

Kauno technologijos universitetas

Elektros ir elektronikos fakultetas

Saulės elektrinių efektyvumo didinimo tyrimas

Baigiamasis magistro projektas

Egidijus Tavoras Projekto autorius

Prof. Robertas Lukočius

Vadovas

Kaunas, 2023

Kauno technologijos universitetas

Elektros ir elektronikos fakultetas

Saulės elektrinių efektyvumo didinimo tyrimas

Baigiamasis magistro projektas Elektros energetikos inžinerija (6211EX010)

> **Egidijus Tavoras** Projekto autorius

Prof. Robertas Lukočius Vadovas

Lekt. Miglė Kriuglaitė Recenzentė

Kaunas, 2023

Kauno technologijos universitetas

Elektros ir elektronikos fakultetas

Egidijus Tavoras

Saulės elektrinių efektyvumo didinimo tyrimas

Akademinio sąžiningumo deklaracija

Patvirtinu, kad:

1. baigiamąjį projektą parengiau savarankiškai ir sąžiningai, nepažeisdama(s) kitų asmenų autoriaus ar kitų teisių, laikydamasi(s) Lietuvos Respublikos autorių teisių ir gretutinių teisių įstatymo nuostatų, Kauno technologijos universiteto (toliau – Universitetas) intelektinės nuosavybės valdymo ir perdavimo nuostatų bei Universiteto akademinės etikos kodekse nustatytų etikos reikalavimų;

2. baigiamajame projekte visi pateikti duomenys ir tyrimų rezultatai yra teisingi ir gauti teisėtai, nei viena šio projekto dalis nėra plagijuota nuo jokių spausdintinių ar elektroninių šaltinių, visos baigiamojo projekto tekste pateiktos citatos ir nuorodos yra nurodytos literatūros sąraše;

įstatymų nenumatytų piniginių sumų už baigiamąjį projektą ar jo dalis niekam nesu mokėjęs (-usi);

4. suprantu, kad išaiškėjus nesąžiningumo ar kitų asmenų teisių pažeidimo faktui, man bus taikomos akademinės nuobaudos pagal Universitete galiojančią tvarką ir būsiu pašalinta(s) iš Universiteto, o baigiamasis projektas gali būti pateiktas Akademinės etikos ir procedūrų kontrolieriaus tarnybai nagrinėjant galimą akademinės etikos pažeidimą.

Egidijus Tavoras

Patvirtinta elektroniniu būdu

Tavoras, Egidijus. Saulės elektrinių efektyvumo didinimo tyrimas. Magistro baigiamasis projektas / vadovas prof. dr. Robertas Lukočius; Kauno technologijos universitetas, Elektros ir elektronikos fakultetas.

Studijų kryptis ir sritis (studijų krypčių grupė): studijų kryptis – elektros inžinerija, studijų krypčių grupė – inžinerijos mokslai.

Reikšminiai žodžiai: elektra, saulės elektrinė, efektyvumas.

Kaunas, 2023. 61 p.

Santrauka

Baigiamojo magistro darbo metu atliktas saulės elektrinių efektyvumo tyrimas. Tyrimo objektas – hipotetinė 994,5 kW saulės elektrinė, projektuojama Kauno rajone.

Teorinėje dalyje apžvelgta fotovoltinė sistema ir jos sandara, kiekvieno sistemos įrenginio paskirtis bei pagrindinės sąvybės.

Tyrimo metu atliktos simuliacijos keturioms sistemoms – monokristalinių modulių be ir su optimizatoriais bei dvipusių modulių be ir su optimizatoriais. Išanalizuotas apšvietos pokyčio į modulių pasvirimo kampą pasikeitimas, optinių nuostolių įtaka bei apšvietos į paviršių padidėjimas dvipusiams moduliams. Įvertinti efektyviausi parametrai (kampas, azimutas, atstumas tarp modulių eilių) visoms keturioms sitemoms, taip pat nustatytos koreliacijos tarp optimizuotų ir neoptimizuotų sistemų. Išanalizuota atstumo tarp modulių eilių įtaka generacijai skirtingoms sistemoms , taip pat keitiklių ir modulių suminių galių santykio koreliacija generacijai. Gauti duomenys susiteminti bei parengtas įrankis, gebantis iš surinktų duomenų preliminariai nustatyti sistemų atsiperkamumą bei ekonomiškai efektyviausią sistemą.

Tavoras, Egidijus. Investigation of Increasing Efficiency of Solar Power Plants. Master's Final Degree Project / supervisor prof. dr. Robertas Lukočius; Faculty of Electrical and Electronics Engineering, Kaunas University of Technology.

Study field and area (study field group): study field - electrical engineering, study field area - engineering science.

Keywords: electricity, solar power plant, efficiency.

Kaunas, 2023. 61 p.

Summary

During the study, simulations were performed for four systems - monocrystalline panels both without and with optimizers, double-sided panels both without and with optimizers. The change of irradiance to the tilt angle of the panels, the influence of optical losses and the increase of irradiance to the surface for two-sided modules were analyzed. The most effective parameters (angle, azimuth, distance between rows of modules) were evaluated for all four sites, and correlations between optimized and non-optimized systems were also determined. The influence of the distance between rows of panels on the generation for all four systems were analyzed, as well as the correlation of the ratio of the total power of the inverters and panels to the generation. The obtained data were summarized and a tool was prepared, capable of preliminarily determining the profitability of the systems and the most economically efficient system from the collected data.

Turinys

Lent	Lentelių sąrašas					
Pave	ikslų sąrašas	9				
1. T	'eorinė dalis	14				
1.1.	Fotovoltinė sistema	14				
1.2.	Fotovoltinis efektas	14				
1.3.	Fotovoltiniai moduliai	15				
1.3.1	. Monokristaliniai moduliai	15				
1.3.2	. Polikristaliniai moduliai	15				
1.3.3	. Amorfinio silicio moduliai	16				
1.3.4	. Dvipusiai fotovoltiniai moduliai	17				
1.3.5	. Perovskito fotovoltiniai moduliai	17				
1.4.	Tinklo keitikliai	18				
1.4.1	. Paprastas tinklo keitiklis	19				
1.4.2	. Mikro keitikliai	19				
1.4.3	. Centriniai keitikliai	19				
1.4.4	. Su transformatoriais kombinuojami keitikliai	20				
1.5.	Optimizatoriai	20				
1.5.1	. Sistemos veikimas esant šešėliui, kai moduliai neturi apėjimo diodų	20				
1.5.2	. Sistemos veikimas esant šešėliui, kai moduliai turi apėjimo diodus	22				
1.6.	Konstrukcijos	24				
2. T	'yrimo tikslas ir planas	25				
3. T	`yrimas	26				
3.1.	Kampo, azimuto ir atstumo tarp eilių koreliacija	26				
3.1.1	. Simuliacijoje naudojamos prielaidos	26				
3.1.2	. Gauti rezultatai. Apšvieta į modulių pasvirimo kampą	26				
3.1.3	. Gauti rezultatai. Apšvieta į modulių pasvirimo kampą įvertinus optinius nuostolius	29				
3.1.4	. Gauti rezultatai. Elektros energija, atiduodama į tinklą	32				
3.2.	Atstumo tarp modulių eilių įtakos generacijai analizė	39				
3.3.	Keitiklių perkrovos įtaka saulės elektrinių generacijai	43				
3.3.1	. Monokristaliniai moduliai. Vakarai	43				
3.3.2	. Monokristaliniai moduliai. Pietvakariai	44				
3.3.3	. Monokristaliniai moduliai. Pietūs	45				
3.3.4	. Monokristaliniai moduliai. Pietryčiai	46				
3.3.5	. Monokristaliniai moduliai. Rytai	47				
3.4.	Ekonominė analizė	48				
3.4.1	. Parengtas įrankis ir jo veikimo analizė	48				
3.4.2	. Įrankio validacija. Monokristaliniai moduliai	50				
3.4.3	. Įrankio validacija. Monokristaliniai moduliai su optimizatoriais	52				
3.4.4	. Įrankio validacija. Dvipusiai moduliai	53				
3.4.5	. Įrankio validacija. Dvipusiai moduliai su optimizatoriais	55				
Išvac	los	57				
Liter	atūros sąrašas	58				

Priedai	61
1 priedas. Įrankio patikrinimo generacijos ataskaita "MONO1";	61
2 priedas. Įrankio patikrinimo generacijos ataskaita "MONO2";	61
3 priedas. Įrankio patikrinimo generacijos ataskaita "MONO+OPTI1";	61
4 priedas. Įrankio patikrinimo generacijos ataskaita "MONO+OPTI2";	61
5 priedas. Įrankio patikrinimo generacijos ataskaita "BIF1";	61
6 priedas. Įrankio patikrinimo generacijos ataskaita "BIF2";	61
7 priedas. Įrankio patikrinimo generacijos ataskaita "BIF+OPTI1";	61
8 priedas. Įrankio patikrinimo generacijos ataskaita "BIF+OPTI2"	61

Lentelių sąrašas

1.1 lentelė. Stokholmo FV elektrinės generacijos tyrimas
3.1 lentelė. Simuliacijoje naudojamos prielaidos
3.2 lentelė. "E_Grid" palyginimas tarp skirtingų tyrinėjamų sistemų, kai azimutas lygus 0°
3.3 lentelė. "E_Grid" palyginimas tarp skirtingų tyrinėjamų sistemų, kai azimutas lygus -45° 34
3.4 lentelė. "E_Grid" palyginimas tarp skirtingų tyrinėjamų sistemų, kai azimutas lygus -90° 35
3.5 lentelė. "E_Grid" palyginimas tarp skirtingų tyrinėjamų sistemų, kai azimutas lygus 45° 37
3.6 lentelė. "E_Grid" palyginimas tarp skirtingų tyrinėjamų sistemų, kai azimutas lygus 90° 38
3.7 lentelė. Vidutinių "E_Grid" palyginimas tarp skirtingų tyrinėjamų sistemų
3.8 lentelė. Maksimalios skirtingų sistemų generacijos
3.9 lentelė. Simuliacijoje naudojamos prielaidos
3.10 lentelė. Vidutinės monokristalinių modulių sistemų generacijos vakarų krypčiai 44
3.11 lentelė. Vidutinės monokristalinių modulių sistemų generacijos pietvakarių krypčiai 45
3.12 lentelė. Vidutinės monokristalinių modulių sistemų generacijos pietų krypčiai 46
3.13 lentelė. Vidutinės monokristalinių modulių sistemų generacijos pietryčių krypčiai 47
3.14 lentelė. Vidutinės monokristalinių modulių sistemų generacijos rytų krypčiai
3.15 lentelė. Skirtingų galių FV sistemų eksploatacijos kaštai per 1 kW 50
3.16 lentelė. Monokristalinių sistemų įrankio ir "PVsyst" simuliacijų generacijų palyginimas 52
3.17 lentelė. Monokristalinių sistemų su optimizatoriais įrankio ir "PVsyst" simuliacijų generacijų
palyginimas
3.18 lentelė. Dvipusių sistemų įrankio ir "PVsyst" simuliacijų generacijų palyginimas 55
3.19 lentelė. Dvipusių sistemų įrankio ir "PVsyst" simuliacijų generacijų palyginimas 56

Paveikslų sąrašas

1.1 pav. Principinė blokinė 10 kW galios "On Grid" elektrinės schema	. 14
1.2. pav. Fotovoltinio efekto schema	. 15
1.3 pav. Monokristalinių ir polikristalinių modulių vizualinis palyginimas	. 16
1.4 pav. Amorfinis silicio elementas	. 16
1.5 pav. Dvipusiai FV moduliai, sumontuoti su sekimo sistema	. 17
1.6 pav. Perovskito FV modulio struktūra	. 18
1.7 pav. Paprasto 3 fazių tinklo keitiklio schema	. 18
1.8 pav. Keitiklių jungimo pavyzdžiai	. 20
1.9 pav. Sistemos veikimo palyginimas su optimizatoriais ir be jų (sistema be apėjimo diodų)	. 21
1.10 pav. Sistemos veikimo palyginimas su optimizatoriais ir be jų (sistema su apėjimo diodais)	. 22
1.11 pav. Pavyzdys, kaip sistema su apėjimo diodais reaguoja į šešėlį	. 22
1.12 pav. Modulio, šešėliuojamo išilgai apačios, pavyzdys	. 23
1.13 pav. Antžeminių sistemų tipai	. 24
3.1 pav. "GlobInc" vertės, kai azimutas lygus 0° (pietūs)	. 27
3.2 pav. "GlobInc" vertės, kai azimutas lygus -45° (pietvakariai)	. 27
3.3 pav. "GlobInc" vertės, kai azimutas lygus -90° (vakarai)	. 27
3.4 pav. "GlobInc" vertės, kai azimutas lygus 45° (pietryčiai)	. 28
3.5 pav. "GlobInc" vertės, kai azimutas lygus 90° (rytai)	. 28
3.6 pav. "GlobInc" verčių priklausomybės nuo azimuto ir posvyrio kampo	. 29
3.7 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas lyg	gus
0° (pietūs)	. 30
3.8 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas lyg	gus
-45° (pietvakariai)	. 30
3.9 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas lyg	gus
-90° (vakarai)	31
3.10 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas	
lygus 45° (pietryčiai)	31
3.11 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas	
lygus 90° (rytai)	. 32
3.12 pav. "E_Grid" vertės monokristaliniams moduliams be optimizatorių (kairėje) ir su	
optimizatoriais (dešinėje), kai azimutas lygus 0° (pietūs)	. 33
3.13 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais	
(dešinėje), kai azimutas lygus 0° (pietūs)	. 33
3.14 pav. "E_Grid" vertės monokristaliniams moduliams be optimizatorių (kairėje) ir su	
optimizatoriais (dešinėje), kai azimutas lygus -45° (pietvakariai)	. 34
3.15 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais	
(dešinėje), kai azimutas lygus -45° (pietvakariai)	. 34
3.16 pav. "E_Grid" vertės monokristaliniams moduliams be optimizatorių (kairėje) ir su	<u> </u>
optimizatoriais (dešinėje), kai azimutas lygus -90° (vakarai)	35
3.17 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais	a -
(dešinėje), kai azimutas lygus -90° (vakarai)	35
3.18 pav. "E_Grid" vertes monokristaliniams moduliams be optimizatorių (kairėje) ir su	
optimizatoriais (desinėje), kai azimutas lygus 45° (pietryčiai)	36

3.19 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais
(desineje), kai azimutas lygus 45° (pietryciai)
3.20 pav. "E_Grid" vertės monokristaliniams moduliams be optimizatorių (kairėje) ir su
optimizatoriais (dešinėje), kai azimutas lygus 90° (rytai)
3.21 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais
(dešinėje), kai azimutas lygus 90° (rytai)
3.22 pav. Generacijos nuokrypis nuo maksimalios sistemos generacijos mažinant atstumą tarp
modulių eilių, kai azimutas yra 0°
3.23 pav. Generacijos nuokrypis nuo maksimalios sistemos generacijos mažinant atstumą tarp
modulių eilių, kai azimutas yra -45°
3.24 pav. Generacijos nuokrypis nuo maksimalios sistemos generacijos mažinant atstumą tarp
modulių eilių, kai azimutas yra -90°
3.25 pav. Generacijos nuokrypis nuo maksimalios sistemos generacijos mažinant atstumą tarp
modulių eilių, kai azimutas yra 45°
3.26 pav. Generacijos nuokrypis nuo maksimalios sistemos generacijos mažinant atstumą tarp
modulių eilių, kai azimutas yra 90°
3.27 pav. Sukurto įrankio pagrindinio lango vaizdas
3.28 pav. Pirmosios monokristalinių modulių sistemoms validuoti naudojamos elektrinės duomenys
bei rezultatai
3.29 pav. Antrosios monokristaliniu modulių sistemoms validuoti naudojamos elektrinės duomenys
bei rezultataj
3.30 pav. Pirmosios monokristalinių modulių sistemoms su optimizatoriais validuoti naudojamos
elektrinės duomenys bei rezultatai
3.31 pay. Antrosios monokristalinių modulių sistemoms su optimizatoriais validuoti naudojamos
elektrinės duomenys bei rezultatai
3 32 pay Pirmosios dvinusių modulių sistemoms validuoti naudojamos elektrinės duomenys bei
rezultatai
3 33 pay Antrosios dvinusių modulių sistemoms validuoti naudojamos elektrinės duomenys bei
s.ss pav. Antrosios dvipusių modurų sistemonis vanduoti naudojamos elektrinės duomenys bei rozultotoj
2.24 may Dimensional dynamic modulity sistemana an antimizatoriais validuati neudoismos alabtrinės
duomenus hei regultetei
2.25 new Antropics definition adults sistemana superior straight size of the size o
5.55 pav. Antrosios avipusių modulių sistemoms su optimizatoriais validuoti naudojamos elektrines
duomenys bei rezultatai

Santrumpų ir terminų sąrašas

Santrumpos:

- FV fotovoltinis;
- DC nuolatinė srovė;
- AC kintama srovė;
- STC standartinės testavimo sąlygos (angl. standard test conditions);
- LID šviesos sukelta degradacija (angl. light induced degradation);
- "GlobInc" apšvieta į modulių pasvirimo kampą (angl. incident global radiation);
- "GlobEff" apšvieta, įvertinus optinius nuostolius (angl."Effective" global, after all optical losses);
- "E_Grid" energija, atiduota į tinklą (angl. Energy injected into the grid);

Įvadas

Istoriniais duomenimis, visame pasaulyje 1990 metais buvo suvartota apie 10000 TWh elektros energijos, kai 2020 metais suvartojimas jau siekė daugiau nei 21000 TWh [1]. 2050 metais, remiantis Europos sąjungos žaliojo kurso direktyvomis turėtumėm gaminti 100 % elektros energijos iš atsinaujinančių šaltinių Europoje, tuometinis prognozuojamas elektros energijos poreikis pasaulyje sieks apie 42000 TWh [2].

Norint patenkinti šį poreikį, būtina sąlyga yra maksimaliai neutralizuoti šiltnamio efektą sukeliančių dujų (toliau – ŠESD) šaltinius. Šiuo metu elektros energijos gavybos pramonė yra atsakinga už 30% visų į aplinką išmetamų ŠESD [3].

Šiam tikslui pasiekti sparčiai populiarėja atsinaujinančios energijos šaltiniai. 2020 metais 29 % visos pagamintos elektros energijos pasaulyje sudarė žaliųjų technologijų gaminama energija, tarp kurių – 3,3 % sudarė saulės energetika [4, 5].

Dar nuo pirmųjų sukurtų fotovoltinių elementų 1953 metais Belo laboratorijoje, kurių efektyvumas siekė tik 6 %, mokslininkai šioje technologijoje įžvelgė perspektyvą. Šiuo metu maksimalus išgautas fotovoltinio (toliau – FV) elemento efektyvumas siekia 44,5 %, nors plačiai praktikoje naudojamų panelių maksimalus efektyvumas siekia 22,8 % [6].

Tačiau FV modulio efektyvumas dar nėra viskas. Svarbus yra visos FV sistemos, susidedančios iš daugybės elementų, efektyvumas.

Darbo aktualumą lemia tai, jog pastaruoju metu FV sistemų yra diegiama vis daugiau. Norint pasiekti maksimalią naudą, reikalingas kompleksiškas požiūris į problemą bei kuo didesnio kiekio aspektų, tokių kaip įrangos efektyvumo didinimas ar atsiperkamumo laikotarpis, vertinimas. Keliant sistemų efektyvumą, galima sutaupyti ne tik ekonomiškai, tačiau ir socialiai, pavyzdžiui, mažindami žemės plotą, reikalingą išgauti norimą elektros energijos kiekį.

Šio baigiamojo **magistrinio darbo tikslas** – ištirti modernias FV elektrinių efektyvumo gerinimo priemones ir įvertinti jų poveikį ekonomiškumui.

Darbo uždaviniai:

- 1. Apžvelgti saulės elektrinių darbo efektyvumą lemiančius faktorius;
- 2. Išanalizuoti technologijas ir priemones, leidžiančias padidinti saulės elektrinių darbo efektyvumą;
- 3. Atlikti simuliacijas "PVsyst" programinės įrangos paketu, įvertinant apšvietą į modulių pasvirimo kampą;
- 4. Atlikti simuliacijas "PVsyst" programinės įrangos paketu, įvertinant apšvietą į modulių pasvirimo kampą įvertinus visus optinius nuostolius;
- 5. Atlikti simuliacijas "PVsyst" programinės įrangos paketu, įvertinant galutinę, į tinklą atiduodamą elektros kiekį po visų nuostolių;
- 6. Įvertinti atstumo tarp modulių eilių įtaką FV sistemų generacijai;
- 7. Nustatyti keitiklių perkrovos įraką saulės elektrinių generacijai;
- 8. Sukurti įrankį, sugebantį preliminariai apskaičiuoti FV sistemos generaciją pagal užduotus pagrindinius parametrus ir įvertinti šios sistemos ekonomiškumą.

Šį darbą sudaro:

- įvadas;
- teorinė apžvalga;
- tiriamoji dalis, kurioje "PVsyst" programine įranga atliekamas tyrimas, siekiant įvertinti toliau aprašomas FV sistemų efektyvinimo prielaidas;
- ekonominis gautų rezultatų įvertinimas;
- išvados.

1. Teorinė dalis

1.1. Fotovoltinė sistema

FV sistema – tai visuma įrenginių, kurių tikslas – paversti saulės tiekiamą energiją elektros energija naudojant fotovoltinį efektą [7, 8].

Priešingai vyraujančiai visuomenės nuomonei, jog FV sistema – tai FV moduliai bei keitiklis, ją sudaro daugybė vienas kitą papildančių komponentų. Kiekvienas iš jų yra svarbus, nes dėl netinkamo bet kurio komponento parinkimo gali nukentėti visa sistema.

Standartinę FV sistemą sudaro šie elementai:

- modulių montavimo konstrukcija;
- FV moduliai;
- modulių jungtys (pvz. MC4);
- nuolatinės srovės (toliau DC) kabeliai;
- tinklo keitikliai;
- kintamos srovės (toliau AC) kabeliai;
- įžeminimas, viršįtampių apsaugos, automatiniai jungikliai, saugikliai, kirtikliai (naudojami pagal situaciją);
- išmanusis skaitiklis (pagal poreikį);
- jei turime didelės galios FV sistemą, gali būti naudojami transformatoriai su visa papildoma įranga.

Pavyzdinė principinė standartinės 10 kW galios "On Grid" FV sistemos schema pateikiama 1.1 paveikslėlyje.

1.1 pav. Principinė blokinė 10 kW galios "On Grid" elektrinės schema

1.2. Fotovoltinis efektas

FV modulių veikimo principas pagrįstas 1839 metais prancūzų fiziko Edmondo Bekrelio (Edmond Becquerel) atrastu FV efektu.

Šis efektas veikia sujungus du (n tipo ir p tipo) iš silicio sudarytus puslaidininkius su skirtingomis priemaišomis. N tipo puslaidininkis turi būti maišomas su elementu, kuris padėtų šiam silicio sluoksniui padidinti turimą elektronų kiekį (pavyzdžiui fosforu). Taip šis sluoksnis tampa neigiamu,

turinčiu daugiau elektronų . P tipo puslaidininkis maišomas su elementu (pavyzdžiui boru), kuris padėtų šiam silicio sluoksniui tapti teigiamu, t.y. turinčiu daugiau skylių nei vien tik silicis [6, 8].

Turėdami n tipo bei p tipo silicio sluoksnius juos apjungiame per pn sandūros sluoksnį. Saulės sugeneruotas fotonas p ir n sluoksniuose atitinkamai padidina skylių ir elektronų kiekį, dėl ko ties pn sandūra susidaro potencialų skirtumas, iš n sluoksnio išoriniu laidininku (per apkrovą) perduodamas elektronus, kurių kryptingas judėjimas ir yra elektros energija.

Šio proceso schema pavaizduota 1.2 paveikslėlyje.

