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Summary 

The paper clearly explains about the necessity of path planning and methodology used to create a 

path planning for Unmanned Ground Vehicles especially in obstacle avoidance algorithm. For 

autonomous vehicles path planning is as important where the vehicle uses its capability to drive on 

its own by avoiding obstacles and reaching the goal, in order to achieve that the vehicles undergo 

numerous detection process and analysing procedures and methodology to find the easiest and correct 

path to reach the goal. There are many methodologies that can be used to investigate an unmanned 

ground vehicle obstacle avoidance model. One common methodology is to use a simulation tool such 

as Gazebo. This allows for the creation of a virtual environment in which the unmanned ground 

vehicle can be tested. Another methodology is to use an actual physical robot to test the model. 

Similar to these model this paper deals with MATLAB/SIMULINK algorithmic model for graphical 

outputs to determine the weightage of the models success rate. This has the advantage of being able 

to test the model in a real-world environment. However, it is often more expensive and time-

consuming than using a simulation tool. There are also many different algorithms that can be used 

for obstacle avoidance. A common algorithm is the potential field algorithm. This algorithm 

calculates a repulsive force between the robots and obstacles in its environment. Which one is best 

depends on the specific needs of the researcher. Investigators have long been interested in the 

development of unmanned ground vehicles (UGVs) for a variety of applications. One significant 

challenge in this area is obstacle avoidance; that is, the ability of a UGV to autonomously navigate 

around obstacles in its environment. Many different methodologies and algorithms have been 

proposed for tackling this problem, each with its own advantages and disadvantages. In this paper, 

we investigate a number of these approaches and compare their performance in terms of speed, 

accuracy, and robustness. Our results suggest that the artificial potential field method is the most 

appropriate for general UGV obstacle avoidance applications. 
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Santrauka 

Šis darbas detaliai paaiškina apie kelio planavimo būtinybę ir metodologiją, kuri naudojama kuriant 

nepilotuojamų antžeminių transporto priemonių kelio planavimą, ypač kliūčių vengimo algoritme. 

Autonominėms transporto priemonėms kelio planavimas yra toks pat svarbus, kai transporto 

priemonė išnaudoja savo gebėjimą važiuoti savarankiškai, išvengdama kliūčių ir pasiekdama tikslą, 

kad transporto priemonėms būtų atlikta daugybė aptikimo procesų ir analizės procedūros bei 

metodologija, siekiant rasti lengviausią ir teisingą kelią tikslui pasiekti. Yra daug metodų, kurie gali 

būti naudojami tiriant nepilotuojamų antžeminių transporto priemonių kliūčių vengimo modelį. 

Vienas iš įprastų metodų yra naudoti modeliavimo įrankį, pvz., „Gazebo“. Tai leidžia sukurti virtualią 

aplinką, kurioje būtų galima išbandyti nepilotuojamą antžeminę transporto priemonę. Kita metodika 

– modelio išbandymui naudoti tikrą fizinį robotą. Panašiai kaip ir šie modeliai, šiame darbe 

nagrinėjamas MATLAB/SIMULINK algoritminis grafinių išėjimų modelis, siekiant nustatyti jo 

sėkmės koeficiento svorį. Tai turi pranašumą, nes galima išbandyti modelį realioje aplinkoje. Tačiau 

dažnai tai kainuoja brangiau ir užtrunka daugiau, nei kai yra naudojamas modeliavimo įrankis. Taip 

pat yra daug skirtingų algoritmų, kurie gali būti naudojami siekiant išvengti kliūčių. Dažnas 

algoritmas – tai potencialaus lauko algoritmas. Šis algoritmas apskaičiuoja atstūmimo jėgą tarp robotų 

ir jų aplinkoje esančių kliūčių. Kuris iš jų yra geriausias, priklauso nuo konkrečių tyrėjo poreikių. 

