit count. Therefore, it is not worth using the left-to-right node
traversal.

The hypothesis that the improvements are orthogonal in the sense that they are
independent (presented in Section 3.4.1.5) seems to hold, however, the exact answer
cannot be found in the performance benchmark. Combining two improvements al-
ways gives a better runtime than using only one of those improvements. Therefore,
the best result is achieved when all improvements are applied. For example, no im-
provements yields the worst performance of 1.4 seconds per frame. Applying the node
removal reduces the runtime to 61 ms (about 23 times faster), and applying the auto-
expanding bounding box takes 122 ms per frame (about 11.5 times faster). Combining
both improvements reduces the runtime to 17 ms per frame (83 times faster). If the
improvements were truly independent, the expected increase in performance should be
23 x 11.5 = 264.5. The fact that the observed number is lower can lead to two pos-
sible explanations (or a combination of them). First, the improvements, while being
orthogonal in terms of the analyzed properties of the tree, cut the runtime in the same
ways, or the runtime cuts impact each other. Most probably, the expanding bound-
ing box reduces the number of iterations over the tree by visiting more points during
one iteration. Since the number of points increases, more points that do not fit into
the bounding box are visited, and the effect of marking points as removed works on
a smaller proportion of the points. Moreover, all points are not marked as removed
in the first iteration, but the expanding bounding box makes the first iteration longer.
Second, they may optimize the same part of the code while not optimizing the other
part at all. Both improvements optimize the method that traverses the tree, but none of
the algorithms optimizes the part where points are concatenated into a single collection
between the iterations. Therefore, it is not entirely correct to just multiply the perfor-
mance increases — this is the potential performance increase for the optimized part, not
for the whole algorithm.

The Euclidean-clustering-based segmentation is used as a baseline. It has been
re-implemented in the same software solution according to the UML diagram depicted
in Figure 3.8 which was, in turn, adapted from the Euclidean clustering algorithm pro-
vided by Rusu [49]. It operates the same tree data structure as the other suggested
algorithms, therefore, it removes performance differences due to different platforms.
In addition to that, an original Euclidean clustering algorithm from the PCL library
(implemented in C++) has been benchmarked, however, there is no way to measure
the tree node traversal count by using this library. The Euclidean clustering algorithm
has an upside and a downside compared to the unoptimized bounding-box-based algo-
rithm. The advantage is the less state to keep track of and the simpler state updates. The
Euclidean-clustering-based segmentation only operates one point at a time, therefore,
the runtime of a single search iteration is almost always close to O(logn) complex-
ity. The downside is that it performs one search for each found point. Optimizations
of marking nodes as removed and marking branches as removed work with this algo-
rithm as well, and the runtime reduction is 4.1 times. The effect is not as large as with

113

Table 4.3. Algorithm runtime and node traversal count comparison

Algorithm Runtime, ms Node traversals, M
Euclidean clustering (baseline, original implementa- 1233 -
tion)

Euclidean clustering (baseline) 2326 194
Basic bounding box 1426 34
Euclidean clustering with branch cutting 561 79.6
Basic expanding bounding box 122 2.25
Basic expanding bounding box LTR 119 1.83
Bounding box with node removal 60.9 3.88
Bounding box with branch cutting 52.7 1.92
Expanding bounding box with node removal LTR 20.4 1.95
Expanding bounding box with node removal 17.1 2.50
Expanding bounding box with branch cutting LTR 6.52 0.284
Expanding bounding box with branch cutting 6.33 0.311

the bounding-box-based segmentation because the points are removed much slower
than with bounding boxes — that is, if the bounding box is large in two dimensions,
the increase in the third dimension adds a relatively large volume of the search space.
Euclidean-clustering-based segmentation does not have this property as its scan range
is very small compared to the large volume of the bounding boxes. While it includes
a few points per iteration, few points are marked as removed per iteration. However,
the speedup is still very nice.

A detailed comparison of all runtimes and tree node traversal counts is shown in
Table 4.3.

The results show that the suggested set of algorithms and their improvements
make the segmentation about whopping 367 times faster than the baseline algorithm
when implemented in the Java programming language, and even the Java implementa-
tion is faster than the original C++ implementation by a massive margin — 195 times.
As expected, the Java implementation is about 2 times slower than the C++ imple-
mentation of the baseline algorithm. The benchmark also shows an overwhelming 624
times fewer tree node visits to fully segment a point cloud. While it should be noted
that the algorithms produce different results, and this could impact the performance
to some extent, the solution is still 2-3 orders of magnitude faster with real-life point
clouds than with the regular Euclidean clustering.

4.2.5. Experimental analysis of point cloud processing accuracy
4.2.5.1. Accuracy benchmark results

Overview

Four variants of segmentation have been tested for accuracy — Euclidean-
clustering-based segmentation (baseline), a bounding box with branch cutting, an auto-
expanding bounding box with branch cutting, and an auto-expanding bounding box
with branch cutting with the left-to-right traversal. All other variations yield the same
segmentation output as one of the four selected algorithms, or the variation is irrelevant
for this research.

114

Table 4.4. Average accuracy comparison

Algorithm Simple dataset Complex dataset
accuracy accuracy

Euclidean clustering (baseline) 79.8% 48.1%

Bounding box with branch cutting 82.1% 33.4%

Expanding bounding box with branch cutting LTR ~ 82.1% 33.4%

Expanding bounding box with branch cutting 82.1% 33.4%

The benchmark has shown that the bounding-box-based search is similar in ac-
curacy to Euclidean-clustering-based segmentation for the simple dataset. The humans
were isolated in their environment, which means that the bounding box volume is not
likely to include extra objects — they are simply far away from the person. The dif-
ference in the cross-set intersection accuracy was relatively small — 2.3 percentage
points in favor of the bounding box segmentation. This shows that both algorithms are
suitable for the segmentation of simple scenes. The complex dataset, however, tells a
different story. The Euclidean-clustering-based segmentation was much more accurate
in this regard — the difference was 14.7 percentage points. It was expected to be more
accurate in a cluttered environment due to the much finer-grained body of the object.
The difference is sizeable, which makes the Euclidean-clustering-based segmentation
feasible where a much slower performance is a good trade-off for the extra accuracy.

An interesting finding is that all the three variations of the analyzed bounding-
box-based algorithm yielded almost the same results. The differences are within 0.05
percentage points. It is safe to assume that the difference is negligible, and there is no
scenario where the slower algorithms give any benefit. This shows that, while the type
of the bounding box expansion has a great effect on the performance, it does not affect
the accuracy at all.

The summary comparison is detailed in Table 4.4.

Detailed analysis of the results

Since all the bounding-box-based algorithm variations showed the same accu-
racy, only the results of the Euclidean-clustering-based segmentation and the expand-
ing bounding box with all the improvements shall be analyzed further.

First, let us analyze the results from the simple dataset. They are detailed in
Figure 4.5. The results are dissected by the viewing angle and the human pose. This
dataset was captured by using three Kinect cameras — one was facing the face (the front
side) of the human, the second was at an angle between the right side and the back (135
degrees angle), and the final one was looking from the left side. The people were either
standing or sitting. The number of samples for each pose-angle pair is the same.

The box plots reveal that the viewing angle has a lot of impact on the accuracy
of both algorithms. The front camera view was segmented with the best accuracy. The
front view for the standing pose was segmented so accurately by both algorithms that
anything below 99.9% match is considered an outlier, which is also seen on the box plot.
The bounding-box-based segmentation offered a slightly higher accuracy. Q1 accuracy
(the lower quartile) was still at 97.2% for the standing and sitting poses combined.

115

1.0 S 1.0 —
T = = ™ k=== 1
0.8 ° a 0.8 R A
A a A
| | (o]
go.e o EO'G g
3 3
<041 < 0.4 °
o
0.2 ° ° 021
o
° L 0 T = ° ° ° ° 8 L

0.0 0.0

crandiNd_gydnd gta\‘\"{‘é‘{,%, Gind (c_,[a\’\?é"\,‘\%_g,\tt\\'\g c_,laad‘m%_c_;m;@ S_a"\{\é‘é_ sieind Stag?ér;\g_gmng

Front” 7 Eront T T eft - Right =Rl Front” 7 Erontt T T eft Right

Figure 4.5. Simple dataset accuracy comparison. Left — Euclidean-clustering-based
segmentation, right — bounding-box-based segmentation

Other angles were more difficult for both algorithms to process accurately. Both left
and right angles had similar average accuracy in all cases, however, the right angle
had more frames where the accuracy was very low. This can be seen by Q1 values,
and they are below the 20% mark for the Euclidean-clustering-based segmentation for
both poses from the right angle, but the bounding box has a much higher Q1 accuracy.
Nevertheless, there are still numerous outliers in the sub-20% area for this case as well.
The standing pose was also easier to segment for both algorithms than the sitting pose.
The point cloud for a sitting person is more complex in the sense of the surface shape
visible by a depth sensor. There is a near-90-degree angle in two locations (the knee
and the hip) which may separate the parts of the body by occluding it via wrinkles of
clothing. Body self-occlusion is also more likely in a sitting pose.

The average and median values are close for both algorithms. If the data for
both poses is combined and Q1, Q2, and Q3 values are computed per camera angle,
the largest difference is the right angle Q2 value (median) — it is 95.9% for Euclidean-
clustering-based and 99.4% for the bounding-box-based segmentation. All other dif-
ferences are less than one percentage point.

These results suggest that the bounding-box-based algorithm is better suited for
datasets of this type. The accuracy difference is even in favor of the bounding-box-
based algorithm, however, it is small. However, as shown in the previous section, the
bounding-box-based algorithm with all improvements is so much faster, that all accu-
racy differences are small in comparison to the added efficiency. Therefore, for simple
data, where the objects are separated in space and the environment is not cluttered, the
bounding-box-based search is a better alternative by all measures.

Complex dataset results are different. They are shown in Figure 4.6. The back
side was processed with a similar accuracy, the differences between the medians, av-
erages, and quartile values are small. This view was at an almost-180-degrees angle
— the back of the human was clearly visible. However, the poses were more com-
plex, and this pushed Q1 values for both algorithms to around 20%. The front side
was at around 30-degrees angle, and it was processed much more accurately by the
Euclidean-clustering-based segmentation. The Q1 value for the Euclidean-clustering-

116

o @

0.8

A

0.6 g

0.4+

(5 s g

0.04

1

Back Front

°
2
£){D—{mmtm °o ocov®®

Back Front Side

Figure 4.6. Complex dataset accuracy comparison. Left — Euclidean-clustering-based, right
— bounding-box-based segmentation

based segmentation was higher than the Q3 value for the bounding-box-based segmen-
tation. While some frames were segmented with better accuracy, sub-20% Q3 shows
that the segmentation quality was generally poor. The biggest difference is for the side
view. Both algorithms did not do very well with Q3 values lower than 20%. How-
ever, the Euclidean-clustering-based segmentation was able to segment at least some
frames with reasonable accuracy — there are outliers with over 75% accuracy. The
bounding-box-based segmentation algorithm failed much worse with only one frame
slightly crossing the 20% accuracy mark.

The viewing angle had a similar impact on both algorithms as well. However, the
cluttered nature of the scene negatively impacted the bounding-box-based algorithm. It
was also observed for the Euclidean-clustering-based segmentation to a lesser extent.
However, the differences in accuracy are large for the front and side views, as the
bounding-box-based algorithm seems to be unusable at all under these circumstances.
The side view was too complex for the Euclidean-clustering-based segmentation as
well, except for a few cases.

These results show that the applicability of the Euclidean-clustering-based vs.
bounding-box-based segmentation is debatable. The back side results suggest that the
accuracy in this scenario is similar, and the bounding box performance has a clear
advantage. However, this is not the case for the front and side views. The front view
is processed by the Euclidean-clustering-based segmentation with a noticeable error,
however, the results are still usable in most cases. If the application is semi-automatic
segmentation, this output is easy to fix. The bounding box segments some frames
with a good accuracy, but generally fails. Therefore, the Euclidean-clustering-based
segmentation is worth considering if a longer processing time is acceptable. The side
view is too complex for both algorithms, and the only difference is computing for a
short time and then failing, or computing for a longer time and then failing.

This analysis shows that the bounding box performs worse than the Euclidean-
clustering-based segmentation in one dissection of the data — which is the side view
of the complex dataset. It means that cluttered environments are processed more ac-
curately by the Euclidean-clustering-based segmentation. In other cases, either both

117

0.9 I
0.5 N

0.7 1N

0.6 N

0.5 I

0.4 N

Accuracy

0 50 100 150 200 250 300
Frequency

Figure 4.7. Euclidean-clustering-based segmentation accuracy histogram

algorithms fail, or the accuracy is comparable, but since the bounding-box-based al-
gorithm has much better performance, it should be used for segmentation where the
scene is involved where the object is clearly separated from the surroundings.
Accuracy histogram analysis

Figures 4.7 and 4.8 show the cross-section intersection value occurrence frequen-
cies for the Euclidean-clustering-based and bounding-box-based segmentation, respec-
tively. These results show that the bounding box segmentation leans toward either
a good segmentation accuracy (over 90%), or a bad segmentation accuracy (under
30%). The Euclidean-clustering-based segmentation yielded significantly more seg-
mentations with a medium accuracy (30%-80%). This reflects the results presented in
Figures 4.5 and 4.6. The Euclidean-clustering-based segmentation was more accurate
for the complex dataset, however, the results were mostly around the mid-range, which
can be seen in the histogram as well.

These results suggest that the bounding-box-based segmentation is more sensi-
tive. If the bounding box captures some pixels of another object, it includes that object,
and the box expands much further than the boundaries of the original object. In the case
of under-segmentation, accuracy of 20% means that the segmentation output contains
5 times more pixels than the original object. The Euclidean-clustering-based segmen-
tation tends to be less sensitive to this type of error, however, it is not completely prone
to it. Both algorithms had approximately the same amount of frames with over 90%
accuracy. This suggests that the bounding box may be more useful if the segmentation
has to be precise or thrown away. However, if partially correct segmentation is accept-
able at a performance penalty, the Euclidean-clustering-based segmentation should be
used instead.

Qualitative error analysis

118

0.9 I
0.8 |

0.7 |

0.6 W

0.5 |

o4 1

o3

Accuracy

0 50 100 150 200 250 300 350
Frequency

Figure 4.8. Bounding box accuracy histogram

Figure 4.9 shows common mistakes made by the Euclidean-clustering-based seg-
mentation. The shown frames feature 4, 5, 8, 9, 91, and 94% cross-set intersection
accuracy. The pictures are color-coded: the red color is the segmentation output, green
is the ground truth, and yellow is their intersection. All observed errors with up to
79% accuracy were under-segmentation errors. This is visible in the first four frames
— the human body is mostly yellow, which means that the Euclidean-clustering-based
segmentation captured the body and a large part of the background. The cross-set in-
tersection of the first image is 4%, and only a small part of the body was not captured.
This means that the ground truth intersection with the segmentation output is almost
equal to the ground truth itself. Therefore, the red under-segmented area is almost 24
times larger than the human body itself. The same is true for the other images with
under-segmentation.

The last two images had a much higher accuracy (over 90%). The vast majority
of segmentation with an accuracy of over 79% was over-segmentation errors. This
can be seen in the example images — most of the human body is marked in yellow
with small green areas. The most common mistake was leg over-segmentation. There
might be several reasons why this was the case. First, some women who participated
as actors in the data collection were wearing skirts or dresses. This type of clothing
is not tightly wrapping the lower part of the body, and there is a steep depth gradient
at the bottom of the clothing. It results in neighboring pixels having a large difference
in the depth values, and the neighbor-based Euclidean clustering does not perceive it
as the same object. This situation is shown in the fifth image — a woman is wearing
a dress, and one of her legs was not marked as part of the body. The next issue is the
Kinect sensor data capture quality with certain clothing materials. It was a common
issue where the sensor does not capture the depth data for black denim, as expected

119

Figure 4.9. Euclidean-clustering-based segmentation error examples

from related research [80]. This material was usually worn as trousers, therefore, the
leg segmentation quality was lower in those cases. Figure 4.3 shows such a case — the
subject is wearing black jeans, and the no-filter image shows that the depth values are
mostly zero for the legs. The device reports the depth values of zero, but they can still
be segmented by selecting the zero-values blob in addition to the visible part of the
body.

Figure 4.10 shows segmentation results for the bounding-box-based segmenta-
tion. The accuracies of the segmentation outputs are 4, 7, 11, 12, 16, and 96%, Quali-
tatively, the results are similar to the Euclidean-clustering-based segmentation results.
The only difference is that under-segmentation is more aggressive and happens more
often and to a greater extent. 4% accuracy is shown for both algorithms, however, the
Euclidean-clustering-based segmentation had this accuracy with a smaller visible area
of the human than the bounding-box-based segmentation. To reach the same accuracy
with a larger ground truth point set, a larger segmented set is required. On the other
hand, bounding-box-based segmentation had fewer problems with over-segmentation,
which is also expected. The search volume is less fine-grained, therefore, it has the
potential to capture more points than the Euclidean-clustering-based segmentation.

The opposite extrema are shown in Figure 4.11 for the Euclidean-clustering-
based segmentation. These are the cases where the segmentation accuracy exceeded
98%. The best-recognized pose was the standing human, the front view, and there are
only very minor differences between the ground truth and the output. These differences
are due to the still present noise in the image as seen in the sitting position segmentation
— there are several false-positive pixels on the ground around the feet. The chair was
also segmented as a part of the object, however, this is expected since the algorithm
has no semantic information on what type of object is expected, therefore, the human
and the chair are considered a single object. This shows that these extrema are not

120

Figure 4.10. Bounding-box-based segmentation error examples

Figure 4.11. Euclidean-clustering-based segmentation over 98% accuracy frame examples

just anomalies in the segmentation output, but rather easily processed scenes for the
Euclidean-clustering-based segmentation.

Similarly, high-accuracy frames for the bounding-box-based segmentation are
shown in Figure 4.12. The output is semantically similar to the radius-search-based
segmentation as there is some minor noise, and the chair is also a part of the object.
Figure 4.8 shows that there is a large number of video sequences processed with the
same accuracy as the last image in Figure 4.12, and semantically they are also processed
with a high accuracy. The examples confirm that the highest-accuracy frames are not
anomalies either for the proposed bounding-box-based algorithm.

To sum up, both algorithms have cases of under-segmentation. The bounding
box has a higher tendency to under-segment the image, but the Euclidean-clustering-
based segmentation is more likely to over-segment it. However, over-segmentation
errors were smaller for both algorithms than under-segmentation errors.
Well-segmented frame and pixel percentage

Segmentation may be useful if a certain level of accuracy is reached. This level
may be different for different cases of use, therefore, analysis with different accuracy

121

Figure 4.12. Bounding-box-based segmentation over 98% accuracy examples

1.0

0.8

0.6

0.4 1

Percentage of frames

0.2

0.0

T T T T T T
0 20 40 60 80 100
Accuracy threshold

Figure 4.13. Euclidean-clustering-based segmentation threshold accuracy frame percentages

threshold values was performed. Frame percentages for both algorithms under certain
thresholds are shown in Figures 4.13 and 4.14. The green curve represents the simple
dataset, whereas the blue curve shows the complex dataset. The simple dataset frame
count degrades similarly for both algorithms. There is a small percentage of completely
incorrectly segmented frames at the 6-10% accuracy range. Then the curve descends
very slightly up to around 90% accuracy, and then falls sharply. Both algorithms were
capable of segmenting over 80% of the frames with 90% accuracy in the simple dataset.
About half of the frames reached 99% accuracy. The graphs show that both algorithms
can be applied to the simple dataset since they produce high accuracy for most of the
frames.

The complex dataset is segmented with different accuracies, and it can be seen
in the diagrams as well. None of the algorithms can be applied if high accuracy is re-
quired. 80% of the frames can be processed with around 15% accuracy for both algo-
rithms. The Euclidean-clustering-based segmentation complex dataset curve descends
more smoothly after the 20% mark. The difference between 20% and 90% accuracy is
about 25% of the dataset for the Euclidean-clustering-based segmentation and only a
few percent for the bounding box. While both algorithms cannot reliably process the
dataset, the Euclidean-clustering-based segmentation offers better accuracy for a large
fragment of the dataset, which may mean less human work to correct the mistakes.

122

10 —,

1ol
o
L

o
EY

o
»
L

Percentage of frames

o
~
!

0.0

o] 20 40 60 80 100
Accuracy threshold

Figure 4.14. Bounding box threshold accuracy frame percentages

Table 4.5. Pixel-wise confusion matrix for Euclidean-clustering-based segmentation
(simple dataset)

Predicted
Background Foreground Total
(negative) (positive)
Actual Background 84.2% 12.4% 96.6%
(negative)
Foreground 0.1% 3.3% 3.4%
(positive)
Total 84.3% 15.7% 100%

Tables 4.5 and 4.6 show pixel-wise confusion matrices for the adapted Euclidean-
clustering-based segmentation algorithm for both datasets. False positives are much
more prevalent than false negatives (false positive rates are 12.8% and 21.5% for sim-
ple and complex datasets, while the respective false negative rates are 2.9% and 4.6%).
This is due to the under-segmentation problems already outlined in the previous sec-
tions.

Tables 4.7 and 4.8 show the confusion matrices for bounding-box-based search.
The confusion matrices are computed pixel-wise. The class distribution between the
foreground and background pixels is uneven as the size of the human in the frame
is usually only 3-7% of the whole image area. The confusion matrices confirm that
under-segmentation is much more prevalent as false-positives account for 11.4% of the
pixel-wise classification output in the simple dataset (the false-positive rate is 11.8%),
while false-negatives only account for 0.1% of the output (3% of the actual foreground
pixels are misclassified). The false positive rate is higher with the complex dataset
as 32.1% of the pixels are misclassified as the foreground (the false positive rate is
34.3%), but only about 3% of the actual foreground is misclassified again. These re-
sults further confirm that under-segmentation is the most common mistake made by

123

Table 4.6. Pixel-wise confusion matrix for Euclidean-clustering-based segmentation
(complex dataset)

Predicted
Background Foreground Total
(negative) (positive)
Actual Background 73.5% 20.1% 93.6%

(negative)

Foreground 0.3% 6.1% 6.4%

(positive)

Total 73.8% 26.2% 100%

Table 4.7. Pixel-wise confusion matrix for bounding-box-based segmentation (simple
dataset)

Predicted

Background Foreground Total
(negative) (positive)

Background 85.2% 11.4% 96.6%

Actual .

(negative)

Foreground 0.1% 3.3% 3.4%

(positive)

Total 85.3% 14.7% 100%

the segmentation solution.

Confusion matrices show that both algorithms tend to make similar types of mis-
takes as false negatives are very rarely observed. On the other hand, false positives
are more common, especially with the complex dataset. The results suggest that both
algorithms are comparable in accuracy on the simple dataset, with the bounding box ap-
proach having fewer false positives and false negatives, while the Euclidean-clustering-
based segmentation approach is more accurate with the complex dataset in the same
sense.

Accuracy analysis by the sex of the subject

The dataset used for accuracy evaluation consists of depth images with a balanced
proportion of male and female participants. Body fat analysis in male and female bod-
ies has shown that there are differences in the body fat distribution between the genders
[345]. This finding suggests that body shapes may differ between males and females.
Therefore, it may be useful to assert the differences in segmentation accuracies of the
male and female participants.

The analysis has shown that female bodies are usually segmented with a slightly
higher accuracy. The results are dissected by dataset, and the simple dataset is further
dissected by pose. The Euclidean-clustering-based segmentation segmented females
slightly better in the simple dataset in the standing pose. The accuracy difference for the
sitting pose between males and females was lower than 0.05%. The complex dataset,

124

Table 4.8. Pixel-wise confusion matrix for bounding-box-based segmentation (com-
plex dataset)

Predicted
Background Foreground Total
(negative) (positive)
Actual Background 61.5% 32.1% 93.6%
(negative)
Foreground 0.2% 6.2% 6.4%
(positive)
Total 61.7% 38.3% 100%

Table 4.9. Sex-wise accuracy of Euclidean-clustering-based algorithms

Algorithm Simple — standing Simple — sitting Complex

Male Female Male Female Male Female

Euclidean clustering 76.7% 80.5% 78.9% 78.9% 422% 62.7%
Bounding box 81.4% 82.4% 81.6% 79.6% 30.8% 39.9%

however, showed very different results, with the difference exceeding 20 percentage
points in favor of females. The bounding-box-based segmentation shows similar re-
sults but is slightly shifted towards better male body segmentation accuracy. Simple
dataset’s standing poses and complex dataset are still segmented with better accuracy
for females, however, the differences are about 2 times smaller. The simple dataset’s
sitting pose was segmented slightly more accurately for male bodies. The detailed
results are outlined in Table 4.9.

These results may be determined by various reasons. Female clothing, such as
skirts or dresses, do not represent the shape of the body, but rather has its own shape.
This shape may be easier for the segmentation algorithms to capture as a single object.
Next, the females participating in the research were shorter on average than the males.
It was shown that both algorithms tend to under-segment the actual body. Since the
body is smaller, there are fewer opportunities for the algorithms to diverge.

4.2.6. Total segmentation time cost analysis

The ultimate goal of semi-automatic segmentation is the reduction of the overall
processing time (human time + software processing time). Therefore, both human time
and processing time has to be estimated. Processing time analysis has been performed,
and the results are presented in Section 4.2.4.1. Human time estimation, however, is a
much more difficult process. Low-scale analysis is not viable because the data is highly
variable, and different segmentation scenarios can be involved. Large-scale analysis
is possible, however, it is less accurate because the person is sometimes distracted by
their surroundings. Therefore, an approximate benchmark was selected.

The whole dataset has been segmented by two trained individuals. This was
required anyway to get the training data for the Agrast-6 neural network. Exact mea-

125

surements were not made, however, yet the time cost can be estimated by the file save
timestamps. The times are accurate to the minute. It is also important to note that a
slower version of the bounding-box-based algorithm was used at the time of this anal-
ysis (it took 16 ms per frame rather than the 6.3 ms achieved in further research).

The average total time spent on segmenting a depth video sequence was about
2 minutes. This involves loading the video sequence from the disk, running segmen-
tation, human time, and other actions required to get a segmented image. This means
that the total segmentation time was about 350 ms per frame. Previous analysis showed
that the Euclidean-clustering-based algorithm can automatically segment about 80% of
the simple dataset and about 25% of the complex dataset. If dataset sizes are taken into
account, this is about 28% of the total amount of the data. This number is about 26%
with the bounding-box-based segmentation following the same logic.

It was estimated that simply confirming that the segmentation is correct takes
less than 1 second of human time. Since 12 frames can be seen at once on the screen,
and they are processed in parallel, it takes 1 second of human time, 2.3 seconds of seg-
mentation time with the Euclidean-clustering-based segmentation, and 0.016 seconds
for the bounding-box-based segmentation. The bilateral filter takes 0.034 seconds in
both cases. It also takes about 0.045 seconds to construct a search tree. Therefore,
the full CPU processing time with the Euclidean-clustering-based segmentation is 2.4
seconds, whereas the bounding box takes 95 ms. The total time taken for all 12 frames
is then 3.4 and 1.095 seconds, respectively. This means an average of 283 ms per
frame with the Euclidean-clustering-based segmentation and 91 ms per frame with the
bounding-box-based segmentation.

Since 26% of the data could be processed automatically, the processing time for
the remaining 74% would have been 441 ms per frame to yield the 350 ms average.
This means that an extra 350 ms per frame is required if the auto segmentation does
not work immediately. The effect of replacing the bounding box with the Euclidean-
clustering-based segmentation is difficult to estimate precisely, so some assumptions
will have to be made. First, a slightly larger proportion of the data was processed
accurately, and this has to be taken into account. Secondly, there are many cases where
the Euclidean-clustering-based segmentation provides a more accurate result, which
would result in a lower amount of manual work to correct it. Let us assume that this
would result in 30% less manual work for the inaccurately processed frames. High-
accuracy frames would require 1 second of manual work + 2.4 seconds of processing
time per 12 frames, so 283 ms per frame for 28% of the data. Low accuracy frames
would require 432 ms per frame (346 ms of manual work x 0.67 x 12 frames x 2.4
seconds CPU time is 5.2 seconds per 12 frames) for 72% of the data. This leads to an
average of 390 ms per frame, which is 40 ms higher than the bounding box approach.
Given the size of the dataset (262k frames), this would save almost 3 hours of total
work required to segment the whole dataset.