1.2. pav. Fotovoltinio efekto schema [9]

1.3. Fotovoltiniai moduliai

1.3.1. Monokristaliniai moduliai

Monokristaliniai FV moduliai – tai tokie moduliai, kurių celės yra išlietos iš vientiso silicio bloko. Iš šio bloko yra išpjaustomos plonos silicio plokštelės. Lyginant šiuos modulius su taip pat dažnai naudojama polikristalinių modulių technologija, didžiausias šių modulių privalumus yra didesnis efektyvumas. Šiuo metu išgautas maksimalus šio tipo panelių efektyvumas – 26,7 % [10]. Plačiai rinkoje naudojamų modulių maksimalus išgautas efektyvumas yra 22,8 % [11].

Kadangi šio tipo modulių gamybai reikia sudėtingesnės ir brangesnės silicio apdirbimo technologijos, natūralu, jog šio tipo FV modulių kaina yra vidutiniškai 27 % didesnė [12].

1.3.2. Polikristaliniai moduliai

Polikristaliniai FV moduliai – tai tokie moduliai, kurių celės, priešingai nei monokristalinių modulių atveju, yra išpjaustytos iš silicio bloko, kuris yra sulydomas iš skirtingų silicio kristalų. Kadangi sulydant skirtingus kristalus blokas tampa netolygus, šių celių efektyvumas yra mažesnis.

Maksimalus praktiškai išgautas šios technologijos modulių efektyvumas siekia 22,3 % [11], o rinkoje esančių modulių – 17,1 %.

Šios technologijos modulių gamyba reikalauja pigesnio silicio apdirbimo, todėl šių modulių kaina yra mažesnė. 1.3 paveikslėlyje pateikiamas monokristalinių bei polikristalinių modulių vizualinis palyginimas.

1.3 pav. Monokristalinių ir polikristalinių modulių vizualinis palyginimas. Praktikoje, juos atskirti labai paprasta vien dėl spalvos. Monokristaliniai moduliai visada būna gerokai tamsesni (juodi arba tamsiai mėlyni) nei polikristaliniai (mėlyni) [13]

1.3.3. Amorfinio silicio moduliai

Šių modulių technologija yra kardinaliai kitokia. Jie gaminami ploną amorfinio silicio sluoksnį išliejant ant norimo paviršiaus. Puikus tokio tipo celių pavyzdys – skaičiuotuvai su amorfinio silicio FV elementu (žr. 1.4 pav.).

Šio tipo elementai yra pigiausi, tačiau reikia paminėti, kad jie ir ne tokie efektyvūs. Standartiškai šio tipo elementų efektyvumas siekia 8-9 %.

Šio tipo celių privalumai – mažas svoris, puikios terminės savybės, dėl ko šio tipo celės puikiai skaido šilumą, bei iki 20 % efektyvesnis veikimas be tiesioginės apšvietos (pavyzdžiui debesuoto oro sąlygomis).

1.4 pav. Amorfinis silicio elementas [14]

1.3.4. Dvipusiai fotovoltiniai moduliai

Dvipusiai FV moduliai – tai moduliai, kurių pagrindinis privalumas lyginant su kitomis technologijomis yra galimybė apdoroti fotonus iš abiejų modulio pusių. Šio tipo moduliai yra įlaminuojami tarp dviejų stiklo plokščių, paliekant papildomą pralaidumą šviesos spinduliams kiaurai pereiti stiklą ir atsispindėti nuo paviršiaus į apatinę modulio pusę.

Šiems moduliams reikia sudėtingesnės montavimo konstrukcijos, tačiau jų potenciali elektros gavyba yra net 10 - 20 % didesnė nei monokristalinių modulių.

Kainos skirtumas lyginant pačius modulius nėra didelis, tačiau būtina įvertinti tai, jog dvipusiams FV moduliams reikia specialios konstrukcijos, iš antros modulio pusės neblokuojančios atspindžio. Paminėtina tai, kad taip pat dažniausiai klojamas šviesus paviršius (didinant reflektuojamų fotonų kiekį), o tai papildomai padidina bendros sistemos kainą. (žr. 1.5 pav.).

1.5 pav. Dvipusiai FV moduliai, sumontuoti su sekimo sistema [15]

1.3.5. Perovskito fotovoltiniai moduliai

Perovskito FV moduliai kardinaliai skiriasi silicio technologijos moduliams. Perovskito sluoksnis naudojamas fotonams sugauti (n tipo laidininke) vietoje silicio su priemaišomis. Šie moduliai naudoja organinio/neorganinio švino arba alavo sluoksnius n laidininkui, kurių struktūra turi būti identiška mineralo perovskito struktūrai [16]. 1.6 paveikslėlyje pateikiamas perovskito FV modulio veikimo principas (žr. 1.6 pav.).

Perovskito FV moduliai gali tapti technologija ateičiai dėl mažesnės pagaminimo kainos.

Maksimalus galimas perovskito FV modulių efektyvumas, kurį būtų galima pritaikyti masinėje gamyboje, yra 29,8 %.

1.4. Tinklo keitikliai

Tinklo keitiklis – FV sistemos dalis, konvertuojanti DC srovę į AC srovę. Tai išgaunama naudojant IGBT (izoliuotų vartų bipolinius tranzistorius), kurie, taikydami PWM (pulso pločio reguliavimas) technologiją vykdo pastovų įsijungimą/išsijungimą ir taip generuoja sinusoidę. Paprasto tinklo keitiklio schema pateikiama 1.7 paveikslėlyje [18, 19, 20].

1.7 pav. Paprasto 3 fazių tinklo keitiklio schema. U_{dc} atitinka fotovoltinių modulių generuojamą DC srovę.
S1-S6 yra IGBT tranzistoriai, kurie junginėdamiesi generuoja laiptuotą kreivę. Laiptuotą kreivę
minimalizuoja PWM technologija bei įvairūs filtrai [18]

Tinklo keitiklių pagrindinės funkcijos yra:

- DC elektros srovę bei įtampą keisti į AC srovę bei įtampą;
- pritaikyti generuojamos energijos dažnį tinklo dažniui;
- suderinti įtampas taip, jog keitiklio išėjimo fazinės ir linijinės įtampos neviršytų leistinų tinklo operatoriaus verčių;
- nuolat komunikuoti su tinklu, stebėti tinklo parametrus ir juos redaguoti reikalui esant;
- nuolat ieškoti maksimalios galios taško arba taškų;
- saugoti vidaus bei išorės elektros tinklą pagal keitiklyje sumontuotas apsaugos sistemas, tokias kaip LVRT, HVRT (low/high voltage ride through – žemos/aukštos įtampos praleidimas – tai keitiklio apsaugos funkcija, sauganti keitiklį nuo atsijungimo kilus staigiam įtampos pasikeitimui tinkle. Tai reikalinga norint nesukelti dar didesnio įtampos pasikeitimo tinkle) ar reaktyviosios galios kompensavimas [21].

Praktikoje dažniausiai naudojami keturi keitiklių tipai – paprastas tinklo, mikro, centriniai ir su transformatoriais kombinuojami.

1.4.1. Paprastas tinklo keitiklis

Paprasti tinklo keitikliai dažniausiai būna jungiami tiesiogiai prie vartotojo elektros tinklo. Jų galios svyruoja nuo keitiklių, pritaikytų vienam moduliui, iki 250+ kW.

Keitikliuose, kurių galia yra iki 110 kW galios, dažniausiai DC įtampą konvertuojama į 400 V AC įtampą, dėl ko nėra reikalinga papildoma transformacija. Viršijus šią galią, keitiklių DC įtampa konvertuojama į 800 V AC įtampą, dėl ko sumažėja kabeliniai nuostoliai bei kabelių kiekis projekte (jei keitiklis verčia DC į 800 V AC, DC pusėje yra galima 1500 V įtampa vietoje 1000/1100 V, naudojamos su 400 V AC keitikliais), tačiau yra reikalinga papildoma transformacija į 400 V arba į vidutinę/aukštą tinklo įtampą norint elektrą atiduoti tinklo operatoriui.

1.4.2. Mikro keitikliai

Mikro keitikliai yra jungiami tiesiogiai į vartotojo elektros tinklą. Pagrindinis skirtumas nuo standartinio keitiklio yra tai, jog į kiekvieną mikro keitiklį jungiasi tik vienas ar keli FV moduliai tiesiogiai ir patys mikro inverteriai yra montuojami po moduliais. Pavyzdžiui nuo stogo nuleidžiami nebe DC kabeliai, kaip vyksta su paprastais tinklo keitikliais, bet AC kabeliai, kurie prijungiami į gamintojo vidaus elektros tinklo skydą.

Didžiausias šio tipo keitiklių privalumas yra modulių generacijos optimizavimas. Šiuo atveju, jei turime kliūtį, kuri neleidžia generuoti pilna savo galia kuriam nors moduliui, kiti moduliai sistemoje yra neribojami.

1.4.3. Centriniai keitikliai

Centriniai keitikliai – tai didelės galios keitikliai. Skirtumas nuo paprastų tinklo keitiklių yra toks, jog į šio tipo keitiklius moduliai jungiami labai didelėmis grupėmis lygiagrečiai, taip padidinant įėjimo srovę, bet išlaikant žemą įtampą. Šio tipo keitiklių eksploatacija yra labai patogi, nes visa įranga yra vienoje vietoje. Tačiau kyla kita problema - sugedus daliai modulių ar kitų sistemos komponentų, išjungiama visa elektrinė, todėl prarandamas didelis kiekis energijos.

1.4.4. Su transformatoriais kombinuojami keitikliai

Su transformatoriais kombinuojami keitikliai yra naudojami dideliuose saulės elektrinių parkuose. Jų veikimo principas yra identiškas centrinių keitiklių veikimui. Pagrindinis skirtumas – tai, jog kartu viename rėme sumontuota ir vidutinės/aukštos įtampos transformatorių įranga.

1.8 pav. Keitiklių jungimo pavyzdžiai. A ir D schemos – paprastų tinklo keitiklių jungimas, B schema – centriniai arba kombinuoti su transformatoriais keitikliai, C schema – mikro keitikliai [22]

1.5. Optimizatoriai

Optimizatorius – tai įrenginys, montuojamas prie modulių, veikiantis pagal maksimalios galios sekimo algoritmą. Pagrindinis skirtumas tarp šio prietaiso ir standartinių tinklo keitiklių yra tai, jog įprastoje sistemoje maksimalios galios sekimą vykdo keitiklio maksimalios galios sekikliai ir jie veikia visai modulių grandinei, sujungtai į sekiklį, kai optimizatorius maksimalios galios sekimą vykdo modulių lygmeniu [23, 24].

Optimizatoriai fotovoltinės sistemos veikimo metu stebi grandinės, prie kurios yra prijungti, srovę ir, kaip standartinis DC/DC konverteris, keisdami įtampą jie prideriną modulio srovę prie maksimalios grandinės veikimo galios srovės. Taip kiekvienas modulis gali veikti maksimalia savo galia neįtakodamas kitų grandinės modulių veikimo dėl gedimo ar kitų priežasčių, galinčių pabloginti individualių modulių efektyvumą [25, 26].

1.5.1. Sistemos veikimas esant šešėliui, kai moduliai neturi apėjimo diodų

1.9 pav. Pateikiamas sistemos be apėjimo diodo veikimo pavyzdys, kai sistema veikia be optimizatorių ir su optimizatoriais.

1.9 pav. Sistemos veikimo palyginimas su optimizatoriais ir be jų (sistema be apėjimo diodų)

Pirmas (viršuje) pavyzdys vertina sistemos darbą tada, kai sistema yra neoptimizuota.

Šiuo atveju matoma, jog vienam moduliui patiriant šešėliavimo efektą jo generacija krenta 50 %. Kadangi sistema nėra optimizuota, visos grandinės generacija krenta iki 50 % (kadangi grandinės srovė yra identiška, o įtampos sumuojasi, moduliai veikia prasčiausiai veikiančio modulio srove, kas, šiuo atveju, yra 50 % maksimalios).

Antras pavyzdys (apačioje) įvertina optimizatorius. Šiuo atveju modulis su optimizatoriumi atlieka DC/DC konversiją bei, žemindamas įtampą, didina srovę, dėl ko neįtakoja kitų panelių veikimo. Šiuo atveju bendras sistemos efektyvumas siekia 83 %.

1.5.2. Sistemos veikimas esant šešėliui, kai moduliai turi apėjimo diodus

Panašus pavyzdys pateikiamas 1.10 paveikslėlyje, tik ši sistema susideda iš modulių, turinčių apėjimo diodus [28].

Šešėliavimo scenarijai

1.10 pav. Sistemos veikimo palyginimas su optimizatoriais ir be jų (sistema su apėjimo diodais) [28]

Apėjimo diodai fotovoltinėje sistemoje prideda dar vieną optimizavimo lygmenį. Šiuo metu dažniausiai gaminami moduliai su 3 apėjimo diodais. Jie apjungia celių grupes į tris vertikalias grupes. Taip, jei šešėlis krenta ant vienos grupės, kurią saugo diodas, srovė iš likusios grandinės teka išorinio diodo pagalba, taip leidžiant veikti kitiems modulio trečdaliams maksimalia savo galia. Tokiu atveju prarandama tik trečdalis vieno modulio galios (žr. 1.11 pav.).

1.11 pav. Pavyzdys, kaip sistema su apėjimo diodais reaguoja į šešėlį. Šešėliuojama dalis tiesiog apeinama.

Tačiau šis sprendimas neapsaugo modulių nuo skersai ant grupių krentančio šešėlio (žr. 1.12 pav.).

1.12 pav. Modulio, šešėliuojamo išilgai apačios, pavyzdys[29]

Šiuo atveju, jei tai būtų sistema be apėjimo diodų, modulio išduodama srovė kristų proporcingai šešėliuojamam celių kiekiui ir visos grandinės srovė taip pat kristų.

Apėjimo diodai absoliučiai apeina modulį, jo generaciją paversdami nuline. Tokiu atveju prarandame vienos panelės generaciją, tačiau išsaugome likusių grandinės modulių efektyvumą.

Skaičiuojant teoriškai, jei grandinę sudaro viena grupė iš 15 modulių ir vieno iš jų apačia yra šešėliuojama 30 %, be apėjimo diodo prarastumėme apie 30 % visos grupės generacijos. Su apėjimo diodais, prarandame 1 modulio generaciją, kas yra 1/15 grupės dalis arba 6,7 %.

Optimizatorius šioje situacijoje leistų generuoti 14/15 modulių savo maksimalia galia, o vieną šešėliuojamą apribotų ties 70 %. Tokiu atveju bendra grandinės generacija būtų 96,7 % vietoje 93,3 % neoptimizuotoje sistemoje.

Tai parodo ir 10 paveikslėlis – pirmu atveju, kai moduliai nėra optimizuoti, grandinės generacija siekia 1344 W (-3 V per šešėliuojamą modulį parodo "anti PID" (potencialų sukelta degradacija) technologiją, kuomet nakties metu į modulius paduodama minimali neigiama įtampa sumažinant PID sukeliamą degradaciją [32]), o antruoju, jau su optimizatoriais, maksimaliai išnaudoja ir šešėliuojamus modulius bendrą grupės generaciją pakeliant 29,4 %, iki 1740 W (žr. 1.10 pav.).

1.6. Konstrukcijos

Saulės elektrinių montavimo efektyvinimui tinkamos konstrukcijos parinkimas yra ypač svarbus. Jų yra įvairiausių tipų (žr. 1.13 pav.):

- stoginės konstrukcijos;
- antžeminė konstrukcija su fiksuotu mechanizmu standartiniams/dvipusiams moduliams;
- antžeminė konstrukcija su vienos ašies sekimo mechanizmu;
- antžeminė konstrukcija su dviejų ašių sekimo mechanizmu.

Ant stogo montuojamoms konstrukcijoms didelio pasirinkimo nėra, tačiau kitokia situacija su antžeminėmis konstrukcijomis. Antžeminės konstrukcijos yra geriausiai aušinamos, todėl tokių sistemų generacija dėl to yra šiek tiek geresnė. Jei naudojamos sistemos su sekimo mechanizmais, projekto kaina išauga, tačiau ir generacija yra didesnė. Lentelėje pateikiami bandymo su skirtingomis antžeminėmis konstrukcijomis su sekimo mechanizmais [33] (žr. 1.1 lentelę):

Sekimo mechanizmo tipas	Generacija kWh/kWp, Stokholmas
Be sekimo	1061,3
Dviejų ašių sekimas	1394,8
Vienos ašies rytai-vakarai sekimas su sezoniniu kampo reguliavimu	1362,2
Vienos ašies rytai vakarai	1175,1
Vertikalios ašies	1379,7

1.1 lentelė. Stokholmo FV elektrinės generacijos tyrimas

Gauti rezultatai rodo, jog sistemos su sekimo mechanizmais leidžia sugeneruoti 10 - 30 % daugiau elektros energijos. Fiksuoto

1.13 pav. Antžeminių sistemų tipai

2. Tyrimo tikslas ir planas

Pagrindinis tyrimo tikslas – sudaryti duomenų bazę kompleksinėmis simuliacijomis, kurios atsižvelgtų į maksimalų kiekį FV sistemas sudarančių elementų įtakų. Iš sukurtos duomenų bazės sukurti įrankį, kuri gebėtų pasiūlyti ekonomiškai naudingiausią (sugeneruojančią daugiausiai kWh 1 euro investicijai) ir daugiausiai sugeneruosiančią saulės elektrinę 25 metų eksploataciniam laikotarpiui.

Taip pat nustatyti sukurto įrankio tikslumą lyginant su atsitiktiniais "PVsyst" programinės įrangos pavyzdžiais.

Tyrimas bus sudarytas iš šių pagrindinių dalių:

- 4 simuliacijos su paprastais monokristaliniais ir dvipusiais "bifacial" moduliais, vertinant elektrinių darbą su ir be optimizatorių. Šios simuliacijos bus pagrindinis kuriamos duomenų bazės dėmuo;
- inverterių galios koreliacija saulės elektrinės galiai (kokia perkrova yra galima įvairioms elektrinės konfigūracijoms);
- įvertinti ekonominius saulės elektrinės įrengimo, eksploatacijos kaštus;
- apdoroti surinktą informaciją bei sukurti įrankį, gebantį pasiūlyti optimalų sprendimą pagal užduotus pirminius parametrus.

3. Tyrimas

3.1. Kampo, azimuto ir atstumo tarp eilių koreliacija.

3.1.1. Simuliacijoje naudojamos prielaidos

Visos simuliacijos atliekamos naudojant tas pačias prielaidas, siekiant išlaikyti vienodas sąlygas visoms simuliuojamoms sistemoms.

DC kabelis	1x6 mm ²	AC kabelis	Al 3x95 mm ²		
Ilgis (bendras + ir -), m	180	Ilgis, m	49,2		
Linijos varža, mΩ	6,27	Linijos varža, Ω	0,33		
Nuostoliai prie STC, %	1,54 %	Nuostoliai prie STC, %	1 %		
Modulių efektyvumo nuostoliai, %			0,40 %		
Galios nuostoliai dėl modulių skirtu	ımų, %		2 % (sistemose su optimizatoriais, 0 %)		
Nuostoliai dėl grupių lygiagretinim	0, %		0 %		
LID nuostoliai, %	2 %				
Nuostoliai dėl nešvarumų, %	1 %				
Terminis pralaidumas, W/m2·k	29,0				
Inverterio efektyvumas, %	99,0 %				
Instaliuota suminė inverterių galia,	1100				
Atspindžio albedas (žolės)			0,20		
Elektrinėje instaliuota suminė modu	994,5				
Globalioji horizontalioji apšvieta, k	1027				
Stadijos simuliacijų kiekis, vnt.	6656				
Lokacija (koordinatės)	55,6379, 22,9165				

3.1 lentelė. Simuliacijoje naudojamos prielaidos

3.1.2. Gauti rezultatai. Apšvieta į modulių pasvirimo kampą

Pirminis tyrimo objektas – nustatyti perskaičiuotą apšvietą į modulių pasvirimo kampą (toliau – "GlobInc"). Apšvieta turi tendenciją koreliuoti su kampu, į kurį krinta. 3.1-3.5 paveiksluose nurodomos didžiausios "GlobInc" vertės ir kampai, prie kurių jos pasiekiamos, visiems azimutams

3.1 pav. "GlobInc" vertės, kai azimutas lygus 0° (pietūs)

3.2 pav. "GlobInc" vertės, kai azimutas lygus -45° (pietvakariai)

3.3 pav. "GlobInc" vertės, kai azimutas lygus -90° (vakarai)

3.4 pav. "GlobInc" vertės, kai azimutas lygus 45° (pietryčiai)

3.5 pav. "GlobInc" vertės, kai azimutas lygus 90° (rytai)

Matome, kaip "GlobInc" priklauso nuo azimuto (žr. 3.1 - 3.5 pav.). Aukščiausios "GlobInc" vertės gaunamos elektrinę atsukus idealiai į pietus prie 40° posvyrio kampo – 1232 kWh/m².

Elektrinę sukant į pietvakarius gaunamas 1163 kWh/m² rezultatas prie 35° posvyrio kampo, į vakarus – 1022 kWh/m² prie 10° posvyrio kampo.

Elektrinę sukant į pietryčius, gaunamas 1152 kWh/m² rezultatas prie 35° posvyrio kampo, į rytus – 1017 kWh/m2 prie 10° posvyrio kampo.

Efektyvesnė kryptis apšvietai nevertinant nuostolių yra ne rytų, bet vakarų (lyginant pietryčius ir pietvakarius, pietvakarių "GlobInc" didesnis 0,946 %; rytus ir vakarus – 0,489 %).

3.6 pav. "GlobInc" verčių priklausomybės nuo azimuto ir posvyrio kampo

Iš rezultatų matoma, jog geriausias posvyrio kampas Lietuvos teritorijai būtų apie 40° laipsnių, jei nuostoliai neegzistuotų ir būtų įmanoma surinkti visą saulės generuojamą energiją. Greta to eina ir 45° ir 35° kampai. Prasčiausias kampas iš tyrime nagrinėtų – 10° (žr. 3.6 pav.).

Įdomus reiškinys matomas ties 70° azimutu, kur situacija apsiverčia ir "GlobInc" pradeda didėti mažėjant kampui. Tai indikuoja, jog situacijose, kai montuoti elektrinės pietų kryptimi negalima, kampą reikėtų mažinti norint išgauti maksimalų efektyvumą.

"GlobInc" vertės visoms simuliacijoms yra identiškos, nes šis parametras apibrėžia šviesos, krintančios į plokštumą, kiekį. Nevertinami jokie elektriniai ar optiniai nuostoliai.

3.1.3. Gauti rezultatai. Apšvieta į modulių pasvirimo kampą įvertinus optinius nuostolius

Toliau nustatytas efektyvus apšvietos kiekio skirtumas į pasvirusį paviršių, kuris lieka įvertinus optinius nuostolius, tokius kaip nuostoliai dėl nešvarumų, tiesioginio šešėliavimo ir stiklo refrakcijos (IAM – "array irradiance loss") (toliau – "GlobEff") tarp monokristalinių ir dvipusių modulių.

Šis parametras tarp šių sistemų kinta dėl dvipusių modulių gebėjimo generuoti elektros energiją iš antros modulio pusės. Tai leidžia įvertinti, kokio preliminaraus padidėjimo galima tikėtis iš sistemų, kuriose naudojami dvipusiai moduliai.

3.7 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas lygus 0° (pietūs)

Iš gautų rezultatų matome, jog dvipusiai moduliai, lyginant su kitomis sistemomis, prideda mažiau apšvietos į kvadratinį metrą (nuo 4,12 %, kai kampas yra 10° ir atstumas tarp modulių 5 metrai, iki 9,28 % kai kampas yra 45° ir atstumas tarp modulių eilių 20 metrų. Vidutiniškai – 6,16 % visoms sistemoms pietų kryptimi) (žr. 3.7 pav.).

Tai galima paaiškinti tuo, jog statesnės konstrukcijos mažiau efektyviai išnaudoja antros pusės generaciją dėl netinkamo atspindžio kampo į antrą modulių pusę. Mažesnio tarpo tarp modulių eilių sistemos taip pat suteikia mažesnį kiekį atsispindinčios apšvietos antrai modulių pusei.