Tyrinėtojai jau seniai domisi nepilotuojamų antžeminių transporto priemonių (angl. trumpinys – 

„UGV“) kūrimu įvairioms reikmėms. Vienas svarbus iššūkis šioje srityje yra kliūčių vengimas; tai 

yra, „UGV“ gebėjimas savarankiškai laviruoti tarp kliūčių savo aplinkoje. Šiai problemai spręsti buvo 

pasiūlyta daug skirtingų metodų ir algoritmų, kurių kiekvienas turi savo privalumų ir trūkumų. Šiame 

darbe nagrinėjame keletą šių metodų ir palyginame jų veikimą greičio, tikslumo ir tvirtumo požiūriu. 

Mūsų rezultatai rodo, kad dirbtinio potencialo lauko metodas yra tinkamiausias bendroms „UGV“ 

kliūčių vengimo programom
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Introduction 

A growing interest in control for use in autonomous interstate freeways and driver-aid systems has 

been observed recently. Accidents are essentially unavoidable since the ability of the driver to 

recognize, judge, and operate in hazardous conditions is restricted. It is also well known that many 

auto accidents are caused by mistakes made by people. The majority of accidents might be prevented 

if some driving functions could be automated in order to overcome the limitations of human drivers. 

Numerous studies on automating parts or all elements of driving tasks have been published, all of 

which are grounded in the idea that automated vehicles may make roads safer, increase capacity, 

decrease the chance of accidents, and boost driver happiness and performance. Early studies were 

conducted to increase roadway capacity and security with automation at the roadway and vehicle 

levels in the late 1980s and early 1990s. Research on upgraded highway systems was focused on the 

idea of substituting human driving judgments and behaviors with more computerized activities in 

order to provide regulated traffic flow and safe driving. Later, intelligent vehicle systems became the 

focus of study instead of improved roadway systems. Numerous studies have concentrated in 

implementation of adaptive cruise control in addition to other cutting-edge technologies, including 

accident warning and avoidance systems. Higher-level control techniques have been studied recently 

to determine the planned motion of the automobile for autonomous driving, provided the necessary 

information about the automobile's environment is provided.[1-4] Additionally, recent research on 

the communication between vehicles has been published to provide the data. In order to establish the 

appropriate movement for autonomous navigation and crash avoidance, this study focuses on the 3D 

visual simulation of better level control schemes under the constraint of the location and acceleration 

information of nearby vehicles. The suggested advanced automation algorithm is intended for use in 

scenarios where numerous other vehicles are present on a multi-lane road where the car is traveling. 

The method for automated driving is primarily concerned with finding the best path to prevent 

accidents with multiple cars traveling on multi-lane roads. The controlled autonomous vehicle's 

course is presumably determined by a route plan and global location. In recent years, many authors 

have proposed algorithms for the investigation of unmanned ground vehicle obstacle avoidance 

models. The algorithm currently used by most research groups is the Hirschmuller algorithm, 

proposed by Peter Hirschmuller in 2008. This algorithm is based on the concept of stereo vision, 

which uses two cameras to obtain depth information about the environment.[7] However, this 

approach has several disadvantages, including the need for complex hardware and software as well 

as a high computational cost. 

Aim: 

The aim of the project is to investigate and analyse the obstacle avoidance algorithm proposed for 

autonomous vehicles and to achieve a proper algorithm model by combining or existing algorithms 

or implementing new methods to the algorithm. 
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Tasks:  

1. Initial task of the paper is taken as analysing the obstacle avoidance algorithms proposed 

for autonomous vehicles till date and its advantages and disadvantages to conclude which 

algorithm is flexible and more adaptable for combining within them. 

2. The second task is completely based on research basis ehich helps to combine the 

algorithms and the software used for implmentation and literature analaysis for the 

SIMULINK models to create a idea for combining the algorithm. 

3. Combine the algorithms using SIMULINK software and analysing the output for error and 

specific heading in respect to inputs. 