It should be noted that marking each frame separately is many orders of mag-
nitude slower as it was estimated to take about 20 seconds to mark it fully manually.
Even such techniques as marking one frame fully manually and then transferring the

126

manual segmentation to the subsequent frames substantially helped in time reduction
as the segmentation only needed minor corrections. The overall time savings for a
262k frames dataset with a time reduction from 20 to 0.35 seconds is almost 60 days of
non-stop work savings (1455 hours vs. 25 hours of work). This allowed a team of only
two people to segment the whole dataset in a matter of days. If segmentation was a
paid activity, given the minimum salary in Lithuania of 4.47€ per hour as of 1 January
2022, it would have saved about 6400€ (6500€ vs 114€).

It should also be noted that the further optimized version of the bounding-box-
based segmentation would save an extra 9 ms of time per 12 frames, which is a minor
improvement where the total time is 4.2 seconds per 12 frames, however, this would
have saved about 3 minutes of the processing time for the whole dataset.

4.3. Under-segmentation correction experimental evaluation of the recursive 2-
Means split algorithm with a random forest classifier for split acceptance

4.3.1. Experimental evaluation of the performance

The same benchmark was used for experimental performance evaluation as de-
scribed in Section 4.2.4.1 — that is, 1000 frames have been fully segmented by using
the suggested correcting algorithm. The results are compared with the best-performing
improvements described in the previous sections. The same improvments are also used
as the base algorithm, hence, all performance overhead is purely due to the correcting
algorithm.

The correcting algorithm is guaranteed to run slower because it is the standard
segmentation + the added corrections, i.e., it is a superset of the actions performed
by the standard segmentation. Node traversals are also evaluated, but they are also
going to be higher. The correction fights under-segmentation by returning part of the
segmentation output to the search tree. This means that the base segmentation will be
repeated more times and may traverse the same node multiple times by marking it as
removed, then marking it as non-removed, and marking it as removed again. However,
the scale of the extra work has to be measured via the benchmark.

Table 4.10 shows the benchmark results and their comparison to the global base-
line of this research (Euclidean-clustering-based segmentation) and the fully optimized
version of the expanding bounding box proposal. The node traversal count increase is
small at around 10% compared to the base bounding-box-based algorithm. The run-
time increase, however, is a lot larger. ~40.6 ms per frame is the computation cost of
the proposed corrections compared to 6.33 ms of the total segmentation time required
for segmentation without corrections. It is important to note that the output of the al-
gorithms is also different. However, it is still almost 50 times faster than the standard
radius-search-based segmentation.

The dissected performance by the type of segmentation is shown in Table 4.11.
Most of the time is taken by marking points as non-removed in the search tree. This
was the only activity with the computational complexity O(k log n), therefore, it is the
slowest part of the algorithm. Segmentation is taking a bit longer (over 7 ms) than the
base algorithm because there is more segmentation to do, which is also reflected in the

127

Table 4.10. Algorithm performance comparison

Algorithm Runtime, ms Node traversals, M
Euclidean clustering 2326 194
Bounding box 6.33 0.311
Bounding box + correction 46.9 0.342

Table 4.11. Computation time dissection by activity

Marking points as non-removed 13.9 ms

Metrics 8.81 ms
Segmentation 7.07 ms
K-Means partitioning 6.23 ms
Prediction 4.14 ms
Centroid computation 3.44 ms
Removed point collection 482 us

node traversal comparison. Metrics computation, K-Means partitioning, and centroid
computation take a similar amount of time, which reflects their linear complexity.

4.3.2. Experimental evaluation of accuracy

4.3.2.1. Overview

The benchmark has shown that the simple dataset saw a slightly negative im-
pact in accuracy when the corrections were applied. This dataset was processed with
a high accuracy without the corrections, and under-segmentation was rare. However,
classifier recall values are not 100% and some incorrect cuts are accepted. The ef-
fects of the imperfect recall and under-segmentation reduction seem to have canceled
each other out, and the overall average accuracy is similar with and without the cor-
rection. The difference is 0.4 percentage points. The complex dataset was processed
more accurately, and the improvement is noticeable. This effect is expected because
the correction is meant to solve the problem of under-segmentation which is the most
apparent in this dataset. Using the correction raises the accuracy of the bounding-box-
based search higher than the level of the Euclidean-clustering-based segmentation at a
performance penalty. The added accuracy is huge, and it is 21.9 percentage points and
7.2 percentage points higher than the Euclidean-clustering-based segmentation. The
summary of the average accuracy values is provided in Table 4.12.

Table 4.12. Average accuracy comparison

Algorithm Simple dataset accuracy Complex dataset accuracy
Euclidean clustering 79.8% 48.1%
Bounding box 82.1% 33.4%
Bounding box + correction 82.5% 55.3%

128

SR === =
0.8 R » 1_0—T % [j;;j 5 F =

06{ © o

o

o

° ° ° e 02{ © °
O _

00l . 5 S &] f T
nding 5\“‘“ al‘\d‘“q s\ﬁ‘“ a“d‘n 5\¢\n9

\:(o\‘\"S‘ f\'O"“ SR et - gt - i m““q 2 S‘mn‘! {,‘and‘“"ﬁ Smnu Smquh‘ Srang

o

Figure 4.15. Simple dataset accuracy comparison. Left — without corrections, right — with
corrections

4.3.2.2. Detailed result analysis

A simple dataset was processed with very similar accuracy with and without cor-
rections. The right sitting pose had very similar average accuracy, but the Q1 value got
slightly higher with the corrections. The front sitting pose was, however, processed
with a lower accuracy with the corrections applied. There are 4 low accuracy outliers
instead of 2, and Q1, Q2 and Q3 values are also all lower with the corrections. In gen-
eral, the results for the simple dataset reflect the recall values observed during random
forest training — i.e., that a small proportion of the samples is marked incorrectly, but
low accuracy frames are generally improved. Since this dataset had very few samples
with under-segmentation (which is visible in the box plot in Figure 4.15), the added
overall accuracy is probably not worth the extra computation time.

The complex dataset, however, saw a decent improvement in accuracy. The
back view had a similar accuracy average, but the Q1 value improved. The front and
side views were processed with a much higher accuracy. The average front accuracy
jumped from 21% to 59%, and the side accuracy — from 9% to 34%. The front seg-
mentation accuracy was mostly in the 22-90% accuracy range, whereas, without the
improvement, everything above 25% was considered outliers. The side view did not
see such a spike in accuracy, however, it consistently improved, and the average of 34%
is higher than the best accuracy across the whole dataset without the corrections. Over-
all, the accuracy is even better than by using the Euclidean-clustering-based segmenta-
tion. Generally, the cuts provided by the correcting algorithm show improvements in
accuracy in under-segmentation scenarios. However, the stability of the segmentation
accuracy was not achieved as the accuracy values still range from very low to very high
(except for the side view where the maximum accuracy is only about 60%). The aver-
age values are, nevertheless, largely improved, which shows that the corrections do not
guarantee the correct output, but still increase the likelihood of a better segmentation
accuracy. All details are outlined in Figure 4.16.

129

1.0 1

o oW @

0.8

0.6 8 06

0.4

T P & | - ;

0.0

Back Front Side Back Front Side

Figure 4.16. Complex dataset accuracy comparison. Left — without corrections, right — with
corrections

1|
0.9 I
0.5 N
0.7 I
0.6 I
0.5 I
0.4 I
0.3 I
0.2 I
0.1 I

o

0 50 100 150 200 250

Accuracy

Frequency

Figure 4.17. Corrected segmentation accuracy histogram

4.3.2.3. Accuracy histogram analysis

Accuracy histograms presented for the bounding-box-based segmentation and
the Euclidean-clustering-based segmentation had similar shapes — spikes in very high
and low accuracy and dips in the mid-accuracy range (see Figure 4.8). The histogram
is different when the correction is added. There are fewer samples in the above-90%
accuracy range as part of them moved to the 80-90% range. However, the low-accuracy
segmentation no longer has a spike as this spike was spread through the mid-accuracy
range. Even more, the number of samples continually increases going from the sub-
10% range to the 50-60% range. One of the conclusions about the bounding-box-based
segmentation histogram was that this algorithm is unstable — it either yields a very good
accuracy, or a very low accuracy. The accuracy histogram of the random-forest-based
algorithm is presented in Figure 4.17.

130

These results show that the corrections of under-segmentation fix the worst cases
of under-segmentation and improve the accuracy a lot. Accuracy, as before, is mea-
sured by using cross-set intersection metric. Going from 21% accuracy to 59% means
that the under-segmentation is reduced from 3.7 times larger than the human body size
to 70% of the human body size. That cuts the under-segmented area 3 times larger
than the object that had to be segmented. Similarly, going from 9% to 34% means
the under-segmented area reduction from 10.1 times to 1.9 times the area of the actual
object. These improvements are major in the context of semi-automatic segmentation.
This suggests that the area the human would have to manually ‘erase’ is reduced by a
significant amount, which saves extensive manual work.

4.3.2.4. Qualitative error analysis

Figure 4.18 shows some examples of the mistakes left after the corrections have
been applied. The images reflect 10%, 11%, 44%, 46%, 47%, and 96% accuracy val-
ues. The two initial frames show the same type of error — part of the under-segmented
output was cut off (from all sides, multiple cuts were required), however, part of it was
left because the human body left in a ‘bubble’ of an under-segmented area. There is no
way to split the segmentation output further based on 2-Means so that the human body
would stay intact. The next three examples show that most of the under-segmented
area was cut, however, a small piece of it was left. The accuracy is sub-50% because
some degree of over-segmentation also occurred, and the score got lower. The pro-
posed correction algorithm does not aim to solve the over-segmentation errors. The
presently discussed images could have their accuracy further improved by applying a
post-processing step because part of the under-segmented output is left as a separate
object. However, this would further increase the runtime. The final image required
no corrections in terms of under-segmentation, and those corrections were not applied.
These errors are also easy to fix manually by a human as the mouse does not have to
be controlled carefully since the erasing is applied far from the human body.

The error examples suggest that the error reduction is significant in the sense of
the manual work required to fix the segmentation manually. There was a very small
amount of full-background under-segmentation as the cases shown in Figures 4.10
and 4.9. The low-accuracy segmentation is still of much better quality than the low-
accuracy segmentation without the correction which both had lower cross-intersection
scores and were much more prevalent without the corrections.

The best-segmented frames are the frames where the bounding box segmentation
was correct, and this output remained unchanged. Therefore, most of these images are
very similar to those shown in Figure 4.12.

4.3.2.5. Well-segmented frame percentage

Analysis of accepted frames by threshold accuracy was performed similarly to
those shown in Figures 4.13 and 4.14. Again, the green curve shows the results for the
simple dataset, whereas the blue curve represents the complex dataset in Figure 4.19.

The simple dataset was segmented with a similar accuracy with and without cor-
rections, therefore, the curve has the same shape with two steep dips at around 6-10%

131

Figure 4.18. Recursive 2-Means split algorithm with a random forest classifier for split
acceptance correction error examples

range and at around 90% mark. The complex dataset, however, has a very different
graph shape. It falls smoothly from around 20% to around 70% accuracy values, and
then falls again after 90%. This shows that if an accuracy of 90% is required, the cor-
rection does not solve the problem — the amount of usable segmentation is around 23%
in both cases. However, if lower values are acceptable, the random-forest-based cor-
rections change the fitting frame proportion greatly. The number of frames segmented
with 20% accuracy or better increases from around 30% to over 95%. Similarly, the
50% accuracy threshold contains about 25% of segmentation outputs without correc-
tions and about 50% of segmentation outputs with corrections. Therefore, the correc-
tions improved the ‘good enough’ frames proportion by a large margin if the imperfect
segmentation output is acceptable.

Table 4.13 shows the pixel-wise confusion matrix for a simple dataset. This table
can be compared to Table 4.7, which shows the same matrix for the algorithm without
the recursive 2-Means split algorithm with a random forest classifier for split accep-
tance corrections, so it can be considered as a baseline. The true positive percentage is
at the same level as for the baseline algorithm as well as the false negative percentage,
which is 97% of all positive pixels are found correctly in both cases. The background
pixels, on the other hand, are classified more correctly when the corrections are ap-
plied. True negatives account for 92.5% of all pixels vs. 82.5%, while false negatives,
in turn, account for 4.1% vs. 11.4%, which shows that the false negative rate is greatly
reduced (from 11.7% to 4.2%). Since false positives indicate the problem of under-
segmentation, this further confirms that the algorithm does what it is expected to do,
i.e., it reduces under-segmentation (false positives) while keeping the accurate seg-
mentation output unchanged. Since the false positive rate is reduced, fewer manual
corrections are required. It could save some user time at a cost of slightly reduced

132

1.0

0.8 4

0.6 1

0.4 1

Percentage of frames

0.2 1 TN

0.0

o] 20 40 60 80 100
Accuracy threshold

Figure 4.19. Recursive 2-Means split algorithm with a random forest classifier for split
acceptance correction accuracy frame percentages

Table 4.13. Pixel-wise confusion matrix for random-forest-corrected segmentation
(simple dataset)

Predicted
Background Foreground Total
(negative) (positive)
Actual Background 92.5% 4.1% 96.6%
(negative)
Foreground 0.1% 3.3% 3.4%
(positive)
Total 84.3% 15.7% 100%
performance.

Similarly, Table 4.14 shows the pixel-wise confusion matrix for a complex
dataset. It can be compared with Table 4.8 which can be treated as a baseline. The
recursive 2-Means split algorithm with a random forest classifier for split acceptance
corrections introduces some trade-offs for this dataset. First, the true positive rate is re-
duced from 96.9% to 87.5%. This indicates that the classifier rejects some true positive
pixels as negatives. However, the true negative rate is greatly improved from 65.7%
to 94.8%. This improvement is an indicator of the under-segmentation reduction by
a large margin. It is very important in the light of semi-automatic segmentation — the
amount of manual corrections is greatly reduced. A reduced rate of the true positives
is a smaller issue because it is easy to add segments by using the proposed methods
— segmentation can be repeated by using automatic algorithms. Contrary to that, the
excessively large segmentation output has to be corrected manually. Therefore, this
contributes a lot to the reduced total segmentation time. Combined with the fact that
the true positive rate is almost unaffected for the simple dataset, applying the correc-
tions could result in a large amount of manual work savings without adding substantial
manual work for simple data.

133

Table 4.14. Pixel-wise confusion matrix for random-forest-corrected segmentation
(complex dataset)

Predicted
Background Foreground Total
(negative) (positive)
Actual Background 88.7% 4.9% 93.6%
(negative)
Foreground 0.8% 5.6% 6.4%
(positive)
Total 89.5% 10.5% 100%

Table 4.15. Sex-wise accuracy of corrected segmentation

Simple — standing ~ Simple — sitting Complex

Male Female Male Female Male Female
82.3% 83.5% 81.0% 802% 52.5% 62.2%

4.3.2.6. Accuracy analysis by the sex of the subject

Accuracy by sex analysis shows that the corrections do not depend on the sex in
any way. The male and female accuracy was similar with or without the corrections for
the simple dataset. Males were segmented with a slightly better accuracy in the sitting
poses, while the females were in the standing poses. The complex dataset also shows a
better accuracy for females with a similar difference of 9.7 percentage points (vs. 9.1
without the correction). Detailed results are provided in Table 4.15.

These results were expected since the corrections were based on the metrics that
were not intended to be related to the sex of the subject. In addition to this, there
was a consistent improvement in the average accuracy across both genders — all the
six measured dissections saw at least some improvement. This confirms improvement
invariance to the sex of the subject.

4.3.3. Impact on the total segmentation time cost

Since the suggested accuracy improvements raised the accuracy of the segmen-
tation and extended the processing time, the total effect should be estimated. First, the
added processing time is about 40 ms. Since 12 frames are processed in parallel and
the amount of data is 262k frames, this would add almost 15 minutes of the processing
time. Next, some time would be saved due to improved accuracy as fewer manual cor-
rections are required if the original accuracy is better. The corrective algorithm showed
the most improvement for the complex dataset where the average accuracy went from
33.4% to 55.3%. This means that the area that had to be removed manually went from
2x human body size to 0.8x human body size on average. It was estimated that the
added time cost for a badly segmented frame was 350 ms. The exact time savings are
difficult to estimate, however, the under-segmented area was reduced by a factor of

134

2.46. The time savings would be smaller since the human has to evaluate the segmen-
tation quality (about 1 s per 12 frames), select the erasing tool, and make other mouse
movements that are not directly related to the degree of segmentation incorrectness.
A rough estimate could be that 2.5 s of out 4.2 s per 12 frames is the actual work of
removing under-segmentation. This means savings of ~140 ms per frame. The amount
of poorly segmented frames was 74% of the dataset, which means that 0.14 s is saved
for 194k frames each, thus totaling at the time savings of ~7.5 hours. Even though this
analysis is rough, the added processing time is 30 times shorter than the estimated man-
ual time savings. Even if the estimate is incorrect by an order of magnitude, applying
the corrections would still result in total time savings.

This analysis shows that the added computation complexity is a small price to pay
in comparison to the increased accuracy. However, in order to achieve even better re-
sults, the bounding-box-based algorithm without corrections could be used for the sim-
ple dataset since the accuracy gain is very small for it, and the algorithm with the sug-
gested corrections could be used for the complex dataset where the under-segmentation
reduction is significant.

4.4. Agrast-6 training and evaluation
4.4.1. Agrast-6 training process

A binary cross-entropy loss function was used during Agrast-6 training. It is a
common choice for training binary classification models, as it measures the distance
between the predicted probability distribution and the true distribution. A significant
decrease in both the training and validation loss suggests that the model is learning
effectively, and that it accurately predicts the probabilities of the positive class.

One potential reason for the decrease in loss is that the model has learned to make
more accurate predictions, which results in a lower distance between the predicted and
the true probability distributions. Another possibility is that the model has learned to
better fit the training data, which can also lead to a decrease in loss.

Overall, the decrease in loss is a good indication that the model is learning ef-
fectively and making accurate predictions. The binary cross-entropy loss function is
well-suited for this task and has likely contributed to the model’s success in improving
its predictions over the course of training.

It appears that the Agrast-6 machine learning model has made significant
progress during training. The training loss decreased significantly, from 0.077 to 0.021,
which suggests that the model is learning effectively and improving in its ability to
make predictions on the training data. Similarly, the validation loss decreased from
0.09 to 0.036, which indicates that the model is also generalizing well on the new,
unseen data.

The training precision, binary accuracy, and recall all increased, which indicates
that the model is becoming more accurate in its predictions on the training set. For
example, the training precision improved from 0.859 to 0.941, which means that the
model is correctly identifying a larger proportion of the positive examples as positive.
Similarly, the binary accuracy increased from 0.972 to 0.991, which suggests that the

135

model is making fewer incorrect predictions overall. The increase in recall from 0.454
to 0.897 suggests that the model is becoming better at identifying all the positive ex-
amples in the training set.

In addition to these improvements on the training set, the model also showed
strong generalization capabilities, as evidenced by the improvements on the validation
set. The validation precision, the binary accuracy, and the recall all increased, which
indicates that the model is making more accurate predictions on the validation set.
The AUC (area under the curve) also increased on both the training and the validation
sets, which is a measure of the model’s ability to distinguish between the positive and
negative examples. A higher AUC indicates that the model is doing a better job at this
task, and the increase from 0.970 to 0.997 on the training set and from 0.965 to 0.990
on the validation set suggests that the model is becoming increasingly effective at this
task.

Overall, these results are encouraging and suggest that the model has made sig-
nificant progress during the first 185000 training steps (about 1.5 epochs). The im-
provements on both the training and validation sets, as well as the high AUC scores,
suggest that the model is performing well and may be ready for further evaluation or
deployment. The training progress is shown in Figure 4.20.

The training progress of Agrast-6 as of epoch number 4 is visualized in Figure
4.21. The training metrics (the loss, binary accuracy, precision, and recall) did not seem
to improve from epoch 4 to 9 a lot as they oscillate in the same interval. However, the
test metrics slightly improved. The loss decreased from 0.043 to 0.0325, and the recall
increased from 90.3% to 91.9%. The precision and binary accuracy did not change as
much.

These results suggest that the neural network is still learning after 9 epochs. The
results also show that the model does not suffer from overfitting since the metrics for the
test and the train datasets are similar. The training metrics are slightly higher, so there
is a small amount of bias as the model works slightly better on the data it has already
seen. The differences are small, with the largest difference being the loss function value
(0.0162 for the training data vs. 0.0325 for the test data), however, the loss for the test
data consistently decreased with each epoch with one exception. The fact that the test
loss is decreasing while the training loss is not might indicate that there are many local
minima in the loss function, and the optimizer is picking a different one each time,
however, the test loss is decreasing, so the model seems to generalize quite well.

4.4.2. Qualitative analysis of the training progress

An insight into how the network learns the features of a human body can be seen
in Figure 4.22. The charts show the early progress of training. A test depth image from
the test dataset was selected to monitor the training process, and it is shown in Figure
4.23. The first image shows the output of the neural network after merely one batch
of data (4 images). Since the training started with random weights, the whole depth
scene is just randomly distorted, and not much is visible in the output. The second
image shows the output after 100 training batches. The human shape in the center is
already visible, however, the network confidence is not high yet (the intensity of the

136

Binary accuracy

Precision

—— Training
0.99 1 0.127 —— Validation
0.104
0.98+
0.08+
@
0,97 4 0061
0.96+ 0.04+
— Tra!nlng 0.021
0.95 4 —— Validation
00 25k 50k 75k 100k 125k 150k 175k 00 25k 50k 75k 100k 125k 150k 175k
Training step Training step
1.04
0.8
0.6
0.4+
0.2
—— Training —— Training
0.01 —— Validation 0.01 —— Validation
0.0 25k 50k 75k 100k 125k 150k 175k 0.0 25k 50k 75k 100k 125k 150k 175k
Training step Training step

1.00
0.99
0.98

v

2097

0.96

0.95 —— Training
—— Validation

0.0 25k 50k 75k 100k 125k 150k 175k
Training step

Figure 4.20. Agrast-6 training progress data

137

0.9945

— Training loss
—— Test loss.
0.9940 fio4g;

0.9935 2033

0.9930 —— Training binary accuracy 0.030

—— Test binary accuracy
0.9925 0.025
0.9920 /\/ 0.020
0.9915 0.015 w

0.945 /\/\/

0.940

binary accuracy
loss

0.94

0.935 0.93

precision
recall

0.930
0.92

0.925

—— Training precision
0.920 { — Test precision

—— Training recall

—— Test recall

4 5 6 T 8 9 4 5 6 T 8 9
Epoch Epoch

Figure 4.21. Agrast-6 training progress data

white color reflects the confidence). Some artifacts around the silhouette also exist,
yet some of them are other objects in the scene. The third image shows how much the
network learned in 8400 batches (33.6k images). The human shape is clearly visible,
and the confidence of the network is much higher, however, the areas around the legs
and the head are what the network is not sure about. The final image is the output after
16.2k batches (64.8k images, near the middle of the first epoch). The confidence of
the network is higher again across the whole human body, however, the area around
the head is still not correctly recognized.

The output of the network after epochs 2-9 for the same test depth image is shown
in Figure 4.24. The initial images indicate that the network struggles with the head area
the most. It is blurry, and the confidence is lower than the rest of the body. However, it
increases with each epoch, and the final image looks best qualitatively. This test image
introduces another challenge — the shoes of the person in the test frame are black, and
Kinect could not capture it properly. The shoes were marked correctly in the ground
truth for such cases, however, it is difficult for the network to infer the shoes from non-
existing data. On the other hand, the rest of the body is segmented correctly and with
higher confidence than in the previous epochs. These results correlate with the loss
function decreasing with each epoch. This confirms that the selected loss function fits
the problem being solved, and that the training process correctly optimizes it. However,
the head is a relatively small part of the body, and therefore it might contribute less to
the loss function.

138

Figure 4.22. Neural network output after training batches 0, 100, 8400 and 16200

Figure 4.23. Original depth frame used for qualitative testing

139

Figure 4.24. Neural network output after epochs 2-9

4.4.3. Image processing analysis

Appendix B contains images showing the output of each layer in the Agrast-6
network. Layer O is the input. Layer 1, the first convolutional layer, generates 32
images from the input. Most of the images are similar to the original with varying
depth intensities. This is expected as the convolutional filter window size is small, and
the image is comparatively large. The second layer is max-pooling, so the images are
processed as expected (the local features are contracted as only the maximum value
passes the filter). Since the max-pooling operation does not change the input image
as much, layers 3, 5, 7, and 9 are skipped. Layer 4 is another max-pooling layer with
a convolution applied in layer 3 which produces 128 images. However, most of the
images in this layer’s output are dark, which means that there are few activations. Only
4 images are visually distinct from the others. This might be an indication that the
network does not utilize all the available depth to learn the features. Layer 6 (the final
max-pooling layer with another convolution applied) is the most interesting as it is
the final layer in the encoder and represents how the encoder encoded the features.
It produces 256 images, and most of them have a visually distinct vertically oriented
shape in the place where the human was standing. The resolution of these images is
low (14 x 16 pixels), but they seem to encode the standing human position. There are
2 images with larger activations. However, there is a sizeable amount of near-empty
images, which, again, suggests that — maybe — 256 images for feature encoding is too
much.

The following images show how the decoder reconstructs the image. The first
upsampling layer (layer 7) is not shown as the output is similar to layer 6. Layer 8
(the first transposed convolutional layer) has a much more interesting output. Human
shapes in different forms are visible in the images as well as some artifacts. There are
also images where the human shape is not activated, but the ‘halo’ around the body is
decoded, which shows that the network learns about the boundaries of the silhouette in
multiple ways. Layer 9 is the second upsampling layer, and it has a very similar output
to layer 8, so it is also not shown in Appendix B. The output of layer 10 is much closer
to the actual expected output where human silhouettes (sometimes inverted) are visible
in different forms. Some images contain something similar to the expected final output
of the whole network. Most of the images also contain an artifact on the left (the back
of a chair). It is worth noting that, while most images agree on the basic shape of the
human, their interpretation of the actual boundaries is different. Sometimes the silhou-
ette is too thin, sometimes too thick. However, this part of the decoder shows that most
of the images carry some information about the human body and probably contribute
to the final output. Layer 11 is an upsampling layer, however, its output is also present
in the appendix since it is the final layer before making the final prediction and because
it is interesting to analyze how it upsampled the images. The resolution of the images
went up four-fold, and the edges of the silhouettes are therefore somewhat little blurry.
This seems to be the main source of accuracy loss in the network — here is the main
trade-off between the performance and accuracy. The network tries to compensate for
this from the previous layer where the human silhouettes have different thicknesses.

141

The aggressiveness of upsampling most probably causes different interpretations of
the silhouette in the previous layer so that the network can reconstruct the silhouette
in the upsampled image. This may also be the problem why the head was so difficult
for the network to learn — the head in the downsampled image becomes very small,
and therefore it is difficult to upsample it correctly even when having many represen-
tations. These representations are recombined in layer 12 (the last convolutional layer
of the decoder). This layer has multiple versions of the human body without any other
artifacts, some versions with artifacts, and some empty images. This, again, suggests
that a depth of 32 might still be too much since there is no information stored in some
images. One more interesting note is that there are multiple images in this layer where
the human body has feet, however, the network decided to omit them in layer 13 (the
final convolutional layer). There are two inverted human silhouettes without feet, and
it seems that they contributed the most towards this final representation.

Overall, the network seems to process the test image reasonably, as it encodes the
features that are then gradually decoded into the human silhouette with the background
removed in multiple different ways. However, some images in some layers seem to
contain no information related to segmentation, and they might be unnecessary to pro-
duce the correct output. Nevertheless, this architecture only has 1.25M parameters
and seems to process images both correctly and reasonably, which confirms that this
simpler architecture is viable and also learns the human body interpretations.

4.4.4. Performance benchmark

The benchmark has been run by using the same 1000 test frames as in the previous
benchmarks. The average prediction time was 166 ms. The time was relatively stable
— the fastest prediction was made in 34 ms, which is very close to the average. The
standard deviation was only 12.8. The only outlier was the first frame which took 229
ms. This may be a result of just-in-time compilation in Java where the code is compiled
as required, which happens as it is run for the first time. Repeating the same benchmark
directly in the Python code reduced the prediction time to 34 ms per frame.

This performance number could be put into perspective with 442.5 ms achieved
by the SegNet neural network. The researchers used NVidia Titan GPU which is now
superseded by modern GPUs as well as a now-outdated Caffe library version. NVidia
1660 Super used for this research is a more powerful GPU. However, the images being
processed are 25% larger for this research. Even with additional required data transfor-
mations, Agrast-6 shows a much better performance for automatic segmentation. The
model size on the disk is 15.4 MB, which is a great reduction from the 117 MB model
size of SegNet. Further investigation is provided in Section 4.4.5.7.

