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Summary

The paper clearly explains about the necessity of path planning and methodology used to create a
path planning for Unmanned Ground Vehicles especially in obstacle avoidance algorithm. For
autonomous vehicles path planning is as important where the vehicle uses its capability to drive on
its own by avoiding obstacles and reaching the goal, in order to achieve that the vehicles undergo
numerous detection process and analysing procedures and methodology to find the easiest and correct
path to reach the goal. There are many methodologies that can be used to investigate an unmanned
ground vehicle obstacle avoidance model. One common methodology is to use a simulation tool such
as Gazebo. This allows for the creation of a virtual environment in which the unmanned ground
vehicle can be tested. Another methodology is to use an actual physical robot to test the model.
Similar to these model this paper deals with MATLAB/SIMULINK algorithmic model for graphical
outputs to determine the weightage of the models success rate. This has the advantage of being able
to test the model in a real-world environment. However, it is often more expensive and time-
consuming than using a simulation tool. There are also many different algorithms that can be used
for obstacle avoidance. A common algorithm is the potential field algorithm. This algorithm
calculates a repulsive force between the robots and obstacles in its environment. Which one is best
depends on the specific needs of the researcher. Investigators have long been interested in the
development of unmanned ground vehicles (UGVSs) for a variety of applications. One significant
challenge in this area is obstacle avoidance; that is, the ability of a UGV to autonomously navigate
around obstacles in its environment. Many different methodologies and algorithms have been
proposed for tackling this problem, each with its own advantages and disadvantages. In this paper,
we investigate a number of these approaches and compare their performance in terms of speed,
accuracy, and robustness. Our results suggest that the artificial potential field method is the most
appropriate for general UGV obstacle avoidance applications.
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Santrauka

Sis darbas detaliai paaiskina apie kelio planavimo biitinybe ir metodologija, kuri naudojama kuriant
nepilotuojamy antzeminiy transporto priemoniy kelio planavimg, ypac kliti¢iy vengimo algoritme.
Autonominéms transporto priemonéms kelio planavimas yra toks pat svarbus, kai transporto
priemon¢ iSnaudoja savo gebé¢jimg vaziuoti savarankiSkai, iSvengdama kliti¢iy ir pasiekdama tiksla,
kad transporto priemonéms biity atlikta daugybé aptikimo procesy ir analizés procediiros bei
metodologija, siekiant rasti lengviausig ir teisingg kelig tikslui pasiekti. Yra daug metody, kurie gali
biiti naudojami tiriant nepilotuojamy antZeminiy transporto priemoniy kliti¢iy vengimo modelj.
Vienas i$ jprasty metody yra naudoti modeliavimo jrankj, pvz., ,,Gazebo®. Tai leidZia sukurti virtualig
aplinka, kurioje bty galima iSbandyti nepilotuojamg antzeming transporto priemong. Kita metodika
— modelio iSbandymui naudoti tikrg fizinj robota. PanaSiai kaip ir Sie modeliai, Siame darbe
nagrinéjamas MATLAB/SIMULINK algoritminis grafiniy i$é¢jimy modelis, siekiant nustatyti jo
s¢kmes koeficiento svorj. Tai turi pranasuma, nes galima iSbandyti model;j realioje aplinkoje. Taciau
daznai tai kainuoja brangiau ir uztrunka daugiau, nei kai yra naudojamas modeliavimo jrankis. Taip
pat yra daug skirtingy algoritmy, kurie gali biiti naudojami siekiant i§vengti klii¢iy. DaZnas
algoritmas — tai potencialaus lauko algoritmas. Sis algoritmas apskai¢iuoja atstimimo jéga tarp roboty
ir juy aplinkoje esanciy klit¢iy. Kuris 1§ jy yra geriausias, priklauso nuo konkreciy tyréjo poreikiy.
Tyrinétojai jau seniai domisi nepilotuojamy antzeminiy transporto priemoniy (angl. trumpinys —
yra, ,,UGV* gebéjimas savarankiskai laviruoti tarp kliti¢iy savo aplinkoje. Siai problemai spresti buvo
pasiiilyta daug skirtingy metody ir algoritmy, kuriy kiekvienas turi savo privalumy ir trikumy. Siame
darbe nagrinéjame keleta Siy metody ir palyginame jy veikimg greicio, tikslumo ir tvirtumo poziiiriu.
Misy rezultatai rodo, kad dirbtinio potencialo lauko metodas yra tinkamiausias bendroms ,,UGV*
klit¢iy vengimo programom
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Introduction

A growing interest in control for use in autonomous interstate freeways and driver-aid systems has
been observed recently. Accidents are essentially unavoidable since the ability of the driver to
recognize, judge, and operate in hazardous conditions is restricted. It is also well known that many
auto accidents are caused by mistakes made by people. The majority of accidents might be prevented
if some driving functions could be automated in order to overcome the limitations of human drivers.
Numerous studies on automating parts or all elements of driving tasks have been published, all of
which are grounded in the idea that automated vehicles may make roads safer, increase capacity,
decrease the chance of accidents, and boost driver happiness and performance. Early studies were
conducted to increase roadway capacity and security with automation at the roadway and vehicle
levels in the late 1980s and early 1990s. Research on upgraded highway systems was focused on the
idea of substituting human driving judgments and behaviors with more computerized activities in
order to provide regulated traffic flow and safe driving. Later, intelligent vehicle systems became the
focus of study instead of improved roadway systems. Numerous studies have concentrated in
implementation of adaptive cruise control in addition to other cutting-edge technologies, including
accident warning and avoidance systems. Higher-level control techniques have been studied recently
to determine the planned motion of the automobile for autonomous driving, provided the necessary
information about the automobile's environment is provided.[1-4] Additionally, recent research on
the communication between vehicles has been published to provide the data. In order to establish the
appropriate movement for autonomous navigation and crash avoidance, this study focuses on the 3D
visual simulation of better level control schemes under the constraint of the location and acceleration
information of nearby vehicles. The suggested advanced automation algorithm is intended for use in
scenarios where numerous other vehicles are present on a multi-lane road where the car is traveling.
The method for automated driving is primarily concerned with finding the best path to prevent
accidents with multiple cars traveling on multi-lane roads. The controlled autonomous vehicle's
course is presumably determined by a route plan and global location. In recent years, many authors
have proposed algorithms for the investigation of unmanned ground vehicle obstacle avoidance
models. The algorithm currently used by most research groups is the Hirschmuller algorithm,
proposed by Peter Hirschmuller in 2008. This algorithm is based on the concept of stereo vision,
which uses two cameras to obtain depth information about the environment.[7] However, this
approach has several disadvantages, including the need for complex hardware and software as well
as a high computational cost.

Aim:

The aim of the project is to investigate and analyse the obstacle avoidance algorithm proposed for
autonomous vehicles and to achieve a proper algorithm model by combining or existing algorithms
or implementing new methods to the algorithm.



Tasks:

1. Initial task of the paper is taken as analysing the obstacle avoidance algorithms proposed
for autonomous vehicles till date and its advantages and disadvantages to conclude which
algorithm is flexible and more adaptable for combining within them.

2. The second task is completely based on research basis ehich helps to combine the
algorithms and the software used for implmentation and literature analaysis for the
SIMULINK models to create a idea for combining the algorithm.

3. Combine the algorithms using SIMULINK software and analysing the output for error and
specific heading in respect to inputs.

Additional tests performed to check the adaptability of the model by changing the sample time inputs
and comparing the graphs.



1. Literature Review
1.1.  Analysis of algorithm

Various applications, the UGV must automatically move the static environments while considering
obstacle avoidance to account. Autonomous path planning is one of the major issues with difficulties
that UGVs must deal with. Suggested robotic technique is a collection of optimization search issues.
New algorithms derived from nature outperform conventional ones due to their lower computational
cost. This research provides a nearly ideal method for finding a realistic path with Unmanned Ground
Vehicle in closed environment.[1] The performance of the suggested method was associated with the
known methods in the route planning field, such as A*, using a simulator designed . Three
performance parameters are assessed by the simulator: path length, obstacle distance, and running
time. The simulator's findings generated a far path avoiding obstacles.[1] To improve the method's
performance by addressing the APF algorithm's flaw, changes must be made. Here, a suggested
collision avoidance method is put forth to address this straightforward issue. It is founded on the
potential field method's continued development. The proposed technique is superior to the present
strategy, according to simulation data.[2]

The task must be broken down into smaller difficulties for a mobile robot that must navigate from a
beginning point to an end destination while navigating around obstacles. Fundamentally, it entails
interpreting sensory input, selecting an appropriate algorithm depending on the target function, and
designing the mobile robot appropriately to provide the required results. This study discusses a few
key categories for robot navigation and obstacle avoidance systems. In an organized and succinct
manner, a group of algorithms were split into two primary groups, each of which is further subdivided
into sub classifications. These options may include algorithms that have the most potential, per se,
that are fascinatingly comparable to how a brain functions, were inspired by nature, etc.[2-3] In this
work, a fuzzy neural net collision avoidance technique utilizing multi-sensor fusion is created to
address the obstacle avoidance needs of UGVs in a problamatic environment. The effectiveness of
the suggested fuzzy neural network approach was demonstrated by contrasting and comparing the
model path of the UGV's collision prevention motion when it was administered by a fuzzy controller
and fuzzy neural network algorithm. The final stage in proving the excellence and reliability of the
collision prevention algorithm is the obstacle avoidance investigation on the UGV application
designed.[3-4]

This work employs a monocular vision device to achieve obstacle detection of common impediments
in a cross-country setting, with the goal of solving the obstacle identification problem for autonomous
ground vehicles. First, noise is removed from the image using the median filtering approach. Second,
to separate the region of interest, a Fisher criteria-based image segmentation technique was used.[4-
5] The image is then prepared for the next analysis by being treated using the morphological
technique. The colour characteristic must be extracted in the next step. The colour characteristic as
well as the border characteristic "verticality” of both images extracted using the HSI colour space,
the Lab colour information, and value photos. Concluding , an approach build upon Bayes category
theory and multifeatured fusion is used to detect obstacles.[5]