Additional tests performed to check the adaptability of the model by changing the sample time inputs 

and comparing the graphs. 
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1. Literature Review 

1.1. Analysis of algorithm 

Various applications, the UGV must automatically move the static environments while considering 

obstacle avoidance to account. Autonomous path planning is one of the major issues with difficulties 

that UGVs must deal with. Suggested robotic technique is a collection of optimization search issues. 

New algorithms derived from nature outperform conventional ones due to their lower computational 

cost. This research provides a nearly ideal method for finding a realistic path with Unmanned Ground 

Vehicle in closed environment.[1] The performance of the suggested method was associated with the 

known methods in the route planning field, such as A*, using a simulator designed . Three 

performance parameters are assessed by the simulator: path length, obstacle distance, and running 

time. The simulator's findings generated a far path avoiding obstacles.[1] To improve the method's 

performance by addressing the APF algorithm's flaw, changes must be made. Here, a suggested 

collision avoidance method is put forth to address this straightforward issue. It is founded on the 

potential field method's continued development. The proposed technique is superior to the present 

strategy, according to simulation data.[2]  

The task must be broken down into smaller difficulties for a mobile robot that must navigate from a 

beginning point to an end destination while navigating around obstacles. Fundamentally, it entails 

interpreting sensory input, selecting an appropriate algorithm depending on the target function, and 

designing the mobile robot appropriately to provide the required results. This study discusses a few 

key categories for robot navigation and obstacle avoidance systems. In an organized and succinct 

manner, a group of algorithms were split into two primary groups, each of which is further subdivided 

into sub classifications. These options may include algorithms that have the most potential, per se, 

that are fascinatingly comparable to how a brain functions, were inspired by nature, etc.[2-3] In this 

work, a fuzzy neural net collision avoidance technique utilizing multi-sensor fusion is created to 

address the obstacle avoidance needs of UGVs in a problamatic environment.  The effectiveness of 

the suggested fuzzy neural network approach was demonstrated by contrasting and comparing the 

model path of the UGV's collision prevention motion when it was administered by a fuzzy controller 

and fuzzy neural network algorithm. The final stage in proving the excellence and reliability of the 

collision prevention algorithm is the obstacle avoidance investigation on the UGV application 

designed.[3-4] 

This work employs a monocular vision device to achieve obstacle detection of common impediments 

in a cross-country setting, with the goal of solving the obstacle identification problem for autonomous 

ground vehicles. First, noise is removed from the image using the median filtering approach. Second, 

to separate the region of interest, a Fisher criteria-based image segmentation technique was used.[4-

5] The image is then prepared for the next analysis by being treated using the morphological 

technique. The colour characteristic must be extracted in the next step. The colour characteristic as 

well as the border characteristic "verticality" of both images extracted using the HSI colour space, 

the Lab colour information, and value photos. Concluding , an approach build upon Bayes category 

theory and multifeatured fusion is used to detect obstacles.[5] 

In a hybrid pass scenario for autonomous ground vehicles, a novel network approach utilizing a 

Markov random field was developed to identify the barrier from a significant amount of 3D LIDAR 

data. Each laser scan line's projection in the x-y plane is first divided into segments using a pre-
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processing method based on the greatest blurred line. The corner detection approach used to precisely 

find the line segment vertices before they are used to create an unguided circuit for the Markov 

random variable. Two different sorts of line markings are then separated into groups for obstacles 

and the ground.[6] The creation of safe trip planning to avoid impediments in autonomous driving is 

progressing. It has been demonstrated that more effective planning methods integrate geometric 

collision detection with path flattening, clipping, and optimization. It is based on the RRT algorithm, 

which stands for Rapidly Exploring Random Trees. Prior to route smoothing, root trimming 

eliminates duplicate points produced by each branch so that new pathways may be designed to avoid 

obstructions. This demonstrates that the car can safely follow its path and arrive at its destination with 

a maximum following variation of just 5.2% of the car's width. Route planning also accounts for lane 

shifts, with just an average lane variation of up to 8.3% before, though, and following a zone 

change.[6-7] One of the primary challenges in the creation of autonomous vehicles (AV) is the 