3.8 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas lygus -45° (pietvakariai)

Lyginant "GlobEff" vertes pietvakarių sistemoms, matomas skirtumo padidėjimas (nuo 4,51 %, kai kampas yra 10° ir atstumas tarp modulių 5 metrai, iki 11,68 % kai kampas yra 45° ir atstumas tarp

modulių eilių 20 metrų. Vidutiniškai – 7,43 % visoms sistemoms pietvakarių kryptimi, 1,27 % padidėjimas nuo pietų.).

Šis "GlobEff" padidėjimas kyla iš modulių azimuto pasikeitimo. Kadangi azimutas pakrypo į pietvakarius, padidėjo šviesos, atsispindinčios į antrą modulių pusę, kiekis, dėl ko išaugo apšvietos, sugeneruojamos iš 1 m², kiekis.

3.9 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas lygus -90° (vakarai)

Lyginant "GlobEff" vertes vakarų sistemoms, matomas dar didesnis skirtumo pasikeitimas (nuo 5,23 %, kai kampas yra 10° ir atstumas tarp modulių 5 metrai, iki 17,96 % kai kampas yra 45° ir atstumas tarp modulių eilių 20 metrų. Vidutiniškai – 10,49 % visoms sistemoms pietvakarių kryptimi, 4,33 % padidėjimas nuo pietų).

Dar labiau sukant modulių azimutą, dar didinamas apšvietos, tenkančios antrąjai modulių pusei, kiekis, dėl ko skirtumas nuo monokristalinių sistemų ženkliai padidėja.

3.10 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas lygus 45° (pietryčiai)

Lyginant "GlobEff" vertes pietryčių sistemoms, matomas dar didesnis skirtumo pasikeitimas (nuo 4,52 %, kai kampas yra 10° ir atstumas tarp modulių 5 metrai, iki 11,93 % kai kampas yra 45° ir atstumas tarp modulių eilių 20 metrų. Vidutiniškai – 7,55 % visoms sistemoms pietvakarių kryptimi, 1,39 % padidėjimas nuo pietų).

Padidėjimas taip pat, kaip ir pietvakarių sistemoms, kyla iš modulių orientacijos pasikeitimo bei apšvietos į antrąją modulių pusę padidėjimo.

3.11 pav. "GlobEff" verčių palyginimas tarp monokristalinių ir dvipusių modulių, kai azimutas lygus 90° (rytai)

Lyginant "GlobEff" vertes rytų sistemoms, matomas dar didesnis skirtumo pasikeitimas (nuo 5,28 %, kai kampas yra 10° ir atstumas tarp modulių 5 metrai, iki 18,43 % kai kampas yra 45° ir atstumas tarp modulių eilių 20 metrų. Vidutiniškai – 10,71 % visoms sistemoms pietvakarių kryptimi, 4,55 % padidėjimas nuo pietų).

Padidėjimas taip pat, kaip ir vakarų sistemoms, kyla iš dar didesnio modulių orientacijos pasikeitimo nuo pietų bei apšvietos į antrąją modulių pusę padidėjimo.

Vidutiniškai, vertinant visus posvyrio kampus bei atstumus tarp eilių, "GlobEff" padidėja vidutiniškai 8,47 % lyginant dvipusių ir monokristalinių modulių vertes. Stebima tiesioginė koreliacija tarp modulių azimuto ir apšvietos skirtumo. Iš to galima spręsti, jog neturint galimybės elektrinės montuoti pietų kryptimi, dvipusių modulių nauda didėjant krypties azimutui.

3.1.4. Gauti rezultatai. Elektros energija, atiduodama į tinklą

Toliau nustatytas elektros energijos kiekis, pagaminamas iš simuliacinės 994,5 kW elektrinės. Šis kiekis papildomai įvertina visus likusius nuostolius, tokius kaip elektriniai kabelių, DC/AC konversijos, modulių grupavimo, terminiai ir t.t. (Toliau – "E_Grid").

3.12 – 3.13 paveiksluose pateiktos "E_Grid" vertės visoms keturioms tyrinėjamoms sistemoms, 3.2 lentelėje palyginamos maksimalios kiekvienos sistemos vertės.

3.12 pav. "E_Grid" vertės monokristaliniams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus 0° (pietūs)

3.13 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus 0° (pietūs)

Sistema	Kampas, °	Atstumas tarp mod. eilių, m	"E_Grid", MWH	"E_Grid", kWh/kWp	Skirtumas nuo optimalios sistemos, %
Monokristaliniai mod.	35	20	1067,37	1073,81	9,48
Monokristaliniai mod. + optimizatoriai	35	20	1083,41	1089,40	8,17
Dvipusiai mod.	45	20	1153,75	1160,13	2,21
Dvipusiai mod. + optimizatoriai	45	20	1179,79	1186,32	0

3.2 lentelė. "E Grid" palyginimas tarp skirtingų tyrinėjamų sistemų, kai azimutas lygus 0°

Iš gautų rezultatų matoma, jog optimali sistema, kai azimutas yra atsuktas į pietus, yra optimizuota sistema su dvipusiais moduliais (1186,32 kWh/kWp); mažiausiai optimali – neoptimizuota sistema su monokristaliniais moduliais (1073,81 kWh/kWp) (žr. 3.2 lentelę).

Optimizatoriai monokristalinių modulių saulės elektrinei vertinant visus posvyrio kampus bei atstumus tarp modulių eilių vidutiniškai leidžia sugeneruoti 1,44 % daugiau elektros energijos, dvipusių modulių - 3,68 %.

3.14 – 3.15 paveiksluose pateiktos "E_Grid" vertės visoms keturioms tyrinėjamoms sistemoms, 3.3 lentelėje palyginamos maksimalios kiekvienos sistemos vertės.

3.14 pav. "E_Grid" vertės monokristaliniams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus -45° (pietvakariai)

3.15 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus -45° (pietvakariai)

Sistema	Kampas, °	Atstumas tarp mod. eilių, m	"E_Grid", MWH	"E_Grid", kWh/kWp	Skirtumas nuo optimalios sistemos, %
Monokristaliniai mod.	35	20	1008,90	1014,99	11,19
Monokristaliniai mod. + optimizatoriai	35	20	1023,83	1029,49	9,93
Dvipusiai mod.	45	20	1111,61	1117,75	2,20
Dvipusiai mod. + optimizatoriai	45	20	1136,64	1142,93	0

3.3 lentelė. "E_Grid" palyginimas tarp skirtingų tyrinėjamų sistemų, kai azimutas lygus -45°

Iš gautų rezultatų matoma, jog optimali sistema, kai azimutas yra atsuktas į pietvakarius, yra optimizuota sistema su dvipusiais moduliais (1142,49 kWh/kWp); mažiausiai optimali – neoptimizuota sistema su monokristaliniais moduliais (1014,99 kWh/kWp) (žr. 3.3 lentelę).

Optimizatoriai monokristalinių modulių saulės elektrinei vertinant visus posvyrio kampus bei atstumus tarp modulių eilių vidutiniškai leidžia sugeneruoti 1,42 % daugiau elektros energijos, dvipusių modulių - 3,43 %.

3.16 pav. "E_Grid" vertės monokristaliniams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus -90° (vakarai)

3.17 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus -90° (vakarai)

3.4 lentelė. "E_Grid	" palyginimas t	tarp skirtingų	tyrinėjamų	sistemų,	kai azimutas	lygus -90°
----------------------	-----------------	----------------	------------	----------	--------------	------------

Sistema	Kampas, °	Atstumas tarp mod. eilių, m	"E_Grid", MWH	"E_Grid", kWh/kWp	Skirtumas nuo optimalios sistemos, %
Monokristaliniai mod.	10	20	886,62	891,98	9,54
Monokristaliniai mod. + optimizatoriai	10	20	900,06	905,34	8,19
Dvipusiai mod.	45	20	964,45	969,78	2,19
Dvipusiai mod. + optimizatoriai	45	20	986,08	991,53	0

Iš gautų rezultatų matoma, jog optimali sistema, kai azimutas yra atsuktas į vakarus, yra optimizuota sistema su dvipusiais moduliais (991,53 kWh/kWp); mažiausiai optimali – neoptimizuota sistema su monokristaliniais moduliais (891,98 kWh/kWp) (žr. 3.4 lentelę).

Optimizatoriai monokristalinių modulių saulės elektrinei vertinant visus posvyrio kampus bei atstumus tarp modulių eilių vidutiniškai padeda sugeneruoti 1,39 % daugiau elektros energijos, dvipusių modulių - 2,50 %.

Šiai orientacijai taip pat stebimas kampo, prie kurio elektrinė yra efektyviausia, išsiskyrimas. Monokristaliniai moduliai efektyviausiai dirba prie 10°, kai dvipusiai moduliai efektyviausiai dirba prie 45°.

3.1.2 punkte buvo pastebėta, jog ties 70° azimutu monokristaliniai moduliai efektyviau dirba esant mažesniam pasvyrimo kampui, tačiau ši išvada nėra tinkama sistemoms su dvipusiais moduliais ir nukreiptoms į vakarus. Tai įtakoja dvipusių modulių gebėjimas generuoti elektros energiją iš abiejų modulio pusių. Dvipusiai moduliai ir prie didelių azimutų išlaiko optimalią generaciją prie didesnių posvyrio kampų.

3.18 – 3.19 paveiksluose pateiktos "E_Grid" vertės visoms keturioms tyrinėjamoms sistemoms, 3.5 lentelėje palyginamos maksimalios kiekvienos sistemos vertės.

3.18 pav. "E_Grid" vertės monokristaliniams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus 45° (pietryčiai)

3.19 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus 45° (pietryčiai)

Sistema	Kampas, °	Atstumas tarp mod. eilių, m	"E_Grid", MWH	"E_Grid", kWh/kWp	Skirtumas nuo optimalios sistemos, %
Monokristaliniai mod.	35	20	997,38	1003,40	11,30
Monokristaliniai mod. + optimizatoriai	30	20	1012,28	1017,88	9,98
Dvipusiai mod.	45	20	1099,57	1105,65	2,21
Dvipusiai mod. + optimizatoriai	45	20	1124,46	1130,68	0

3.5 lentelė. "E Grid" palyginimas tarp skirtingų tyrinėjamų sistemų, kai azimutas lygus 45°

Iš gautų rezultatų matoma, jog optimali sistema, kai azimutas yra atsuktas į pietvakarius, yra optimizuota sistema su dvipusiais moduliais (1130,68 kWh/kWp); mažiausiai optimali – neoptimizuota sistema su monokristaliniais moduliais (1003,40 kWh/kWp) (žr. 3.5 lentelę).

Optimizatoriai monokristalinių modulių saulės elektrinei vertinant visus posvyrio kampus bei atstumus tarp modulių eilių vidutiniškai leidžia sugeneruoti 1,42 % daugiau elektros energijos, dvipusių modulių - 3,37 %.

3.20 – 3.21 paveiksluose pateiktos "E_Grid" vertės visoms keturioms tyrinėjamoms sistemoms, 3.6 lentelėje palyginamos maksimalios kiekvienos sistemos vertės.

3.20 pav. "E_Grid" vertės monokristaliniams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus 90° (rytai)

3.21 pav. "E_Grid" vertės dvipusiams moduliams be optimizatorių (kairėje) ir su optimizatoriais (dešinėje), kai azimutas lygus 90° (rytai)

Sistema	Kampas, °	Atstumas tarp mod. eilių, m	"E_Grid", MWH	"E_Grid", kWh/kWp	Skirtumas nuo optimalios sistemos, %
Monokristaliniai mod.	10	20	879,93	885,20	8,87
Monokristaliniai mod. + optimizatoriai	10	20	893,29	898,23	7,52
Dvipusiai mod.	45	20	943,90	949,12	2,29
Dvipusiai mod. + optimizatoriai	10	20	965,97	971,32	0

3.6 lentelė. "E_Grid" palyginimas tarp skirtingų tyrinėjamų sistemų, kai azimutas lygus 90°

Iš gautų rezultatų matoma, jog optimali sistema, kai azimutas yra atsuktas į vakarus, yra optimizuota sistema su dvipusiais moduliais (965,97 kWh/kWp); mažiausiai optimali – neoptimizuota sistema su monokristaliniais moduliais (885,2 kWh/kWp) (žr. 3.6 lentelę).

Optimizatoriai monokristalinių modulių saulės elektrinei vertinant visus posvyrio kampus bei atstumus tarp modulių eilių vidutiniškai padeda sugeneruoti 1,39 % daugiau elektros energijos, dvipusių modulių - 2,49 %.

Kaip ir orientacijai į vakarus, kampai tarp monokristalinių ir dvipusių modulių efektyviausios elektrinės išsiskiria. Įdomi išimtis stebima dvipusių modulių su optimizatoriais simuliacijose, kur efektyviausias kampas – toks pat kaip ir monokristalinių modulių.

Tai indikuoja, jog optimizuojant sistemą ir ją montuojant pasirenkant rytų arba vakarų kryptį, efektyviausia opcija būtų mažinti modulių posvyrio kampą. Jei sistema neoptimizuojama – kampą reikėtų didinti.

Sistema	Vidutinė generacija, kWh/kWp	Skirtumas nuo optimalios sistemos, %
Monokristaliniai mod.	958,09	9,6
Monokristaliniai mod. + optimizatoriai	971,87	8,30
Dvipusiai mod.	1025,50	3,24
Dvipusiai mod. + optimizatoriai	1059,79	0

3.7 lentelė. Vidutinių "E_Grid" palyginimas tarp skirtingų tyrinėjamų sistemų

Lyginant visas sistemas, vidutiniškai, vertinant visas orientacijas, kampus bei tarpus tarp eilių matoma, jog efektyviausia yra optimizuota dvipusių modulių sistema (1059,79 kWh/kWp), mažiausiai efektyvi – neoptimizuota monokristalinių modulių sistema (958,09 kWh/kWp). Vien įrangos parinkimas leidžia sistemos efektyvumą pakelti beveik 10 %. (žr. 3.7 lentelę).

Optimizatoriai monokristalinių modulių sistemai vidutiniškai leidžia sugeneruoti 1,42 % daugiau elektros energijos; dvipusių modulių sistemai – 3,24 % daugiau. Šie rezultatai indikuoja, jog optimizuoti dvipusių modulių sistemą yra daugiau nei dvigubai naudingiau nei monokristalinių modulių sistemą.

Tai galima paaiškinti tuo, jog dvipusiai moduliai generuoja energiją iš abiejų modulio pusių ir skirtumas tarp individualių modulių grandinėje gali būti ženkliai didesnis. Optimizatoriai suteikia moduliams galimybę dirbti individualiai, todėl šis modulių tarpusavio skirtumas yra minimizuojamas.

3.2. Atstumo tarp modulių eilių įtakos generacijai analizė

Iš gautų rezultatų (3.1.2 - 3.1.4 poskyriai) taip pat galima įvertinti, kaip atstumas tarp modulių eilių įtakoja generaciją skirtingoms sistemoms.

Toliau vertinamos sistemų generacijos prie skirtingų azimutų, lyginant su maksimalia galima sistemos generacija (žr. 3.8 lentelę).

Sistema	Maksimali generacija, kWh
Monokristaliniai mod.	1067365
Monokristaliniai mod. + optimizatoriai	1083412
Dvipusiai mod.	1153746
Dvipusiai mod. + optimizatoriai	1179794

3.8 lentelė. Maksimalios skirtingų sistemų generacijos

Vertinant atstumo tarp modulių eilių įtaką generacijai prie 0° azimuto pastebima, jog sistemoms su monokristaliniais moduliais atstumo sukeliama įtaka generacijai yra ženkliai mažesnė (iki 5,12 % ir

5,14 %) nei sistemoms su dvipusiais moduliais (iki 10,32 % ir 10,63 %) (žr. 3.22 pav.). Tai galima paaiškinti tuo, jog sumažinant atstumą tarp modulių eilių ženkliai sumažėja apšvietos, atsispindinčios nuo žemės į kitą modulio pusę, kiekis. Didžioji dalis prarandamos generacijos dėl sumažėjusio atstumo tarp eilių dvipusiams moduliams atsiranda iš antros modulio pusės generacijos.

3.22 pav. Generacijos nuokrypis nuo maksimalios sistemos generacijos mažinant atstumą tarp modulių eilių, kai azimutas yra 0°

Vertinant atstumo tarp modulių eilių įtaką elektros generacijai prie -45° azimuto matoma, jog sistemoms su monokristaliniais moduliais atstumo sukeliama įtaka elektros generacijai vis dar yra ženkliai mažesnė (iki 10,65 % ir 10,69 %) nei sistemoms su dvipusiais moduliais (iki 14,47 % ir 14,84 %) (žr. 3.23 pav.). Priežastis yra ta pati – mažinant tarpus stipriai mažėja šviesa, pasiekianti antrąją modulio pusę.

Prie šio azimuto taip pat stebimas mažesnis minimalus generacijos kritimas (nuo 5,48 % ir 5,50 % iki 3,65 % ir 3,66 %) dvipusiams moduliams nei monokristaliniams moduliams. Galima teigti, jog priežastis ta pati – didinant atstumą tarp modulių eilių ir azimutą nuo 0°, dvipusių modulių antra pusė surenka daugiau apšvietos.

3.23 pav. Generacijos nuokrypis nuo maksimalios sistemos generacijos mažinant atstumą tarp modulių eilių, kai azimutas yra -45°

Vertinant atstumo tarp modulių eilių įtaką generacijai prie -90° azimuto matoma, jog atstumo įtaka pradeda tapti mažiau aktualiu rodikliu monokristaliniams moduliams. Skirtumas yra beveik pastovus visiems atstumams (nuo 16,93 % iki 17,27 % ir nuo 16,92 % iki 17,26 %).

Dvipusiams moduliams skirtumas prie -90° azimuto, mažėjant atstumui tarp modulių eilių, ženkliai didėja (nuo 16,41 % iki 28,28 % ir nuo 16,42 % iki 28,57 %). Tai galima paaiškinti tuo, jog kampas šioms sistemoms lieka 45°, kai monokristalinių modulių sistemoms kampas tampa 10° (žr. 3.24 pav.).

Dvipusiams moduliams tai reiškia didesnę antros pusės apšvietą, kurią jie surenka atspindėtą nuo žemės. Tai šiuos modulius paverčia savotiška "rytai-vakarai" sistema, kuomet vakare moduliai generuoja tiesiogiai nuo saulės, o ryte daugiausiai generuoja antroji modulių pusė iš tiesiogiai atsispindėjusių saulės spindulių.

Vertinant atstumo tarp modulių eilių įtaką generacijai prie 45° azimuto pastebima, jog sistemoms su monokristaliniais moduliais atstumo sukeliama įtaka generacijai vis dar yra ženkliai mažesnė (iki 12,17 % ir 10,83 %) nei sistemoms su dvipusiais moduliais (iki 15,95 % ir 16,30 %) (žr. 3.25 pav.). Priežastis yra ta pati – mažinant tarpus stipriai mažėja šviesa, pasiekianti antrąją modulio pusę.

Prie šio azimuto taip pat stebimas mažesnis minimalus generacijos kritimas (nuo 6,64 % ir 6,57 % iki 4,7 % ir 4,69 %) dvipusiams moduliams nei monokristaliniams moduliams. Galima teigti, jog priežastis ta pati – didinant atstumą tarp modulių eilių ir azimutą nuo 0°, dvipusių modulių antra pusė sugeba surinkti daugiau apšvietos.

3.25 pav. Generacijos nuokrypis nuo maksimalios sistemos generacijos mažinant atstumą tarp modulių eilių, kai azimutas yra 45°

Vertinant atstumo tarp modulių eilių įtaką generacijai prie 90° azimuto, matome, jog atstumo įtaka pradeda tapti mažiau aktualiu rodikliu monokristaliniams moduliams. Skirtumas yra beveik pastovus visiems atstumams (nuo 17,56 % iki 17,9 % ir nuo 17,55 % iki 17,89 %). (žr. 3.26 pav.).

Dvipusiams moduliams skirtumas prie 90° azimuto, mažėjant atstumui tarp modulių eilių, ženkliai didėja (nuo 18,19 % iki 29,95 % ir nuo 18,19 % iki 30,23 %). Priežastis išlieka tokia pati, kaip ir sistemoms prie -90° azimuto – sistema tampa savotiška "rytai-vakarai" ir efektyviau išnaudoja antrosios dvipusių modulių pusės galimybę generuoti elektros energiją.

3.26 pav. Generacijos nuokrypis nuo maksimalios sistemos generacijos mažinant atstumą tarp modulių eilių, kai azimutas yra 90°

3.3. Keitiklių perkrovos įtaka saulės elektrinių generacijai

Toliau buvo įvertintas saulės elektrinės generacijos pokytis mažinant instaliuotų keitiklių galią. Didžioji dalis parametrų nesikeitė, tačiau kito keitikliai (dėl tolygaus inverterių galių mažėjimo, naudojami 50 kW galios keitikliai, kurių parametrai šiek tiek skiriasi). Dėl to šiek tiek pamažėjo generuojamos elektros energijos kiekis prie 1100 kW instaliuotos keitiklių galios, tačiau, kadangi pagrindinis tyrimo tikslas yra nustatyti generacijos kritimą tarp skirtingų keitiklių galių priimta, jog šis generacijos kritimas yra priimtinas.

Šis sumažėjimas atsiranda dėl šiek tiek skirtingų keitiklių parametrų ir dėl skirtingų modulių grupavimo variacijų. Mažinant keitiklių galią tai pačiai elektrinės galiai, mažėja ir turimų maksimalios galios sekiklių kiekis, todėl tenka naudoti tokias grupavimo variacijas kaip lygiagretų jungimą ar modulių grupių ilginimą, kas didina grandinės įtampą virš keitiklio optimalios galios taško ir taip mažina keitiklio efektyvumą.

DC kabelis	1x6 mm ²	AC kabelis	Al 3x95 mm ²
Ilgis (bendras + ir -), m	180	Ilgis, m	49,2
Linijos varža, mΩ	6,27	Linijos varža, Ω	0,33
Nuostoliai prie STC, %	1,54 %	Nuostoliai prie STC, %	1 %
Modulių efektyvumo nuostoliai, %			0,40 %
Galios nuostoliai dėl modulių skirtumų, %			2 % (sistemose su optimizatoriais, 0 %)
Nuostoliai dėl grupių lygiagretinimo, %			0 %
LID nuostoliai, %			2 %
Nuostoliai dėl nešvarumų, %			1 %
Terminis pralaidumas, W/m2·k			29,0
Inverterio efektyvumas, %			98,9 %
Instaliuota suminė inverterių galia, kW			1100
Atspindžio albedas (žolės)			0,20
Elektrinėje instaliuota suminė modulių galia, kW			994,5
Globalioji horizontalioji apšvieta, kWh/m2			1027
Stadijos simuliacijų kiekis, vnt.			6656
Lokacija (koordinatės)			55,6379, 22,9165

3.9 lentelė. Simuliacijoje naudojamos prielaidos

3.3.1. Monokristaliniai moduliai. Vakarai

Vertinant vakarų sistemas, pasitvirtina pirmoje tyrimo dalyje gauti rezultatai – esant visiems tarpams tarp modulių eilių, efektyviausias visada 10° posvyrio kampas (žr. 3.10 lentelę).

Šiuo atveju optimali saulės elektrinė – 10° posvyrio kampo ir 20 metrų tarp modulių eilių tarpo elektrinė su 850 kW (modulių/keitiklių galios santykis – 1,17) instaliuotos keitiklių galios – ji generuoja 886550 kWh (891,45 kWh/kWp). Mažiausiai generuosianti saulės elektrinė – 40° posvyrio kampo bei 5 metrų tarp modulių eilių tarpo sistema su 600 kW (modulių/keitiklių galios santykis – 1,658) instaliuotų keitiklių galia – ji generuoja 690400 kWh (694,22 kWh/kWp).

Vertinant vidutiniškai visų instaliuotų galių sistemas vakarams taip pat matoma, jog efektyviausiai dirbs sistemos su 850 kW galios keitikliais. Mažiausiai efektyviai – sistemos, su 600 kW galios keitikliais. Jų efektyvumas yra vidutiniškai 7,114 % mažesnis nei sistemų su 850 kW keitiklių galia.