4.4.5. Accuracy analysis

The same analysis of accuracy has been performed as for the manual segmenta-
tion methods. The ground truth data is also re-used — it has been acquired by using the
full semi-automatic segmentation solution described in Appendix C.1.

142

Table 4.16. Average accuracy per dataset

Simple dataset 82.1%
Complex dataset 88.6%

4.4.5.1. Overview

The average cross-set intersection was measured for simple and complex datasets
separately. It was computed by using the ground truth and predicted binary masks. The
achieved results were 82.1% for the simple dataset and 88.6% for the complex dataset.
The results are also shown in Table 4.16.

The simple dataset contained about 3 times fewer data, therefore, this imbalance
in accuracies may be caused due to the imbalance in dataset sizes. This may also mean
that 9 epochs of training are not enough and that the training process should still be
continued. On the other hand, the accuracy achieved with the complex dataset is very
high, much higher than whenever using semi-automatic segmentation methods. This
shows that Agrast-6 was able to learn even the complex structures given a large amount
of data to learn from. However, the accuracy achieved with the simple dataset is on a
similar level as when using the semi-automatic methods.

4.4.5.2. Detailed result analysis

Simple dataset processing accuracy depends on the pose of the human. Standing
poses were processed with a better accuracy from all angles. The camera angle also had
some impact on the accuracy. The front view had the best accuracy, while it decreased
for other views. It looks like the silhouette size had some impact on the accuracy. The
front camera saw the largest surface area of the human body. This issue was already
presented previously when analyzing intermediate network activations. The edges of
the object are blurry in the decoder layers, and this gives a higher penalty when the
total surface area of the silhouette is smaller.

The number of low-accuracy outliers is small, while Q1 accuracy values are quite
high compared to the proposed bounding box method. Since the average accuracies
for the simple dataset are similar, Agrast-6 is more stable, however, it does not achieve
extremely high accuracies. The bounding box method is less stable — it either segments
the human body correctly or near-correctly, or fails completely.

The visible surface area of the silhouette had an impact when segmenting the
complex dataset as well. The back side was segmented with the highest accuracy, while
the side view was more difficult to segment. The boxes in the box plots in Figure 4.25
are narrow; most frames fall into a narrow range of accuracy values for each camera
view. This again shows the segmentation stability. Q1 values for each side exceed 90%,
and the overall average accuracy only falls below 90% due to some lower-accuracy
outliers.

The observed results suggest that the model has learned the features of the human
silhouette, however, more data might be needed for the simple dataset to achieve a
better accuracy. On the other hand, the complex dataset is processed with a better

143

Froeee ¥ T

S
® 07 ° o o o o 8
3 o
£ o o 0.4
0.6 ° ° &
o
0.2
05 3 °
o 0.0 o

= Back Front Side
front” ““a“m:rgo“‘ 3 c_,.mr\éh Lo 5\““2\9“‘ 3 s‘and\:\gg“‘ 28

Figure 4.25. Accuracy analysis for simple and complex datasets for Agrast-6

accuracy even though the data in the complex dataset is more diverse — there are only
2 different poses in the simple dataset and 30 poses in the complex dataset. However,
more data leads to a better accuracy, even though the problem seems more difficult at
a first glance.

4.4.5.3. Accuracy histogram analysis

Figure 4.26 reveals the high percentage of high-accuracy frames when using
Agrast-6. The bars in the histogram below 30% accuracy are invisible — there was
only 1 video sequence in the 10-20% range, and other ranges are empty. The sub-60%
range is also nearly empty. Most of the frames (over 92%) fall into the 80-100% ac-
curacy range (as a reminder, a 0.9 value in the histogram means the accuracy interval
[0.9,1)). As another reminder, 80% cross-set intersection accuracy may mean one of
two things. In the case of over-segmentation, at least 80% of the actual human shape is
captured, and in the case of under-segmentation, the under-segmented area is at most
25% of the size of the human silhouette (if the human silhouette size is referred to as
1, the total segmented area must be 1.25 as % = 0.8). If both over-segmentation
and under-segmentation occur, their effects are multiplied, hence the ‘at most” and ‘at
least’ in both conditions.

Histogram bars grow longer with higher accuracy values except for the outlier in
the sub-20% range. This shows that the number of low-accuracy results is small and,
depending on the definition of ‘low-accuracy’, may be very small as only 1% of the
video sequences were segmented with lower than 60% cross-set intersection accuracy.

Given these results, it is evident that most of the data is segmented with a high
accuracy by the Agrast-6 neural network.

4.4.5.4. Qualitative error analysis

Some examples of errors made by Agrast-6 are shown in Figure 4.27. The green
color in the images represents the ground truth, the red color is Agrast-6 output, and the
yellow color shows their intersection (100% accuracy would be shown as yellow-only
shape). The first two images show extreme examples of over-segmentation. The neural
network only captured a small part of the human body (16% and 31%, respectively).

144

1|

0.2 I
0.7 N

0.6 W

05 1

0.4 |

0.3

0.2

0.1 |

Accuracy

0 100 200 300 400 500 600 700
Frequency

Figure 4.26. Agrast-6 segmentation accuracy histogram

The person in the second image is sitting on a chair that partly occludes the human
body. This might have contributed to the low segmentation accuracy. The third image
shows an example where the human is wearing black jeans — the depth image is very
noisy around this area, and it was difficult for the network to learn about the ‘invisible’
legs.

The final three images included some shapes that are similar to a human. There
was a chair on the left side of the image, and it somewhat resembles the shape of a
human. Even though objects like this were present in the training dataset, the network
sometimes cannot distinguish them from a real human shape. In the last image, there
was another human in the scene, and the network had no means to learn what is the
‘main’ human in the scene as it captured both humans. These errors could be resolved
by a post-processing step which removes the smaller objects from the segmentation
output.

It is, however, worth noting that the 5 initial images belong to the bottom-1%
accuracy images, and the final image is from the bottom-7%. Therefore, mistakes like
these are not very common. The most common accuracies are shown in Figure 4.28.
The human shape is segmented correctly as the errors are hardly visible to the naked
eye. However, they occur due to some noise in the image and around the boundaries of
the silhouette. As stated above, the upsampling layers of the network find it difficult
to correctly predict the exact boundaries of the encoded silhouette, therefore, some
errors occur when deciding where the boundary is. This is evident for all 6 provided
images, and this is the only reason preventing the 100% accuracy. However, the current
segmentation accuracy is acceptable for at least some applications.

Figure 4.29 shows the best segmentation of the network. The human is seg-
mented with high precision, however, there is still some fuzziness around the edges of

145

Figure 4.27. Examples of low-accuracy segmentation outputs

Figure 4.28. Examples of most typical segmentation accuracy images. Accuracies of 86%,
88%, 89%, 90%, 91% and 92%, respectively

146

Figure 4.29. Examples of the best segmentation outputs (93% and above)

the silhouette. The Agrast-6 network is usually imprecise by a few pixels. The shape
of the human is preserved, and there are only a few artifacts on the output due to noise
in the image. The first image even has some invalid ground truth to the left of the hu-
man foot, and the neural network correctly did not find it as a part of the human body.
These examples all come from the test dataset — they have not been used to train the
network. This further confirms that the network has not overfit the data as the output
on unseen data is usually correct.

4.4.5.5. Percentage of well-segmented frames

Figure 4.30 shows frame percentages by segmentation accuracy. The green line
represents the simple dataset, whereas the blue line shows the complex dataset. Both
curves stay very high until about 60% accuracy threshold, which means that there is a
very high chance that the segmentation accuracy will be above this mark. There is a
steep decline in the frame percentage in the 80-92% range for the simple dataset and the
83-94% range for the complex dataset. Therefore, if the minimum acceptable accuracy
is around 80%, Agrast-6 will work in most cases. If the threshold is 85%, the complex
dataset will have a much better accuracy than the simple dataset. The 90% threshold is
also a viable mark, however, the percentage of frames will be somewhat lower at about
69% for both datasets combined.

The curve has a desirable shape where it stays high as long as possible, and only
drops with high accuracy values. Errors at 90% accuracy are already not easily vis-
ible to a naked eye, thus the results suggest that Agrast-6 can be applied for binary
segmentation as successfully as the other state-of-the-art solutions, but the network it-
self is much smaller, which confirms the hypothesis that binary segmentation can be
successfully solved with a relatively high accuracy and a small architecture.

Table 4.17 shows the pixel-wise confusion matrix for Agrast-6 when applied to
the simple dataset. The true positive rate is 90.9% while the true negative rate is 99.8%.
These numbers show that the neural network misses some pixels of the human while the
background pixels are labeled correctly with better accuracy, however, both rates are
above the 90% mark. The pixel-wise accuracy of the model on this dataset is 99.4%,
which shows that a vast majority of all points are classified correctly, and it already
becomes difficult for the network to increase it any further. The precision and recall
values are lower at 92.2% and 90.3% respectively because the amount of the true neg-

147

148

1.0 A

 T—
0.8 1
w
w
E
£
< 0.6 1
=]
@
o
Z
5 0 4 .
g o.
&
0.2 1
D.U T T T T T T
0 20 40 60 80 100

Accuracy threshold

Figure 4.30. Agrast-6 accuracy frame percentages

Table 4.17. Pixel-wise confusion matrix for Agrast-6 segmentation (simple dataset)

Predicted
Background Foreground Total
(negative) (positive)
Actual Background 96.4% 0.3% 96.7%

(negative)

Foreground 0.3% 3.0% 3.3%

(positive)

Total 96.7% 3.3% 100%

Table 4.18. Pixel-wise confusion matrix for Agrast-6 segmentation (complex dataset)

Predicted

Background Foreground Total
(negative) (positive)

Background 93.2% 0.3% 93.5%

Actual .

(negative)

Foreground 0.4% 6.0% 6.4%

(positive)

Total 93.6% 6.3% 100%

atives (as well as the amount of the actual negatives) is dominant in the data. Despite
this, all pixel-wise segmentation quality metrics are above 90%, which is on par with
the state of the art.

Similarly, Table 4.18 outlines the pixel-wise confusion matrix for the complex
dataset. The true positive and the true negative rates are similar to the simple dataset
at 93.8% and 99.7%, respectively. The accuracy, however, is slightly lower at 99.2%
as there are slightly more false negatives. The precision and recall are both higher
at 94.6% and 93.2%, respectively, which shows that the human is segmented better.
This may be explained by the size of the human silhouette in this dataset — there are
more positive pixels in the data, hence making the same amount of errors results in
lower error rates, and, consequently, better precision and recall. It is shown in Section
4.4.3 that the neural network finds it difficult to exactly find the edge pixels. Since the
number of such pixels grows slower than the total amount of positive pixels when the
human comes closer to the camera, it affects the precision and recall metrics. Therefore,
the two confusion matrices confirm that the output of Agrast-6 is generally correct with
uncertainty around the object edges.

The accuracy of the Agrast-6 neural network is also visualized by the receiver
operator characteristic (ROC) curve in Figure 4.31. There is a very steep increase at the
start of the graph which rises to a value of about 0.98 true positives while false positives
stay near 0. The curve then smoothly ascends until it reaches the value of 1. The area
under curve (AUC) is equal to 0.9903. This shows that the model classifies pixels with a
high accuracy — there are very few instances where a positive pixel would be classified

149

1.0

0.8

0.6

0.4 4

True positive rate

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Figure 4.31. ROC curve for Agrast-6 neural network

with a lower score than a negative pixel (this probability is equal to 1 — AUC =
0.0097). The curve was computed from the classification output of the test dataset as
the network has not seen the samples. This is a further confirmation that the network
performs well on new data.

4.4.5.6. Accuracy analysis by the sex of the subject

Female segmentation was performed with a better accuracy on average as shown
in Table 4.19. This follows the same pattern as seen in the previous chapters as fe-
male silhouettes are segmented with a better accuracy than male silhouettes across both
datasets. The reasons for this could be the same as women’s clothes, such as dresses,
are easier to recognize for the neural network as they have a smoother shape compared
to the other types of clothes. This has a strong impact since the complex dataset con-
tains more samples with male subjects. The simple dataset, on the other hand, contains
an equal number of male and female subject samples, and the difference in accuracy is
larger than with an imbalanced dataset.

4.4.5.7. Comparison against Seg/Net neural network

Agrast-6 is a lightweight modification of the SegNet neural network [50] with
fewer and smaller layers and dropped skip connections. Therefore, these two models
are compared in terms of their static and execution parameters. Agrast-6 is built by
using TensorFlow, therefore, SegNet was also adapted from an already existing Ten-
sorFlow implementation [346] of SegNet neural network. It was also adapted to the

150

Table 4.19. Male vs. female detection accuracy

Dataset Gender Mean cross-set intersection

Simple male 82.2%
Complex male 86.7%

Simple female 85.3%
Complex female 87.3%

Table 4.20. Comparison of SegNet and the proposed Agrast-6 neural networks

SegNet Agrast-6
Model size on disk 117 MB 15.4 MB
Parameter count 32M 1.25M
Inference time 69 ms @ 340x480 34 ms @ 448x512
Average cross-set intersection 89.5% 85.4%

binary data used in this research — the amount of output labels is reduced from 12 to
2. It was then trained by using the same data as Agrast-6 to have an as close compari-
son as possible. SegNet and Agrast-6 both use Adam optimizer, however, the training
rates are different (0.001 for SegNet and 0.0001 for Agrast-6) — these values have not
been modified. When exported to the disk, SegNet takes up about 117 MB of the disk
space, while Agrast-6 is about 7.5 times smaller at 15.4 MB. The amount of param-
eters is 27 times smaller for Agrast-6 as well. The inference time was measured by
using the TensorFlow 2.8 library on NVidia GTX 1660 SUPER GPU, however, the
images were downscaled for SegNet to its original 340x480 resolution while Agrast-6
processed unmodified 448x512 resolution images. Binary masks were predicted one
at a time (batch size = 1). The inference time was 69 ms per frame for SegNet and 34
ms for Agrast-6. The time was measured for the inference only, and any required pre-
processing is not taken into account. This shows that Agrast-6 is about 2 times faster
with 40% larger images. The speedup is expected since Agrast-6 is a much smaller
architecture. However, this comes at a cost of accuracy — SegNet processes data con-
sistently more accurately. The difference is similar across all accuracy benchmarks,
and the average is the 4.1 percentage points higher cross-set intersection over Agrast-6
when both datasets are weighted equally (89.5% for SegNet, 85.4% for Agrast-6). This
shows that Agrast-6 carries a lot more accuracy per parameter, and, while sacrificing
some overall accuracy, works twice as fast. The summary is outlined in Table 4.20.

4.5. Skeleton transformation and fusion experimental evaluation
4.5.1. Skeleton transformation and fusion accuracy experimental evaluation

A separate dataset of at least 2400 frames from three Kinect 2 sensors (800 each)
has been used for accuracy evaluations. The selected environment was a spacious room
with three sensors 4 meters apart monitoring the same central space. Artificial light was
used in the room. The captured humans were ordered to stand as still as possible to
obtain static skeletons.

151

Table 4.21. Buffered values fusion method accuracy impact evaluation

Average Median

D(z) 0042 0.032
D(y) 0010 0015
D(z) 0.027 0.050

MD 0.026 0.032

Table 4.22. Buffer size accuracy impact evaluation

1 50 100
D(z) 0013 0.056 0.032
D(z) 0014 0.012 0.009
D(z) 0022 0024 0.021
D(z) 0016 0.031 0.021

The test system collects skeletal data from each Kinect sensor and applies the
transformation to a common coordinate space described in Sections (3.28)-(3.34). The
coordinates of the skeleton joints would be equal in a perfect world. In real-life sce-
narios, however, they are different between the different sensors. Two methods of
skeleton fusion are evaluated — the average and median values which are described in
Section 3.7.2. Accuracy is evaluated by joint fluctuations as this method is considered
more accurate if the values over time are less dispersed. Dispersion is used as a quan-
titative measure. Dispersion is computed for each joint separately, and the average of
dispersions is computed.

First, the fused skeleton joint coordinates can be either averaged, or a median can
be used. The results by dimension are shown in Table 4.21. The median is more accu-
rate in the x coordinate (left-right direction), while the average gives better accuracy
in the y (up-down direction) and z (depth direction) coordinates. The fluctuations are
the smallest in the y direction in both cases. The z direction was much more accurately
evaluated by using averages than medians. The results suggest that either the average
should be used, or a combination of methods should be applied — the median computed
for one coordinate, and the average computed for the others. When using the average,
the standard deviation is 0.16, which is ~2%.

Next, the buffer size impact was evaluated. The buffer sizes of 1, 50, and 100
were selected for evaluation. The results have shown that buffering does not improve
the accuracy as expected. This means that buffering values are not a viable solution
since it reduces both accuracy and responsiveness. The detailed results are outlined
in Table 4.22. These results may have been obtained as such because the person does
not stand in a perfectly static position and moves a little. These small movements may
impact the accuracy negatively.

The final hypothesis to check is that rejecting points reported with low confidence
may improve the accuracy in combination with other techniques. However, this was

152

Table 4.23. Low confidence point accuracy impact evaluation

With low-confidence ~ Without low-confidence

D(z) 0.056 0.412
D(y) 0.012 0.051
D(z) 0.028 0.588
MD 0.031 0.350

also shown not to be the case. The fluctuations with low-confidence points excluded
were much higher, as shown in Table 4.23. It was observed that some joints ‘jump’ in
the Kinect skeleton output between the frames even though the person is not moving.
These joints may be misclassified by Kinect, however, these fluctuations are averaged-
out when the data from all sensors are included.

It was shown in related research that fluctuations in the standing poses when using
a single Kinect device reach about 10% [37]. The results shown in this section suggest
that the use of a triple Kinect setup reduces this number to ~2%, which confirms that
the transformation and fusion algorithms improve the accuracy of skeleton tracking.

4.5.2. Skeleton transformation and fusion performance experimental evaluation

The transformation and fusion algorithms proposed in Section 3.7.2 do not de-
pend on the data in terms of performance. Therefore, any skeletal data can be used to
evaluate the performance of skeleton transformation.

The benchmark was performed by using frame sequences of about 300 frames
from three cameras and by using the first frame for the detection of transformation pa-
rameters, and then, by using those parameters, to transform the skeleton in the other
frames. The implementation uses the C# programming language, .NET Framework
v4.5.2. The benchmark was performed on AMD Ryzen 9 3900X CPU. The observed
average processing duration was 243 ps per frame-triplet. This result shows that the
processing time of the proposed solution is so small that it may as well not be consid-
ered when implementing multi-sensor systems using Kinect. Kinect 2 devices have to
be connected to different computers due to their technological limitations. This means
that the data must be transferred over the network, which typically includes data seri-
alization, send/receive, and deserialization. This extra work typically takes over 1 ms,
which is a much longer duration than the transformation/fusion itself.

4.6. Summary

Two datasets have been collected for segmentation research purposes. The ‘sim-
ple’ poses dataset consists of 266 short depth video sequences, whereas the‘complex’
dataset contains 674 depth video sequences. They were used to evaluate the segmen-
tation algorithms proposed in this dissertation.

First, the noise reduction algorithm experimental analysis was conducted. It re-
vealed that the bilateral filter has a better effect on the segmentation accuracy than the
median, the Gaussian filter, or no filter at all, however, it is the slowest filter.

153

The experimental analysis of the proposed improvements for semi-automatic seg-
mentation algorithms showed that all proposals improve segmentation performance by
large margins. The original solution of the PCL library, Euclidean clustering, and its
re-implementation in the Java language were used as baselines. The Java variant was
about 2 times slower than the original C++ variant (2.3 s vs. 1.2 s). All other times
were measured for the Java implementations of algorithm variations. First, Euclidean
clustering can run about 4 times faster when the branch cutting improvement is im-
plemented, about 38 times faster with the node removal, and about 44 times faster
with both improvements. Switching from the Euclidean clustering approach to the
bounding-box-based segmentation shows a speedup of 63%. The bounding-box-based
segmentation with the node removal, branch cutting, and auto-expanding bounding box
improvements was about 225 times faster than the bounding-box-based approach with
no improvements, 195 times faster than C++ Euclidean clustering implementation, and
367 times faster than Euclidean clustering Java implementation.

The Euclidean-clustering-based and bounding-box-based segmentation algo-
rithms yield similar accuracy for the simple dataset (79.8% and 82.1%, respectively),
however, the Euclidean-clustering-based segmentation is more accurate for the com-
plex dataset segmentation (48.1% vs. 33.4%). Both algorithms tend to make under-
segmentation errors in complex scenes, however, the bounding-box-based algorithm is
more unstable in this sense. The Euclidean-clustering-based algorithm yielded accura-
cies between 30% and 80% much more often than the bounding-box-based approach.
Despite their imperfections, both algorithms can reduce the total time required to pre-
pare datasets for segmentation. It was estimated that a fully-manual workflow would
take 1455 hours of work, while the software solution, utilizing the bounding-box-based
segmentation algorithm, reduced this time to 25 hours. Euclidean-clustering-based
segmentation was estimated to require 28 hours due to the longer processing times,
despite the improved accuracy.

The recursive 2-Means split algorithm improved the accuracy compared to the
original bounding-box-based segmentation algorithm. The accuracy went up from
82.1% to 82.5% for the simple dataset and from 33.4% to 55.3% for the complex
dataset. The latter is a big improvement as it even beats the Euclidean-clustering-
based segmentation accuracy. This comes at a performance cost, and processing times
go from 6.3 ms to 46.9 ms per frame. It was estimated that it would have reduced the
total dataset preparation time from the current 25 hours to 18.5 hours due to reductions
in manual work.

The Agrast-6 model was trained using the annotated datasets. It showed progress
via the binary accuracy, precision, recall, and AUC metrics, as well as the loss function
for both training and validation datasets, with all values improving. This shows that the
network does not overfit the data and can learn from the provided data. It was noticed
that the most difficult parts for the network to learn are the human head and feet, while
the body is segmented with good accuracy. The simple dataset segmentation accuracy
was 82.1%, whereas the complex dataset scored 88.6%. Error analysis showed that
there are virtually no very low accuracy (below 40%) cases, and AUC of 0.9903 was

154

achieved. The model is lighter than the baseline SegNet (117 MB on the disk vs. 15.4
MB) and processes images faster (69 ms vs. 34 ms, however, the Agrast-6 image size
was larger). On the other hand, SegNet was more accurate (89.5% vs. 85.4%).

Rigid body part coordinate fluctuations in the skeletal data were reduced from
10% when using a single Kinect device to 2% when using three devices and the pro-
posed skeleton fusion algorithm. It was concluded that the best option for skeleton
fusion is the use of the mean coordinate, and it is not worth buffering and averaging
skeletons as this does not improve the accuracy.

155

5. SUMMARY AND CONCLUSIONS

The overview of the state of the art has revealed that the binary depth segmen-
tation problem could be solved by using neural networks for RGB image segmenta-
tion. However, these networks require large datasets for training, and obtaining them
involves a lot of manual annotations. Semi-automatic segmentation algorithms were
reviewed, and novel algorithms were proposed in order to speed up the annotation pro-
cess. It was shown that the Euclidean-clustering-based approach provides finer control
over the segmentation of cluttered scenes, but the bounding box approach is up to 367
times faster. The machine-learning-based segmentation convolutional neural network
architectures are usually large, while related research also exposes their low informa-
tion density. This suggests that smaller architectures should be possible, especially
for depth segmentation, since the data is more simple. It was proven correct by the
Agrast-6 neural network proposal, which achieved a comparable accuracy as the state-
of-the-art models with a smaller architecture. The skeletal data provided by the Kinect
sensor is noisy and fluctuating, and this problem is often solved by utilizing multiple
sensors. Therefore, it was decided that a novel algorithm for skeleton fusion should
be proposed. It successfully reduced the fluctuations in the skeletal data when using 3
sensors compared to using a single sensor.

Conclusions of the dissertation:

1. Literature review has revealed that both geometrical and machine learning meth-
ods can be applied to binary segmentation problems, however, the machine-
learning-based methods usually offer a higher accuracy at a cost of a large
amount of data required for training, which leaves dataset preparation as one
the biggest bottlenecks in training segmenting neural networks.

2. Both the Euclidean-clustering-based and the proposed bounding-box-based seg-
mentation algorithms fit the problem of the semi-automatic binary depth segmen-
tation. The Euclidean-clustering-based algorithm offers a better accuracy, espe-
cially in cluttered scenes (48.1% vs. 33.4%), but the bounding-box-based seg-
mentation performs up to 367 times faster (2.33 s vs. 6.33 ms). The bounding-
box-based solution reduced the amount of the required human time from esti-
mated 1455 hours of full manual work to 25 hours.

3. Recursive 2-Means split algorithm with a random forest classifier for split accep-
tance improves the segmentation accuracy where it was originally low (33.4%
vs. 55.3%) at a cost of lower performance (6.33 ms vs. 40.6 ms). This confirms
that over-segmentation is reduced by using the proposal. However, the accuracy
could be further improved if a better point cloud split algorithm could be found
instead of the proposed recursive 2-Means split.

4. The proposed semi-automatic segmentation algorithms greatly reduce the time
required to label binary masks for depth video sequences. They allowed prepar-
ing ground-truth masks for 220k images in 25 human hours by using the pro-
posed software solution, whereas state-of-the-art datasets for similar purposes

156

often require entire teams to prepare.

. The proposed Agrast-6 architecture shows that smaller architectures may yield a
similar accuracy for binary depth segmentation as the large architectures meant
for RGB segmentation. Agrast-6 has 27 times fewer parameters to train com-
pared to the SegNet neural network, but still reaches 86% binary segmentation
accuracy. Despite that, the analysis has shown that the encoder of the proposed
architecture has few activations, and, therefore, it should be possible to reach a
similar accuracy by shrinking the encoder.

. The proposed skeleton fusion algorithm reduced the fluctuations in the skeletal
data from 10% originally, when using a single Kinect camera, to 2% when using
three cameras and the algorithm. It was successfully used in further research to
evaluate the load of human joints during physical activity.

157

6. SANTRAUKA

6.1. [Zanga
6.1.1. Darbo aktualumas

Tasky debesy segmentavimas yra pastaruoju metu aktyviai tiriama sritis. Nors
iprastos vaizdo kameros yra placiai prieinamos, gylio jutikliai turi savy privalumy. Vis
dazniau kylant privatumo problemoms, RGB kameros fiksuoja daug duomeny ir dél to
kelia saugumo grésmes [1]. Gylio duomenys turi maziau jautrios informacijos, ypac
kai kalbama apie Zzmogaus stebésena. Gylio duomeny segmentavimas gali buti tai-
komas daugelyje sriciu. Jis dazniausiai yra vienas i§ komponenty taikant praktikoje.
Tai yra viliojanti tyrimy sritis, nes pigios gylio kameros [2] bei lazeriniai lokatoriai
[3] yra placiai prieinami. Didelé tyrimy sritis yra erdviniy duomeny, pateikiamy gylio
jutikliy, segmentavimas [4]. Jie naudojami daugelyje tyrimy sri¢iy — trimaciam vei-
do atpazinimui [5], kritimui aptikti [6], virSutiniy galtiniy charakteristikoms ivertinti
[7], taikant fitnesa [8, 9], pratimams instruktuoti [10], pramonés darbuotojy aktyvu-
mui stebéti [11], robotikoje [12], klititims aptikti neregiams [13], antropometriniams
matavimams [14], laikysenai atpazinti [15] arba bendrajam Zmogaus kiino sekimui [16]
ar net paveiksléliams Sifruoti [17]. Taciau islieka ir daug problemy apdorojant gylio
duomenis, priklausomai nuo taikymuy srities.

Objekty segmentavimo uzdavinys patrauké daugelio tyréju démesi, ypac atsira-
dus masininio mokymo sprendimams [18]. Vienas i§ kertiniy $io proceso komponenty
yra etike¢iy priskyrimas taskeliams. Etiketés dazniausiai reiskia objekto, kuriam pri-
klauso taskelis, tipa [19]. Giliojo mokymosi metodai, ypac¢ sastkos neuroniniai tink-
lai, placiai naudojami objekty segmentavime. Jie daug prisidéjo prie Sios srities tyrimy
skaiCiaus. Vienas i§ i$§iikiy yra suprasti paveikslélius semantiniu lygmeniu, taciau tik
naujausi sprendimai yra tinkami $iai problemai spresti [20]. Vienos klasés (dvejetainis)
segmentavimas taip pat kartais yra naudingas. Jis taikomas tokiose srityse, kaip debesy
[23].