construction of a safe, fatal collision avoidance trajectory. [8] Very little study has focused on the 

characteristics of human drivers that help them avoid collisions while designing autonomous obstacle 

avoidance systems. This research suggests developing a path tracking framework for collision 

avoidance path design and AV while taking into account the peculiarities of a human vehicle's 

obstacle avoidance trajectory. In addition, we tested the capacity of human drivers to avoid obstacles 

that used a 6-DOF driving simulator, gathered data on the driver's driving manner, and utilized it as 

a foundation for parameter verification in the modeling framework.[9] For offline simulation testing, 

a founder model is developed based on CarSim/Simulink was developed. According to the findings, 

the suggested route planning control aims the safety and collision avoidance. 

Unmanned ground vehicles frequently have to operate in environments where they can only see a 

portion of the scene. As a result, based on current perceptual data, a workable non holonomic Actions 

for target tracking and obstacle avoidance must be taken immediately. This work integrates VPH+ 

(enhanced vector polar histogram) with MPC to propose a robust strategy (model predictive control). 

[11-12]The environment sensing and computing efficiency of VPH+ are used to compute the desired 

direction, and Model Predictive Control method are investigated to create a limited model-predictive 

path. In a reactive controller, this strategy can be used. VREP simulation experiments are run to verify 

the suggested strategy.[13]For autonomous ground vehicles operating at high speeds, lateral stability 

safety is another crucial concern in addition to collision avoidance safety. The global collision 

warning path is created using the accessible graph approach, which is a very beneficial and effective 

route planning algorithm that may offer the quickest route from crossing obstacle avoidance from the 

starting location to the finishing point. [4] To enhance the path and implement a secondary navigation 

system with lateral stability, nonlinear model predictive navigation is utilized. This improves the 

planned route quality and helps the user avoid unforeseen shifting obstacles. Four hypothetical 

situations are executed to evaluate the feasibility and accuracy of the whole collision avoidance 

system. According to the simulation findings, the technique can handle lateral stability as well as 

static and dynamic stability.[12] Planning and following collision-free pathways is difficult for 

autonomous ground vehicles when there are both stationary and moving objects present. This study 

recommends a path planning and robust fuzzy output-feedback control strategy for avoiding 

obstacles. A route planner is developed to provide collision-free paths avoiding both fixed and 

moving objects. The planned pathways are then followed by a reliable fuzzy output-feedback control 

that has been constructed. The planned trajectories are monitored using the major advancement 

control approach without the vertical velocity signal.[24] The simulation results show that the 
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autonomous ground vehicle can avoid both stationary and moving obstacles by employing the 

planned path planning and dependable fuzzy output-feedback control approaches. 

The proposed automated navigation for a tracked purpose vehicle is comprehensive. The technology 

enables the user-selected waypoint or patrolling tasks to be executed entirely autonomously. By 

alternating between human teleoperation and vehicle autonomy, it also makes user-vehicle shared 

autonomy possible. The model-based predictive control strategy based on a navigational function is 

used by our navigation system. We provide a navigation method that accounts for the tracked vehicle's 

non-holonomic motion, any-shape footprint, and changing environmental conditions. In addition to 

the waypoint or patrolling chores, we designed a fool-proof scenario where the m returns on its own 

to the last location it visited when connectivity remained stable. Experimental findings on the 

suggested system's effectiveness on the Komodo tracked vehicle. The creation of a way-based and 

tracking framework utilizing (MPC) while taking into consideration the predicted tire-road friction 

coefficient (TRFC) is the key issue covered in this study. The distance between the host and the wall 

vehicle, which is related by TRFC and vehicle speed, is used to design the intended course with regard 

to lateral view.[14-16] Co-simulations using Car Sim, MATLAB, and Simulink are used to assess the 

efficacy of the proposed monitoring and planning framework on both high- and low-friction roads. 