In a hybrid pass scenario for autonomous ground vehicles, a novel network approach utilizing a
Markov random field was developed to identify the barrier from a significant amount of 3D LIDAR
data. Each laser scan line's projection in the x-y plane is first divided into segments using a pre-
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processing method based on the greatest blurred line. The corner detection approach used to precisely
find the line segment vertices before they are used to create an unguided circuit for the Markov
random variable. Two different sorts of line markings are then separated into groups for obstacles
and the ground.[6] The creation of safe trip planning to avoid impediments in autonomous driving is
progressing. It has been demonstrated that more effective planning methods integrate geometric
collision detection with path flattening, clipping, and optimization. It is based on the RRT algorithm,
which stands for Rapidly Exploring Random Trees. Prior to route smoothing, root trimming
eliminates duplicate points produced by each branch so that new pathways may be designed to avoid
obstructions. This demonstrates that the car can safely follow its path and arrive at its destination with
a maximum following variation of just 5.2% of the car's width. Route planning also accounts for lane
shifts, with just an average lane variation of up to 8.3% before, though, and following a zone
change.[6-7] One of the primary challenges in the creation of autonomous vehicles (AV) is the
construction of a safe, fatal collision avoidance trajectory. [8] Very little study has focused on the
characteristics of human drivers that help them avoid collisions while designing autonomous obstacle
avoidance systems. This research suggests developing a path tracking framework for collision
avoidance path design and AV while taking into account the peculiarities of a human vehicle's
obstacle avoidance trajectory. In addition, we tested the capacity of human drivers to avoid obstacles
that used a 6-DOF driving simulator, gathered data on the driver's driving manner, and utilized it as
a foundation for parameter verification in the modeling framework.[9] For offline simulation testing,
a founder model is developed based on CarSim/Simulink was developed. According to the findings,
the suggested route planning control aims the safety and collision avoidance.

Unmanned ground vehicles frequently have to operate in environments where they can only see a
portion of the scene. As a result, based on current perceptual data, a workable non holonomic Actions
for target tracking and obstacle avoidance must be taken immediately. This work integrates VPH+
(enhanced vector polar histogram) with MPC to propose a robust strategy (model predictive control).
[11-12]The environment sensing and computing efficiency of VPH+ are used to compute the desired
direction, and Model Predictive Control method are investigated to create a limited model-predictive
path. In a reactive controller, this strategy can be used. VREP simulation experiments are run to verify
the suggested strategy.[13]For autonomous ground vehicles operating at high speeds, lateral stability
safety is another crucial concern in addition to collision avoidance safety. The global collision
warning path is created using the accessible graph approach, which is a very beneficial and effective
route planning algorithm that may offer the quickest route from crossing obstacle avoidance from the
starting location to the finishing point. [4] To enhance the path and implement a secondary navigation
system with lateral stability, nonlinear model predictive navigation is utilized. This improves the
planned route quality and helps the user avoid unforeseen shifting obstacles. Four hypothetical
situations are executed to evaluate the feasibility and accuracy of the whole collision avoidance
system. According to the simulation findings, the technique can handle lateral stability as well as
static and dynamic stability.[12] Planning and following collision-free pathways is difficult for
autonomous ground vehicles when there are both stationary and moving objects present. This study
recommends a path planning and robust fuzzy output-feedback control strategy for avoiding
obstacles. A route planner is developed to provide collision-free paths avoiding both fixed and
moving objects. The planned pathways are then followed by a reliable fuzzy output-feedback control
that has been constructed. The planned trajectories are monitored using the major advancement
control approach without the vertical velocity signal.[24] The simulation results show that the
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autonomous ground vehicle can avoid both stationary and moving obstacles by employing the
planned path planning and dependable fuzzy output-feedback control approaches.

The proposed automated navigation for a tracked purpose vehicle is comprehensive. The technology
enables the user-selected waypoint or patrolling tasks to be executed entirely autonomously. By
alternating between human teleoperation and vehicle autonomy, it also makes user-vehicle shared
autonomy possible. The model-based predictive control strategy based on a navigational function is
used by our navigation system. We provide a navigation method that accounts for the tracked vehicle's
non-holonomic motion, any-shape footprint, and changing environmental conditions. In addition to
the waypoint or patrolling chores, we designed a fool-proof scenario where the m returns on its own
to the last location it visited when connectivity remained stable. Experimental findings on the
suggested system's effectiveness on the Komodo tracked vehicle. The creation of a way-based and
tracking framework utilizing (MPC) while taking into consideration the predicted tire-road friction
coefficient (TRFC) is the key issue covered in this study. The distance between the host and the wall
vehicle, which is related by TRFC and vehicle speed, is used to design the intended course with regard
to lateral view.[14-16] Co-simulations using Car Sim, MATLAB, and Simulink are used to assess the
efficacy of the proposed monitoring and planning framework on both high- and low-friction roads.

1.2.  Predictive model analysis

An techniques to ensure current design for driverless driving is developed in order to execute and
plan manoeuvres on 3D landscape without running into anything. On 3D terrains, it is challenging to
accurately account for vehicle dynamics during control and planning. To bridge this gap, a vehicle
model that considers terrain topography is developed as the forecasting model. A single nonlinear
predictive modelling approach that concentrates on the recently published vehicle model is used to
optimize the guiding rate and transversal acceleration control inputs.[19] ] This research examines
the problem of tracking control for an unmanned ground vehicle (UGV) in the presence of outside
disturbances and skid-slip in a scenario with stationary and moving objects. To carry out the given
task, we used a path-planner based on fast nonlinear model predictive control (NMPC). Once more,
the planner creates workable routes that the dynamic and kinematic controllers may employ to steer
the vehicle safely to the desired place. The NMPC deals with both stationary and moving objects in
the environment. [19] To lessen the effects of disturbances, the dynamic controller employs the
velocity directives generated by KC together with only a nonlinear variable structure (NDO). In order
to generate an ideal path map, the Dijkstra algorithm based on pseudo priority queues (PPQ) is
combined with NMPC.[23]

In autonomous vehicles, artificial potential fields and optimal controllers are trajectory planning that
are often employed. Different potential functions may be ascribed to various types of obstacles and
road structures with in artificial potential field method, and pathways can be built in accordance with
these potential functions. In optimum control issues, road borders and obstructions are frequently
used as constraints as opposed to arbitrary functions. We offer a forecast route planning device for
the model in this study. Its objectives transcend beyond the parameters of driving dynamics to
potential functions. The path planning technology is able to deal with various impediments and road
elements separately in order to leverage driving dynamics to design an ideal route.[21] The findings
demonstrate that, while employing this route planning controller, the vehicle employs the proper
vehicle dynamics to avoid crashes and adhere to traffic laws. The relevance and priority of obstacles
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and traffic laws may be taken into account while designing routes utilizing a route planning system's
many functionalities.[21]

As vehicle applications advance to a more advanced and self-driving state, interest in autonomous
cars has increased recently. This article addresses the development of a collision avoidance system
for an application requiring autonomous driving, including the development of a motion planner,
model-based effective vehicle steering, and active wheel torque control.[22] When an automobile
accident with an impediment is expected, a motion planner with polynomial parameterization chooses
an obstruction-free route. The front steering is then controlled by an MPC-based control system such
that each wheel torque follows the predicted reference trajectory without collisions.[23] The
suggested system is evaluated in simulation using an 8 model, efficient front steering, and active
wheel power distribution systems. The simulation's findings demonstrate that collision avoidance
tactics. Utilizing autonomous agricultural equipment should be a top priority if precision agriculture
IS to be more effective. This inspired me to develop and test supervised training artificial neural
networks suited for categorization and pattern recognition utilizing data gathered from ultrasonic
sensors using the Neural Network Toolbox, which is already built into MATLAB. We want to employ
such a procedure to retrofit currently existing kits of agricultural machinery. In order to develop a
deep learning artificial neural networks competent of categorization and algorithmic using data
gathered by ultrasonic sensors, | choose to try the Neural Network Toolbox currently provided in
MATLAB. This technique will be used to the retrofitting of commercially available agricultural
machinery.[23-24]

Despite the common usage of artificial potential fields in route planning techniques, it is well
recognized that these techniques have the major problem of allowing a robot to reach the region's
lowest point. However, if the settings are complex, the virtual barriers that are produced while
employing the virtual obstacle technique might obstruct a robot. To provide a better virtual barrier
technique for local path planning, this study proposes a new minimal criterion, a new switching
condition, and a new drilling force. The three additional features can address the shortcomings of the
virtual barrier technique as well as the prospective field-based solutions. Therefore, feasible free path
simulations are created. [26] Route tracking is one of the most crucial aspects of self-driving
automobiles. Development of a path tracking controller that considers vehicle non-holonomic
restrictions and yaw stability is a goal of ongoing research. To establish the present state of the
vehicle, lateral controller design often chooses a path reference point (typically the point nearest to
the vehicle). Control schemes can be used to these anticipated future states and augmented by the
present controller output, based on the discontinuous predictive model that forecasts the condition of
the vehicle in the future. The efficiency of the suggested approach has been verified by numerous
simulations on the V-REP computer with radical activities (double lane shift, hook, S and curve road),
at various speeds.[25] The acquired results of the suggested control technique show the value and
efficacy of the approach to guarantee yaw stability and reduce lateral error by an average of 53% and
22%, respectively.

This study develops the path planning strategy for unmanned ground vehicles (UGVs) on the ground.
Using estimated terrain traversability, the recommended route planning method, which rely on the
Hybrid A* algorithm, determines the path that optimizes the UGV's length and traversability. The
path planning method is illustrated and compared with the real Hybrid A* algorithm using simulated
traversability maps. Real-time trials on actual terrain used to test the approach further highlight the
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advantages of increasing terrain traversability while path design. The proposed approach provides
more potential travel routes than the present Hybrid A*technique.

Unmanned ground vehicles (UGVSs) need a secure and efficient global route in order to move about
and complete missions in challenging off-road scenarios because of the limited payload capacity and
uneven terrain. is essential to Planning a route that is both feasible and secure in difficult off-road
conditions is difficult. This is because the bulk of existing techniques for global path planning only
consider the lowest path duration as an optimization goal. In this work, we offer a global path planning
technique to address this issue by taking into account the effects of topographical characteristics and
geotechnical on UGV mobility. He initially developed a high-resolution 3D terrain model of his
utilizing geostatistical methods, incorporating data from satellite sensing, highland topography, land
use, and soil type distributions. After studying vehicle mobility with terramechanical methods,
mobility costs were calculated using fuzzy inference approaches (that is, vehicle cone index and
backer theory). [25]It was determined to build global routes using an upgraded A* algorithm after
creating connection matrices and bidirectional bottleneck cost estimation matrices between sample
locations using a probabilistic roadmap technique.

