

Kauno technologijos universitetas

Cheminės technologijos fakultetas

CuO/ceotipas katalizatorių sintezė ir aktyvumo tyrimai

Baigiamasis magistro projektas

Augustas Brazauskas

Projekto autorius

Lekt. dr. Andrius Jaskūnas

Vadovas

Kaunas, 2023

Kauno technologijos universitetas

Cheminės technologijos fakultetas

CuO/ceotipas katalizatorių sintezė ir aktyvumo tyrimai

Baigiamasis magistro projektas Chemijos inžinerija (6211EX020)

> Augustas Brazauskas Projekto autorius

Lekt. dr. Andrius Jaskūnas Vadovas

Doc. dr. Linas Miknius Recenzentas

Kaunas, 2023

Kauno technologijos universitetas Cheminės technologijos fakultetas Augustas Brazauskas

CuO/ceotipas katalizatorių sintezė ir aktyvumo tyrimai

Akademinio sąžiningumo deklaracija

Patvirtinu, kad:

1. baigiamąjį projektą parengiau savarankiškai ir sąžiningai, nepažeisdama(s) kitų asmenų autoriaus ar kitų teisių, laikydamasi(s) Lietuvos Respublikos autorių teisių ir gretutinių teisių įstatymo nuostatų, Kauno technologijos universiteto (toliau – Universitetas) intelektinės nuosavybės valdymo ir perdavimo nuostatų bei Universiteto akademinės etikos kodekse nustatytų etikos reikalavimų;

2. baigiamajame projekte visi pateikti duomenys ir tyrimų rezultatai yra teisingi ir gauti teisėtai, nei viena šio projekto dalis nėra plagijuota nuo jokių spausdintinių ar elektroninių šaltinių, visos baigiamojo projekto tekste pateiktos citatos ir nuorodos yra nurodytos literatūros sąraše;

3. įstatymų nenumatytų piniginių sumų už baigiamąjį projektą ar jo dalis niekam nesu mokėjęs (usi);

4. suprantu, kad išaiškėjus nesąžiningumo ar kitų asmenų teisių pažeidimo faktui, man bus taikomos akademinės nuobaudos pagal Universitete galiojančią tvarką ir būsiu pašalinta(s) iš Universiteto, o baigiamasis projektas gali būti pateiktas Akademinės etikos ir procedūrų kontrolieriaus tarnybai nagrinėjant galimą akademinės etikos pažeidimą.

Augustas Brazauskas

Patvirtinta elektroniniu būdu

Kauno technologijos universitetas

Cheminės technologijos fakultetas

Tvirtinu: Cheminės technologijos fakulteto dekanas prof. K. Baltakys

Dekano potvarkis Nr. V25-02-11, 2023 m. gegužės mėn. 15 d. Suderinta: Fizikinės ir neorganinės chemijos katedra vedėja prof. dr. I. Ancutienė

2023 m. kovo mėn. 3 d.

Baigiamojo magistro projekto užduotis

 Darbo tikslas ir uždaviniai Darbo tikslas – pagaminus CuO/ceotipas katalizatorius ištirti jų aktyvumą lakaus organinio junginio – etilacetato visiško oksidavimo reakcijoje bei pasiūlyti principinę technologinę schemą oro valymui nuo etilacetato. Darbo uždaviniai: 1. Parinkti tinkamas sąlygas ceotipų sintezei; 2. Ištirti pagamintų ceotipų adsorbcines savybes vario jonams, apskaičiuoti adsorbcijos kinetikos ir pusiausvyros parametrus; 3. Ištirti pagamintų CuO/ceotipas katalizatorių aktyvumą etilacetato visiško oksidavimo reakcijose; 4. Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
 Darbo tikslas ir uždaviniai Darbo tikslas – pagaminus CuO/ceotipas katalizatorius ištirti jų aktyvumą lakaus organinio junginio – etilacetato visiško oksidavimo reakcijoje bei pasiūlyti principinę technologinę schemą oro valymui nuo etilacetato. Darbo uždaviniai: 1. Parinkti tinkamas sąlygas ceotipų sintezei; 2. Ištirti pagamintų ceotipų adsorbcines savybes vario jonams, apskaičiuoti adsorbcijos kinetikos ir pusiausvyros parametrus; 3. Ištirti pagamintų CuO/ceotipas katalizatorių aktyvumą etilacetato visiško oksidavimo reakcijose; 4. Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
 lakaus organinio junginio – etilacetato visiško oksidavimo reakcijoje bei pasiūlyti principinę technologinę schemą oro valymui nuo etilacetato. Darbo uždaviniai: 1. Parinkti tinkamas sąlygas ceotipų sintezei; 2. Ištirti pagamintų ceotipų adsorbcines savybes vario jonams, apskaičiuoti adsorbcijos kinetikos ir pusiausvyros parametrus; 3. Ištirti pagamintų CuO/ceotipas katalizatorių aktyvumą etilacetato visiško oksidavimo reakcijose; 4. Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
 pasiūlyti principinę technologinę schemą oro valymui nuo etilacetato. Darbo uždaviniai: 1. Parinkti tinkamas sąlygas ceotipų sintezei; 2. Ištirti pagamintų ceotipų adsorbcines savybes vario jonams, apskaičiuoti adsorbcijos kinetikos ir pusiausvyros parametrus; 3. Ištirti pagamintų CuO/ceotipas katalizatorių aktyvumą etilacetato visiško oksidavimo reakcijose; 4. Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
 Darbo uždaviniai: 1. Parinkti tinkamas sąlygas ceotipų sintezei; 2. Ištirti pagamintų ceotipų adsorbcines savybes vario jonams, apskaičiuoti adsorbcijos kinetikos ir pusiausvyros parametrus; 3. Ištirti pagamintų CuO/ceotipas katalizatorių aktyvumą etilacetato visiško oksidavimo reakcijose; 4. Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
 Parinkti tinkamas sąlygas ceotipų sintezei; Ištirti pagamintų ceotipų adsorbcines savybes vario jonams, apskaičiuoti adsorbcijos kinetikos ir pusiausvyros parametrus; Ištirti pagamintų CuO/ceotipas katalizatorių aktyvumą etilacetato visiško oksidavimo reakcijose; Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
 Ištirti pagamintų ceotipų adsorbcines savybes vario jonams, apskaičiuoti adsorbcijos kinetikos ir pusiausvyros parametrus; Ištirti pagamintų CuO/ceotipas katalizatorių aktyvumą etilacetato visiško oksidavimo reakcijose; Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
 apskaičiuoti adsorbcijos kinetikos ir pusiausvyros parametrus; 3. Ištirti pagamintų CuO/ceotipas katalizatorių aktyvumą etilacetato visiško oksidavimo reakcijose; 4. Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
 3. Ištirti pagamintų CuO/ceotipas katalizatorių aktyvumą etilacetato visiško oksidavimo reakcijose; 4. Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
 visiško oksidavimo reakcijose; 4. Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
4. Identifikuoti šalutinėse reakcijose susidarančius tarpinius junginius ir nustatyti visiško katalizinio oksidavimo mechanizmą;
nustatyti visiško katalizinio oksidavimo mechanizmą;
5. Išrinkus efektyviausią katalizatorių pateikti principinę technologinę
schemą, skirtą oro valymui nuo etilacetato.
Reikalavimai ir salygos Turi būti visos privalomos baigiamojo projekto sudėtinės dalys kaip
nurodyta dekano 2023 m. kovo 17 d. potvarkiu Nr. V25-02-4
patvirtintuose "Pirmosios pakopos studijų programos Cheminė
technologija ir inžinerija ir antrosios pakopos studijų programos
Chemijos inžinerija baigiamųjų projektų rengimo ir gynimo
metodiniuose reikalavimuose".
Vadovas lekt. dr. Andrius Jaskūnas 2023-03-02
(vadovo pareigos, vardas, pavardė, parašas) (data)
Užduoti gavau Augustas Prozenskas 2022 m. kovo min 2 d
Ozunou gavan. Augustas Diazauskas 2025 III. KOVO IIIeII. 2 U (studento vardas pavardė) (parašas data)

Brazauskas, Augustas. CuO/ceotipas katalizatorių sintezė ir aktyvumo tyrimai. Magistro baigiamasis projektas / vadovas lekt. dr. Andrius Jaskūnas; Kauno technologijos universitetas, Cheminės technologijos fakultetas.

Studijų kryptis ir sritis (studijų krypčių grupė): Inžinerijos mokslai, Chemijos inžinerija.

Reikšminiai žodžiai: ceolitas, ceotipas, AlPO4 molekuliniai sietai, aliumofosfatinis ceotipas.

Kaunas, 2023. 65 p.

Santrauka

Tirtos AlPO₄-ceotipų sintezės sąlygos naudojant aliuminio hidroksidą bei aliuminio izopropoksido žaliavas. AlPO₄-5 ceotipas gaunamas naudojant aliuminio izopropoksidą su N,Ndiizopropiletilamino (arba DIPEA) priedu. Bandinio molinė sudėtis – 1 Al₂O₃:1 P₂O₅:1 DIPEA:120 H₂O, reakcija vykdoma mikrobangų spinduliuotės sukelto hidroterminės sintezės reaktoriuje 180 °C temperatūroje 1 valandą. Rentgeno spinduliuotės difrakcinės analizės bei skenuojamosios elektronų mikroskopijos metodais gauti duomenys patvirtina AlPO₄-5 kristalų susidarymą.

Gauta mikroporinga struktūra impregnuojama vario (II) nitrato trihidrato tirpalu, siekiant įterpti Cu^{2+} jonus į medžiagos struktūrą. Iš atliktų adsorbcijos ir atominės absorbcinės spektroskopijos tyrimų, pagamintas CuO/ceotipo katalizatorius turintis 150,538 mg_{CuO}/g adsorbente.

Tirtos CuO/ceotipo katalizinės savybės atliekant lakiojo organinio junginio (etilacetato) katalizinio oksidavimo eksperimentą, kur 300 °C temperatūroje pasiekiamas 89,13 % etilacetato konversijos laipsnis bei pasiekiama pilno oksidacinio degimo produkto (CO₂) 10505 mg/mg_{katalizatoriaus} išeiga.

Remiantis gautais eksperimentiniais rezultatais, pateikiama oro valymo nuo etilacetato technologijos rekomendacija.

Brazauskas, Augustas. Synthesis and Activity of CuO/ceotype Catalysts / supervisor lect. dr. Andrius Jaskūnas; Faculty of Chemical Technology, Kaunas University of Technology.

Study field and area (study field group): Engineering Sciences, Chemical Engineering.

Keywords: zeolite, zeotype, AlPO₄ molecular sieve, aliuminophosphate zeotype.

Kaunas, 2023. 65.

Summary

The synthesis conditions of AlPO₄-zeotype using aluminium hydroxide and aluminium isopropoxide feedstocks were investigated. The AlPO₄-5 ceotype is obtained using aluminium isopropoxide with the addition of N,N-diisopropylethylamine (or DIPEA) The molar composition of the sample is 1 Al₂O₃:1 P₂O₅:1 DIPEA:120 H₂O and the reaction is carried out in a microwave-induced hydrothermal synthesis reactor at 180 °C for 1 hour. X-ray diffraction analysis and scanning electron microscopy data confirm the formation of hexagonal singonia crystals.

The resulting microporous structure is impregnated with copper (II) nitrate trihydrate solution to incorporate Cu^{2+} ions into the material structure. From the adsorption and atomic absorption spectroscopy studies carried out, a CuO/zeotype catalyst was prepared with a concentration of 150,538 mg_{CuO} per gram of adsorbent.

The catalytic properties of the CuO/zeotype were investigated by means of a catalytic oxidation experiment with a volatile organic compound (ethylacetate). A conversion rate of 89,13 % of ethyl acetate was achieved at 300 °C and a complete catalytic oxidation product (CO₂) yield of 10505 mg/mg_{catalyst} was achieved.

On the basis of the obtained experimental results, a proposal for air purification from ethylacetate technology is presented.

Lentel	ių sąrašas	. 8
Paveik	xslų sąrašas	. 9
Santru	ımpų ir terminų sąrašas	11
Įvadas	5	12
1. Lit	eratūros apžvalga	13
1.1. C	Ceolitai	13
1.2. C	Ceotipai	14
1.2.1.	Aliumofosfatų raida	14
1.2.2.	AlPO ₄ -H1	14
1.2.3.	AlPO4-n	16
1.2.4.	VPI-5	16
1.2.5.	AlPO4-H1 ir VPI-5 lyginimas	18
1.3. K	Kristalizavimo mechanizmas	20
1.4. N	Aikrobangų spinduliuotės sintezė	21
2. Tir	riamoji (eksperimentinė) dalis	24
2.1. N	/ledžiagos ir metodai	24
2.2. T	yrimų rezultatai	30
2.2.1.	Al ₂ O ₃ -P ₂ O ₅ reakcinės sistemos.	30
2.2.2.	Rentgeno spinduliuotės difrakcinė analizė	31
2.2.3.	Terminė analizė	37
2.2.4.	Vario jonų Cu ²⁺ adsorbcijos AlPO ₄ -5 ceotipu kinetika	38
2.2.5.	Vario jonų Cu ²⁺ adsorbcijos AlPO ₄ -5 ceotipu pusiausvyra	40
2.2.6.	CuO/ceotipas katalizatoriaus gamyba	41
2.2.7.	Skenuojamoji elektronų mikroskopija bei energijos dispersijos spektrometrija	43
2.2.8.	CuO/ceotipas katalizatoriaus aktyvumas etilacetato visiško oksidavimo reakcijoje	46
3. Inž	žinerinė dalis	49
4. Da	rbuotojų sauga ir sveikata	53
Išvado	98	60
Litera	tūros sąrašas	61
Prieda	ii	66
1 prie	edas. Fizikinių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai, identifikavimas	56
2 prie	edas. Fizinių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai, identifikavimas	57
3 prie	edas. Cheminių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai, identifikavimas	58
4 prie	edas. Biologinių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai, identifikavimas	70
5 prie	edas. Ergonominių ir psichosocialinių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai,	
identifi	ikavimas	71

Lentelių sąrašas

1.1 lentelė. AlPO4 ceotipų kristalinių struktūrų savybės	17
1.2 lentelė. Dažniausiai naudojamų tirpiklių klasifikavimas pagal jų nuostolių tangentus	23
2.1 lentelė. 200 ml tūrio Cu ²⁺ tirpalams sudaryti reikalingi vario (II) nitrato trihidrato kiekiai	26
2.2 lentelė. Sudarytų Al ₂ O ₃ -P ₂ O ₅ reakcinių sistemų duomenys	30
2.3 lentelė. Cu ²⁺ jonų adsorbcijos AlPO ₄ -5 iš vandeninių tirpalų kinetiniai duomenys	38
2.4 lentelė. Vario adsorbcija AlPO ₄ -5 iš vandeninių tirpalų eksperimentiniai duomenys	40
2.5 lentelė. Vario adsorbcijos AlPO ₄ -5 ceotipu izotermų modelių parametrai	41
2.6 lentelė. AlPO ₄ -5 ceotipų EDS analizės duomenys	45
3.1 lentelė. Aspen HYSYS konversijos kolonos medžiagų balansas	50
4.1 lentelė. Naudojamų cheminių medžiagų galimų pavojų informacija	54
4.2 lentelė. Naudojamų cheminių medžiagų pirmosios pagalbos priemonių duomenys	55
4.3 lentelė. Naudojamų cheminių medžiagų priešgaisrinių priemonių duomenys	57
4.4 lentelė. Naudojamų cheminių medžiagų tvarkymo ir sandėliavimo duomenys	59

Paveikslų sąrašas

1.1 pav. Ceolito struktūros vaizdavimas	. 13
1.2 pav. Keturių ceolitų struktūros: jų mikroporų sistemos ir matmenys	. 13
1.3 pav. d'Yvoire's paruoštų AlPO4-HX fazių pusiausviri tarpiniai bei terminiai produktai	. 15
1.4 pav. AlPO ₄ -H2 topografinė transformacija į AlPO ₄ -tridimitą	. 15
1.5 pav. AlPO ₄ -5 ir VPI-5 karkasų projekcijos	. 17
1.6 pav. VPI-5 TGA ir DSK kreivės	. 17
1.7 pav. VPI-5 ir AlPO ₄ -8 karkasų vaizdavimas	. 18
1.8 pav. B. Duncan'o paruoštos AlPO ₄ -H1 TGA ir DTA kreivės	. 19
1.9 pav. B. Duncan'o paruoštų medžiagų RSDA kreivės	. 19
1.10 pav. Aliumofosfatinės grandinės pirmtako transformacija	. 20
1.11 pav. VPI-5 karkaso savaiminio susirinkimo modelio vaizdavimas	. 21
2.1 pav. Katalizinės oksidacijos eksperimentinio stendo principinė technologinė schema	. 29
2.2 pav. Kvarcinio stiklo reaktoriaus indo projekcinis vaizdavimas	. 29
2.3 pav. Bandinių nr. 1–3 rentgeno spinduliuotės difrakcinės analizės kreivės	. 31
2.4 pav. Bandinių nr. 4-8 (1 Al ₂ O ₃ :1 P ₂ O ₅ :1 HCl:120 H ₂ O) rentgeno spinduliuotės difrakci	nės
analizės kreivės	. 32
2.5 pav. Bandinių nr. 9-12 (1 Al ₂ O ₃ :0,8 P ₂ O ₅ :1 HCl:50 H ₂ O) rentgeno spinduliuotės difrakci	nės
analizės kreivės	. 32
2.6 pav. Bandinių nr. 10 ir 13–16 rentgeno spinduliuotės difrakcinės analizės kreivės	. 33
2.7 pav. Bandinių nr. 17–20 rentgeno spinduliuotės difrakcinės analizės kreivės	. 34
2.8 pav. Bandinių nr. 21–22 rentgeno spinduliuotės difrakcinės analizės kreivės	. 34
2.9 pav. Bandinių nr. 23–26 rentgeno spinduliuotės difrakcinės analizės kreivės	. 36
2.10 pav. Bandinio nr. 27 (1 Al ₂ O ₃ :1 P ₂ O ₅ :1 DIPEA:120 H ₂ O), AlPO ₄ -5 etalono ir SSZ-24 rentge	eno
spinduliuotės difrakcinės analizės kreivės	. 36
2.11 pav. Bandinio nr. 27 (1 Al ₂ O ₃ :1 P ₂ O ₅ :1 DIPEA:120 H ₂ O) TGA ir DSK kreivės	. 37
2.12 pav. Skirtingų koncentracijų vandeninių Cu2+ tirpalų adsorbcijos AlPO4-5 ceotipu kineti	nės
kreivės	. 38
2.13 pav. Skirtingų koncentracijų vandeninių Cu ²⁺ tirpalų adsorbcijos AlPO ₄ -5 ceotipu kinetin	niai
modeliai	. 39
2.14 pav. Vandeninių Cu ²⁺ tirpalų adsorbcijos AlPO ₄ -5 ceotipu izoterma	. 40
2.15 pav. 30 g _{Cu} /l konc. tirpalo adsorbuoto AlPO ₄ -5 ceotipo RSDA kreivės	. 42
2.16 pav. Iškaitintų 5 g_{Cu}/l ir 30 g_{Cu}/l koncentracijos tirpalų adsorbcijos AlPO ₄ -5 medžia	aga
nuotraukos	. 42
2.17 pav. AlPO ₄ -5 ceotipo SEM nuotraukos	. 44
2.18 pav. AlPO ₄ -5 ceotipo po Cu ²⁺ adsorbcijos ir prieš Cu ²⁺ adsorbciją EDS analizės vaizdiniai	. 45
2.19 pav. Lygiagrečiai nuoseklūs etilacetato katalizinio oksidavimo produktų mechanizn	nai.
Punktyrinė linija žymi nepilno oksidavimo produktus, vientisa linija – pilno oksidavimo produkta	ą46
2.20 pav. Katalizinės etilacetato oksidacijos produktų kiekių bei etilacetato konversijos laips	nio
priklausomybės nuo temperatūros. Juoda spalva – 30 g _{Cu} /l ceolitas, žalia – 5 g _{Cu} /l ceolitas, raudon	ıa –
grynas ceolitas / adsorbentas	. 47
3.1 pav. Oro valymo nuo etilacetato technologija. Čia: 1. – kompresorius, 2. – šilumokaitis, 2	3 –
šildytuvas, 4 – konversijos kolona, 5 – šaldytuvas, 6 – separatorius	. 49
3.2 pav. Aspen HYSYS programiniame pakete sudarytas oro valymo nuo etilacetato modelis	. 50

4.1 pav. Darbo saugos ženklinimo reikšmės: a – dėvėti apsauginius akinius, b	dėvėti apsauginę
kaukę, c – dėvėti apsaugines pirštines	

Santrumpų ir terminų sąrašas

Santrumpos:

Doc. - docentas;

Lekt. - lektorius;

Prof. – profesorius.

Terminai:

DSK (diferencinė skenuojamoji kalorimetrija) – instrumentinės analizės metodas, pagrįstas energijos, reikalingos tiriamojo ir etaloninio bandinio temperatūroms suvienodinti, matavimu esant tam tikram temperatūriniam režimui specifinėje dujų aplinkoje. Kai tiriamojoje medžiagoje prasideda su šilumos pokyčiu susijęs procesas, vienam iš bandinių perduodama daugiau energijos, kad temperatūrų skirtumas tarp jų išliktų artimas nuliui, o matuojamas elektros kiekis, reikalingas temperatūroms sulyginti ($\Delta P = d(\Delta Q)/d\tau$). Ši energija yra entalpijos ar šiluminės talpos kitimo bandinyje matas. Šiuo metodu galima nustatyti: savitąją šilumą, lydymosi temperatūrą, entalpijos pokytį, skilimo efektus, kristalizacijos temperatūrą ir t.t.

EDS – energijos dispersijos (rentgeno) spektrometrija.

RSDA (rentgeno spinduliuotės difrakcinė analizė) – rentgeno spinduliuotės difrakcinė analizė yra neardomasis instrumentinis tyrimo metodas, plačiai taikomas neorganinių, organinių medžiagų, vaistų, katalizatorių, metalų ir jų lydinių bei kitų medžiagų kristalinei struktūrai apibūdinti, t. y. cheminiams junginiams ir jų atmainoms identifikuoti bei kiekybinei junginių analizei, monokristalų ir polikristalinių medžiagų kristalų gardelės struktūrai ir jos defektams, kristalitų dydžiui nustatyti

SEM – skenuojamoji elektronų mikroskopija

TGA (termogravimetrinė analizė) – instrumentinės analizės metodas, kuriuo matuojama ir užrašoma kaitinamos medžiagos masės priklausomybė nuo temperatūros ir laiko, esant tam tikram temperatūriniam rėžimui specifinėje krosnies dujų aplinkoje. Termogravimetrinės analizės metodas taikomas tada, kai dėl įvairių cheminių arba fizikinių pokyčių bandinys išskiria lakias medžiagas arba sąveikauja su aplinka, t. y., reakcijos metu tiriamosios medžiagos masė sumažėja arba padidėja.

Įvadas

Lakieji organiniai junginiai (toliau LOJ) (angl. *volatile organic compounds (VOC)*) apibūdinami kaip pavojingi oro teršalai, kurių virimo temperatūros svyruoja nuo 50 iki 260 °C. Šis apibrėžimas apima tokias organinių junginių kategorijas kaip alkanai, alkenai, aromatiniai angliavandeniliai, alkoholiai, aldehidai bei halogeninti angliavandeniliai [1].

Pagrindiniai šių oro teršalų šaltiniai – natūralios kilmės bei antropogeniniai. Prie gamtoje susidarančių šaltinių priskiriamos tokios vietovės kaip miškai, platūs pievų plotai, vandenynai bei vulkaninė veiklos produktai [2]. Antropogeninius šaltinius pagrindine sudaro pramoniniai pašaliniai produktai, agrokultūrinė veikla, automobilių išmetamosios dujos, šiukšlių deginimas, interjerui naudojami lakai ar dervos, sparti urbanizacija. Didžiąją dalį LOJ emisijų išskiria pramoniniai šaltiniai [1].

Pramonės išmetamų lakieji organiniai junginiai, kurie pasižymi skirtingu poveikiu tiek žmogui, tiek gamtai, yra griežtai reguliuojami [3]. Jų emisijų sumažinimui yra naudojamos absorbcijos, kondensacijos, deginimo bei katalizinio oksidavimo technologijos [4]. Pastarasis cheminis procesas turi savo privalumų – jo metu taršios medžiagos nėra atskiriamos nuo srauto, o eksploatuojamas katalizatorius selektyviai paveikia LOJ, juos paverčiant į mažai taršius junginius [4].

Katalizinis oksidavimo metodas remiasi reakcijai palankių sąlygų sudarymu, kur pradinės medžiagos pilnai sureaguoja. Reakcijos produktai – anglies dioksidas, vandens garai ir kiti santykinai nepavojingi junginiai. Katalizatorius – šios technologijos pagrindas, kuris tiesiogiai daro įtaką LOJ pašalinimo efektyvumui. Tyrimai katalizatoriaus sudėčiai, aktyvumui, našumui bei praktiniam pritaikymui pramonėje nuolatiniai [4, 5].