Sistema	Vidutinė generacija, kWh	Vidutinės generacijos nuokrypis nuo maksimalios vertės, %
Vidutinė generacija, kai instaliuotų keitiklių galia 1100 kW (modulių/keitiklių galios santykis – 0,904)	846794	0,139
Vidutinė generacija, kai instaliuotų keitiklių galia 1050 kW (modulių/keitiklių galios santykis – 0,947)	847124	0,100
Vidutinė generacija, kai instaliuotų keitiklių galia 1000 kW (modulių/keitiklių galios santykis – 0,995)	847423	0,065
Vidutinė generacija, kai instaliuotų keitiklių galia 950 kW (modulių/keitiklių galios santykis – 1,047)	847680	0,034
Vidutinė generacija, kai instaliuotų keitiklių galia 900 kW (modulių/keitiklių galios santykis – 1,105)	847888	0,010
Vidutinė generacija, kai instaliuotų keitiklių galia 850 kW (modulių/keitiklių galios santykis – 1,17)	847972	0,000
Vidutinė generacija, kai instaliuotų keitiklių galia 800 kW (modulių/keitiklių galios santykis – 1,243)	847421	0,065
Vidutinė generacija, kai instaliuotų keitiklių galia 750 kW (modulių/keitiklių galios santykis – 1,326)	845553	0,285
Vidutinė generacija, kai instaliuotų keitiklių galia 700 kW (modulių/keitiklių galios santykis – 1,421)	825299	2,674
Vidutinė generacija, kai instaliuotų keitiklių galia 650 kW (modulių/keitiklių galios santykis – 1,53)	799767	5,685
Vidutinė generacija, kai instaliuotų keitiklių galia 600 kW (modulių/keitiklių galios santykis – 1,658)	787645	7,114

3.10 lentelė. Vidutinės monokristalinių modulių sistemų generacijos vakarų krypčiai

3.3.2. Monokristaliniai moduliai. Pietvakariai

Vertinant elektrinės pietvakarių kryptimi, optimali saulės elektrinė – 30° posvyrio kampo ir 20 metrų tarp modulių eilių tarpo elektrinė su 950 kW (modulių/keitiklių galios santykis – 1,047) instaliuotos keitiklių galios – ji generuoja 1008057 kWh (1013,63 kWh/kWp). Mažiausiai generuosianti saulės elektrinė – 40° posvyrio kampo bei 5 metrų tarp modulių eilių tarpo sistema su 600 kW (modulių/keitiklių galios santykis – 1,658) instaliuotų keitiklių galia – ji generuoja 836825 kWh (841,453 kWh/kWp).

Vertinant vidutiniškai visų instaliuotų galių sistemas vakarams taip pat matoma, jog efektyviausiai dirbs sistemos su 950 kW galios keitikliais. Mažiausiai efektyviai – sistemos, su 600 kW galios keitikliais. Jų efektyvumas yra vidutiniškai 9,327 % mažesnis nei sistemų su 950 kW keitiklių galia (žr. 3.11 lentelę).

Sistema	Vidutinė generacija, kWh	Vidutinės generacijos nuokrypis nuo maksimalios vertės, %
Vidutinė generacija, kai instaliuotų keitiklių galia 1100 kW (modulių/keitiklių galios santykis – 0,904)	976842	0,054
Vidutinė generacija, kai instaliuotų keitiklių galia 1050 kW (modulių/keitiklių galios santykis – 0,947)	977062	0,031
Vidutinė generacija, kai instaliuotų keitiklių galia 1000 kW (modulių/keitiklių galios santykis – 0,995)	977247	0,012
Vidutinė generacija, kai instaliuotų keitiklių galia 950 kW (modulių/keitiklių galios santykis – 1,047)	977368	0,000
Vidutinė generacija, kai instaliuotų keitiklių galia 900 kW (modulių/keitiklių galios santykis – 1,105)	977317	0,005
Vidutinė generacija, kai instaliuotų keitiklių galia 850 kW (modulių/keitiklių galios santykis – 1,17)	976623	0,076
Vidutinė generacija, kai instaliuotų keitiklių galia 800 kW (modulių/keitiklių galios santykis – 1,243)	974541	0,289

969982

941542

904353

886211

0,756

3,666

7,470

9,327

3.11 lentelė. Vidutinės monokristalinių modulių sistemų generacijos pietvakarių krypčiai

3.3.3. Monokristaliniai moduliai. Pietūs

Vidutinė generacija, kai instaliuotų keitiklių galia 750

Vidutinė generacija, kai instaliuotų keitiklių galia 700

Vidutinė generacija, kai instaliuotu keitiklių galia 650

Vidutinė generacija, kai instaliuotų keitiklių galia 600

kW (modulių/keitiklių galios santykis - 1,326)

kW (modulių/keitiklių galios santykis - 1,421)

kW (modulių/keitiklių galios santykis - 1,53)

kW (modulių/keitiklių galios santykis - 1,658)

Vertinant elektrines pietų kryptimi, optimali saulės elektrinė – 40° posvyrio kampo ir 20 metrų tarp modulių eilių tarpo elektrinė su 950 kW (modulių/keitiklių galios santykis – 1,047) instaliuotos keitiklių galios – ji generuoja 1064453 kWh (1070,34 kWh/kWp). Mažiausiai generuosianti saulės elektrinė – 40° posvyrio kampo bei 5 metrų tarp modulių eilių tarpo sistema su 600 kW (modulių/keitiklių galios santykis – 1,658) instaliuotų keitiklių galia – ji generuoja 888810 kWh (893,73 kWh/kWp).

Vertinant vidutiniškai visų instaliuotų galių sistemas vakarams taip pat matoma, jog efektyviausiai dirbs sistemos su 950 kW galios keitikliais. Mažiausiai efektyviai – sistemos, su 600 kW galios keitikliais. Jų efektyvumas yra vidutiniškai 9,766 % mažesnis nei sistemų su 950 kW keitiklių galia. (žr. 3.12 lentelę).

Sistema	Vidutinė generacija, kWh	Vidutinės generacijos nuokrypis nuo maksimalios vertės, %
Vidutinė generacija, kai instaliuotų keitiklių galia 1100 kW (modulių/keitiklių galios santykis – 0,904)	1022265	0,041
Vidutinė generacija, kai instaliuotų keitiklių galia 1050 kW (modulių/keitiklių galios santykis – 0,947)	1022449	0,023
Vidutinė generacija, kai instaliuotų keitiklių galia 1000 kW (modulių/keitiklių galios santykis – 0,995)	1022598	0,009
Vidutinė generacija, kai instaliuotų keitiklių galia 950 kW (modulių/keitiklių galios santykis – 1,047)	1022686	0,000
Vidutinė generacija, kai instaliuotų keitiklių galia 900 kW (modulių/keitiklių galios santykis – 1,105)	1022638	0,005
Vidutinė generacija, kai instaliuotų keitiklių galia 850 kW (modulių/keitiklių galios santykis – 1,17)	1022129	0,055
Vidutinė generacija, kai instaliuotų keitiklių galia 800 kW (modulių/keitiklių galios santykis – 1,243)	1020089	0,254
Vidutinė generacija, kai instaliuotų keitiklių galia 750 kW (modulių/keitiklių galios santykis – 1,326)	1014872	0,764
Vidutinė generacija, kai instaliuotų keitiklių galia 700 kW (modulių/keitiklių galios santykis – 1,421)	983840	3,798
Vidutinė generacija, kai instaliuotų keitiklių galia 650 kW (modulių/keitiklių galios santykis – 1,53)	942734	7,818
Vidutinė generacija, kai instaliuotų keitiklių galia 600 kW (modulių/keitiklių galios santykis – 1,658)	922808	9,766

3.12 lentelė. Vidutinės monokristalinių modulių sistemų generacijos pietų krypčiai

3.3.4. Monokristaliniai moduliai. Pietryčiai

Vertinant elektrinės pietryčių kryptimi, optimali saulės elektrinė – 30° posvyrio kampo ir 20 metrų tarp modulių eilių tarpo elektrinė su 900 kW (modulių/keitiklių galios santykis – 1,105) instaliuotos keitiklių galios – ji generuoja 996966 kWh (1002,48 kWh/kWp). Mažiausiai generuojanti saulės elektrinė – 40° posvyrio kampo bei 5 metrų tarp modulių eilių tarpo sistema su 600 kW (modulių/keitiklių galios santykis – 1,658) instaliuotų keitiklių galia – ji generuoja 827778 kWh (832,36 kWh/kWp).

Vertinant vidutiniškai visų instaliuotų galių sistemas vakarams taip pat matoma, jog efektyviausiai dirbs sistemos su 900 kW galios keitikliais. Mažiausiai efektyviai – sistemos, su 600 kW galios keitikliais. Jų efektyvumas yra vidutiniškai 8,793 % mažesnis nei sistemų su 950 kW keitiklių galia (žr. 3.13 lentelę).

bild fenterer viautines monokristanning modaling sistemig generatigos piet yerg krypetar
--

Sistema	Vidutinė generacija, kWh	Vidutinės generacijos nuokrypis nuo maksimalios vertės, %
Vidutinė generacija, kai instaliuotų keitiklių galia 1100 kW (modulių/keitiklių galios santykis – 0,904)	966789	0,070
Vidutinė generacija, kai instaliuotų keitiklių galia 1050 kW (modulių/keitiklių galios santykis – 0,947)	967023	0,046
Vidutinė generacija, kai instaliuotų keitiklių galia 1000 kW (modulių/keitiklių galios santykis – 0,995)	967222	0,025
Vidutinė generacija, kai instaliuotų keitiklių galia 950 kW (modulių/keitiklių galios santykis – 1,047)	967372	0,009
Vidutinė generacija, kai instaliuotų keitiklių galia 900 kW (modulių/keitiklių galios santykis – 1,105)	967463	0,000
Vidutinė generacija, kai instaliuotų keitiklių galia 850 kW (modulių/keitiklių galios santykis – 1,17)	967328	0,014
Vidutinė generacija, kai instaliuotų keitiklių galia 800 kW (modulių/keitiklių galios santykis – 1,243)	966177	0,133
Vidutinė generacija, kai instaliuotų keitiklių galia 750 kW (modulių/keitiklių galios santykis – 1,326)	962853	0,477
Vidutinė generacija, kai instaliuotų keitiklių galia 700 kW (modulių/keitiklių galios santykis – 1,421)	935405	3,314
Vidutinė generacija, kai instaliuotų keitiklių galia 650 kW (modulių/keitiklių galios santykis – 1,53)	899440	7,031
Vidutinė generacija, kai instaliuotų keitiklių galia 600 kW (modulių/keitiklių galios santykis – 1,658)	882391	8,793

3.3.5. Monokristaliniai moduliai. Rytai

Vertinant elektrines rytų kryptimi, optimali saulės elektrinė – 10° posvyrio kampo ir 20 metrų tarp modulių eilių tarpo elektrinė su 800 kW (modulių/keitiklių galios santykis – 1,243) instaliuotos keitiklių galios – ji generuoja 879994 kWh (884,86 kWh/kWp). Mažiausiai generuosianti saulės elektrinė – 40° posvyrio kampo bei 5 metrų tarp modulių eilių tarpo sistema su 600 kW (modulių/keitiklių galios santykis – 1,658) instaliuotų keitiklių galia – ji generuoja 678667 kWh (682,42 kWh/kWp).

Vertinant vidutiniškai visų instaliuotų galių sistemas vakarams taip pat matoma, jog efektyviausiai dirbs sistemos su 800 kW galios keitikliais. Mažiausiai efektyviai – sistemos, su 600 kW galios keitikliais. Jų efektyvumas yra vidutiniškai 6,374 % mažesnis nei sistemų su 800 kW keitiklių galia (žr. 3.14 lentelę).

	Vidutinà	Vidutinia gonoro
.14 lentelė. Vidutinės monokristalinių modulių s	sistemų generacijos r	ytų krypčiai

Sistema	Vidutinė generacija, kWh	Vidutinės generacijos nuokrypis nuo maksimalios vertės, %
Vidutinė generacija, kai instaliuotų keitiklių galia 1100 kW (modulių/keitiklių galios santykis – 0,904)	831826	0,166
Vidutinė generacija, kai instaliuotų keitiklių galia 1050 kW (modulių/keitiklių galios santykis – 0,947)	832173	0,124
Vidutinė generacija, kai instaliuotų keitiklių galia 1000 kW (modulių/keitiklių galios santykis – 0,995)	832490	0,086
Vidutinė generacija, kai instaliuotų keitiklių galia 950 kW (modulių/keitiklių galios santykis – 1,047)	832767	0,053
Vidutinė generacija, kai instaliuotų keitiklių galia 900 kW (modulių/keitiklių galios santykis – 1,105)	832996	0,026
Vidutinė generacija, kai instaliuotų keitiklių galia 850 kW (modulių/keitiklių galios santykis – 1,17)	833171	0,005
Vidutinė generacija, kai instaliuotų keitiklių galia 800 kW (modulių/keitiklių galios santykis – 1,243)	833209	0,000
Vidutinė generacija, kai instaliuotų keitiklių galia 750 kW (modulių/keitiklių galios santykis – 1,326)	832564	0,077
Vidutinė generacija, kai instaliuotų keitiklių galia 700 kW (modulių/keitiklių galios santykis – 1,421)	813905	2,317
Vidutinė generacija, kai instaliuotų keitiklių galia 650 kW (modulių/keitiklių galios santykis – 1,53)	790771	5,093
Vidutinė generacija, kai instaliuotų keitiklių galia 600 kW (modulių/keitiklių galios santykis – 1,658)	780099	6,374

Gauti rezultatai parodo, jog inverterių perkrovimas visais atvejais yra sprendimas, leidžiantis generuoti daugiau elektros energijos iš sistemų su monokristaliniais moduliais. Perkrovimas varijuoja pagal orientacijas, tačiau pagal gautus rezultatus stebimas generacijos padidėjimas 4,7 % – 24,3 % perkrovoms.

Šį padidėjimą galima paaiškinti tuo, jog modulių galia duomenų lapuose nurodoma esant standartinėms testavimo sąlygoms. Jos neįvertina fakto, jog moduliai, esant maksimalioms apšvietoms, stipriai įkaista ir jų maksimali pasiekiama momentinė galia krenta (šiuo atveju 994,5 kW galios monokristalinių modulių sistemos prie 50°C generuos tik 932 kW momentinės galios), todėl saulės elektrinės savo maksimalią teorinę galią pasiekia sąlyginai retai.

Didesnės perkrovos galimos sistemoms, nukrypusioms toliau nuo pietų. Tai galima paaiškinti mažesniu tiesioginės apšvietos į paviršių kiekiu, kas sumažina maksimalių apkrovų periodus, dėl ko nereikia didelės momentinės galios.

3.4. Ekonominė analizė

3.4.1. Parengtas įrankis ir jo veikimo analizė

Iš surinktų duomenų sukurtas įrankis, gebantis apdoroti visas keturias galimas sistemas bei nustatyti jų atsiperkamumą. Įrankis rengtas "Microsoft Office" paketo įskiepiu "Excel".

Šio įrankio veikimui reikia suvesti įvestinius duomenis (žr. 3.27 pav., rausva/gelsva spalva pažymėti langeliai):

- objekto pavadinimas;
- saulės elektrinės azimutas;
- horizontalioji apšvieta;
- FV modulių pasvirimo kampas;
- FV modulių kiekis,
- vieno FV modulio galia;
- modulio pirmų metų generacijos degradacija;
- modulio generacijos garantija po 25 metų;
- keitiklių kiekis;
- keitiklio galia;
- jei žinoma, skirtingų sistemų kaina per 1 kW (jei nežinoma, naudojami standartiniai);
- jei žinoma, preliminarūs eksploatacijos kaštai per kW (jei nežinoma, naudojami standartiniai);

• elektros kaina per kWh.

3.27 pav. Sukurto įrankio pagrindinio lango vaizdas

Pagal įvestus pradinius duomenis, apskaičiuojami pagrindiniai parametrai (žr. 3.27 pav. žalia spalva pažymėti langeliai):

- saulės elektrinės galia;
- suminė keitiklių galia;
- FV modulių/keitiklių galios santykis;
- elektrinės eksploatavimo laikotarpis;
- generacija per investuotą 1 € kiekvienai sistemai (per visą eksploatacinį laikotarpį);
- atsipirkimas (kiek € būtų uždirbta kiekvienam investuotam €);
- pateikiamas grafinis generacijų palyginimo kiekvienais metais atvaizdavimas (grafikas "Generacijų palyginimas tarp sistemų";
- pateikiamas kWh/€ generacijos per investuotą 1€ palyginimo grafikas.

Pagal visus suvestus bei standartiškai parenkamus duomenis, įrankis apskaičiuoja kiekvienų metų saulės elektrinių generacijas bei bendras sumines generacijas. Eksploatacijos kaštai įvertinti pasitelkiant Olafo Maierio (ang. Olaf Maier) atliktą eksploatacinių kaštų lentelę skirtingų galių FV parkams (žr. 3.15 lentelę) [33]. Taip pat skaičiavimuose naudojama fiksuota elektros kaina (0,23023 €/kWh) visiems skaičiavimams, visi kaštai bei investicijos vertinamos dabartine pinigų verte [34].

Galia, kW	<10	<30	<100	<300	<1000	>1000
Kaštai, €/kW	181,54	115,76	74,61	57,57	44,64	49,16

3.15 lentelė. Skirtingų galių FV sistemų eksploatacijos kaštai per 1 kW

Įrankiui validuoti buvo atliktos dviejų atsitiktinių elektrinių kiekvienai sistemai generacijų ataskaitos (1-8 priedai), taip įvertinant įrankio generacijų atitikimą realioms, "PVsyst" programine įranga susimuliuotoms vertėms.

3.4.2. Įrankio validacija. Monokristaliniai moduliai

Pirmoji elektrinė, skirta monokristalinių modulių sistemoms validuoti, yra sudaryta iš 460 vnt. 500 W galios modulių (230 kW) ir 10 vnt. 20 kW keitiklių (200 kW, modulių/keitiklių galios santykis – 1,15). Elektrinės lokacija – Kelmės rajonas (55.69, 22.51). Visi naudojami parametrai pateikti 3.28 pav. bei 1 priede.

Objekto pavadinimas	MO	NO1	1		- raikia iw	eri.											Go	noracili	upalvai	nimar	torn cir	tomu				
Saulás elektripás	mo	NOI			- TEIKIG IVE	su											Gei	neracij	4 paiygi	nimas	tarp sis	temų				
atimutar	30	•			- anekajči	iniama																				
dzimutas					- apskalch	uojama																				
vietoje	1026	kWh/m2			- jvesti jei	žinoma							300.000	0												
FV modulių posvyrio kampas	35	•	ss																						viono krista no duliai	liniai
Atstumas tarp FV modulių	8	m		Generacija	er £ (MONO)	31.123	kWh/€	Atsipirk	imas	7.1654	€ investu	1 otam f	250 000	0						_						
cinq				Generacija	e (mono)						mesta	oranie							-	-	_			-		
EV moduliu kiekis	460	vnt.		investuotą 1	€ (MONO	28.1	kWh/€	Atsipirk	imas	6.4695	€ investu	1 otam€	200000	0											Monokrista moduliai +	diniai opti
TT HIOGOIN RICKIS				Generacija	her						f	1	'e													
FV modulio galia	500	W		investuotą 1	£	30.413	kWh/€	Atsipirk	imas	7.0019	investu	• otam€	0150000	0												
				Generacija	ber						f	1	Ger												ovipusiai m	odultat
Modulio pirmų metų	2	%		investuotą 1	£	27.939	kWh/€	Atsipirk	imas	6.4324	invectu	otam f	100000	0												
generacijos degradacija				(BIFACIAL + I	OPTI)																					
Modulio generacija po 25	84.8	%		35																					the second second second	
metų				30							-		500.00	0										_	ovipusiai m opti	odullal+
Saulės elektrinės galia	230	kW		4 20																						
Keitiklių kiekis	10	vnt.		≥ 15 10																						
Keitiklio galia	20	KW		5										0					2.2				2.2	~		
Suminė inverterių galia	200	KW			Generacija pe	er G	eneracija p	er (Seneracija	per	Generacija	per		metometo	neto neto ne	cheto neto	meto meto me	net neto	meto neto ne	neto neto	meto neto ne	the rue to	net net ne	3		
FV modulių/keitiklių	1.15			inve	stuotą 1€ (M	ONO) invest	uotą 1€ (M	IONO	investuotą	1€	investuotą	1€		* * 3	, w -9	0 1 0	2 20 .	2 4 4	Nº 12 .	\$ 21 20	\$ 10	0 2 2	2" 22			
galios santykis							+ OPTI)		(BIFACIAL) (1	SIFACIAL + 0	OPTI)														
laikotarpis	25	metai						× .								-										
Kaina per kWp, jei		e	Jei nežinoma,	700	£	Eksploa	tacijos k	astai		¢	Eksploa	tacijos k	astai	57.57	e .	Viso ka	ina		174241	¢						
Zinoma (MONO)			naudojama			(jei žino	ma), €/r	netai			(jei neži	noma), i	/metai													
Kaina per kwp, jei		£	Jei nezinoma,	794	£	EKSPIDA	tacijos k	astal		£	EKSPIDA	tacijos k	astal	57.57	7€	Viso ka	ina		195861	£						
Kaina per kWp jej			haudojama			Ekcolog	ma), €/r	netai			[jei nezi	noma), i	/metal							-						
žinoma (BIEACIAL)		£	naudojama	770	¢	(iei žino	ma) f/r	netai		£	(iei neži	nomal t	/metai	57.57	₹ €	Viso ka	ina		190341	£						
Kaina per kWp, jei			Jei nežinoma.			Eksploa	tacijos k	aštai			Eksploa	tacijos k	aštai													
žinoma (BIFACIAL+OPTI)		£	naudoiama	864	¢	(iei žino	ma). ¢/r	netai		£	(iei neži	noma).	/metai	57.57	r e	Viso ka	ina		211961	£						
Elektros kaina per kWh	0.23023	£																								
Preliminarios sistemų	1 metai	2 metai	3 metai	4 metai	5 metai	6 metai	7 metai	8 metai	9 metai	10 meta	11 meta	12 meta	13 meta	14 meta	15 meta	16 meta	17 meta	18 meta	19 metal	20 meta	21 meta	22 meta	23 meta	4 metab	5 meta	Iš viso:
generacijos, kWh	a metal	- metal	Jincon	A HIGH	- metal	e metal	. metal	e metal	- metal	as meta	a mero	a meta	as mera	- / meto	- meta	as meta	a. meta	as mela	as mera	Lo meta	meta	as meto	as mera	metaz	- meta	
Monokristaliniai	234756	233269	231782	230296	228809	227322	225835	224349	222862	221375	219888	218401	216915	215428	213941	212454	210967	209481	207994	206507	205020	203534	202047	200560	199073	5422865
Monokristaliniai	238255	236746	235237	233728	232210	230711	220202	227603	226184	224675	223166	221657	220148	218630	217130	215621	214112	212603	211094	200585	208076	206567	205058	203540	202040	5503607
moduliai + opti	250255	230/40	233237	200720	232213	200/11	227202	227033	220104	aa+0/3	220100	222037	220140	213039	21/150	213021	217112	£12003	211094	202303	200070	200307	203030	200349	202040	3303037
Dvipusiai moduliai	250596	249009	247422	245835	244248	242661	241074	239487	237899	236312	234725	233138	231551	229964	228377	226790	225203	223615	222028	220441	218854	217267	215680	214093	212506	5788774
Dvipusiai moduliai + opti	256363	254739	253116	251492	249868	248245	246621	244997	243374	241750	240127	238503	236879	235256	233632	232008	230385	228761	227137	225514	223890	222267	220643	219019	217396	5921982
										_																

3.28 pav. Pirmosios monokristalinių modulių sistemoms validuoti naudojamos elektrinės duomenys bei rezultatai

Antroji elektrinė, skirta monokristalinių modulių sistemoms validuoti, yra sudaryta iš 360 vnt. 410 W galios modulių (100 kW) ir 2 vnt. 50 kW keitiklių (100 kW, modulių/keitiklių galios santykis – 1,476). Elektrinės lokacija – Šventosios rajonas (56.04 21.08). Visi naudojami parametrai pateikti 3.29 pav. bei 2 priede.