Jeigu yra zinoma, kad tam tikras objektas jau yra scenoje, vienintelé neiSspres-
ta problema yra §io objekto iSskyrimas i§ fono. Tai galima atlikti naudojant esamas
semantinio segmentavimo sistemas, taciau jos daznai yra sudétingesnés, nei i$ tiesy
reikia. Todél jas yra sunkiau ismokyti. Sias problemas pripaZista Sazeras ir kt. [24],
kurie sitilo sprendima dali tinklo iSjungti, arba Huangas ir kt. [25], kurie sitilo spren-
dima efektyviau iSmokyti labai didelius tinklus. Taikymuy sritys taip pat yra labai jvai-
rios [26]. Kita vertus, moderniausi tinklai yra labai sudétingi. ,,VGG-16* yra tinklas,
skirtas paveiksléliams klasifikuoti. Jis yra daugelio moderniy paveikslélius segmen-
tuojanéiy tinkly pagrindas. Sis tinklas turi 133 mln. mokomuy svoriy [27]. Tai reiskia,
kad tokiam tinklui iSmokyti reikia labai daug paveiksléliuy. Originalus tyrimas naudoja

v —

si metodas, visi paveiksléliai turi biiti suzyméti bent dalinai zmogaus. Segmentavimo

158

uzdaviniams reikalingas daug didesnis zmogaus darbo indélis nei tik priskiriant kla-
ses paveiksléliams, nes reikia pazmyéti dali paveikslélio, kur yra norimas objektas.
Dideli neuroniai tinklai taip pat daznai pasizymi didele apdorojimo trukme. Naujau-
si tyrimai rodo, kad Siuolaikiniai grafiniai procesoriai gali apdoroti tik nedidelius (iki
256 x 128 raiskos) paveiksleélius realiu laiku, o klasikiniai neuroniniai tinklai uztrun-
ka iki 180 ms vienam paveiksléliui [28]. Didesniems paveiksléliams reikia daugiau
istekliy, pvz., ,,SegNet™ tinklas 1920 x 1080 raiskos paveiksléli apdoroja per 637 ms
naudojant ,,NVIDIA Titan X* grafini procesoriy. Taciau gali biiti tinkamos ir mazesnés
architekttiros [29]. Jos gali greiciau apdoroti didelius paveikslélius. Tai leidzia tokias
architektiiras taikyti naujose srityse —jos gali apdoroti duomenis realiu laiku, sumazinti
apratiirinius reikalavimus, pagerinti energijos efektyvuma, joms reikia maziau moky-
mosi duomeny.

Duomeny rinkinius, tinkamus paveiksléliams segmentuoti, dar sunkiau paruosti.
Nobhas ir kt. naudojo 12,3 tukst. paveiksléliy rinkinj [30] savo ,,Deconvnet™ architektii-
rai iSmokyti. Duomeny rinkinio pavadinimas yra ,,PASCAL*, jis tyrimy metu jau buvo
5 mety senumo [31]. Jis buvo surinktas pasirinkus tam tikrus internete pasiekiamus pa-
veikslélius ir tada juos rankiniu biidu suzymint pasitelkus Zymétoju komanda. Kadangi
duomeny rinkinys néra didelis, ,,Deconvnet™ mokymas tapo sudétinga procediira. Bu-
vo naudojamas partijos normalizavimas, kad tinklas pabégty i$ lokaliy minimumu, ir
kuriamas papildomas ,,PASCAL* duomeny rinkinio poaibis mazinant erdvinius svy-
ravimus, kad tinklas lengviau pagauty reikiamas objekty savybes ir tik tada mokytysi
erdvines transformacijas. Jeigu duomeny rinkinius biity lengviau paruosti segmentuoti,
»PASCAL* komanda biity galéjusi sukurti didesni duomeny rinkini, ir dél to btity buve
lengviau iSmokyti ,,Deconvnet* arba taikyti metodai buty buve efektyvesni dél dides-
nio iSmokyti skirty paveiksléliy rinkinio. Kitas pavyzdys — Xu ir kt. naudojo 43 tiikst.
anotuoty nuskaitymy savo tyrimams [32]. ,,ShapeNet* duomeny rinkinj sudaro 3 min.
modeliy, taciau iSleidimo metu tik 220 tukst. buvo suzyméti [33].

Duomeny rinkiniai, skirti segmentuoti i§ vaizdo irasy, yra dar imlesni darbui. Pa-
vyzdziui, Siuolaikiniy kamery kadry daznis yra 30 kadry per sekundg. Vienos minutés
ilgio irasa sudaro 1800 kadry. Jei tokius duomenis reikia paruosti neuroniniam tinklui
mokyti, reikia praktiskai neijmanomo kiekio rankinio darbo objekty kaukéms pazymé-
ti. Taciau tokie duomeny rinkiniai reikalingi tam tikriems taikymams, pvz., Zzmogui
segmentuoti realiu laiku narSykléje [34].

ISsegmentuotas zmogaus kiinas gali biiti naudojamas kaip komponentas dides-
niame duomeny apdorojimo procese. Segmentuoti taSky debesys naudojami aproksi-
muoti Zmogaus pozy tikimybéms [35]. Gylio paveiksléliai buvo sujungiami i trimacius
zmogaus kiino modelius, o vienas i§ zingsniy buvo surasti zmogaus kiing [36].

,Kinect® jutiklis taip pat pateikia savo skeleto informacijos iSvestis su 25 sa-
nariais, taCiau jos daugeliu atvejy néra tikslios [37]. Toks skelety srautas tinkamas
daugeliu atvejy, tokiy kaip zmogaus sekimo sprendimuose veiklai atpazinti [38, 39],
medicinoje, pvz., pusiausvyros normalizavimo pagalbininkuose [40, 41], stovésenai
kontroliuoti [42, 43], Parkinsono ligos asistentams [44]. Taip pat taikoma ir gestams
atpazinti [45]. ,,Kinect* taip pat naudojamas daugiajutiklése sekimo sistemose su dé-

159

vimais jutikliais, kad padidinty sekimo tiksluma [46]. Visos minétos taikymuy sritys
remiasi aukstos kokybés skeleto sekimu. Sia problema galima spresti panaudojant ke-
leta jutikliy, taciau iskyla dvi papildomos problemos. Pirma, kiekvienas jutiklis turi
savo koordinaciy sistema, todél jutiklius reikia kalibruoti [47]. Antra, skeletus reikia
sujungti i viena [48]. Deja, né viena i$ Siy problemy neturi vieno geriausio sprendimo,
Siuolaikiniai tyrimai sitilo labai skirtingus sprendimo budus.

6.1.2. Problemos formuluoté

Dvejetainiy gylio paveiksléliy segmentavimas yra problema, kai reikia iSgauti
kauke gylio paveiksleéliui, atitinkancia ,,priekinj plana“ ir ,,fona*. Pritaikius Zmogaus
ktinui sukonstruojama dvejetainé kauke, nurodanti taskus, priklausanc¢ius zmogaus kii-
nui. Tai svarbu tais atvejais, kai reikia iSgauti zmogaus kiing i$ paveikslélio — tada jis
gali buiti naudojamas Zzaliesiems ekranams, zmogaus kiinui sekti zaidimams, medici-
noje, pvz., reabilitacijai, ar sportui, pvz., jogai. Taikymai néra Sio darbo dalis.

Dvejetainio gylio paveikslélio segmentavimas gali biiti formuluojamas kaip
problema, kur reikia gauti dvejetaing kauk¢ B i§ gylio paveikslélio D:

D = S(B), (6.1)

¢ia S yra segmentavimo funkcija ar algoritmas, D — gylio paveikslélis, B — dvejetainis
paveikslélis su dviem reikSmémis — objekto taskas arba fono taskas. Funkcija gali biiti
apibréziama skirtingai ir turéti daugiau parametry priklausomai nuo taikymo srities.
Sis tyrimas koncentruojasi { §ias problemas bei pateikia karkasa joms spresti:
* Pusiau automatinis gylio vaizdy segmentavimas.
» Automatinis gylio vaizdy segmentavimas.

Abu segmentavimo tipai gali biiti taitkomi bendriniam segmentavimui arba konkretaus
tipo objektams. Bendrinis segmentavimas neturi informacijos apie tai, koks objektas
bus segmentuojamas, dél to jam reikia papildomy parametry, suteikianciy informacija,
kokio objekto ieskoti. Automatinis segmentavimas, pagal apibrézima, negali turéti to-
kiy parametry, jis turi surasti objekta tik i§ duoty duomeny. Abiem atvejais §is tyrimas
koncentruojasi i dvejetaini segmentavima, kur objektas yra zmogaus kiinas. Darbo ak-
centas yra pusiau automatinio segmentavimo taikymas duomeny rinkiniams, skirtiems
segmentavimas turéty buiti taikomas kaip vienas i§ komponenty didesnéje gylio duome-
ny apdorojimo sistemoje. Kompiuterizuoto pusiau automatinio segmentavimo tyrimas
akcentuoja algoritmy greitaveika, kad prisidéty prie galutinio tikslo — sumazinti bendra
laika, reikalinga dvejetainio segmentavimo duomeny rinkiniams paruosti. Automati-
nis segmentavimas koncentruojasi { mazesnj architekttiros dydji, kas leidzia greiciau ja
iSmokyti bei galimai sumazina duomeny apdorojimo laika su didesniais paveiksléliais.

Formaliau, kompiuterizuotas pusiau automatinis segmentavimas gali biiti apibre-
ziamas kaip funkcija su papildomos informacijos parametrais ir algoritmui reikalingais
hiperparametrais, palyginti su funkcija S i§ formulés (6.1):

D = S.(B,m, h). (6.2)

160

Parametras m yra pateikiamas i$ iSorés, pavyzdziui, Zzmogaus rankiniu bidu, o h yra
algoritmo hiperparametry rinkinys. Automatinis segmentavimas, pagal apibrézima,
neturi parametro m:

D = S,(B,h). (6.3)

Skelety salaja yra kita problema, susijusi su Zmogaus kiino sekimu. Ji naudojama
panasiuose taikymuose, taciau skiriasi sekimo principas — vietoj priekinio plano-fono
kaukiy naudojami i§ anksto gauti skeleto duomenys i§ Zzmogaus sekimo jrenginiy ir
bando pagerinti tiksluma, palyginti su sekimu naudojant viena jutiklj.

Formaliau, skelety salaja yra problema, kur, turint zmogaus kiina trimatéje erd-
véje, stebima keleto jutikliy i$ skirtingy kampy, konstruojamas vienas superskeletas,
kuris yra tikslesnis nei naudojant viena jutikli. Skelety salaja susideda i$ dviejy ma-
zesniy problemy: skelety transformacijos i bendra koordinaciy sisterma bei skelety
sujungimo, po ko kurio gaunamas vienas skeletas. Tarkime, kad turime skelety rinkini
i§ skirtingy kampy K = { K, Ko, ..., K, }. Tuomet turéty buti pasitlytos transforma-
cijos funkcija B ir sujungimo funkcija M, kad buty gaunamas tikslesnis superskeletas
K:

Ks=M(T(K)). (6.4)

Sio darbo tikslas yra:

pateikti algoritma S,, kuris leisty sumazinti bendra reikalingg laika dvejetainio
segmentavimo duomeny rinkiniams paruosti, palyginti su automatiniu segmen-
tavimu;

pateikti lengvasvorg neuroninio tinklo architektiira kaip funkcija S, su mazesniu
parametry skai¢iumi ir trumpesniu duomeny apdorojimo laiku nei neuroniniai
tinklai keleto klasiy RGB segmentavimui;

pateikti funkcijas 1" ir M, kurios sumazinty svyravimus su triju ,,Kinect™ jrengi-
niy saranka, palyginti su vienu ,,Kinect* irenginiu.

6.1.3. UZdaviniai

Darbo tikslui pasiekti keliami tokie uzdaviniai:
1. ISanalizuoti esamus sprendimus geometriniam paveiksléliy segmentavimui, ma-
Sininiu mokymu gristam segmentavimui bei skeletos salajos algoritmus;
. Pasiiilyti greita geometrinio paveiksléliy segmentavimo algoritma;
. Pasiiilyti automatinio paveiksléliy segmentavimo masininio mokymosi modelj;
. Pasitlyti nauja skelety salajos algoritma;
. Ivertinti visuy sukurty algoritmy greitaveika ir tiksluma.

:l;Ul-lkal\)

. Mokslinis naujumas

Siame darbe pristatomas toks mokslinis naujumas:
. Aprépties dézutémis gristas segmentavimo algoritmas, 367 kartus greitesnis nei
euklidiniu klasterizavimu gristas su pasirinktu duomeny rinkiniu.
2. Rekursinis 2-vidurkiy padalijimo algoritmas su atsitiktinio misko klasifikatoriu-
mi padalijimui priimti, kuris sumazina per mazo segmentavimo paklaidas vidu-
tiniskai 2,5 karto su pasirinktu duomeny rinkiniu.

—

161

3. Greitas keleto ,,Kinect” irenginiy skelety kalibravimo ir salajos algoritmas, su-
mazinantis skelety svyravimus nuo 10% iki 2%.

4. Nauja sutrumpinta sasiikos neuroninio tinklo architektiira zmogaus kiinui seg-
mentuoti, kuriai reikia 27 kartus maziau parametry ir kuri apdoroja 40% didesni
paveiksléli 2 kartus grei¢iau nei ,,SegNet“ neuroninis tinklas [50].

6.1.5. Ginamieji teiginiai

» Bendras zmogaus priziiirimo taSky debesies segmentavimo laikas gali biiti su-
mazintas 66 kartus pritaikius optimizuota aprépties dézutémis grista algoritma,
palyginti su visiskai rankiniu segmentavimu ir 12%, palyginti su euklidine pa-
ieSka [49].

* Sutrumpintas dvejetainio gylio segmentavimo neuroninis tinklas gali pasiekti pa-
nasy tiksluma, kaip ir dideli Siuolaikiniai neuroniniai tinklai, skirti RGB duome-
nims segmentuoti.

» Aprépties dézutémis gristo per mazo segmentavimo rezultato plotas gali biiti
sumazintas 2,5 karto atkertant dali tasky debesies, naudojant pasitilyta rekursini
dvieju vidurkiy padalijima ir pasiiilytas padalijimo metrikas.

6.1.6. Praktiné verté

Pasiiilyti pusiau automatinio segmentavimo algoritmai su jy optimizacijomis yra
realizuoti programinés jrangos jrankyje dvejetainéms kaukéms ,,Kinect* gylio paveiks-
léliams zyméti. Jie padéjo sumazinti bendra kompiuterizuoto segmentavimo laika ir ta-
po imanoma dviem zmonéms suzyméti duomeny rinkinj, kurio dydis 220 tukst. gylio

v —

v —

naujumo, nes jame naudojamos naujos algoritmy variacijos.

Pasiiilyta ,,Agrast-6* architekttira gali buti taikoma didesnéje gylio duomeny ap-
dorojimo sistemoje, kur pats tinklas biity vienas i§ komponenty. Vienas i$ tokiy poten-
cialiy taikymy yra zmogaus siluety palyginimas naudojant Hausdorfo atstumo metrika.
Tai galéty biiti taitkoma jogos treniruotése, reabilitacijos veiklose ar kitokiam Zmogaus
sekimui. ,,Agrast-6 modelis yra galutinis Sios disertacijos rezultatas, nes visi segmen-
tavimo tyrimai veda prie §io modelio ir jo iSmokymo.

Pasiiilytas skelety salajos algoritmas buvo pritaikytas zmogaus judesiy analizei
[9]. Atlikti tikslesni matavimai leido nustatyti zmogaus sanariy apkrovas atliekant skir-
tingas veiklas. Algoritmas taip pat galéty biti taikomas kaip biidas uzfiksuoti patiks-
linta zmogaus skeleto reprezentacija nauojant kelis ,,Kinect* jrenginius.

6.2. Literatuiros apZvalga
6.2.1. Gylio duomeny surinkimas ir apdorojimas
6.2.1.1. Gylio jutikliai

,Microsoft Kinect* irenginiai teikia RGB, gylio ir IR vaizdo srautus, taip pat
zmogaus kiino indekso srauta bei skeleto sanariy padétis. Yra trys irenginio versijos

162

—,.Kinect®, ,,Kinect 2* ir ,,Azure Kinect®. Pastarasis tiksliausias [61, 65], bet nesta-
¢iakampis matymo laukas sunkiai panaudojamas [55] Ankstesniyju vaizdai triukSmin-
gesni [52, 53, 54]. ,,Kinect” programin¢ jranga taip pat néra tiksli [70, 37, 73], taciau
tai galima dalinai i$spresti [70, 72]. ,,Kinect” fiksuoja gylio duomenis apSviesdamas
sceng infraraudonaisias spinduliais [76] ir naudodamas skrydzio laiko metoda [77].

6.2.1.2. Skeleto duomeny is keleto jutikliy salaja

Dazniausiai naudojami algoritmai keliy jutikliy duomenims transformuoti { bend-
ra koordinaciy sistema:
* Iteracinis artimiausio tasko algoritmas [98];
* Transformacijos matricomis [102];
« Zymekliais objektais paremtos transformacijos [104];
* Posiikis matricomis [105];
* Metody derinys [107].

Zymekliais paremtas metodas yra greitesnis, nes nereikia nei apskai¢iuoti tinka-
my matricy, nei vykdyti keleto iteracijuy skaic¢iavimy, taciau reikalingas visiems jutik-
liams matomas specialus objektas. Transformuoti skeletai suliejami | viena naudojant
tiek paprasta vidurki [105], tiek vertinant patikimumo lygius [99, 102] ar panaudojant
ir papildoma gylio informacija [109].

6.2.1.3. Gylio Zemélapiai

Gylio zemeélapis yra i paveiksléli panasus gylio vaizdas, placiai naudojamas su
sasiikos neuroniniais tinklais semantiniam gylio vaizdu segmentavimui [112, 32, 113],
taciau jiems taikomi ir klasikiniai vaizdy aprodorijo algoritmai [116, 117]. Gylio Zemé-
lapiai daznai naudojami kartu su kity tipy duomenimis, pvz., RGB ir terminiais vaiz-
dais, kurie gali padidinti sprendimy tiksluma ir kartu sudétinguma [124, 120, 132].
Naudojant tik gylio duomenis rezultatai maziau priklauso nuo iSoriniy faktoriy [137,
138].

6.2.1.4. Trimaciai dvejetainiai paieskos medZiai

Dvejetainiai paieSkos medziai yra naudingi tasky debesy analizei, nes paieskos
algoritminis sudétingumas yra O(logn). Sie medZiai daznai naudojami segmentavi-
mui [140, 113, 141], klasterizavimui [142, 143, 144]. Subalansuoto daugiamacio me-
dzio kurimas yra algoritmiskai sudétingas, nes reikia daug karty rasti medianas. Tai
galima spresti taikaint trijy medianos algoritma [149], iSankstini duomeny surikiavima
[150] ar taikyti grafinius procesorius [151].

6.2.1.5. Triuk§mo mazinimas

Gylio kadrams tinka tie patys triuk§mo mazinimo algoritmai, kaip ir RGB vaiz-
dams. Vidurkio ir medianos filtrai yra paprasti metodai, taciau gali sulieti krastus [165,
166]. Gauso filtras efektyvesnis, taciau sudétingesnis skaic¢iavimo pozitiriu. Dvisaliai
filtrai prideda Gauso filtry diapazono svorj, geriau i§saugo krastus [179] ir efektyviai
sumazina auksto daznio triukSma [182], bet apskaiciuojami dar léciau [187]. MasSini-
niu mokymusi pagristi sprendimai taip pat mazina tam tikry tipy triukSma [188], tac¢iau

163

jiems reikalingas sudétingas mokymosi procesas ir jie ne visada tinkami.
6.2.2. Tasky debesy panaSumo metrikos

Daiso koeficientas (DSC) [189] ir Zakardo indeksas [190] yra daznai naudoja-
mos metrikos aibiy panasumui jvertinti vaizdy segmentavime. Pirmasis iSreiSkiamas
formule:

2|AN B|
DSC = ———, (6.5)
|Al + |B|
antrasis: AN B
N
J_]AUB]' (6.6)

Abi metrikos yra jautresnés per mazam nei per dideliam segmentavimui [192].
6.2.3. Segmentavimo ir klasterizavimo metodai
6.2.3.1. Geometriniai segmentavimo ir klasterizavimo metodai

Euklidinio klasterizavimo [49] veikimo principas parodytas 6.2.1 pav. Jis nau-
doja spindulio paieska taSkams tam tikru atstumu nuo pradinio tasko rasti ir priskiria
juos grupei. Algoritmo sudétingumas yra O(nlogn). Aprépties dézutés taip pat taiko-
mos segmentavimo uzduotims kaip neuroniniy tinkly i§vestis [200, 201], taciau Siems
sprendimams iSmokyti reikia duomeny rinkiniy. Tinkami rinkiniai yra KITTI [207] ir
iSAID [208], tadiau ju kiirimas uztrunka dél didelio kiekio rankinio darbo.

Aprépties dézutés gali biiti naudojamos klasterizavimui kaip jau esamo klasterio
savybé. Jos yra paprastos [212] ir greitai apskai¢iuojamos [213, 214], taCiau gali biiti
netikslios [217] ir ribotos [218], jei reikia segmentuoti sudétingy formy arba arti esan-
¢ius objektus. Klasterizavimo metodai gali biiti pritaikyti ir segmentavimui [220, 221,
222]. Euklidinis klasterizavimas naudojamas taskams sujungti i segmentus [223] arba
padalinti klasterj | segmentus [224].

6.2.3.2. Nepriziirimas klasterizavimas

K-vidurkiy algoritmas [236] yra nepriziiirimo masininio mokymosi metodas, tin-
kamas tasky debesims klasterizuoti. Jis turi viena hiperparametra k, kuris apibrézia
tasky debesyje esanciy klasteriy skai¢iy. Viena i§ problemy taikant K-vidurkiy algo-
ritma k reik§més parinkimas, tam sitilomas alkiinés metodas [237]. Sis algoritmas taip
pat derinamas su kitais metodais tikslumui pagerinti [241]. Jis galéty biiti naudojamas
toliau segmentuojant esamy segmentavimo algoritmy iSvesti.

6.2.3.3. Rankinis segmentavimas

Rankinis vaizdy segmentavimas $iuo metu yra tiksliausias vaizdy segmentavimo
metodas [242, 243], taciau jis uzima daug laiko [247]. Programine jranga pagristi
segmentavimo sprendimai tikslumu nepralenkia rankinio segmentavimo [244, 245],
taCiau pusiau automatiniai metodai gali sutaupyti laiko.

164

v Pchecked?

Createa S
3D-tree
representation
of point cloud ! P s
T Take point p (;)
- from P
‘Set up an empty B 4
list of clusters C]
AddptoQ

¥

Qhas

of point o
neighbors of p in Reset Q to
a sphere of ‘empty state
radius < d 1

. J

W
yos [AddpointtoQ)

e |

6.2.1 pav. Euklidinio klasterizavimo algoritmas

6.2.3.4. Zmogaus kiino segmentavimas naudojant neuroninius tinklus

Regionais pagristi metodai iStraukia regiong i§ paveikslélio, ji apibiidina ypa-
tybémis, ir tada jomis mokomas regiony klasifikatorius. Regionai gali buti sitilomi
naudojant atranking paieSka [256], ypatybés iSgaunamos sastikos neuroniniu tinklu, o
atraminiy vektoriy masina nustato objekto klasg. Sastikos tinklai susideda tik i$ sa-
stikos sluoksniy ir gali buti derinami su visiskai sujungtu tinklu globalioms ypatybés
surasti, bet prie tinklo prideda daug parametry [261].

Sastikos neuroniniai tinklai iSgauna savybes naudojant nelinijines aktyvacijos
funkcijas [263, 264]. Segmentavimo neuroniniai tinklai daznai yra kuriami i$ klasi-
fikavimo neuroniniy tinkly. Dazna architektira yra koduoklés ir dekoduoklés tinklas
[266]. Praleidimo jungtys naudojamos norint uzpildyti semantinj tarpa tarp koduok-
lés ir dekoduoklés tinklo daliy [267]. Taciau juy veiksmingumas gin¢ijamas, kai kurie
tyrimai rodo, kad juos paSalinus gali tik Siek tiek sumazéti segmentavimo tikslumas
[272].

Segmentavimo uzdaviniams daznai naudojami koduoklés-dekoduoklés architek-
tiros bei U formos tinklai. Abiem atvejais pirmiausia tinklas suspaudzia pradinj vaizda
1 tam tikra savybiy vaizda, o po to i$ jo atkuria segmentuota vaizda. Suspaudziancioji
dalis, koduoklé, daznai naudojama klasifikuoti i§ esamy tinkly. Vienas pirmujy sék-
mingai taikyty tinkly buvo ,,AlexNet™ [275]. Jis ikvépé daug kity neuroniniy tinkly,
pvz., ,VGG-16* [27]. Tokiy tinkly didziausias trilkumas yra mazas tikslumas para-
metry skaiciui [283]. ,,VGG-16“ tinkla iSplétus iki U formos buvo sukurtas ,,SegNet*
tinklas [50], s€kmingai sprendziantis RGB vaizdy segmentavimo uzduotis. Jis naudoja
praleidimo jungtis dekoduoklés turimai informacijai papildyti. Modeliy dydziy paly-
ginimas pateikiamas 6.2.1 lenteléje. Dvejetainiam segmentavimui daznai naudojami
keliy objekty tipy segmentavimo metodai.

165

6.2.1 lentelé. Giliojo masininio mokymosi modeliy dydziai

Modelis Paskirtis Parametrai Modelio failo dydis
AlexNet [275] RGB klasifikavimas 62M 233 MB
VGG-16[27] RGB klasifikavimas 134M 528 MB
SegNet [50] Semantinis RGB segmentavimas 32M 117 MB
U-Net [267] RGB dvejetainis segmentavimas 30M 386 MB

6.2.4. Atsitiktiniai miSkai

Atsitiktiniai miSkai yra sprendimy medziy rinkinys, kuriy kiekvienas iSmokytas
naudojant skirtinga mokymo duomeny pavyzdi. Jie greitai mokosi ir prognozuoja, turi
mazai parametry [313, 314] ir yra taikomi segmentavimui, tac¢iau tam reikia pateikti
jiems aukstesnio lygio savybes [316, 322, 323]. Jie taip pat tinkami segmentuojamo
grafo daliai atmesti.

6.2.5. Literatiiros apZvalgos apibendrinimas

Literattiros analizé parodé, kad:
* ,,Azure Kinect” duomenis sunku panaudoti, nes jie ne sta¢iakampiai;
. Kinect" skelety salajai néra vieno geriausio sprendimo;
* Gylio zemélapiams tinka klasikiniai vaizdy apdorojimo algoritmai;
 AStuntainiai medziai imlas atmindéiai;
 Dvisalis filtras geriausiai tinka segmentavimui;
 Euklidinis klasterizavimas gali buiti adaptuotas segmentavimui;
» Rankinis segmentavimas vis dar yra tiksliausias, bet labai imlus laikui;
» Koduoklés ir dekoduoklés bei U formos architektiiros geriausiai tinka segmen-
tavimo uzdaviniams;
* Atsitiktiniai miskai gali buti taikomi segmentavimo rezultatui tikslinti.

6.3. Tasky debesy ir skeleto duomeny aprodojimo metodologija
6.3.1. Auksto lygio proceso apZvalga

Norint sukurti prizilirimo masininio mokymosi sprendima automatiniam seg-
mentavimui, reikia tinkamo duomeny rinkinio. Jo kiirima reikia i§ dalies automati-
zuoti, kad blity imanoma ji paruosti su protingomis laiko sanaudomis. D¢l to Siame
darbe yra sitilomi ir pusiau automatinio segmentavimo algoritmai tokiam duomeny
rinkiniui paruosti, ir masininio mokymosi architekttira, naudojanti $i duomeny rinki-
ni. Taip pat pateikiami ir algoritmai ,,Kinect” skeleto duomenims tikslinti panaudojant
kelis jutiklius.

6.3.2. KryZminés aibiy sankirtos metrika
Darbe sitiloma kryzminés sankirtos metrika segmentavimo tikslumui jvertinti:

_|ANnGP?

¢= e ©7

166

® - e ;

W another
F = segment
2 H&dl.lcle £ required?
Convert to
search tree | yes
' W
| Get starting
L — point From user |
no W
| Get segment For]
int —
Convert i #
ted tree e

to binary mask

6.3.1 pav. Segmentavimo veikla ir jai reikalingi komponentai

Si metrika pasizymi dviem savybémis, kuriy neturi kitos metrikos (Daiso koe-
ficientas ir Zakardo indeksas): per didelio segmentavimo atveju jos reik§mé parodo,
kiek karty per didelis plotas buvo parinktas, ir garantuoja, kad reikSmé nevirSys mazes-
niojo i$ dvieju santykiy, kurie yra dauginami. Pastaroji savybé neleidzia gauti dideliy
iverCiy prasto segmentavimo atveju.