Vienas iš potencialių kataliziniam LOJ oksidavimui skirtų katalizatorių – aliumofosfatinio AlPO-*n* ceotipo pagrindo katalizatorius, kurio taisyklingas dalelių išsidėstymas struktūroje sudaro atviras poras į kurias galimas aktyviojo katalizatoriaus komponento įterpimas.

Šiame darbe nagrinėjamos jautrios aliumofosfatinio ceotipo sintezės sąlygos bei vario fiksavimas aliumofosfato porose [6]. Siekiant geriau suprasti vario įterpimą į ceotipo struktūra sudaromi ir analizuojami adsorbcijos kinetikos bei izotermų modeliai.

Tiriamąją darbo dalį sudaro CuO/ceotipo katalizatoriaus savybių, kristalografinės struktūros, katalizės veikimo mechanizmo bei selektyvumo nagrinėjimas pasitelkiant rentgeno spinduliuotės difrakcinės analizės, atominės absorbinės spektrometrijos, skenuojamosios elektronų mikroskopijos, energijos dispersijos rentgeno spinduliuotės spektrometrijos, dujų chromatografijos (poravimo su masės spektrometrija) analizės metodais.

Remiantis gautais CuO/ceotipo katalizatoriaus tyrimų rezultatais ir optimaliomis sąlygomis, pateikiama oro valymo nuo etilacetato technologija skirta pramonei.

1. Literatūros apžvalga

1.1. Ceolitai

1.1 pav. Ceolito struktūros vaizdavimas [7]

Ceolitai - atskira hidruotų kristalinės struktūros aliumosilikatų kategorija pasižyminti taisyklingomis bei poringomis trimatinėmis struktūromis. Junginių karkasus sudaro, vadinami, TO4 tetraedriniai tinklai [7] (T = Si, Al), kurie sujungti vienas su kitu deguonies atomais (žiūrėti 1.1 pav.). Šis unikalus bei taisyklingas dalelių išsidėstymas suteikia didelį paviršiaus plotą, kuris leidžia ceolitams atskirti molekules pagal dydį ar forma [8]. Dėl šios savybės ceolitams mokslinėje literatūroje taip pat suteikiamas molekulinio sieto

pavadinimas. Skirtingų ceolitų struktūrų pavyzdžiai pateikti 1.2 pav.

Pagrindiniai ceolitų struktūriniai elementai – SiO₄ bei AlO₄ tetraedrai [8, 9, 10]. Gretimų tetraedrų kampai yra sujungiami bendru deguonies atomu ir tai lemia išskirtinę neorganinės makromolekulės struktūrą. Iš šio apibrėžimo – daroma prielaida, jog atskirų tetraedrų formulės yra SiO₂ ir AlO₂⁻ t. y., esą vienas neigiamas krūvis kiekviename aliuminio tetraedro centre. Neigiamas krūvis yra kompensuojamas nuo sintezės užsilikusių vandens molekulių ir mažu katijonų kiekiu, kurie yra ceolito karkaso kanaluose, ertmėse ir 0,2–1 nm dydžio porose [9, 10]. Ceolito cheminė sudėtis gali būti pavaizduojama taip:

$$A_{y/m}^{m^+} \left[(SiO_2)_x \cdot (AlO_2^-)_y \right] \cdot z H_2O_z$$

kur A yra *m* krūvio metalo katijonas, (x + y) – tetraedrų skaičius kristalografinio junginio vienete, x/y – struktūrinio silicio/aliuminio santykis n_{Si}/n_{Al} , *z* – pririšto vandens molekulių skaičius [8, 9, 10].

Levenšteino (vok. *Löwenstein*) dėsnis teigia, jog du nuosekliai sujungti aliuminio tetraedrai (Al–O–Al) nėra galimi [9], silicio aliuminio santykiu tai išreiškiama: $n_{Si}/n_{Al} \ge 1$. Silicio ir aliuminio oksidų tetraedrai ceolite struktūros vaizdavime dažnai yra trumpinami ir užrašomi T-atomų pavidalu.

1.2 pav. Keturių ceolitų struktūros: jų mikroporų sistemos ir matmenys. Nuo dešinės pusės viršaus iki apačios: faujasitas arba ceolitas X, ceolitas Y, ceolitas ZSM-12, ceolitas ZSM-5 arba silikalitas-1, ceolitas Theta-1 arba ZSM-22 [7]

1.2. Ceotipai

Ceotipai (angl. *zeotypes*) – platesnė medžiagų grupė, kurios remiasi ceolitų struktūra ir pasižymi panašiomis porų savybėmis [11]. Ceolito tetraedrų tinklas gali būti sudarytas ir iš metalų, kurie yra artimi siliciui bei aliuminiui periodinėje cheminėje lentelėje. Į ceotipų klasifikaciją yra įtraukiamos tokios medžiagų grupės kaip aliumofosfatas, galofosfatai, cinkofosfatai, borosilikatai, galosilikatai ir galogermanatai (angl. *aluminophosphates, gallophospates, zincophosphates, borosilicates, gallosilicates, gallorgermanates*) [11], tačiau išskiriamos ir tokios medžiagos, kuriuose pakeista tik dalis aliumino ir silicio atomų skaičius struktūroje, pavyzdžiui, silikoaliuminofosfatai [11] (angl. *silicoaluminophosphates*).

Šiandien yra nustatyti 235 skirtingi ceotipų karkaso tipai ir šios unikalios struktūros yra įvardijamos Tarptautinės Ceolito Asociacijos (angl. *International Zeolite Association*) trijų raidžių kodu [10].

Būtent aliumofosfatai kėlė mokslininkams didžiausią susidomėjimą šia medžiagų grupe, turinčią pakankamai gausų molekulinių sietų skaičių, kur dalis medžiagų pasižymi unikaliomis struktūromis neturinčios aliumosilikatinio ceolito atitikmens [12].

1.2.1. Aliumofosfatų raida

Gamtoje randama natūraliai susiformuojančių aliumofosfatinių medžiagų su unikaliomis trimatinėmis struktūromis. Tokie mineralai, kaip berlinitas (angl. *berlinite*), variscitas (angl. *variscite*), metavariscitas (angl. *metavariscite*), augelitas (angl. *augelite*), senegalitas (angl. *senegalite*) ir kiti, savo sudėtyje aliuminis bei fosforas pasiskirstę 1:1 santykiu. Būtent variscitas bei metavariscitas mokslininkams kėlė didžiausią susidomėjimą, nes abiejų cheminė sudėtis aprašoma AlPO₄·2H₂O chem. formule. Abiejų medžiagų karkasai (angl. *framework*) pasižymi oktaedrine forma, kur aliuminio atomas sujungtas su keturiomis fosfatinėmis grupėmis ir koordinaciniu ryšiu dvi vandens molekulės sujungtos su aliuminiu. Tarpusavyje susijungianti aliuminio ir fosforo karkasų visuma struktūroje sukuria šešianarius žiedus [12].

Vykdant detalesnius tyrimus, buvo atrasta, jog šie mineralai nėra termiškai stabilus, esant aukštesnei temperatūrai, struktūra ỹra, nes yra atpalaiduojamos silpnu ryšiu pririštos vandens molekulės. Šis struktūrinis pokytis ir atvėrė galimybę domėtis unikaliomis ir išskirtinėmis susintetintų aliumofosfatų struktūromis [12].

1.2.2. AIPO₄-H1

Laboratoriniu būdu paruoštos aliumofosfatinės fazės atrastos ne per seniausiai, prancūzų mokslininkas d'Yvoire 1961-aisiais metais savo moksliniame darbe teigė, jog pavyko sukurti aliumofosfato fazes keičiant Al₂O₃:P₂O₅:*x*H₂O molinius santykius. Bandiniuose, keičiant naudojamo vandens kiekius, pastebėta, jog paruošti sintetiniai variscito bei metavariscito analogai. Šias naujas hidruotas fazes mokslininkas pavadino H1, H2, H3, H4, H5 bei H6 pavadinimais ir jų terminius produktus pavadino A, B, C, D ir E [12]. Pabrėžtina, jog H1 konversija į VPI-5 aptariama 1.2.5 skyrelyje.

AlPO ₄ hidratai	Grįžtamieji bevan produktai	deniai Negrįžtami terminiai produktai
H1 ←	→ VPI-5 -	\rightarrow AlPO ₄ -8
H2 \leftarrow arba 80	$\xrightarrow{P_2O_5}$ E -	\rightarrow Tridimitas
H3 < 80-1	<u>00°C</u> → C -	200 °C → D
H4 ——	250 °C	Tridimitas
H5 < 11	^{0 °C} → B -	$400^{\circ}C$ > Tridimitas + Kvarcas
H6 < 11	$\rightarrow D$ -	Fridimitas + Kristobalitas

1.3 pav. d'Yvoire's paruoštų AlPO₄-HX fazių pusiausviri tarpiniai bei terminiai produktai [12]

Verta paminėti, jog aliumofosfatų literatūroje naudojami tokie terminai kaip AlPO₄-tridimitas [12, 13] (angl. AlPO₄-tridymite, -kristobalitas (angl. cristobalite), -kvarcas (angl. quartz), nors šios medžiagos yra SiO₂ polimorfinės atmainos, jeigu nepridedamas priešdėlis "AlPO4". Teigiama, kad AlPO₄-tridimitas bei SiO₂-tridimitas yra tos pačios kristalinės struktūros bei išsidėstymo, rentgeno spinduliuotės difrakcinės

1.4 pav. AlPO₄-H2 topografinė transformacija į AlPO₄-tridimitą [14]

analizės charakteringosios medžiagų smailės sutampa [14] (maždaug 20–23 ° difrakcijos kampo 2 θ diapazone). Tyrimų aprašuose, susijusių su aliumofosfatinių molekulinių sietų sinteze, šios AlPO₄ fazės vadinamos "tankiomis fazėms" [12], kadangi jų kristalinė struktūra yra labai suglausta, nepasižyminti molekulinių sietų poringumu.

AlPO₄-tridimitas pagrinde susiformuoja iš AlPO₄-H2 fazės, kurioje dėl karščio ryšys tarp aliuminio ir fosforo nutrūksta ir vėliau susigrupuoja į glaustesnių žiedų sistemą [14]. Pakankamai aukštose temperatūrose virsmus į AlPO₄-tridimitą gali patirti ir kiti hidratai [12].

Visose 1.3 pav. pateiktose fazėse aliuminio bei fosforo santykiai išlieka 1:1, keičiasi naudojamo vandens kiekis, todėl struktūriškai jos visos beveik identiškos. Fazių skirtumai atsiranda, kai yra bandoma termiškai dehidratuoti junginius ir įvyksta struktūriniai pokyčiai bei įvairių karkasų topografiniai virsmai [12].

Pabrėžiama, kad daugelis minėtų fazių negalėjo būti paruoštos be kitų kartu kristalizuojančių fazių ir taip buvo gaunami AlPO4-hidratų mišiniai. Po d'Yvoire'ės darbo kiti mokslininkai, siekiant išgauti

didelio grynumo vienetinio aliumofosfatinio junginio fazę, pradėjo į reagentus įtraukti mineralines rūgštis bei organinius amino junginius, kurie buvo naudojami tradicinių ceolitų sintezėje.

1.2.3. AlPO4-*n*

1982-aisiais S. Wilson'as, B. Lok'as et al. kartu su *Union Carbide Corporation* [15] skelbė apie sėkmingą naujų aliumofosfatinių struktūrų pagrindo (AlPO₄-*n*) mikroporingų molekulinių sietų sintezę. Tuo metu, molekuliniai sietai buvo vadinami tik aliumosilikatiniai ceolitai bei mikroporingos silicio polimorfinės atmainos. Tyrimų rezultatuose rašoma, jog pavyko išskirti keturiolika trimačių, mikroporomis pasižyminčių, fazių bei šešiask dvimates sluoksniuotas (angl. *two-dimensional layer-type*) medžiagas [16].

Naujos medžiagos gautos hidroterminiu gamybos metodu 100–250 °C diapazono temperatūroje ir naudojant organinius aminų junginius arba ketvirtines amoniako druskas [14, 15]. Organiniai junginiai, autoriaus, nurodomi kaip esminės struktūrą formuojančios medžiagos, kur be jų susidaro tankios vienmates AlPO₄ fazės (aliumofosfatinės kvarco, tridimito atmainos).

Originaliame Union Carbide Corporation patente yra nurodomos 53 skirtingos sintezės metodikos, kurių rezultate gaunama vienas iš 20 naujų aliumofosfatinių ceotipų. Pavyzdžiui, yra pateikti 23 skirtingi būdai išgauti AlPO₄-5 ceotipą keičiant tik naudojamą struktūrą formuojantį agentą [15]. Manoma, kad tokį platų aminų ir ketvirtinių amoniako druskų pasirinkimą nulemia, kad visi junginiai yra panašaus dydžio: formuojančio agento molekulės užpildo visas ceotipo besiformuojančias poras ir nepalieka laisvos vietos priemaišoms formuotis struktūriniame AlPO₄-*n* karkase. Pabrėžtina, kad aliumofosfatinis ceotipo karkasas nepasižymi joniniu krūviu, todėl aminai bei amoniako druskos neveikia kaip kompensatoriai krūvio išlyginimui. Šis faktas tik sustiprina argumentą, kad organinių junginių įterpimas yra jų dydžio ir atvirų karkaso ertmių klausimas.

Organiniai junginiai iš struktūrų pašalinami juos išdeginant. Kaitinimo temperatūros parenkamas 400–600 °C ribose ir šiose temperatūrose būtent trimačiai AlPO₄-*n* junginiai pasižymi terminiu stabilumu, kur neprarandamos kristalinės struktūros aukštose temperatūrose [15].

Dvimatėse sluoksniuotose fazėse, autorių spėjama, tarp AlPO₄ sluoksnių įsiterpia organinių junginių dalelės, dėl kurių išdeginimo įvyksta karkaso griūtis bei kristalografinis persigrupavimas į tankias AlPO₄ medžiagas [15, 16].

Visų naujų atrastų AlPO₄ ceotipų porų skersmenys kinta nuo 0,3 nm iki 0,8 nm (arba 3Å iki 8 Å). Didžiausią skersmenį - 0,8 nm - nulemia struktūroje susidarę svylikos T-atomų žiedai, tokie patys kaip AlPO₄-5 struktūroje (žiūrėti 1.5 pav.).

1.2.4. VPI-5

1988 metais M. E. Davis'as et al. paskelbė apie naujo, aliumosilikatinio junginio atitikmens neturintį, aliumofosfatinių ceotipų grupę [17, 18]. Nauja AlPO₄ fazė, pavadinta VPI-5 (angl. *Virginia Polytechnic Institute number 5*), pasižymi 1,2–1,3 nm skersmens poromis dėka aštuoniolikos T-atomų žiedo struktūros. Tuo metu, iš viso ceolitų, ceotipų ir mikroporingų molekulinių sietų sąrašo, šis VPI-5 junginys pasižymėjo didžiausiu porų dydžiu ir nematyto dydžio struktūriniu žiedu [18].

1.5 pav. AlPO₄-5 ir VPI-5 karkasų projekcijos [17, 19]

VPI-5 sintezėje būtinas struktūrą formuojantis agentas, dažniausiai sutinkamos di-*n*-propilamino (trumpinamas DPA) bei tetrabutilamonio hidroksido (trumpinamas TBAOH) medžiagos [20]

Tarp AlPO₄-5 ir VPI-5 ceotipų yra struktūrinis panašumas, kur AlPO₄-5 sudaro dvylika T-atomų, iš kurių šeši keturnariai žiedai bei šeši šešianariai žiedai. Jei prie kiekvieno keturnario žiedo įsiterpia dar vienas keturnaris žiedas gaunama VPI-5 struktūra [17].

Molekulinis sietas	Žiedų narių sk.	Laisvasis porų skersmuo, Å ir forma	Bendras ertmių tūris, cm ³ /g		
AlPO ₄ -11	4, 6, 10	$6,3 \times 3,9$ elipsė	0,134		
AlPO ₄ -5	4, 6, 12	7,3 apskritimas	0,180		
VPI-5	4, 6, 18	12,1 apskritimas	0,310		

1.1 lentelė. AlPO₄ ceotipų kristalinių struktūrų savybės [19]

Verta paminėti, M. E. Davis'as et al. [18] savo patente paminėjo apie RSDA duomenų kreivių panašumus, dalinę sutaptį tarp VPI-5 ir originalios d'Yvoire AlPO₄-H1 fazės. Taip pat, tam tikromis aukštos temperatūros sąlygomis VPI-5 sintezėje gali kartu kristalizuotis AlPO₄-H3 fazė kaip

1.6 pav. VPI-5 TGA ir DSK kreivės. Termogravimetrinės analizės (TGA) kreivių temperatūros didinimo greitis: (A) 1 °C/min, (B) 2 °C/min, (C) 8 °C/min, (D) 15 °C/min, (E) 30°C/min. Diferencinės skenuojamosios kalorimetrijos (DSK) temperatūros didinimo greitis 1 °C/min [17, 18]

priemaiša, kas liudytų sąryšį tarp d'Yvoire'ės bei M. E. Davis'o reakcinių sistemų.

Atliktų terminės analizės duomenų [19] grafinis vaizdavimas (žiūrėti 1.6 pav.) parodo apie 24%_{masės} sumažėjimą dėl vandens praradimo. Kaitinant iki 800 °C tolimesniais masės kitimais VPI-5 junginys nepasižymi. Pabrėžtina, jog DSK kreivėje matomas tik endoterminis pokytis (kreivės minimumas) ir jokio organinių medžiagų degimui būdingo egzoterminio pokyčio. M. E. Davis'as [19] daro prielaida, jog naudoto TBAOH struktūrą nukreipiančio agento, naudoto kristalizuoti VPI-5. neužsilieka stambiose porose. Organiniai junginiai naudojami ceotipu sintezėje dega 350-600 °C ribose, todėl DSK yra duomenų trūkumas šiose temperatūrose.

Ilgą laiką, medžiagoms, kurios buvo sintetinamos remiantis M. E. Davis'o receptūra [17, 18], t. y., kartu su organiniais amino junginiais, buvo suteiktas VPI-5 pavadinimas. Kitiems mokslininkams, bandant atkartoti M. E. Davis'o eksperimento metodika, nepavykdavo susintetinti termiškai stabilaus junginio, kuris kaisdamas patirdavo topografinius virsmus į AlPO₄-8 fazę [21, 22] (žiūrėti 1.7 pav.).

Po tokiu pastebėjimų buvo suteikti "termiškai stabilaus VPI-5" bei "termiškai VPI-5" terminai nestabilaus [21]. Pabrėžtina. jog VPI-5 pavadinimas literatūroje vartojamas nuo 1988 m. apibūdinti tiek termiškai stabilias, tiek nestabilias formas [21].

1.7 pav. VPI-5 ir AlPO₄-8 karkasų vaizdavimas.
 Spalvinis žymėjimas: aliuminio tetraedras – žalias, fosforo tetraedras – mėlynas, deguonis – raudonas [22]

Pats M. E. Davis'as pripažįsta, jog nuo naudojamo struktūros nukreipiančio agento

priklauso medžiagos terminės savybės bei hidroterminis stabilumas. VPI-5 susintetintas naudojant tetrabutilamonio hidroksidą pasižymi žymesniu terminiu stabilumu nei VPI-5 fazė naudojanti di-*n*-propilamino struktūros priedą [19].

1.2.5. AIPO4-H1 ir VPI-5 lyginimas

VPI-5 lyginimas su d'Yvoire'ės paruošta AlPO₄-H1 medžiaga kėlė didelę diskusiją dėl ceolitų ir ceotipų pavadinimų standarto nebuvimo. Kaip nurodė M. E. Davis'as, [17, 18, 19] lyginant medžiagų RSDA duomenis pastebima tam tikra sutaptis ir dėl šio teiginio buvo analizuojama struktūrą nukreipiančio agento rolė aštuoniolikos T-atomų žiedo sintezėje. B. Duncan'as et al. [23] pateiktame tyrime siekė optimizuoti AlPO₄-H1 fazės sintezę be jokio amino junginių priedo ir tarpusavyje lyginti AlPO₄-H1 ir VPI-5 mikroporines struktūras.

AlPO₄-H1 reakcinę sistemą [23] sudarė optimizuota originali d'Yvoire'ės nurodyta metodika (moliniais santykiais), kurioje jau įtraukta druskos rūgštis:

$$1 \text{ Al}_2\text{O}_3 : 0.8 \text{ P}_2\text{O}_5 : 1 \text{ HCl} : 50 \text{ H}_2\text{O}$$
(1)

Aliuminio hidroksidas naudojamas kaip aliuminio šaltinis, ortofosforo rūgštis – fosforo šaltinis. Reakcinis mišinys autoklavoje pradeda kristalizuotis, kai kaitinamas 120–150 °C temperatūroje 4 valandoms. B. Duncan'as et al. teigia, jog naudodami optinę mikroskopiją pastebimi smulkūs adatos bei vėduoklės formos kristalai [23], kurie būdingi H1 hidratui, tačiau panašia morfologija pasižymi ir VPI-5.

Paruošta AlPO4-H1 fazė buvo kaitinama iki 100 °C temperatūros 2 valandoms krosnyje ir rezultate, įvyksta struktūrinis virsmas į AlPO₄-8 fazę.

1.8 pav. B. Duncan'o paruoštos AlPO₄-H1 TGA ir DTA kreivės. Temperatūros didinimo greitis – 10 °C/min, krosnies aplinka – oras [23]

M. E. Davis'as [19] tvirtina, jog VPI-5 fazė teigiama kaip sava, atskira fazė dėl būtino amino priedo sintezės metu bei AlPO₄-H1, -H2 terminio nestabilumo, kur AlPO₄-H1 tampa aliumofosfatine tridimito atmaina.

Ištirtos optimizuoto AlPO₄-H1 hidrato terminės savybės, kur remiantis terminės analizės (žiūrėti 1.8 pav.) bei RSDA (žiūrėti 1.9 pav.) duomenimis, teigiama jog optimizuota H1 fazė virsta AlPO₄-8, kas buvo manoma unikalu tik VPI-5 medžiagai [23].

Bandiniuose, kur yra AlPO₄-H1 ir AlPO₄-H2 mišinys, pastebimas sumažėjęs AlPO₄-8 būdingų RSDA smailių intensyvumas bei AlPO₄-tridimito smailių atsiradimas. Kadangi originaliame d'Yvoire'ės darbe nepavyko išgryninti grynų hidratų fazių, B. Duncan'as mano, kad jei d'Yvoire'ės aliumofosfatų hidratų mišinyje buvo maža koncentracija H1 fazės, tai galėjo nulemti neteisingą H1 terminio produkto (t. y. AlPO₄-tridimito) priskyrimą [23].

Remiantis su pavykusią optimizuotos sudėties AlPO₄-H1 sintezę, būtent šios fazės fizikinių savybių panašumu su VPI-5 bei terminių produktų sutaptimi, B. Duncan'as teigia [23], kad VPI-5 bei H1 fazės identiškos ir yra ta pati kristalinė fazė.

1.9 pav. B. Duncan'o paruoštų medžiagų RSDA kreivės. A – AlPO₄-H1 fazė, B – 2 val. 100 °C temp. kaitinta AlPO₄-H1 fazė, C – AlPO₄-H1 ir -H2 fazių mišinys, D – 2 val. 100 °C temp. kaitintas AlPO₄-H1 ir -H2 fazių mišinys [23]

E. Perez'as et al. taip pat pateikė tyrimų rezultatus, kuriuose fazė pavadinta AlPO₄-H1, nesvarbu ar sintezėje buvo naudojami amino junginiai, ar ne. Dalis šių skirtingų junginių patirdavo terminius virsmus į AlPO₄-8 [21].

Junginius, kurie pasižymėjo terminiu stabilumu, E. Perez'as pavadino VPI-5, kadangi M. E. Davis'as teigia, jog jo susintetinta medžiaga yra termiškai stabili iki 800 °C. Dėl šios priežasties, E. Perez'as savo darbe teigė, jog jo susintetinta AlPO₄-H1 yra struktūriškai skirtinga fazė nei M. E. Davis'o VPI-5. Toliau skelbiant savo tolimesnius mokslinius darbus, E. Perez'as toliau naudojo pavadinimą AlPO₄-H1 medžiagoms, kurios kaitindamos pavirsdavo AlPO₄-8 [21].

1.3. Kristalizavimo mechanizmas

1.10 pav. Aliumofosfatinės grandinės pirmtako transformacija. a) linijinė pirmtako grandinė, b) hidrolizės paveiktas grandinės žiedas ir susidariusi Al-OH grupė, c) hidrolizuotos grupės rotacija aplink likusią nehidralizuotą Al-O-P jungtį, d) kondensacija bei struktūros pasikeitimas iš dviejų viršūnę besidalijančių keturnarių žiedų į du bendra-briaunius keturnarius žiedus. Spalvinis žymėjimas: aliuminis mėlynas, fosforas - raudonas, deguonies tilteliai – balti [24]

S. Oliver'is et al. moksliniame darbe siekiama pateikti skirtingų AlPO₄ ceolitų kristalizavimo mechanizmą [24]. Manoma, pradiniuose fazės maišymo etapuose fosforo rūgštis ardo aliuminio tarpusavio ryšius ir iš Al-O-Al ryšių susidaro Al-O-P kovalentiniai ryšiai. Ši nauja *metastabili* polimerinė fazė skaitomas pirmtakas, kurį sudaro per viršūnes sujungti Al₂P₂O₄ žiedai. AlO₄⁻ tetraedras deguonies tilteliais yra sujungtas su keturiais fosforo atomais, kurie prie žiedo yra sujungti tik per du deguonies ryšius. Likusios fosforo koordinacijos vietos yra užimtos P-OH ar P=O grupėmis [24, 25].