3.29 pav. Antrosios monokristalinių modulių sistemoms validuoti naudojamos elektrinės duomenys bei rezultatai

Simuliacijų "PVsyst" programine įranga ir parengtu įrankiu generacijos rezultatai skiriasi nežymiai (nuo 0,75 % iki 1,59 %) (žr. 3.16 lentelę). Tai laikoma leistina tolerancija dėl skirtingų modulių/keitiklių elektrinių parametrų ir dėl grupavimo atsirandančių efektyvumo nuostolių.

Sistema	Generacija, kWh	Skirtumas nuo "PVsyst", %
MONO1 "PVsyst"	236532	-
MONO1 įrankis	234756	0,75
MONO2 "PVsyst"	157701	-
MONO2 įrankis	160211	-1,59

3.16 lentelė. Monokristalinių sistemų įrankio ir "PVsyst" simuliacijų generacijų palyginimas

3.4.3. Įrankio validacija. Monokristaliniai moduliai su optimizatoriais

Pirmoji elektrinė, skirta monokristalinių modulių sistemoms validuoti, yra sudaryta iš 1800 vnt. 585 W galios modulių (1053 kW) ir 10 vnt. 100 kW keitiklių (1000 kW, modulių/keitiklių galios santykis – 1,053). Elektrinės lokacija – Druskininkų rajonas (54.08, 23.90). Visi naudojami parametrai pateikti 3.30 pav. bei 3 priede.

3.30 pav. Pirmosios monokristalinių modulių sistemoms su optimizatoriais validuoti naudojamos elektrinės duomenys bei rezultatai

Antroji elektrinė, skirta monokristalinių modulių sistemoms validuoti, yra sudaryta iš 800 vnt. 380 W galios modulių (304 kW) ir 10 vnt. 33,3 kW keitiklių (333,3 kW, modulių/keitiklių galios santykis – 0,913). Elektrinės lokacija – Biržų rajonas (56.43, 24.90). Visi naudojami parametrai pateikti 3.31 pav. bei 4 priede.

			ſ		(
Objekto pavadinimas	Kau	nas			- reikia įve	esti											Ge	neraciji	į palygi	nimas	tarp sis	temų				
Saulės elektrinės	90	•																								
azimutas					 apskaiči 	uojama																				
Horizontalioji apšvieta vietoje	999	kWh/m2			- jvesti jei	žinoma							300.00	0												
FV modulių posvyrio	35	•															_	_						_	Monokrist	aliniai
Antipus				Casaradia								4	25000	0 =								_		-	moduliai	
eilių	18	m		investuotą 1	€ (MONO)	24.994	kWh/€	Atsipirk	imas	5.7543	investu	ı uotam €					-		-					-		
				Generacija	per							1	20000	0										·	Monokrist	aliniai
FV moduliu kiekis	800	vnt.		investuotą 1 + OPTI)	€ (MONO	22.512	kWh/€	Atsipirk	timas	5.1829	investu	uotam €	kWh												moduliai +	opti
				Generacija	per						£	1		0												
FV modulio galia	380	W		investuota 1	£	26.156	kWh/€	Atsipirk	imas	6.0218	investu	uotam €	E.	0												
Madulia aliani anti-				Generacija	per						¢	1	Gen											_	Dvipusiai r	noduliai
Modulio pirmų metų	2	70		investuotą 1	.с	24.02	KWh/E	Atsipirk	imas	5.53	investu	iotam €	10000	0												
generacijos degradacija				(BIFACIAL + 0	OPTI)																					
Modulio generacija po 25	86	%		30																				_	Duiouriai r	noduliai.
metų				25									5000	0											opti	nou unan +
Saulės elektrinės galia	304	kW		£ 15																						
Keitiklių kiekis	10	vnt.		≩ 10																						
Keitiklio galia	33.3	kW		5										0												
Suminė inverterių galia	333	kW		0	Generacija p	er G	eneracija g	ier (Generacija	per	Generacija	per		netamet	net net n	a neta neta	neta neta ne	a nea nea	neta neta net	a nea nea	nea nea n	a nea nea	net net ne	3.		
FV modulių/keitiklių	0.913			inve	stuotą 1€ (M	IONO} invest	tuotą 1€ (I	ONON	investuotą	1€	investuota	1€		2. 2	2. 4. 2.	0.1.0	3.20.	4.4.4	2. 2.	6 2 2	\$ 20	ひひや	2 2			
galios santykis							+ OPTI)		(BIFACIAL	L) (BIFACIAL +	OPTI)														
laikotarpis	25	metai																								
Kaina per kWp, jei		£	Jei nežinoma,	700	£	Eksploa	tacijos I	caštai		e	Eksploa	tacijos k	aštai	44.6	4 €	Viso ka	ina		226371	£						
žinoma (MONO)			naudojama		•	(jei žino	oma), €/1	metai		•	(jei neži	inoma), t	€/metai							•						
Kaina per kWp, jei		£	Jei nežinoma,	794	£	Eksploa	tacijos I	caštai		£	Eksploa	tacijos k	aštai	44.6	4 £	Viso kai	ina		254947	£						
žinoma (MONO+OPTI)			naudojama			(jei žino	ma), €/r	netai			(jei neži	inoma), t	€/metai													
Kaina per kWp, jei		ε	Jei nežinoma,	770	¢	Eksploa	tacijos I	astai		£	Eksploa	itacijos k	aštai	44.6	4 E	Viso ka	ina		247651	ε						
zinoma (BIFACIAL)			naudojama		-	(jei žino	ima), €/1	netai			(jei neži	inoma), t	€/metai													
Tinoma (BIEACIAL+OPTI)		£	Jei nezinoma,	864	£	Ekspioa	tacijos	astai		¢	Ekspioa	itacijos k	astar	44.6	4 C	Viso ka	ina		276227	£						
Elektres kains per killik	0.00000		naudojama			(lei zinc	ima), t/1	netai			(jei nezi	noma),	c/metai					_								
clektros kalna per kwn	0.23025	£																								
Preliminarios sistemu																										122
generacijos kWb	1 metai	2 metai	3 metai	4 metai	5 metai	6 metai	7 metai	8 metai	9 metai	10 meta	11 meta	12 meta	13 meta	14 meta	a 15 meta	16 meta	17 meta	18 meta	19 meta	20 meta	21 meta	22 meta	23 meta	4 meta	25 meta	Iš viso:
Monokristaliniai	243349	241929	240510	239090	237671	236251	234831	233412	231992	230573	229153	227734	226314	224895	5 223475	222056	220636	219217	217797	216378	214958	213538	212119	210699	209280	5657856
Monokristaliniai																								,		
moduliai + opti	246852	245412	243972	242532	241092	239652	238212	236772	235332	233892	232452	231012	229572	228132	2 226692	225252	223812	222372	220933	219493	218053	216613	215173	213733	212293	5739309
Dvinusiai moduliai	278599	276974	275349	273724	272099	270473	268848	267223	265598	263973	262348	260722	259097	257473	2 255847	254222	252597	250971	249346	247721	246096	244471	242845	241220	239595	6477430
Dvipusiai moduliai + opti	285370	283705	282041	280376	278711	277047	275382	273717	272053	270388	268723	267059	265394	263729	262065	260400	258736	257071	255406	253742	252077	250412	248748	247083	245418	6634854
	200010	200705	202042	2000/0	2.0/14	2	2. 5502	2.0/2/	2.2000	2. 3300	200/20	20.000	200004	200723	1202000	200400	220100	22.071	200400	200746	202011	200746	2.0/40	2	2.0410	0004004

3.31 pav. Antrosios monokristalinių modulių sistemoms su optimizatoriais validuoti naudojamos elektrinės duomenys bei rezultatai

Simuliacijų "PVsyst" programine įranga ir parengtu įrankiu generacijos rezultatai skiriasi nežymiai (nuo 0,26 % iki 1,69 %) (žr. 3.17 lentelę). Tai laikoma leistina tolerancija dėl skirtingų modulių/keitiklių elektrinių parametrų ir dėl grupavimo atsirandančių efektyvumo nuostolių.

3.17 lentelė. Monokristalinių sistemų su optimizatoriais įrankio ir "PVsyst" simuliacijų generacijų palyginimas

Sistema	Generacija, kWh	Skirtumas nuo "PVsyst", %
MONO+OPTI1 "PVsyst"	1121590	-
MONO+OPTI1 įrankis	1140559	-1,69
MONO+OPTI2 "PVsyst"	247502	-
MONO+OPTI2 įrankis	246852	0,26

3.4.4. Įrankio validacija. Dvipusiai moduliai

Pirmoji elektrinė, skirta dvipusių modulių sistemoms validuoti, yra sudaryta iš 136 vnt. 550 W galios modulių (74,8 kW) ir 2 vnt. 40 kW keitiklių (80 kW, modulių/keitiklių galios santykis – 0,935). Elektrinės lokacija – Šiauliai (55.94, 23.28). Visi naudojami parametrai pateikti 3.32 pav. bei 5 priede.

																			~							
Objekto pavadinimas	BI	IF1		- reikia įvesti												Ge	neracij	ų palygi	inimas	tarp sis	temų					
Saulės elektrinės	-45	•																								
azimutas		-			 apskaiči 	uojama																				
Horizontalioji apšvieta vietoje	1026	kWh/m2			- jvesti jei	žinoma							900.00	0												
FV modulių posvyrio kampas	45	•											800.00	•											Monokrist	aliniai
Atstumas tarp FV modulių eiliu	10	m		Generacija investuota	per 1€ (MONO)	28.811	kWh/€	Atsipirk	imas	6.6331	€ investu	1 iotam€	70000	•			_			_	_		_	=		
FV modulių kiekis	136	vnt.		Generacija investuotą : + OPTI)	per L€ (MONO	26.068	kWh/€	Atsipir	timas	6.0016	€ investu	1 iotam€	60000 4My 50000	o										-	Monokrist moduliai +	aliniai • opti
FV modulio galia	550	w		Generacija investuotą :	per 1€	29.268	kWh/€	Atsipir	imas	6.7383	€ investu	1 iotam €	elpera 40000	0												
Modulio pirmų metų generacijos degradacija	2.5	%		Generacija investuotą (BIFACIAL +	per 1€ OPTI)	26.88	kWh/€	Atsipir	timas	6.1886	€ investu	1 iotam€	5 300 00	0 —											Dvipusiai r	moduliai
Modulio generacija po 25 metų	83	%		35 30					-		_		200.00	0										_	Dvipusiai r	moduliai+
Saulės elektrinės galia	74.8	kW		25									10000	0											opti	
Keitiklių kiekis	2	vnt.		\$ 15																						
Keitiklio galia	40	kW		5									0	0												
Suminė inverterių galia	80	kW		0	Concernation of		a a constitue a				Conservation of the			netal d	etal etal etal	etal etal et	etal etal	a land	netal setal of	tal setal setal	retal etal	al etal eta	retainetaine	(a)		
FV modulių/keitiklių	0.035			inv	estuotą 1€ (M	ONO) inves	tuotą 1€ (h	NONO	investuotą	1€	investuota	1€		te. 50.	3. 8. 8	6 6 1 C	P. 9, 00	4.3.3	14 5	10, 1, 10	2 20	020	24 25			
galios santykis	0.555						+ OPTI)		(BIFACIAL) ()	BIFACIAL +	OPTI)														
laikotarpis	25	metai																	_							
Kaina per kWp, jei		£	Jei nežinoma,	700	£	Eksploa	tacijos k	aštai		£	Eksploa	tacijos k	aštai	74 6	61 £	Visoka	aina		57941	£						
žinoma (MONO)			naudojama	,	~	(jei žino	oma), €/r	netai			(jei než	inoma),	C/metai	1.4.4		1130 11			51544	•						
Kaina per kWp, jei		¢	Jei nežinoma,	794	¢	Eksploa	tacijos k	aštai		ε	Eksploa	tacijos k	aštai	74.6	61 €	Viso ka	aina		64972	ε						
zinoma (MONO+OPTI)			naudojama			(jei žino	oma), €/r	netai			(jei než	noma),	C/metai													
Kaina per kwp, jei		ε	Jei nezinoma,	770	£	EKSPIOA	tacijos i	astar		¢	EKSPIOa	tacijos k	astai	74.6	61 €	Viso ka	aina		63177	£						
Kaina per kWp. jej			haudojama			Ekcolor	tacijor k	netal	-		Ekcolor	tacijor k	e/metal							_						
žinoma (BIFACIAL+OPTI)		£	naudojama	864	£	(iei žino	ma) f/r	metai		€	(iei než	inomal	E/metai	74.6	61 €	Viso ka	aina		70208	£						
Elektros kaina per kWh	0 23023	£	lidddojallid			iller zine	1107, 671	netur			il critice	nonio),	c/ mc corr													
		-																								
Preliminarios sistemu				1				<u> </u>									T	<u> </u>						- 1		176
generacijos, kWh	1 metai	2 metai	3 metai	4 metai	5 metai	6 metai	7 metai	8 metai	9 metai	10 meta	11 meta	12 meta	13 meta	14 met	ta 15 met	a 16 meta	a 17 meta	18 meta	19 meta	20 meta	21 meta	22 meta	23 meta	24 metal	25 meta	Iš viso:
Monokristaliniai	72975	72458	71941	71424	70908	70391	69874	69357	68840	68323	67806	67289	66772	6625	5 65739	65222	64705	64188	63671	63154	62637	62120	61603	61086	60569	1669308
Monokristaliniai		-		-			-	-																		
moduliai + opti	/4040	73516	/2991	/2467	/1943	/1418	70894	70369	69845	69320	68796	68271	6/147	6722.	66698	66174	65649	65125	64600	64076	63551	63027	62502	61978	61454	1693673
Dvipusiai moduliai	80832	80259	79687	79114	78542	77969	77397	76824	76252	75679	75106	74534	73961	7338	9 72816	5 72244	71671	71098	70526	69953	69381	68808	68236	67663	67091	1849032
Dvipusiai moduliai + opti	82500	81916	81331	80747	80163	79578	78994	78409	77825	77241	76656	76072	75488	7490	3 74319	73734	73150	72566	71981	71397	70813	70228	69644	69059	68475	1887188

3.32 pav. Pirmosios dvipusių modulių sistemoms validuoti naudojamos elektrinės duomenys bei rezultatai

Antroji elektrinė, skirta dvipusių modulių sistemoms validuoti, yra sudaryta iš 1520 vnt. 340 W galios modulių (516,8 kW) ir 20 vnt. 20 kW keitiklių (400 kW, modulių/keitiklių galios santykis – 1,292). Elektrinės lokacija – Pagegių rajonas (55.10, 22.09). Visi naudojami parametrai pateikti 3.33 pav. bei 6 priede.

3.33 pav. Antrosios dvipusių modulių sistemoms validuoti naudojamos elektrinės duomenys bei rezultatai

Simuliacijų "PVsyst" programine įranga ir parengtu įrankiu generacijos rezultatai skiriasi nežymiai (nuo 0,6 % iki 1,6 %) (žr. 3.18 lentelę). Tai laikoma leistina tolerancija dėl skirtingų modulių/keitiklių elektrinių parametrų ir dėl grupavimo atsirandančių efektyvumo nuostolių.

Sistema	Generacija, kWh	Skirtumas nuo "PVsyst", %
BIF1 "PVsyst"	79556	-
BIF1 įrankis	80832	-1,6
BIF2 "PVsyst"	511704	-
BIF2 įrankis	514754	-0,6

3.18 lentelė. Dvipusių sistemų įrankio ir "PVsyst" simuliacijų generacijų palyginimas

3.4.5. Įrankio validacija. Dvipusiai moduliai su optimizatoriais

Pirmoji elektrinė, skirta dvipusių modulių sistemoms su optimizatoriais validuoti, yra sudaryta iš 1104 vnt. 550 W galios modulių (607,2 kW) ir 12 vnt. 40 kW keitiklių (480 kW, modulių/keitiklių galios santykis – 1,265). Elektrinės lokacija – Dievėniškės (54.19, 25.62). Visi naudojami parametrai pateikti 3.34 pav. bei 7 priede.

3.34 pav. Pirmosios dvipusių modulių sistemoms su optimizatoriais validuoti naudojamos elektrinės duomenys bei rezultatai

Antroji elektrinė, skirta dvipusių modulių sistemoms validuoti, yra sudaryta iš 25000 vnt. 340 W galios modulių (8500 kW) ir 250 vnt. 33,3 kW keitiklių (8325 kW, modulių/keitiklių galios santykis – 1,022). Elektrinės lokacija – Skuodo rajonas (56.16, 21.24). Visi naudojami parametrai pateikti 3.35 pav. bei 8 priede.

				2																					
Objekto pavadinimas	BIF+OPTI2		- reikia įvesti													G	eneracij	y palygi	nimas ta	arp siste	my				
Saulès elektrinès	AE 9																								
azimutas	45			- apskaiči	uojama																				
Horizontalioji apšvieta	1095 KW	1007																							
vietoje	1000 844	/11/2		- jvesti jei	žinoma							1200000	0												
FV modulių posvyrio	40.9																						_	Monokristal	iniai
kampas	40		-		_							1000000	0											moduliai	
Atstumas tarp FV modulių	11		Generacija	per	22 7659	White le	Atcipicki		7 54267	£ 1 inune	tuotam f	1000000					_								
eiliy	11 10		investuota 1	L€ (MONO)	52.7058	Kyvii/s	AGIPIIK	IIIdə	7.34307	e i mves	cuotani e		_	-	-					_	_	_			
			Generacija	per								800.000	0				-		-		_		_	Monokristal	iniai
	25000 vnt.		investuota 1	L€ (MONO	29.5405	kWh/€	Atsipirki	mas	6.80111	€1 inves	tuotam 🕻	5												moduliai + o	pti
FV modulių kiekis			+ OPTI)									, KM													
/	340 W		Generacija	per	32 8317	Wh/F	Ateinicki	mar	7 55995	£1 inver	tuotam f		0												
FV modulio galia	340 11		investuota 1	l¢	52.0517	KWIII/C	AGIPTIK	11103	7.55005	e I mes	itootoin e	lera												-	
			Generacija	per								Ger											_	ovipusiai mi	duliai
Modulio pirmų metų	3 %		investuotą 1	l€	30.1079	kWh/€	Atsipirki	mas	6.93174	¢1 inves	tuotam 🕻	400 000	10												
generacijos degradacija			(BIFACIAL +)	OPTI)																					
Modulio generacija po 25	86 %		35					_																	
metų			30									200.000	0										_	Ovipusiai mi ooti	duliai+
Saulės elektrinės galia	8500 kW		/4 20																						
Keitiklių kiekis	250 vnt.		≦ 15																						
Keitiklio galia	33.3 kW		5										0									S. 161.1			
Suminė inverterių galia	8325 kW		0	Generaciia p	er	Generaciia	per	Generacija	per	Generacija	per		meta meta	nero nero ne	a neta neta	neo neo ne	a nea neta	net ret ret	neo neo	neo neo ne	" neo neo.	net net net	p.		
FV modulių/keitiklių	1.022		in	vestuotą 1€ (N	tono) inve	stuotą 1€ (N	AONO + inve	stuotą 1€ (8	IFACIAL) inv	estuotą 1€ (8	BIFACIAL		1. 2. 3	b. 9.	0.1.0	0. 20	233	2 2	6 2 4	\$ 20	000	24 23			
galios santykis						OPTI)				+ OPTI)															
laikotarpis	25 met	ai												_			_		_	1					
Kaina per kWp, jei	¢	Jei nežinoma,	700	ε	Eksploat	acijos ka	štai (jei		ε	Eksploat	acijos ka	stai (jei	49.16	ε	Viso kai	na		6367860	ε						
zinoma (MONO)		naudojama			žinoma),	€/metai	X			nežinom	ia), €/met	ai								-					
Kaina per kwp, jei	¢	Jei nezinoma,	794	¢	Eksploat	acijos ka	stai (jei		£	Ekspioat	acijos ka	stai (jei	49.16	¢	Viso kai	na		7166860	¢						
Zinoma (wowo+oPTI)		naudojama			zinoma),	t/metal	žtal (lai			Ekcologi	a), t/met	ai ftai (iai								1					
žinoma (BIFACIAL)	e	naudojama	770	¢	žinomal	f/metai	star (jer		£	nežinom	alijus ka	ai	49.16	¢	Viso kai	na		6962860	¢						
Kaina per kWp, jei		Jei nežinoma.			Eksploat	aciios ka	štai (iei			Eksploat	aciios ka	tai (iei								1					
žinoma (BIFACIAL+OPTI)	¢	naudojama	864	¢	žinoma),	€/metai			¢	nežinom	a), €/met	ai	49.16	ε	Viso kai	na		7761860	\$	1					
Elektros kaina per kWh	0.23023 €																								
Preliminarios sistemu	5									20.00															10000
generacijos, kWh	1 metai 2 m	etai 3 metai	4 metai	5 metai	6 metai	7 metai	8 metai	9 metai	10 metai	11 metai	12 metai	13 metai	14 metai	15 metai	16 metai	17 metai	18 metai	19 metai	20 metai	21 metai	22 metai	23 metai	24 metai	25 metai	Iš viso:
Monokristaliniai	8974112 892	763 8869414	8817065	8764716	8712367	8660018	8607669	8555320	8502971	8450622	8398273	8345924	8293575	8241226	8188877	8136528	8084179	8031830	7979481	7927132	7874783	7822434	7770085	7717736	208648109
Monokristaliniai																									
moduliai + opti	9105924 905	806 8999688	8946570	8893452	8840334	8787216	8734098	8580981	8627863	8574745	8521627	8468509	8415391	8362273	8309155	8256037	8202920	8149802	8096684	8043566	7990448	7937330	7884212	7831094	211712724
Dvipusiai moduliai	9832372 977	016 9717661	9660305	9602950	9545594	9488239	9430883	9373528	9316172	9258817	9201461	9144106	9086750	9029395	8972039	8914684	8857328	8799973	8742617	8685262	8627906	8570551	8513195	8455840	228602646
		000 000 000 000 0	0075405	0010700	0750150	0000507	000000	0593361	0532630	0464006	0406262	0247721	0380008	0320465	0171923	0112200	0054567	2005024	9027202	0070550	9920026	9761402	9703771	0044400	

3.35 pav. Antrosios dvipusių modulių sistemoms su optimizatoriais validuoti naudojamos elektrinės duomenys bei rezultatai

Simuliacijų "PVsyst" programine įranga ir parengtu įrankiu generacijos rezultatai skiriasi nežymiai (nuo 1,16 % iki 1,19 %) (žr. 3.19 lentelę). Tai laikoma leistina tolerancija dėl skirtingų modulių/keitiklių elektrinių parametrų ir dėl grupavimo atsirandančių efektyvumo nuostolių.