6.3.3. Pusiau automatinis segmentavimas
6.3.3.1. Tasky debesy segmentavimas aprépties déZutémis

Tarkime, kad turime gylio kadry seka. Sprendziamas uzdavinys —kiekvienam ka-
drui surasti kauke, kuri parodyty, kurie kadro taskai priklauso zmogaus vaizdui. Spren-
dimui reikalingi komponentai, analizuojami Siame darbe, parodyti 6.3.1 pav. violetine
spalva.

Pasirinkta trimacio dvejetainio medzio struktura, kurioje taip pat saugoma ir op-
timizacijoms reikalinga informacija (ar mazgas pasalintas ir ar turi nepaSalinty Saky).
Medzio dydis atmintyje vienam ,,Kinect 2* gylio kadrui ~9,73 MB. TriukSmui mazinti
pasirinktas divsalis filtras.

Pusiau automatiniam segmentavimui pagal (6.2) reikalingas parametras m, pa-
teikiamas naudotojo. Jei laikome, kad kiekvienas pikselis gylio vaizde priklauso tik
vienam objektui, tai parinkus pikseli galima vienareikSmiskai nusakyti, kurio objekto
tai pikselis, ir pagal tai surasti visus jo pikselius, dél to naudotojui pakanka parinkti
bet kurj objekto pikseli kaip parametra m. Toks parametro parinkimas turi gera savy-
be, kad zmogui labai lengva surasti tokj pikselj — jei objektas aiskiai matomas, galima
paspausti bet kur ant jo. Segmentavimo metu reikia apibrézti objekto ribas ir jei ran-
damas taskas, esantis arti $ios ribos, jis pridedamas i objekta, taciau tai reiskia, kad
segmentavimo metu keiciasi ir pats objektas, dél to §i procesa reikia kartoti, iki objek-
tas konverguos. Dar viena uzduotis yra surasti tinkama atstuma, nuo kurio laikoma,
kad taskas yra arti objekto ribos, taciau ji rasti automatiskai sunku, o kartais ir i§ viso
neimanoma, priklausomai nuo duomeny. Nors segmentuojant galima naudoti ir euk-

167

lidiniu klasterizavimu grista algoritma, jo greitaveika néra gera, kadangi objektas yra
apibréziamas kaip minisfery rinkinys, dél to patikrinimas, ar taskas yra arti objekto,
turi algoritmini sudétinguma O(n). Kadangi objektas segmentavimo metu kinta, at-
metus taska dar nereiskia, kad jis i$ tiesy nepriklausys objektui. Kiek tikrinimy reikés,
priklauso nuo duomeny, bet ,,Kinect 2 gylio kadrui reikés tarp 400 tiikst. ir 216 min.
medzio vir§iiniy patikrinimy.

Euklidinj klasterizava galima pritaikyti pusiau automatiniam segmentavimui su
nedideliais pakeitimais, taciau jo algoritminis sudétingumas néra optimalus. Pagrindi-
né klititis — ilgai trunkantis patikrinimas, ar taskas yra arti objekto. Norint tai i§spresti,
reikalingas kitas objekto riby apribrézimas. Ta galima pasiekti turint vieng visam ob-
jektui bendra figiira, kuri nusako jo ribas. Tam tinka aprépties dézuté. Tokia dézute
galima sudaryti nubréziant maziausia galima staciakampi gretasieni, apimanti visus
objekto taskus. Dél Sios priezasties Siek tiek skiriasi segmentavimo eiga, kadangi pa-
tikrinus taskus, kurie priklauso aprépties dézutei, reikia atnaujinti ir pacia dézutg ir vél
kartoti paieSka. Toks paie$kos variantas sumazina vidutini sudétinguma nuo O (k logn)
iki ©(log k log n), kur k — objekto dydis, n — tasky debesies dydis, nes objektas didéja
greiciau ir reikia maziau patikrinimy, ar taskas priklauso objektui. Paieskai tada vietoj
minisferos dydzio reikalingas kitas hiperparametras — dézutés jautrumas, kuris nurodo,
kiek gali biiti nuo dézutés nutoles taskas, kad ji biity galima itraukti i dézute.

Sis algoritmas turi trikuma, kad jei reikia atlikti paieska su praplésta aprépties
dézute, vél bus surandami ir grazinami tie patys taskai, kurie jau buvo surasti. Siai
problemai spresti reikia turéti papildoma informacija, kurie taskai jau buvo surasti
ankstesnése iteracijose. Ta galima padaryti paciame paieskos medyje saugant pozymij,
ar taskas jau buvo surastas, ir jei buvo, tai ji praleisti. Sis pagerinimas sutaupo darbo,
nes nebereikia tikrinti, ar surasti taskai jau buvo pridéti anks¢iau. Tai sumazina tasky
surinkimo algoritmini sudétinguma iki tiesinio, konkrec¢iu pavyzdiniu atveju —nuo 200
miln. iki 20 tiikst. operacijy. Taip pat Sis pagerinimas leidzia nebetikrinti, ar taskas jau
priklauso kitam segmentui, nes toks taskas tiesiog nebus surastas, jei reikia rasti kelis
segmentus. Dél Sios priezasties gali Siek tiek skirtis segmentavimo rezultatas.

Po $io pagerinimo lieka dar viena problema — jeigu visa Saka jau pazymeta kaip
susegmentuota, tai ji bus tikrinama be reikalo. Darbe sitiloma pridéti dar viena pozymi
kiekvienai medzio virStunei, kuris parodo, ar §i vir§iné dar turi nei§segmentuoty vaiky,
ir jei neturi, tai nebetesti paieskos gilyn.

Dar viena problema su aprépties dézutémis gristu segmentavimo algoritmu yra
léetas dézutés padidéjimas. Kiekvienoje iteracijoje dézuté gali padidéti tik per nuro-
dyta algoritmo jautrumo parametra. Sifiloma tre¢ia optimizacija — plésti dézute ne po
iteracijos, bet po kiekvieno surasto tasko. Tai leisty dézutei padidéti greiciau ir del
to reikéty maziau paiesky medyje. Visas Sias optimizacijas galima sujungti ir naudoti
kartu, pirmos dvi gali biiti taikomos ir euklidinei paieskai.

6.3.3.2. Rankinis segmentavimas

Segmentavima galima atlikti ir vien tik rankiniu buidu, suteikiant galimybeg nau-
doti pelés zymeklj kaip teptuka norimoms zonoms nupiesti. Taip pat naudotojas gali ir
nutrinti blogai pazyméta segmenta ar atSaukti savo veiksmus. Rankinj ir pusiau auto-

168

matinj segmentavima galima naudoti kartu bendrame segmentavimo procese. Pusiau
automatinis sprendimas darba atliks greiciau, taciau ne su visais duomenimis yra tiks-
lus, dél to tiems atvejams, kai rezultatas néra teisingas, naudotojas gali pakoreguoti
gauta dvejetaing kauke rankiniu buidu. Taip galima grei¢iau susegmentuoti duomenis
nei rankiniais metodais neprarandant tikslumo.

Kadangi paieskos medziai naudoja daug atminties (10 sekundziy, 300 kadry ira-
Sas uzima ~3,4 GB atmintyje), tasky debesy rinkiniai apdorojami dalimis. [atminti
ikraunama dalis informacijos, ji susegmentuojama ir iSsaugoma i diska. Tada jkrauna-
ma kita dalis. Baigus apdoroti visa irasa, gautos kaukés sujungiamos i viena faila.

6.3.3.3. Per mazZo segmentavimo mazinimas naudojant rekursinj 2-vidurkiy pa-
dalijimo algoritma su atsitiktinio misko klasifikatoriumi padalijimui pri-
imti

Aprépties dézutémis gristas algoritmas turi tendencija atlikti per maza segmenta-
vima. Sia problema galima spresti padalijant rezultata i dvi dalis ir viena i§ ju atmetant.
Padalijimui sitllomas rekursinis 2-vidurkiy padalijimo algoritmas su atsitiktinio misko
klasifikatoriumi padalijimui priimti, kuris vis dalija segmenta i dvi dalis, kol po pada-
lijimo suprastéja tikslumas. Vienas centroidas yra fiksuotas (tai naudotojo pasirinktas
taskas), kitas — judantis. Antrasis centroidas kilnojamas, kol konverguoja. Abiem gau-
tiems klasteriams skai¢iuojamos tokios metrikos:

* Vidutiniai atstumai tarp visy kombinacijy tarp abieju centroidy ir trijy klasteriy

(pradinio ir abieju, gauty po padalijimo);

 Abiejy klasteriy dydziai.

Ivertinimas, kada nustoti dalinti, yra atlickamas atsitiktinio misko metodu. Bu-
vo suzymetos kaukés duomeny rinkiniui, tada parenkamas vienas i$ kaukés tasky kaip
pirmasis centroidas, bandoma dalinti ir tikrinama, ar pageréjo tikslumas, t.y. tai, ka ir
turéty prognozuoti atsitiktinis miskas. Sie duomenys naudojami jam mokyti. Klasifi-
katorius naudoja 9 medziy rinkinj. Klasifikavimo tikslumas buvo 95%.

Taikant pasiiilyta metoda bus laimima tikslumo, bet pralaimima greitaveikos, ka-
dangi reikés skaiciuoti papildomas metrikas, vykdyti 2 vidurkiy dalijimus bei naudoti
atsitiktin] miska.

6.3.4. Automatinis segmentavimas naudojant ,,Agrast-6* architektiira

»SegNet neuroninis tinklas yra vienas populiariausiy segmentavimo metody,
taciau yra didelis ir létas. Jis naudojamas kelioms klaséms segmentuoti, dél to turi
saugoti visy ju savybes. D¢l to paprastesné architektiira turéty galéti spresti zmogaus
dvejetainio segmentavimo problema.

Sitloma ,,Agrast-6* architektiira yra sutrumpintas ir sumazintas ,,SegNet™ va-
riantas, taciau remiasi tomis pac¢iomis idéjomis. Naudojama koduoklés ir dekoduoklés
architektiira, bet be praleidimo jungéiy. Koduoklé sumazinta tokiais principais:

* Trys sluoksniy blokai vietoj penkiy;

* Vienas sasiikos sluoksnis vietoj dviejy arba trijy bloke;

» Mazesni sasiikos sluoksniy gyliai;

* Staigesnis matmeny mazinimas iSrenkant maksimalia reikSmg.

169

448x512

448x512

6.3.2 pav. Sitlomo ,,Agrast-6“ modelio architekttira

Tinklo architekttira parodyta 6.3.2 pav. Mokomy parametry skaicius sumazéjo
nuo 32 min. iki 1,25 min.

Tinklas i$mokytas panaudojant jau minétus duomeny rinkinius. 80% duomeny
skirta mokyti, 20% — testuoti. Duomenys padalinti pagal videosekas. Modelio hiper-
parametrai pateikiami 6.3.1 lentel¢je.

6.3.5. Keleto kamery skelety transformacija ir salaja
6.3.5.1. Skelety transformacija

Skelety transformacija atlickama dviem zingsniais:

* Pasukti jutiklio koordinaciy sistema taip, kad Oz plokStuma sutapty su grindy
plokstuma;

* Pritaikyti posiikio ir perkélimo transformacijas, kad sutapty jutikliy koordinaciy
sistemos.

170

6.3.1 lentelé. ,,Agrast-6 modelio hiperparametry reikSmés

Hiperparametras Reiksme

Sastikos sluoksnio branduolio dydis 3x3
Sastikos sluoksnio aktyvacijos funkcija Lygintuvas
Maksimalios reiksSmés iSrinkimo dydis 4 x 4, 2 x 2 paskutiniam sluoksniui

Optimizatoirus Adamo
Optimizatoriaus mokymosi greitis 0,0001
Nuostolio funkcija Dvejetainé kryZminé entropija

Tai atliekama naudojant $ias formules:

By = Bprl - [Oa Dpv 0]7 (68)
Vq € By : Bia = [/22 + yZ cos(pq — pr2), \ /22 + y2 sin(pg — or2)], (6.9)
By = Bia + Tj2, (6.10)

¢ia B, yra jutiklio p skeleto taSky koordinatés, 7,1 — perkélimo vektorius, lygus
ty vektoriy skirtumui tarp jutikliy koordinaciy sistemu, D,, — jutiklio p aukstis vir§
zemes, @, — @2 — posiikis tarp jutikliy koordinaciy sistemy, nustatomas pagal bendro
tasko matymo kampa. Siiilomas skelety transformacijos algoritmas néra iteracinis, dél
to jo vykdymo laikas yra fiksuotas, visi skai¢iavimai atliekami arba viena karta, arba
vieng kartg kiekvienam taskui. Kita vertus, nereikalingas objektas Zymeklis, dél to Sis
algoritmas turi §io metodo privalumy nenaudojant zymeklio.

6.3.5.2. Skelety salaja

Darbe analizuojami literatiiroje sitilomi sprendimai:
» Koordinaciy vidurkis bei mediana [105];
* Mazo patikimumo reik§miy atmetimas [99].

6.4. Eksperimentiniai rezultatai
6.4.1. Duomeny rinkiniai

Sio darbo tyrimams naudojami du duomeny rinkiniai, surinkti naudojant tris ,,Ki-
nect 2 jrenginius. Pirmasis duomeny rinkinys, toliau darbe vadinamas ,,sudétinguo-
ju“, surinktas i§ 7 zmoniy 30 skirtingy poziciju. Jame yra 674 gylio vaizdo irasai (193
tikst. kadry) i$ trijy kampy (priekio, nugaros ir Sono). Antrasis duomeny rinkinys yra
40 zmoniy, kurie stovi arba sédi ant kédés, — 266 jrasai (69 tukst. kadry) i$ trijy kampy
(prieko, 120 ir 240 laipsniy). Kiekvienas irasas yra mazdaug 10 sek. trukmés, ir jame
zmogus juda minimaliai. Pozos detalizuotos priede C.

6.4.2. Pusiau automatinis segmentavimas
6.4.2.1. Eksperimentiné triuk§mo mazinimo analizé

Dvisalis filtras segmentavimo uzdaviniams visais atvejais veikia tiksliau, nei
Gauso ar medianos filtrai. Gauso filtras pablogina tiksluma, palyginti su jokio filt-

171

6.4.1 lentelé. Euklidinés paieskos ir aprépties dézuciy segmentavimo rezultaty paly-
ginimas

Euklidiné paieska (atspirties taskas) Aprépties dézutés

Apdorojimo laikas 2326 ms 6,33 ms
Aplankyty medzio virSiniy 194 min. 0,311 mln.
skaiCius

Paprastojo duomeny rinkinio 79,8% 82,1%

apdorojimo tikslumas

Sudétingojo duomeny rinkinio 48,1% 33,4%
apdorojimo tikslumas

Tikétinas bendras duomeny rin- 28 val. 25 val.
kinio paruosimo laikas

ro netaikymu. Kita vertus, dvisalis filtras pritaikomas dvigubai 1é¢iau nei mediana ir
4,5 karto 1é¢iau nei Gauso.

6.4.2.2. Eksperimentiné tasky debesies apdorojimo analizé

Sukurty segmentavimo algoritmy greitaveikai matuoti naudojamas pilnas gylio
kadro segmentavimas. Pasirinkta 1000 atsitiktiniy vaizdy ir skai¢iuojama ju apdoroji-
mo trukmé. Aprépties dézuciu algoritmo optimizacija su segmentuoty tasky pazymé-
jimu pagerino algoritmo greitaveika 23,4 karto. Automatinio dézutés didinimo opti-
mizacija pagerino greitaveika 11,7 karto. ISsegmentuoty Saky praleidimo optimizacija
pridéjo 13,5% greitaveikos. Sujungus visas optimizacijas gaunamas 83 karty pagrei-
téjimas. Euklidinés paieskos algoritmas veiké net 367 kartus 1éCiau, taciau pritaikius
optimizacijas pagreitéjo 4,2 karto.

Paprastam duomeny rinkiniui euklidinés paieSkos ir aprépties dézuciy algoritmai
veike panasiu tikslumu (80% ir 82%), taciau sudétingam duomeny rinkiniui euklidiné
paieska buvo daug tikslesné (48% ir 33%).

Abiejy algoritmy tikslumas priklauso nuo kameros kampo — kuo didesnis zmo-
gaus plotas matomas, tuo geresnis tikslumas. Taip pat pastebéta, kad aprépties dé-
zuciy algoritmas yra maziau stabilus — gaunamas arba labai geras, arba labai blogas
tikslumas. Euklidinés paieskos daromos klaidos buvo tiek per didelis, tiek per mazas
segmentavimas, taciau per mazo segmentavimo klaidos buvo daug mazesnés. Aprép-
ties dézuciy algoritmas tur¢jo daugiau problemy dél per didelio ir maZiau problemy
dél per mazo segmentavimo. Abu algoritmai iSsegmentavo daugiau nei 80% papras-
to duomeny rinkinio jrasy su didesniu nei 90% tikslumu. Sudétingam rinkiniui 80%
duomeny iSsegmentuoti daugiau nei 15% tikslumu, taciau euklidinei paieskai kreive
krenta léCiau. Abu algoritmai Siek tiek tiksliau segmentavo moteris nei vyrus.

Abu duomeny rinkiniai buvo susegmentuoti dvieju Zzmoniy per 25 zmogvalandes.
Segmentuojant buvo naudojamas aprépties dézuciy algoritmas, euklidiné paieska biity
pridéjusi papildomas 3 valandas. Jei segmentavimas bty atlieckamas tik rankiniu budu,
bty uztrukes 1455 valandas.

172

6.4.3. Per mazo segmentavimo mazZinimo naudojant rekursinj 2-vidurkiy pada-
lijimo algoritma su atsitiktinio miSko klasifikatoriumi padalijimui priimti
korekcijy ekperimentinis jvertinimas

Rekursinis 2-vidurkiy padalijimo algoritmas su atsitiktinio misko klasifikatoriu-
mi padalijimui priimti per mazo segmentavimo tikslinimui prailgina skai¢iavimy laika
nuo 6,33 ms iki 46,9 ms. Kita vertus, tai vis tieck daug grei¢iau nei neoptimizuotas
euklidinés paieskos algoritmas. Didziausia laiko dali uzima taskuy, kurie buvo be rei-
kalo pazyméti kaip surasti, bisenos atktirimas bei paciy metriky skaiciavimas. Pa-
prastam duomeny rinkiniui §i korekceija turé¢jo mazai itakos, nes buvo mazai varianty,
kur algoritmas atlieka per maza segmentavima. Pastebima ir neteisingy atmetimy, kas
atspindi 95% klasifikatoriaus tiksluma (ne 100%), tad tikslumo pagerinimas nevertas
sulétéjimo. Kita vertus, pastebétas ryskus sudétingo duomeny rinkinio tikslumo pa-
geréjimas — blogiausiy varianty pakilo nuo 9% iki 34%, bendrai viso rinkinio — nuo
33% iki 55%. Smarkiai sumazéjo 20% tikslumo nesiekianc¢iy kadry. Toks pageréjimas
smarkiai sumazina rankinio trynimo, nes per mazo segmentavimo plotas blogiausiais
atvejais sumazejo nuo 11,1 karto per didelio iki 2,9 karto per didelio. Atlikus kokybi-
n¢ klaidy analiz¢ matosi, kad toliau tikslumo didinti nebeleidzia pasirinktas 2 vidurkiy
algoritmas. Kita vertus, ir dabartinis variantas smarkiai pagerina blogiausio tikslumo
rezultatus. [vertinta, kad, pritaikius $ia optimizacija, segmentavimo laikas galéty bati
sumazintas apie 7,5 val (nuo 25 iki 17,5 val). Taciau jei visi duomenys biity i$ paprasto
duomeny rinkinio, tokio pageréjimo nebuty.

6.4.4. ,,Agrast-6“ mokymas ir jvertinimas

,»Agrast-6° neuroninis tinklas per 4-9 mokymosi epochas pagerino nuostolio
funkcijos reik§me nuo 0,043 iki 0,0325. Testinio duomeny rinkinio rezultatai rodo,
kad tinklas nepersimoko ir rezultatai kiekviena epocha po truputi geréja. Jau pirmoje
epochoje po 400 paveiksléliy testiniame kadre matomas neryskus zmogaus siluetas,
po 64,8 tiikst. paveiksléliy tikslumas geresnis, tik galva lieka neryski. Kiekviena epo-
cha galvos tikslumas vis geréja, problema lieka tik pédos, kuriy tinklas po 9 epochy
mokymosi vis dar neranda. Atlikus paveiksléliy apdorojimo kiekviename sluoksnyje
analizg rasta, kad kad tinklo koduoklé turi aktyvacijas tik dalyje sluoksniy, dél to tink-
las galéty biti dar labiau sumazintas. Dekoduokléje matoma daug skirtingy zmogaus
silueto interpretacijy, i$ kuriy matosi, kad tinklas teisingai iSmoksta zmogaus silueto
savybes. Dél to ,,Agrast-6“, zvelgiant kokybiskai, iSmoko atpazinti Zzmogaus silueta, ir
$i supaprastinta architektiira sprendzia segmentavimo problema.

Atlikta neuroninio tinklo greitaveikos analizé. Nustatyta, kad prognozavimo lai-
kas yra 166 ms ir yra stabilus. ,,SegNet* tinklas su mazesniais paveiksléliais ir silp-
nesne vaizdo plokste dirbo 443 ms, tad ,,Agrast-6* greitis yra geresnis. ,,SegNet™ ir
»Agrast-6* palyginimas pateikiamas 6.4.2 lentel¢je.

»Agrast-6° pasieke 82% tiksluma su paprastu duomeny rinkiniu ir 89% tiksluma
su sudétingu, galimai dél to, kad sudétingas rinkinys yra 3 kartus didesnis, bet tai vis
tiek rodo, kad tinklas iSmoko net ir sudétingose pozose esanti zmogaus kiina. Geres-
nis paprasto duomeny rinkinio tikslumas pasiektas stovimose pozicijose ir i§ priekines

173

6.4.2 lentelé. ,,SegNet“ ir sitilomo ,,Agrast-6* neuroniniy tinkly palyginimas

SegNet Agrast-6
Modelio dydis diske 117 MB 15,4 MB
Parametry kiekis 32 min. 1,25 min.
Duomeny apdorojimo trukmé 69 ms @ 340x480 34 ms @ 448x512
Vidutiné kryZzmin¢ aibiy sankirta 89,5% 85,4%

kameros. Kameros matomas plotas turé¢jo jtakos ir sudétingam duomeny rinkiniui —
geriausias tikslumas i§ galinés kameros, kuri mato didziausia kiino plota, bet skirtumai
nuo kity kamery néra dideli. Gauti rezultatai persa iSvada, kad reikéty daugiau duo-
meny arba ilgesnio mokymo paprastam duomeny rinkiniui geriau iSmokti. 92% visy
kadry patenka { 80—-100% tikslumo rézj. ,,Agrast-6* tinklas daro tiek per didelio, tiek
per mazo segmentavimo klaidy, ta¢iau retai. Kai zmogus dalinai uzdengtas arba de-
vi sunkiai gylio kamerai matomas kelnes, aptinkama tik dalis Zzmogaus kiino. Kartais
aptinkama kita { zmogaus kiing panasi figtira.

6.4.5. Skelety transformacijos ir salajos eksperimentinis jvertinimas

Skelety salajos algoritmas buvo jvertintas naudojant 2400 kadry dydzio duomeny
rinkini su ramiai stovin€iais zmonémis. Matuojamos sanariy fliuktuacijos, kurios turé-
ty biiti minimalios esant geram tikslumui, nes zmogus stengiasi nejudéti. Koordinaciy
vidurkis buvo tikslesnis y ir z aSyse, mediana — z asyje. ReikSmiy vidurkinimas i$
buferio nedavé norimo efekto, dél to geriau naudoti tik vieno kadro informacija. Ma-
7o patikimumo tasky atmetimas taip pat nepagerino tikslumo. ISmatuotas algoritmo
veikimo greitis — 243 ps. Sanariy koordinaciy svyravimai sumazinti nuo 10% iki 2%.

6.5. ISvados

Darbe prieita prie tokiy iSvadu:

1. Literattros apzvalga parod¢, kad dvejetainio segmentavimo problemai gali buti
taikomi ir geometriniai, ir masininio mokymosi metodai, ta¢iau masininiu mo-
kymusi pagristi metodai paprastai pasizymi didesniu tikslumu, bet jiems reikia
daug duomeny mokant, tod¢l duomeny rinkinio paruoSimas yra viena didziausiy
kliti¢iy iSmokant segmentavimo neuroninius tinklus.

2. Tiek euklidiniu klasterizavimu, tiek siilomomis aprépties dézutémis gristi al-
goritmai tinka pusiau automatinio dvejetainio gylio segmentavimo problemai
spresti. Euklidiniu klasterizavimo gristas segmentavimas yra tikslesnis, ypac¢
sudétingose scenose (48,1% ir 33,4%), taCiau aprépties dézutémis gristas seg-
mentavimas veikia iki 367 karty grei¢iau (2,33 s ir 6,33 ms). Aprépties dézu-
¢iy sprendimas sumazino zmogaus darbo laika nuo 1455 valandy iki 25 valandy
duomeny rinkiniui paruosti.

3. Rekursinis 2-vidurkiy padalijimo algoritmas su atsitiktinio misko klasifikatoriu-
mi padalijimui priimti per mazam segmentavimui koreguoti pagerina segmen-
tavimo tiksluma ten, kur jis i§ pradziy buvo mazas (33,4% palyginti su 55,3%),
bet yra ne toks nasSus (6,33 ms ir 40,6 ms). Tai parodo, kad naudojant pasiiily-

174

ma sumazinamas per mazas segmentavimas. Taciau tiksluma bty galima dar
pagerinti, jei vietoj sitilomo rekursinio 2-vidurkiuy padalijimo biity galima rasti
geresn] tasky debesies padalijimo algoritma.

. Sitlomi pusiau automatiniai segmentavimo algoritmai labai sumazina laika, rei-
kalinga giluminiy vaizdo seky dvejetainéms kaukéms pazyméti. Naudojant sidi-
loma programinés jrangos sprendima jie leido paruosti kaukes 220 000 vaizdy
per 25 valandas, o Siuolaikinius duomeny rinkinius panasiems tikslams ruosti
daznai reikia iStisoms komandoms.

. Sitiloma ,,Agrast-6* architektiira parodé¢, kad mazesnés architekttiros gali duoti
panasy dvejetainio gylio segmentavimo tiksluma, kaip ir didelés architektiiros,
skirtos RGB segmentuoti. ,,Agrast-6* turi 27 kartus maziau iSmokomuy paramet-
ry nei ,,SegNet“, taciau vis tiek pasiekia 86% dvejetainio segmentavimo tiks-
luma. Nepaisant to, analizé parodé, kad sitilomos architektiiros koduoklé turi
mazai aktyvacijy, todél turéty biiti jimanoma pasiekti panasy tiksluma sumazi-
nant koduokle.

. Sitilomas skelety salajos algoritmas sumazino skeleto duomeny svyravimus nuo
pradiniy 10% naudojant viena ,,Kinect™ irengini iki 2% naudojant tris irenginius
bei algoritma. Jis buvo sékmingai panaudotas tolimesniems tyrimams Zmogaus
sanariy apkrovoms fizinés veiklos metu jvertinti.

175

BIBLIOGRAPHY

176

10.

11.

12.

13.

14.

15.

ROESNER, Franziska; KOHNO, Tadayoshi; MOLNAR, David. Security and
privacy for augmented reality systems. Communications of the ACM. 2014,
vol. 57, no. 4, pp. 88-96.

ZHANG, Qing; FU, Bo; YE, Mao; YANG, Ruigang. Quality dynamic human
body modeling using a single low-cost depth camera. In: Proceedings of the
IEEFE Conference on Computer Vision and Pattern Recognition. 2014,

pp. 676—683.

HU, Tianyu et al. Development and performance evaluation of a very low-cost
UAV-LiDAR system for forestry applications. Remote Sensing. 2020, vol. 13,
no. 1, p. 77.

CHEN, Lin-Zhuo et al. Spatial information guided convolution for real-time
RGBD semantic segmentation. /[EEE Transactions on Image Processing. 2021,
vol. 30, pp. 2313-2324.

MRACEK, Stépan et al. 3D face recognition on low-cost depth sensors. In:
2014 International Conference of the Biometrics Special Interest Group
(BIOSIG). 2014, pp. 1-4.

CIPPITELLI, E.; FIORANELLI, F.; GAMBI, E.; SPINSANTE, S. Radar and
RGB-depth sensors for fall detection: A review. I[EEE Sensors Journal. 2017,
vol. 17, no. 12, pp. 3585-3604.