Tarpusavyje identiški Al₂P₂O₄ žiedai yra sujungti stačiais kampais (angl. *orthogonally*). S. Oliver'is et al. teigia, jog būtent šis grandinės pirmtakas ir yra jautrus griežtoms reakcijos sąlygoms, tokios kaip naudojamo struktūrinio agento prigimtis, gelio molinė sudėtis, pH, temperatūra [24, 25].

AlPO₄-ceolito struktūros formavimasis priklauso nuo vienos linijinės aliumofosfatinės grandinės sąveikos su vandeniu. Susidariusi pirmtako linijinė grandinė patiria hidrolizės reakcijas, kur priklausomai nuo pH terpės, ardomi Al-O ir P-O ryšiai ir vietoje jų susiformuoja Al-OH ir P-OH grupės. Kadangi polimerinė aliumofosfatinė grandinė yra pakankamai lanksti, vyksta spartūs sukamieji ir lenkiamieji judesiai aplink likusią nehidrolizuotą Al-O-P jungtį. Ši rotacija priartina Al-OH ir P-OH grupes viena prie kitos ir tai nulemia vandens išsiskyrimą dėl grandinės viduje vykstančios kondensacijos [24].

Įvyksta elementaraus grandinės struktūrinio vieneto transformacija, kur iš dviejų viršūnę besidalijančių keturnarių žiedų tampa du keturnariai žiedai jau besidalijantys bendra briauna. Toliau gali vykti panašūs nepaveiktų viršūnėmis sujungtų keturnarių žiedų transformacijos ir persigrupavimas sukurdami sudėtingesnės struktūros grandines. Pasikartojančios hidrolizės ir kondensacijos reakcijos priklauso nuo reakcinėje sistemoje esančio vandens, o šie procesai ir leidžia sudėtingesnių struktūrų susidarymui [25].

1.11 pav. VPI-5 karkaso savaiminio susirinkimo modelio vaizdavimas. Spalvinis žymėjimas: aliuminis – mėlynas, fosforas – raudonas, deguonies tilteliai – balti [24]

Grandinės savaiminio susirinkimo (angl. *self-assembly*) modelis, kuris sužadintas paprasto hidrolizės-kondensacijos proceso sukuria *metastabilias* fazes galinčias kristalizuotis iš aliumofosfatinės reakcinės sistemos [24]. S. Oliver'io et al. pateiktas nesudėtingų pirmtako grandinės struktūrinių virsmų mechanizmas gali paaiškinti platų, įvairų poringų ir atvirų aliumofosfatinių struktūrų skaičių.

1.4. Mikrobangų spinduliuotės sintezė

Tradicinis ir jau dešimtis metų naudojamas sintetinių ceolitų gamybos procesas – hidroterminės sintezės metodas [8]. Tačiau šis gamybos būdas nėra skaitomas tvariu ir neatitinka tam tikrų kriterijų [9, 10], tokių kaip:

- kaštų mažinimas;
- susidariusių atliekų mažinimas;
- neigiamo aplinkos poveikio šalinimas;
- efektyvumo didinimas.

Pastarąjį dešimtmetį siekiant sumažinti hidroterminių reakcijų laikus, kurios galėjo trukti ištisas dienas, ceolitams ir ceotipams išgauti pasitelkiama mikrobangų spinduliuotės reaktoriumi [9, 10]. Šildymas mikrobangų krosnelėje yra greitas ir energiją taupantis alternatyvus molekulinių sietų sintezės būdas.

Mikrobangų spektras elektromagnetinių bangų spektre atitinka bangas, kurių bangų ilgis nuo 1 mm iki 1 m. Kadangi šis spektras yra didesnio dažnio nei ultravioletinių ar regimosios šviesos bangų, šios mikrobangos išspinduliuoja mažesnius energijos kiekius (lyginant su ultravioletinių ir regimosios šviesos spektrais), kurių nepakanka paveikti molekules ar molekulių tarpusavio ryšius, kad šios pradėtų cheminius virsmus. Šis nuolatinis mikrobangų spinduliavimas gali sukelti staigius terminius pokyčius cheminių reakcijų sąlygoms sudaryti [26, 27].

Mikrobangų spinduliuotės inicijuotos cheminės reakcijos galimos dėka medžiagų dielektrinių savybių. Šis dielektrinis šildymas (angl. *dielectric heating*) grindžiamas dvejais pagrindiniais mechanizmais [26]:

- dipoline poliarizacija (angl. dipolar polarization);
- joniniu laidumu (angl. *ionic conduction*).

Šilumos susidarymas mikrobangų poveikiu galimas kai pačios molekulės yra polinės, t. y., molekulės struktūrinės dalys yra dalinai neigiamos, o kitos dalys – dalinai teigiamos, kitaip dar vadinami, dipoliais. Vykstant mikrobangų spinduliavimui, dipoliai susilygina erdvėje su atitinkamomis bangomis [26]. Mikrobangų spinduliavimas, kaip ir visų kitų elektromagnetinių bangų, nėra pastovus, o svyruojantis, nuolatinis molekulių persigrupavimas ir rotacija tampa chaotišku judesiu erdvėje [26], struktūroje atsiranda trintis tarp molekulių, kuri tampa termine energija.

Pilnai neigiamos ar teigiamos dalelės (jonai) taip pat svyruoja dėl mikrobangų spinduliuotės kintamų bangų poveikio. Ši spinduliuotė priverčia jonus svyruoti pirmyn atgal bei susidurti su šalia esančiomis dalelėmis, kur šie susidūrimai ir sukelia didžiausius šilumos energijos kiekius [26].

Šildymas mikrobangomis yra sunkiai pritaikomas pavienėms dujinėms bei kietosioms medžiagoms. Dujos gali būti paveiktos mikrobangų spinduliuote, tačiau tuščios erdvės tarpai tarp dalelių yra per dideli, kad susidarytų žymi vidinė trintis. Kietuosiuose kūnuose dipoliai yra, tačiau jie surišti kristalinėje gardelėje ir negali laisvai judėti kaip skystoje agregatinėje būsenoje [26].

Dielektinio kaitinimo metu elektromagnetinė energija yra konvertuojama į kinetinę energiją medžiagoje, o po to virsta šilumine energija. Skirtingos medžiagos, dėl sudėtingos struktūros, pasižymi skirtingomis elektromagnetinės energijos virsmu šiluma išeigomis. Šis savybė gali būti iš anksto nustatyta įvedant vadinamąjį nuostolių tangentą [26] (angl. *loss tangent*):

$$\tan \delta = \frac{\varepsilon''}{\varepsilon'};\tag{2}$$

kur tan δ – nuostolių tangentas;

 ε'' – dielektriniai nuostoliai (elektromagnetinės spinduliuotės virsmo šiluma efektyvumas);

 ε' – dielektrinė konstanta (molekulių poliarizuotumas elektriniame lauke).

Nuostolių tangentas leidžia suskirstyti medžiagas į stipriai (tan $\delta > 0,5$), vidutiniškai (0,1 < tan $\delta < 0,5$) bei mažai (tan $\delta < 0,1$) mikrobangų spinduliuotę sugeriančias medžiagas. Geriausiomis savybėms pasižymi ir plačiausiai naudojami organiniai tirpikliai (žiūrėti 1.2 lentelė), kuriose ištirpinamos ar patalpinamos reakcijai reikalingos medžiagos [26].

Stipriai sugeriantys		Vidutiniškai sugeriantys	Mažai sugeriantys			
Tirpiklis	$\tan \delta$	Tirpiklis	$\tan \delta$	Tirpiklis	$\tan \delta$	
Etilenglikolis	1,35	2-butanolis	0,447	Achlorformas 0,091		
Etanolis	0,941	Dichlorbenzenas	0,28	Acetonitrilas 0,06		
2-propanolis 0,799		Acto rūgštis	0,174	Etilacetatas	0,059	
Skruzdžių rūgštis 0,722		Dimetformamidas (DMF)	0,161	Acetonas	0,054	
Metanolis	0,659	Dichloretanas	0,127	Dichlormetanas	0,042	
Nitrobenzenas	0,589	Vanduo	0,123	Toluenas	0,040	
1-butanolis 0,571		Chlorbenzenas	0,101	Heksanas	0,020	

1.2 lentelė. Dažniausiai naudojamų tirpiklių klasifikavimas pagal jų nuostolių tangentus [26]

Vanduo priskiriamas prie prastesnių vidutiniškai mikrobangas sugeriančių medžiagų, tačiau vanduo yra plačiausiais naudojamas tirpiklis tokio tipo sintezėje, nes lyginant su kitomis **1.2 lentelė**je pateiktomis medžiagomis, vanduo nekelia pavojaus žmogui nei aplinkai, yra pigus ir nereikalauja išskirtinių laikymo ar naudojimo sąlygų.

Įprastu kaitinimo metodu, šiluminė energija sukuriama kaitinant kurą (pvz. dujinis degiklis) ar elektrine krosnimi, kuri yra perduodama reakcijos indui ir tuomet indo turinys pradeda kaisti. Toks kaitinimas yra sąlyginai lėtas bei sukuria nemažai nepanaudojamos energijos, taip pat, reakcijos indo paviršius kaista netolygiai per visą tūrį ir, jei dirbama su termiškai jautriomis medžiagomis, gali sukelti medžiagų yrimą. Mikrobangų spinduliavimas sukelia temperatūros kilimą pačio indo viduje judinant pačias reakcijos daleles. Mikrobangos gali prasiskverbti pro reakcijos indą, sukelti efektyvius ir greitus elektromagnetinės energijos virsmus termine energija. Nesudaromos sąlygos pašalinėms reakcijoms susidaryti dėl staigaus reakcijai reikalingos temperatūros išvystymo. Taip supaprastinamas pats procesas bei, manoma, pasiekiama didesnė produkto išeiga [26].

Anton Paar GmbH, *Monowave 300* [26, 27] mikrobangų sintezės reaktoriaus gamintojas, teigia tokius spinduliuotės sukelto kaitinimo pranašumus:

- aukštos temperatūros išvystymas;
- reakcijos laiko sutrumpinimas;
- didesnė gryno produkto išeiga;
- parametrų pakartojamumas;
- tolygi ir nuolatinė galia;
- maišymo galimybė.

2. Tiriamoji (eksperimentinė) dalis

2.1. Medžiagos ir metodai

Tyrimuose buvo naudojamos skirtingos aliuminio žaliavos: aliuminio hidroksidas Al(OH)₃ (an. gr., Eurochemicals) bei aliuminio izopropoksidas C₉H₂₁AlO₃ (\geq 98% gr., Labochema, gamintojas Sigma-Aldrich, Vokietija). Ceotipų fosforo šaltinis visuose bandiniuose vienodas – ortofosforo rūgštis (85% gr., Eurochemicals), taip pat, daliai bandinių reikalinga druskos rūgštis HCl (37% an. gr., Eurochemicals, gamintojas Rndr. Jan Kulich, Čekijos Respublika). Naudojami struktūrą nukreipiantys agentai: trietilaminas (> 99,5 %, sintezei, Labochema, gamintojas Sigma-Aldrich, Vokietija), 4-(dimetilamino)piridinas (\geq 99 %, gamintojas Sigma-Aldrich, Vokietija), N,Ndiizopropiletilaminas (\geq 99,5 %, gamintojas Sigma-Aldrich, Vokietija).

Remiantis visais moksliniais straipsniais susijusiais su aliumofosfatinių ceotipų sintezę [28, 29, 30, 31], aliuminio ir fosforo dalys reakciniame mišinyje pateikiami Al₂O₃ ir P₂O₅ pavidalais, atitinkamai. Naudojamų medžiagų kiekiai turi būti išreikšti būtent šių oksidų pavidalu.

Bandinių paruošimui pasveriami ir naudojami 2,00 g gryno aliuminio hidroksido Al(OH)₃ milteliai. Apskaičiuojama molių konversija iš aliuminio hidroksido į aliuminio oksidą:

$$n_{\rm Al(OH)_3} = \frac{m_{\rm Al(OH)_3}}{M_{\rm Al(OH)_3}} = \frac{2,00 \text{ g}}{78 \text{ g/mol}} = 0,026 \text{ mol.}$$
 (3)

Kadangi aliuminio hidroksido formulėje yra tik vienas aliuminio atomas, o oksido atitikmenyje jau dvi aliuminio dalelės, daroma prielaida:

$$n_{\rm Al_2O_3} = \frac{n_{\rm Al(OH)_3}}{2} = \frac{0.026 \text{ mol}}{2} = 0.013 \text{ mol.}$$
 (4)

Aliuminio oksido molių skaičius yra svarbus dydis, nes sintezėje naudojamų rūgščių bei organinių medžiagų moliniai santykiai priklauso nuo aliuminio oksido, ne hidroksido. Apskaičiuojamas reikalingas ortofosforo rūgšties (85 % koncentracijos) kiekis, kad reakcinėje sistemoje būtų išlaikomas

1 Al₂O₃ : 1 P₂O₅ molinis santykis.

$$n_{\rm P_2O_5} = n_{\rm Al_2O_3} = 0,013 \text{ mol};$$
 (5)

$$n_{\rm H_3PO_4} = n_{\rm P_2O_5} \cdot 2 = 0,013 \text{ mol} \cdot 2 = 0,026 \text{ mol}.$$
 (6)

Remiantis ta pačia aliuminio oksido molių skaičiavimo prielaida, ortofosforo rūgšties formulėje yra vienas fosforo atomas, o fosforo pentoksido formulėje jau dvi fosforo dalelės, todėl reikės dvigubai daugiau molių ortofosforo rūgšties.

$$m_{\rm H_3PO_4} = n_{\rm H_3PO_4} \cdot M_{\rm H_3PO_4} = 0,026 \text{ mol} \cdot 98 \text{ g/mol} = 2,513 \text{ g};$$
 (7)

$$m_{\rm H_3PO_4\ 85\%} = m_{\rm H_3PO_4} \cdot \frac{100\ \%}{85\ \%} = 2,956\ \rm g;$$
(8)

$$V_{\rm H_3PO_4\ 85\%} = \frac{m_{\rm H_3PO_4\ 85\%}}{\rho_{\rm H_3PO_4\ 85\%}} = \frac{2,956\ \rm g}{1,685\ \rm g/ml} = 1,75\ \rm ml. \tag{9}$$

Į reakcinę sistemą taip pat dedami tikslūs druskos rūgšties HCl (37 % konc.) bei vandens kiekiai. Reagentai apskaičiuojami moliniu santykiu 1 Al₂O₃:1 HCl bei 1 Al₂O₃:50 H₂O.

$$n_{\rm HCl} = n_{\rm Al_2O_3} = 0,013 \text{ mol};$$
 (10)

$$m_{\rm HCl} = n_{\rm HCl} \cdot M_{\rm HCl} = 0.013 \cdot 36.5 \text{ g/mol} = 0.468 \text{ g};$$
 (11)

$$m_{\text{HCl 37\%}} = n_{\text{HCL 37\%}} \cdot \frac{100}{37} = 1,265 \text{ g};$$
 (12)

$$V_{\rm HCl} = \frac{m_{\rm HCl}}{\rho_{\rm HCl}} = \frac{1,265 \text{ g}}{1,20 \text{ g/ml}} = 1,05 \text{ ml};$$
(13)

$$n_{\rm H_2O} = n_{\rm Al_2O_3} \cdot 50 = 0,013 \text{ mol} \cdot 50 = 0,641 \text{ mol};$$
 (14)

$$m_{\rm H_2O} = n_{\rm H_2O} \cdot M_{\rm H_2O} = 0,641 \text{ mol} \cdot 18 \text{ g/mol} = 11,54 \text{ g.}$$
 (15)

Jei norima naudoti kitokius nei 1:1 molinius santykius, apskaičiuotus dydžius galima padauginti iš norimo molinio santykio. Pavyzdžiui, 1 Al₂O₃ : 0,8 P₂O₅ : 0,6 HCl : 50 H₂O reakcinei sistemai sudaryti bus naudojami 2,00 g aliuminio hidroksido, 1,75 ml \cdot 0,8 = 1,40 ml 85 % koncentracijos ortofosforo rūgšties, 1,05 ml \cdot 0,6 = 0,63 ml 37 % koncentracijos druskos rūgšties bei 11,54 ml distiliuoto vandens. Jei naudojamos skirtingos aliuminio žaliavos, moliniai kiekiai perskaičiuojami.

Reakcija vykdoma Anton Paar GmbH, *Monowave 300* (Austrija) mikrobangų sintezės reaktoriuje, kuris sukomplektuotas su vienetiniu 850 W magnetronu, magnetrono dažnis 2455 MHz, yra integruotas IR daviklis, kurio matavimo ribos nuo 30 iki 300 °C (paklaida ± 5 °C), integruota magnetinė maišyklė leidžianti maišyti 0–1200 apsisukimų per minutę greičiu. Reakcijai įvykti reikalingas slėgis, kuris tiekiamas kompresoriumi 6 bar slėgiu į reaktorių.

Aliumofosfatinis gelis patalpinamas į specialius *Monowave 300* reaktoriui pritaikytus borosilikatinius 30 ml indus kartu su magnetu.

Po reakcijos bandiniai yra nufiltruojami naudojant Biuchnerio kolbą, nuosėdos su filtriniu popieriumi atskiriamos ir džiovinamos kambario temperatūroje ore vienai parai. Siekiant išgarinti kristalinį vandenį bei, tam tikruose bandiniuose, išdeginti organinius junginius, mišiniai patalpinami į SNOL *8,2/1100* (Lietuva) elektrinę krosnį.

Rentgeno spinduliuotės difrakcinė analizė atlikta difraktometru BRUKER AXS D8 ADVANCE (JAV). Naudojama spinduliuotė – CuK α , filtras – Ni, detektoriaus judėjimo žingsnis 0,02°, intensyvumo matavimo trukmė žingsnyje – 0,5 sekundės, anodinė įtampa $U_a = 40$ kV, srovės stipris I = 40 mA. Rentgeno spinduliuotės difrakcinės analizės matavimų tikslumas $2\theta = 0,01^\circ$.

Skenuojanti elektroninė mikroskopija atlikta naudojant HITACHI S-3400N (Japonija) įrenginį. Jame yra įmontuotas BRUKER *Quad 5040* EDS (angl. *energy dispersive (X-ray) spectroscopy*) detektorius. Techniniai parametrai:

- Antrinių elektronų (angl. secondary electrons) vaizdų skiriamoji geba: ne blogesnė kaip 3 nm, aukštame vakuume, kai greitinančioji įtampa: 30 kV; ne blogesnė kaip 10 nm, aukštame vakuume, kai greitinančioji įtampa: 3 kV.
- Atsispindėjusių elektronų (angl. *backscattered electron*) vaizdų skiriamoji geba, ne blogesnė kaip 4 nm, aukštame ir žemame vakuume kai greitinančioji įtampa: 30 k.

Vienalaikė terminė analizė atlikta LINSEIS *STA PT-1000* (Vokietija) terminiu analizatoriumi. Matavimų tikslumas \pm 3 °C.

Adsorbcijos tyrimams naudojami 0,25 g susintetintos aliumofosfatinės medžiagos (adsorbento) bei 25 ml tiriamojo vario tirpalo (adsorbtyvo). Vario tirpalams sudaryti naudojama Cu(NO₃)₂·3H₂O druska (\geq 99,0% an. gr., Eurochemicals, gamintojas PENTA, Čekijos Respublika), tačiau tirpalai yra skaičiuojami tik gryno vario koncentracija. Vario tirpalų koncentracijos: 1 g, 5 g, 10 g, 20 g, 30 g Cu²⁺ litre. Naudojami vario druskos kiekiai pateikti 2.1 lentelės pavidalu žemiau. Lentelėje nurodyti medžiagos kiekiai pasveriami laboratorinėmis svarstyklėmis 0,001 tikslumu, suberiami į 200 ml kolbą ir praskiedžiami distiliuotu vandeniu iki matavimo kolbos linijos.

Tirpalo konc., g _{Cu} /l	1	5	10	20	30
Cu(NO ₃) ₂ ·3H ₂ O kiekis, g	0,756	3,781	7,563	15,125	22,688

Norint tiksliai išmatuoti adsorbuotus vario kiekius aliumofosfatinėje medžiagoje (adsorbatą) pasitelkiama atominės absorbcijos spektroskopijos (AAS) analizės metodu naudojant Perkin Elmer *AAnalyst 400* (JAV) spektrometru. Vario nustatymui naudojama tuščiavidurio katodo lempa. Pabrėžtina, jog spektrometro kiekybinis aktyviosios medžiagos matavimų tikslumas yra labai jautrus, koncentracijos pateiktos g/l yra per didelės spektroskopijai atlikti. Dėl šios priežasties gauti tirpalai po sorbcijos yra praskiedžiami iki mg/l koncentracijos. 1 g_{Cu}/l, 5 g_{Cu}/l ir 10 g_{Cu}/l tirpalai praskiedžiami 10^3 kartų, o 20 g_{Cu}/l ir 30 g_{Cu}/l praskiedžiami 10^4 kartų.

Kiekybinė vario analizė atliekama gradavimo grafiko principu, kur išmatuojami etaloninių tirpalų optiniai tankiai, kuriais remiantis, programinė įranga sudaro gradavimo grafiką. Tiriamųjų tirpalų optinio tankio vertė įstatoma į gradavimo kreivė ir sužinoma aktyviojo komponento koncentracija $\pm 0,01$ mg/ml tikslumu. Po to, įvertinamas praskiedimo faktorius bei naudojamo adsorbento kiekis ir atliekami reikalingi skaičiavimai kiekybiškai įvertinti adsorbato kiekį adsorbente:

$$q_{\tau} = \frac{\left(C_{prad.} - C_{\tau}\right) \cdot V_{Cu^{2+} \text{ tirp.}}}{m_{\text{adsorb.}}};$$
(16)

čia q_{τ} – adsorbato kiekis adsorbente po τ adsorbcijos trukmės, mg/g;

m_{adsorb.} – adsorbento masė, g;

 $V_{\text{Cu}^{2+} \text{ tirp.}}$ – adsorbtyvo (Cu²⁺) tirpalo tūris, l;

 $C_{prad.}$ – pradinė adsorbtyvo tirpalo koncentracija, g/l;

 C_{τ} – adsorbtyvo tirpalo koncentracija po τ adsorbcijos trukmės, g/l.

Gauti adsorbcijos duomenys yra naudojami sudaryti adsorbcijos izotermes, kurios suteikia adsorbuotos medžiagos kiekio priklausomybę nuo tirpale esančios medžiagos įžvalgas, tačiau mažai informacijos apie proceso mechanizmą ir greitį, todėl sudaromi ir adsorbcijos kinetikos modeliai.

Šiame darbe taikyti Lengmiūro, Freundlicho, Temkino, Dubinino-Raduškevičiaus ir Elovičiaus izotermių modeliai, pseudo pirmojo laipsnio (Lagergreno) bei pseudo antrojo laipsnio (Ho) kinetikos modeliai [32].

Esminis skirtumas tarp izotermių modelių, jog naudojama išskirtinė matematinė išraiška su įvairiomis adsorbcijos proceso prielaidomis. Lengmiūro modelis sąlygoja, jog adsorbento paviršius yra energetine prasme vienodas (homogeniškas), adsorbcija medžiagos paviršiuje vyksta

monomolekuliniu sluoksniu, adsorbento aktyvieji centrai gali sorbuoti tik vieną adsorbtyvo molekulę, adsorbuotos molekulės tarpusavyje nesąveikauja ir pats adsorbcijos procesas yra pusiausviras [32].

$$\frac{l}{q_e} = \frac{l}{Q_0} + \frac{l}{K_L \cdot Q_0 \cdot C_e}; \tag{17}$$

čia q_e – adsorbato kiekis adsorbente esant pusiausvyrai, mg/g;

 Q_0 – adsorbcinė geba (dar vadinamas q_{max}), mg/g;

 C_e – adsorbato pusiausviroji koncentracija, mg/l arba g/l;

 K_L – Lengmiūro adsorbcijos konstanta l/mg.

Freundlicho modelis naudojamas apibūdinti neidealią, daugiasluoksnę, pusiausvirą adsorbciją heterogeniniu paviršiumi su prielaida, jog adsorbento aktyvieji centrai yra skirtingų adsorbcijos energijos verčių. Mažiausia adsorbcijos energija pasižymintys aktyvieji centrai yra užimami pirmi ir po to eksponentiškai mažėja. Šis modelis tinkamesnis realiems procesams, nes netolygus paviršiaus energijų pasiskirstymas yra artimas realybei [32].