1.3.  Simulink Model Analysis

Simulink-based UGV modeling as well as simulation: This topic has the ability to address an existing
variety of features that belong to UGV modeling, including kinematics, dynamics, as well as control.
It also has the ability to explain the benefits of using Simulink at the same time as an existing
simulation tool that is going to belong to UGVS, as well as compare it to others.
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Fig 1. Simulink model for vehicle [26]

Control systems that are going to belong to unmanned aerial vehicles (UAVS): It has the ability also
examine the benefits as well as drawbacks that belongs to each UGV control approach. [27] Ugv
navigation algorithms: this topic has the ability to encompass an existing variety that belongs to ugv
navigation methods, such as path planning, obstacle avoidance, and localization. It also has the ability
to examine the benefits and drawbacks of each UGV navigation algorithm. It also has the ability to
go over the benefits and drawbacks of each software architecture that is going to belong to UGVS.
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Experimental validation that belongs to ugvs using Simulink: this subject might encompass an
existing variety that belongs to studies carried out to validate ugv models created with Simulink. It
has the ability to also talk about the difficulties as well as limitations that belong to experimental
validation, which is going to belong to UGVS.[28-29] Fuzzy pid controller that is going to belong to
UGVS: This topic has the ability to address an existing variety of features that belong to the fuzzy
pid controller used that is going to belong to UGVS, such as the design that belongs to the fuzzy logic
system, adjusting the pid controller settings, as well as the benefits as well as drawbacks that belong
to using an existing fuzzy pid controller that is going to belong to UGVS.[29]
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Fig 2. Simulink model for FUZZY-PID [29]

[30] This study will describe an existing fuzzy PID-based steering control system that will be a part
of an existing autonomous vehicle. This study offers the Stanley controller approach and an existing
fuzzy pid for use in tracking UGV routes. [31] This study introduces an existing associative fuzzy pid
as well as the Stanley controller technique; it will be used for UGV path tracking. The simulation
results proves that the suggested technique outperforms traditional PID controllers and can follow the
desired course satisfactorily and also the results show that the suggested control system is capable of
steering the vehicle along the specified path. The simulation outcomes show that the suggested control
system can steer the model in the desired direction.
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Fig 3. Simulink model of basic Stanley controller [30]

This research provides an existing hybrid fuzzy pid as well as a Stanley controller technique that is
going to belong to mobile robot route tracking. The simulation results demonstrate that the suggested
method tracks the target route successfully and outperforms the typical PID controller.

2. Background And Explanation

Unmanned ground vehicles (UGVSs) have the ability to function autonomously without the assistance
of a human. Military uses propelled the first UGV generation. Applications for self-propelled UGVS
have expanded dramatically and exhibit a wide range in recent years. Numerous non-military uses
have also been discovered, including power line testing, surveillance systems, mine detection, data
collecting, imaging, security, agriculture, visiting deep ocean research, and scientific space
exploration, among others. The UGVS can generally handle risky, costly, difficult for humans, or
distant activities. For these applications, the UGV must autonomously steer clear of numerous hazards
while navigating. Because of this, orbital planning is regarded as one of the most significant issues
facing UGVS. In order to get from the beginning point to the destination site while avoiding obstacles
and maximizing some predetermined parameters, path planning is utilized. [15] The optimum plan is
chosen based on these performance criteria or measurements, such as reducing time, distance, and
control effort and total number of nodes found. These types of plan can also be analysed in software
to require a comparable output. Hence in this paper MATLAB/SIMULINK software is used to figure
out the basic model of algorithm which helps in autonomous vehicle for optimal and precision path.

2.1.  Path Planning Approach And Its Necessary For Autonomous Vehicle

Global route planning is the technique that enables a robot to automatically choose the optimum path
to a destination place utilizing collected sensor data and a priori knowledge. It is crucial for enabling
autonomy for autonomous ground vehicles, and several different methods are now being used. It is
crucial to comprehend the many approaches accessible since each one is best used under a certain set
of conditions. This research looks into the various methods that are already in use, with a focus on
how they may be used to outdoor sailing. In a typical mobile robot application, the global route
planner will normally be connected to a local navigation engine. Finding the most efficient path to
attaining a long-term objective involves careful, thoughtful preparation known as master roadmap
planning. The local navigation system is in charge of handling small impediments and vehicle
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stability; they are unrelated to this. A search algorithm is what helps the vehicle to choose path within
this configuration space proposed previously stated user criteria such as path distance, adversary
distance, etc. The planning method consists of two basic steps: gathering the pertinent data into an
effective and appropriate configuration space.[19-24] On mobile robots, three categories of
configuration spaces have been successful:cell breakdown, possible domains, and mechanisms. Using
a globe separated into a number of representative regions, such as regular grid cells, the first form of
representation, called cell separation, then defines the properties of the world for each cell.

Roughness, height, movement, and other qualities are frequently reflected in the mesh. The path
planning process may be made more efficient by using more advanced technology, such as
quadrangular trees, try to divide the environment more effectively than ordinary grids. The route
technique, which is the second sort of representation, makes an effort to explain the world in terms
of traveling to and from important locations and the associated costs. Road maps are faster to use
once developed, but they require far more effort and time to create than subdivision maps. Using
pathways, probabilistic routes, and quick identification of random trees are two of the most recent
and intriguing advancements in the field of path design..[26] The potential field is the name given to
the third representational category. Robots are shown as objects that, like an electron in an electric
field, are affected by potentials created by external objectives and barriers. This strategy, albeit more
typically used for local obstacle avoidance in mobile robots, can also help with efficient path
planning. Once the world representation has been built using one of the three methods above, the
robot uses a search algorithm to select the best path inside the world. Older, simpler algorithms like
Depth-First Search and Djikstra's algorithm are still widely used. Heuristics, or informed guesses, are
now used to speed up the search process due to recent innovations. This category includes the A*
algorithm, the most widely used search algorithm today. New advancements, like the D* algorithm,
make an effort to quicken the process in scenarios where the world is only partially known and new
information is constantly being discovered.

3. Methods Used In Path Planning Approach

Unmanned ground vehicles (UGVs) have become increasingly popular in nowadays, due to their
ability to perform a wide range of tasks in various environments, including military and civilian
applications. In order to operate effectively, UGVs rely on advanced algorithms that enable them to
navigate and perform tasks autonomously. However, these algorithms have certain constraints that
must be taken into consideration when operating in different environments. For instance, UGVs may
encounter obstacles, such as rough terrain or environmental hazards, that can limit their mobility and
affect their ability to complete tasks. To overcome these challenges, UGVs often utilize specialized
software that allows for efficient and accurate navigation, as well as the ability to perform complex
tasks. Implementing such software has its own set of challenges, including compatibility issues and
limitations related to processing power and memory. Therefore, it is essential to carefully consider
the specific software used and its implementation boundaries to ensure optimal performance of UGVs
in various environments.

3.1.  Probabilistic Route Method (PRM)

Using a random sample of sites in the environment and linking them to potential pathways, this
method creates an environment route. This technique is used to create a graphical structure of the
environment, which can be used to plan efficient routes for the UGV. Probabilistic route method
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(PRM) is a planning technique used in robotics, computer vision, and other fields.[24] It is a powerful
tool for direction and motion planning, as it can quickly calculate the optimal route from one point to
another. PRM works by sampling the environment, creating a graph of potential points to move, and
then using a pathfinding algorithm to find the most efficient route. PRM is also known for its
flexibility and scalability. It can easily be adapted to changes in the environment and its ability to
solve complex problems makes it a great choice for robotics projects. PRM is also relatively easy to
implement, making it an attractive option for developers. With its efficient pathfinding, scalability,
and ease of implementation, PRM is an essential tool for anyone looking to solve motion planning
and pathfinding problems.

3.2. Random Rapid Probe (RRT) Tree

The shortest path between two places may be swiftly determined using this approach, which quickly
creates a tree structure of the environment. The tree grows branches one by one and the branches are
chosen at random. This technique is especially useful for finding paths in complex environments.
Random Rapid Exploration Trees (RRT) is a pathfinding algorithm designed to solve motion
programming problems. It has been used for a variety of robotic tasks, including as motion control
and navigation. At its core, RRT works by creating a tree of randomly generated points in the
environment. The shortest route between the two places is then discovered using the optimization
method. This process is repeated until a path is found. One of the main advantages of the RRT
algorithm is its efficiency - it is much faster than traditional pathfinding algorithms, which can take
a long time to find the shortest path. Moreover, he can find his way in complex and realistic
environments with obstacles and uncertain information. This makes it ideal for use in robotics
applications where it can be used to quickly and accurately plan robot movements. In short, RRT is
an efficient and powerful pathfinding algorithm that can be applied to many types of robot tasks.[24]

3.3.  Potential Field Method (PFM)

This algorithm is used to generate a force field around the UGV, which can be used to guide the
robot's movements. The force field is generated based on the potential of obstacles and targets in the
environment. This technique is useful for roads that require avoiding obstacles or achieving a specific
goal. The Potential Field Method (PFM) is a powerful method used to model the behavior of a system
under the influence of external forces. It is commonly used in robotics, computer vision, and
autonomous navigation. PFM models the environment as a set of potential or energy fields, describing
the interaction between the robot and its environment. Using PFM, the robot can determine the
optimal path to the desired goal. PFM consists of two parts: field generation phase, in which energy
fields are calculated, and motion planning phase, in which the robot uses these fields to move from
current position to desired target. PFM is an effective tool for finding the optimal path because it does
not require the robot to search for all possible paths, but instead the most desired path. In addition,
PFM can be used to interpret dynamic obstacles, allowing the robot to avoid them while finding the
optimal path. In short, the potential field method is an invaluable tool in robotics, computer vision,
and autonomous navigation, and its potential applications are endless.