KURILLO, G.; CHEN, A.; BAJCSY, R.; HAN, J. J. Evaluation of upper
extremity reachable workspace using Kinect camera. Technology and Health
Care. 2013, vol. 21, no. 6, pp. 641-656.

CHEN, Chen; LIU, Kui; JAFARI, Roozbeh; KEHTARNAVAZ, Nasser.
Home-based senior fitness test measurement system using collaborative inertial
and depth sensors. In: 2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. 2014, pp. 4135—4138.

RYSELIS, K. et al. Multiple Kinect based system to monitor and analyze key
performance indicators of physical training. Human-centric Computing and
Information Sciences. 2020, vol. 10, no. 1.

OFLL F. et al. Design and evaluation of an interactive exercise coaching system
for older adults: Lessons learned. I[EEE Journal of Biomedical and Health
Informatics. 2016, vol. 20, no. 1, pp. 201-212.

PATALAS[IMALISZEWSKA, J.; HALIKOWSKI, D.; DAMASEVICIUS, R.
An automated recognition of work activity in industrial manufacturing using
convolutional neural networks. Electronics (Switzerland). 2021, vol. 10, no. 23.

TADIC, V. et al. Perspectives of RealSense and ZED Depth Sensors for Robotic
Vision Applications. Machines. 2022, vol. 10, no. 3.

LONG, N. et al. Unifying obstacle detection, recognition, and fusion based on
millimeter wave radar and RGB-depth sensors for the visually impaired. Review
of Scientific Instruments. 2019, vol. 90, no. 4.

CAMALAN, S. et al. Gender detection using 3d anthropometric measurements
by kinect. Metrology and Measurement Systems. 2018, vol. 25, no. 2,
pp- 253-267.

KULIKAJEVAS, A.; MASKELIUNAS, R.; DAMASEVICIUS, R.;
SCHERER, R. Humannet-a two-tiered deep neural network architecture for
self-occluding humanoid pose reconstruction. Sensors. 2021, vol. 21, no. 12.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

CARMO VILAS-BOAS, Maria do et al. Full-body motion assessment:
Concurrent validation of two body tracking depth sensors versus a gold standard
system during gait. Journal of biomechanics. 2019, vol. 87, pp. 189-196.

MA, Yulin et al. Image encryption scheme based on alternate quantum walks
and discrete cosine transform. Opt. Express. 2021, vol. 29, no. 18,
pp- 28338-28351. Available from doi: 10.1364/0E.431945.

KHANDAY, N. Y.; SOFI, S. A. Taxonomy, state-of-the-art, challenges and
applications of visual understanding: A review. Computer Science Review.
2021, vol. 40.

GARCIA-GARCIA, A. et al. A survey on deep learning techniques for image
and video semantic segmentation. Applied Soft Computing Journal. 2018,
vol. 70, pp. 41-65.

ULKU, I.; AKAGUNDUZ, E. A Survey on Deep Learning-based Architectures
for Semantic Segmentation on 2D Images. Applied Artificial Intelligence. 2022.

FU, Kun et al. WSF-NET: Weakly supervised feature-fusion network for binary
segmentation in remote sensing image. Remote Sensing. 2018, vol. 10, no. 12,
p. 1970.

BARROWCLOUGH, Oliver JD; MUNTINGH, Georg;

NAINAMALALI, Varatharajan; STANGEBY, Ivar. Binary segmentation of
medical images using implicit spline representations and deep learning.
Computer Aided Geometric Design. 2021, vol. 85, p. 101972.

HU, Yuan-Ting; HUANG, Jia-Bin; SCHWING, Alexander. Maskrnn: Instance
level video object segmentation. Advances in neural information processing
systems. 2017, vol. 30.

SHAZEER, Noam et al. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. arXiv preprint arXiv:1701.06538. 2017.

HUANG, Yanping et al. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. Advances in neural information processing systems. 2019,
vol. 32.

WANG, Xiaogang et al. Deep learning in object recognition, detection, and
segmentation. Foundations and Trends® in Signal Processing. 2016, vol. 8, no.
4, pp. 217-382.

SIMONYAN, Karen; ZISSERMAN, Andrew. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014.

ZHU, Zhen et al. Asymmetric non-local neural networks for semantic
segmentation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019, pp. 593-602.

PASZKE, Adam; CHAURASIA, Abhishek; KIM, Sangpil;
CULURCIELLO, Eugenio. Enet: A deep neural network architecture for
real-time semantic segmentation. arXiv preprint arXiv:1606.02147.2016.

NOH, Hyeonwoo; HONG, Seunghoon; HAN, Bohyung. Learning
deconvolution network for semantic segmentation. In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 1520-1528.

EVERINGHAM, Mark et al. The pascal visual object classes (voc) challenge.
International journal of computer vision. 2010, vol. 88, no. 2, pp. 303-338.

XU, Chenfeng et al. Squeezesegv3: Spatially-adaptive convolution for efficient
point-cloud segmentation. In: European Conference on Computer Vision. 2020,
pp- 1-19.

CHANG, Angel X et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012. 2015.

177

178

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

OVED, Dan; ZHU, Tyler. BodyPix: Real-time Person Segmentation in the
Browser with TensorFlow.js [online]. 2019 [visited on 2022-07-09]. Available
from:
https://blog.tensorflow.org/2019/11/updated-bodypix-2.html.

LEHMENT, Nicolas; KAISER, Moritz; RIGOLL, Gerhard. Using segmented
3D point clouds for accurate likelihood approximation in human pose tracking.
International journal of computer vision. 2013, vol. 101, no. 3, pp. 482-497.

HU, Pengpeng; HO, Edmond Shu-Lim; MUNTEANU, Adrian. 3DBodyNet:
fast reconstruction of 3D animatable human body shape from a single
commodity depth camera. [EEE Transactions on Multimedia. 2021, vol. 24,
pp- 2139-2149.

RYSELIS, Karolis; PETKUS, Tautvydas. Nestandartiniy zmogaus kiino
pozicijy atpazinimo tikslumo naudojant ,,Kinect 2.0 jutiklius tyrimas. XX
tarpuniversitetinés magistranty ir doktoranty konferencijos ,, Informaciné
visuomené ir universitetinés studijos “ (IVUS 2015) pranesimy medziaga
“Informacinés technologijos”. 2015.

PAPADOPOULOS, Georgios Th; AXENOPOULOS, Apostolos;

DARAS, Petros. Real-time skeleton-tracking-based human action recognition
using kinect data. In: International Conference on Multimedia Modeling. 2014,
pp. 473-483.

NAVA, Armando; GARRIDO, Leonardo; BRENA, Ramon F. Recognizing
activities using a kinect skeleton tracking and hidden markov models. In: 2074
13th Mexican International Conference on Artificial Intelligence. 2014,

pp. 82-88.

WIEDERHOLD, B; RIVA, G. Balance recovery through virtual stepping
exercises using Kinect skeleton tracking: a followup study with chronic stroke
patients. Annual review of cybertherapy and telemedicine 2012: Advanced
technologies in the behavioral, social and neurosciences. 2012, vol. 181,

pp. 108-112.

ELTOUKHY, Moataz A; KUENZE, Christopher; OH, Jeonghoon;
SIGNORILE, Joseph F. Validation of static and dynamic balance assessment
using Microsoft Kinect for young and elderly populations. IEEE journal of
biomedical and health informatics. 2017, vol. 22, no. 1, pp. 147-153.

CLARK, Ross A et al. Validity of the Microsoft Kinect for assessment of
postural control. Gait & posture. 2012, vol. 36, no. 3, pp. 372-377.

DEHBANDI, Behdad et al. Using data from the Microsoft Kinect 2 to
determine postural stability in healthy subjects: A feasibility trial. PloS one.
2017, vol. 12, no. 2, ¢0170890.

GALNA, Brook et al. Accuracy of the Microsoft Kinect sensor for measuring
movement in people with Parkinson’s disease. Gait & posture. 2014, vol. 39, no.
4, pp. 1062—1068.

WANG, Baoliang; CHEN, Zeyu; CHEN, Jing. Gesture recognition by using
kinect skeleton tracking system. In: 2013 5th International Conference on
Intelligent Human-Machine Systems and Cybernetics. 2013, vol. 1, pp. 418-422.

DESTELLE, Frangois et al. Low-cost accurate skeleton tracking based on
fusion of kinect and wearable inertial sensors. In: 2014 22nd European Signal
Processing Conference (EUSIPCO). 2014, pp. 371-375.

LIAO, Yajie et al. Simultaneous calibration: a joint optimization approach for
multiple kinect and external cameras. Sensors. 2017, vol. 17, no. 7, p. 1491.

LI, Saiyi; PATHIRANA, Pubudu N; CAELLI, Terry. Multi-kinect skeleton
fusion for physical rehabilitation monitoring. In: 2014 36th annual international
conference of the ieee engineering in medicine and biology society. 2014,

pp- 5060-5063.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

RUSU, Radu Bogdan. Semantic 3D Object Maps for Everyday Manipulation in
Human Living Environments. 2009. PhD thesis. Computer Science department,
Technische Universitaet Muenchen, Germany.

BADRINARAYANAN, Vijay; KENDALL, Alex; CIPOLLA, Roberto. Segnet:
A deep convolutional encoder-decoder architecture for image segmentation.
IEEE transactions on pattern analysis and machine intelligence. 2017, vol. 39,

no. 12, pp. 2481-2495.

Fastest-selling gaming peripheral [online] [visited on 2022-06-12]. Available
from: https://www.guinnessworldrecords.com/world-
records/fastest-selling-gaming-peripheral.

HACHAJ, Tomasz; OGIELA, Marek R; KOPTYRA, Katarzyna. Effectiveness
comparison of Kinect and Kinect 2 for recognition of Oyama karate techniques.
In: 2015 18th International Conference on Network-Based Information Systems.
2015, pp. 332-337.

SAMIR, Mohammed; GOLKAR, Ehsan; RAHNI, Ashrani Aizzuddin Abd.
Comparison between the Kinect™ V1 and Kinect™ V2 for respiratory motion
tracking. In: 2015 IEEE International Conference on Signal and Image
Processing Applications (ICSIPA). 2015, pp. 150-155.

ABRELU, Jodo et al. Assessment of microsoft kinect in the monitoring and
rehabilitation of stroke patients. In: World Conference on Information Systems
and Technologies. 2017, pp. 167-174.

TOLGYESSY, Michal; DEKAN, Martin; CHOVANEC, L’ubos;

HUBINSKY, Peter. Evaluation of the azure Kinect and its comparison to Kinect
V1 and Kinect V2. Sensors. 2021, vol. 21, no. 2, p. 413.

LUO, Junren; ZHANG, Wanpeng; SU, Jiongming; XIANG, Fengtao.
Hexagonal convolutional neural networks for hexagonal grids. /[EEE Access.
2019, vol. 7, pp. 142738-142749.

ZHAO, Yunxiang et al. HexCNN: A Framework for Native Hexagonal
Convolutional Neural Networks. In: 2020 IEEE International Conference on
Data Mining (ICDM). 2020, pp. 1424-1429.

ALBERT, Justin Amadeus et al. Evaluation of the pose tracking performance of
the azure kinect and kinect v2 for gait analysis in comparison with a gold
standard: A pilot study. Sensors. 2020, vol. 20, no. 18, p. 5104.

ADIKARI, Sasadara B; GANEGODA, Naleen C; MEEGAMA, Ravinda GN;
WANNIARACHCH]I, Indika L. Applicability of a single depth sensor in
real-time 3D clothes simulation: augmented reality virtual dressing room using
kinect sensor. Advances in Human-Computer Interaction. 2020, vol. 2020.

CONLY, Christopher; ZHANG, Zhong; ATHITSOS, Vassilis. An integrated
RGB-D system for looking up the meaning of signs. In: Proceedings of the 8th
ACM International Conference on PErvasive Technologies Related to Assistive
Environments. 2015, pp. 1-8.

MALLICK, Tanwi; DAS, Partha Pratim; MAJUMDAR, Arun Kumar.
Characterizations of noise in Kinect depth images: A review. [EEE Sensors
Journal. 2014, vol. 14, no. 6, pp. 1731-1740.

CHEN, Li; LIN, Hui; LI, Shutao. Depth image enhancement for Kinect using
region growing and bilateral filter. In: Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012). 2012, pp. 3070-3073.

FU, Jingjing et al. Kinect-like depth denoising. In: 2012 IEEE international
symposium on circuits and systems (ISCAS). 2012, pp. 512-515.

SHIRES, Luke et al. Enhancing the tracking capabilities of the Microsoft Kinect
for stroke rehabilitation. In: 2013 IEEE 2nd International Conference on
Serious Games and Applications for Health (SeGAH). 2013, pp. 1-8.

179

180

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

FANKHAUSER, Péter et al. Kinect v2 for mobile robot navigation: Evaluation
and modeling. In: 2015 International Conference on Advanced Robotics (ICAR).
2015, pp. 388-394.

IBRAHIM, Mostafa Mahmoud et al. Depth map artefacts reduction: A review.
IET Image Processing. 2020, vol. 14, no. 12, pp. 2630-2644.

SWEENEY, Chris; IZATT, Greg; TEDRAKE, Russ. A supervised approach to
predicting noise in depth images. In: 2019 International Conference on Robotics
and Automation (ICRA). 2019, pp. 796—802.

KURNIAWAN, Aditya; WARDANI, Kholilatul. Kinect Structural Noise
Elimination Technique For ITIS Mobile Robot Data Collector. International
Journal of Engineering & Technology. 2018, vol. 7, no. 4.27, pp. 1-5.

INGALE, Anupama K et al. Real-time 3D reconstruction techniques applied in
dynamic scenes: A systematic literature review. Computer Science Review.
2021, vol. 39, p. 100338.

SHUM, Hubert PH; HO, Edmond SL; JIANG, Yang; TAKAGI, Shu. Real-time
posture reconstruction for microsoft kinect. /EEE transactions on cybernetics.
2013, vol. 43, no. 5, pp. 1357-1369.

HO, Edmond SL et al. Improving posture classification accuracy for depth
sensor-based human activity monitoring in smart environments. Computer
Vision and Image Understanding. 2016, vol. 148, pp. 97-110.

KULIKAJEVAS, Audrius; MASKELIUNAS, Rytis;

DAMASEVICIUS, Robertas. Detection of sitting posture using hierarchical
image composition and deep learning. PeerJ computer science. 2021, vol. 7,
ed42.

OTTO, Michael et al. Applicability evaluation of kinect for EAWS ergonomic
assessments. Procedia CIRP. 2019, vol. 81, pp. 781-784.

QIN, Hongxing et al. PointSkel CNN: Deep Learning-Based 3D Human
Skeleton Extraction from Point Clouds. In: Computer Graphics Forum. 2020,
vol. 39, pp. 363-374. No. 7.

KULIKAJEVAS, Audrius; MASKELIUNAS, Rytis;

DAMASEVICIUS, Robertas. Adversarial 3D Human Pointcloud Completion
from Limited Angle Depth Data. [EEE Sensors Journal. 2021, vol. 21, no. 24,
pp- 27757-27765.

MOROZOV, MN; SHUBIN, AA; NAIDENOV, KM; DERBENEYV, AA.
Physical Bases of a ToF Camera—Based Optical Tracking System for Surgical
Instruments. Bulletin of the Russian Academy of Sciences: Physics. 2018,

vol. 82, no. 12, pp. 1525-1528.

SARBOLANDI, Hamed; LEFLOCH, Damien; KOLB, Andreas. Kinect range
sensing: Structured-light versus Time-of-Flight Kinect. Computer vision and
image understanding. 2015, vol. 139, pp. 1-20.

ALHWARIN, Faraj; FERREIN, Alexander; SCHOLL, Ingrid. IR stereo kinect:
improving depth images by combining structured light with IR stereo. In: Pacific
Rim International Conference on Artificial Intelligence. 2014, pp. 409—-421.

BHATEJA, Aditi et al. Depth analysis of kinect v2 sensor in different mediums.
Multimedia Tools and Applications. 2022, vol. 81, no. 25, pp. 35775-35800.

STOMMEL, Martin; BEETZ, Michael; XU, Weiliang. Inpainting of missing

values in the Kinect sensor’s depth maps based on background estimates. /EEE
Sensors Journal. 2013, vol. 14, no. 4, pp. 1107-1116.

HUANG, Jie; ZHOU, Wengang; LI, Houqgiang; LI, Weiping. Sign language
recognition using real-sense. In: 2015 IEEE China Summit and International

Conference on Signal and Information Processing (ChinaSIP). 2015,
pp. 166—170.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

NEUPANE, Chiranjivi; KOIRALA, Anand; WANG, Zhenglin;

WALSH, Kerry Brian. Evaluation of depth cameras for use in fruit localization
and sizing: Finding a successor to kinect v2. Agronomy. 2021, vol. 11, no. 9,

p. 1780.

YIN, Jingfang; ZHU, Dengming; SHI, Min; WANG, Zhaoqi. Depth maps
restoration for human using RealSense. /EEE Access. 2019, vol. 7,
pp. 112544-112553.

HALMETSCHLAGER-FUNEK, Georg; SUCHI, Markus; KAMPEL, Martin;
VINCZE, Markus. An empirical evaluation of ten depth cameras: Bias,
precision, lateral noise, different lighting conditions and materials, and multiple
sensor setups in indoor environments. /EEE Robotics & Automation Magazine.
2018, vol. 26, no. 1, pp. 67-77.

ELARABY, Ahmed Fawzy; HAMDY, Ayman; REHAN, Mohamed. A
kinect-based 3d object detection and recognition system with enhanced depth
estimation algorithm. In: 2018 IEEE 9th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON). 2018,

pp- 247-252.

ENGEL, Jakob; STUCKLER, Jérg; CREMERS, Daniel. Large-scale direct
SLAM with stereo cameras. In: 2015 IEEE/RSJ international conference on
intelligent robots and systems (IROS). 2015, pp. 1935-1942.

USENKO, Vladyslav; ENGEL, Jakob; STUCKLER, Jorg; CREMERS, Daniel.
Direct visual-inertial odometry with stereo cameras. In: 2016 IEEE International
Conference on Robotics and Automation (ICRA). 2016, pp. 1885-1892.

MUR-ARTAL, Raul; TARDOS, Juan D. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics.
2017, vol. 33, no. 5, pp. 1255-1262.

WANG, Rui; SCHWORER, Martin; CREMERS, Daniel. Stereo DSO:
Large-scale direct sparse visual odometry with stereo cameras. In: Proceedings
of the IEEFE International Conference on Computer Vision. 2017,

pp- 3903-3911.

SAPONARO, Philip; SORENSEN, Scott; RHEIN, Stephen;
KAMBHAMETTU, Chandra. Improving calibration of thermal stereo cameras
using heated calibration board. In: 2015 IEEE International Conference on
Image Processing (ICIP). 2015, pp. 4718-4722.

FATHI, Habib; BRILAKIS, Ioannis. Multistep explicit stereo camera calibration
approach to improve euclidean accuracy of large-scale 3D reconstruction. 2016.

GENOVESE, Katia; CHI, Yuxi; PAN, Bing. Stereo-camera calibration for
large-scale DIC measurements with active phase targets and planar mirrors.
Optics express. 2019, vol. 27, no. 6, pp. 9040-9053.

GAQO, Zeren et al. Stereo camera calibration for large field of view digital image
correlation using zoom lens. Measurement. 2021, vol. 185, p. 109999.

ZOETGNANDE, Yannick Wend Kuni; FOUGERES, Alain-Jérome;
CORMIER, Geoffroy; DILLENSEGER, Jean-Louis. Robust low resolution
thermal stereo camera calibration. In: Eleventh International Conference on
Machine Vision (ICMV 2018). 2019, vol. 11041, pp. 353-360.

PAN, Liyuan et al. Joint stereo video deblurring, scene flow estimation and
moving object segmentation. /[EEE Transactions on Image Processing. 2019,
vol. 29, pp. 1748-1761.

OTTONELLI, Simona; SPAGNOLO, Paolo; MAZZEO, Pier Luigi;
LEO, Marco. Improved video segmentation with color and depth using a stereo
camera. In: 2013 IEEE international conference on industrial technology

(ICIT). 2013, pp. 1134-1139.

181

182

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

KAKEGAWA, Shinji; MATONO, Haruki; KIDO, Hideaki; SHIMA, Takeshi.
Road surface segmentation based on vertically local disparity histogram for
stereo camera. International Journal of Intelligent Transportation Systems
Research. 2018, vol. 16, no. 2, pp. 90-97.

BESL, Paul J; MCKAY, Neil D. Method for registration of 3-D shapes. In:
Sensor fusion 1V: control paradigms and data structures. 1992, vol. 1611,
pp. 586—606.

KITSIKIDIS, Alexandros; DIMITROPOULOS, Kosmas; DOUKA, Stella;
GRAMMALIDIS, Nikos. Dance analysis using multiple kinect sensors. In:
2014 international conference on computer vision theory and applications
(VISAPP). 2014, vol. 2, pp. 789-795.

SUSANTO, Wandi; ROHRBACH, Marcus; SCHIELE, Bernt. 3D object
detection with multiple kinects. In: European Conference on Computer Vision.
2012, pp. 93-102.

MOHAMMADI, Shahram; GERVEI, Omid. Three Dimensional Posed Face
Recognition with an Improved Iterative Closest Point Method. 3D Research.
2019, vol. 10, no. 3, pp. 1-17.

ASTERIADIS, Stylianos et al. Estimating human motion from multiple kinect
sensors. In: Proceedings of the 6th international conference on computer
vision/computer graphics collaboration techniques and applications. 2013,
pp. 1-6.

KOWALSKI, Marek; NARUNIEC, Jacek; DANILUK, Michal. Livescan3d: A
fast and inexpensive 3d data acquisition system for multiple kinect v2 sensors.
In: 2015 international conference on 3D vision. 2015, pp. 318-325.

NGUYEN, Manh-Hung; HSIAO, Ching-Chun; CHENG, Wen-Huang;
HUANG, Ching-Chun. Practical 3D human skeleton tracking based on
multi-view and multi-Kinect fusion. Multimedia Systems. 2022, vol. 28, no. 2,
pp. 529-552.

KAENCHAN, Suttipong; MONGKOLNAM, Pornchai; WATANAPA, Bunthit;
SATHIENPONG, Sasipa. Automatic multiple kinect cameras setting for simple
walking posture analysis. In: 2013 international computer science and
engineering conference (ICSEC). 2013, pp. 245-249.

BAEK, Seongmin; KIM, Myunggyu. Dance experience system using multiple
kinects. International Journal of Future Computer and Communication. 2015,
vol. 4, no. 1, p. 45.

RUCHAY, Alexey N; DOROFEEYV, Konstantin A; KOLPAKOYV, Vladimir I.
Fusion of information from multiple Kinect sensors for 3D object
reconstruction. Kounvromepnas onmuxa. 2018, vol. 42, no. 5, pp. 898-903.

VASUDEVAN, Vinita; RAMAKRISHNA, M. A hierarchical singular value
decomposition algorithm for low rank matrices. arXiv preprint
arXiv:1710.02812. 2017.

MOON, Sungphill; PARK, Youngbin; KO, Dong Wook; SUH, Il Hong. Multiple
kinect sensor fusion for human skeleton tracking using Kalman filtering.
International Journal of Advanced Robotic Systems. 2016, vol. 13, no. 2, p. 65.

MORATO, Carlos; KAIPA, Krishnanand N; ZHAO, Boxuan;

GUPTA, Satyandra K. Toward safe human robot collaboration by using multiple
kinects based real-time human tracking. Journal of Computing and Information
Science in Engineering. 2014, vol. 14, no. 1.

HAZRA, Sumit; PRATAP, Acharya Aditya; TRIPATHY, Dattatreya;
NANDY, Anup. Novel data fusion strategy for human gait analysis using
multiple kinect sensors. Biomedical Signal Processing and Control. 2021,
vol. 67, p. 102512.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

COUPRIE, Camille; FARABET, Clément; NAJMAN, Laurent; LECUN, Yann.
Indoor semantic segmentation using depth information. arXiv preprint
arXiv:1301.3572.2013.

TE, Gusi; HU, Wei; ZHENG, Amin; GUO, Zongming. RGCNN: Regularized
Graph CNN for Point Cloud Segmentation. In: Proceedings of the 26th ACM
international conference on Multimedia. 2018, pp. 746—754.

WANG, Weiyue; NEUMANN, Ulrich. Depth-aware cnn for rgb-d segmentation.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 135-150.

JU, Miso et al. A Kinect-based segmentation of touching-pigs for real-time
monitoring. Sensors. 2018, vol. 18, no. 6, p. 1746.

MUSSI, Elisa et al. A novel ear elements segmentation algorithm on depth map
images. Computers in Biology and Medicine. 2021, vol. 129, p. 104157.

LI, Dawei et al. Leaf Segmentation on Dense Plant Point Clouds with Facet
Region Growing. Sensors. 2018, vol. 18, no. 11, p. 3625.

MU, Y; ZHOU, G; WANG, H. Canopy Lidar Point Cloud Data K-Means
Clustering Watershed Segmentation Method. ISPRS Annals of Photogrammetry,
Remote Sensing & Spatial Information Sciences. 2020, vol. 6.

LI, Shifeng; LU, Huchuan; ZHANG, Lei. Arbitrary body segmentation in static
images. Pattern recognition. 2012, vol. 45, no. 9, pp. 3402-3413.

HSIEH, I-Hsuan et al. Outdoor walking guide for the visually-impaired people
based on semantic segmentation and depth map. In: 2020 International
Conference on Pervasive Artificial Intelligence (ICPAI). 2020, pp. 144-147.

POUDEL, Rudra PK; LIWICKI, Stephan; CIPOLLA, Roberto. Fast-scnn: Fast
semantic segmentation network. arXiv preprint arXiv:1902.04502. 2019.
KANG, Byeongkeun; LEE, Yeejin; NGUYEN, Truong Q. Depth-adaptive deep
neural network for semantic segmentation. [EEE Transactions on Multimedia.
2018, vol. 20, no. 9, pp. 2478-2490.

KIM, Sangpil; CHI, Hyung-Gun. First-Person View Hand Segmentation of
Multi-Modal Hand Activity Video Dataset. BMVC 2020. 2020.

PALMERO, Cristina et al. Multi-modal RGB—Depth—Thermal Human Body
Segmentation. International Journal of Computer Vision. 2016, vol. 118, no. 2,
pp. 217-239.

HUANG, Lei et al. Robust human body segmentation based on part appearance
and spatial constraint. Neurocomputing. 2013, vol. 118, pp. 191-202.

ZHAO, Yang; LIU, Zicheng; YANG, Lu; CHENG, Hong. Combing rgb and
depth map features for human activity recognition. In: Proceedings of The 2012
Asia Pacific Signal and Information Processing Association Annual Summit and
Conference. 2012, pp. 1-4.

PENG, Houwen et al. RGBD salient object detection: A benchmark and
algorithms. In: European conference on computer vision. 2014, pp. 92—109.

QI Xiaojuan et al. 3d graph neural networks for rgbd semantic segmentation.
In: IEEE International Conference on Computer Vision. 2017, pp. 5199-5208.

WANG, Jinghua et al. Learning common and specific features for RGB-D
semantic segmentation with deconvolutional networks. In: European
Conference on Computer Vision. 2016, pp. 664—679.

HU, Xinxin; YANG, Kailun; FEI, Lei; WANG, Kaiwei. Acnet: Attention based
network to exploit complementary features for rgbd semantic segmentation. In:
2019 IEEE International Conference on Image Processing (ICIP). 2019,

pp. 1440-1444.

183

184

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

QIU, Zhouyan et al. Low-cost mobile mapping system solution for traffic sign
segmentation using Azure Kinect. International Journal of Applied Earth
Observation and Geoinformation. 2022, vol. 112, p. 102895.

GHAFFARI, Mina; SOWMYA, Arcot; OLIVER, Ruth. Automated brain tumor
segmentation using multimodal brain scans: a survey based on models
submitted to the BraTS 2012-2018 challenges. /EEE reviews in biomedical
engineering. 2019, vol. 13, pp. 156-168.

VISSER, Eelke et al. Automatic segmentation of the striatum and globus
pallidus using MIST: Multimodal Image Segmentation Tool. Neurolmage. 2016,
vol. 125, pp. 479-497.

BUI, Hieu Minh et al. Using grayscale images for object recognition with
convolutional-recursive neural network. In: 2016 IEEE Sixth International
Conference on Communications and Electronics (ICCE). 2016, pp. 321-325.