Freundlicho izotermės tiesinės lygties forma:

$$\ln(q_e) = \ln(K_F) + \frac{1}{n} \cdot \ln(C_e); \qquad (18)$$

čia K_F – Freundlich izotermos konstanta, mg/g;

n – parametras, įvertinantis adsorbcijos intensyvumą.

Temkino modelio prielaidos yra vienodos kaip Freundlicho modelio, tačiau Temkino modelio skirtumas, jog netolygus adsorbcijos energijos centrų skaičius mažėja ne eksponentiškai, o tiesiškai [32].

Temkin izotermės tiesinės lygties forma:

$$q_e = \frac{RT}{b_T} \cdot \ln(K_T) + \frac{RT}{b_T} \cdot \ln(C_e) \,; \tag{19}$$

čia *R* – universalioji dujų konstanta 8,314 J/(mol·K);

T-temperatūra, K;

 b_T – Temkino izotermos konstanta;

 K_T – Temkino izotermos pusiausvyros konstanta, l/g.

Dubinino-Raduškevičiaus modelis remiasi adsorbcijos potencinės energijos teorija (angl. *Polanyi adsorption potential theory*), kuri teigia, jog adsorbentas pasižymi menku gravitaciniu lauku tam tikru atstumu nuo jo paviršiaus. Jei molekulė patenka į šį adsorbento gravitacinę erdvę, ji momentaliai adsorbuojama. Dubinin-Radushkevich modelis papildo šią teoriją su prielaida, jog adsorbcijos procesas priklauso nuo adsorbento mikroporų tūrio užpildymu, o ne mono- ar daugiasluoksniu homogeniško paviršiaus padengimo principu [34, 35].

- Dubinino-Raduškevičiaus izotermės tiesinės lygties forma:

$$\ln(q_e) = \ln(Q_0) - \frac{\left(RT \cdot \ln\left(1 + \frac{1}{C_e}\right)\right)^2}{2E^2};$$
(20)

čia E – adsorbcijos šiluma, J/mol.

Elovičiaus modelis remiasi prielaida, jog adsorbcija vykdoma daugiasluoksniu adsorbato sluoksniu, kurio formavimasis eksponentiškai padidina aktyviųjų centrų skaičių [32].

- Elovičiaus izotermės tiesinė lygties forma:

$$\ln\left(\frac{q_e}{C_e}\right) = \ln\left(K_E \cdot Q_0\right) - \frac{1}{Q_0} \cdot q_e;$$
(21)

čia K_E – Elovičiaus izotermos pusiausvyros konstanta.

Lagergreno pseudo-pirmojo laipsnio kinetinis modelis remiasi sąlyga, kad adsorbcija yra tiesiogiai proporcinga tirpalo koncentracijos (adsorbtyvo) ir adsorbato kiekio skirtumui. Šis skirtumas yra proceso varomoji jėga ir priklauso nuo neužimtų adsorbento aktyviųjų centrų skaičiaus [32].

– Pseudo pirmojo laipsnio (Lagergreno) teisinės lygties forma:

$$\ln(q_e - q_t) = \ln(q_e) - k_I \cdot \tau; \qquad (22)$$

čia q_{e} – adsorbato kiekis adsorbente esant pusiausvyrai, mg/g;

 q_t – adsorbato kiekis adsorbente duotame laike, mg/g;

 τ – trukmė, min;

 k_l – pseudo pirmojo laipsnio adsorbcijos greičio konstanta, mg/(g·mol).

Ho pseudo antrojo laipsnio modelio prielaida, kad greitį ribojantį etapas yra chemosorbcija. Adsorbcijos greitis priklauso ne nuo adsorbato koncentracijos, o nuo adsorbcijos gebos [32].

Pseudo antrojo laipsnio (Ho) teisinės lygties forma:

$$\frac{q_t}{q_e(q_e - q_t)} = k_2 \cdot \tau ; \tag{23}$$

čia k_2 – pseudo antrojo laipsnio adsorbcijos greičio konstanta, mg/(g·mol).

Kinetikos modelių (pseudo pirmojo ir antrojo laipsnio) lygties tinkamumas nustatomas pagal determinacijos koeficiento (\mathbb{R}^2) reikšmes bei lyginant eksperimentines ir apskaičiuotas q_e vertes. Izotermių modeliai vertinami pagal kiekvieno modelio išskirtinius dydžius bei determinacijos koeficientų reikšmes.

Siekiant adsorbuotą varį paversti CuO pavidalu, prisotinti AlPO₄-5 ceotipai kaitinami krosnyje 450 °C 6 valandoms. Vario dalies nustatymui naudojama azoto rūgštis (65 % gr., Eurochemicals) skirta ištirpinti paviršiumi adsorbuotą varį. 100 ml matavimo kolboje pasvertas iškaitinto katalizatoriaus kiekis ištirpinamas 10 ml azotos rūgšties tūryje. Paimtas mėginys praskiedžiamas distiliuotu vandeniu iki 100 ml žymos ir po to, gauto tirpalo 1 ml dar kartą praskiedžiamas 10² kartų. Praskiesto tirpalo vario dalis nustatoma atominės absorbcijos spektroskopijos metodu.

Katalizinės etilacetato oksidacijos eksperimentai vykdomi pagamintoje pagal užsakymą laboratoriniame stende. Naudojamos technologijos schema pateikiama 2.1 pav.

Atmosferinis oras suslėgiamas kompresoriumi (1) ir tiekiamas į srauto valdymo pultą (2), kuriuo reguliuojamas debitas. Valdymo skydas (2) padalina suslėgto oro srautą į du, iš kurių vienas yra tiekiamas į etilacetato (> 99,5 %, sintezei, gamintojas Carl Roth, Vokietija) tirpalo pripildytus barboterius (3), kuriuose oras priverčia lakų organinį junginį garuoti. Etilacetato garai susimaišo su oru į vieną srautą ir įteka į reakcinį indą (5). Specialiai pagamintame inde (žiūrėti 2.2 pav.) dujos tiekiamos vamzdeliu, kuris nukreipia srautą spirale. Spiralė veikia kaip dujų šildytuvas prieš patenkant į įkrovos zoną. Kitu atveju, jei nebūtų dujų pašildymo zonos, tai įtekantis srautas mažintų reakcijos temperatūrą bei vėsintų pačią įkrovą. Spiralės viršūnė yra sujungta su centriniu indo vamzdeliu, per kurio viršų galima įkrauti norimą katalizatorių.

2.1 pav. Katalizinės oksidacijos eksperimentinio stendo principinė technologinė schema. Čia: 1 – kompresorius, 2 – srauto valdymo pultas, 3 – etilacetato barboteriai, 4 – srauto analizės paėmimo taškas, 5 – kvarcinio stiklo reaktoriaus indas, 6 – elektrinė krosnis, 7 – skaitmeninis CO₂ matuoklis, 8 – skaitmeninis CO matuoklis, 9 – reakcijos produktų srauto analizės paėmimo taškas.

2.2 pav. Kvarcinio stiklo reaktoriaus indo projekcinis vaizdavimas

Dujos analizuojamas poruojant dujų chromatografijos ir masių spektrometrijos analizes prietaisu Perkin Elmer

Clarus 500 (JAV). Analizuojamos dujos išskirstytos 30 m ilgio, 0,25 mm vidinio skersmens kapiliarinėje kolonėlėje, kurios vidinis paviršius padengtas 0,25 μ m nepolinio adsorbento sluoksniu. Įleidimo kameros temperatūra 250 °C, nešėjas - helis (grynumas – 99,996 %). Masių spektrai buvo gauti elektronų jonizacijos būdu naudojant standartinę 70 eV elektronų srauto energiją, masių fragmentai, kurių *m/z* tarp 8 ir 200.

2.2. Tyrimų rezultatai

2.2.1. Al₂O₃-P₂O₅ reakcinės sistemos

Visi skirtingų molinių santykių bei sintezės sąlygų reakcinės sistemos aprašomos lentelėje apačioje. Sudarytas didelis skirtingų AlPO₄ reagentų mišinių skaičius, dėl tos priežasties, kalbant apie eksperimento metu gautą medžiagą, jiems suteikiamas bandinio numerio pavadinimas.

Tiriamajame darbe organinių junginių priedai aprašomi trumpiniais. Trietilaminas sutrumpinamas iki TEA, 4-(dimetilamino)piridinas trumpinamas DMAP, N,N-diizopropiletilaminui naudojamas DIPEA trumpinys.

Visos reakcijos yra vykdomas mikrobangų spinduliuotės reaktoriuje.

		Gelio molinė sudėtis					Sintezės sąlygos			Kaitinimas krosnyje	
Bandi- nio nr.	Aliuminio šaltinis	Al ₂ O ₃	P2O5	нсі	H ₂ O	Struktūrą nukreipiantis agentas	Temp., °C	Trukmė, min	Mai- šymas	Temp., °C	Trukmė, val.
1.	Al(OH) ₃	1	1	-	102	-	130	60	+	-	-
2.	Al(OH) ₃	1	3	-	102	-	130	60	+	-	-
3.	Al(OH) ₃	1	6	-	102	-	130	60	+	-	-
4.	Al(OH) ₃	1	1	1	120	-	170	45	+	600	5
5.	Al(OH) ₃	1	1	1	120	-	160	45	+	600	5
6.	Al(OH)3	1	1	1	120	-	150	45	+	600	5
7.	Al(OH) ₃	1	1	1	120	-	140	45	+	600	5
8.	Al(OH)3	1	1	1	120	-	130	45	+	600	5
9.	Al(OH) ₃	1	0,8	1	50	-	130	45	-	100	3
10.	Al(OH) ₃	1	0,8	1	50	-	125	45	-	100	3
11.	Al(OH)3	1	0,8	1	50	-	120	45	-	100	3
12.	Al(OH) ₃	1	0,8	1	50	-	115	45	-	100	3
13.	Al(OH)3	1	0,8	1	50	-	125	45	+	100	3
14.	Al(OH) ₃	1	1	1	50	-	125	45	-	100	3
15.	Al(OH)3	1	0,8	0,6	50	-	125	45	-	100	3
16.	Al(OH) ₃	1	0,8	1	50	0,6 TEA	125	45	-	350	5
17.	Al(OH)3	1	0,8	1	50	-	125	60	-	-	-
18.	Al(OH) ₃	1	1	1	120	0,7 TEA	125	60	+	600	5
19.	Al(OH)3	1	1	2	120	0,7 TEA	125	60	+	600	5
20.	Al(OH) ₃	1	1	-	120	0,7 TEA	125	60	+	600	5
21.	Al(OH) ₃	1	1	-	120	1,0 DIPEA	125	45	+	540	5
22.	Al(OH)3	1	1	-	120	1,0 DMAP	125	45	+	540	5
23.	Al(O-i-Pr) ₃	1	1	-	120	1,0 DMAP	180	60	+	540	5
24.	Al(O-i-Pr) ₃	1	1	-	120	1,5 DMAP	180	60	+	540	5
25.	Al(O-i-Pr) ₃	1	1	-	120	2,0 DMAP	180	60	+	540	5
26.	Al(O-i-Pr) ₃	1	1	-	120	2,0 DMAP	180	180	+	540	5
27.	Al(O-i-Pr) ₃	1	1	-	120	1,0 DIPEA	180	60	+	540	5

2.2 lentelė. Sudarytų Al₂O₃-P₂O₅ reakcinių sistemų duomenys

2.2.2. Rentgeno spinduliuotės difrakcinė analizė

Pirmieji trys bandiniai (nr. 1–3) sudaryti numatyti orto-fosforo rūgšties pertekliaus poveikį kristalinėms medžiagoms. Esant lygiam aliuminio ir fosforo moliniam santykiui, iš RSDA duomenų pastebimas žymi gibsitui Al(OH)₃ charakteringa smailė, o didėjant fosforo moliniam santykiui gibsitas sureaguoja ir matomas padidėjęs aliuminio fosfato hidratui AlPO₄·*x*H₂O būdingų smailių. Pabrėžtina, jog susidarę aliuminio fosfato AlPO₄ bei aliuminio fosfato hidrato AlPO₄·*x*H₂O medžiagos yra monoklininės singonijos struktūros.

2.3 pav. Bandinių nr. 1–3 rentgeno spinduliuotės difrakcinės analizės kreivės. Žymenys: A – (monoklininis) aliuminio fosfatas AlPO₄, G - gibsitas Al(OH)₃, H – (monoklininis) aliuminio fosfato hidratas AlPO₄·xH₂O, oH – (ortorombinis) aliuminio fosfato hidratas AlPO₄·xH₂O

Kita eksperimentų seka (žiūrėti 2.4 pav.) bandoma pamatyti didėjančios reakcijos temperatūros poveikį kristalizuojančioms medžiagoms (bandiniai nr. 4–8). Iš pateiktos grafinės medžiagos galima matyti, jog didėjant temperatūrai pradeda kristalizuotis berlinitas AlPO₄, kuris priskiriamas prie tankių AlPO₄ fazių. 150 °C ir aukštesnėse temperatūrose berlinitas tampa vyraujanti kristalinė fazė. Pabrėžtina, jog bandinių nr. 4–6 smailės pasižymi charakteringoms smailėms 20–23 ° diapazone, kurios persidengia su monoklininiu aliuminio fosfatu bei AlPO₄-tridimitu. Visais atvejais, pagamintos tankiosios AlPO₄ fazės, tačiau tikėtina, jog šios fazės susidarė dėl terminių virsmų krosnyje, kurioje buvo kaitinama 600 °C temperatūroje 5 valandoms. AlPO₄-tridimitas, pagal d'Yvoire'ę [12], aukštose temperatūrose gali kristalizuotis iš AlPO₄-H2, -H3, -H4, -H5, -H6 (žiūrėti 1.3 pav.). Neatmestinas variantas, jog po sintezės kristalizavosi d'Yvoire'ės tipo aliumofosfatiniai ceotipų hidratai, kurie patyrė topografinius virsmus krosnyje.

Šiuose bandiniuose įtraukta druskos rūgštis pagal B. Duncan'o metodiką [23]. Literatūroje randamas paaiškinimas, jog mineralinės rūgštys į gelio sandarą pridedamos ne kaip reagentas, bet kaip protonų šaltinis [31]. Rezultatai sutampa su šiuo teiginiu, kadangi iš kokybiškos RSDA pusės, chloro junginių mišinyje nerasta.

2.4 pav. Bandinių nr. 4–8 (1 Al₂O₃:1 P₂O₅:1 HCl:120 H₂O) rentgeno spinduliuotės difrakcinės analizės kreivės. Žymenys: A – (monoklininis) aliuminio fosfatas AlPO₄, B - berlinitas AlPO₄, T - AlPO₄-tridimitas

Sintezės reakcijos temperatūros mažinimo poveikis iliustruojamas 2.5 pav. Bandiniai krosnyje kaitinami 100 °C temperatūroje 3 valandų trukmei. 125 °C laikoma optimalia temperatūra aliuminio hidroksido pagrindo AlPO₄ ceotipo reakcijai [23], tačiau iš duomenų pastebima tridimito užuomazgų pradžia būtent šioje temperatūroje. 130 °C temperatūroje AlPO₄-tridimito atmaina tampa vyraujanti. 120 bei 115 °C reakcijos temperatūroje matomas kristalizuojantis ortorombinės struktūros aliuminio fosfato hidratas, kas rodo, jog gautas medžiagų mišinys gali turėti ne vienos singonijos atstovus. Verta paminėti, jog smailė ties 18 ° dalinasi ir monoklininis aliuminio fosfatas, ir gibsitas, tikėtina, jog 115 bei 120 °C temperatūroje smailė priklauso gibsitui, o aukštesnėse temperatūrose jau aliuminio fosfatui.

2.5 pav. Bandinių nr. 9–12 (1 Al₂O₃:0,8 P₂O₅:1 HCl:50 H₂O) rentgeno spinduliuotės difrakcinės analizės kreivės. Žymenys: A – (monoklininis) aliuminio fosfatas AlPO₄, B - berlinitas AlPO₄, G - gibsitas Al(OH)₃, H – (monoklininis) aliuminio fosfato hidratas AlPO₄·xH₂O, oH – (ortorombinis) aliuminio fosfato hidratas AlPO₄·xH₂O, T - AlPO₄-tridimitas

2.6 pav. pavaizduota bandinių serija tiriamos galimos medžiagų molinių santykių variacijos, esant (moksl. literatūroje laikomai) optimaliai Al(OH)₃ sintezės temperatūrai (125 °C). Visais atvejais yra neišvengiamos trys charakteringos smailės būdingos monoklininiu aliuminio fosfatui bei AlPO₄-tridimitui 20–23 ° ruože, tačiau pastebima, jog bandinyje nr. 14 papildomas maišymas sintezės metu sumažina tridimito trijų smailių intensyvumus.

Norint panaikinti kristalinį vandenį, visi bandiniai kaitinti krosnyje 100 °C temperatūroje 3 valandoms, apart bandinys nr. 16. Kadangi šio mėginio sudėtį sudaro organinis struktūrą nukreipiantis agentas trietilaminas (toliau TEA), kaitinimas turi vykti aukštesnėse temperatūrose (šiuo atveju pasirinkta 350 °C temperatūra 5 valandoms). Tokia aukšta temperatūra galėjo sudaryti sąlygas kristalizuotis ir berlinitui, ir tridimitui. Iš bandinių pavaizduotų 2.6 pav. vienintelis bandinys naudojantis organines medžiagas nepasižymi ortorombinės singonijos aliuminio fosfato hidratu.

2.6 pav. Bandinių nr. 10 ir 13–16 rentgeno spinduliuotės difrakcinės analizės kreivės. Žymenys: A – (monoklininis) aliuminio fosfatas AlPO₄, B - berlinitas AlPO₄, G - gibsitas Al(OH)₃, H – (monoklininis) aliuminio fosfato hidratas AlPO₄·*x*H₂O, oH – (ortorombinis) aliuminio fosfato hidratas, T - AlPO₄-tridimitas

2.7 pav. pateiktuose reakciniuose mišiniuose naudojama ir druskos rūgštis, ir struktūrą nukreipiantis agentas (TEA pavidalu). Gaunamas medžiagų mišinys, kuriame yra monoklininės bei ortorombinės singonijų junginiai. Bandiniai nr. 18–20 buvo kaitinti krosnyje 600 °C temperatūroje, kas nulėmė tridimito bei berlinito susidarymą, tačiau mišiniuose, ypač nr. 17 ir 18, tridimito bei ortorombinės singonijos AlPO₄ smailės persidengia. AlPO₄-tridimitui būdingos trys (panašaus intensyvumo) smailės 20-23 ° srityje ir atsižvelgiant, jog bandinio nr. 17 likusios dvi tridimito smailės yra labai mažos, galima teigti, jog susidarė maži tridimito kiekiai.

2.7 pav. Bandinių nr. 17–20 rentgeno spinduliuotės difrakcinės analizės kreivės. Žymenys: A – (monoklininis) aliuminio fosfatas AlPO₄, oA – (ortorombinis) aliuminio fosfatas AlPO₄, B - berlinitas AlPO₄, T - AlPO₄-tridimitas

Darbe naudojami ir kiti organiniai junginiai kaip struktūrą nukreipiantys agentai (žiūrėti 2.8 pav.). Bandinyje nr. 21 naudojamas N,N-diizopropiletilaminas (toliau DIPEA), bandinyje nr. 22 naudojamas 4-dimetilaminopiridimas (toliau DMAP). Bandiniuose yra didinamas vandens molinis santykis, remiantis metodika [28, 30, 33], kuri yra skirta aliuminio izopropoksido žaliavai. Bandinys naudojantis DIPEA pasižymi didesniu kristališkumu, kadangi bandinio nr. 22 RSDA kreivė su nemažu triukšmo kiekiu. Bandinio nr. 21 atveju, gaunamas platus skirtingų singonijų aliuminio fosfatų junginių asortimentas. Susidariusio berlinito smailės persidengia kartu su triklininės singonijos aliuminio fosfato junginiu, todėl sunku nusakyti ar tai terminio kaitinimo įtaka. Triklininio ir ortorombinio junginių buvimas (nr. 21) gali leisti daryti prielaidą, jog struktūriškai linijinės aliumofosfatinės grandinės yra linkusios pradėti formuotis į trimates struktūras.

2.8 pav. Bandinių nr. 21–22 rentgeno spinduliuotės difrakcinės analizės kreivės. Žymenys: A – (monoklininis) aliuminio fosfatas AlPO₄, tA – (triklininis) aliuminio fosfatas AlPO₄, oA – (ortorombinis) aliuminio fosfatas AlPO₄, B - berlinitas AlPO₄, tH – (triklininis) aliuminio fosfato hidratas AlPO₄·2H₂O

Bandinys naudojantis DMAP priedą nepasižymi tokiais ortorombinės singonijos junginių smailių intensyvumai, mišinyje labiau vyrauja monoklininės ir triklininės singonijų aliuminio fosfato junginiai. Iš kreivės pobūdžio, teigiama, jog kristalizuojasi tam tikras kiekis amorfinės struktūros junginių. Amorfinės medžiagos nepasižymi tvarkinga ir pasikartojančia dalelių išsidėstymo seka, todėl iš RSDA gauti duomenys nepasižymi smailėmis, o pati kreivė tampa ištisinė linija su neatskiriamais intensyvumais. Panašus efektas matomas ir bandinio nr. 22 kreivėje 5–12 °, 14–19 °, 25–30 ° rėžiuose.

Visi sudaryti bandiniai, naudojantys aliuminio hidroksidą kaip reagentą, nepasižymi jokia struktūra, ar net panašia, kuri būti pripažinta Tarptautinės Ceolitų Asociacijos (angl. *IZA*) duomenų bazėje [36]. Iš to prieinama prie išvados, jog aliuminio hidroksidas nėra tinkama žaliava būtent šiems eksperimentams. Taip teigiama, nes IZA patvirtintų ceotipų gamybos metodikų sąraše yra molekulinių sietų, kurie naudoja aliuminio hidroksidą, tačiau M. E Wilson'as teigia, jog gibsitas [37] nėra tinkama aliuminio žaliava, dėl nepakankamo reakcingumo sudaryti molekulinių sietų struktūras. Galimas sprendimas – tai aliuminio hidroksidą paruošti ypatingai kruopščiai arba pakeisti jį aktyvesniu aliuminio junginiu (tokiu kaip aliuminio izopropoksidas).

Tiriant įvairias galimas sintezės sąlygų variacijas, pabrėžtina, jog kiekviena ceotipo sintezės metodika yra nukreipta į specifinį reakcijos sąlygų rinkinį, kur pakeitus vieną kintamąjį, keičiasi kristalizavimo rezultatas. Aliuminio hidroksidas nėra tinkamas aliuminio šaltinis ir detalesni tyrimai reakcinių sistemų sudarymui turi būti analizuojami norint pasiekti norimą ceotipo išeigą.

Iš atliktų bandinių RSDA duomenų, galima teigti, jog paprastas aliuminio hidroksidas yra labiau linkęs formuotis į tankias AlPO₄ fazes. Neatmestinas variantas, jog Al(OH)₃ gali sudaryti d'Yvoire'ės tipo hidratus, tačiau šios yra labai jautrios terminiam poveikiui. Skirtingi struktūrą nukreipiantys organiniai priedai matomai paveikia kristalizavimo rezultatus. Bandiniai, kurių sudėtyje buvo įtrauktas TEA, pasižymi didelio intensyvumo AlPO₄-tridimito smailėmis. Mėginys su įtraukta DMAP medžiaga pasižymi kartu kristalizuojančia amorfine faze. Bandinys su DIPEA priedu yra linkęs formuoti skirtingų singonijų struktūras, tačiau nepakankamo poveikio, kad sudarytų jau žinomų ceotipų struktūras.

Priimtas sprendimas, keisti aliuminio žaliavą ir toliau vykdyti reakcijas naudojant aliuminio izopropoksidą. Paruošiami reakciniai mišiniai AlPO₄-5 sintezei, remiantis metodikomis, kuriose įtrauktas DMAP priedas [28, 30]. Gelio moliniai santykiai sumaišyti pagal Cong Lin'o et al. [28] bei Pai'o et al. [30] nurodytas vertes. Verta paminėti, jog Pai'as et al. teigia ilgesnis mikrobangų spinduliuotės sukeltos hidroterminės reakcijos laikas gali priversti AlPO₄-5 junginį vykdyti struktūrinius pokyčius į kito tipo ceotipą – EMM-8.

RSDA rezultatai pateikiami 2.9 pav., iš kurio matomas pilnas amorfinėms medžiagoms būdingas efektas (minėtas aptariant bandinio nr. 22 rezultatus). Visais atvejais susidarė amorfinės struktūros fazė, kurioje nėra išsikyšančių kristalų difrakcijos smailių. Lyginant bandinius nr. 25 ir 26 – ilgesnis reakcijos laikas pasiekė atvirkščią efektą – RSDA kreivė tampa lygesne, be jokių matomų ekstremumo taškų. Pai'o et al. metodikoje naudojamas pseudobemitas (angl. *pseudoboehmite*) kaip aliuminio šaltinis ir iš gautų rezultatų, matoma, jog izopropoksidas nėra tinkamas pakaitalas reakcijoje su DMAP pavidalo struktūros nukreipiamuoju agentu. Pabrėžtina, jog Cong Lin'as et al. eksperimentą vykdė autoklave 160 °C temperatūroje tris paras ir panašūs rezultatai nėra pasiekiami naudojant mikrobangų spinduliuotės reaktorių.