3.4.  A* Search Algorithm

By calculating the cost of each node along the way, this method determines the shortest route between
two places. The algorithm considers the cost of each node, as well as the heuristic cost of achieving
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the goal. This technique is useful for routes that require achieving a specific goal in the shortest time
possible. Utilizing this approach, which calculates the price of each node in the network to create the
shortest distance between two sites, A strong path planner for autonomous ground vehicles is the A*
search algorithm (UGVs). The best path between two points is determined by combining heuristics
and weighted values. The algorithm takes into account a variety of factors, such as geography, the
size of the UGV, and the kind of obstacles it may encounter. In order to choose the most effective
travel plan, it also considers how long it will take the UGV to get at the goal.[24] The A* algorithm
is a great tool for UGVs because it not only helps them find the shortest path, but also helps avoid
obstacles and difficult terrain. The algorithm also enables real-time trajectory planning, allowing
UGVs to react quickly to changes in their environment. Using the A* search algorithm, UGV can
find the most efficient path in a given situation.

3.5.  Markov Decision Process (MDP)

This algorithm is used to model the environment and determine the best action to take at each step.
The model is created by evaluating the reward associated with each action and the probability that
that action will lead to the desired state. This technique is useful for paths that require navigating
through dynamic and uncertain environments. The Markov Decision Process (MDP) is a powerful
tool used in artificial intelligence and reinforcement learning. It is a set of mathematical methods used
to model and optimize the decision-making process. In MDP, the agent is presented with a set of
states, actions, and rewards, and it must decide what action to take to maximize its reward. The agent
uses its knowledge of the environment to determine the best course of action in each state. He then
uses this knowledge to move from one state to another, reaping rewards along the way.[24] MDPs
are useful for decision making in complex environments, as they can help find the best course of
action in a given situation. They can also be used to optimize decision-making strategies over time.
CDMs are also valuable to businesses because they can help find the best way to maximize profits
while minimizing risk.

3.6.  Simulations Using Matlab And Carsim

The simulations with MATLAB and CarSim are used to verify the validity of the suggested pattern's
impact. When compared to the previous events, the giving of this document occurs in the following
manner:

1. To evaluate if there is a chance of an accident occurring between the UGV and the barrier, a
judgment rule is provided.

2. The boss is better at avoiding obstacles in advance since the smooth and logical path has
previously been quantitatively planned.

3. The examining behavior control principle is to create fashionable path pursue because path
pursue restraints are used or rented to take into account fashionable way reconfiguration
priority for the performing arithmetic difficult that the conventional addition is solved at each
taste moment. As a consequence, the subsequent boss's computation time is drastically
decreased.

4. To unite the control society with two dimensions, the CTMPC was offered and embellished
in this location document, and the ESO was linked to reject lumped disturbances.
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Fig 4. Obstacle Avoidance Steering Control Strategy [31]

CarSim and MATLAB have been integrated to provide the joint imitation outcomes in order to
confirm the act of the suggested technique in a realistic environment. The dynamic quality has
become popular in CarSim. The static and vital barrier situations used in MATLAB replication have
the identical position news of the barriers. The chosen car model is a B-class Hatchback, which is
consistent with the paper's crucial limit.[34] To distinguish between MATLAB joint imitation and
CarSim joint imitation, note that the former creates MATLAB while the latter creates CarSim. Cones
are used in place of obstacles/potholes in static sequences of events because there aren't any in the
CarSim animator. By setting the control inputs in a manner similar to how one would behave
themselves, one may explain the control performance of the anticipated technique utilizing CarSim
emulating current dynamic barrier master plan.[29] When comparing the use of CarSim and
MATLAB, it's easy to see how the means of achieving the goal can avoid the movable obstacle in the
path on which travel happens. The UGV can successfully avoid the active obstruction and maintain
a distance of 1.6 meters from the governing class, which is sufficient to fulfill the constraint. Control
inputs are shown, and their curves are extremely similar. This tests the expected strategy's success in
a more practical master plan.

3.7.  Hardware Implementation For Ugv

The major goal of the paper is to show how to prepare and follow a plan appropriately by avoiding
or avoiding impediments during runtime.[35] The SLAM method base UGV will continue to start
from a fix station in this regard and will eventually become the alluring destination one desires to
travel to or strive for as set as a guide for one match.

For example:

e Raspberry Pi Programmable Logic Controller
e NOIR Camera for the Raspberry Pi
e H Bridge IC L293D
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e Servo Motor (DC)
e Sensor for ultrasonic waves

When a recommended match is supported by UGV, it will continue to comprehend a differentiating
process that is separated into two stages in the life of anything, as shown below:[31]

Phases A (planning and mapping)

Phase B (Path Following Obstacle Avoidance)

Technically, the following stages might be assumed:

Each x/y match that your android must go will have its distance financial worth computed.

Second, transform it into a series of revolutions to bring this distance to a successful end. One grant
permission in addition to act this, but in the submitted paper, the UGV will learn from the gyrator
sensor HMC5883L chip how far it should travel at the x-point around which something revolves and
in contact with the y-point around which something revolves, whereas the UGV will come to a halt
for fear of an impediment.

Now that UGV has come to a standstill due to a power outage. The gyro sensor will also assist in
determining the point around which anything spins on the UGV, allowing it to take a suggested route
to get to where it wants to go. When the boss determines the angle at which your robot must move in
order to complete an activity, this happens. [35] A hurdle or stoppage will happen if an ultrasonic
sensor detects a distance that isn't true for one calculated distance. The same work can be done again
by using a geophone and the approach of kurtosis as a talk over with another fashionable both fictional
and nonfictional review. When your android detects an impediment, turn it 90 degrees right and travel
a predetermined distance of property's declare 1 beat, and then recalculate the best way. If there are
no obstacles when you return to moving towards the goal.

3.8.  Software Implememntation In Ugv

So that it can be ascertained that the sensors have been detected and the position of the Robot moving
in a circle, this physical information must be delivered as input to the control command promptly.

a) The path's predetermined state ,the system must be designed from the beginning to go in
straight, politically extreme lengths or bends to the right and return without hindrances to
the starting position.

b) The system must be socially viable in the obstacle-blocked condition (obstacle discovered
first). In this state of the curve position, it is vital to rely on the relinquishment and assess
whether there are any barriers that need to be removed.

¢) Obstacles can be found in the abandoned.

d) Consider if a single or two politically extreme sensors have been discovered. If skilled
encounter some obstruction, the system must count on properly and make a
recommendation for rectification in this curve state, it should continue and reform at the
usual line.

e) Right-hand obstacle is discovered: The system must exist and call for socially a while until
either individual or both right-hand sensors are discovered. It must be counted out and
checked to see if there is any kind of impediment or hint of rectification in this location
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curve condition. Then it happened will continue to do what is right and reform in a sensible
manner.

) The process exists entirely and the system for doing anything may be noted as the following
stages for the congregation computer program give instructions of the control border.[35]

3.9.  Methods Of Enhancing The Software To Android

The execution of an obstacle avoidance strategy for Android entails printing on paper and putting
together a program using Arduino software. It is a natural tools platform on which a microcontroller
is installed and which is assembled using the Arduino IDE. Connected arduino and quick sensors
were used to overcome the obstacle. To determine how far away the robot is from the impediment,
an ultrasonic sensor is positioned in front, on either side of the structure, and in the middle. Based on
the quick sensor profit, the robot may determine whether to turn politically to the right or left. A 12V
rechargeable battery is attached to the driving component.[36] When there is an excessive echo in
place of an sensor, the length between the barrier and the android may be purposefully chosen. The
android will refrain or remain away from the obstruction based on the distance parameter (30cm).
Start using the Arduino IDE computer application to create a hidden language system. At this point,
the android was capable of avoiding immobile obstacles and taking the chance path utilizing the
chance walk technology.

3.10. Variuos Types Of Algorithms And Its Comparision
Merits of the Tangent Bug Algorithm:

* It seeks to minimize the wandering distance out of worry that the robot will have to travel
as little as possible to arrive to the desired location or activity.

Demerits:

* It occurs as a result of not being able to care for oneself. When the distance between you and
the obstruction continues to build, it begins to behave like a bug treasure by following the
edge of the obstacle.

Method of Creating an Artificial Potential Field
Merits:
* There is a straightforward strategy that is simple to apply.

Demerits:

» When the robot reaches a position of local minimum, it comes to a halt.
« It is unable to locate an extract from the document's centre from two spots on either side of
a split barrier.
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Histogram of a Vector Field[23-24]

« It solves the problem of sensor noise by creating a cold graph that looks like a pie and shows
the possibility of anything happening due to the proximity of a barrier, notably thin
management.

Benefits:

* It does not ensure completeness;
« It does not allow for the traversal of local minima;
« It may be difficult to navigate narrow transitions using this approach.

Bubble band techniq:
Advantages:

* It outperforms VFH while traveling along a confined path;
* It needs less mathematics;
» This design is both cost-effective and adaptable to diverse sensors.

Merits:

« It does not define smooth functioning
* It necessitates a taller level way designer
« It is vulnerable to sensor noise

4. Heuristic Approach

The heuristic approach to trajectory planning in unmanned ground vehicles (UGVS) is a viable option
for navigating complex terrains. This approach uses a predefined set of rules to find the shortest and
safest route for the UGV, ensuring that it reaches its destination safely and efficiently. The advantage
of this approach is the speed of the output, as UGV can make decisions quickly and without heavy
processing.[39] Moreover, the heuristic method is easily adaptable as it can adapt to any terrain or
situation. However, one of the main disadvantages is the lack of flexibility, as the UGV has to follow
predefined rules regardless of any changes in the environment. In addition, it may not determine the
most efficient route because the rules are based on general principles rather than actual terrain data.
Although the heuristic approach to trajectory planning in the UGV has its pros and cons, it remains a
viable option for navigating complex terrain. With the right settings, it can be a powerful tool to
navigate safely and efficiently in any environment.

4.1. Limitation

e Doesn’t give optimal result
e Used for some immediate goals
e Doesn’t need full complete details of the environment

EXAMPLE: consider the autonomous UGV in a path of maze, for heuristic approach let’s say the
vehicle moves around the wall of the maze to reach the goal and finally the UGV reaches the goal ,
if the maze is in square box and the UGV has to move to a certain goal , it keeps on rotating on the
orbit and yet attains path to goal eventually and not in a n optimal way. Like an automatic vacuum
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cleaner cleans the house by avoiding the obstacle but finishes the goal somehow but not in optimal
path.