HE, Yihui. Estimated depth map helps image classification. arXiv preprint
arXiv:1709.07077. 2017.

FOOLADGAR, Fahimeh; KASAEI, Shohreh. A survey on indoor RGB-D
semantic segmentation: from hand-crafted features to deep convolutional neural
networks. Multimedia Tools and Applications. 2020, vol. 79, no. 7,

pp. 4499-4524.

MAIJDI, Arafa; BAKKAY, Mohamed Chafik; ZAGROUBA, Ezzeddine. 3d
modeling of indoor environments using kinect sensor. In: 2013 IEEE Second
International Conference on Image Information Processing (ICIIP-2013). 2013,
pp. 67-72.

KEPSKI, Michal; KWOLEK, Bogdan. Unobtrusive fall detection at home using
kinect sensor. In: International Conference on Computer Analysis of Images and
Patterns. 2013, pp. 457-464.

BENTLEY, Jon Luis. Multidimensional Binary Search Trees Used for
Associative Searching. Communications of the ACM. 1975.

XIE, Yuxing; TIAN, Jiaojiao; ZHU, Xiao Xiang. Linking points with labels in
3D: A review of point cloud semantic segmentation. IEEE Geoscience and
Remote Sensing Magazine. 2020, vol. 8, no. 4, pp. 38-59.

ZHANG, Jiaying; ZHAO, Xiaoli; CHEN, Zheng; LU, Zhejun. A review of deep
learning-based semantic segmentation for point cloud. /EEE Access. 2019,
vol. 7, pp. 179118-179133.

NAJDATAEI, Hannaneh; NIKOLAKOPOULOS, Yiannis;

GULISANO, Vincenzo; PAPATRIANTAFILOU, Marina. Continuous and
parallel lidar point-cloud clustering. In: 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS). 2018, pp. 671-684.

ZHANG, Ling; ZHU, Zhigang. Unsupervised feature learning for point cloud
understanding by contrasting and clustering using graph convolutional neural
networks. In: 2019 International Conference on 3D Vision (3DV). 2019,

pp. 395-404.

ZHU, Youlian; HUANG, Cheng. An improved median filtering algorithm for
image noise reduction. Physics Procedia. 2012, vol. 25, pp. 609-616.

HACKEL, Timo et al. Semantic3d. net: A new large-scale point cloud
classification benchmark. arXiv preprint arXiv:1704.03847. 2017.

UY, Mikaela Angelina et al. Revisiting point cloud classification: A new
benchmark dataset and classification model on real-world data. In: Proceedings
of the IEEE/CVF international conference on computer vision. 2019,

pp- 1588-1597.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

BEN-SHABAT, Yizhak; LINDENBAUM, Michael; FISCHER, Anath. 3dmfv:
Three-dimensional point cloud classification in real-time using convolutional
neural networks. IEEE Robotics and Automation Letters. 2018, vol. 3, no. 4,
pp. 3145-3152.

HOARE, Charles AR. Quicksort. The computer journal. 1962, vol. 5, no. 1,
pp. 10-16.

KIRSCHENHOFER, Peter; PRODINGER, Helmut; MARTINEZ, Conrado.
Analysis of Hoare’s FIND algorithm with Median-of-three partition. Random
Structures & Algorithms. 1997, vol. 10, no. 1-2, pp. 143—156.

BROWN, Russell A. Building a balanced kd tree in o (kn log n) time. arXiv
preprint arXiv:1410.5420. 2014.

HU, Linjia; NOOSHABADI, Saeid; AHMADI, Majid. Massively parallel
KD-tree construction and nearest neighbor search algorithms. In: 2015 IEEE
International Symposium on Circuits and Systems (ISCAS). 2015,

pp. 2752-2755.

WEHR, David; RADKOWSKI, Rafael. Parallel kd-tree construction on the
GPU with an adaptive split and sort strategy. International Journal of Parallel
Programming. 2018, vol. 46, no. 6, pp. 1139-1156.

HU, Linjia; NOOSHABADI, Sacid. High-dimensional image descriptor
matching using highly parallel KD-tree construction and approximate nearest
neighbor search. Journal of Parallel and Distributed Computing. 2019,

vol. 132, pp. 127-140.

CAl, Yixi; XU, Wei; ZHANG, Fu. ikd-Tree: An incremental KD tree for robotic
applications. arXiv preprint arXiv:2102.10808. 2021.

DOORNIK, J.A.; HANSEN, H. Octree Encoding: A New Technique For The
Representation, Manipulation and Display of Arbitrary 3-D Objects by
Computer. 1980. Tech. rep. Rensseriaer Polytechnic Institute.

VO, Anh-Vu; TRUONG-HONG, Linh; LAEFER, Debra F;

BERTOLOTTO, Michela. Octree-based region growing for point cloud
segmentation. ISPRS Journal of Photogrammetry and Remote Sensing. 2015,
vol. 104, pp. 88-100.

SU, Yun-Ting; BETHEL, James; HU, Shuowen. Octree-based segmentation for
terrestrial LIDAR point cloud data in industrial applications. ISPRS Journal of
Photogrammetry and Remote Sensing. 2016, vol. 113, pp. 59-74.

GUPTA, Kunal et al. Octree Representation Improves Data Fidelity of Cardiac
CT Images and Convolutional Neural Network Semantic Segmentation of Left
Atrial and Ventricular Chambers. Radiology: Artificial Intelligence. 2021,

vol. 3, no. 6.

XIANG, Binbin; TU, Jingmin; YAO, Jian; LI, Li. A novel octree-based 3-D
fully convolutional neural network for point cloud classification in road
environment. [EEE Transactions on Geoscience and Remote Sensing. 2019,
vol. 57, no. 10, pp. 7799-7818.

MUZAHID, AAM et al. 3D Object classification using a volumetric deep neural
network: An efficient Octree Guided Auxiliary Learning approach. /EEE
Access. 2020, vol. 8, pp. 23802-23816.

STOJANOVIC, Vladeta; TRAPP, Matthias; RICHTER, Rico;
DOLLNER, Jiirgen. Service-oriented semantic enrichment of indoor point

clouds using octree-based multiview classification. Graphical Models. 2019,
vol. 105, p. 101039.

ZENG, Ming; ZHAO, Fukai; ZHENG, Jiaxiang; LIU, Xinguo. Octree-based
fusion for realtime 3D reconstruction. Graphical Models. 2013, vol. 75, no. 3,
pp. 126-136.

185

186

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

STROTER, Daniel; MUELLER-ROEMER, Johannes S; STORK, André;
FELLNER, Dieter W. OLBVH: octree linear bounding volume hierarchy for
volumetric meshes. The Visual Computer. 2020, vol. 36, no. 10, pp. 2327-2340.

SAFTLY, Waad; BAES, Maarten; CAMPS, Peter. Hierarchical octree and kd
tree grids for 3D radiative transfer simulations. Astronomy & Astrophysics.
2014, vol. 561, A77.

VERMA, Rohit; ALI, Jahid. A comparative study of various types of image
noise and efficient noise removal techniques. International Journal of advanced
research in computer science and software engineering. 2013, vol. 3, no. 10.

ERKAN, Ugur; GOKREM, Levent; ENGINOGLU, Serdar. Different applied
median filter in salt and pepper noise. Computers & Electrical Engineering.
2018, vol. 70, pp. 789-798.

HSIEH, Mu-Hsien; CHENG, Fan-Chieh; SHIE, Mon-Chau;

RUAN, Shang-Jang. Fast and efficient median filter for removing 1-99% levels
of salt-and-pepper noise in images. Engineering Applications of Artificial
Intelligence. 2013, vol. 26, no. 4, pp. 1333—-1338.

JASSIM, Firas Ajil; ALTAANI, Fawzi H. Hybridization of Otsu method and
median filter for color image segmentation. arXiv preprint arXiv:1305.1052.
2013.

ZHANG, Peixuan; LI, Fang. A new adaptive weighted mean filter for removing
salt-and-pepper noise. IEEFE signal processing letters. 2014, vol. 21, no. 10,
pp. 1280-1283.

SHAH, Anwar et al. Comparative analysis of median filter and its variants for
removal of impulse noise from gray scale images. Journal of King Saud
University-Computer and Information Sciences. 2020.

SHETTI, Pravin P; PATIL, AP. Performance comparison of mean, median and
wiener filter in MRI image de-noising. International Journal for Research
Trends and Innovation. 2017, vol. 2, no. 371-375.

CASTANEDA, Raul; GARCIA-SUCERQUIA, Jorge; DOBLAS, Ana. Speckle
noise reduction in coherent imaging systems via hybrid median—mean filter.
Optical Engineering. 2021, vol. 60, no. 12, p. 123107.

VIKRAMATHITHAN, AC; BHAT, Sourabh V; SHASHIKUMAR, DR.
Denoising High Density Impulse Noise using Duo-Median Filter for
Mammogram Images. In: 2020 International Conference on Smart Technologies
in Computing, Electrical and Electronics (ICSTCEE). 2020, pp. 610-613.

HULIK, Rostislav; SPANEL, Michal; SMRZ, Pavel; MATERNA, Zdenek.
Continuous plane detection in point-cloud data based on 3D Hough Transform.
Journal of visual communication and image representation. 2014, vol. 25, no. 1,
pp. 86-97.

YUN, Ting et al. Individual tree crown segmentation from airborne LiDAR data
using a novel Gaussian filter and energy function minimization-based approach.
Remote Sensing of Environment. 2021, vol. 256, p. 112307.

ANDRIA, G et al. Linear filtering of 2-D wavelet coefficients for denoising
ultrasound medical images. Measurement. 2012, vol. 45, no. 7, pp. 1792—-1800.

GOIJCIC, Zan; ZHOU, Caifa; WEGNER, Jan D; WIESER, Andreas. The
perfect match: 3d point cloud matching with smoothed densities. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 5545-5554.

TOMASI, Carlo, MANDUCHI, Roberto. Bilateral filtering for gray and color
images. In: Sixth international conference on computer vision (IEEE Cat. No.
98CH36271). 1998, pp. 839-846.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

LOGANAYAGI, T; KASHWAN, KR. A robust edge preserving bilateral filter
for ultrasound kidney image. Indian Journal of Science and Technology. 2015,
vol. 8, no. 23, p. 1.

YU, Haiping; HE, Fazhi; PAN, Yiteng. A scalable region-based level set method
using adaptive bilateral filter for noisy image segmentation. Multimedia Tools
and Applications. 2020, vol. 79, no. 9, pp. 5743-5765.

NADERNEJAD, Ehsan; SHARIFZADEH, Sara. A new method for image
segmentation based on Fuzzy C-means algorithm on pixonal images formed by
bilateral filtering. Signal, Image and Video Processing. 2013, vol. 7, no. 5,

pp. 855-863.

Z0U, Bochang; QIU, Huadong; LU, Yufeng. Point cloud reduction and
denoising based on optimized downsampling and bilateral filtering. leee Access.
2020, vol. 8, pp. 136316-136326.

ALMIRA, Gusti Ayu et al. Performance analysis of Gaussian and bilateral filter
in case of determination the fetal length. In: 2016 International Conference on
Knowledge Creation and Intelligent Computing (KCIC). 2016, pp. 246-252.

BANTERLE, Francesco; CORSINI, Massimiliano; CIGNONI, Paolo;
SCOPIGNO, Roberto. A low-memory, straightforward and fast bilateral filter
through subsampling in spatial domain. In: Computer Graphics Forum. 2012,
vol. 31, pp. 19-32. No. 1.

DAI, Longquan; YUAN, Mengke; ZHANG, Xiaopeng. Speeding up the
bilateral filter: A joint acceleration way. IEEE Transactions on Image
Processing. 2016, vol. 25, no. 6, pp. 2657-2672.

JANG, Sung-Joon; HWANG, Youngbae. Noise-aware and light-weight VLSI
design of bilateral filter for robust and fast image denoising in mobile systems.
Sensors. 2020, vol. 20, no. 17, p. 4722.

GAVASKAR, Ruturaj G; CHAUDHURY, Kunal N. Fast adaptive bilateral
filtering. /IEEE Transactions on Image Processing. 2018, vol. 28, no. 2,
pp. 779-790.

KULIKAJEVAS, Audrius; MASKELIUNAS, Rytis;
DAMASEVICIUS, Robertas; WLODARCZYK-SIELICKA, Marta.

Auto-refining reconstruction algorithm for recreation of limited angle humanoid
depth data. Sensors. 2021, vol. 21, no. 11, p. 3702.

DICE, Lee R. Measures of the amount of ecologic association between species.
Ecology. 1945, vol. 26, no. 3, pp. 297-302.

JACCARD, Paul. The distribution of the flora in the alpine zone. 1. New
phytologist. 1912, vol. 11, no. 2, pp. 37-50.

EELBODE, Tom et al. Optimization for medical image segmentation: theory
and practice when evaluating with dice score or Jaccard index. /EEE
Transactions on Medical Imaging. 2020, vol. 39, no. 11, pp. 3679-3690.

CAPPABIANCO, Fabio AM; MIRANDA, Paulo AV de; UDUPA, Jayaram K.
A critical analysis of the methods of evaluating MRI brain segmentation
algorithms. In: 2017 IEEE international conference on image processing (ICIP).
2017, pp. 3894-3898.

BURT, Andrew; DISNEY, Mathias; CALDERS, Kim. Extracting individual
trees from lidar point clouds using treeseg. Methods in Ecology and Evolution.
2019, vol. 10, no. 3, pp. 438-445.

LIU, Zongming; LIU, Guodong; LI, Jianxun; YE, Dong. Pose estimation of
rigid object in point cloud. In: 2016 9th International Congress on Image and
Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI).
2016, pp. 708-713.

187

188

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

NEUBAUER, Kai. Benchmarking SLAM reconstructions in absence of a
complete ground truth. 2022. PhD thesis. University of British Columbia.

LIU, Ying; ZHONG, Ruofei. Buildings and terrain of urban area point cloud
segmentation based on PCL. In: /OP Conference Series: Earth and
Environmental Science. 2014, vol. 17, p. 012238. No. 1.

NGUYEN, Anh; CANO, Abraham Monrroy; EDAHIRO, Masato;
KATO, Shinpei. Fast Euclidean Cluster Extraction Using GPUs. Journal of
Robotics and Mechatronics. 2020, vol. 32, no. 3, pp. 548-560.

LIU, Xuan; HU, Chunhua; LI, Pingping. Automatic segmentation of overlapped
poplar seedling leaves combining mask R-CNN and DBSCAN. Computers and
Electronics in Agriculture. 2020, vol. 178, p. 105753.

SCHAUER, Johannes; NUCHTER, Andreas. Collision detection between point
clouds using an efficient kd tree implementation. Advanced Engineering
Informatics. 2015, vol. 29, no. 3, pp. 440—458.

YANG, Bo et al. Learning object bounding boxes for 3D instance segmentation

on point clouds. Advances in neural information processing systems. 2019,
vol. 32.

ALI, Waleed et al. Yolo3d: End-to-end real-time 3d oriented object bounding
box detection from lidar point cloud. In: Proceedings of the European
conference on computer vision (ECCV) workshops. 2018, pp. 0-0.

XU, Danfei; ANGUELOV, Dragomir; JAIN, Ashesh. Pointfusion: Deep sensor
fusion for 3d bounding box estimation. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 244-253.

ZHOU, Yin; TUZEL, Oncel. Voxelnet: End-to-end learning for point cloud
based 3d object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 4490—4499.

HE, Chenhang et al. Structure aware single-stage 3d object detection from point
cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 11873—11882.

LI Bo. 3d fully convolutional network for vehicle detection in point cloud. In:
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2017, pp. 1513-1518.

SHI, Weijing; RAJKUMAR, Raj. Point-gnn: Graph neural network for 3d object
detection in a point cloud. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2020, pp. 1711-1719.

GEIGER, Andreas; LENZ, Philip; STILLER, Christoph; URTASUN, Raquel.
Vision meets robotics: The kitti dataset. The International Journal of Robotics
Research. 2013, vol. 32, no. 11, pp. 1231-1237.

WAQAS ZAMIR, Syed et al. isaid: A large-scale dataset for instance
segmentation in aerial images. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops. 2019, pp. 28-37.

SAHA, Baidya Nath et al. Quick detection of brain tumors and edemas: A
bounding box method using symmetry. Computerized medical imaging and
graphics. 2012, vol. 36, no. 2, pp. 95-107.

NEBEHAY, Georg; PFLUGFELDER, Roman. Clustering of static-adaptive
correspondences for deformable object tracking. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2015, pp. 2784-2791.

KEUPER, Margret et al. Motion segmentation & multiple object tracking by
correlation co-clustering. IEEE transactions on pattern analysis and machine
intelligence. 2018, vol. 42, no. 1, pp. 140-153.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

WANG, Xinlong et al. Solov2: Dynamic and fast instance segmentation.
Advances in Neural information processing systems. 2020, vol. 33,
pp. 17721-17732.

WANG, Qiang et al. Fast online object tracking and segmentation: A unifying
approach. In: Proceedings of the IEEE/CVF conference on Computer Vision and
Pattern Recognition. 2019, pp. 1328-1338.

HURTIK, Petr et al. Poly-YOLO: higher speed, more precise detection and
instance segmentation for YOLOV3. Neural Computing and Applications. 2022,
vol. 34, no. 10, pp. 8275-8290.

SHAFII, Mahnaz; SID-AHMED, Maher. Skew detection and correction based
on an axes-parallel bounding box. International Journal on Document Analysis
and Recognition (IJDAR). 2015, vol. 18, no. 1, pp. 59-71.

HSU, Cheng-Chun et al. Weakly supervised instance segmentation using the
bounding box tightness prior. Advances in Neural Information Processing
Systems. 2019, vol. 32.

XU, Yongchao et al. Gliding vertex on the horizontal bounding box for
multi-oriented object detection. /[EEE transactions on pattern analysis and
machine intelligence. 2020, vol. 43, no. 4, pp. 1452—-1459.

JAIN, Suyog Dutt; GRAUMAN, Kristen. Predicting sufficient annotation
strength for interactive foreground segmentation. In: Proceedings of the IEEE
International Conference on Computer Vision. 2013, pp. 1313—-1320.

HE, Yihui et al. Bounding box regression with uncertainty for accurate object
detection. In: Proceedings of the ieee/cvf conference on computer vision and
pattern recognition. 2019, pp. 2888-2897.

DUBEY, Shiv Ram; DIXIT, Pushkar; SINGH, Nishant; GUPTA, Jay Prakash.
Infected fruit part detection using K-means clustering segmentation technique.
2013.

DHANACHANDRA, Nameirakpam; MANGLEM, Khumanthem,;
CHANU, Yambem Jina. Image segmentation using K-means clustering
algorithm and subtractive clustering algorithm. Procedia Computer Science.
2015, vol. 54, pp. 764-771.

MITTAL, Himanshu et al. A comprehensive survey of image segmentation:
clustering methods, performance parameters, and benchmark datasets.
Multimedia Tools and Applications. 2022, vol. 81, no. 24, pp. 35001-35026.

ZERMAS, Dimitris; IZZAT, Izzat; PAPANIKOLOPOULOS, Nikolaos. Fast
segmentation of 3d point clouds: A paradigm on lidar data for autonomous
vehicle applications. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). 2017, pp. 5067-5073.

WANG, Ke et al. A portable and automatic Xtion-based measurement system
for pig body size. Computers and electronics in agriculture. 2018, vol. 148,
pp- 291-298.

SERRA, Jean Paul Frédéric. Image Analysis and Mathematical Morphology. In:
1983.

SHARMA, Arpit Kumar et al. Enhanced watershed segmentation
algorithm-based modified ResNet50 model for brain tumor detection. BioMed
Research International. 2022, vol. 2022.

YANG, Juntao et al. An individual tree segmentation method based on
watershed algorithm and three-dimensional spatial distribution analysis from
airborne LiDAR point clouds. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing. 2020, vol. 13, pp. 1055-1067.

LEWIS, Samuel H; DONG, Aijuan. Detection of breast tumor candidates using
marker-controlled watershed segmentation and morphological analysis. In: 2072
IEEE Southwest symposium on image analysis and interpretation. 2012, pp. 1-4.

189

190

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

AYREY, Elias et al. Layer stacking: A novel algorithm for individual forest tree
segmentation from LiDAR point clouds. Canadian Journal of Remote Sensing.
2017, vol. 43, no. 1, pp. 16-27.

MONGUS, Domen; ZALIK, Borut. An efficient approach to 3D single
tree-crown delineation in LiDAR data. ISPRS Journal of Photogrammetry and
Remote Sensing. 2015, vol. 108, pp. 219-233.

HUANG, Hongyu; LI, Xu; CHEN, Chongcheng. Individual tree crown
detection and delineation from very-high-resolution UAV images based on bias
field and marker-controlled watershed segmentation algorithms. /EEE Journal

of selected topics in applied earth observations and remote sensing. 2018,
vol. 11, no. 7, pp. 2253-2262.

KAUR, Amanpreet; VERMA, Ashish; SSIET, Derabassi. The marker-based
watershed segmentation-a review. IJEIT. 2013, vol. 3, no. 3, pp. 171-174.

SINGHALI, Pratik P; LADHAKE, Siddharth A. Brain tumor detection using
marker based watershed segmentation from digital mr images. International
Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN.
2013, pp. 2278-3075.

KWON, Goo-Rak et al. Brain image segmentation using a combination of
expectation-maximization algorithm and watershed transform. /nternational
Journal of Imaging Systems and Technology. 2016, vol. 26, no. 3, pp. 225-232.

BOLELLI, Federico; ALLEGRETTI, Stefano; BARALDI, Lorenzo;
GRANA, Costantino. Spaghetti labeling: Directed acyclic graphs for
block-based connected components labeling. /EEE Transactions on Image
Processing. 2019, vol. 29, pp. 1999-2012.

MACQUEEN, J. Classification and analysis of multivariate observations. In:
5Sth Berkeley Symp. Math. Statist. Probability. 1967, pp. 281-297.

BHOLOWALIA, Purnima; KUMAR, Arvind. EBK-means: A clustering
technique based on elbow method and k-means in WSN. International Journal
of Computer Applications. 2014, vol. 105, no. 9.

SAGLAM, Ali; MAKINECI, Hasan Bilgehan; BAYKAN, Omer Kaan;
BAYKAN, Nurdan Akhan. Clustering-based plane refitting of non-planar
patches for voxel-based 3D point cloud segmentation using k-means clustering.
Traitement du Signal. 2020.

ZHOU, Jing et al. Automated segmentation of soybean plants from 3D point
cloud using machine learning. Computers and Electronics in Agriculture. 2019,
vol. 162, pp. 143—153.

CHEN, Siyuan; TRUONG-HONG, Linh; LAEFER, Debra; MANGINA, Eleni.
Automated bridge deck evaluation through UAV derived point cloud. In:
CERI-ITRN2018. 2018, pp. 735-740.

YIN, Xuanyu; SASAKI, Yoko; WANG, Weimin; SHIMIZU, Kentaro. 3D
Object Detection Method Based on YOLO and K-Means for Image and Point
Clouds. arXiv preprint arXiv:2005.02132. 2020.

GRIMM, Oliver et al. Amygdalar and hippocampal volume: a comparison
between manual segmentation, Freesurfer and VBM. Journal of neuroscience
methods. 2015, vol. 253, pp. 254-261.

SCHOEMAKER, Dorothee et al. Hippocampus and amygdala volumes from
magnetic resonance images in children: Assessing accuracy of FreeSurfer and
FSL against manual segmentation. Neuroimage. 2016, vol. 129, pp. 1-14.

NUGENT, Allison C et al. Automated subcortical segmentation using FIRST:
test—retest reliability, interscanner reliability, and comparison to manual
segmentation. Human brain mapping. 2013, vol. 34, no. 9, pp. 2313-2329.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

SALVAGGIO, Giuseppe et al. Deep learning network for segmentation of the
prostate gland with median lobe enlargement in T2-weighted mr images:
comparison with manual segmentation method. Current Problems in Diagnostic
Radiology. 2021.

MAGLIARO, Chiara; CALLARA, Alejandro L; VANELLO, Nicola;
AHLUWALIA, Arti. A manual segmentation tool for three-dimensional neuron
datasets. Frontiers in neuroinformatics. 2017, vol. 11, p. 36.

WILD, Daniel; WEBER, Maximilian; EGGER, Jan. Client/server based online
environment for manual segmentation of medical images. arXiv preprint
arXiv:1904.08610. 2019.

CHARTRAND, Gabriel et al. Semi-automated liver CT segmentation using
Laplacian meshes. In: 2014 IEEE 11th International Symposium on Biomedical
Imaging (ISBI). 2014, pp. 641-644.

PIRI, Reza et al. Aortic wall segmentation in 18F-sodium fluoride PET/CT
scans: Head-to-head comparison of artificial intelligence-based versus manual
segmentation. Journal of Nuclear Cardiology. 2021, pp. 1-10.

CARDENAS, Carlos E et al. Advances in auto-segmentation. In: Seminars in
radiation oncology. 2019, vol. 29, pp. 185-197. No. 3.

MCGRATH, Hari et al. Manual segmentation versus semi-automated
segmentation for quantifying vestibular schwannoma volume on MRI.
International journal of computer assisted radiology and surgery. 2020, vol. 15,
no. 9, pp. 1445-1455.

BECKER, Anton S et al. Variability of manual segmentation of the prostate in
axial T2-weighted MRI: A multi-reader study. European journal of radiology.
2019, vol. 121, p. 108716.

YAMASHITA, Rikiya et al. Radiomic feature reproducibility in
contrast-enhanced CT of the pancreas is affected by variabilities in scan
parameters and manual segmentation. European radiology. 2020, vol. 30, no. 1,
pp. 195-205.

SULTANA, Farhana; SUFIAN, Abu; DUTTA, Paramartha. Evolution of image
segmentation using deep convolutional neural network: A survey.
Knowledge-Based Systems. 2020, vol. 201, p. 106062.

GIRSHICK, Ross; DONAHUE, Jeff; DARRELL, Trevor; MALIK, Jitendra.
Rich feature hierarchies for accurate object detection and semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2014, pp. 580-587.

UIJLINGS, Jasper RR; VAN DE SANDE, Koen EA; GEVERS, Theo;
SMEULDERS, Arnold WM. Selective search for object recognition.
International journal of computer vision. 2013, vol. 104, no. 2, pp. 154-171.

ZENG, Liang et al. A novel region-based image registration method for
multisource remote sensing images via CNN. /IEEE journal of selected topics in
applied earth observations and remote sensing. 2020, vol. 14, pp. 1821-1831.

GIRSHICK, Ross. Fast r-cnn. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1440—1448.

HE, Kaiming; GKIOXARI, Georgia; DOLLAR, Piotr; GIRSHICK, Ross. Mask
r-cnn. In: Proceedings of the IEEE international conference on computer vision.
2017, pp. 2961-2969.

KAMNITSAS, Konstantinos et al. Efficient multi-scale 3D CNN with fully
connected CRF for accurate brain lesion segmentation. Medical image analysis.
2017, vol. 36, pp. 61-78.

191

192

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

BASHA, SH Shabbeer; DUBEY, Shiv Ram; PULABAIGARI, Viswanath;
MUKHERIEE, Snehasis. Impact of fully connected layers on performance of
convolutional neural networks for image classification. Neurocomputing. 2020,
vol. 378, pp. 112—119.

DAL, Jifeng; LI, Yi; HE, Kaiming; SUN, Jian. R-fcn: Object detection via
region-based fully convolutional networks. Advances in neural information
processing systems. 2016, vol. 29.

BRIDLE, John. Training stochastic model recognition algorithms as networks
can lead to maximum mutual information estimation of parameters. Advances in
neural information processing systems. 1989, vol. 2.

FUKUSHIMA, Kunihiko. Cognitron: A self-organizing multilayered neural
network. Biological cybernetics. 1975, vol. 20, no. 3, pp. 121-136.

AGARAP, Abien Fred. Deep learning using rectified linear units (relu). arXiv
preprint arXiv.1803.08375. 2018.

JI, Yuzhu; ZHANG, Haijun; ZHANG, Zhao; LIU, Ming. CNN-based
encoder-decoder networks for salient object detection: A comprehensive review
and recent advances. Information Sciences. 2021, vol. 546, pp. 835-857.

RONNEBERGER, O.; FISCHER, P.; BROX, T. U-net: Convolutional networks
for biomedical image segmentation. 2015. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics).

MAZAHERI, Ghazal; MITHUN, Niluthpol Chowdhury; BAPPY, Jawadul H;
ROY-CHOWDHURY, Amit K. A Skip Connection Architecture for
Localization of Image Manipulations. In: CVPR workshops. 2019, pp. 119-129.