2.9 pav. Bandinių nr. 23-26 rentgeno spinduliuotės difrakcinės analizės kreivės

Bandinys nr. 27 paruoštas remiantis Pai'o et al. metodika [30], tačiau vietoje DMAP medžiagos naudojamas DIPEA struktūrinis agentas. Zhan'as et al. [20] teigia, jog aliuminio izopropoksido kombinacija su DIPEA medžiaga gali sudaryti sąlygas leidžiančias kristalizuotis AlPO₄-18 ceotipui.

Bandinio nr. 27 rezultatai pateikiami 2.10 pav. kartu su IZA duomenų bazėje patalpintu AlPO₄-5 etalonu. Rezultate nesusiformavo AlPO₄-18 ceotipas, tačiau sėkmingas kristalizavosi heksagonalinės singonijos AlPO₄-5 molekulinis sietas, kurio visos charakteringosios smailės pozicijos sutampa su etalonu. Pabrėžtina, jog etalono kristalografiniai duomenys yra teoriškai apskaičiuoti, dėl šios priežasties, 2.10 pav. kartu vaizduojami SSZ-24 aliumosilikatinio ceolito RSDA duomenys [36]. Šis SSZ-24 junginys laikomas struktūrišku AlPO₄-5 analogu.

2.10 pav. Bandinio nr. 27 (1 Al₂O₃:1 P₂O₅:1 DIPEA:120 H₂O), AlPO₄-5 etalono ir SSZ-24 rentgeno spinduliuotės difrakcinės analizės kreivės. Žymenys: hA – heksagonalinis AlPO₄-5 ceotipas, hS - heksagonalinis SSZ-24 ceolitas [36]

Iš visų atliktų bandinių tai vienintelė reakcija, kurios produktas yra be priemaišų, be skirtingų singonijų junginių, leidžiantis atlikti lyginimus su IZA duomenų bazėje pateiktomis medžiagomis.

2.2.3. Terminė analizė

Terminei analizei paruošta medžiaga remiantis 27 bandinio metodika, tačiau šis bandinys buvo laikomas 2 parų trukmei džiovintis ore kambario temperatūroje ir nebuvo kaitinamas el. krosnyje. Analizė reikalinga apskaičiuoti kokią dalį sudaro kristalinis vanduo mikroporingoje struktūroje, tačiau svarbiausia, kokioje temperatūroje pradeda degti organinis DIPEA priedas.

2.11 pav. Bandinio nr. 27 (1 Al₂O₃:1 P₂O₅:1 DIPEA:120 H₂O) TGA (1) ir DSK (2) kreivės, esant pradinei bandinio masei: 10,00 mg. Temperatūros didinimo greitis – 10 °C/min, krosnies aplinka – azotas N₂, etalonas – tuščias platinos tiglis (TGA – masė, %, DSK – šiluminis srautas, mW)

TGA duomenys suteikia masės kitimo įžvalgas, kur vandens garavimas ir masės mažėjimas prasideda momentaliai nuo 30 °C. DSK kreivės išlinkis žemyn nuo 30 iki 260 °C diapazone nurodo, kad bandinyje įvyko endoterminiai virsmai (entalpija -578,03 J/g), kas būdinga garavimo veiksniui. Endoterminės smailės yra dvi – ties 118 ir 166 °. Pirmosios DSK smailės išlinkis yra tolygus, tačiau staiga persidengia su kitu fiziniu virsmu. Daroma prielaida, jog pirmoji smailė 118 °C temperatūroje atspindi kristalinio vandens pasišalinimui, o antroji 166 °C charakterizuoja sorbcinio vandens pasišalinimą iš AIPO₄-5 struktūros ceotipo porų. Šituo atveju prarandama 4,8 % ir 6,2 % masės, atitinkamai. Nuo 260 °C iki 410 °C DSK kreivėje pastebimi menki formos pokyčiai, kas gali būti sukelta dėl dalinės organinio junginio oksidacijos. 410-480 °C ruože (0,5% masės nuostoliai) sudega ir pasišalina organinis DIPEA junginys, ką liudija DSK kreivėje mažas egzoterminis išlinkis (entalpija 16,27 J/g) į viršų. Iš kreivės formos staigus nuolydis ir kilimas ties 411 °C vaizduoja DIPEA junginio skilimą. Nuo 500 °C temperatūros iki 900 °C DSK kreivėje matomi minimalūs kreivės formos pasikeitimai be masės kitimų, kas gali liudyti apie fizinius perėjimus struktūroje. Neiškaitinto bandinio nr. 27 susintetinto AIPO₄-5 bendri masės nuostoliai 21,5 %.

Iš gautų terminės analizės duomenų galima teigti, jog originali 540 °C kaitinimo temperatūra buvo pakankama išdeginti ir pašalinti organinį DIPEA priedą, taip pat, iš TGA kreivės pastebimas masės pokyčio normalizavimas ties 500 °C.

2.2.4. Vario jonų Cu²⁺ adsorbcijos AlPO₄-5 ceotipu kinetika

Atominės adsorbcijos spektroskopijos analizės duomenys pateikiami lentelėje apačioje. Kinetikos modeliams sudaryti reikalingas dydis – adsorbato kiekis adsorbente q, mg/g. Iš šių duomenų sudaromas kinetinių kreivių grafikas vaizduojantis koncentracijų kitimus laike.

5	t S		ι 1 ι	5	
Trukmė <i>τ</i> , min	q_r , mg/g				
	$C_{\theta} = 1 \text{ g}_{\text{Cu}}/\text{l}$	$C_{\theta} = 5 \mathrm{g}_{\mathrm{Cu}}/\mathrm{l}$	$C_{\theta} = 10 \mathrm{g}_{\mathrm{Cu}}/\mathrm{l}$	$C_{\theta} = 20 \mathrm{g}_{\mathrm{Cu}}/\mathrm{l}$	$C_{\theta} = 30 \mathrm{g}_{\mathrm{Cu}}/\mathrm{l}$
0	0,00	0,00	0,00	0,00	0,00
1	22,36	46,09	64,03	81,88	127,88
5	30,42	68,60	97,04	131,44	190,04
10	31,03	79,70	111,03	147,40	198,40
30	31,71	85,41	116,74	160,32	204,52
60	32,07	87,69	119,86	167,52	209,92

2.3 lentelė. Cu²⁺ jonų adsorbcijos AlPO₄-5 iš vandeninių tirpalų kinetiniai duomenys

Iš 2.12 pav. galima daryti išvadas, jog 30 min adsorbcijos trukmė yra pakankama pasiekti pilną adsorbento prisotinimą, kur ties 60 min tašku eksperimentinių duomenų koncentracijų pokytis menkas. Būtų galima teigti, jog 10 min yra pakankamas laiko tarpas adsorbcijai, tačiau išimtis yra 20 g_{Cu}/l , nes lyginant 10 min bei 30 min taškus nematomas adsorbcijos proceso nusistovėjimas.

2.12 pav. Skirtingų koncentracijų vandeninių Cu²⁺ tirpalų adsorbcijos AlPO₄-5 ceotipu kinetinės kreivės

Sudaromi Lagergreno ir Ho modeliai, visi grafikai pateikiami 2.13 pav. Atsižvelgiant į grafikų determinacijos koeficientų reikšmes (R²) pastebimas stiprus pseudo antrojo laipsnio modelio tinkamumas eksperimentiniams duomenims. Ho lygties determinacijos koeficientai varijuoja nuo 0,99979 iki 0,99999. Didėjant koncentracijoms vyksta menkas determinacijos koeficientų reikšmių mažėjimas, tačiau ne toks žymūs, kad būtų galima teigi, jog absorbcija didesnėse koncentracijos silpsta.

Tiesėms matematiškai aprašyti skirtos $y = a \cdot x + b$ lygtys suteikia informacijos apie teorines, ar apskaičiuotas, pusiausvirąsias adsorbato kiekio adsorbente q_e vertes. Tiesinėse lygtyse narys šalia kintamojo x atitinka $1/q_e$ reikšmę, sudaromas atvirkštinis skaičius, kuris visais atvejai yra labai artimas eksperimentiškai nustatytoms galutinėms kiekio ($\tau = 60$ min) dydžiams.

2.13 pav. Skirtingų koncentracijų vandeninių Cu²⁺ tirpalų adsorbcijos AlPO₄-5 ceotipu kinetiniai modeliai. Grafikuose pseudo pirmojo laipsnio (Lagergreno) lygties duomenys pažymėti juoda spalva, pseudo antrojo laipsnio (Ho) lygties duomenys – raudonai.

2.2.5. Vario jonų Cu²⁺ adsorbcijos AlPO₄-5 ceotipu pusiausvyra

Paskutinės eksperimentų koncentracijos vertės yra priimamos kaip pusiausvirosios adsorbato adsorbente reikšmės. Izotermų skaičiavimams reikalingi duomenys pateikiami 2.4 lentelėje.

Pusiausviroji adsorbtyvo (Cu ²⁺) konc. tirpale po adsorbcijos <i>Ce</i> , mg/l	Pusiausvirasis adsorbato kiekis AlPO4-5 adsorbente <i>qe</i> , mg/g		
0	0		
637	32,07		
3963	87,69		
8591	119,86		
18710	167,52		
27730	209,92		

2.4 lentelė. Vario adsorbcija AIPO₄-5 iš vandeninių tirpalų eksperimentiniai duomenys

Iš 2.14 pav. izotermės, matoma, jog kreivė turi pradinį išlinkį, o po 9000 mg/l C_e taško tampa tiesės formos. Tokia izotermė atitinka L tipo izotermę, kurią charakterizuoja pradinis tiesės staigus kilimas, kol nėra užimta didžioji dalis adsorbcijos centrų. Iš kreivės taip pat galima teigti, jog nebuvo pasiektas pilnas medžiagos prisotinimas adsorbtyvu, kadangi paskutiniai eksperimentiniai C_e taškai neturi išlinkio po kurio sektų lygiagreti x ašiai kreivė [32].

Iš įvairių adsorbcijos modelių (žiūrėti 2.5 lentelė), didžiausiu eksperimentinių duomenų tinkamumu

pasižymi Freundlicho modelis, tačiau labai artimas ir Lengmiūro modelis. Iš Freundlicho modelio, dydis 1/n nurodo adsorbcijos tipą, jei > 1 tai indukuotoji arba fizikinė sorbcija, jei < 1 tai chemisorbcija. Eksperimento atveju, 1/n yra mažesnis už vienetą, kas patvirtina chemosorbcijos veiksnį. Abejojama chemosorbcijos veiksniu, kadangi varis su aliuminio fosfatu nepasižymi stipria tarpusavio sąveika, todėl fizikinė sorbcija yra tinkamesnis aprašyti tokio tipo adsorbciją.

Lengmiūro adsorbcijos konstanta K_L apibūdina adsorbcijos ir desorbcijos greičio konstantų santykį ir yra lygi 345,8 l/mg ir rodo, jog vario jonų adsorbcijos greitis yra žymiai didesnis nei desorbcijos. Naudojant Lengmiūro izotermės duomenis, galima išreikšti adsorbcijos tipą apskaičiuojant bedimensinį atskyrimo dydį R_L (angl. *separation factor*):

$$R_L = \frac{1}{1 + K_L \cdot C_e}.$$
(24)

 R_L dydis nusako adsorbcijos proceso teorišką palankumą vykti. Jei $0 < R_L < 1$ adsorbcija yra palanki, jei $R_L = 0$ adsorbcija yra negrįžtama, jei $R_L = 1$ adsorbcija yra tiesinės priklausomybės, jei $R_L > 1$ adsorbcija nepalanki vykti. Įstačius eksperimentiškai nustatytas C_e vertes į lygtį, gaunamos R_L vertės kintančios nuo 0,094 iki 0,819 (pirmosios C_e vertės pasižymi didesniu bedimensiniu R_L dydžiu). Iš gautų atskyrimo dydžių rezultatų, teigiama, kad pradinės $1g_{Cu}/l$ koncentracijos adsorbcija yra artima tiesinei priklausomybei, tačiau didinant vario tirpalų koncentracijas adsorbcijos R_L mažėja ir ties $30g_{Cu}/l$ koncentracijos eksperimentu tampa artima negrįžtamai adsorbcijai, nes $R_L \approx 0$. Tokia prielaida sutampa ir su Freundlicho izotermės 1/n duomenimis, nes dažniausi negrįžtami adsorbciniai veiksniai priskiriami chemosorbcijai.

Adsorbcijos (izotermų) modelis	Lygčių parametrai			
Longmiñro	R ²	<i>K</i> _{<i>L</i>} , l/g	Qø, mg/g	
Lengmuro	0,9877	0,346	176,19	
Froundlishe	R ²	<i>K</i> _{<i>F</i>} , mg/g	1/ <i>n</i>	
Freundiicho	0,9961	41,481	0,490	
Tamkina	R ²	<i>KT</i> , l/g	<i>b</i> _T , J/mol	
Tenkino	0,9247	1,357	8,279	
Dukining Padučkovičiaus	R ²	<i>E</i> , J/g	Qo, mg/g	
Dubinno-Raduskeviciaus	0,9209	1277,580	171,19	
Flovižious	R ²	KE	Qo, mg/g	
LIOVICIAUS	0,6850	4,075.10-2	0,967	

2.5 lentelė. Vario adsorbcijos AlPO₄-5 ceotipu izotermų modelių parametrai

Didelis Lengmiūro modelio tinkamumas patvirtina monomolekulinio sluoksnio adsorbciją, kadangi Temkino ir Elovičiaus modelių netinkamumas duomenims aprašyti sudaro prielaidą, jog sorbcija nevyksta daugiasluoksne adsorbcija. Lengmiūro modeliu apskaičiuota Q_0 vertė nėra identiška paskutiniąjai eksperimento q_e , tačiau yra ganėtinai artima pasiektai q_e vertei, kai $C_0 = 20$ g_{Cu}/l. Šis skirtumas tarp teorinių ir praktinių dydžių gali būti paaiškinamas, jog eksperimentiškai atliktas adsorbcijos procesas yra sudėtingas, kur adsorbcija vyksta monomolekuliniu sluoksniu, tačiau adsorbento paviršius nebūtinai yra homogeniškas.

Dubinino-Raduškevičiaus modelio, nors nėra žymaus tinkamumo ($R^2 < 0.95$), adsorbcijos šilumos vertė suteikia tam tikrų įžvalgų apie adsorbciją. Adsorbcijos energijos vertė yra maža (1,278 kJ/g), kur jei adsorbcijos šiluma yra mažiau nei 8 kJ/mol tuomet tai priskiriama fizikinei adsorbcijai. Šis dydis nėra artimas realybei, tačiau jo tikroji reikšmė negali būti ženklaus skirtumo. Tokiu atveju, adsorbcija yra labai jautri išoriniams veiksniams, nes jeigu tokie maži energijos kiekiai yra viršijami, vyksta desorbcija.

2.2.6. CuO/ceotipas katalizatoriaus gamyba

Remiantis atliktais adsorbcijos eksperimentais, priimtas sprendimas vykdyti AlPO₄-5 adsorbciją 5 g_{Cu}/l bei 30 g_{Cu}/l koncentracijos tirpaluose dvejoms valandoms. Sprendžiant iš 2.14 pav. vaizduojamos izotermos ilgesnis kontaktavimo laikas gali padėti pasiekti pilną ceotipą prisotinimą adsorbtyvu.

2.15 pav. pateikti adsorbuotos AlPO₄-5 medžiagos prieš ir po kaitinimo RSDA rezultatai. Lyginant tarpusavyje vaizduojamas kreives, visų smailių pozicijos liko vienodos ir jokių naujų smailių nepastebima. Smailių padėtys yra identiškos bandinio nr. 27 kreivėms (žr. 2.15 pav.).

Pabrėžtina, jog kreivėse atsiranda papildomas triukšmas, kur tikėtina, jog bandinyje prieš kaitinimą efektą galėjo sukurti kristalinis vanduo, tačiau po aukštos temperatūros kaitinimo, šis triukšmo efektas sustiprėjo, o terminės analizės duomenimis vandens pasišalinimo šiluminis efektas baigiasi ties 260 °C. Remiantis RSDA kreive (žiūrėti 2.15 pav.), kristalinių vario junginių nerandama, tačiau vizualiai yra matomas medžiagos atspalvio pasikeitimas (žiūrėti 2.16 pav.). 5 g_{Cu}/l konc. tirpalu užmerktas ėminys nepasižymėjo jokiu spalvos pokyčiu (tokia spalva pasižymėjo kiekvienas bandinio nr. 27 ėminys po organinio junginio degimo krosnyje).

Vario oksido CuO intensyviausios charakteringosios kristalitų smailės yra 35,44 °, 38,69 °, 48,73 °, 54,54 ° difrakcijos kampo 2θ ašyje. Pastebima, jog 2.15 pav. kreivėse, šiose difrakcijos kampo nurodytose taškuose, nėra kyšančių smailių, tačiau tai nereiškia, jog varis neadsorbuotas. RSDA duomenyse vario junginių smailės gali būti, tačiau kitų intensyvių smailių buvimas vario smailes užgožia, be to, kreivių triukšmo efektas taip pat prisideda prie šio veiksnio. EDS duomenys (žiūrėti 0 skyrelį) patvirtina vario įsiterpimą į medžiagą.

2.15 pav. 30 g_{Cu}/l konc. tirpalo adsorbuoto AlPO₄-5 ceotipo RSDA kreivės. I. – ceotipas po kaitinimo, II. – ceotipas prieš kaitinimą

2.16 pav. Iškaitintų 5 g_{Cu}/l ir 30 g_{Cu}/l koncentracijos tirpalų adsorbcijos AlPO₄-5 medžiaga nuotraukos

Apskaičiuota, jog vario adsorbato kiekis adsorbente lygus 120,260 mg/g, kai $C_0 = 30$ g_{Cu}/l. Ši vertė aprašo adsorbuoto vario kiekį, todėl adsorbato kiekis perskaičiuojamas į CuO junginį. Gaunamas

nauja adsorbato kiekio adsorbente dydis – 150,538 mg/g, vario oksidas masės dalis maždaug 15 %. Atliekant adsorbcijos bandymus su 30 g_{Cu}/l koncentracijos tirpalu, pusiausvirasis adsorbato kiekio adsorbente q_e yra žymiai didesnis. Tikėtina, jog šis skirtumas yra sukeltas silpnais ryšiais prisijungusių dalelių desorbcijos veiksniu. Turint omenyje, kad fizikinė sorbcija yra pusiausvirasis reiškinys bei Dubinin-Radushkevich izotermos modelio skaičiavimuose minėtos mažos adsorbcijos šilumos vertės, tikėtina, jog terminio bei mechaninio apdorojimo metu energijos kiekiai buvo viršyti ir pasireiškė vario dalelių desorbcija. Tokia prielaida dalinasi ir 5 g_{Cu}/l koncentracijos tirpalu adsorbuotas ceotipas, kuriame adsorbato kiekis adsorbente lygus 2,2 mg/g (CuO junginio pavidalu tampa 2,75 mg/g vertės). Šiame mėginyje įvyko didesnio poveikio desorbcija. Žymūs skirtumai tarp adsorbuotų medžiagų kiekių ir adsorbcijos tyrimo dalies rezultatų pagrindžia, jog vario jonų adsorbcija AlPO₄-5 ceotipu yra labai jautri išoriniam poveikiui, detalesni tyrimai reikalingi stipriau pririšti vario daleles prie ceotipo paviršiaus.

2.2.7. Skenuojamoji elektronų mikroskopija bei energijos dispersijos spektrometrija

SEM metodu gauti vaizdiniai (žiūrėti 2.17 pav.) suteikia susintetinto ceotipo struktūros įžvalgų. Vizuali medžiaga leidžia lengviau įsivaizduoti ir daryti išvadas apie dalelių morfologiją, pasiskirstymą bei medžiagos struktūras. Nuotraukose pateikti iškaitinti vario adsorbuoto AlPO₄-5 bei neadsorbuoto AlPO₄-5 medžiagos.

Iš 2.17 pav. pastebima, jog kristalų struktūra nėra vientisa kaip ankščiau manyta, priartinus 5000 kartų matomi ilgi heksagonalinės singonijos AlPO₄-5 dalelės, primenančios pieštuko formą, tačiau atitolinus vaizdą iki 300 kartų priartinimo efekto, matoma, kad yra ir ne tokios tvarkingos formos medžiagų. Manoma, kad tai galėtų būti besikristalizuojančių kristalų aglomeratai, tai grindžiama B2 nuotraukoje matomi mažesnės pieštuko formos dalelės sujungtos į vieną gumulėlį. Negalima teigti, kad tai amorfinės fazės medžiagos, nes jų formos kontūrai ryškūs bei RSDA duomenys (žiūrėti 2.10 pav.) neparodė žymios amorfinės fazės susidarymo. Tikėtina, jog tai yra reakcijos metu kristalizuojančios priemaišos arba pradėjusios kristalizuotis dalelės, kurios tarpusavyje sulipa ir, dėl konkuruojančių kristalizacijos sąlygų, tampa smulkios, netvarkingos struktūros.

SEM nuotraukose nėra pastebimas skirtumas tarp vario adsorbuoto ceotipo bei gryno AlPO₄-5. Lyginant A3 ir B3 vaizdinius, matoma, jog A3 luitas yra švaresnis, neapdengtas smulkesnėmis dalelėmis, tačiau tai nėra argumentas už adsorbcijos poveikį medžiagai. Turint omenyje, jog 5000 kartų priartinimas yra puikus kristalų morfologijos vertinimui, tačiau jonų mastu, tai nėra pakankamas didinimo efektas. Yra žinoma, kad AlPO₄-5 yra poringa medžiaga, sudarytą iš pasikartojančių aliuminio ir fosforo tetraedrų žiedų, tačiau SEM nuotraukose pieštuko formos dalelės atrodo pilnavidurės. Dėl šių priežasčių, siekiant įvertinti vario įkomponavimą į ceotipo struktūrą, pasitelkiama energijos dispersine rentgeno spektroskopija leidžianti kiekybiškai įvertinti kiekvieno atskiro periodinės cheminės lentelės elemento procentinę dalį mėginyje. Taip pat, pateikiamas EDS mėginio matomojo lauko vaizdinys, iš kurio gaunami elementinės sudėties duomenys bei EDS žemėlapis (angl. *EDS elemental mapping*).

Pabrėžtina, jog EDS duomenyse yra įtrauktas anglies elementas, tačiau tai nereiškia, jog anglis randama molekulinio sieto struktūroje. EDS analizei bandiniai yra paruošiami priklijuojant miltelius ant anglies pagrindo lipniosios juostos. Miltelių pasiskirstymas ant paviršiaus nėra vientisas, todėl tarp kristalų yra grynos anglies pagrindo juostos lopai, kuriuos atpažįsta elektronų detektorius.

2.17 pav. AlPO₄-5 ceotipo SEM nuotraukos. A1, A2, A3 – AlPO₄-5 ceotipas po Cu²⁺ adsorbcijos; B1, B2, B3 – AlPO₄-5 ceotipas prieš Cu²⁺ adsorbciją. Greitinamoji įtampa 5 kV, A1 ir B1 didinimas 300 kartų, A2 ir B2 didinimas 1000 kartų, A3 ir B3 didinimas 5000 kartų. Darbiniai atstumai (angl. *working distance*): A1, A2, A3 – 9,6 mm, B1, B2, B3 – 9,9 mm.

Tarpusavyje lyginant medžiagų 2.6 lentelėje pateiktus duomenis, matoma panaši procentinė medžiagų sudėtis, kur paprastas AlPO₄-5 turi šiek tiek daugiau deguonies sudėtyje, bet mažiau aliuminio ir fosforo dalelių. Toks tarpusavio lyginimas nėra tinkamas įrodymas, jog visoje adsorbuotoje AlPO₄-5 medžiagoje yra mažiau aliuminio bei fosforo nei neadsorbuotame mėginyje, nes EDS matomasis laukas parenkamas atsitiktine tvarka.

Chaminis alamantas	Elementinė sudėtis, %		
Cheminis elementas	AlPO ₄ -5 po adsorbcijos	AlPO ₄ -5	
Aliuminis	14,75	14,02	
Anglis	9,17	10,81	
Deguonis	62,33	64,61	
Fosforas	11,58	10,56	
Varis	2,17	0,00	

2.6 lentelė. AlPO₄-5 ceotipų EDS analizės duomenys

Remiantis 2.18 pav. vaizdine medžiaga matomas netolygus aliuminio žalių taškų pasiskirstymas mėginyje B4, B5. Pieštuko formos aglomeratai smulkesni ir juose raudoni fosforo, mėlyni deguonies ir žali aliuminio taškai yra išsidėstę pakankamai tolygiai. Lyginant tarpusavyje pieštuko formos aglomeratus matoma panaši taškų pasiskirstymo tendencija. Didesni kristaliniai kūnai pasižymi didesniu žalių taškų skaičiumi ir mažu raudonų fosforų taškų kiekiu. Galimas paaiškinimas, kad tai gali nepakankamos reakcijos padarinys, kur ceotipe gali būti menki kiekiai Al_xO_y tipo medžiagos. Iš kitos pusės, matomajame EDS lauke regimi tik viena didelių (lyginant su kitais pieštukų formos dalelėmis) pusė, kur sunku nusakyti ar toks pasiskirstymas yra ištisas viso kristalo sandaroje.