Sistema	Generacija, kWh	Skirtumas nuo "PVsyst", %
BIF+OPTI1 "PVsyst"	665488	-
BIF+OPTI1 įrankis	657569	1,19
BIF+OPTI2 "PVsyst"	10168897	-
BIF+OPTI2 įrankis	10051323	1,16

3.19 lentelė. Dvipusių sistemų įrankio ir "PVsyst" simuliacijų generacijų palyginimas

Išvados

- Buvo apžvelgti saulės elektrinių efektyvumą lemiantys faktoriai, tokie kaip tinkamas įrangos parinkimas bei šešėliavimo įtaka. Visi tyrimai buvo orientuoti į keturių sistemų – monokristalinių ir dvipusių modulių su ir be optimizatorių palyginimą skirtingomis orientacijomis (nuo rytų iki vakarų) nuo tiesiog dėl apšvietos atsirandančių skirtumų iki konkrečių generuojamos elektros skirtumų įvertinant visus nuostolius.
- 2. Atlikta apšvietos į modulių pasvirimo kampą ("GlobInc") analizė FV sistemoms, kurių azimutas nuo -90° iki 90°. Vertės varijuoja nuo 1017 kWh/m² rytų kryptimi ir 1022 kWh/m² vakarų kryptimi iki 1232 kWh/m² pietų kryptimi. Pastebėta, jog ties 70° ir didesniu azimutu sistemos tampa efektyvesnės mažinant konstrukcijos posvyrio kampą.
- 3. Atlikta efektyvios apšvietos įvertinus optinius nuostolius ("GlobEff") analizė FV sistemoms, kurių azimutas nuo -90° iki 90°. Nustatyta, jog dvipusių modulių "GlobEff" vertė vidutiniškai padidėja nuo 6,16 % pietų kryptimi orientuotoms sistemoms iki 10,71 % į rytus orientuotoms sistemoms lyginant su monokristaliniais vienpusiais moduliais. Taip pat nustatyta, jog "GlobEff" vertės tiesiškai priklauso nuo modulių posvyrio kampo visoms sistemoms.
- 4. Atliktos 994,5 kW FV sistemos generacijų simuliacijos generacijai įvertinti, atsižvelgiant į visus elektrinius bei konversijos nuostolius ("E_Grid"). Nustatyta, jog efektyviausia sistema dvipusių modulių sistema į pietus, generuosianti 1186,32 kWh/kWp. Mažiausiai efektyvi sistema rytų kryptimi orientuota monokristalinių modulių sistema, generuosianti 885,2 kWh/kWp. Vertinant visų sistemų generuojamą elektros kiekį visomis kryptimis, daugiausiai generuojančios sistemos sudarytos iš dvipusių modulių su optimizatoriais (1059,79 kWh/kWp), mažiausiai generuojančios sistemos sudarytos iš monokristalinių modulių (958,09 kWh/kWp, 9,6 % sumažėjimas nuo efektyviausios sistemos).
- 5. Nustatytas optimizatorių padidinamas generuojamas elektros kiekis visoms sistemoms. Monokristalinių modulių sistemoms optimizatoriai generaciją padidina nuo 1,39 % iki 1,44 %, dvipusių modulių sistemoms – nuo 2,49 % iki 3,68 %.
- 6. Nustatyta atstumo tarp modulių eilių įtaka elektrinių generacijai. Apskaičiuota, jog atstumo įtaka yra ženkliai didesnė dvipusių modulių sistemoms (nuo 10,32 % ir 10,63 % pietų krypties sistemoms iki 29,95 % ir 30,23 % rytų krypties sistemoms) nei monokristalinių modulių sistemoms (nuo 5,12 % ir 5,14 % pietų krypties sistemoms iki 17,9 % ir 17,89 % rytų krypties sistemoms).
- Atlikta keitiklių ir modulių galių koreliacijos analizė. Nustatyta, jog efektyviausiai generuos sistemos, kurių keitiklių/modulių galios santykis yra 1,17 (vakarai), 1,047 (pietvakariai ir pietūs), 1,105 (pietryčiai), 1,243 (rytai). Mažiausiai efektyviai kai santykis 1,658 (visoms sistemoms), šios sistemos generuoja nuo 6,374 % rytų sistemoms iki 9,766 % pietų sistemoms.
- 8. Sukurtas įrankis, gebantis pagal surinktus (orientacija, posvyrio kampas, azimutas, horizontalioji apšvieta, modulių/keitiklių galios santykis ir kt.) duomenis preliminariai nustatyti įvairių sistemų generacijas bei jų preliminarų atsiperkamumą. Įrankio tikslumas įvertintas apskaičiuotas vertes lyginant su "PVsyst" programinės įrangos paketo gautomis vertėmis įvairioms (atsitiktinėms) sistemoms. Gautos paklaidos siekia nuo 0,26 % iki 1,69 %, todėl buvo priimta, jog įrankio patikimumas yra tinkamas.

Literatūros sąrašas

- 1. EnerData "Electricity domestic consumption" (2020) Prieiga per internetą: <u>https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html.</u> [žiūrėta 2022-05-13]
- EnerData "Global Energy & Climate Outlook 2050" (2021) Prieiga per internetą: <u>https://eneroutlook.enerdata.net/forecast-world-electricity-consumption.html.</u> [žiūrėta 2022-05-14]
- United States Environmental Protection Agency "Sources of Greenhouse Gas Emissions" Prieiga per internetą: <u>https://climatechange.chicago.gov/ghgemissions/sources-greenhouse-gas-emissions.</u> [žiūrėta 2022-05-13]
- 4. Center for Climate and Energy Solutions "Renewable Energy" Prieiga per internetą: <u>https://www.c2es.org/content/renewable-energy/.</u> [žiūrėta 2022-05-14]
- 5. IEA (2021), Solar PV, IEA, Paris. Prieiga per internetą: https://www.iea.org/reports/solar-pv. [žiūrėta 2022-05-13]
- Lumb, M. P., Mack, S., Schmieder, K. J., González, M., Bennett, M. F., Scheiman, D., Meitl, M., Fisher, B., Burroughs, S., Lee, K.-T., Rogers, J. A., Walters, R. J., Adv. Energy Mater. 2017, 7, 1700345. Prieiga per internetą: <u>https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2Faenm.201700345.</u> [žiūrėta 2022-05-14]
- 7. Petrauskas, Gytis, & Adomavičius, Vytautas. (2012). Saulės energijos naudojimas elektrai gaminti: mokomoji knyga (p. 120). Technologija.
- S. Kouro, J. I. Leon, D. Vinnikov and L. G. Franquelo, "Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology," in IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 47-61, March 2015, doi: 10.1109/MIE.2014.2376976. Prieiga per internetą: https://ieeexplore.ieee.org/abstract/document/7063884. [žiūrėta 2022-05-13]
- 9. Engineering.com "Photovoltaics" Prieiga per internetą: https://www2.engineering.com/SustainableEngineering/RenewableEnergyEngineering/Solar EnergyEngineering/Photovoltaics/tabid/3890/Default.aspx. [žiūrėta 2022-05-14]
- Boxwell, M. (2010). Solar electricity handbook: A simple, practical guide to solar energydesigning and installing photovoltaic solar electric systems. Greenstream publishing., ISBN 978-1907670718. [žiūrėta 2022-05-14]
- 11. Kai Wang, Dong Yang, Congcong Wu, Joe Shapter, Shashank Priya, Mono-crystalline Perovskite Photovoltaics toward Ultrahigh Efficiency?, Joule, Volume 3, Issue 2, (2019), ISSN 2542-4351. [žiūrėta 2022-05-14]
- 12. Jason Svarc "Most Efficient solar panels 2022" Prieiga per internetą: https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels. [žiūrėta 2022-05-14]
- EnergySage "Monocrystalline and polycrystalline solar panels: what you need to know" (2020-07) Prieiga per internetą:

https://www.energysage.com/solar/101/monocrystalline-vs-polycrystalline-solar-panels/

- 14. SolarReviews "What are thin film solar panels, how do they work and why aren't they used for residential solar systems?" Prieiga per internetą: https://www.solarreviews.com/blog/thin-film-solar-panels. [žiūrėta 2022-05-14]
- 15. Nick Lusson "Bifacial modules: The challenges and advantages" (2020-09) Prieiga per interneta:

https://www.pv-magazine.com/2020/08/19/bifacial-modules-the-challenges-and-advantages/ [žiūrėta 2022-05-14]

- 16. Priyanka Roy, Numeshwar Kumar Sinha, Sanjay Tiwari, Ayush Khare, "A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status", Solar Energy, Volume 198,2020., ISSN 0038-092X. Prieiga per internetą: <u>https://www.sciencedirect.com/science/article/abs/pii/S0038092X20300888</u> [žiūrėta 2022-05-14]
- 17. <u>ScienceNews</u> "perovskite power up the solar industry" Prieiga per internetą <u>https://www.sciencenews.org/article/perovskites-power-solar-industry</u> [žiūrėta 2022-05-15]
- 18. Zekry, Abdelhalim & Abdalrahman, Ahmed. (2013). Digital Control Techniques for Grid-Connected Inverters. Prieiga per internetą: <u>https://www.researchgate.net/publication/259373981_Digital_Control_Techniques_for_Gri</u> <u>d-Connected_Inverters</u> [žiūrėta 2022-05-14]
- P. M. Bhagwat and V. R. Stefanovic, "Generalized Structure of a Multilevel PWM Inverter," in IEEE Transactions on Industry Applications, vol. IA-19, no. 6, pp. 1057-1069, Nov. 1983, doi: 10.1109/TIA.1983.4504335. [žiūrėta 2022-05-14]
- 20. S. Mekhilef, M. E. Ahmed and M. A. A. Younis, "Performance of grid connected photovoltaic inverter with maximum power point tracker and power factor control," 2008 Canadian Conference on Electrical and Computer Engineering, 2008, pp. 001129-001134, doi: 10.1109/CCECE.2008.4564714. Prieiga per interneta: https://ieeexplore.ieee.org/abstract/document/4564714 [žiūrėta 2022-05-15]
- 21. S.K.Soonee, Vineeta Agrawal, Suruchi Jain "Reactive power and system frequency relationship: a case study" (2009-02) [žiūrėta 2022-05-15]
- 22. Corba, Zoltan & Katic, Vladimir & Dumnic, Boris & Milicevic, Dragan. (2012). In-grid solarto-electrical energy conversion system modeling and testing. Thermal Science. 16. 10.2298/TSCI120224069C. Prieiga per internetą: <u>https://www.researchgate.net/publication/260350341_In-grid_solar-toelectrical_energy_conversion_system_modeling_and_testing</u> [žiūrėta 2022-05-15]
- 23. Özgür Çelik, Ahmet Teke, Adnan Tan, Overview of micro-inverters as a challenging technology in photovoltaic applications, Renewable and Sustainable Energy Reviews, Volume 82, Part 3 (2018), ISSN 1364-0321. Prieiga per internetą: <u>https://www-sciencedirect com.ezproxy.ktu.edu/science/article/pii/S1364032117313850?via%3Dihub</u> [žiūrėta 2022-05-15]
- 24. Corba, Zoltan & Katic, Vladimir & Dumnic, Boris & Milicevic, Dragan. (2012). In-grid solar-to-electrical energy conversion system modeling and testing. Thermal Science. 16. 10.2298/TSCI120224069C. Prieiga per internetą: https://www.researchgate.net/publication/260350341_In-grid_solar-to-electrical energy conversion system modeling and testing [žiūrėta 2022-05-15]
- 25. P. Tsao, "Simulation of PV systems with power optimizers and distributed power electronics," (2010) 35th IEEE Photovoltaic Specialists Conference, doi: 10.1109/PVSC.2010.5616814. Prieiga per internetą: <u>Simulation of PV systems with power optimizers and distributed power</u> <u>electronics | IEEE Conference Publication | IEEE Xplore [žiūrėta 2022-05-15]</u>
- 26. Kathie Zipp "How do power optimizers help harvest more energy from solar projects?" (2015) Prieiga per internetą: <u>https://www.solarpowerworldonline.com/2015/11/23495/</u> [žiūrėta 2022-05-15]

- 27. Lucas de Souza Silva, João & Moreira, Hugo & Mesquita, Daniel & Villalva, Marcelo. (2019). Analysis of Power Optimizers in Photovoltaic Power Plant. Prieiga per internetą: (PDF) Analysis of Power Optimizers in Photovoltaic Power Plant (researchgate.net) [žiūrėta 2022-05-15]
- 28. Scott Partlin "SMA Module Level Optimization Make More Energy & Money" Prieiga per internetą: <u>SMA Module Level Optimization - Make More Energy & Money - Sunny. SMA Corporate</u> Blog (sma-sunny.com). [žiūrėta 2022-05-15]
- 29. SolarEdge "Technical Note Bypass Diode Effects in Shaded Conditions" Prieiga per internetą: <u>se_technical_bypass_diode_effect_in_shading.pdf (solaredge.com). [žiūrėta 2022-05-15]</u>
- Finn Peacock "Solar Panel Optimisation: Micro inverters, DC Optimisers, AC Solar Panels & Maxim Explained.". Prieiga per internetą: <u>https://www.solarquotes.com.au/blog/solarpanel-optimisation/.</u> [žiūrėta 2022-05-15]
- 31. Baik, Sungsun & Baek, Seungyup & Jung, Tae-Wook & Cho, Jin-Hyng. (2013). A Study on Validity of Anti-PID Technology of Solar Cell for the High Reliability of Photovoltaics System. Journal of Society of Korea Industrial and Systems Engineering, DOI:10.11627/jkise.2013.36.2.32. Prieiga per interneta: <u>A Study on Validity of Anti-PID Technology of Solar Cell for the High Reliability of</u> <u>Photovoltaics System | Request PDF (researchgate.net). [žiūrėta 2022-05-15]</u>
- 32. Arian Bahrami, Chiemeka Onyeka Okoye, The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere, Renewable and Sustainable Energy Reviews, Volume 97, 2018. ISSN 1364-0321. Prieiga per internetą: <u>https://www.sciencedirect.com/science/article/abs/pii/S1364032118306191.</u> [žiūrėta 2022-05-15]
- 33. Maier, Olaf. (2015). Operation & Maintenance Costs of Photovoltaic Power Plants: a Swiss Benchmark and Outlook. 10.13140/RG.2.1.4644.8164. Prieiga per interneta: <u>https://www.researchgate.net/publication/275097313_Operation_Maintenance_Costs_of_Photovoltaic_Power_Plants_a_Swiss_Benchmark_and_Outlook</u> [žiūrėta 2023-05-06]
- 34. Nord Pool biržos duomenys (2022) Prieiga per internetą: <u>https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/LT/Yearly/?view=table</u> [žiūrėta 2023-05-06]

Priedai

1 priedas. Įrankio patikrinimo generacijos ataskaita "MONO1";

2 priedas. Įrankio patikrinimo generacijos ataskaita "MONO2";

3 priedas. Įrankio patikrinimo generacijos ataskaita "MONO+OPTI1";

4 priedas. Įrankio patikrinimo generacijos ataskaita "MONO+OPTI2";

5 priedas. Įrankio patikrinimo generacijos ataskaita "BIF1";

6 priedas. Įrankio patikrinimo generacijos ataskaita "BIF2";

7 priedas. Įrankio patikrinimo generacijos ataskaita "BIF+OPTI1";

8 priedas. Įrankio patikrinimo generacijos ataskaita "BIF+OPTI2".

PVsyst - Simulation report

Grid-Connected System

Project: MONO 1 Variant: New simulation variant Unlimited sheds System power: 230 kWp Pagirgždūtė - Lithuania

> Author UAB Energia futura (Lithuania)

Project: MONO 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 18:30 with v7.3.4

Project summary										
Geographical Site	Situation		Project setting	S						
Pagirgždūtė	Latitude	55.69 °N	Albedo	0.20						
Lithuania	Longitude	22.51 °E								
	Altitude	186 m								
	Time zone	UTC+2								

Meteo data Pagirgždūtė

Meteonorm 8.1 (2007-2017), Sat=100% - Synthetic

		—— System s	ummary ——			
Grid-Connected S	ystem	Unlimited sheds				
PV Field Orientation	on	Near Shadings		User's needs		
Sheds		Mutual shadings of sh	eds	Unlimited load (grid)	
Tilt	35 °					
Azimuth	30 °					
System informatio	on					
PV Array			Inverters			
Nb. of modules		460 units	Nb. of units		10 units	
Pnom total		230 kWp	Pnom total		200 kWac	
			Pnom ratio		1.150	
		Results s	ummary ——			
Produced Energy	236532 kWh/year	Specific production	1028 kWh/kWp/year	Perf. Ratio PR	85.27 %	
		Table of a	contents ——			
Proiect and results su	immarv					2
General parameters.	PV Arrav Characteristic	s. Svstem losses				3
Main results	, <u>.</u>	, ,				5
Loss diagram						6
Predef, graphs						7

Predef. graphs _____ Single-line diagram

8

Project: MONO 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

		General param	neters –		
Grid-Connected	System	Unlimited sheds			
PV Field Orienta	ition				
Orientation		Sheds configuration		Models used	
Sheds		Nb. of sheds	10 units	Transposition	Perez
Tilt	35 °	Unlimited sheds		Diffuse Pe	erez, Meteonorm
Azimuth	30 °	Sizes		Circumsolar	separate
		Sheds spacing	8.00 m		
		Collector width	3.00 m		
		Ground Cov. Ratio (GCR)	37.5 %		
		Top inactive band	0.02 m		
		Bottom inactive band	0.02 m		
		Shading limit angle			
		Limit profile angle	17.4 °		
Horizon		Near Shadings		User's needs	
Free Horizon		Mutual shadings of sheds		Unlimited load (g	grid)

	PV Array C	haracteristics —	
PV module		Inverter	
Manufacturer	Longi Solar	Manufacturer	Fronius International
Model	LR5-66HPH-500M G2	Model	Symo 20.0-3-M
(Original PVsyst database)		(Original PVsyst databa	ase)
Unit Nom. Power	500 Wp	Unit Nom. Power	20.0 kWac
Number of PV modules	460 units	Number of inverters	10 units
Nominal (STC)	230 kWp	Total power	200 kWac
Array #1 - PV Array			
Number of PV modules	280 units	Number of inverters	10 * MPPT 0.55 5.5 units
Nominal (STC)	140 kWp	Total power	122 kWac
Modules	20 Strings x 14 In series		
At operating cond. (50°C)		Operating voltage	200-800 V
Pmpp	128 kWp	Pnom ratio (DC:AC)	1.15
U mpp	483 V		
l mpp	266 A		
Array #2 - Sub-array #2			
Number of PV modules	180 units	Number of inverters	10 * MPPT 0.45 4.5 units
Nominal (STC)	90.0 kWp	Total power	78.3 kWac
Modules	10 Strings x 18 In series		
At operating cond. (50°C)		Operating voltage	200-800 V
Pmpp	82.5 kWp	Pnom ratio (DC:AC)	1.15
U mpp	620 V		
l mpp	133 A		
Total PV power		Total inverter power	
Nominal (STC)	230 kWp	Total power	200 kWac
Total	460 modules	Number of inverters	10 units
Module area	1092 m²	Pnom ratio	1.15
Cell area	1011 m²		

Project: MONO 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

			A	Array loss	es			
Array Soiling	g Losses		Thermal Los	ss factor		LID - Ligh	nt Induced De	gradation
Loss Fraction	1	.0 %	Module tempe	rature accor	ding to irradiance	Loss Fracti	on	2.0 %
			Uc (const)		29.0 W/m²K			
			Uv (wind)		0.0 W/m²K/m/s			
Module Qual	ity Loss							
Loss Fraction	-0	.8 %						
Module misn Array #1 - PV /	natch losses Array							
Loss Fraction			2.0 % at MPP					
Array #2 - Sub	-array #2							
Loss Fraction			2.0 % at MPP					
IAM loss fact Incidence effec	tor t (IAM): User de	efined profile						1
0°	25°	45°	60°	65°	70°	75°	80°	90°
	1 000	0.005	0.062	0.026	0.002	0.951	0.754	0.000

		DC wi	ring losses ————	
Global wiring resistance	10 mΩ			
Loss Fraction	1.5 % at STC			
Array #1 - PV Array			Array #2 - Sub-array #2	
Global array res.		30 mΩ	Global array res.	77 mΩ
Loss Fraction		1.5 % at STC	Loss Fraction	1.5 % at STC
Inv. output line up to i	njection point	AC wi	ring losses ————	
Inverter voltage		400 Vac tri		
Loss Fraction		1.00 % at STC		
Global System				
Wire section	Alu 3	x 300 mm²		
Wires length		68 m		

Project: MONO 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

Main results

System Production Produced Energy

236532 kWh/year

Specific production Perf. Ratio PR 1028 kWh/kWp/year 85.27 %

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	14.7	8.13	-3.83	31.6	26.1	6009	5800	0.797
February	30.8	16.92	-3.60	52.2	47.2	10884	10548	0.878
March	78.8	38.28	0.16	108.4	101.9	22983	22294	0.894
April	118.7	57.80	6.31	141.3	133.6	29425	28536	0.878
Мау	162.9	73.82	11.82	171.9	162.0	34900	33823	0.855
June	165.5	81.23	14.64	165.6	155.7	33193	32152	0.844
July	165.7	79.61	17.63	165.9	155.7	32899	31874	0.835
August	132.3	67.43	16.70	149.0	140.5	29925	29005	0.846
September	87.1	43.91	11.95	109.6	103.4	22403	21715	0.861
October	44.6	25.31	6.53	65.0	60.1	13288	12861	0.861
November	15.8	10.52	2.69	29.1	24.1	5406	5199	0.778
December	8.9	6.70	-0.73	16.4	12.6	2860	2725	0.721
Year	1025.9	509.67	6.75	1206.1	1122.7	244175	236532	0.853

Legends

	,			
Glob	Hor	Global horizontal irradiation	EArray	Effective energy at the output of the array
Diff	lor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_A	mb	Ambient Temperature	PR	Performance Ratio
Glob	olnc	Global incident in coll. plane		
Glob	bEff	Effective Global, corr. for IAM and shadings		

Project: MONO 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

Loss diagram

1026 kWh/m² **Global horizontal irradiation** +17.6% Global incident in coll. plane -4.02% Near Shadings: irradiance loss -2.03% IAM factor on global -1.00% Soiling loss factor 1123 kWh/m² * 1092 m² coll. Effective irradiation on collectors efficiency at STC = 21.10% PV conversion 258727 kWh Array nominal energy (at STC effic.) ♦-1.09% PV loss due to irradiance level → -0.48% PV loss due to temperature **∢+**0.75% Module quality loss €2.00 (∀ LID - Light induced degradation ⇒-2.09% Mismatch loss, modules and strings ♦ -0.80% Ohmic wiring loss 244223 kWh Array virtual energy at MPP €2.64% (¢ Inverter Loss during operation (efficiency) →-0.02% Inverter Loss over nominal inv. power ₩0.00 Inverter Loss due to max. input current ₩0.00 Inverter Loss over nominal inv. voltage →-0.02% Inverter Loss due to power threshold ∕0.00% ל Inverter Loss due to voltage threshold 237696 kWh Available Energy at Inverter Output → -0.49% AC ohmic loss 236532 kWh Energy injected into grid

Project: MONO 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst - Simulation report

Grid-Connected System

Project: MONO 2 Variant: New simulation variant Unlimited sheds System power: 148 kWp Šventoji - Lithuania

> Author UAB Energia futura (Lithuania)

Project: MONO 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 18:43 with v7.3.4

Project summary —					
Geographical Site	Situation		Project setting	s	
Šventoji	Latitude	56.04 °N	Albedo	0.20	
Lithuania	Longitude	21.08 °E			
	Altitude	11 m			
	Time zone	UTC+2			

Meteo data Šventoji

Meteonorm 8.1 (2007-2017), Sat=17% - Synthetic

		—— System s	ummary ——			
Grid-Connected Sy	stem	Unlimited sheds				
PV Field Orientation	n	Near Shadings		User's needs		
Sheds		Mutual shadings of sh	eds	Unlimited load (grid)	
Tilt	15 °					
Azimuth	-15 °					
System information	1					
PV Array			Inverters			
Nb. of modules		360 units	Nb. of units		2 units	
Pnom total		148 kWp	Pnom total		100 kWac	
			Pnom ratio		1.476	
		—— Results s	ummary ——			
Produced Energy	157701 kWh/year	Specific production	1068 kWh/kWp/year	Perf. Ratio PR	87.12 %	
		—— Table of c	contents —			
Proiect and results sum	nmarv					2
General parameters. P	V Arrav Characteristic	s. System losses				3
Main results	····, ····					5
Loss diagram						6
Predef. graphs						7

Single-line diagram

8

Project: MONO 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

		General param	neters –		
Grid-Connected	System	Unlimited sheds			
PV Field Orientat	ion				
Orientation		Sheds configuration		Models used	
Sheds		Nb. of sheds	10 units	Transposition	Perez
Tilt	15 °	Unlimited sheds		Diffuse F	Perez, Meteonorm
Azimuth	-15 °	Sizes		Circumsolar	separate
		Sheds spacing	14.0 m		
		Collector width	3.00 m		
		Ground Cov. Ratio (GCR)	21.4 %		
		Top inactive band	0.02 m		
		Bottom inactive band	0.02 m		
		Shading limit angle			
		Limit profile angle	4.0 °		
Horizon		Near Shadings		User's needs	;
Free Horizon		Mutual shadings of sheds		Unlimited load ((grid)