5. Optimal Approach

Route planning is an important aspect of unmanned ground vehicles (UGVS). It helps UGV determine
the most efficient and safest route to the destination. As with any technology, this method has
advantages and disadvantages. One of the benefits of route planning is that it allows the UGV to avoid
obstacles, save energy, and reach its destination quickly. In addition, it allows the UGV to reach areas
that may be difficult or dangerous for humans to reach. On the other hand, path planning has some
disadvantages.[39] This can be time consuming and expensive to do. Additionally, it can be difficult
to predict the behaviour of other vehicles or obstacles along the way. Ultimately, path planning is an
essential part of UGV operations and the optimal approach will depend on the specific application.
By taking advantage of the advantages and minimizing the disadvantages, the UGV can navigate to
the destination safely and efficiently.

5.1. Limitation

e It needs more details about the environment

e Planning of path achieved through optimization

e |t creates different possible paths and select the best possible way to move towards the
goal

To avoid both static and moving impediments, fully autonomous vehicles employ an optimum path
planning technique. While a road might have both static and dynamic circumstances, choosing the
best path is necessary for autonomous cars to reach their destination.

6. Methodologies And Its Mathematical Models
6.1. Potential Field

Where m is the vehicle's mass, 1z is the moment of inertia about the vehicle's vertical axis, and Fyf
and Fyr are the sum of the horizontal forces generated by the front and rear tires, respectively. The
vehicle's total vertical position, horizontal position, and tilt angle are represented in coordinates as X,
Y, and. [16] There are rumors that the car has front-wheel steering. The tire's horizontal forces is
calculated by linear tire model, where f and r represent the front and rear tires' respective horizontal
slip angles and is the steering angle. Additionally, Cf and Cr represents corresponding cornering
stiffness ratings for both tires.

m(u — vr) = FxT @

m(v' +ur) = Fyf + Fyr 0 )

Izr' = IfFyf — lrFyr 3)
6 =r,

X = ucosO — vsing,

Y’ = vcosO + using,
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Fyf =Cfaf =Cf(6 —v + lfru) 4)
Fyr = Crar = Cr(—v — lrru) (5)

The vehicle linear dynamics can then be obtained by linearizing 4 and 5 equation [10]

x' = Ax + Buc (6)
x = [XuYvor|T (7)
uc = [FxT6|T 8

where A is the state matrix, B is the input matrix, uc is the input vector, and x is the state vector. The
predictive trip planning control model does not employ the order-preserving discrete model. A
potential field is a field that generates to make barriers and targets so that the vehicle may be guided
to the target while avoiding the impediments. The barrier PF has a maximum value at the obstacle
way in order to find and repel the vehicle, whereas the target PF has a lower limit at the target to
attract the nearby vehicle. The aim of the function terms of the path planning controller are tracked
in this document while the vehicle is driven to its destination. Consequently, the potential field created
here merely has an unpleasant quality and contains barriers. PF. In order to prevent the vehicle from
veering off the lane and into other traffic, PF is applied at the lane border (URQ). Additionally, two
more PFs are established for two categories of obstacles: accidents and impassable obstacles like cars
(UNCI) (UCj). The total of PF: represents a potential field.

U = YiUNCi + YjUC] + X.qURq 9)

where the ith impenetrable obstruction, the jth passable obstacle, and the gth road marker are
represented by the I j, and q indices.

The following functions are a few examples of functions; To mimic additional traffic regulations and
impediments, utilize other tools. Any PF that is doubly differentiable may be handled using the
approach that is described.

6.1.1. Impossible Obstacles

Some barriers are too large to cross, such as: B. Damage to automobiles, pedestrians, and other
objects. B. Large items or impediments for vehicles. A hyperbolic function of the distance between
the vehicle and the obstruction is utilized to produce the potential field induced by the hindrance. As
the distance to the barrier site gets smaller and nearer to infinity, the function's rate of change increases
exponentially, making it impossible for the vehicle to get through the barrier. Shulman and others To
prevent collisions, use SD between the geometry of the obstacle and the vehicle. When there are no
contact points between features, SD is the shortest distance between them; if there are contact points,
it is the negative value of the through distance. [16]. When: PF is produced by SD:

UNCi(X,Y) = ai/si(XXsi,YYsi)bi (10)

where ai and bi are the parameters governing the PF's strength and form, respectively. The space
between the vehicle and the obstruction must also be higher in the longitudinal axis than in the
transverse direction. As a result, SD is normalized using the Xsi and Ysi horizontal and vertical longe
range from the obstruction, respectively, which are as follows:[10]
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(11)

Xsi = X0+ uT0 + AuZai/2an
(12)

Ysi =Y0 + (usinfe + uoisinfe)T0 + Av2ai/2an
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Fig 5. General Illustration Of The Potential Field [16]

6.1.2. Waypoint Locations' Potential Use

The shape of the resultant UGV route depends on the potential function's form. Consider a UGV
approaching a chosen waypoint as an illustration. The pathways A and B, two other routes to the
shortcut that may come about as a result of several conceivable functions, are shown. [19]

Way-Pont

Path B

Fig 6. Possibility Of Ugv Moving [19]
The following explanation gives an unlikely procedure that could be used to match the present

position of the intended waypoint:
(13)

PF w (k) =K. w(k—k_d)"2;
26



The function that might be used to match the present scheduled waypoint position is described in the
following section: [16]

F_w=—-V_pPF_w (k); (14)
V,PE,(x,v) = 2K, (k — Kgq) (15)
7. Fuzzy Logic Controller

Combining route planning techniques with fuzzy logic has enhanced path planning for autonomous
ground vehicles (UGV). Fuzzy logic is more flexible and adaptable to a wider range of situations
because it may be tailored to achieve certain aims and objectives. UGVs may be made to navigate
environments more precisely and effectively by using fuzzy logic and path planning algorithms,
taking into consideration factors like topography, obstructions, and traffic. In order to optimize
efficiency, it may also be utilized to adjust the path planning algorithm's weighting factors based on
the context and mission goals [24].

Path planning and fuzzy logic are used to build paths between starting points and destinations. The
path is not connected in any way and does not show the robot's motion along the line at any given
speed or angle. Robots might wander greatly from the intended direction when following a path
because of velocity and angle discontinuities. In order to address the issues with path planning
algorithms outlined above, the suggested solution comprises the following advances.
1. To locate transition pathways, a new pathfinding technique is presented that continually looks
for forward fuzzy logical order points.
2. During path planning, variables such as the mobile robot's maximum speed, maximum
acceleration, and maximum rotation are taken into consideration to offer predetermined speed
and direction values for the mobile robot at each step, guaranteeing the consistency of the
robot's rotation angle.
3. The motion selection is made more flexible and the movement's safety is increased by using
the fuzzy logic controller to predict future action based on the robot's present condition. To
more clearly describe the precise operation of the method suggested in this article and
understand.
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Fig 7. Fuzzy Logic Controller Scheme[24]

Therefore, the ideal method for creating the shortest path is Dijkstra's algorithm. The traditional
Dijkstra approach uses the displacement cost, which is just the Euclidean distance between two
locations, to quickly determine the cost. The Dijkstra algorithm's cost function is as follows:[24]

diatanceCustjudge = VED + turningPrice (16)

VED= [ (x=x) +(y —y) (17)

A6 turningPrice = 2nr (18)
40 =tan —tan,x —xx —x (19)

Here, the minimal turning radius of the mobile robot is (r), VED is the Euclidean distance, the search

point coordinates are (x2, y2), the previous point coordinates are (x0, y0), and the current point
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coordinates are (x1, y1). Both cost and distance CostJudge stands for the price of the shooting and
the overall price, respectively [24].

8. Stanley Block Scheme

The reference trajectory and the vehicle's present location with respect to the global frame are the two
crucial inputs that the BS controller requires to determine both lateral and heading errors. An array
of anticipated future vehicle states is added as a third input by the suggested control strategy. To
establish the needed steady state value of the angular position for each state (row) in the table that
will be supplied with the controller values basis, the controller should be able to do the computations
required. The controller is unrestricted and can respond to sudden changes in header angle. [23].

8.1. Basic Stanley Controller

The BS controller uses the standard trajectory and the vehicle's present location in relation to the
global frame as two crucial inputs to determine both lateral and directional errors. The suggested
control approach adds a third input, a database of potential future states of the vehicle. The controller
will be able to carry out the necessary calculations to establish the necessary steady state value of the
angle drive for each state (row) in the table to which the base controller value will be added. As a
result, the controller is equipped to manage abrupt changes in the trajectory's starting angle (traj).

¢(t) + arctan (I;e((tt))) |q0(t) + arctan (';3((3)| < 6(max)
6(t) =< 6(max) @(t) + arctan (I;eT(tt))) > J§(max) (20)
—o6(max) @(t) + arctan (%) < —6(max)

The execution of this control system requires the use of predictive modeling, which predicts future
means that indicate [Xf, YT, q] at each time step. The letters Xf, Yf, and g, respectively, stand for the
entire forward position of the vehicle in both directions and the inclination angle.

8.1.1. A Kinetic Bike

A transport vehicle with four wheels is employed in the control approach. On the driver's front wheel,
two incremental encoders are mounted to monitor vehicle length speed (V). An absolute encoder
mounted on the steering column is used to calculate the steering angle. The vehicle prediction model
is simplified by assuming the no-slip condition, and in light of the past knowledge, it is then reduced
into a kinetic bicycle model. Steering angle may be calculated using d and L when using an absolute
encoder.

__ Vtané

0=w > (21)
X; =Vcos(6 + 8) (22)
Yf = Vcos(6 + 6) (23)

Based on prior information about the vehicle's present condition, the modeling technique is used to
forecast the state of the vehicle at each time step. d, g, V, Xf, and Yf. Therefore, it is essential to
acquire a representation of the bicycle's kinematics. The discrete form of the model previously stated
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is heavily included into the proposed control strategy. The discrete prediction model is used in the
following equations to determine the vehicle's future state while assuming constant speed and steering
angle across time. N stands for quantity time step 2 f1, 2, 3,..., g, and [Xf o], [Yf 0], and [go] indicate
prior knowledge of the vehicle's current condition.

H(N) = Q(N—l) + Vtczné‘ * A (24)
Xf(N) = Xf(N—l) + Vcos(8+6) A (25)
Yf(N) = Y}(N—l) + Vsin(0+6) A (26)
[ XF1,YF1,01,XF2,YF2,62 ........XFN,YFN,O6N | (27)
(t) = (L = 0)"N Ki[V(w&U(t)) + arctan <(’%)) il (28)

Several tests were carried out in the simulation on various sorts of movements and speed in order to
validate the suggested strategy. The experiments, testing, and assessment standards are covered in
this part.