2.18 pav. AlPO₄-5 ceotipo po Cu²⁺ adsorbcijos (A) ir prieš Cu²⁺ adsorbciją (B) EDS analizės vaizdiniai.
Matomieji laukai žymimi A4, B4, elementiniai žemėlapiai – A5, B5. Įgreitinimo įtampa 5 kV, didinimas – 500 kartų, darbiniai atstumai (angl. *working distance*): A4, A5 – 9,6 mm, B4, B5 – 10,0 mm.

Vario adsorbuoto AlPO₄-5 ceotipo rezultatai matomi 2.18 pav. A4, A5 dalyse. Iš EDS elementinio žemėlapio matomas ganėtinai išsklaidytas vario elemento pasiskirstymas visuose skirtingo dydžio medžiagos kristaluose. Iš EDS duomenų, varis sudaro 2,17 % bandinio elementinės sudėties (jei atimtume anglies dalį, šis procentas pakiltų iki 2,39 %).

Vaizdiniuose adsorbuotas AlPO₄-5 yra po 30 g_{Cu} /l koncentracijos tirpalo kontaktavimo. Netolygių kristalų aglomeratų formų išsisklaidymas patvirtina išvadą, jog adsorbento paviršius nėra homogeniškas, bet toks skirtingų formų dalelių buvimas turėtų pagerinti adsorbtyvo fiksavimą prie ertmių ir / ar porų.

2.2.8. CuO/ceotipas katalizatoriaus aktyvumas etilacetato visiško oksidavimo reakcijoje

Eksperimento metu bandoma išbandyti pagaminto CuO/AlPO₄-5 ceotipo katalizatorių ir jo poveikį kataliziškai oksiduojant organinį etilacetato junginį. Katalizatoriaus efektyvumas yra vertinamas pagal jo pilnos organinio junginio oksidacijos išeigą. Pilna etilacetato oksidacijos reakcija:

$$C_4H_8O_2 + 5 O_2 \xrightarrow{\text{Temperatūra,}} 4 CO_2 + 4 H_2O.$$

Remiantis atliktomis dujų analizėmis, etilacetatas gali pasireikšti daline oksidacija į anglies monoksidą CO, acto rūgštį CH₃COOH, dietileterį (C_2H_5)₂O ir etanolį C_2H_5 OH.

2.19 pav. Lygiagrečiai nuoseklūs etilacetato katalizinio oksidavimo produktų mechanizmai. Punktyrinė linija žymi nepilno oksidavimo produktus, vientisa linija – pilno oksidavimo produktą

150–300 °C temperatūriniame režime atliktų eksperimentų rezultatai pateikiami 2.20 pav. Didžiausiu etilacetato konversijos laipsniu α pasireiškia 30 g_{Cu}/l koncentracijos tirpale adsorbuotas ceotipas su maksimalia α verte – 89,13 %. Šio katalizatoriaus CO₂ išeiga taip pat didžiausia visose temperatūrose, tačiau pabrėžtina, jog yra ir nemenkas susidaręs CO kiekis. Žymūs dujinių anglies oksidų susidarymas pasiekiamas 225 °C temperatūroje. Žemesnėse nei 225 °C temperatūrose pagrindinis katalizinio oksidavimo produktas – etanolis. 250 °C temperatūroje pasiekiamos maksimalios etanolio ir dietileterio produktų išeigos (455,36 mg etanolio/ mg katalizatoriaus bei 38,52 mg dietileterio / mg katalizatoriaus).

2.20 pav. Katalizinės etilacetato oksidacijos produktų kiekių bei etilacetato konversijos laipsnio priklausomybės nuo temperatūros. Juoda spalva – 30 g_{Cu}/l ceolitas, žalia – 5 g_{Cu}/l ceolitas, raudona – grynas ceolitas / adsorbentas

275 °C temperatūroje pradeda didėti CO₂ bei CO išeigos ir paskutiniame 300 °C temperatūros taške, vieninteliai atpažįstami katalizinio oksidavimo produktai yra anglies oksidai bei etanolis. Iš sudarytų kreivių matoma, kad pilnas etilacetato oksidavimas palankus vykti aukštesnėse temperatūrose, tai liudija ir konversijos laipsnio kreivė, kuri nuo 250 °C įgauna tiesės formą. Tikėtina, jog aukštesnėse temperatūrose būtų pasiekiama didesnė etilacetato konversijos laipsnio vertė, tačiau aukštesnėse temperatūrose abejojama katalizatoriaus ilgaamžiškumu bei proceso eksploatavimo sąlygomis.

CuO/ceolito katalizatorius gamintas naudojant 5 g_{Cu}/l koncentracijos tirpalą, nors turi menką adsorbuotą vario kiekį, pasižymi panašiomis katalizės tendencijomis kaip ir 30 g_{Cu}/l adsorbuotas ceotipas. Maksimalus konversijos laipsnis 300 °C temperatūroje – 82,06 %, tačiau didelę procentinę vertę sudaro dalinės oksidacijos produktai. CO ir CO₂ kiekiai pradeda ženkliai didėti tik 275 °C temperatūros, iki tol, praktiškai nesusidaro. Lyginant su 30 g_{Cu}/l konc. adsorbuotu katalizatoriumi, yra žymiai didesni dietileterio, etanolio kiekiai, acto rūgšties susidarymas yra žymus beveik visame temperatūriniame diapazone. Pastebima, jog susidariusių CO ir CO₂ kiekių kreivės yra panašios formos bei išlinkio kaip ir 30 g_{Cu}/l , kas parodo, kad net menkas adsorbuoto vario kiekis paveikia etilacetato oksidacijos reakcija.

Gryno adsorbento kataliziniai duomenys labiausiai nustebinantys, kadangi pasižymi didžiausiomis dalinės oksidacijos produktų kiekiais, netgi CO. Analogiškai kaip ir 5 g_{Cu}/l katalizatorius, žymus CO susidarymas prasideda 275 °C, tačiau pasiekus 300°C temperatūrą CO susidarymo kiekis 1222,59 mg_{CO}/mg katalizatoriaus, viršijantis net 30 g_{Cu}/l katalizatoriaus CO išeigą. Acto rūgšties kiekis nukrenta iki nulio pasiekus 300 °C bei etanolio kiekio mažėjimas nuo 250 iki 300 °C temp., kas tikriausiai nulemia padidėjusį CO kiekį. Pasiekta maksimali etilacetato konversijos laipsnio vertė - 40,64 %. Iš duomenų, daroma išvada, jog pats nešiklis, be aktyviųjų katalizinių centrų, aukštoje temperatūroje pasireiškia katalizinėmis savybėmis labiau palankioms dalinių oksidacijos produktų susidarymui. Galima daryti prielaidą, jog nešiklis prisideda prie dalinio etilacetato skaidymo, o CuO katalizatoriuose toliau skaido dalinius produktus iki CO₂.

Manoma, jog prie padidėjusios išeigos 275–300 °C temperatūrose prisideda ir prieš tai aptartas jautrus fizikinės sorbcijos veiksnys. Žinant adsorbuotų medžiagų skirtumus tarp iškaitinto katalizatoriaus bei adsorbcijos tyrimo dalyje atliktų eksperimentų (žiūrėti 2.12 pav.), daroma prielaida, kad oksidacijos produktai gali sorbuotis katalizatoriaus porose, pasiekus pakankamai aukštą temperatūrą dujos desorbuojasi ir pastebimas didelis šuolis išsiskiriančių medžiagų kiekiuose.

Norint tikrinti CuO/ceotipo katalizatoriaus universalumą bei pritaikymą išsamesni katalizės eksperimentai turėtų būti atlikti kataliziškai oksiduojant kitokius LOJ atstovus.

3. Inžinerinė dalis

Remiantis visiško katalizinio oksidavimo eksperimento duomenimis projektuojama oro valymo nuo etilacetato technologija. Iš eksperimento svarbiausi naudojami parametrai – katalizatoriaus įkrovos bei reaktoriaus temperatūra ir etilacetato konversijos laipsnis. Pateikiama technologinė schema.

3.1 pav. Oro valymo nuo etilacetato technologija. Čia: 1. – kompresorius, 2. – šilumokaitis, 3 – šildytuvas, 4 – konversijos kolona, 5 – šaldytuvas, 6 – separatorius.

Kambario oro ir etilacetato mišinys tiekiamas kompresoriumi (1) ir išvystomas 3,5 bar slėgis didesnėms srauto greičio vertėms. Suslėgto kambario temperatūros oro mišinys tiekiamas į *rekuperatorinio* tipo šilumokaičio (2) vamzdine ertmę, kurio tarpvamzdine ertme teka sureagavusių dujų mišinys. Po vamzdinės ertmės srauto temperatūra padidėja iki 170 °C, oro ir etilacetato mišinys tiekimas į šildytuvą (3), kuris reikalingas, jog prieš reakciją dujos būtų pakankamai aukštos temperatūros, kad būtų išlaikoma optimali reakcijos temperatūra (apie 270 °C). Po šildytuvo oro ir etilacetato mišinys tiekiamas į konversijos koloną (4), kurioje yra patalpinta CuO/ceotipo katalizatoriaus įkrova. Šitame reaktoriuje įvyksta katalizinės oksidacijos reakcijos 300 °C temperatūroje ir konversijos kolonas ištekančio srauto sudėtį papildo CO, CO₂, etanolis, dietileteris ir vandens garai. Reaktoriaus ištekančių dujų mišinys 300 °C temp. įteka į šilumokaičio (2) tarpvamzdine ertmę, kur yra atvėsinamos iki maždaug 165 °C temperatūros. Tokios būsenos dujos yra per aukštos temperatūros, kad būtų laisvai išleidžiamos į atmosferą, tai projektuojamas papildomas šaldytuvas (5) siekiant sumažinti dujų temperatūrą iki 10 °C. Tokioje temperatūroje kondensuojasi didžioji dalis vandens, todėl įmontuojamas separatorius (6), jog eksploatacijos metu

nesusidarytų vamzdynuose žymūs vandens kiekiai. Separatorius išskiria 10 °C mišinį į dujinės būsenos medžiagas ir skystąją fazę. Skystąja fazę sudaro vanduo bei itin maži ištirpusio etanolio kiekiai.

Tokio tipo oro valymo blokas gali būti įmontuojamas pramonės išmetamųjų dujų vamzdynuose norint pasiekti didesnę CO₂ kiekį ir mažesnę LOJ koncentraciją. Reikalingi detalesni tyrimai ir kitų LOJ katalizinės oksidacijos tyrimų įvertinant ar tokio tipo katalizatorius galėtų pakankamai efektyviai skaidyti kitus junginius. Jei taip, tokio valymo blokas padidintų naudojimo sritį ir nebūtų nukreipta tik etilacetato valymui, o platesniu oro valymu nuo LOJ mišinių.

Pasitelkus Aspen HYSYS programiniu paketu (termodinaminis paketas – PRSV), aukščiau įvardintu procesu, sudaromas modelis, iš kurio bus galima įvertinti išmetamųjų dujų kiekius ir sudaryti medžiagų balansus. Sudaromo modelio pradinio oro ir etilacetato mišinio molinė sudėtis yra 0,01 etilacetato, 0,21 deguonies, 0,78 azoto dalys, mišinio masės debitas – 1000 kg/h.

Konversijos kolonas įtekantis srautas		Konversijos kolonas ištekantis srautas		
Junginys	<i>G</i> , kg/h	Junginys	<i>G</i> , kg/h	
Etilacetatas	29,916	Etilacetatas	2,094	
Deguonis	228,174	Deguonis	180,964	
Azotas	741,910	Azotas	741,910	
		СО	1,902	
		CO ₂	53,276	
		Dietileteris	0,722	
		Etanolis	0,934	
		Vanduo	24,095	
Suma ∑	1000,0	Suma ∑	1000,0	

3.1 lentelė. Aspen HYSYS konversijos kolonos medžiagų balansas

3.2 pav. Aspen HYSYS programiniame pakete sudarytas oro valymo nuo etilacetato modelis

Modelis prasideda nuo 350 kPa suslėgto oro tiekimo į rekuperacinio šilumokaičio vamzdine ertmę, kur vamzdine ertme ištekančios dujos įšyla iki 170 °C. Modeliavimo erdvėje rekuperacinio šilumokaičio šilumos mainų plotas – 90,48 m², slėgio nuostoliai – 50 kPa. Pateikiami modeliuojamo šilumokaičio parametrai (žiūrėti 3.2 lentelė). Pabrėžtina, jog šios vertės yra suteikiamos įrenginiams automatiškai Aspen HYSYS programiniame pakete, todėl tokiomis pačiomis vertėmis pasižymi ir konversijos kolona.

Parametrai	Plieno sluoksnis	Izoliacinis sluoksnis	
Sluoksnio storis, cm	1,00	3,00	
<i>Cp</i> , kJ/kg·C	0,473	0,820	
Tankis, kg/m ³	7801	520	
Laidumas, W/m·K	45	0,15	

3.2 lentelė. Šilumokaičio bei konversijos kolonos izoliacinio sluoksnio parametrai

Po to srautas turi būti papildomai pašildytas iki reikiamos 265,5 °C temperatūros, tam tikslui diegiamas šildytuvas, kuriam reikia 28,55 W (arba 1,028·10⁵ kJ/h) energijos pašildyti dujų srautą nuo 170 iki 265,5 °C temperatūros. Dujos įteka į konversijos koloną, vyksta reakcija ir jos metu susidariusių dujų mišinys išteka iš kolonos. Modelis sukurtas taip, kad ištekančių kolonos dujų temperatūrą būtų apie 300 °C, tačiau tokiam temperatūriniam režimu išlaikyti reikia atsikratyti susidariusios šilumos kiekius.

Aspen HYSYS erdvėje apskaičiuota, jog 1 molio etilacetato pilno oksidavimo reakcija iki CO₂ ir H₂O išskiria 209,7 kJ energijos. Reakcija yra egzoterminė, didinant etilacetato molių skaičių išsiskiriantis šilumos kiekis taip pat didėja. Modelio erdvėje, 1000 kg oro ir etilacetato mišinyje yra apie 340 molių etilacetato. Tokio molinio kiekio katalizinis oksidavimas reikalauja, kad konversijos kolonos reaktorius būtų vėsinamas. Norint išlaikyti 300 °C reaktoriaus ištekančių dujų srauto temperatūra, reaktorius turi prarasti 159,9 W arba 5,756·10⁵ kJ energijos. Toks eksploatavimo režimas nėra ekonomiškas, todėl reikėtų optimizuoti ir / ar tirti koks oro ir etilacetato santykis yra geriausias izoterminiam reaktoriaus režimui, nes kitu atveju, dideli apytakinio vandens kiekiai yra reikalingi sumažinti reaktoriaus temperatūrą.

Originali modelio pradinio oro mišinio molinė sudėtis: 0,01 etilacetatas, 0,21 deguonis ir 0,78 azotas. Mažinama etilacetato molinė dalis mišinyje ir pateikiami rezultatai kaip tai paveikia ištekančių dujų temperatūrą, kol į reaktoriaus kolona neteikiamas energijos srautas.

Etilacetato molinė dalis sraute	Konv. kolonos ištekančių dujų temperatūra, °C	Etilacetato koncentracija sraute, g/m3	
0,0100	799,6	59,088	
0,0075	676,1	44,422	
0,0050	545,6	29,632	
0,0025	408,6	14,816	
0,0020	380,1	11,831	
0,0010	322,6	5,887	
0,0006	300,6	3,545	

3.3 lentelė. Konversijos kolonos ištekančių dujų temperatūros priklausomybė nuo etilacetato molinės dalies sraute Aspen HYSYS modelyje

Kai etilacetato koncentracija sraute maždaug 3,545 g/m³ pasiekiamas pakankamai ekonomiškas konversijos kolonos veikimas. Tokiu režimu etilacetato molinė dalis lygi $6 \cdot 10^{-4}$, tačiau reikia turėti omenyje, jog etilacetato trumpalaikio poveikio ribinė vertė – 1,468 g/m³ (žiūrėti 4 skyrių Darbuotojų sauga ir sveikata), tai naujai apskaičiuota etilacetato koncentracijos vertė vos ne dvigubai didesnė nei ribinė vertė. Optimizuotos sistemos medžiagų balansas pateikiamas žemiau.

Konversijos kolonas įtekantis srautas		Konversijos kolonas ištekantis srautas		
Junginys	<i>G</i> , kg/h	Junginys	<i>G</i> , kg/h	
Etilacetatas	1,829	Etilacetatas	0,128	
Deguonis	234,797	Deguonis	231,911	
Azotas	763,374	Azotas	763,374	
		СО	0,116	
		CO ₂	3,001	
		Dietileteris	0,044	
		Etanolis	0,057	
		Vanduo	1,368	
Suma ∑ 1000,0		Suma ∑	1000,0	

3.4 lentelė. Optimizuotos Aspen HYSYS konversijos kolonos medžiagų balansas

Pateikiama optimizuota Aspen HYSYS programinio paketo modelio erdvė

3.3 pav. Optimizuotas Aspen HYSYS programiniame pakete sudarytas oro valymo nuo etilacetato modelis

Optimizuoto modelio galutinė separatoriaus dalis yra nereikalinga, nes susidarę vandens kiekiai yra žymiai mažesni, tad vėsinimas nedaro poveikio jo kondensacijai. Atvėsinimo ir separacijos dalys gali būti panaikinamas ir sutaupomi kaštai.

4. Darbuotojų sauga ir sveikata

Šiame skyriuje apžvelgiama eksperimentuose naudojamų medžiagų darbuotojų saugos ir sveikatos klausimai, darbo aplinkoje galintys pasireikšti kenksmingi ir pavojingi profesinės rizikos veiksniai, nurodytos cheminių junginių pavojingumo ir atsargumo fazės, įspėjamieji ženklai, pirmosios pagalbos ir priešgaisrinės saugos priemonės.

Šiame tiriamajame darbe naudotos cheminės medžiagos:

- aliuminio hidroksidas;
- aliuminio izopropoksidas;
- azoto rūgštis;
- N,N-diizopropiletilaminas;
- 4-(dimetilamino)piridinas;
- druskos rūgštis;
- etilo acetatas arba acto rūgšties etilo esteris;
- ortofosforo rūgštis;
- trietilaminas;
- vario (II) nitrato trihidratas.

Laboratorija įrengta su traukos spinta veikianti kaip kolektyvinė (ventiliacijos) apsaugos priemonė. Visi veiksmai, susiję su medžiagų maišymu, matavimu bei tarpusavio sąveika, vykdomi traukos spintoje. Taip pat reikia atkreipti dėmesio į bendrus laboratorijos tvarkos reikalavimus (atsakingas ir informuotas įrangos ir reagentų naudojimas, darbo apranga ir pan.).

Aliumofosfatinių ceotipų gamyba apimama tokius medžiagos paruošimo būdus kaip medžiagų malimas, medžiagų kaitinimas bei dirbama su labai smulkios frakcijos dulkėtomis medžiagomis. Asmeninės apsaugos priemonės yra būtinas siekiant sumažinti ar visiškai panaikinti galimą pavojų:

4.1 pav. Darbo saugos ženklinimo reikšmės: a – dėvėti apsauginius akinius, b dėvėti apsauginę kaukę, c – dėvėti apsaugines pirštines

Pabrėžtina, jog asmeninės apsaugos priemonės privalo būti aprūpintos nemokamai [38].

Žemiau lentelėse pateikiami darbe naudotų cheminių medžiagų pavojingumo frazių (4.1 lentelė), pirmosios pagalbos priemonių (4.2 lentelė), priešgaisrinės priemonių (4.3 lentelė), tvarkymo ir sandėliavimo duomenys (4.4 lentelė).

Pabrėžtina, jog 4.3 lentelėje bei 4.4 lentelėje panašios medžiagos, pasižyminčios vienodomis rekomendacijomis bei reikalavimais, sugrupuojamos kartu (pvz. organiniai junginiai).

Detali darbo aplinkos profesinės rizikos veiksnių ir jų šaltinių informacija pateikta prieduose (žiūrėti 1, 2, 3, 4, 5 priedus).

Medžiaga	Ženklinimas pagal Reglamentą (EB) Nr. 1272/2008 (CLP)	Pavojingumo frazės	Atsargumo frazės - prevencinės
Aliuminio hidroksidas	Nereikalaujama [39]	-	-
Aliuminio izopropoksidas	GHS02, GHS07 [40]	H225 – Labai degūs skystis ir garai H319 – Sukelia akių dirginimą [40].	 P210 – Laikyti atokiau nuo šilumos šaltinių, karštų paviršių, žiežirbų, atviros liepsnos arba kitų degimo šaltinių. P280 – Mūvėti apsaugines pirštines/naudoti akių apsaugos priemones [40].
Azoto rūgštis	GHS03, SHS05, GHS06 [41]	H272 Gali padidinti gaisrą, oksidatorius H290 Gali ėsdinti metalus H314 Smarkiai nudegina odą ir pažeidžia akis H331 Toksiška įkvėpus [41].	P220 Laikyti/sandėliuoti atokiau nuo degių medžiagų P260 Neįkvėpti rūko/garų/aerozolio P280 Mūvėti apsaugines pirštines/dėvėti apsauginius drabužius / naudoti akių (veido) apsaugos priemones [41].
N,N- diizopropil- etilaminas	GHS02, GHS05, GHS06 [42]	H225 – Labai degūs skystis ir garai H302 – Kenksminga prarijus H318 – Smarkiai pažeidžia akis H331 – Toksiška įkvėpus H335 – Gali dirginti kvėpavimo takus [42]	P210 – Laikyti atokiau nuo šilumos šaltinių, karštų paviršių, žiežirbų, atviros liepsnos arba kitų degimo šaltinių. Nerūkyti P280 – Mūvėti apsaugines pirštines/naudoti akių apsaugos priemones [42]
4- (dimetilamino)- piridinas	GHS05, GHS06, GHS08, GHS09 [43]	H301+H331 – Toksiška prarijus arba įkvėpus H310 – Mirtina susilietus su oda H315 – Dirgina odą H318 – Smarkiai pažeidžia akis H370 – Kenkia organams (nervų sistema) H411 Toksiška vandens organizmams, sukelia ilgalaikius pakitimus [43].	P273 – Saugoti, kad nepatektų į aplinką P280 – Mūvėti apsaugines pirštines/naudoti akių apsaugos priemones [43].
Druskos rūgštis	GHS05 [44]	H290 – Gali ėsdinti metalus [44].	P234 – Laikyti tik originalioje pakuotėje [44].
Ortofosforo rūgštis	GHS05 [45]	H290 – Gali ėsdinti metalus [45].	P234 – Laikyti tik originalioje pakuotėje [45].

4.1 lentelė. Naudojamų cheminių medžiagų galimų pavojų informacija

4.1 lentelės tęsinys

Trietilaminas	GHS02, GHS05, GHS06 [46]	H225 – Labai degūs skystis ir garai H302 – Kenksminga prarijus H318 – Smarkiai pažeidžia akis H311+H331 – Toksiška susilietus su oda arba įkvėpus H335 – Gali dirginti kvėpavimo takus [46].	P210 – Laikyti atokiau nuo šilumos šaltinių, karštų paviršių, žiežirbų, atviros liepsnos arba kitų degimo šaltinių. Nerūkyti P280 – Mūvėti apsaugines pirštines/naudoti akių apsaugos priemones [46].
Vario (II) nitrato trihidratas	GHS03, GHS07, GHS09 [47]	H272 – Gali padidinti gaisrą, oksidatorius H302 – Kenksminga prarijus H315 – Dirgina odą H319 – Sukelia smarkų akių dirginimą H410 – Labai toksiška vandens organizmams, sukelia ilgalaikius pakitimus [47],	P220 – Laikyti/sandėliuoti atokiau nuo degių medžiagų P273 – Saugoti, kad nepatektų į aplinką P280 - Mūvėti apsaugines pirštines/naudoti akių apsaugos priemones [47].
Etilo acetatas	GHS02, GHS07 [48]	H225 – Labai degūs skystis ir garai H319 – Sukelia akių dirginimą H336 – Gali sukelti mieguistumą arba galvos svaigimą [48].	P210 – Laikyti atokiau nuo šilumos šaltinių, karštų paviršių, žiežirbų, atviros liepsnos arba kitų degimo šaltinių. Nerūkyti P280 – Mūvėti apsaugines pirštines/naudoti akių apsaugos priemones [48].