	PV Array C	haracteristics —	
PV module		Inverter	
Manufacturer	Sharp	Manufacturer	Growatt New Energy
Model	NU-JC410	Model	MAX 50KTL3 LV
(Original PVsyst database)		(Original PVsyst datab	ase)
Unit Nom. Power	410 Wp	Unit Nom. Power	50.0 kWac
Number of PV modules	360 units	Number of inverters	12 * MPPT 17% 2 units
Nominal (STC)	148 kWp	Total power	100 kWac
Modules	24 Strings x 15 In series	Operating voltage	200-1000 V
At operating cond. (50°C)		Pnom ratio (DC:AC)	1.48
Pmpp	135 kWp	No power sharing between	MPPTs
U mpp	427 V		
l mpp	316 A		
Total PV power		Total inverter power	
Nominal (STC)	148 kWp	Total power	100 kWac
Total	360 modules	Number of inverters	2 units
Module area	703 m ²	Pnom ratio	1.48

Array losses

Array Soiling Losses	1.0 %	Thermal Loss factor Module temperature accor	ding to irradiance	DC wiring losses Global array res.	22 mΩ	
		Uc (const) Uv (wind)	29.0 W/m²K 0.0 W/m²K/m/s	Loss Fraction	1.5 % at STC	
LID - Light Induced Degradation Loss Fraction 2.0 %		Module Quality Loss Loss Fraction -1.3 %		Module mismatch loss Loss Fraction	es 2.0 % at MPP	
Strings Mismatch loss Loss Fraction	0.2 %					
IAM loss factor Incidence effect (IAM): Fres	nel, AR coating, n(g	lass)=1.526, n(AR)=1.290				

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

Project: MONO 2

Variant: New simulation variant

	AC wirin	ng losses				
Inv. output line up to injection point						
Inverter voltage	400 Vac tri					
Loss Fraction	0.65 % at STC					
Global System						
Wire section	Alu 3 x 300 mm²					
Wires length	68 m					

Project: MONO 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

Main results

System Production Produced Energy

157701 kWh/year

Specific production Perf. Ratio PR 1068 kWh/kWp/year 87.12 %

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	16.1	8.51	-1.88	26.8	24.8	3624	3535	0.895
February	31.6	19.95	-1.63	42.3	39.9	5883	5769	0.923
March	78.1	37.60	1.33	96.4	91.8	13345	13105	0.921
April	131.8	58.99	6.57	148.7	142.2	20018	19657	0.895
Мау	179.9	70.85	12.10	192.8	184.9	24865	24406	0.858
June	185.8	84.26	15.42	193.3	185.2	24883	24419	0.856
July	170.9	72.63	19.31	178.5	171.0	22464	22042	0.837
August	135.9	71.29	19.22	148.4	142.2	19234	18886	0.862
September	89.9	41.73	14.06	107.3	102.2	14198	13941	0.880
October	45.6	26.74	8.44	57.8	54.7	7756	7605	0.891
November	16.1	11.55	4.42	21.7	20.2	2867	2785	0.869
December	8.5	6.47	1.21	12.3	11.4	1617	1551	0.853
Year	1090.3	510.56	8.27	1226.4	1170.4	160756	157701	0.871

Legends

(GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
I	DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
	T_Amb	Ambient Temperature	PR	Performance Ratio
(GlobInc	Global incident in coll. plane		
(GlobEff	Effective Global, corr. for IAM and shadings		

Project: MONO 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

Loss diagram 1090 kWh/m² Global horizontal irradiation +12.5% Global incident in coll. plane -0.39% Near Shadings: irradiance loss -3.23% IAM factor on global -1.00% Soiling loss factor

1170 kWh/m² * 703 m² coll. efficiency at STC = 21.00%

efficiency at STC = 21.00%

5
IAM factor on global
Soiling loss factor
Effective irradiation on collectors
PV conversion
Array nominal energy (at STC effic.)
PV loss due to irradiance level
PV loss due to temperature
Module quality loss
LID - Light induced degradation
Mismatch loss, modules and strings
Ohmic wiring loss
Array virtual energy at MPP
Inverter Loss during operation (efficiency)
Inverter Loss over nominal inv. power
Inverter Loss due to max. input current
Inverter Loss over nominal inv. voltage
Inverter Loss due to power threshold
Inverter Loss due to voltage threshold

Night consumption

AC ohmic loss

Energy injected into grid

Available Energy at Inverter Output

14/05/23

Project: MONO 2

Variant: New simulation variant

PVsyst - Simulation report

Grid-Connected System

Project: MONO + OPTI 1

Variant: New simulation variant Unlimited sheds System power: 1053 kWp Veršiai - Lithuania

Project: MONO + OPTI 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 18:53 with v7.3.4

Project summary					
Geographical Site	Situation		Project setting	S	
Veršiai	Latitude	54.08 °N	Albedo	0.20	
Lithuania	Longitude	23.90 °E			
	Altitude	113 m			
	Time zone	UTC+2			

Meteo data Veršiai

Meteonorm 8.1 (1996-2015), Sat=100% - Synthetic

		—— System s	ummary ——				
Grid-Connected S	System	Unlimited sheds					
PV Field Orientati Sheds	ion	Near Shadings Mutual shadings of sh	eds	User's needs Unlimited load (arid)			
Tilt	30 °			(3)			
Azimuth	0 °						
System information PV Array	on		Inverters				
Nb. of modules		1800 units	Nb. of units		10 units		
Pnom total		1053 kWp	Pnom total		1000 kWac		
			Pnom ratio		1.053		
		Results s	ummary ——				
Produced Energy	1121590 kWh/year	Specific production	1065 kWh/kWp/year	Perf. Ratio PR	85.58 %		
Table of contents							
Project and results si	ummarv					2	
General parameters,	PV Array Characteristics	s, System losses				3	
Main results	y -					5	
Loss diagram						6	
Predef. graphs						7	
Single-line diagram						8	

Project: MONO + OPTI 1

Variant: New simulation variant

		General param	neters –		
Grid-Connected S	System	Unlimited sheds			
PV Field Orientati	on				
Orientation		Sheds configuration		Models used	
Sheds		Nb. of sheds	10 units	Transposition	Perez
Tilt	30 °	Unlimited sheds		Diffuse Pe	rez, Meteonorm
Azimuth	0 °	Sizes		Circumsolar	separate
		Sheds spacing	6.00 m		
		Collector width	3.00 m		
		Ground Cov. Ratio (GCR)	50.0 %		
		Top inactive band	0.02 m		
		Bottom inactive band	0.02 m		
		Shading limit angle			
		Limit profile angle	24.0 °		
Horizon		Near Shadings		User's needs	
Free Horizon		Mutual shadings of sheds		Unlimited load (g	rid)

PV Array Characteristics						
D) (we a shall a	2	lassa ata a				
PV module Monufacturar	linkopolor	Inverter		Tashnalagiaa		
		Madal				
	JKM585M-7RL4-V	Model	SUN2000-100KTL	W1-400Vac		
		(Original PVsyst da	atabase)			
Unit Nom. Power	585 Wp	Unit Nom. Power	100) kWac		
Number of PV modules	1800 units	Number of inverters	100 * MPPT 10% 10) units		
Nominal (STC)	1053 kWp	Total power	1000	0 kWac		
Optimizer Array	100 Strings x 18 In series	Operating voltage	200-1000	O V		
At operating cond. (50°C)		Max. power (=>33°C)	11() kWac		
Pmpp	961 kWp	Pnom ratio (DC:AC)	1.05	5		
U mpp	725 V	No power sharing betw	veen MPPTs			
l mpp	1325 A					
Huawei Optimizer						
Model	SUN2000-600W-P					
Unit Nom. Power	600 W					
Input modules	One module					
Total PV power		Total inverter powe	r			
Nominal (STC)	1053 kWp	Total power	1000	0 kWac		
Total	1800 modules	Number of inverters	10) units		
Module area	4921 m²	Pnom ratio	1.05	5		
	Δ ====	/ loopoo				
	Allay	105565				
Array Soiling Losses	Thermal Loss fa	ctor	DC wiring losses			
Loss Fraction 1.	0 % Module temperature	e according to irradiance	Global array res.	9.1 mΩ		
	Uc (const)	29.0 W/m²K	Loss Fraction	1.5 % at STC		
	Uv (wind)	0.0 W/m²K/m/s				

	D				• • • • • •
LID - Light Induced	Degradation	Module Quality Lo	ISS	Module mismatch	IOSSES
Loss Fraction	2.0 %	Loss Fraction	-0.8 %	Loss Fraction	0.0 % at MPP

Project: MONO + OPTI 1

Variant: New simulation variant

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 18:53 with v7.3.4

UAB Energia futura (Lithuania)

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

	AC wiring losses	
Inv. output line up to inje	ection point	
Inverter voltage	400 Vac tri	
Loss Fraction	1.00 % at STC	
Inverter: SUN2000-100KTL-I	M1-400Vac	
Wire section (10 Inv.)	Alu 10 x 3 x 70 mm²	
Average wires length	34 m	

Project: MONO + OPTI 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

Main results

System Production Produced Energy

1121590 kWh/year

Specific production Perf. Ratio PR 1065 kWh/kWp/year 85.58 %

1052.1

532.82

GlobHor DiffHor T Amb GlobInc GlobEff EArray E Grid PR kWh/m² kWh/m² °C kWh/m² kWh/m² kWh kWh ratio January 17.1 11.52 -3.75 31.3 22.7 23810 23194 0.704 -3.23 February 32.4 19.82 50.3 44.7 47340 46198 0.871 March 79.5 38.71 1.15 111.8 105.8 110901 108165 0.919 April 116.6 55.55 7.79 137.1 129.3 130414 127125 0.881 Мау 76.35 174 7 163013 0.864 163.6 13.38 164.2 158949 June 167.7 82.57 15.96 169.8 159.3 156496 152638 0.854 July 166.6 86.23 19.27 172.7 162.0 157540 153779 0.845 64.22 156.9 144198 0.851 August 139.0 17.98 147.8 140670 September 46.06 107105 0.871 89.9 12.47 114.0 107.5 104518 October 49.0 30.36 7.02 72.2 66.3 68142 66557 0.875 November 31.2 25086 0.743 18.7 12.90 2.97 24.5 24420 December 12.0 8.52 -1.41 22.5 15.4 15857 15377 0.649

1244.6

1149.4

1149903

1121590

0.856

Legends

Year

•			
GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobInc	Global incident in coll. plane		
GlobEff	Effective Global, corr. for IAM and shadings		

7.53

Balances and main results

Project: MONO + OPTI 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

Loss diagram 1052 kWh/m² **Global horizontal irradiation** +18.3% Global incident in coll. plane -4.44% Near Shadings: irradiance loss -2.38% IAM factor on global -1.00% Soiling loss factor 1149 kWh/m² * 4921 m² coll. Effective irradiation on collectors PV conversion efficiency at STC = 21.40% 1210505 kWh Array nominal energy (at STC effic.) 9-1.33% PV loss due to irradiance level ♦-0.96% PV loss due to temperature ♥-0.75% Optimizer efficiency loss **∢** +0.75% Module quality loss ⇒-2.00% LID - Light induced degradation ₩0.00% Module array mismatch loss ♦ -0.80% Ohmic wiring loss 1149903 kWh Array virtual energy at MPP ⇒-1.96% Inverter Loss during operation (efficiency) ₩0.00% Inverter Loss over nominal inv. power ₩0.00 Inverter Loss due to max. input current ₩0.00 Inverter Loss over nominal inv. voltage € -0.01 + Inverter Loss due to power threshold ₩0.00 Inverter Loss due to voltage threshold →-0.01% Night consumption 1127142 kWh Available Energy at Inverter Output → -0.49% AC ohmic loss 1121590 kWh Energy injected into grid

Project: MONO + OPTI 1

Variant: New simulation variant

PVsyst - Simulation report

Grid-Connected System

Project: MONO + OPTI 2

Variant: New simulation variant Unlimited sheds System power: 304 kWp Totorkalnis - Lithuania

Project: MONO + OPTI 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 18:59 with v7.3.4

Project summary					
Geographical Site	Situation		Project setting	S	
Totorkalnis	Latitude	56.43 °N	Albedo	0.20	
Lithuania	Longitude	24.90 °E			
	Altitude	69 m			
	Time zone	UTC+2			

Meteo data Totorkalnis

Meteonorm 8.1 (1994-2017), Sat=100% - Synthetic

		— System s	ummary ——			
Grid-Connected S	System	Unlimited sheds				
PV Field Orientati	on	Near Shadings		User's needs		
Sheds		Mutual shadings of sh	eds	Unlimited load (grid))	
Tilt	35 °					
Azimuth	90 °					
System information	on					
PV Array			Inverters			
Nb. of modules		800 units	Nb. of units		10 units	
Pnom total		304 kWp	Pnom total		333 kWac	
			Pnom ratio		0.913	
		—— Results s	ummary ——			
Produced Energy	247502 kWh/year	Specific production	814 kWh/kWp/year	Perf. Ratio PR	84.86 %	
		—— Table of o	contents ——			
Project and results su	Immary					2
General parameters	PV Array Characteristic	s System losses				3
Main results						5
Loss diagram						6
Predef graphs						7
i i odoli. grupilo						

Project: MONO + OPTI 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

		General paran	neters –		
Grid-Connected S	System	Unlimited sheds			
PV Field Orientat	ion				
Orientation		Sheds configuration		Models used	
Sheds		Nb. of sheds	10 units	Transposition	Perez
Tilt	35 °	Unlimited sheds		Diffuse Pe	erez, Meteonorm
Azimuth	90 °	Sizes		Circumsolar	separate
		Sheds spacing	18.0 m		
		Collector width	3.00 m		
		Ground Cov. Ratio (GCR)	16.7 %		
		Top inactive band	0.02 m		
		Bottom inactive band	0.02 m		
		Shading limit angle			
		Limit profile angle	6.4 °		
Horizon		Near Shadings		User's needs	
Free Horizon		Mutual shadings of sheds		Unlimited load (g	ırid)

	PV Array C	haracteristics –		
PV module		Inverter		
Manufacturer	Recom	Manufacturer		SolarEdge
Model	RCM-380-6MA	Model	SE33.3K-EU-A	PAC/AUS (400V)
(Original PVsyst database)		(Original PVsyst d	atabase)	
Unit Nom. Power	380 Wp	Unit Nom. Power		33.3 kWac
Number of PV modules	800 units	Number of inverters		10 units
Nominal (STC)	304 kWp	Total power		333 kWac
Optimizer Array	20 Strings x 20 In series	Operating voltage		750 V
At operating cond. (50°C)		Pnom ratio (DC:AC)		0.76
Pmpp	273 kWp			
Output of optimizers				
Voper	750 V			
l at Poper	365 A			
SolarEdge Power Optimiz	er			
Model	P850 Worldwide			
Unit Nom. Power	850 W			
Input modules	2 in series			
Total PV power		Total inverter pow	er	
Nominal (STC)	304 kWp	Total power		333 kWac
Total	800 modules	Number of inverters		10 units
Module area	1552 m²	Pnom ratio		0.91
Cell area	1395 m²			
	Arra	v losses ———		
Arrav Soiling Losses	Thermal Loss fa	actor	DC wiring losses	
Loss Fraction 1	.0 % Module temperatur	e according to irradiance	Global array res.	28 mΩ
	Uc (const)	29.0 W/m²K	Loss Fraction	1.5 % at STC
	Uv (wind)	0.0 W/m²K/m/s		
LID - Light Induced Degra	dation Module Quality	Loss	Module mismatcl	n losses
Loss Fraction 2	.0 % Loss Fraction	-0.5 %	Loss Fraction	0.6 % at MPP

Loss Fraction 2.0 %

PVsyst Licensed to UAB Energia futura (Lithuania)

Project: MONO + OPTI 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 18:59 with v7.3.4

				Array losses				
IAM loss factor Incidence effect	or (IAM): Fresnel	smooth glass, n	= 1.526					
0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000

	AC wiring losses	;
Inv. output line up to inje	ection point	
Inverter voltage	400 Vac tri	
Loss Fraction	1.00 % at STC	
Inverter: SE33.3K-EU-APAC	C/AUS (400V)	
Wire section (10 Inv.)	Alu 10 x 3 x 25 mm ²	
Average wires length	43 m	

Project: MONO + OPTI 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

Main results

System Production Produced Energy

247502 kWh/year

Specific production Perf. Ratio PR 814 kWh/kWp/year 84.86 %

Balances and main results

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	12.6	8.95	-4.09	12.7	11.0	3219	3103	0.804
February	28.8	19.35	-3.55	29.1	26.2	7940	7728	0.873
March	75.7	37.03	0.49	76.1	70.1	21007	20500	0.886
April	115.2	55.52	7.08	114.6	107.1	31259	30499	0.875
Мау	159.0	82.28	13.01	154.8	145.1	41288	40288	0.856
June	164.8	81.49	15.74	142.7	132.8	37269	36351	0.838
July	166.5	77.16	18.80	154.6	144.8	40038	39047	0.831
August	130.1	61.84	17.62	124.2	115.9	32295	31503	0.834
September	82.0	38.70	12.42	83.3	77.2	22064	21522	0.850
October	41.5	25.03	6.69	42.7	39.0	11315	11016	0.849
November	15.1	11.34	2.87	16.4	14.5	4187	4050	0.812
December	8.1	6.55	-0.99	8.2	7.1	1984	1895	0.764
Year	999.5	505.23	7.24	959.4	890.7	253866	247502	0.849

Legends

GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobInc	Global incident in coll. plane		
GlobEff	Effective Global, corr. for IAM and shadings		

Project: MONO + OPTI 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

Loss diagram 999 kWh/m² **Global horizontal irradiation** -4.00% Global incident in coll. plane -2.43% Near Shadings: irradiance loss -3 90% IAM factor on global -1.00% Soiling loss factor 891 kWh/m² * 1552 m² coll. Effective irradiation on collectors efficiency at STC = 19.59% PV conversion 270812 kWh Array nominal energy (at STC effic.) -1.98% PV loss due to irradiance level Ь -0.64% PV loss due to temperature Optimizer efficiency loss ♥-1.07% **<**+0.50% Module quality loss € 2.00% LID - Light induced degradation → -0.60% Module array mismatch loss ♥-0.62% Ohmic wiring loss 253866 kWh Array virtual energy at MPP 9-2.10% Inverter Loss during operation (efficiency) 90.00% Inverter Loss over nominal inv. power ₩0.00 Inverter Loss due to max. input current 90.00% Inverter Loss over nominal inv. voltage →-0.01% Inverter Loss due to power threshold ₩0.00 Inverter Loss due to voltage threshold 248509 kWh Available Energy at Inverter Output ♥-0.41% AC ohmic loss 247502 kWh Energy injected into grid

Project: MONO + OPTI 2

Variant: New simulation variant

PVsyst - Simulation report

Grid-Connected System

Project: BIF 1 Variant: New simulation variant Unlimited sheds System power: 74.8 kWp Andrijava - Lithuania

Project: BIF 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 19:09 with v7.3.4

Project summary						
Geographical Site	Situation		Project setting	S		
Andrijava	Latitude	55.94 °N	Albedo	0.20		
Lithuania	Longitude	23.28 °E				
	Altitude	115 m				
	Time zone	UTC+2				

Meteo data Andrijava

Meteonorm 8.1 (2007-2017), Sat=100% - Synthetic

		— System s	ummary ——			
Grid-Connected Sy	ystem	Unlimited sheds				
PV Field Orientatic Sheds	on	Near Shadings Mutual shadings of sh	eds	User's needs Unlimited load (grid))	
Tilt	45 °					
Azimuth	-45 °					
System informatio PV Array	'n		Inverters			
Nb. of modules		136 units	Nb. of units		2 units	
Pnom total		74.8 kWp	Pnom total		80.0 kWac	
			Pnom ratio		0.935	
		— Results s	ummary ——			
Produced Energy	79556 kWh/year	Specific production	1064 kWh/kWp/year	Perf. Ratio PR	92.73 %	
		— Table of c	contents —			
Project and results su	mmary					2
General parameters, F	PV Array Characteristics,	System losses				3
Main results	-					5
Loss diagram						6
Predef. graphs						7
Single-line diagram						8

Project: BIF 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

		General para	meters —		
Grid-Connected Syst	tem	Unlimited sheds			
PV Field Orientation					
Orientation		Sheds configuration		Models used	d
Sheds		Nb. of sheds	10 units	Transpositior	n Perez
Tilt	45 °	Unlimited sheds		Diffuse	Perez, Meteonorm
Azimuth	-45 °	Sizes		Circumsolar	separate
		Sheds spacing	10.00 m		
		Collector width	3.00 m		
		Ground Cov. Ratio (GCR) 30.0 %		
		Top inactive band	0.02 m		
		Bottom inactive band	0.02 m		
		Shading limit angle			
		Limit profile angle	15.2 °		
Horizon		Near Shadings		User's nee	ds
Free Horizon		Mutual shadings of sheds	3	Unlimited loa	ad (grid)
Bifacial system					
Model	2D Ca	alculation			
	unlimite	ed sheds			
Bifacial model geometry	У		Bifacial model definiti	ons	
Sheds spacing		10.00 m	Ground albedo		0.20
Sheds width		3.04 m	Bifaciality factor		70 %
Limit profile angle		15.3 °	Rear shading factor		5.0 %
GCR		30.4 %	Rear mismatch loss		10.0 %
Height above ground		1.50 m	Shed transparent fraction	on	0.0 %

PV Array Characteristics

PV module		Inverter	
Manufacturer	ZNshine Solar	Manufacturer	Sungrow
Model	ZXM7-SHLDD-144-550	Model	SG40CX-P2
(Original PVsyst database)		(Original PVsyst databas	e)
Unit Nom. Power	550 Wp	Unit Nom. Power	40.0 kWac
Number of PV modules	136 units	Number of inverters	8 * MPPT 25% 2 units
Nominal (STC)	74.8 kWp	Total power	80.0 kWac
Modules	8 Strings x 17 In series	Operating voltage	160-1000 V
At operating cond. (50°C)		Max. power (=>40°C)	44.0 kWac
Pmpp	68.2 kWp	Pnom ratio (DC:AC)	0.94
U mpp	644 V	No power sharing between N	IPPTs
l mpp	106 A		
Total PV power		Total inverter power	
Nominal (STC)	75 kWp	Total power	80 kWac
Total	136 modules	Number of inverters	2 units
Module area	351 m²	Pnom ratio	0.94

Project: BIF 1

Variant: New simulation variant

rray Soiling	y Losses		Thermal Lo	oss factor		DC wiring	g losses	
oss Fraction	1	.0 %	Module temp	erature accor	ding to irradiance	Global arra	iy res.	101 mΩ
			Uc (const)		29.0 W/m²K	Loss Fract	ion	1.5 % at ST
			Uv (wind)		0.0 W/m²K/m/s			
ID - Light In	duced Degra	dation	Module Qu	ality Loss		Module n	nismatch los	ses
oss Fraction	2	.5 %	Loss Fraction -0.8 %		Loss Fraction		2.0 % at MP	
cidence effec	t (IAM): Fresnel,	AR coating, n	(glass)=1.526, n(<i>i</i>	AR)=1.290	75°	80°	85°	90°
0°	I 30°	1 50	1 (1()		1.1			

	AC wiring losses –	
Inv. output line up to inje	ection point	
Inverter voltage	400 Vac tri	
Loss Fraction	1.00 % at STC	
Inverter: SG40CX-P2		
Wire section (2 Inv.)	Alu 2 x 3 x 16 mm ²	
Average wires length	22 m	

Project: BIF 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

Main results

System Production Produced Energy

79556 kWh/year

Specific production Perf. Ratio PR 1064 kWh/kWp/year 92.73 %

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	14.0	10.60	-3.70	22.8	19.2	1502	1436	0.843
February	30.1	19.44	-3.67	45.6	40.9	3215	3110	0.912
March	78.0	41.70	0.33	100.5	93.7	7341	7134	0.949
April	118.0	54.26	6.89	133.0	125.4	9717	9454	0.951
Мау	163.6	69.00	12.59	167.5	158.0	12143	11823	0.944
June	165.5	79.58	15.28	164.9	155.0	11851	11542	0.936
July	165.8	74.71	18.90	164.9	155.2	11740	11440	0.927
August	133.1	62.76	17.46	142.3	134.1	10081	9819	0.923
September	87.8	42.77	12.29	104.7	98.1	7406	7204	0.920
October	45.3	27.07	7.05	60.3	54.9	4200	4070	0.902
November	15.8	10.53	2.98	26.2	22.6	1721	1654	0.843
December	8.9	7.12	-1.13	14.3	11.9	915	868	0.813
Year	1025.9	499.53	7.17	1147.0	1069.1	81832	79556	0.927