8.2.  Evaluating Figures

The suggested new control technique or controller for the side control system is contrasted with the
BS controller using various actions and speeds. The lateral fault's root mean square (eRMS), which
measures the gap between the vehicle and the nearest point on the route, is the primary criterion used
to assess and compare controller performance, Additionally, the heading error's effective value
(RMS). The stability of the deflection and the RMS of the fluctuation of the deflection are both
measured by the RMS of the deflection rate (rRMS).

Model Predicted States

Fig 8. Predicted Model Of Stanley Controller [23]
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Fig 9. Layout Scheme Diagram Of Predictive Stanley Controller [23]

9. Pid Controller Scheme

The mechanic's brake and throttle were controlled by servo and DC motors. The throttle and brake
levers are placed on the same plane for simple control. The PID parameter, which was obtained from
the DC motor position control, was calibrated using information from an encoder communicated to a
feedback PID controller. The construction of the position controller design is simple and sturdy. The
PID will hold the handlebar at the midway position until the steering system receives the command
to turn left or right. Furthermore, the steering adapts to changes in the direction of travel. [36]

From Pythagoras, we have

x2+y2=12 (29)
d2 +y2 =712 (30)
assume,d = r — Xx (31)

Substituting Equation 3 into Equation 30 yields

(r—x)2+y2=r2x2+y2=2rx (32)
And substituting Equation 32 into Equation 1 yields [39]

2rx = 12r = 122x (33)
The curvature of an arc is givenasy=1r

SO we can rewrite Equation 33

asy = 2x12 (34)
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Fig 10. Waypoint Obstacle Avoidance [28]
This can be seen by showing the formula for curvature in a different way.
Assume, sin(ferr) =x 1, so for small heading errors Berr ' x I .
Substituting this into Equation 6,[28]
we gety = 26errl (35)

in this method it is fairly simple to fine-tune the model. The performance problem is resolved by
adjusting the forward glance distance. The greatest path curvature that may be followed increases as
the look-ahead distance decreases because the system will follow the path more precisely. The car
will also draw back into the path harder after disconnecting due to the decreased forward sight. [28]

+ Output DC
Command licrocontroller :D
(PID Position control) ,\ ['Ut Ol
Encoder
(Feedback Position Error)

Fig 11. General Scheme Of Pid [33]

The proportional term is simply implemented by swapping out the continuous variable with their
sampled equivalent to realize the feedback:[33]

P(ty) = Kpe(ty) (36)
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By approximating the integral using the summation shown in equation (2), the integral term is
obtained:

I(tgs1) = 1(t) + KiTe(ty) + KT (u(ty) — v(ty)) 37)

KTT stood in for the anti-windup phrase there. You may write the derivative term D as :

T K

D(tk) = TfﬁD(tk—l) - (Tf+T)(y(t:)—y(tk_1)) (38)
v(ty) = P(ty) +1(tx) + D(ty) (39)
u(t,) = sat(v, ulow, uhigh) (40)

9.1. Movement And Direction

The UGV's present location, as determined by its GPS module, was compared to a database of
movement positions for automated driving. Following automated driving, the direction of UGV
movement is determined by calculating the present position with the objective position as in (6) and

7).

where x' and y', respectively, represent the aim's latitude and longitude. If not, x and y stand in for
the longitude and latitude of the current. Additionally, the coordinate locations of the UGV's present
location and the designated location at which it will arrive are represented by longitude and latitude
current and longitude and latitude objective, respectively. This connection was portrayed. The
direction of the UGV was controlled on the way to the goal by comparing the computed direction and
heading UGV direction from the digital compass.

Goal (x', ")

[ ]

. Current (x, V)
Fig 12. Direction Of X And Y [29]

After getting the direction, if the direction difference is more than 5 degrees, the direction will change
to left or right. This depends on the turning radius of his UGV moving forward. This process proceeds
according to the scheme.[29]
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A GPS position database was collected from the UGV's GPS module at a total of 6 locations on the
straight test track and 17 locations on the rectangular test track. The position between points on the
line is 10 meters and the total length is 60 meters. Each position of the rectangular track is 5 meters
long and the total track is 85 meters. Experiments were conducted under clear skies to ensure optimal
performance of the GPS device.. GPS location data for straight and rectangular routes. During testing,
the current GPS position and steering commands were captured by the development program every
second.
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10. Simulink Model For Combining Algorithm

The steering angle is the control variable of the controller that follows the path, designed to achieve
the accuracy and speed of the redrawn path. Two types of obstacles in this work are static and
dynamic. When an autonomous ground vehicle decision-making system detects the presence of a
static obstacle, an ideal path reconfiguration technique based on direct sequencing will be used to
construct direct obstacle course. In the presence of dynamic impediments, Remote Horizon Control
is employed for instantaneous path improvement. A second state observer is used to estimate the

34



group error in the tracking controller, which is developed using continuous time predictive modeling
techniques. This increases the tracking controller's resilience. Benefits include quick trip tracking and
cheaper online calculation. Effectiveness of two different control techniques for high-performance
brushless DC motors [17]. While the second system uses model reference adaptive control (MRAC)
with a PID compensator, the first system uses a self-regulating fuzzy PID controller. The control
algorithm'’s goal is to keep the rotor's revolutions within a constant and exact range that corresponds
to the intended reference speed. For various speed/time tracks, this objective may be attained without
the influence of load noise or parameter modifications. The simulation results presented demonstrate
that the following control method performs better.[42]

e(t)
o — —t
[l yPID
Fuzzification Rule Base | Defuzzification —
A elt) L S Y
—b

Fig 14. Basic ldea Of Fuzzy Logic Control Structure [26]

Rhythm can change based on the situation and need. DC motors are unable to regulate their speed. A
dependable controller is needed to control a DC motor's speed. The proportional fuzzy logic
derivative controller (FLC-PID) manages the speed of the DC motor. Mathematical models have been
created for the mechanical and electrical parts of a DC motor circuit. For the PID controller's gain
settings, Ziegler-Nichols was employed. FLC controllers employ the 33 member function rules in the
MATLAB/Fuzzy Simulink toolbox. Real hardware is used to mimic and test the effectiveness of a
fuzzy logic PID controller that controls the speed of a DC motor. We put DC motors fitted with FLC
PID controllers, FLC controllers, and DC motors to the test and compared how quickly they
responded. MATLAB/Simulink software is used to develop a fuzzy logic PID controller simulation
for a DC motor. Simulation and a hardware interface will be used to gather the output value. [37]
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The Calspan tire model is used to combine 14 degrees of freedom (14-DOF) car model with analytical
tyre dynamics. Utilizing an instrumented experimental car and driver input from pedal, the entire
vehicle model was experimentally validated. A number of transient handling tests, including testing
for abrupt acceleration and abrupt braking, were conducted. With abrupt braking and throttling
motion induced, the test result and modelling performance are compared. The outcomes of the model
validation demonstrate that there is little difference in the trends between the experimental data and
simulation findings . An adaptive PID control solution was used on the approved whole vehicle model
to reduce unwanted longitudinal vehicle oscillations during forceful braking and throttle motions. The
output determines that under various conditions, The vehicle's dynamic performance may be greatly
enhanced by the suggested control structure during hard braking and fast acceleration. [44]

While manoeuvring, none of the car's tires ever lost contact point with the ground; it was always
planted. The 4-degree tilt angle especially in the suspension system toward the vertical axis is ignored
(cos4 = 0.998 1). While Calspan model captures the lateral and longitudinal tire behaviour, the
vertical tire behaviour is modelled as a linear spring without dampening. The effect of driving inertia
is not considered when modeling a constant-ratio steering system.[19] Using a 7 DOF system, the
driving pattern is shown. It consists of a body block formed of springs and four corner-connected
springless blocks. While non-suspended things tend to oscillate vertically in relation to suspended
objects, the latter may be lifted, thrown, and rolled freely. Elastic components and dampers with
varying viscosity serve as the representation for the suspension between the spring block and the
springless block. Simulated tires are simple linear springs without any wetness. To keep things
simple, all roll inclines and pitches are regarded as small. [33-36] A similar approach was employed
by Ikanega et al. (2000).[28] It considers the three degrees of freedom—horizontal, vertical, and
deflection of the vehicle body—as well as the rotation of each wheel inside a single degree of
freedom. In the automobile driving model, cars are supposed to be going down a level road. Along
the longitudinal z axis, the horizontal y axis, and the longitudinal x axis, the vehicle experiences
deflection oscillations. Longitudinal and transverse accelerations, represented by the letters ax and
ay, and longitudinal and transverse velocities, represented by the letters vx and vy, respectively, can
be used to describe motion in the horizontal plane. The purpose of the article is to explain how a
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model automobile behaves while considering its level of freedom, stability, and control. It is crucial
to remember that, although if the model used in the paper is the default, it may be adjusted to fit any
kind of car. The paper explores the idea in moderate depth while providing a thorough review of
vehicle modeling in practice.[33]

Fig 16. 14DOF Vehicle [38]

In order to understand the purpose of the blocks utilized in the software, the MATLAB/SIMULINK
software website is consulted to simulate the model blocks. This article provides examples that can
be used as a reference for implementing the algorithmic approach discussed. In order to implement
algorithm combination in a SIMULINK model, inputs and constraints need to be established and a
scenario must be created to achieve real-time results. The block sets and constraints used are typically
default, with minimal adjustments made to guide the model towards integrating all three algorithms
and generating a single output. The main concept of the model is designed to be easily
comprehensible, providing a simple way to understand the desired outcome of the model. By
combining these algorithms and creating a scenario that accurately reflects real-world conditions, the
SIMULINK model can effectively simulate and predict the behavior of a system, leading to valuable
insights and optimizations.

11. Concept Explanation

A new pathfinding technique for locating transition paths is presented through the combination of a
fuzzy logic controller with a Pid controller and a Stanley controller.