4.2 lentelė. Naudojamų cheminių medžiagų pirmosios pagalbos priemonių duomenys

Medžiagos pavadinimas	Bendrosios pastabos	Įkvėpus	Patekus ant odos	Patekus į akis	Prarijus
Aliuminio hidroksidas	Nusivilkti užterštus drabužius [39].	Įleiskite gryno oro. [39].	Odą nuplauti vandeniu/čiurkšle [39].	Atsargiai nuplauti vandeniu kelias minutes [39].	Išskalauti burną. Pasijutus blogai skambinti į kreiptis į gydytoją [39].
Aliuminio izopropoksidas	Nedelsiant nusivilkti visus užterštus drabužius. apsaugos priemonės [40].	Įleiskite gryno oro. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [40].	Odą nuplauti vandeniu/čiurkšle. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [40].	Po sąlyčio su akimis atmerktas akis nedelsiant 15 minučių skalauti tekančiu vandeniu bei kreiptis į gydytoją [40].	Praskalauti burną vandeniu (jei nukentėjusysis turi sąmonę). Skambinti ir į kreiptis į gydytoją [40].
Azoto rūgštis	Nedelsiant nusivilkti visus užterštus drabužius. Pirmąją pagalbą teikiančio asmens apsaugos priemonės [41].	Nedelsiant kreiptis į gydytoją. Pasireiškus kvėpavimo sutrikimams arba sustojus kvėpavimui reikia daryti dirbtinį kvėpavimą [41].	Patekus ant odos, nedelsiant gerai nuplauti dideliu kiekiu vandens. Reikia nedelsiant kreiptis į gydytoją, nes negydomų nudegimų vietose atsiras sunkiai gyjančios žaizdos [41].	Po sąlyčio su akimis atmerktas akis nedelsiant 15 minučių skalauti tekančiu vandeniu bei kreiptis į gydytoją [41].	Nedelsdami išskalaukite burną ir išgerkite daug vandens. Nedelsiant kreiptis į gydytoją. Nedelsiant kreiptis į gydytoją. Nurijus kyla stemplės ir skrandžio perforacijos pavojus (stiprus ėsdinantis poveikis) [41].

4.2 lentelės tęsinys

4-(dimetil- amino)- piridinas	Nedelsiant nusivilkti visus užterštus drabužius. Pirmąją pagalbą teikiančio asmens apsaugos priemonės [43].	Nedelsiant kreiptis į gydytoją. Pasireiškus kvėpavimo sutrikimams arba sustojus kvėpavimui reikia daryti dirbtinį kvėpavimą [43].	Odą nuplauti vandeniu/čiurkšle. Patekus ant odos, nedelsiant gerai nuplauti dideliu kiekiu vandens. Sudirginus odą kreipkitės į gydytoją [43].	Po sąlyčio su akimis atmerktas akis nedelsiant 10-15 minučių skalauti tekančiu vandeniu bei kreiptis į gydytoją [43].	Nedelsdami išskalaukite burną ir išgerkite daug vandens. Nedelsiant kreiptis į gydytoją [43].
N,N- diizopropil- etilaminas	Pirmąją pagalbą teikiančio asmens apsaugos priemonės [42].	Išnešti nukentėjusįjį į gryną orą; jam būtina ramybė ir padėtis, leidžianti laisvai kvėpuoti. Jei kvėpuoja netolygiai ar kvėpavimas sustoja, nedelsiant kviesti greitąją pagalbą ir suteikti pirmąją pagalbą [42].	Odą nuplauti vandeniu/čiurkšle. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [42].	Po sąlyčio su akimis atmerktas akis nedelsiant 10-15 minučių skalauti tekančiu vandeniu bei kreiptis į gydytoją [42].	Praskalauti burną vandeniu (jei nukentėjusysis turi sąmonę). Skambinti į kreiptis į gydytoją [42].
Druskos rūgštis	Nusivilkti užterštus drabužius [44].	Įleiskite gryno oro. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [44].	Odą nuplauti vandeniu/čiurkšle. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [44].	Atsargiai nuplauti vandeniu kelias minutes. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [44].	Išskalauti burną. Pasijutus blogai skambinti į kreiptis į gydytoją [44].
Ortofosforo rūgštis	Nusivilkti užterštus drabužius [45].	Įleiskite gryno oro. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [45].	Odą nuplauti vandeniu/čiurkšle [45].	Atsargiai nuplauti vandeniu kelias minutes. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [45].	Išskalauti burną. Pasijutus blogai skambinti į kreiptis į gydytoją [45].
Trietilaminas	Nedelsiant nusivilkti visus užterštus drabužius. Pirmąją pagalbą teikiančio asmens apsaugos priemonės [46].	Nedelsiant kreiptis į gydytoją. Pasireiškus kvėpavimo sutrikimams arba sustojus kvėpavimui reikia daryti dirbtinį kvėpavimą [46].	Patekus ant odos, nedelsiant gerai nuplauti dideliu kiekiu vandens. Reikia nedelsiant kreiptis į gydytoją, nes negydomų nudegimų vietose atsiras sunkiai gyjančios žaizdos [46].	Po sąlyčio su akimis atmerktas akis nedelsiant 10-15 minučių skalauti tekančiu vandeniu bei kreiptis į gydytoją. Saugokite nesužeistą akį [46].	Nedelsdami išskalaukite burną ir išgerkite vandens. Praskalauti burną vandeniu Nedelsiant kreiptis į gydytoją. Nurijus kyla stemplės ir skrandžio perforacijos pavojus (stiprus ėsdinantis poveikis) [46].

4.2 lentelės tęsinys

Vario (II) nitrato trihidratas	Nusivilkti užterštus drabužius [47].	Įleiskite gryno oro. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [47].	Odą nuplauti vandeniu/čiurkšle. Sudirginus odą kreipkitės į gydytoją [47].	Mažiausiai 10 minučių gausiai skalaukite švariu vandeniu, laikydami vokus atmerktus. Jei peršti akis, kreipkitės į gydytoją [47].	Praskalauti burną vandeniu (jei nukentėjusysis turi sąmonę). Skambinti į kreiptis į gydytoją [47].
Etilo acetatas	Nusivilkti užterštus drabužius [48].	Įleiskite gryno oro. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [48].	Odą nuplauti vandeniu/čiurkšle. Abejotinais atvejais arba neišnykstant simptomams kreipkitės medicininės pagalbos/ į gydytoją [48].	Mažiausiai 10 minučių gausiai skalaukite švariu vandeniu, laikydami vokus atmerktus. Jei peršti akis, kreipkitės į gydytoją [48].	Išskalauti burną. Pasijutus blogai skambinti į kreiptis į gydytoją [48].

4.3 lentelė. Naudojamų cheminių medžiagų priešgaisrinių priemonių duomenys

Medžiagos pavadinimas	Tinkamos gesinimo priemonės	Netinkamos gesinimo priemonės	Specialūs medžiagos keliami pavojai	Pavojingi degimo produktai	Patarimai gaisrininkams
Aliuminio hidroksidas (39)	Priešgaisrinės priemonės pritaikykite prie gaisro aplinkos: vanduo, putos, sausi gesinimo milteliai, ABC-milteliai [39].	Vandens srovė [39].	Nedegioji [39].	-	Gaisro arba sprogimo atveju neįkvėpti dūmų. Gaisrą gesinti laikantis įprastinio atsargumo pakankamu atstumu. Naudoti autonominius kvėpavimo aparatus [39].
Aliuminio izopropoksi- das	Priešgaisrinės priemonės pritaikykite prie gaisro aplinkos: vanduo, putos, alkoholiui atsparios putos, sausi gesinimo milteliai, ABC-milteliai [40].	Vandens srovė [40].	Degioji. Esant nepakankamam vėdinimui ir/ar naudojant, gali susiformuoti degus/sprogus garų-oro mišinys [40].	Metanas CH ₄ [40].	Gaisro arba sprogimo atveju neįkvėpti dūmų. Gaisrą gesinti laikantis įprastinio atsargumo pakankamu atstumu. Naudoti autonominius kvėpavimo aparatus [40].

4.3 lentelės tęsinys

4-(dimetil- amino)- piridinas N,N- diizopropil- etilaminas Trietilaminas	Priešgaisrinės priemonės pritaikykite prie gaisro aplinkos: vandens purškimas, alkoholiui atsparios putos, sausi gesinimo milteliai, BC- milteliai, anglies dioksidas (CO ₂) [42, 43, 46].	Vandens srovė [42, 43, 46].	Degioji [42, 43, 46].	Azoto oksidai (NOx), anglies monoksidas (CO), anglies dioksidas (CO ₂) [42, 43, 46].	Gaisro arba sprogimo atveju neįkvėpti dūmų. Gesinimo vandens neišpilti į kanalizaciją arba vandens telkinius. Gaisrą gesinti laikantis įprastinio atsargumo pakankamu atstumu. Naudoti autonominius kvėpavimo aparatus. Dėvėkite chemikalams atsparų apsauginį kombinezoną [42, 43, 46].
Druskos rūgštis Ortofosforo rūgštis	Priešgaisrinės priemonės pritaikykite prie gaisro aplinkos: vandens purškimas, alkoholiui atsparios putos, sausi gesinimo milteliai, BC- milteliai, anglies dioksidas (CO2) [44, 45].	Vandens srovė [44, 45].	Nedegioji [44, 45].	-	Gaisro arba sprogimo atveju neįkvėpti dūmų. Gaisrą gesinti laikantis įprastinio atsargumo pakankamu atstumu. Naudoti autonominius kvėpavimo aparatus [44, 45].
Azoto rūgštis Vario (II) nitrato trihidratas	Priešgaisrinės priemonės pritaikykite prie gaisro aplinkos: vanduo, putos, alkoholiui atsparios putos, sausi gesinimo milteliai, ABC-milteliai [41, 47].	Vandens srovė [41, 47].	Oksidacinė savybė. Nedegioji [41, 47].	Azoto oksidai (NOx) [41, 47].	Gaisro arba sprogimo atveju neįkvėpti dūmų. Gesinimo vandens neišpilti į kanalizaciją arba vandens telkinius. Gaisrą gesinti laikantis įprastinio atsargumo pakankamu atstumu. Dėvėkite chemikalams atsparų apsauginį kombinezoną [41, 47].

4.3 lentelės tęsinys

Etilo acetatas	Priešgaisrinės priemonės pritaikykite prie gaisro aplinkos: vandens purškimas, alkoholiui atsparios putos, sausi gesinimo milteliai, BC- milteliai, anglies dioksidas (CO ₂) [48].	Vandens srovė [48].	Degioji. Esant nepakankamam vėdinimui ir/ar naudojant, gali susiformuoti degus/sprogus garų-oro mišinys. Tirpiklio garai yra sunkesni už orą ir gali pasklisti ant grindų. Degios medžiagos arba mišiniai yra ypač linkę kauptis vietose, kurios nėra vėdinamos, pvz., nevėdinamose požeminio lygio zonose, tokiose kaip įdubos, vamzdžiai ir šachtos [48].	Anglies monoksidas (CO), Anglies dioksidas (CO ₂). Degant gali susidaryti toksiški anglies monoksido dūmai [48].	Gaisro arba sprogimo atveju neįkvėpti dūmų. Gaisrą gesinti laikantis įprastinio atsargumo pakankamu atstumu. Naudoti autonominius kvėpavimo aparatus [48].
----------------	---	------------------------	--	---	---

4.4 lentelė. Naudojamų cheminių medžiagų tvarkymo ir sandėliavimo duomenys

Medžiagos pavadinimas	Patarimas dėl bendros darbo higienos	Saugaus sandėliavimo sąlygos	Ventiliacijos reikalavimai	Sandėliavimo patalpų ar talpyklų konstrukcijos reikalavimai
Azoto rūgštis Druskos rūgštis Ortofosforo rūgštis	Pasibaigus darbui nusiplaukite rankas. Laikyti atokiau nuo maisto, gėrimų [41, 44, 45].	Talpyklą laikyti sandariai uždarytą [41, 44, 45].	Laikyti medžiagas, išskiriančias garus arba dujas, tokiose vietose, kurios leidžia jiems pastoviai išsigauti. Naudoti vietinio ir bendrojo vėdinimo [41, 44, 45].	Rekomenduojama laikymo temperatūra: 15–25 °C [41, 44, 45].
Aliuminio hidroksidas Aliuminio izopropoksidas Vario (II) nitrato trihidratas	Pasibaigus darbui nusiplaukite rankas. Laikyti atokiau nuo maisto, gėrimų [39, 40, 47].	Laikyti sausoje vietoje [39, 40, 47].	Naudoti vietinio ir bendrojo vėdinimo [39, 40, 47].	Rekomenduojama laikymo temperatūra: 15–25 °C [39, 40, 47].
4-(dimetilamino)- piridinas Trietilaminas N,N-diizopropil- etilaminas	Naudojant nevalgyti ir negerti. Po naudojimosi produktu iš karto kruopščiai nuvalykite odą [42, 43, 46].	Laikyti sausoje vietoje [42, 43, 46].	Laikyti medžiagas, išskiriančias garus arba dujas, tokiose vietose, kurios leidžia jiems pastoviai išsigauti. Naudoti vietinio ir bendrojo vėdinimo [42, 43, 46].	Rekomenduojama laikymo temperatūra: 15–25 °C [42, 43, 46].
Etilo acetatas	Pasibaigus darbui nusiplaukite rankas. Laikyti atokiau nuo maisto, gėrimų. Naudojant nerūkyti [48].	Talpyklą laikyti sandariai uždarytą [48].	Naudoti vietinio ir bendrojo vėdinimo [48].	Rekomenduojama laikymo temperatūra: 15–25 °C [48].

Išvados

- Tinkamas AlPO₄-5 sintezės rezultatas yra pasiekiamas, kai naudojama aliuminio izopropoksido žaliava ir pradinį reakcijos mišinį sudaro 1 Al₂O₃:1 P₂O₅:1 DIPEA:120 H₂O, kur reakcijos temperatūra 180 °C bei trukmė – 1 valanda. Kadangi naudojamas organinis struktūrą nukreipiantis agentas, papildomas kaitinimas krosnyje yra privalomas norint išdeginti amino junginį. Susidarę heksagonalinės singonijos kristalų aglomeratai patvirtinami skenuojamosios elektronų mikroskopijos vaizdiniais.
- 2. Ištirtos skirtingų pradinių vario koncentracijų vandeninių tirpalų adsorbcijos bandiniai AlPO₄-5 ceotipu. Gauti eksperimentiniai duomenys yra geriausiai aprašomi pseudo antrojo laipsnio (Ho) kinetikos modelio lygtimi (visomis koncentracijomis $R^2 \ge 0.9998$). Jautrią vario ir AlPO₄-5 ceotipo pusiausvirąją adsorbcijos sąveiką apibūdina Lengmiūro ($R^2 = 0.9877$) ir Freundlicho ($R^2 =$ = 0.9961) izotermų modeliai, kur adsorbcija vyksta monomolekuliniu adsorbtyvo sluoksniu ant heterogeniško adsorbento paviršiaus. Apskaičiuota Lengmiūro konstantos K_L vertė 0.3458 l/g ir adsorbcinė geba Q_0 lygi 176,19 mg/g. Freundlicho izotermos konstanta K_F lygi 41,481 mg/g, adsorbcijos intensyvumo matas 1/n vertė – 0.490.
- 3. Geriausiomis katalizinėmis savybėmis pasižymi CuO/ceotipas gamintas naudojant 30 g_{Cu}/l koncentracijos adsorbtyvo tirpalą. 300 °C temperatūroje šis katalizatorius pasižymi 89,13 % etilacetato konversijos laipsnio verte, kur pilnosios oksidacinės reakcijos produkto, CO₂, kiekis miligramui katalizatoriaus lygus 10505 mg/mg_{katalizatoriaus}.
- 4. Katalizinė etilacetato oksidacija pasižymi tarpiniais CO, etanolio, dietileterio ir acto rūgšties junginiais. Mažėjant vario koncentracijai tarpinių produktų išeigos didėja. Etilacetatas veikiamas gryno AlPO₄-5 adsorbentu pasižymi kataliziniu oksidavimu, kur vyrauja dalinės oksidacijos junginiai, 300 °C temperatūroje, ypatingai CO (1222,59 mg/mg_{katalizatoriaus}). Visiško katalizinio oksidavimo mechanizmą sudaro nešiklio bei CuO bendras veikimas, kur nešiklis skaido etilacetatą į tarpinius junginius, o CuO aktyvieji centrai šiuos dalinius oksidacijos produktus paveikia iki CO₂.
- 5. Aspen HYSYS programiniu paketu suprojektuotas oro valymo nuo etilacetato technologija, kurioje tiekiamas 350 kPa slėgio 1000 kg/h debito oro ir etilacetato srautas (srautas susideda iš 1,829 kg/h etilacetato, 234,797 kg/h deguonies ir 763,374 kg/h azoto masės debitų). Apskaičiuota, jog ekonomiškam eksploatacijos režimui etilacetato koncentracija neturėtų viršyti 3,5 mg/m³ Po optimizuoto katalizės konversijos reaktoriaus apskaičiuota, kad 1000 kg/h dujų mišinio sudėtis masės dalimis yra: 0,00138 H₂O, 0,23186 O₂ ir 0,76338 N₂, 0,00012 CO, 0,00303 CO₂, 0,00013 etilacetatas, 0,00004 dietileteris, 0,00006 etanolis.

Literatūros sąrašas

- CHEN, X., et al. Recent Advance on Cobalt-Based Oxide Catalyst for the Catalytic Removal of Volatile Organic Compounds: A Review. Resources Chemicals and Materials, Mar, 2022, vol. 1, no. 1. pp. 27-46. Prieiga per: Science Direct.
- Catarina Farinha, Jorge de Brito and Maria Do Veiga. Eco-efficient Rendering MortarsElsevier Ltd, 2021 Chapter 8 - Life Cycle Assessment, pp. 205-234. Prieiga per: ScienceDirect. ISBN 9780128184943. DOI 10.1016/B978-0-12-818494-3.00008-8.
- HAO, C., et al. Producing a Monolithic Catalyst by Manganese Slag and its Industrial Application in Catalytic Oxidization of Volatile Organic Compounds. Journal of Environmental Chemical Engineering, Oct, 2021, vol. 9, no. 5. pp. 106145. Prieiga per: ScienceDirect. ISSN 2213-3437. DOI 10.1016/j.jece.2021.106145.
- KAMAL, M.S., RAZZAK, S.A. ir HOSSAIN, M.M. Catalytic Oxidation of Volatile Organic Compounds (VOCs) – A Review. Atmospheric Environment (1994), Sep, 2016, vol. 140. pp. 117-134. Prieiga per: ScienceDirect. ISSN 1352-2310. DOI 10.1016/j.atmosenv.2016.05.031.
- LOU, B., et al. Catalytic Oxidation of Volatile Organic Compounds by Non-Noble Metal Catalyst: Current Advancement and Future Prospectives. Journal of Cleaner Production, Aug 20, 2022, vol. 363. pp. 132523. Prieiga per: ScienceDirect. ISSN 0959-6526. DOI 10.1016/j.jclepro.2022.132523.
- MUÑOZ, T., PRAKASH, A.M., KEVAN, L. ir BALKUS, K.J. Synthesis and Characterization of CuAPO-5 Molecular Sieves: Evidence for the Framework Incorporation of Cu(II) Ions. The Journal of Physical Chemistry. B, Feb 19, 1998, vol. 102, no. 8. pp. 1379-1386. Prieiga per: ACS Publications. ISSN 1520-6106. DOI 10.1021/jp973240i.
- 7. WEITKAMP, J. Zeolites and Catalysis. Solid State Ionics, 2000, vol. 131, no. 1. pp. 175-188. Prieiga per: ScienceDirect. ISSN 0167-2738. DOI 10.1016/S0167-2738(00)00632-9.
- 8. F. COLMENERO, V. TIMON. Mechanical Characterization of Anhydrous Microporous Aluminophosphate Materials: Tridimensional Incompressibility, Ductility, Isotropy and Negative Linear Compressibility. Prieiga per: ResearchGate. DOI:10.3390/solids3030032.
- ABDULLAHI, T., HARUN, Z. and OTHMAN, M.H.D. A Review on Sustainable Synthesis of Zeolite from Kaolinite Resources Via Hydrothermal Process. *Advanced Powder Technology : The International Journal of the Society of Powder Technology, Japan*, Aug 01, 2017, vol. 28, no. 8. pp. 1827-1840. . Prieiga per: ScienceDirect. ISSN 0921-8831. DOI 10.1016/j.apt.2017.04.028.
- LI, Y., LI, L. and YU, J. Applications of Zeolites in Sustainable Chemistry. *Chem*, Dec 14, 2017, vol. 3, no. 6. pp. 928-949. Prieiga per ScienceDirect. ISSN 2451-9294. DOI 10.1016/j.chempr.2017.10.009.
- BROOM, D.P. and BOOK, D. Advances in Hydrogen Production, Storage and DistributionElsevier Ltd, 2014 15 - Hydrogen Storage in Nanoporous Materials, pp. 410-450. Prieiga per ScienceDirect. ISBN 9780857097682. DOI 10.1533/9780857097736.3.410.
- SZOSTAK, R, 2001 Synthesis of Molecular Sieve Phosphates, pp. 157-185. Prieiga per: Springer. DOI: 10.1007/3-540-69615-6_6
- GRAETSCH, H.A. Monoclinic AlPO4 Tridymite at 473 and 463 K from X-Ray Powder Data. Acta Crystallographica. Section C, Crystal Structure Communications. Received 30 August 2001, accepted 25 September 2001 ed., Jan, 2002, vol. 58, no. 1. pp. i18-i20. Prieiga per ResearchGate. ISSN 0108-2701. DOI 10.1107/S0108270101015773.

- 14. LI, H., DAVIS, M.E., HIGGINS, J.B. and DESSAU, R.M. Aluminophosphate Molecular Sieves Comprised of Hydrated Triple Crankshaft Chains. *Journal of the Chemical Society, Chemical Communications*, 1993, no. 4. pp. 43-45. Prieiga per Royal Society of Chemistry Publications. ISSN 0022-4936. DOI 10.1039/C39930000403.
- UNION CARBIDE CORPORATION (JAV). Crystalline metallophosphate compositions. Inventors: Stephen T. Wilson, Shrub Oak, Brent M. Lok, Edith M. Flanigen. US Patent US4310440A. Prieiga per: <u>https://patents.google.com/patent/US4310440A</u>
- 16. STEPHEN T. WILSON, BRENT M. LOK, CELESTE A. MESSINA, THOMAS R. CANNAN, AND EDITH M. FLANIGEN. *Aluminophosphate Molecular Sieves A New Class of Microporous Vrystalline Inorganic Solids*. Journal of the American Chemical Society 1982 104 (4), 1146-1147. Prieiga per: ACS Publications. DOI: 10.1021/ja00368a062
- 17. DAVIS, M.E., et al. VPI-5: The First Molecular Sieve with Pores Larger than 10 Ångstroms, 1988. Prieiga per: ScienceDirect. ISBN 0144-2449. DOI 10.1016/s0144-2449(88)80172-6.
- DAVIS, M.E., et al. VPI-5: A Novel Large Pore Molecular Sieve. *MRS Proceedings*, 1987, vol. 111. Available from: <u>https://dx.doi.org/10.1557/PROC-111-267</u> CrossRef. ISSN 0272-9172. DOI 10.1557/PROC-111-267.
- 19. W.M. MEIER AND D.H. OLSON. *Atlas of Zeolite Structure Types*. 3rd rev. ed ed. Published on behalf of the Structure Commission of the International Zeolite Association by Butterworth-Heinemann, 1992 CiNii Books. ISBN 0750693312.
- 20. DE OÑATE MARTINEZ, J., FALAMAKI, C., BAERLOCHER, C. and MCCUSKER, L.B. Synthesis of Large Single Crystals of the Large-Pore Aluminophosphate Molecular Sieve VPI-5. Elsevier BV, 1999 ISBN 1387-1811. DOI 10.1016/s1387-1811(98)00242-x.
- 21. SZOSTAK, ROSEMARIE, *Nomenclature Clartflcatlon: VPI-5 and AIPO,-Hl.* The Journal of Physical Chemistry 1992 96 (20), 8201-8202. DOI: 10.1021/j100199a071.
- 22. MOHAU MOSHOESHOE, MISAEL SILAS NADIYE-TABBIRUKA, VERONICA OBUSENG. A Review of the Chemistry, Structure, Properties and Applications of Zeolites, 2017, vol. 7, No. 5. 196-221. Available from: no. pp. http://article.sapub.org/10.5923.j.materials.20170705.12.html#Ref. DOI 10.5923/j.materials.20170705.12.
- 23. DUNCAN, B., SZOSTAK, R., SORBY, K. and ULAN, J.G. Organic-Free VPI-5: Synthesis and Characterization of AlPO4-H1. *Catalysis Letters*, 1991, vol. 7, no. 5-6. pp. 367-375 CrossRef. ISSN 1011-372X. DOI 10.1007/BF00764926.
- 24. OLIVER, S., KUPERMAN, A. ir OZIN, G.A. A New Model for Aluminophosphate Formation: Transformation of a Linear Chain Aluminophosphate to Chain, Layer, and Framework Structures. Wiley, -02-02, 1998 ISBN 1433-7851. Prieiga per: Wiley Online Library.
- 25. THAKUR, U.S. and TOMAR, R. Synthesis Variables and Behavior of VPI-5: A Review. *Microporous and Mesoporous Materials*, Jan 01, 2015, vol. 201. pp. 258-270. Available from: <u>https://dx.doi.org/10.1016/j.micromeso.2014.09.032</u> CrossRef. ISSN 1387-1811. DOI 10.1016/j.micromeso.2014.09.032.
- 26. DR. JENNIFER M. KREMSNER, DR. ALEXANDER STADLER, A Chemist's Guide to Microwave Synthesis: Basics, Equioment & Application Example, Anton Paar GmbH, 2013, Austrija.
- 27. Anton Paar, Original Instruction Manual: Monowave 300: MAS 24 (Option), Anton Paar GmbH, 2013, Austrija.