YOU, Chenyu; YANG, Linfeng; ZHANG, Yi; WANG, Ge. Low-dose CT via
deep CNN with skip connection and network-in-network. In: Developments in
X-Ray tomography XII. 2019, vol. 11113, pp. 429-434.

PENG, Yali et al. Dilated residual networks with symmetric skip connection for
image denoising. Neurocomputing. 2019, vol. 345, pp. 67-76.

FENG, Ruicheng et al. Removing diffraction image artifacts in under-display
camera via dynamic skip connection network. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 662—671.

WANG, Haonan; CAO, Peng; WANG, Jiaqi; ZAIANE, Osmar R. Uctransnet:
rethinking the skip connections in u-net from a channel-wise perspective with
transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence.
2022, vol. 36, pp. 2441-2449. No. 3.

CAMALAN, Seda et al. Gender detection using 3d anthropometric
measurements by kinect. Metrology and Measurement Systems. 2018, vol. 25,
no. 2.

ZHAO, Zhong-Qiu; ZHENG, Peng; XU, Shou-tao; WU, Xindong. Object
detection with deep learning: A review. I[EEE transactions on neural networks
and learning systems. 2019, vol. 30, no. 11, pp. 3212-3232.

KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey E. Imagenet
classification with deep convolutional neural networks. Advances in neural
information processing systems. 2012, vol. 25.

ALOM, Md Zahangir et al. The history began from alexnet: A comprehensive
survey on deep learning approaches. arXiv preprint arXiv:1803.01164. 2018.

LECUN, Yann et al. Backpropagation applied to handwritten zip code
recognition. Neural computation. 1989, vol. 1, no. 4, pp. 541-551.

ISLAM, Md Rakibul; MATIN, Abdul. Detection of COVID 19 from CT image
by the novel LeNet-5 CNN architecture. In: 2020 23rd International Conference
on Computer and Information Technology (ICCIT). 2020, pp. 1-5.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

SITAULA, Chiranjibi; HOSSAIN, Mohammad Belayet. Attention-based
VGG-16 model for COVID-19 chest X-ray image classification. Applied
Intelligence. 2021, vol. 51, no. 5, pp. 2850-2863.

GUAN, Qing et al. Deep convolutional neural network VGG-16 model for
differential diagnosing of papillary thyroid carcinomas in cytological images: a
pilot study. Journal of Cancer. 2019, vol. 10, no. 20, p. 4876.

GENG, Lei; ZHANG, Siqi; TONG, Jun; XIAO, Zhitao. Lung segmentation
method with dilated convolution based on VGG-16 network. Computer Assisted
Surgery. 2019, vol. 24, no. sup2, pp. 27-33.

YU, Wei et al. Visualizing and comparing AlexNet and VGG using
deconvolutional layers. In: 33 rd International Conference on Machine
Learning. 2016.

CANZIANI, Alfredo; PASZKE, Adam; CULURCIELLO, Eugenio. An analysis
of deep neural network models for practical applications. arXiv preprint
arXiv:1605.07678. 2016.

ALQAZZAZ, Salma; SUN, Xianfang; YANG, Xin; NOKES, Len. Automated
brain tumor segmentation on multi-modal MR image using SegNet.
Computational Visual Media. 2019, vol. 5, no. 2, pp. 209-219.

CHEN, Tingyang et al. Pavement crack detection and recognition using the
architecture of segNet. Journal of Industrial Information Integration. 2020,
vol. 18, p. 100144.

ALONSO, Inigo; MURILLO, Ana C. EV-SegNet: Semantic segmentation for
event-based cameras. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops. 2019, pp. 0-0.

ZHU, Fengcheng et al. Automatic measurement of fetal femur length in
ultrasound images: a comparison of random forest regression model and
SegNet. Mathematical Biosciences and Engineering. 2021, vol. 18, no. 6,
pp- 7790-7805.

MOU, Lichao; HUA, Yuansheng; ZHU, Xiao Xiang. A relation-augmented
fully convolutional network for semantic segmentation in aerial scenes. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,
pp. 12416-12425.

SEO, Hyunseok et al. Modified U-Net (mU-Net) with incorporation of
object-dependent high level features for improved liver and liver-tumor

segmentation in CT images. /[EEE transactions on medical imaging. 2019,
vol. 39, no. 5, pp. 1316-1325.

IGLOVIKOV, Vladimir; SHVETS, Alexey. Ternausnet: U-net with vggl1
encoder pre-trained on imagenet for image segmentation. arXiv preprint
arXiv:1801.05746. 2018.

CHEN, Liang-Chieh et al. Encoder-decoder with atrous separable convolution
for semantic image segmentation. In: Proceedings of the European conference
on computer vision (ECCV). 2018, pp. 801-818.

ZHOU, Sihang et al. High-resolution encoder—decoder networks for
low-contrast medical image segmentation. /EEE Transactions on Image
Processing. 2019, vol. 29, pp. 461-475.

ZHOU, Zongwei; RAHMAN SIDDIQUEE, Md Mahfuzur;

TAJBAKHSH, Nima; LIANG, Jianming. Unet++: A nested u-net architecture
for medical image segmentation. In: Deep learning in medical image analysis
and multimodal learning for clinical decision support. Springer, 2018, pp. 3—11.

SUN, Yi; TIAN, Yan; XU, Yiping. Problems of encoder-decoder frameworks
for high-resolution remote sensing image segmentation: Structural stereotype
and insufficient learning. Neurocomputing. 2019, vol. 330, pp. 297-304.

193

194

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

3009.

310.

AICH, Shubhra; KAMP, William van der; STAVNESS, lan. Semantic binary
segmentation using convolutional networks without decoders. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2018, pp. 197-201.

QIAO, Maoying; CHENG, Jun; BIAN, Wei; TAO, Dacheng. Biview learning
for human posture segmentation from 3D points cloud. PloS one. 2014, vol. 9,
no. 1, e85811.

SHEN, Yi et al. Empirical comparisons of deep learning networks on liver
segmentation. Computers, Materials and Continua. 2020, vol. 62, no. 3,
pp. 1233-1247.

IGLOVIKOYV, Vladimir; SEFERBEKOV, Selim; BUSLAEYV, Alexander;
SHVETS, Alexey. Ternausnetv2: Fully convolutional network for instance
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 2018, pp. 233-237.

PENNISI, Andrea et al. Skin lesion image segmentation using Delaunay
Triangulation for melanoma detection. Computerized Medical Imaging and
Graphics. 2016, vol. 52, pp. 89—103.

WANG, Guotai; LI, Wenqi; OURSELIN, Sébastien; VERCAUTEREN, Tom.
Automatic brain tumor segmentation using cascaded anisotropic convolutional
neural networks. In: International MICCAI brainlesion workshop. 2017,

pp. 178-190.

SONG, Kyungmin; CHOI, Han-Soo; KANG, Myungjoo. Squeezed fire binary
segmentation model using convolutional neural network for outdoor images on
embedded device. Machine Vision and Applications. 2021, vol. 32, no. 6,

pp. 1-12.

DENG, Tengfang et al. Comparison of multi-class and fusion of multiple
single-class SegNet model for mapping karst wetland vegetation using UAV
images. Scientific Reports. 2022, vol. 12, no. 1, p. 13270.

GROS, Charley; LEMAY, Andreanne; COHEN-ADAD, Julien. SoftSeg:
Advantages of soft versus binary training for image segmentation. Medical
image analysis. 2021, vol. 71, p. 102038.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2015, vol. 37, no. 9, pp. 1904-1916.

DANG]I, Shusil; LINTE, Cristian A; YANIV, Ziv. A distance map regularized
CNN for cardiac cine MR image segmentation. Medical physics. 2019, vol. 46,
no. 12, pp. 5637-5651.

VISIN, F. et al. ReSeg: A Recurrent Neural Network-Based Model for Semantic
Segmentation. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops. 2016, pp. 426—433.

SHUALI, B.; ZUO, Z.; WANG, B.; WANG, G. DAG-Recurrent Neural Networks
for Scene Labeling. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. 2016, vol. 2016-December, pp. 3620-3629.

SONG, Liangchen; YU, Gang; YUAN, Junsong; LIU, Zicheng. Human pose
estimation and its application to action recognition: A survey. Journal of Visual
Communication and Image Representation. 2021, vol. 76, p. 103055.

YAO, Rui et al. Video object segmentation and tracking: A survey. ACM
Transactions on Intelligent Systems and Technology (TIST). 2020, vol. 11, no. 4,
pp. 1-47.

LONG, Jonathan; SHELHAMER, Evan; DARRELL, Trevor. Fully
convolutional networks for semantic segmentation. In: IEEE conference on
computer vision and pattern recognition. 2015, pp. 3431-3440.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

BREIMAN, Leo. Random forests. Machine learning. 2001, vol. 45, no. 1,
pp. 5-32.

CRIMINISI, Antonio; SHOTTON, Jamie. Decision forests for computer vision
and medical image analysis. Springer Science & Business Media, 2013.

CUTLER, Adele; CUTLER, D Richard; STEVENS, John R. Random forests.
In: Ensemble machine learning. Springer, 2012, pp. 157-175.

WANG, Sutong et al. An improved random forest-based rule extraction method
for breast cancer diagnosis. Applied Soft Computing. 2020, vol. 86, p. 105941.

FAWAGREH, Khaled; GABER, Mohamed Medhat; ELYAN, Eyad. Random
forests: from early developments to recent advancements. Systems Science &
Control Engineering: An Open Access Journal. 2014, vol. 2, no. 1, pp. 602—609.

MAHAPATRA, Dwarikanath. Analyzing training information from random
forests for improved image segmentation. /EEE Transactions on Image
Processing. 2014, vol. 23, no. 4, pp. 1504—-1512.

MAHAPATRA, Dwarikanath. Automatic cardiac segmentation using semantic
information from random forests. Journal of digital imaging. 2014, vol. 27, no.
6, pp. 794-804.

MAHAPATRA, Dwarikanath. Graph cut based automatic prostate segmentation
using learned semantic information. In: 2013 IEEE 10th International
Symposium on Biomedical Imaging. 2013, pp. 1316—1319.

WEI, Jing et al. Cloud detection for Landsat imagery by combining the random
forest and superpixels extracted via energy-driven sampling segmentation
approaches. Remote Sensing of Environment. 2020, vol. 248, p. 112005.

HERNANDEZ-VELA, Antonio et al. Graph cuts optimization for multi-limb
human segmentation in depth maps. In: 2012 [EEE Conference on Computer
Vision and Pattern Recognition. 2012, pp. 726-732.

CUINGNET, Rémi et al. Automatic detection and segmentation of kidneys in
3D CT images using random forests. In: International conference on medical
image computing and computer-assisted intervention. 2012, pp. 66—74.

NI, Huan; LIN, Xiangguo; ZHANG, Jixian. Classification of ALS point cloud
with improved point cloud segmentation and random forests. Remote Sensing.
2017, vol. 9, no. 3, p. 288.

YANG, Tiejun; SONG, Jikun; LI, Lei. A deep learning model integrating
SK-TPCNN and random forests for brain tumor segmentation in MRI.
Biocybernetics and Biomedical Engineering. 2019, vol. 39, no. 3, pp. 613-623.

PEREIRA, Sergio et al. Automatic brain tissue segmentation in MR images
using random forests and conditional random fields. Journal of neuroscience
methods. 2016, vol. 270, pp. 111-123.

WU, Yaokun; MISRA, Siddharth. Intelligent image segmentation for
organic-rich shales using random forest, wavelet transform, and hessian matrix.
IEEE Geoscience and Remote Sensing Letters. 2019, vol. 17, no. 7,

pp. 1144-1147.

SOLTANINEJAD, Mohammadreza et al. MRI brain tumor segmentation and
patient survival prediction using random forests and fully convolutional
networks. In: International MICCAI brainlesion workshop. 2017, pp. 204-215.

LEE, Der-Tsai; WONG, Chak-Kuen. Worst-case analysis for region and partial
region searches in multidimensional binary search trees and balanced quad trees.
Acta Informatica. 1977, vol. 9, no. 1, pp. 23-29.

JIANG, Yuming et al. JointRCNN: a region-based convolutional neural network
for optic disc and cup segmentation. I[EEE Transactions on Biomedical
Engineering. 2019, vol. 67, no. 2, pp. 335-343.

195

196

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

ZHU, Yukun; URTASUN, Raquel; SALAKHUTDINOV, Ruslan;

FIDLER, Sanja. segdeepm: Exploiting segmentation and context in deep neural
networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2015, pp. 4703—4711.

SULTANA, Farhana; SUFIAN, Abu; DUTTA, Paramartha. A review of object
detection models based on convolutional neural network. /ntelligent Computing:
Image Processing Based Applications. 2020, pp. 1-16.

GASHLER, Mike. What is the equivalent nth_element function in Java?
[Online] [visited on 2022-06-26]. Available from:
https://stackoverflow.com/a/47702047/2273107.

SCHIMPL, Michaela et al. Association between walking speed and age in
healthy, free-living individuals using mobile accelerometry—a cross-sectional
study. PloS one. 2011, vol. 6, no. 8, €23299.

YU, Yang et al. Performance analysis and optimization of full garbage
collection in memory-hungry environments. ACM SIGPLAN Notices. 2016,
vol. 51, no. 7, pp. 123-130.

SAUNDERS, Richard. Sunyaev-Zel’dovich observations with the Ryle
Telescope. Microwave background anisotropies. 1997, pp. 377-381.

ADAMS, Douglas. The Restaurant At The End Of The Universe. London: Pan
Books, 1980.

AGARWAL, Mohit; GUPTA, Suneet; BISWAS, KK. A new Conv2D model
with modified ReLU activation function for identification of disease type and
severity in cucumber plant. Sustainable Computing: Informatics and Systems.
2021, vol. 30, p. 100473.

SCHMIDT, Robin M; SCHNEIDER, Frank; HENNIG, Philipp. Descending
through a crowded valley-benchmarking deep learning optimizers. In:
International Conference on Machine Learning. 2021, pp. 9367-9376.

Y1, Dokkyun; AHN, Jachyun; JI, Sangmin. An effective optimization method
for machine learning based on ADAM. Applied Sciences. 2020, vol. 10, no. 3,
p. 1073.

CHEN, Xiangyi; LIU, Sijia; SUN, Ruoyu; HONG, Mingyi. On the convergence
of a class of adam-type algorithms for non-convex optimization. arXiv preprint
arXiv:1808.02941. 2018.

RUBY, Usha; YENDAPALLI, Vamsidhar. Binary cross entropy with deep
learning technique for image classification. Int. J. Adv. Trends Comput. Sci. Eng.
2020, vol. 9, no. 10.

CRESWELL, Antonia; ARULKUMARAN, Kai; BHARATH, Anil A. On
denoising autoencoders trained to minimise binary cross-entropy. arXiv preprint
arXiv:1708.08487. 2017.

binary-trees - Which programs are fastest? (Benchmarks Game) [online]
[visited on 2023-03-10]. Available from: https://benchmarksgame-team.
pages.debian.net/benchmarksgame/performance/binarytrees.html.

NOWAK, Tomasz. GitHub - toimcio/SegNet-tensorflow [online]. 2018 [visited
on 2022-10-30]. Available from:
https://github.com/toimcio/SegNet-tensorflow.

KORNILOV, Anton S; SAFONOV, Ilia V. An overview of watershed algorithm
implementations in open source libraries. Journal of Imaging. 2018, vol. 4, no.
10, p. 123.

KARASTERGIOU, Kalypso; SMITH, Steven R; GREENBERG, Andrew S;
FRIED, Susan K. Sex differences in human adipose tissues—the biology of pear
shape. Biology of sex differences. 2012, vol. 3, no. 1, pp. 1-12.

SegNet-tensorflow [online]. 2018 [visited on 2022-12-18]. Available from:
https://github.com/toimcio/SegNet-tensorflow.

S¥europass

PERSONAL INFORMATION

WORK EXPERIENCE

July 2012 - present

October 2014 — September 2018

September 2017 — present

EDUCATION AND TRAINING

2017-present

2015-2017

2011-2015

Curriculum Vitae

Karolis Ryselis

9 Draugystés str. 3C-40, Kaunas, LT-51281, Lithuania
L. +37063088154

X4 Karolis.ryselis@ktu.edu

Sex Male | Date of birth 06/0Oct/1992 | Nationality Lithuanian

Software developer
Esperonus

[] Creating software architecture
[] Backend programming
] Python / Django, Javascript

Business / sector Information Technology

Engineer

Kaunas University of Technology

] Developing small projects
] Android / C#

Business / sector Information Technology

Associate professor practitioner
Kaunas University of Technology

] Lectures of concurrent programming and software analysis & engineering tools
[] Supervisor and committee member of Bachelor final projects

Business / sector Information Technology

PhD in Informatics
Kaunas University of Technology
[] Research area — framework for human body segmentation and motion analysis

Master in Software Engineering
Kaunas University of Technology

[] Requirement analysis, architecture, testing
] Finished with a maximum possible grade of 10

Bachelor in Software Systems
Kaunas University of Technology

] Software development technologies, algorithms, software design patterns
[] Finished with near perfect grade of 9.95

© European Union, 2002-2017 | europass.cedefop.europa.eu Page 1/2

197

§<europass

Mother tongue

Other languages

English
Russian

Personal qualities

ADDITIONAL INFORMATION

Scientific publications

Conferences

Exhibitions

Other projects

198

Curriculum Vitae Karolis Ryselis
Lithuanian
UNDERSTANDING SPEAKING WRITING
Listening Reading Spoken interaction | Spoken production
C2 C2 Cc2 Cc2 Cc2
B1 B1 A2 A2 A2
] Maximalist
] Perfectionist
] Persistent
] Love researching
[] Able to work both alone and in team
] Good sense of humour

[] Human position tracking algorithm using multiple Kinect devices and its research, IXI inter-
university master and doctoral student conference “Information Society and University Studies”,
Lithuania, 2014.

[] Non-standard human pose recognition precision using Kinect 2.0 sensors research, XX
inter-university master and doctoral student conference “Information Society and University
Studies”, Lithuania, 2015.

] Efficient Hausdorff distance metric calculation algorithm for human position comparison to
template and its performance and precision research, Proceedings of the IVUS International
Conference on Information Technology, ceur-ws.org, 2017.

[] Multiple Kinect based system to monitor and analyze key performance indicators of
physical training, Hum. Cent. Comput. Inf. Sci., 2020.
[] Computer-Aided Depth Video Stream Masking Framework for Human Body Segmentation

in Depth Sensor Images, Sensors 22, 2022

[] Brain computing device application in a video game quality and usability research, IVUS
International Conference on Information Technology, Lithuania, 2017.
[] Efficient Human Motion Matching Algorithm for Depth Scanning Systems Based on

Hausdorff Distance Metric, Data Analysis Methods for Software Systems, Druskininkai, Lithuania,
2018.

[] A.R. Drone and Kinect interface project, KTU Technorama 2012. (2012)

[] Controlling devices using various platforms. Tank,, KTU Technorama 2013. (2013)

[] Project “Vir’realism®, KTU Technorama 2014 (2014)

] Virtual yoga trainer “Yogamin®, KTU Technorama 2015 (2015) and GameOn (2015)

] Human pose comparison plugin for motion tracking systemsi, KTU Technorama 2016
(2016)

] Data merging system for motion tracking sensors, KTU Technorama 2017 (2017)

] Rovio robot control using smart devices, (2012)

] Technical feasiblilty study on developing an application to activate EU-ALERT services in
smartphones (2014)

[] Kiosk software for Android devices “Kiosk-Mode” (2014-2015)

] Electricity and water readings recognition and declaration algorithmic prototype (2015-
2016)

© European Union, 2002-2017 | europass.cedefop.europa.eu Page 2 /2

7. LIST OF PUBLICATIONS AND CONFERENCES

The results of this dissertation have been presented in 3 conferences (one of them,
however, does not meet the criteria for PhD defense), and published in 3 journals in-
dexed in Web of Science.

The conferences where the results were presented:

1. Ryselis K., Efficient Human Motion Matching Algorithm for Depth Scanning
Systems Based on Hausdorff Distance Metric, 9" International Workshop on
Data Analysis Methods for Software Systems, Druskininkai, 2017.

2. Ryselis K., Optimizations of searching three-dimensional trees for clustering
(poster), FRUCT 31, Helsinki, 2022.

3. Ryselis, K. (2022). Random Forest Classifier for Correcting Point Cloud Seg-
mentation Based on Metrics of Recursive 2-Means Splits. In: Lopata, A.,
Gudonien¢, D., Butkien¢, R. (eds.) Information and Software Technologies.
ICIST 2022. Communications in Computer and Information Science, vol. 1665.
Springer, Cham. https://doi.org/10.1007/978-3-031-16302-9 7
A poster was presented at the international FRUCT 31 conference. It outlined

the performance improvements for the bounding box segmentation approach (Sections
3.4.1.5 and 4.2.4.1 of this dissertation). An article about random forest classifier based
on the metrics of recursive 2-means splits was presented at the international ICIST
2022 conference (Sections 3.4.3 and 4.3 of this dissertation).

The results have also been published in the following Web of Science journals:

1. Ryselis, K., Petkus, T., Blazauskas, T. et al. Multiple Kinect based system to
monitor and analyze key performance indicators of physical training. Hum.
Cent. Comput. Inf. Sci. 10, 51 (2020). https://doi.org/10.1186/s13673-020-
00256-4

2. Ryselis, K.; Blazauskas, T.; DamasSevic¢ius, R.; Maskelitinas, R.
Computer-Aided Depth Video Stream Masking Framework for Human
Body Segmentation in Depth Sensor Images. Sensors 2022, 22, 3531.
https://doi.org/10.3390/s22093531

3. Ryselis, K.; Blazauskas, T.; Damasevi¢ius, R.; Maskelitinas, R. Agrast-6:
Abridged VGG-Based Reflected Lightweight Architecture for Binary Segmen-
tation of Depth Images Captured by Kinect. Sensors 2022, 22, 6354.
https://doi.org/10.3390/s22176354
All the articles are either in Q1 or Q2 (Sensors journal had impact factors of 3.576

and 3.847, Human-centric Computing and Information Sciences was showing 5.9000
at the time of publishing). “Multiple Kinect based system to monitor and analyze key
performance indicators of physical training” presents an analysis of human joint load
during training. The contribution from this dissertation if the framework to collect
data, which is based on skeleton fusion methods presented in Section 3.7. “Computer-
Aided Depth Video Stream Masking Framework for Human Body Segmentation in
Depth Sensor Images” presents the whole software solution and methods to create it to

199

reduce semi-automatic segmentation times, presented in Sections 3.4 and 4.2. Finally,
“Agrast-6: Abridged VGG-Based Reflected Lightweight Architecture for Binary Seg-
mentation of Depth Images Captured by Kinect” article presents the neural network
described in Sections 3.5 and 4.4.

200

8. ACKNOWLEDGMENTS

The author would like to thank his scientific supervisor Prof. Tomas Blazauskas
who provided ideas and has supervised for the past 11 years as well as Prof. Rytis
Maskelitinas for the scientific support.

The author would also like to thank his wife Justina, who helped with segmenta-
tion and took over with other duties while the author was busy with this dissertation.
Another thanks goes to author’s mother and the family of his wife for the moral sup-
port.

201

A. PROOF THAT TREES GROW FROM THE TOP

Figure A.1. An example of a real-life tree growing from the top'

"https://www.reddit.com/r/ProgrammerHumor/comments/kk5ng1/
finally after_years_of_search_ i found a_real tree/

202

B. ACTIVATIONS OF AGRAST-6 NEURAL NETWORK

This section shows activations of Agrast-6 neural network. Images with the least
activations are skipped. The amounts of activations shown:
1. Layer0: 1/1
Layer 1: 22 /32
Layer 2: 27 /32
Layer 3: 22 /128
Layer 4: 43 /128
Layer 6: 156 /256
Layer 8: 240/ 256
Layer 9: 240/ 256
Layer 10: 108 /128
Layer 11: 108 /128
Layer 13: 1/1

S AN e AR R ol ol

—_— —

Figure B.1. Layer 0 (input) activation (input image)

203

Figure B.2. Layer 1 activations

Figure B.3. Layer 2 activations

205

Figure B.4. Layer 4 activations (part 1)

206

Figure B.5. Layer 4 activations (part 2)

207

208

Figure B.6. Layer 6 activations (part 1)

Figure B.7. Layer 6 activations (part 2)

209

210

Figure B.8. Layer 6 activations (part 3)

Figure B.9. Layer 6 activations (part 4)

211

Figure B.10. Layer 6 activations (part 5)

212

Figure B.11. Layer 8 activations (part 1)

213

Figure B.12. Layer 8 activations (part 2)

214

NN

Figure B.13. Layer 8 activations (part 3)

215

Figure B.14. Layer 8 activations (part 4)

216

Figure B.15. Layer 8 activations (part 5)

217

Figure B.16. Layer 8 activations (part 6)

218

Figure B.17. Layer 8 activations (part 7)

219

Figure B.18. Layer 8 activations (part 8)

220

Figure B.19. Layer 10 activations (part 1)

221

ﬁ
bﬁl-_m

a1 1
R
| S

Figure B.20. Layer 10 a art 2)

222

Figure B.21. Layer 10 activations (part 3)

223

i L |
i B

Figure B.22. Layer 10 activations (part 4)

224

225

o

Figure B.24. Layer 11 activations (part 2)

226

Figure B.25. Layer 11 activations (part 3)

227

Figure B.26. Layer 11 activations (part 4)

228

Figure B.27. Layer 12 activations

229

Figure B.28. Layer 13 activation (output image)

230

C. LIST OF POSES CAPTURED IN DATASETS

Simple dataset

Sitting on a chair

Standing

Complex dataset

Standing relaxed

Standing with right hand lifted half way

Standing with left hand lifted half way

Standing with both hands lifted half way

Standing with right hand put forward

231

Standing with left hand put forward

Standing with both hands put forward

Standing with left hand lifted

Standing with right hand lifted

Standing with both hands lifted

Standing with right arm at 90 degrees angle

Standing, side view

Squatting, hands holding legs

2

(98}

2

Bent forward, hands reaching floor

Laying on the ground

Bent forward, one leg is raised and put backwards

Laying on the ground, legs up

Standing, bending backwards with raised hands

Low start position

C.1. Full software solution for semi-automatic segmentation

The full software solution has all analyzed algorithms and performance improve-
ments implemented. The user may choose whichever settings he sees fit — the segmen-
tation algorithm (bounding box, radius search, K-Means cuts), segmentation sensitiv-
ity, add segments manually or removes segmentation output by using an eraser. Most
importantly, the segmentation output is shown to the user on the screen. The full set
of features is presented in the UML use case diagram in Figure C.1.

A screenshot of the solution is shown in Figure C.2 to better visualize the tool
and how it is supposed to help with segmentation. The top of the screen is filled with
option selection inputs and action buttons. 12 images are shown on the screen (the
screen resolution was 2560x1440 pixels). Different shades of gray represent different
depth values. The user then identifies the location of the human and segments it by
using the selected method. If one of the automatic algorithms is selected, the user has

233

Semi-automatic segmentation tool

Select output
directory

Segment using K-
Means cuts

Set m axim um
frames in memory

Undo last action

Apply firstframe
segm entation to
other fram es

Clear all
segm entation for
frames on screen

Load next batch
and transfer
segm entation

Select input
directory
Segment using
radius search

Segm ent m anually

Segment using
bounding box
search

Play segm ented
video

Erase points
manually

=

User

Figure C.1. Use case diagram for semi-automatic segmentation tool

[

KNECT Expanding bound...

Figure C.2. Screenshot of the software solution

234

to click on one of the pixels of the human in the scene and this point is used as the initial
point for the segmentation. The screenshot shows the state after automatic bounding
box segmentation and clicking the button Apply first segmentation to all — all the frames
were segmented by using the same initial point. As a result, a total of two clicks were
required to segment 12 frames. Clicking Load next will apply the same segmentation to
the next 12 frames. It also works for this particular instance, so 24 frames are selected
by using 3 clicks. It is also easy to visually confirm that the segmentation is correct. It
only takes about one second for a trained individual to verify that the segmentation is
correct. This, of course, is the best case scenario, but a large portion of the dataset can
be segmented this way as shown in Section 4.2.5.1.

235

UDK 004.5+004.422.635.33+004.032.26](043.3)

SL 344. 2023-05-08, 29,5leidyb. apsk. l. Tirazas 14 egz. Uzsakymas 74.
Isleido Kauno technologijos universitetas, K. Donelaicio g. 73, 44249 Kaunas
Spausdino leidyklos ,, Technologija“ spaustuvé, Studenty g. 54, 51424 Kaunas