1.2. Predictive model analysis  

An techniques to ensure current design for driverless driving is developed in order to execute and 

plan manoeuvres on 3D landscape without running into anything. On 3D terrains, it is challenging to 

accurately account for vehicle dynamics during control and planning. To bridge this gap, a vehicle 

model that considers terrain topography is developed as the forecasting model. A single nonlinear 

predictive modelling approach that concentrates on the recently published vehicle model is used to 

optimize the guiding rate and transversal acceleration control inputs.[19] ] This research examines 

the problem of tracking control for an unmanned ground vehicle (UGV) in the presence of outside 

disturbances and skid-slip in a scenario with stationary and moving objects. To carry out the given 

task, we used a path-planner based on fast nonlinear model predictive control (NMPC). Once more, 

the planner creates workable routes that the dynamic and kinematic controllers may employ to steer 

the vehicle safely to the desired place. The NMPC deals with both stationary and moving objects in 

the environment. [19] To lessen the effects of disturbances, the dynamic controller employs the 

velocity directives generated by KC together with only a nonlinear variable structure (NDO). In order 

to generate an ideal path map, the Dijkstra algorithm based on pseudo priority queues (PPQ) is 

combined with NMPC.[23] 

In autonomous vehicles, artificial potential fields and optimal controllers are trajectory planning that 

are often employed. Different potential functions may be ascribed to various types of obstacles and 

road structures with in artificial potential field method, and pathways can be built in accordance with 

these potential functions. In optimum control issues, road borders and obstructions are frequently 

used as constraints as opposed to arbitrary functions. We offer a forecast route planning device for 

the model in this study. Its objectives transcend beyond the parameters of driving dynamics to 

potential functions. The path planning technology is able to deal with various impediments and road 

elements separately in order to leverage driving dynamics to design an ideal route.[21] The findings 

demonstrate that, while employing this route planning controller, the vehicle employs the proper 

vehicle dynamics to avoid crashes and adhere to traffic laws. The relevance and priority of obstacles 
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and traffic laws may be taken into account while designing routes utilizing a route planning system's 

many functionalities.[21]  

As vehicle applications advance to a more advanced and self-driving state, interest in autonomous 

cars has increased recently. This article addresses the development of a collision avoidance system 

for an application requiring autonomous driving, including the development of a motion planner, 

model-based effective vehicle steering, and active wheel torque control.[22] When an automobile 

accident with an impediment is expected, a motion planner with polynomial parameterization chooses 

an obstruction-free route. The front steering is then controlled by an MPC-based control system such 

that each wheel torque follows the predicted reference trajectory without collisions.[23] The 

suggested system is evaluated in simulation using an 8 model, efficient front steering, and active 

wheel power distribution systems. The simulation's findings demonstrate that collision avoidance 

tactics. Utilizing autonomous agricultural equipment should be a top priority if precision agriculture 

is to be more effective. This inspired me to develop and test supervised training artificial neural 

networks suited for categorization and pattern recognition utilizing data gathered from ultrasonic 

sensors using the Neural Network Toolbox, which is already built into MATLAB. We want to employ 

such a procedure to retrofit currently existing kits of agricultural machinery. In order to develop a 

deep learning artificial neural networks competent of categorization and algorithmic using data 

gathered by ultrasonic sensors, I choose to try the Neural Network Toolbox currently provided in 

MATLAB. This technique will be used to the retrofitting of commercially available agricultural 

machinery.[23-24] 

Despite the common usage of artificial potential fields in route planning techniques, it is well 

recognized that these techniques have the major problem of allowing a robot to reach the region's 

lowest point. However, if the settings are complex, the virtual barriers that are produced while 

employing the virtual obstacle technique might obstruct a robot. To provide a better virtual barrier 

technique for local path planning, this study proposes a new minimal criterion, a new switching 

condition, and a new drilling force. The three additional features can address the shortcomings of the 

virtual barrier technique as well as the prospective field-based solutions. Therefore, feasible free path 

simulations are created. [26] Route tracking is one of the most crucial aspects of self-driving 

automobiles. Development of a path tracking controller that considers vehicle non-holonomic 