- 28. CONG LIN, JIAN LI ET AL. A Crystaline AlPO4-5 Intermediate Designed Synthesis, Structure and Phase Transformation, 2017. Prieiga per: Royal Society of Chemistry. https://doi.org/10.1039/C7DT02772A
- 29. ZHAN, T., et al. Influence of Synthesis Parameters on Preparation of AlPO-18 Membranes by Single DIPEA for CO2/CH4 Separation. *Journal of Membrane Science*, Mar 01, 2020, vol. 601. pp. 117853. Available from: <u>https://dx.doi.org/10.1016/j.memsci.2020.117853</u> CrossRef. ISSN 0376-7388. DOI 10.1016/j.memsci.2020.117853.
- PAI, S.M., NEWALKAR, B.L. and CHOUDARY, N.V. Rapid Synthesis and Characterization of Aluminophosphate Molecular Sieve: EMM-8. *Materials Letters*, Mar 15, 2008, vol. 62, no. 6-7. pp. 929-931. Prieiga per: ScienceDirect. ISSN 0167-577X. DOI 10.1016/j.matlet.2007.07.028.
- 31. KUNII, K., NARAHARA, K. and YAMANAKA, S. *Template-Free Synthesis of AlPO4-H1*, -*H2*, and -H3 by Microwave Heating. 2002 ISBN 1387-1811. Prieiga per: ScienceDirect. DOI 10.1016/s1387-1811(02)00314-1.
- SAHOO, T.R. and PRELOT, B. Adsorption Processes for the Removal of Contaminants from Wastewater. *Nanomaterials for the Detection and Removal of Wastewater Pollutants*, 2020. pp. 16. Prieiga per Science Direct. DOI 10.1016/B978-0-12-818489-9.00007-4.
- 33. HU, Q. and ZHANG, Z. Application of Dubinin–Radushkevich Isotherm Model at the Solid/Solution Interface: A Theoretical Analysis. *Journal of Molecular Liquids*, Mar 01, 2019, vol. 277. pp. 646-648. Prieiga per: SceinceSirect. ISSN 0167-7322. DOI 10.1016/j.molliq.2019.01.005.
- 34. SONG, X., et al. Application of Adsorption Potential Theory in Prediction of CO2 and CH4 Adsorption on Carbon Molecular Sieves. Hindawi Limited, 2018 ISBN 0263-6174. Prieiga per: SageJournals. DOI 10.1177/0263617418802570.
- 35. ROBSON, H., LILLERUD, K.P. and PATTERNS, X. *Preface to the Second Edition*. Elsevier, 2001 DOI 10.1016/b978-044450703-7/50094-6. Prieiga per: <u>http://www.iza-structure.org/databases/</u>
- 36. WILSON, S.T. B. Synthesis of Alpo4, -Based Molecular Sieves. Elsevier, 1991 ISBN 0167-2991. DOI 10.1016/s0167-2991(08)63602-2. Prieiga per: ScienceDirect.
- 37. DARBUOTOJŲ APRŪPINIMO ASMENINĖMIS APSAUGINĖMIS PRIEMONĖMIS NUOSTATAI, patvirtinti Lietuvos Respublikos socialinės apsaugos ministro 2007 m. lapkričio 26 d. įsakymu Nr.A1-331. Prieiga per: e-seimas.lrs.lt
- 38. Carl Roth, Saugos duomenų lapas pagal Reglamentą (EB) Nr 1907/2006 (REACH), Aliuminio hidroksidas ≥ 76,5 %, Ph.Eur., USP. Prieiga per: https://www.carlroth.com/medias/SDB-3254-LT-

LT.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyMzY2ODJ8YXBwbGlj YXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oNjAvaGE5LzkwODI1NTE5MjY4M TQucGRmfDViMTU2NTkxZGMzZDlhOWRkMmU4OTJmYjgyYjQ4MWU2N2Y2NGNhZD k3ZjVjYWJhOTlhODllNWY0MmQ4MmU5YTk

- 39. Gelest, ALUMINUM ISOPROPOXIDE Safety Data Sheet AKA070. Prieiga per: https://livchemlogistics.com/wp-content/uploads/2017/03/AKA070-msds.pdf
- 40. Carl Roth, Saugos duomenų lapas pagal Reglamentą (EB) Nr 1907/2006 (REACH), Azoto rūgštis ROTIPURAN® ≥65 %, p.a., ISO. Prieiga per: https://www.carlroth.de/medias/SDB-4989-LT-LT.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wzNTE5NDh8YXBwbGlj YXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oMjEvaGU4LzkwOTk5NTM5NjMw

MzgucGRmfGNjNmVkMGYxYzk1ZjM2YTRjYzU1NmJjZGZiN2Y1ZGUyZTFlYjM0NjI2MmQ10Dc3MGZiYWNjNzY1YmVhNzc1N2E

- 41. Carl Roth, Saugos duomenų lapas pagal Reglamentą (EB) Nr 1907/2006 (REACH), N,N-Diizopropiletilaminas PEPTIPURE® ≥99,5 %, peptidų sintezei. Prieiga per: <u>https://www.carlroth.com/medias/SDB-4105-LT-</u> <u>LT.pdf?context=bWFzdGVyfHNIY3VyaXR5RGF0YXNoZWV0c3wzNjM3NTN8YXBwbGlj</u> <u>YXRpb24vcGRmfHNIY3VyaXR5RGF0YXNoZWV0cy9oMDMvaGU3LzkxMDA3NzYwMT</u> <u>M4NTQucGRmfDg4NDA0MjU2ZDM3MTliNzk10TA4NjA0YjM2YjdhOTFhZDc3YjUyYTJi</u> MjE3ZGU3NzVhMTEzODRINzM2ODkxOWQ
- 42. Carl Roth, Saugos duomenų lapas pagal Reglamentą (EB) Nr 1907/2006 (REACH), 4-(Dimetilamino)piridinas PEPTIPURE® ≥ 99 %. Prieiga per: https://www.carlroth.com/medias/SDB-6988-LT-LT.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wzNjg3NDh8YXBwbGljY XRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oZmMvaGFmLzkxMDU0NTMyNTI2 MzgucGRmfGUxNWI3MmYwODdkZWE2ZTZkY2E4MTg2NTIwZWU3ODk0MzFkN2NiM DMwNjkxNjRjZjQwYmE3YjU4NGQ2MTZkYjc
- 43. Carl Roth, Saugos duomenų lapas pagal Reglamentą (EB) Nr 1907/2006 (REACH), Druskos rūgštis 1 mol/l - 1 N standartinis tirpalas. Prieiga per: https://www.carlroth.com/medias/SDB-K025-LT-

LT.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wzMTI0MDd8YXBwbGlj YXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oZDIvaGY3LzkwMzkyNjE0NjY2N TQucGRmfGQ1MTkxYjAxODA2MTFkMWNlMDdjMGM2NTlkYzc2ZGQzYzVmNjg2MTB jMzdhZGYxYTg0MzAxY2U2Zjk4N2QxOTE

44. Carl Roth, Saugos duomenų lapas pagal Reglamentą (EB) Nr 1907/2006 (REACH), orto-Fosforo rūgštis 0,1 mol/l - 0,3 N standartinis tirpalas. Prieiga per: https://www.carlroth.com/medias/SDB-8089-LT-

LT.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wzMTI2MjR8YXBwbGljY XRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oODYvaGZmLzkwMzg3NTcyOTgyM DYucGRmfGEzMDI1MTM4ZWM5NzgyMmU3YWNmODY4ZjE2ODA0YzM1NmM4NzY0 Mzc2YjMyNmI1NTYwN2VjNDI0MWRjMmIxZTQ

- 45. Carl Roth, Saugos duomenų lapas pagal Reglamentą (EB) Nr 1907/2006 (REACH), Trietilaminas (TEA) ≥99,5 %, sintezei. Prieiga per: https://www.carlroth.com/medias/SDB-X875-LT-LT.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wzNTY3MjV8YXBwbGlj YXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oYjkvaDI0LzkwODg4MDg2MTU5N jYucGRmfDVmNjJiMWI4YWQ4NzBlMGJiMGJkZWFlNGQ0YTk4MGU40DZjMDkwMTNl OWM3ZTk4ODllODdhMTg0MDVhZWY0NmE
- 46. Carl Roth, Saugos duomenų lapas pagal Reglamentą (EB) Nr 1907/2006 (REACH), Vario (II) nitrato trihidratas ≥98 %, papildomas grynasis. Prieiga per: https://www.carlroth.com/medias/SDB-0255-LT-LT.pdf?context=bWFzdGVyfHNIY3VyaXR5RGF0YXNoZWV0c3wyODk5MzJ8YXBwbGljY XRpb24vcGRmfHNIY3VyaXR5RGF0YXNoZWV0cy9oNzYvaGJjLzkwMzgxOTk5NDcyOT QucGRmfDI5YjRkNjRIMDc4ZGUxZjcwN2NiN2QxYjQwZGEwMWI4MWIyYzgwMjllYjI5 NWQwNzVkOWQ4ZGI5YjhmMzhhN2M

47. Carl Roth, Saugos duomenų lapas pagal Reglamentą (EB) Nr 1907/2006 (REACH), Acto rūgštiesetiloesteris>99,5%, sintezei.https://www.carlroth.com/downloads/sdb/lt/7/SDB_7338_LT_LT.pdf

Priedai

1 priedas. Fizikinių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai, identifikavimas

Tipinių veiksnių, galinčių kelti pavojų profesinei saugai ir sveikatai, sąrašas	Veiksnio pasireiškimo charakteristikos, atsižvelgiant į nustatytą poveikį ar pavojų		Ar buvo nustatytas poveikis ar pavojus		Ar būtinos prevencinės priemonės	
		Ne	Taip	Ne	Taip	
Darbo vietos šiluminė aplinka (patalpų mikroklimatas)	Yra įrengti kondicionieriai ir šildymo sistemos; tenkina 69 higienos normą.	Ne		Ne		
Darbo vietos apšvietimas	Yra atvirų langų bei dirbtinio apšvietimo mišinys, kuris sąlyginai tenkinamas. Remiantis teisės aktu, darbas priskiriamas III regos darbų kategorijai, kuris tinkamas atlikti matavimų laboratorijos darbus	Ne		Ne		
Triukšmas	Bendra kasdieninė laboratorijų aplinka nepasiekia žemutinės ekspozicijos vertės (L_{EX} , 8h=80 dB (A) ir atitinkamai p _{peak} =112 Pa (135 dB (C), kai pamatinis slėgis 20µPa). Yra atvejų, kai pasiekiama 83 dB triukšmas dėl malimo įrenginio, tačiau trunka ilgiausiai dvi minutes, naudojamas nedažnai.		Taip		Taip (AAP ausinės, ausų kištukai)	
Vibracija, darbas su vibruojančiais įrankiais, vibraciją keliančios mašinos	Laboratorinis darbas nepasižymi nei rankas veikiančia vibracija, nei visą kūną veikiančia vibracija. Poveikio/pavojaus nėra.	Ne				
Jonizuojantis spinduliavimas	Poveikio/pavojaus nėra	Ne				
Infragarsas	Poveikio/pavojaus nėra	Ne				
Ultragarsas	Poveikio/pavojaus nėra	Ne				
Elektrostatinis laukas	Poveikio/pavojaus nėra	Ne				
Elektromagnetinis laukas	<i>Monowave 300</i> mikrobangų reaktoriaus magnetrono skleidžiamų mikrobangų dažnis siekia 2455 MHz, tačiau pats įrenginys yra pakankamai apšarvuotas ir poveikio žmogui tikimybė maža, atsižvelgiant, į apsaugines įrenginio gedimų funkcijas ir bei trumpo žmogaus ir įrenginio sąveikavimo laiko (iki 3 min kas valandą). Be to, šis reaktoriaus bangų dažnis yra toks pat kaip buitinėse mikrobangų krosnelėse.		Taip		Taip (sudaryti techninės apžiūros grafiką)	
Infraraudonasis spinduliavimas	Poveikio/pavojaus nėra	Ne				
Ultravioletinis spinduliavimas	Poveikio/pavojaus nėra	Ne				

2 priedas. Fizinių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai, identifikavimas

Tipinių veiksnių, galinčių kelti pavojų profesinei saugai ir sveikatai, sąrašas	Veiksnio pasireiškimo charakteristikos, atsižvelgiant į nustatytą poveikį ar pavojų	Ar buvo nustaty poveiki pavojus	Ar buvo nustatytas poveikis ar pavojus		itinos prevencinės nonės
		Ne	Taip	Ne	Taip
Besisukančios ar judamos mašinų dalys	Laboratorijoje naudojama mašina – mikrobangų reaktorius <i>Monowave 300</i> . Šis įrenginys sukonstruotas taip, jog norima reakcija neprasideda, jei nėra įrenginio automatiškai pilnai uždengiamas reaktoriaus liukas. Toks liuko uždarymo sumažina tikimybę įspausti ranką ar pirštus. Pats įrenginio valdymas vyksta liečiamuoju ekranu, todėl sumažinamas sudėtingų judesių skaičius norint valdyti mašiną. Pats reaktoriaus liukas yra tinkamai uždengtas, apsaugos tinkamos.		Taip		Taip (sudaryti techninės apžiūros grafiką)
Pjovimo įrankiai (rankiniai ir mechaniniai)	Eksperimentuose nebuvo priežasties naudoti pjovimo įrankius.	Ne		Ne	
Transportavimo įranga, kranai, liftai ir kt.	Eksperimentuose nebuvo priežasties naudoti transportavimo ar panašių įrangų.	Ne		Ne	
Transporto ir priėjimo keliai, pastoliai, kopėčios ir kt.	Priėjimo keliai patalpose tenkinantys: neužstatyti, matomi.	Ne		Ne	
Karštos medžiagos ir/ar paviršiai	Mėginiai paimami iš <i>Monowave 300</i> reaktoriaus siekia maksimaliai iki 50 °C temperatūros. Jei kontaktavimo laikas su oda pakankamai ilgas (virš 1 min.) gali sukelti 2 laipsnio nudegimus. Specialus reakcijos mėgintuvėlis turi plastmasinį dangtelį, kuris greitai atvėsta ir gali būti saugiai liečiamas.		Taip		Taip (AAP karščiui atsparios pirštinės)
Medžiagų išmetimas, ruošinių išmetimas	Darbo metu galintys susidaryti medžiagų garai, dujos nukreipiami traukos spinta. Taip pat naudojamos AAP (apsauginiai akiniai, nitrilinės pirštinės). Atskirai kaupiamos medžiagų atliekos, kurios atiduodamos atitinkamoms pavojingų medžiagų surinkimo įmonėms.	Ne		Ne	
Slėginiai indai	Apsauginė armatūra atitinka reikalavimus, indai pažymėti technologinėmis kortelėmis. Naudojami kompresoriai yra pakankamo standumo atlaikyti 6 bar slėgį.	Ne		Ne	
Elektros įtampa	Prietaisai tinkamai įžeminti bei patalpa su atskira saugiklių spinta	Ne		Ne	
Darbo vietos priešgaisrinis parengimas	Pažymėti evakuaciniai išėjimai, yra iškabinti evakuacijos planai. Yra gesintuvai ir automatinės gesinimo priemonės su galiojančiomis patikromis.	Ne		Ne	

3 priedas. Cheminių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai, identifikavimas

	V /. 'less', and 's'''''''''''''''''''''''''''''''''''	Ar	buvo	Ar	būtinos	
Tipinių veiksnių, galinčių kelti pavojų	veikšnio pasireiškimo charakteristikos,	nust	atytas	prevencinės		
profesinei saugai ir sveikatai, sąrašas	navoju		poveikis ai		priemonės	
	pavojų	No	Toin	No	Toin	
Naudojamos bei procese išskiriamos kenksmingos medžiagos, kurių trumpalaikis poveikis labai kenksmingas, sukelia ūmius arba lėtinius profesinius susirgimus. TPRD – trumpalaikio poveikio ribinė vertė: ribinė vertė, kurios nederėtų viršyti, ir kuri yra susijusi su 15 minučių trukme (jei nenurodyta kitaip).	 Azoto rūgšties TPRD – 2,6 mg/m³ arba 1 ppm. Gali smarkiai pažeisti akis, rizika apakti, kosulys, dusulys, plaučių edema. N,N-diizopropiletilamino TPRD – 5 mg/m³. Medžiaga gali prasiskverbti pro nepažeistą odą (lėtinis-sisteminis poveikis), įkvėpus gali pasireikšti ūmus- vietinis, ūmus-sisteminis, lėtinis-vietinis, lėtinis-sisteminis poveikis. Druskos rūgšties TPRD – 15 mg/m³ arba 10 ppm. Įkvėpus ūmus-vietiniai poveikia. Ortofosforo rūgšties TPRD – 2 mg/m³. Klasifikuojamas kaip kvėpavimo takus arba odą jautrinantis Etilo acetato TPRD – 1468 mg/m³ arba 400 ppm. Žmogui įkvėpus lėtinis bei ūmus poveikiai, per odą – lėtinis. Trietilamino TPRD – 12,6 mg/m³ arba 3 ppm. Įkvėpus – lėtinis bei ūmus 	Ne		Ne		
Naudojamos bei procese išskiriamos kenksmingos medžiagos, kurių ilgalaikis poveikis sukelia ūmius arba lėtinius profesinius susirgimus IPRD – Dinaminis svertinis vidurkis (ilgalaikio poveikio ribinė vertė): 8 valandų matuotas ar apskaičiuotas dinaminis svertinis vidurkis (jei nenurodyta kitaip)	 poveikiai. Medžiaga gali prasiskverbti pro nepažeistą odą. 1. Aliuminio hidroksido IPRD – 6 mg/m³. Pasižymi fibrogeniniu poveikiu, gali pažeisti kvėpavimo takus. 2. N, N-diizopropiletilamino IPRD – 20 mg/m³ arba 5 ppm. Medžiaga gali prasiskverbti pro nepažeistą odą (lėtinis- sisteminis poveikis) 3.4-(dimetilamino)piridino dulkės IPRD – 10 mg/m³ įkvepiamajai frakcijai, – 5 mg/m³ alveolinei frakcijai. Įkvėpus lėtinis-sisteminiai poveikiai, per odą lėtinis-sisteminiai poveikiai arba mirtinas. 4. Druskos rūgšties IPRD – 8 mg/m³ arba 5 ppm. Įkvėpus lėtinis-vietiniai poveikiai. 5. Ortofosforo rūgšties IPRD – 1 mg/m³. Klasifikuojamas kaip kvėpavimo takus arba odą jautrinantis. 6. Etilo acetato IPRD – 734 mg/m³ arba 200 ppm. Žmogui įkvėpus lėtinis ir ūmus poveikiai, per odą – lėtinis. 7. Trietilamino IPRD – 8,4 mg/m³ arba 2 ppm. Įkvėpus – lėtinis bei ūmus poveikiai. Medžiaga gali prasiskverbti pro nepažeistą odą. 8. Vario (II) nitrato trihidrato IPRD – 10 mg/m³ įkvepiamajai frakcijai, 5 mg/m³ alveolinei frakcijai. Įkvėpus pasižymi lėtiniu-sisteminiu bei lėtiniu-vietiniu poveikiu. Dirgina odą, sukelia smarkų akių dirginimą. 	Ne		Ne		

Cheminės medžiagos, sukeliančios sprogimo,	1. Azoto rūgštis stipriai reaguoja su			
gaisro pavoiu	alkoholiais, aminai, metalo milteliais,			
8 F <i>J</i> - <i>I</i>	gali sudaryti sprogumo riziką			
	2. Aliuminio izopropoksidas skaitomas			
	kaip degus degi medžiagą, negalima			
	atsikratyti i vandentieki, gali sudaryti			
	sprogų mišinį.			
	3.N.N-diizopropiletilamino pasižymi			
	labai degiais skysčiu ir garais. Garai	NI.	NT.	
	jungtyje su oru gali sudaryti	INE	Ne	
	sprogstamaji mišini. Savaiminio			
	užsidegimo temperatūra 260,4 °C prie			
	1 atm.			
	4. Vario (II) nitrato trihidratas reaktyvi			
	medžiaga, oksidacinė savybė.			
	Reaguojant su acetilenu, amoniaku,			
	acetanhidridu, metalo milteliais,			
	reduktoriais susidaro sprogūs mišiniai			
Dulkės	1.Aliuminio hidroksidas naudojimui			
	reikalinga kvėpavimo takų apsauga			
	(Kietųjų dalelių filtro įtaisas (EN 143,			
	P1 filtro tipas)) dėl dulkių susidarymo.			
	2.4-(dimetilamino)piridino dulkės yra ir			
	įkvepiamosios frakcijos bei alveolinės	Ne	Ne	
	frakcijos.			
	3. Vario (II) nitrato trihidrato dulkės yra			
	ir įkvepiamosios frakcijos bei			
	alveolinės frakcijos. (Kietųjų dalelių			
	filtro įtaisas (EN 143, P2 filtro tipas))			
Kelių vienos krypties cheminių medžiagų	Poveikio/pavojaus nėra	Ne	No	
poveikis		INC	INC	

4 priedas. Biologinių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai, identifikavimas

Tipinių veiksnių, galinčių kelti pavojų profesinei saugai ir sveikatai, sąrašas	Veiksnio pasireiškimo charakteristikos, atsižvelgiant į nustatytą poveikį ar pavojų		Ar buvo nustatytas poveikis ar pavojus		Ar būtinos prevencinės priemonės	
			Taip	Ne	Taip	
Mikroorganizmai	Poveikio/pavojaus nėra	Ne		Ne		
Baltyminiai preparatai	Poveikio/pavojaus nėra	Ne		Ne		
Natūralūs organizmo komponentai (amino rūgštys, vitaminai)	Poveikio/pavojaus nėra	Ne		Ne		

5 priedas. Ergonominių ir psichosocialinių veiksnių sukeltų pavojų, galinčių pakenkti sveikatai, identifikavimas

Tipinių veiksnių, galinčių kelti pavojų profesinei saugai ir sveikatai, sąrašas	Veiksnio pasireiškimo charakteristikos, atsižvelgiant į nustatytą poveikį ar pavojų		Ar buvo nustatytas poveikis ar pavojus		Ar būtinos prevencinės priemonės	
		Ne	Taip	Ne	Taip	
Darbo sunkumas (Dinaminis darbas)	Darbas nesusijęs su keliamais kroviniais. Poveikio/pavojaus nėra.	Ne		Ne		
Darbo sunkumas (Statinis darbas)	Darbas nesusijęs su keliamais kroviniais. Poveikio/pavojaus nėra.	Ne		Ne		
Valdymo įrangos išdėstymas nuolatinėje darbo vietoje	Įrangos išdėstymas tinkamas, viskas pasiekiamumo zonose. Poveikio/pavojau nėra	Ne		Ne		
Pastangų dydis, judinant valdymo įrangą	Pastangų dydis nepamatuojamas, valdymo įranga paprasto naudojimo. Poveikio/pavojaus nėra.	Ne		Ne		
Darbo poza	Darbas įvairus: prie kompiuterio, sėdint, stovint. Pakankama įvairovė, kad nesusidarytų pavojus.	Ne		Ne		
Judėjimo atstumas darbo aplinkoje	Judėjimas tarp laboratorijų pakankamai svarus tik tiriamojo darbo pradžioje, kur maksimaliai buvo akumuliuoti 7 km, tačiau į šį skaičių įeina pertraukos. Poveikio/pavojaus nėra.	Ne		Ne		
Darbo įtampa (dėmesys)	Adsorbcijos proceso tyrimas reikalauja dėmesio stebint 3 skirtingus laikmačius, siekiant pilnai išnaudojant laiką. Koncentravimo trukmė – 3 val., informacinių signalų skaičius per val. – 9. Poveikio/pavojaus nėra	Ne		Ne		
Darbo įtampa (Regos ir klausos analizatoriai)	Poveikio/pavojaus nėra	Ne		Ne		
Darbo emocinė įtampa	Poveikio/pavojaus nėra	Ne		Ne		
Darbo monotonija	Elementų skaičius besikartojančioje operacijoje – virš 4, Besikartojančios operacijos atlikimo trukmė virš 100 s, darbo proceso pasyvaus stebėjimo trukmė iki 95%.	Ne		Ne		
	Poveikio/pavojaus nera					
Darbas izoliuotoje vietoje (kai darbuotojas dirba vienas arba izoliuotoje patalpoje)	Izoliuotų patalpų nera, patalpose dažna darbuotojų bei studentų rotacija.	Ne		Ne		
Jaunų darbininkų, nėščių moterų, neįgalių asmenų darbas	Darbo saugos ir laboratorijos taisyklės suteikiamos ir perduodamos laboratorijų atsakingų asmenų.	Ne		Ne		
Darbo patalpų dydis, dizainas	Darbo vieta patalpoje tinkamai suprojektuota su visais reikalingai preparatais bei priemonėmis. Vietos pakankamai.	Ne		Ne		