Legends

(GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
I	DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
	T_Amb	Ambient Temperature	PR	Performance Ratio
(GlobInc	Global incident in coll. plane		
(GlobEff	Effective Global, corr. for IAM and shadings		

Project: BIF 1

Variant: New simulation variant

Project: BIF 1

Variant: New simulation variant

PVsyst - Simulation report

Grid-Connected System

Project: BIF 2 Variant: New simulation variant Unlimited sheds System power: 517 kWp Opstainėliai - Lithuania

Project: BIF 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 19:16 with v7.3.4

	Projec	ct summary —		
Geographical Site	Situation		Project setting	S
Opstainėliai	Latitude	55.10 °N	Albedo	0.20
Lithuania	Longitude	22.09 °E		
	Altitude	21 m		
	Time zone	UTC+2		

Meteo data Opstainėliai

Meteonorm 8.1 (2007-2017), Sat=100% - Synthetic

Ordid-Connected System Unlimited sheds User's needs PV Field Orientation Near Shadings User's needs Sheds Mutual shadings of sheds Unlimited load (grid) Tilt 10° Azimuth -15° System information Inverters PV Array Inverters Nb. of modules 1520 units Nb. of units 20 units Pnom total 517 kWp Pnom total 400 kWac Pnom total 517 kWp Pnom ratio 1.292 Produced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Perf. Ratio PR 88.77 % Project and results summary			—— System s	ummary ——			
PV Field Orientation Near Shadings User's needs Sheds Mutual shadings of sheds Unlimited load (grid) Tilt 10 ° Azimuth -15 ° System information Inverters PV Array Inverters Nb. of modules 1520 units Nb. of units 20 units Pnom total 517 kWp Pnom total 400 kWac Pnom ratio 1.292 1.292 Produced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Perf. Ratio PR 88.77 % Project and results summary	Grid-Connected Sy	vstem	Unlimited sheds				
Tilt 10 ° Azimuth -15 ° System information PV Array PV Array Inverters Nb. of modules 1520 units S17 kWp Pnom total 400 kWac Pnom ratio 1.292 Results summary Produced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Perduced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Project and results summary 2 General parameters, PV Array Characteristics, System losses 3 Main results 5 Loss diagram 6 Predef. graphs 7	PV Field Orientatio Sheds	'n	Near Shadings Mutual shadings of sh	eds	User's needs Unlimited load (grid)		
Azimuth -15 ° System information PV Array Inverters Nb. of modules 1520 units Nb. of units 20 units Pnom total 517 kWp Pnom total 400 kWac Pnom ratio 1.292	Tilt	10 °					
System information Inverters Nb. of modules 1520 units Nb. of units 20 units Pnom total 517 kWp Pnom total 400 kWac Pnom ratio 1.292 Produced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Perf. Ratio PR 88.77 % Project and results summary	Azimuth	-15 °					
PV Array Inverters Nb. of modules 1520 units Nb. of units 20 units Pnom total 517 kWp Pnom total 400 kWac Pnom ratio 1.292 Produced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Perf. Ratio PR 88.77 % Project and results summary	System information	n					
Nb. of modules 1520 units Nb. of units 20 units Pnom total 400 kWac 400 kWac Pnom ratio 1.292	PV Array			Inverters			
Pnom total 517 kWp Pnom total 400 kWac Pnom ratio 1.292 Produced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Perf. Ratio PR 88.77 % Project and results summary Project and results summary 2 General parameters, PV Array Characteristics, System losses 3 Main results 5 Loss diagram 6 Predef. graphs 7	Nb. of modules		1520 units	Nb. of units		20 units	
Pnom ratio 1.292 Results summary Results summary Produced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Perf. Ratio PR 88.77 % Table of contents Table of contents 2 General parameters, PV Array Characteristics, System losses 3 3 Main results 5 5 6 Predef. graphs 7 6	Pnom total		517 kWp	Pnom total		400 kWac	
Results summary Produced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Perf. Ratio PR 88.77 % Table of contents Project and results summary 2 General parameters, PV Array Characteristics, System losses 3 Main results 5 Loss diagram 6 Predef. graphs 7				Pnom ratio		1.292	
Produced Energy 511704 kWh/year Specific production 990 kWh/kWp/year Perf. Ratio PR 88.77 % Table of contents Project and results summary			Results s	ummary ——			
Table of contents Project and results summary 2 General parameters, PV Array Characteristics, System losses 3 Main results 5 Loss diagram 6 Predef. graphs 7	Produced Energy	511704 kWh/year	Specific production	990 kWh/kWp/year	Perf. Ratio PR	88.77 %	
Project and results summary 2 General parameters, PV Array Characteristics, System losses 3 Main results 5 Loss diagram 6 Predef. graphs 7			Table of c	contents —			
General parameters, PV Array Characteristics, System losses 3 Main results 5 Loss diagram 6 Predef. graphs 7 Out the time time 6	Project and results sur	mmarv					2
Main results 5 Loss diagram 6 Predef. graphs 7 Out to the first of the fir	General parameters	V Array Characteristic	s. System losses				3
Loss diagram 6 Predef. graphs 7	Main results						5
Predef. graphs 7	Loss diagram						6
	Predef granhs						7
Sindle-line diadram	Single-line diagram						, <i>'</i>

Project: BIF 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

		General para	meters —			
Grid-Connected Syst	em	Unlimited sheds				
PV Field Orientation						
Orientation		Sheds configuration	Sheds configuration		d	
Sheds		Nb. of sheds	5 units	Transposition	n Perez	
Tilt	10 °	Unlimited sheds		Diffuse	Perez, Meteonorm	
Azimuth	-15 °	Sizes		Circumsolar	separate	
		Sheds spacing	5.00 m			
		Collector width	3.00 m			
		Ground Cov. Ratio (GCR) 60.0 %			
		Top inactive band	0.02 m			
		Bottom inactive band	0.02 m			
		Shading limit angle				
		Limit profile angle	14.5 °			
Horizon		Near Shadings		User's needs		
Free Horizon		Mutual shadings of sheds	;	Unlimited loa	ıd (grid)	
Bifacial system						
Model	2D Cal	lculation				
	unlimite	d sheds				
Bifacial model geometry	у		Bifacial model definitio	ons		
Sheds spacing		5.00 m	Ground albedo		0.20	
Sheds width		3.04 m	Bifaciality factor		80 %	
Limit profile angle		14.7 °	Rear shading factor		5.0 %	
GCR		60.8 %	Rear mismatch loss		10.0 %	
Height above ground		1.50 m	Shed transparent fraction	n	0.0 %	

PV Array Characteristics

	Inverter	
Luxor	Manufacturer	SMA
LX-340-GG	Model	Sunny Tripower 20000TL-30
	(Original PVsyst datab	base)
340 Wp	Unit Nom. Power	20.0 kWac
1520 units	Number of inverters	40 * MPPT 50% 20 units
517 kWp	Total power	400 kWac
80 Strings x 19 In series	Operating voltage	320-800 V
	Pnom ratio (DC:AC)	1.29
465 kWp	No power sharing betweer	n MPPTs
581 V		
801 A		
	Total inverter power	
517 kWp	Total power	400 kWac
1520 modules	Number of inverters	20 units
2610 m²	Pnom ratio	1.29
2278 m²		
	Luxor LX-340-GG 340 Wp 1520 units 517 kWp 80 Strings x 19 In series 465 kWp 581 V 801 A 517 kWp 1520 modules 2610 m ² 2278 m ²	InverterLuxorManufacturerLX-340-GGModel(Original PVsyst datable340 WpUnit Nom. Power1520 unitsNumber of inverters517 kWpTotal power80 Strings x 19 In seriesOperating voltagePnom ratio (DC:AC)No power sharing between581 V801 ATotal inverter power517 kWpTotal power517 kWpTotal power517 kWpTotal power517 kWpTotal power2610 m²Pnom ratio2278 m²Y

v7.3.4				(Lithuania)			
			Array loss	es			
Array Soiling Losses Loss Fraction	1.0 %	Thermal Lo Module temp Uc (const) Uv (wind)	oss factor erature accor	ding to irradiance 29.0 W/m²K 0.0 W/m²K/m/s	DC wiring Global arra Loss Fracti	g losses y res. on	12 mΩ 1.5 % at Sī
LID - Light Induced Degr Loss Fraction	adation 3.0 %	Module Qu Loss Fractior	ality Loss າ	-0.8 %	Module n Loss Fracti	nismatch los ^{on}	ses 2.0 % at M
Strings Mismatch loss Loss Fraction	0.2 %						
IAM loss factor Incidence effect (IAM): Fresn	el smooth glass,	n = 1.526					
0° 30°	50°	60°	70°	75°	80°	85°	90°
	/	0.948	0.862	0.776	0.636	0.403	0.000

Wire section (20 Inv.)

Average wires length

Alu 20 x 3 x 10 mm²

20 m

Project: BIF 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

Main results

System Production Produced Energy

511704 kWh/year

Specific production Perf. Ratio PR 990 kWh/kWp/year 88.77 %

Balances and main results

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	15.5	10.47	-3.12	20.5	17.5	9190	8837	0.835
February	31.5	18.87	-2.72	38.4	35.0	18569	18034	0.910
March	78.8	39.70	0.99	90.0	84.1	44185	43041	0.926
April	118.0	52.09	6.97	128.7	121.3	62502	60850	0.915
Мау	164.4	75.63	12.63	171.6	163.0	81238	79090	0.892
June	166.2	84.31	15.61	169.9	161.2	79484	77393	0.882
July	164.4	82.38	18.87	170.2	161.5	78753	76705	0.872
August	132.4	71.73	18.06	140.5	133.2	65342	63689	0.877
September	88.4	47.94	12.92	98.2	92.0	46243	45110	0.889
October	46.1	24.93	7.31	54.4	49.9	25467	24771	0.881
November	17.3	12.32	3.31	21.2	18.9	9682	9315	0.849
December	9.6	7.69	-0.16	11.9	10.0	5151	4871	0.795
Year	1032.5	528.07	7.62	1115.4	1047.7	525806	511704	0.888

Legends

GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobInc	Global incident in coll. plane		
GlobEff	Effective Global, corr. for IAM and shadings		

Project: BIF 2

Variant: New simulation variant

Project: BIF 2

Variant: New simulation variant

PVsyst - Simulation report

Grid-Connected System

Project: BIF + OPTI 2 Variant: New simulation variant Unlimited sheds

System power: 8500 kWp Margininkai - Lithuania

Project: BIF + OPTI 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 19:40 with v7.3.4

Project summary						
Geographical Site	Situation		Project setting	S		
Margininkai	Latitude	56.16 °N	Albedo	0.20		
Lithuania	Longitude	21.24 °E				
	Altitude	33 m				
	Time zone	UTC+2				
Meteo data Margininkai						

Meteonorm 8.1 (2007-2017) - Synthetic

		— System s	ummary ——			
Grid-Connected	l System	Unlimited sheds				
PV Field Orient a Sheds	ation	Near Shadings Mutual shadings of sh	eds	User's needs Unlimited load (grid	I)	
Tilt	40 °					
Azimuth	-45 °					
System informa	ation					
PV Array			Inverters			
Nb. of modules	2	25000 units	Nb. of units		250 units	
Pnom total		8500 kWp	Pnom total		8325 kWac	
			Pnom ratio		1.021	
		—— Results s	ummary ——			
Produced Energy	10168897 kWh/year	Specific production	1196 kWh/kWp/year	Perf. Ratio PR	94.91 %	
		— Table of o	contents ——			
Project and results	summary					2
General parameter	rs, PV Array Characteristics	, System losses				3
Main results	•					5
Loss diagram						6

Predef. graphs

7

Project: BIF + OPTI 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

		General para	meters —		
Grid-Connected Syst	em	Unlimited sheds			
PV Field Orientation					
Orientation		Sheds configuration		Models used	ł
Sheds		Nb. of sheds	5 units	Transpositior	n Perez
Tilt	40 °	Unlimited sheds		Diffuse	Perez, Meteonorm
Azimuth	-45 °	Sizes		Circumsolar	separate
		Sheds spacing	11.0 m		
		Collector width	3.00 m		
		Ground Cov. Ratio (GCR) 27.3 %		
		Top inactive band	0.02 m		
		Bottom inactive band	0.02 m		
		Shading limit angle			
		Limit profile angle	12.6 °		
Horizon		Near Shadings		User's nee	ds
Free Horizon		Mutual shadings of sheds	3	Unlimited loa	d (grid)
Bifacial system					
Model	2D Ca	lculation			
	unlimite	ed sheds			
Bifacial model geometry	у		Bifacial model definit	ions	
Sheds spacing		11.00 m	Ground albedo		0.20
Sheds width		3.04 m	Bifaciality factor		80 %
Limit profile angle		12.7 °	Rear shading factor		5.0 %
GCR		27.6 %	Rear mismatch loss		10.0 %
Height above ground		1.50 m	Shed transparent fracti	on	0.0 %

PV Array Characteristics

PV module		Inverter	
Manufacturer	Luxor	Manufacturer	SolarEdge
Model	LX-340-GG	Model	SE33.3K-EU-APAC/AUS (400V)
(Original PVsyst database)		(Original PVsyst databas	se)
Unit Nom. Power	340 Wp	Unit Nom. Power	33.3 kWac
Number of PV modules	25000 units	Number of inverters	250 units
Nominal (STC)	8500 kWp	Total power	8325 kWac
Optimizer Array	1000 Strings x 25 In series	Operating voltage	750 V
At operating cond. (50°C)		Pnom ratio (DC:AC)	0.94
Pmpp	7652 kWp		
Output of optimizers			
Voper	750 V		
I at Poper	10202 A		
SolarEdge Power Optimize	r		
Model	P401 WorldWide		
Unit Nom. Power	400 W		
Input modules	One module		
Total PV power		Total inverter power	
Nominal (STC)	8500 kWp	Total power	8325 kWac
Total	25000 modules	Number of inverters	250 units
Module area	42936 m²	Pnom ratio	1.02
Cell area	37470 m ²		

Project: BIF + OPTI 2

Variant: New simulation variant

Array Soiling Losses			Thermal Lo	Thermal Loss factor			DC wiring losses		
oss Fraction	1	.0 %	Module temp	erature accord	ling to irradiance	Global arra	ay res.	0.99 mΩ	
			Uc (const)		29.0 W/m²K	Loss Fract	ion	1.5 % at ST	
			Uv (wind)		0.0 W/m²K/m/s				
.ID - Light Ir	nduced Deora	dation	Module Qu	Module Quality Loss			Module mismatch losses		
							inomatori ioo		
oss Fraction	3	.0 %	Loss Fraction		-0.8 %	Loss Fract	ion	0.0 % at MP	
AM loss fac	tor tt (IAM): Fresnel	smooth glass, i	Loss Fraction	70°	-0.8 %	Loss Fract	85°	0.0 % at MP	
oss Fraction AM loss fac ncidence effec 0° 1.000	tor tt (IAM): Fresnel	smooth glass, 1	Loss Fraction n = 1.526	70°	-0.8 %	Loss Fract	85°	0.0 % at MP	

	AC wiring	losses —	
Inv. output line up to inje	ection point		
Inverter voltage	400 Vac tri		
Loss Fraction	1.00 % at STC		
Inverter: SE33.3K-EU-APAC	C/AUS (400V)		
Wire section (250 Inv.)	Alu 250 x 3 x 16 mm ²		
Average wires length	24 m		

Project: BIF + OPTI 2

Variant: New simulation variant

UAB Energia futura (Lithuania)

Main results

System Production Produced Energy

10168897 kWh/year

Specific production Perf. Ratio PR 1196 kWh/kWp/year 94.91 %

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	16.6	10.20	-1.95	31.0	27.3	245261	239307	0.908
February	31.8	19.48	-1.70	47.9	44.3	403086	393366	0.965
March	77.7	36.85	1.35	101.3	95.1	860236	839212	0.974
April	133.2	54.17	6.63	154.9	147.2	1306537	1273583	0.967
Мау	181.4	60.77	12.19	195.2	185.8	1632013	1590415	0.958
June	187.6	86.19	15.41	186.4	176.4	1565056	1526235	0.963
July	171.2	82.28	18.98	177.0	167.7	1451115	1415138	0.941
August	136.3	57.87	18.80	154.6	146.9	1248384	1217173	0.926
September	90.0	48.93	13.79	111.0	104.8	907058	885147	0.938
October	45.7	26.34	8.36	59.7	55.1	488595	476683	0.939
November	16.1	10.18	4.32	25.8	23.1	202297	196782	0.897
December	8.5	6.01	1.01	15.5	13.5	119170	115855	0.881
Year	1096.2	499.26	8.16	1260.4	1187.1	10428808	10168897	0.949

Legends

GlobH	or Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	r Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobIn	c Global incident in coll. plane		
GlobEf	ff Effective Global, corr. for IAM and shadings		

Project: BIF + OPTI 2

Variant: New simulation variant

Project: BIF + OPTI 2

Variant: New simulation variant

PVsyst - Simulation report

Grid-Connected System

Project: BIF + OPTI 1 Variant: New simulation variant Unlimited sheds System power: 607 kWp Dieveniškės - Lithuania

Project: BIF + OPTI 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

PVsyst V7.3.4 VC0, Simulation date: 14/05/23 19:31 with v7.3.4

Project summary						
Geographical Site	Situation		Project setting	s		
Dieveniškės	Latitude	54.19 °N	Albedo	0.20		
Lithuania	Longitude	25.62 °E				
	Altitude	197 m				
	Time zone	UTC+2				
•• • • •						

Meteo data Dieveniškės

Meteonorm 8.1 (1996-2015), Sat=100% - Synthetic

		— System s	ummary ——			
Grid-Connected Sys	stem	Unlimited sheds				
PV Field Orientatior Sheds	ı	Near Shadings Mutual shadings of sh	eds	User's needs Unlimited load (grid))	
Tilt	20 °	0		(0),		
Azimuth	0 °					
System information	I					
PV Array			Inverters			
Nb. of modules		1104 units	Nb. of units		12 units	
Pnom total		607 kWp	Pnom total		480 kWac	
			Pnom ratio		1.265	
		Results s	ummary ——			
Produced Energy	665488 kWh/year	Specific production	1096 kWh/kWp/year	Perf. Ratio PR	92.01 %	
		Table of c	contents			
Proiect and results sum	imarv					2
, General parameters. P\	/ Arrav Characteristics	. Svstem losses				3
Main results	,	· · ·				5
Loss diagram						6
Predef. graphs						7
Single-line diagram						8

Project: BIF + OPTI 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

		General para	meters —		
Grid-Connected Syst	em	Unlimited sheds			
PV Field Orientation					
Orientation		Sheds configuration		Models used	
Sheds		Nb. of sheds	10 units	Transposition	Perez
Tilt	20 °	Unlimited sheds		Diffuse I	Perez, Meteonorm
Azimuth	0 °	Sizes		Circumsolar	separate
		Sheds spacing	8.00 m		
		Collector width	3.00 m		
		Ground Cov. Ratio (GCR) 37.5 %		
		Top inactive band	0.02 m		
		Bottom inactive band	0.02 m		
		Shading limit angle			
		Limit profile angle	11.3 °		
Horizon		Near Shadings		User's need	S
Free Horizon		Mutual shadings of sheds	3	Unlimited load	(grid)
Bifacial system					
Model	2D Ca	alculation			
	unlimite	ed sheds			
Bifacial model geometry	у		Bifacial model definit	ions	
Sheds spacing		8.00 m	Ground albedo		0.20
Sheds width		3.04 m	Bifaciality factor		70 %
Limit profile angle		11.4 °	Rear shading factor		5.0 %
GCR		38.0 %	Rear mismatch loss		10.0 %
Height above ground		1.50 m	Shed transparent fracti	on	0.0 %

PV Array Characteristics

PV module		Inverter			
Manufacturer	ZNshine Solar	Manufacturer	Huawei Technologies		
Model	ZXM7-SHLDD-144-550	Model	SUN2000-40KTL-M3-400V		
(Original PVsyst database)		(Original PVsyst database)			
Unit Nom. Power	550 Wp	Unit Nom. Power	40.0 kWac		
Number of PV modules	1104 units	Number of inverters	48 * MPPT 25% 12 units		
Nominal (STC)	607 kWp	Total power	480 kWac		
Optimizer Array	48 Strings x 23 In series	Operating voltage	200-1000 V		
At operating cond. (50°C)		Max. power (=>40°C)	44.0 kWac		
Pmpp	554 kWp	Pnom ratio (DC:AC)	1.27		
U mpp	871 V	No power sharing between M	PPTs		
l mpp	636 A				
Huawei Optimizer					
Model	SUN2000-600W-P				
Unit Nom. Power	600 W				
Input modules	One module				
Total PV power		Total inverter power			
Nominal (STC)	607 kWp	Total power	480 kWac		
Total	1104 modules	Number of inverters	12 units		
Module area	2852 m²	Pnom ratio	1.27		

Project: BIF + OPTI 1

Variant: New simulation variant

Array Soiling Losses			Thermal Lo	Thermal Loss factor			DC wiring losses		
oss Fraction		.0 %	Module temperature according to irradiance			Global array res.		23 mΩ	
				Uc (const)		Loss Fraction		1.5 % at STC	
			Uv (wind)		0.0 W/m²K/m/s				
ID - Light Induced Degradation			Module Quality Loss			Module mismatch losses			
oss Fraction 2.5 %			Loss Fraction			Loss Fraction			
oss Fraction	2	.5 %	Loss Fractior	١	-0.8 %	Loss Fract	ion	0.0 % at Mł	
oss Fraction AM loss fact ncidence effec	2. tor t (IAM): Fresnel,	5 % AR coating, n(Loss Fractior glass)=1.526, n(n AR)=1.290	-0.8 %	Loss Fract	ion ٥٢°	0.0 % at MF	
oss Fraction AM loss fact ncidence effec 0°	2 tor t (IAM): Fresnel, 30°	.5 % AR coating, n(50°	Loss Fraction glass)=1.526, n(60°	ו AR)=1.290 70°	-0.8 %	Loss Fract	85°	0.0 % at MF	

	AC wir	ina losses ——	
Inv. output line up to inje	ection point		
Inverter voltage	400 Vac tri		
Loss Fraction	1.00 % at STC		
Inverter: SUN2000-40KTL-N	I3-400V		
Wire section (12 Inv.)	Alu 12 x 3 x 25 mm²		
Average wires length	26 m		

Project: BIF + OPTI 1

Variant: New simulation variant

UAB Energia futura (Lithuania)

Main results

System Production Produced Energy

665488 kWh/year

Specific production Perf. Ratio PR

1096 kWh/kWp/year 92.01 %

Balances and main results

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	17.8	11.62	-4.24	29.8	27.2	17009	16483	0.912
February	32.8	19.09	-3.40	47.2	44.7	28569	27762	0.969
March	79.6	36.09	0.99	104.7	100.0	62999	61251	0.964
April	115.2	52.01	7.60	133.5	127.7	78183	75950	0.937
Мау	159.2	79.98	13.77	167.4	159.8	95813	93119	0.916
June	165.5	74.09	16.49	170.3	162.9	96593	93811	0.907
July	165.1	78.37	19.45	171.9	164.4	96576	93843	0.899
August	136.7	73.16	18.10	151.4	144.8	85442	83079	0.904
September	87.1	43.58	12.29	105.8	100.8	60852	59152	0.921
October	46.8	28.03	6.57	62.0	58.9	36355	35338	0.938
November	18.0	12.17	2.47	26.9	25.0	15257	14746	0.904
December	11.9	7.74	-1.41	20.3	18.4	11355	10954	0.888
Year	1035.6	515.94	7.45	1191.1	1134.8	685002	665488	0.920

Legends

GlobH	or Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobIn	c Global incident in coll. plane		
GlobEf	f Effective Global, corr. for IAM and shadings		

Project: BIF + OPTI 1

Variant: New simulation variant

Project: BIF + OPTI 1

Variant: New simulation variant