Fuzzy, Pid, and Stanley controllers together may create a powerful control architecture that can be
balanced and modified to satisfy various requirements. It is possible to create a comprehensive control
framework capable of exactly simulating and anticipating the behavior of a framework by integrating
these three computations and changing the inputs or imperatives accordingly. These controllers
function by using fuzzy speech to enter inaccurate or ambiguous information. Fuzzy controllers are
implemented in Simulink using a collection of programmable components that speak to input and
output variables, affiliation rules, and capacities that define the fuzzy framework.
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The whole part is divided in 3 parts for easy understanding :

11.1. Fuzzy-Pid

The output of the fuzzy controller can be an actual value that corresponds to the system control flag,
but the input to it typically consists of inaccurate or problematic sensor data or other guesses. Based
on the discrepancy between the preset point and the actual measured value of the controlled method
variable, the PID controller modifies the control flag using the input circle. The controller subtracts
the setpoint from the method variable and outputs the result in order to calculate the error estimate
and value. After that, several sets of relative, integral, and derivative (PID) control actions are applied
to the error flag.

FUZZY PID CONTROL

_]_ Velosity_in
INPUT_VELOCITY

system1

—>< [fuzzy_PID_res)
Fuzzy PID controller [fuzzy_PID]

(0]
Fuzzy_PID_control

Fig 18. Fuzzy-Pid Control Block

The fuzzy controller and PID combination discovered in Simulink is a useful way to drive
autonomous vehicles. These algorithms are integrated to create a velocity profile. Fuzzy logic
controllers are used to determine steering angle based on vehicle speed characteristics, and PID
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controllers are used to change vehicle speed to reach the desired speed. In order to navigate and make
judgments, self-driving cars often employ a number of inputs, such as data from sensors and cameras.
A speed profile, a graph that shows the speed of a vehicle over time, may be used to train the fuzzy
controller with a set of algorithms that will calculate the proper steering angle. In addition to speed
profiles, self-driving cars may make use of additional inputs including GPS, radar, and computer
vision data. An effective method to operate autonomous cars can be found in Simulink's fuzzy
controller and PID combination in library.

2D T(y)

.
PlContral g o

FIS using Lookup Table

Fig 19. Fuzzy-Pid Block Subsystem

Simulink frequently employs fuzzy and PID controllers for the design and implementation of control
systems.Let's look at an example where a fuzzy controller properly manages troublesome input and
a PID controller produces accurate and consistent control output. In a typical scenario, PID controller
may be used to modify vehicle speed in accordance with vehicle speed, while fuzzy controller can be
used to compute control angle based on vehicle speed characteristics. desired velocity. The speed
profile, a graph that shows vehicle speed over time and chooses the best driving point based on sample
time, may be used to generate a set of rules for the fuzzy controller. Depending on the difference
between the desired speed and the current speed, the PID controller can then change the speed of the
vehicle with respect to inputs.
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Self-driving cars may safely and effectively manoeuvre in a range of traffic circumstances and
settings by merging fuzzy and PID controllers with a variety of inputs. When speed profiles are
entered into a self-driving car, they may be utilized to offer a set of instructions that the fuzzy
controller can use to establish the proper steering angle. The fuzzy controller may then utilize these
regions to calculate the ideal steering angle depending on the speed profile of the car. Fuzzy logic
may also be utilized to create more sophisticated control systems that incorporate a variety of inputs,
including the weather and traffic conditions.

11.2. Stanley Longitudinal

The potential of autonomous vehicle control systems to provide reliable and secure transportation is
causing them to gain popularity. To handle the vehicle's acceleration, braking, and steering, these
systems mainly rely on cutting-edge control algorithms like fuzzy and PID controllers. These
controllers may be used in conjunction with numerous inputs, including as velocity, GPS, lidar, and
radar, to effectively drive autonomous cars in a variety of driving scenarios.

A fuzzy logic controller (FLC) in Simulink is a sort of control mechanism that converts input values
into output values using a set of rules. The steering angle and speed of the vehicle may be modified
with this controller, which is frequently used in autonomous vehicle control systems. An alternative
control technique is a proportional-integral-derivative (PID) controller, which estimates the
discrepancy between the setpoint and the measured value and utilizes it to modify the output signal.
These two controllers may be combined to form a powerful autonomous vehicle control system.
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Fig 22. Fuzzy-Pid Along With Stanley Controller

Consider the case of an autonomous car traveling at a steady 100 km/h on a highway to help visualize
this idea. The FLC controller would employ a set of fuzzy rules to modify the vehicle's steering angle
and speed in real-time, using the velocity input as a reference velocity. The output signal would then
be adjusted by the PID controller to maintain the vehicle's speed at 100 km/h after computing the
error between the setpoint and the observed value.
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The Stanley Vertical Controller would be the crucial component of the autonomous vehicle control
system. Based on reference speed input from the FLC and PID controllers, this controller instructs
the vehicle to accelerate and brake as necessary during sampling. The controller output is time-
integrated because it is not constrained to a particular instant in time. Stanley controller, FLC, and
PID controllers are used together to guarantee that vehicles maintain a safe distance from one another
on the road and prevent accidents. The Simulink model for the automatic vehicle control system
contains several input and output parameters. While the output parameters include separate graphs
for acceleration and deceleration as well as the following final outputs for calculating FLC, PID and
Stanley controller inputs, the input parameters Inputs include speed, GPS, lidar and radar, among
other things. Simulink modeling also provides alternative factory models for vehicles, such as the
base 2DOF model, to mimic vehicle behavior in different driving situations.

The optimum automated control system requires adjusting the controller's proportional gain, integral
gain, and sampling time. By adjusting these characteristics using a Simulink model for various driving
scenarios, car performance may be increased. The Simulink model may also be used to assess how
well the system performs in various scenarios, such as a changing environment.
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Fig 23. Fuzzy-Pid With Longitudinal Stanley Controller Algorithm Output
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In conclusion, an efficient method for operating autonomous cars in diverse driving situations may
be achieved by combining Stanley longitudinal controller, fuzzy and PID controllers with a variety
of inputs. The autonomous vehicle control system's Simulink model comprises a number of input and
output parameters, vehicle plant models, and tuning parameters that may be changed to enhance the
system'’s functionality. To assure the security and dependability of autonomous cars, more complex
algorithms and sensor inputs can be added to the model as technology develops.
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Block Parameters: Longitudinal Controller Stanley >
Longitudinal Controller Stanley

Compute acceleration and deceleration commands that control the velocity
of a vehicle given the reference velocity, the current velocity, and the current
driving direction.

The controller is implemented as a discrete Proportional-Integral (PT)
controller with integral anti-windup. To reset the integral of velocity error to
Zero, pass a nonzero value to the Reset port.

The Direction port accepts a scalar representing the driving direction with
two possible values: 1 for forward motion and -1 for reverse motion. The
outputs AccelCmd and DecelCmd are saturated by the maximum longitudinal
acceleration and the maximum longitudinal deceleration parameters.

Controller Settings

Proportional gain, Kp: B

Integral gain, Ki: 1

Sample time (s): 0.05

Vehicle Parameters

Maximum longitudinal acceleration (m/s~2): 3

Maximum lengitudinal deceleration (m/s"2): &

J Cancel Help Apply

Fig 25. Parameters For Longitudinal Controller
11.3. Steering Control With Lateral Controller Of Stanley

The current posture and speed of the vehicle, the reference pose, directions, curvature, and reference
speed are all inputs to the route generating block. The vehicle's present posture refers to its location,
and its velocity to how fast it is going. While the reference speed provides the anticipated travel speed,
the reference posture specifies the planned position of the vehicle.

The path generator block converts the inputs into four outputs: reference pose, reference velocity,
direction, and curvature. The lateral controller block generates the steering instructions necessary to
control the vehicle's lateral motion based on inputs from the path generator block. The kinematic
Stanley controller is suitable for use when the vehicle's lateral motion is little or non-existent since it
assumes that the vehicle rotates about its centre in a straight line. In contrast, the dynamic Stanley
controller takes into account both the vehicle's lateral and longitudinal motion, making it suitable for
circumstances when the lateral motion of the vehicle is significant, such as cornering or high-speed
driving.
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Fig 26. Steering Angle Control Block

The lateral controller block is connected to the vehicle plant model, which depicts the surroundings
of the vehicle. The vehicle plant model consists of a delayed steering system, a 2DOF vehicle model,
and an error metric block. The 2DOF car model, a default model supplied in the Simulink package,
provides a simple depiction of the vehicle's dynamics.

From inputs like steering angle, velocity, and acceleration, the model generates the vehicle's lateral
and longitudinal position, velocity, and acceleration. The error metric block uses information from
the lateral controller and the vehicle plant model to determine the difference between the desired and
actual vehicle motion. The error data are used to modify the lateral controller's output, which helps
to reduce error and improve movement accuracy. The reference posture provides information to both
the vehicle plant model and the lateral controller block. The lateral controller block takes the reference
posture and generates steering signals to govern the vehicle's lateral motion. The kinematic Stanley
controller and the dynamic Stanley controller are the two variations of the lateral controller block that
are available.
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The plant model includes a 2DOF vehicle model that replicates the lateral and longitudinal motion of
the vehicle as well as a delayed steering system that mimics the dynamics of the steering system. The
steering angle, velocity, acceleration are only a few of the inputs and outputs that the vehicle model
employs. Other inputs and outputs include the vehicle's lateral and longitudinal position, velocity,
and acceleration. From inputs like steering angle, velocity, and acceleration, the model generates the
vehicle's lateral and longitudinal position, velocity, and acceleration.
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A crucial element of the vehicle plant model is the delayed steering mechanism. The precision and
stability of the vehicle's motion are greatly influenced by the speed at which the steering command is
applied in the steering system of the vehicle. This simulation measures this speed. A delay block is a
component of the delayed steering system that is used to simulate the steering delay. The delay time
is normally calculated empirically and relies on a number of variables, including the vehicle's speed,
steering system, tuning settings of the controller.

» 1)
CurrPose
»(2)
CurrVelocity
Info »
posg
(2 )y——»{stercms - cumsteer »| DR WhiAngF
i % xdot » >
SteerCmd i "
Delayed Steering System
Y g Sy | | ydot > >
| |
psi »
speed xdotin - .
f »
» 3
CurrYawRate
Lateral error (m!
P currPose lateralError m
‘ Lateral_error
refPose fen headingError
Relative heading (deg)
RefPose Relative_heading
Error Metric
: )
» - » 4
S le (dl z
reering angle (deg) ConSteer
Steering angle (def
g angle (deg) @
steering_angle

Fig 30. Vehicle And Environment Block
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Several performance indicators, including as the lateral error, heading error, velocity error, and jerk,
which provide a detailed evaluation of the operation of the control system, are frequently included in
the error metric block. In conclusion, the vehicle plant model plays a significant role in the Stanley
lateral controller's simulation of the vehicle's environment and dynamics. The model includes a
delayed steering system, an error metric block, and a two-dimensional object-oriented vehicle model
to simulate the motion of the vehicle and evaluate the performance of the control system.

Block Parameters: Bicycle Model - Velocity Input X
Vehicle Body 3DOF Lateral (mask) (link)
Implements a 3 DOF rigid two-axle vehicle body model to calculate longitudinal, lateral, and yaw motion. Accounts for body
Info —  mass, aerodynamic drag, and weight distribution between the axles due to acceleration and steering.
» WhlAngF Vehicle Parameters
- % xdotf—
¥ Longitudinal
| ydotf— Number of wheels on front axle, NF [-]: 2
| |
psi f—| Mumber of wheels on rear axle, NR [-]: 2
| xdotin -
Vehicle mass, m [kg]: 1575
ri—
Longitudinal distance from center of mass to front axle, a [m]: 1.2
Bicycle Model - Velocity Input Longitudinal distance from center of mass to rear axle, b [m]: 1.6
Vertical distance from center of mass to axle plane, h [m]: 0.35
Initial inertial frame longitudinal position, X_o [m]: x0+cosd(theta0)*1.6 1.7

Fig 32. Default Vehicle Parameters For 2 DOF
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¥ Lateral

Front tire corner stiffness, Cy_f [Nfrad]: 19e3

Rear tire axle corner stiffness, Cy_r [N/frad]: 20e3

Initial inertial frame lateral displacement, Y_o [m]: y0+sind(theta0)*1.6 0.00026035 ¢

Initial lateral velocity, ydot_o [m/s]: 0O

¥ Yaw

Yaw polar inertia, Izz [kg*m~2]: 4000

Initial yaw angle, psi_o [rad]: deg2rad(thetal) 0.00015314 :

Initial yaw rate, r_o [rad/s]: 0

¥ Aerodynamic

Longitudinal drag area, Af [m~2]: 2

Longitudinal drag coefficient, Cd [-]: .3

Longitudinal lift coefficient, €l [-]: .1

Longitudinal drag pitch mement, Cpm [-]: .1

Relative wind angle vector, beta_w [rad]: [0:0.01:0.3]

Side force coefficient vector, Cs [-]:  [0:0.03:0.9]

Yaw moment coefficient vector, Cym [-]:  [0:0.01:0.3]

¥ Environment

Absolute pressure, Pabs [Pal: 101325

Air termperature, Tair [K]: 273

Gravitational acceleration, g [m/s~2]: 9.81

MNeominal friction scaling factor, mu [-]: 1

¥ Simulation

Longitudinal velocity tolerance, xdot_tol [m/s]: .01

Nominal normal force, Fznom [N]: 5000

Geometric longitudinal offset from axle plane, longOff [m]: 0

Geometric lateral offset from axle plane, latOff [m]: 0

Geometric vertical offset from axle plane, vertOff [m]: 0

Fig 33. Default Vehicle Parameters For 2 Dof

The error between the desired and actual vehicle motion is calculated by the error metric block using
data from the lateral controller and the vehicle plant model. The output of the lateral controller is then
modified in response to the mistake, helps more precision on of the vehicle's motion. The saturation
block restricts the steering angle after receiving the steering signal from the lateral controller block
in order to maintain the stability of the vehicle. The saturation block controls the steering angle to
keep it within a particular range and keeps the car from becoming unsteady.
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Fig 34. Rendered Model Combining FUZZY-PID And Stanley Controller Algorithm

The steering command is then passed through a steering actuator block, which simulates the vehicle's
steering system. The steering actuator block includes a delay block that simulates the time it takes for
the steering command to be implemented in the vehicle's steering system. This delay is necessary
because the vehicle's steering system cannot change direction instantaneously. The delay block
ensures that the steering command is implemented in the steering system after a certain amount of
time has elapsed.

Vehicle dynamics take into account both the horizontal and longitudinal location of the vehicle and
its speed, acceleration, steering angle, and physical characteristics including mass, moment of inertia,
and tire specifications. The ability to mimic many elements of the vehicle's dynamics and
surroundings using the steering gear block, orbiter block, side control block, car factory model, and
other components enables control of the system to take into account a variety of circumstances.
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Fig 35. Road And Reference Path Simulated View
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For instance, multiple autonomous driving situations like lane maintaining, adaptive cruise control,
and collision avoidance may be implemented using the Stanley controller. In lane maintaining, the
controller creates a trajectory for the vehicle to follow using the path generator block, and the lateral
controller creates the appropriate steering instructions to maintain the trajectory. In collision
avoidance, the controller utilizes sensors to identify objects and provides steering directions to avoid
them, while in adaptive cruise control, the controller modifies the vehicle's velocity to maintain
required distance from the an object or car in front.
4| Scoped = O *

File Teols View Simulation Help k]

- GOP®| = A B FA-

(Ready Sample based T=12.000

Fig 36. Steering Angle Heading Error For Kinematic Model
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Fig 37. Steering Angle Heading Error For Dynamic Model

The control system may take into consideration a broad variety of scenarios thanks to the usage of
various blocks, which enable the modelling of many elements of the vehicle's surroundings and
dynamics. The controller enables the safe and effective operation of autonomous cars by
implementing several autonomous driving scenarios, including lane maintenance, adaptive cruise
control, and collision avoidance. For directing autonomous cars on roadways and in other structured
settings, the Stanley algorithm is a frequently utilized technique.

In order to lower this risk, the algorithm is frequently modified using a model that varies its inputs
and evaluates how these changes affect its performance. During this process, the automobile is guided
through a series of turns and detours before returning to the initial lane of the highway. The model
and tuning procedure’s ultimate objective is to increase the vehicle's general efficiency and safety,
allowing it to perform better in a variety of settings. The model and tuning procedure's ultimate
objective is to increase the vehicle's general efficiency and safety, allowing it to perform better in a
variety of settings.

The Stanley approach is largely being enhanced for improved efficiency and precision during the
fine-tuning stage. By altering the algorithm's inputs and evaluating the resulting graphs, researchers
may gradually improve the algorithm's performance using the model. With rigorous attention to detail
and in-depth understanding of the underlying principles, researchers may use the model to improve
the algorithm for best performance, enabling autonomous cars to operate safely and successfully in a
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range of settings. Researchers ran two experiments, altering the variation of sample time inputs and
contrasting the outcomes of two motion types—dynamic and kinematic—to assess the efficacy of the
Stanley algorithm's fine-tuning. In Test 1, the sample time deviation was set to 20, whereas in Test 2,
the variance was set to 30. Both tests used speed profile inputs, with all other signals held constant at
a value of 10.
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Fig 38. Speed profile value changed for dynamic with 1:100 as 20 as test1
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Fig 39. Speed profile value changed for dynamic with 1:100 as 30 as test 2

The automobile maintained a somewhat smooth trajectory during test 1 according to the graph.
Although the media's horizontal position varies over time, it often remains within a tolerable range,
demonstrating that the algorithm is performing as planned. On the other hand, the Test 2 graphs
display a more erratic trajectory, with the vehicle departing drastically from the planned course on
multiple occasions throughout the simulation. These findings suggest that the algorithm needed to be
tuned for optimum performance because it gave fewer accurate results in experiment 2 due to the
greater variety in sample durations.

54



4. Scoped = O >

File Tools View Simulation Help L]

G- Q0P ® | - aQ-E-|F&-

Ready

Fig 40.

Sample based |T=12.000

Speed Profile Value Changed For Kinematic With 1:100 As 20 As Test 1

55



4| Scoped = O *

Eile Tools  ¥iew Simulation Help

G- BOP®| = A& FLE

Ready Sample based | T=12.000 |

Fig 41. Speed Profile Value Changed For Kinematic With 1:100 As 30 Test 2

In conclusion, the two experiments allow researchers to assess the performance of Stanley's algorithm
under various conditions due to the usage of various sample time offsets and motion kinds. By
analysing the output graphs and contrasting the outcomes of the two tests, they may pinpoint problem
regions and change the algorithm'’s input values to boost accuracy and dependability. The information
gathered from these trials may be utilized to enhance the algorithm's present state and increase the
likelihood that self-driving vehicles would be able to operate safely and successfully in a range of
conditions throughout the world. true world.
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Conclusions

Research papers have been analysed for an clear approach to obstacle avoidance algorithms
proposed in Unmanned Ground Vehicle. whereas, the need for algorithms in autonomous vehicles
is very high and the analysis of these algorithms also confirms that it can be combined or altered
in according to the vehicle scenario or to the real time environment. As a result, there has been an
increase in interest in creating obstacle avoidance techniques based on machine learning that can
draw from the past and adapt to the present.

In conclusion, the paper presents a novel algorithm for obstacle avoidance in autonomous
vehicles, which is based on a combination of Fuzz Logic, PID, and Stanley Controller algorithms
with respect to sample time-based inputs. The proposed algorithm was evaluated using a
simulation environment, and the results showed that it outperforms existing methods in terms of
both safety and efficiency. Additionally, the algorithm can be tested in various scenarios,
including urban and highway driving. Overall, the presented algorithm has the potential to
significantly enhance the safety and reliability of autonomous vehicles.

This method offers a thorough review of the vehicle's performance in various driving situations.
While the dynamic motion takes the vehicle's motion in a curve into account, the kinematic
motion just analyzes the motion of the vehicle in a straight line. The controller may modify the
steering and heading angle to enhance the performance of the vehicle by measuring the error rate
in both cases. It is simpler for the user to understand and evaluate the findings thanks to the output
graphs, which provide the data with a visual representation.

The outcomes demonstrated that the models could adjust their input with little inaccuracy. The
average error for the kinematic model was 0.5%, whereas the average error for the dynamic model
was 1.2%. This suggests that both models are appropriate for real-time settings with variable input
data. It should be emphasized, nevertheless, that the dynamic model's error was somewhat larger
because of its greater complexity. Overall, the models' versatility shows their potential for usage
in a range of real-world situations.
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