restrictions and yaw stability is a goal of ongoing research. To establish the present state of the 

vehicle, lateral controller design often chooses a path reference point (typically the point nearest to 

the vehicle). Control schemes can be used to these anticipated future states and augmented by the 

present controller output, based on the discontinuous predictive model that forecasts the condition of 

the vehicle in the future. The efficiency of the suggested approach has been verified by numerous 

simulations on the V-REP computer with radical activities (double lane shift, hook, S and curve road), 

at various speeds.[25]  The acquired results of the suggested control technique show the value and 

efficacy of the approach to guarantee yaw stability and reduce lateral error by an average of 53% and 

22%, respectively. 

This study develops the path planning strategy for unmanned ground vehicles (UGVs) on the ground. 

Using estimated terrain traversability, the recommended route planning method, which rely on the 

Hybrid A* algorithm, determines the path that optimizes the UGV's length and traversability. The 

path planning method is illustrated and compared with the real Hybrid A* algorithm using simulated 

traversability maps. Real-time trials on actual terrain used to test the approach further highlight the 
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advantages of increasing terrain traversability while path design. The proposed approach provides 

more potential travel routes than the present Hybrid A*technique. 

Unmanned ground vehicles (UGVs) need a secure and efficient global route in order to move about 

and complete missions in challenging off-road scenarios because of the limited payload capacity and 

uneven terrain. is essential to Planning a route that is both feasible and secure in difficult off-road 

conditions is difficult. This is because the bulk of existing techniques for global path planning only 

consider the lowest path duration as an optimization goal. In this work, we offer a global path planning 

technique to address this issue by taking into account the effects of topographical characteristics and 

geotechnical on UGV mobility. He initially developed a high-resolution 3D terrain model of his 

utilizing geostatistical methods, incorporating data from satellite sensing, highland topography, land 

use, and soil type distributions. After studying vehicle mobility with terramechanical methods, 

mobility costs were calculated using fuzzy inference approaches (that is, vehicle cone index and 

backer theory). [25]It was determined to build global routes using an upgraded A* algorithm after 

creating connection matrices and bidirectional bottleneck cost estimation matrices between sample 

locations using a probabilistic roadmap technique. 

1.3. Simulink Model Analysis  

Simulink-based UGV modeling as well as simulation: This topic has the ability to address an existing 

variety of features that belong to UGV modeling, including kinematics, dynamics, as well as control. 

It also has the ability to explain the benefits of using Simulink at the same time as an existing 

simulation tool that is going to belong to UGVS, as well as compare it to others.  

 

Fig 1. Simulink model for vehicle [26] 

Control systems that are going to belong to unmanned aerial vehicles (UAVs): It has the ability also 

examine the benefits as well as drawbacks that belongs to each UGV control approach. [27] Ugv 

navigation algorithms: this topic has the ability to encompass an existing variety that belongs to ugv 

navigation methods, such as path planning, obstacle avoidance, and localization. It also has the ability 

to examine the benefits and drawbacks of each UGV navigation algorithm. It also has the ability to 

go over the benefits and drawbacks of each software architecture that is going to belong to UGVS. 
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Experimental validation that belongs to ugvs using Simulink: this subject might encompass an 

existing variety that belongs to studies carried out to validate ugv models created with Simulink. It 

has the ability to also talk about the difficulties as well as limitations that belong to experimental 

validation, which is going to belong to UGVS.[28-29] Fuzzy pid controller that is going to belong to 

UGVS: This topic has the ability to address an existing variety of features that belong to the fuzzy 

pid controller used that is going to belong to UGVS, such as the design that belongs to the fuzzy logic 

system, adjusting the pid controller settings, as well as the benefits as well as drawbacks that belong 

to using an existing fuzzy pid controller that is going to belong to UGVS.[29] 

 

Fig 2. Simulink model for FUZZY-PID [29] 

[30] This study will describe an existing fuzzy PID-based steering control system that will be a part 

of an existing autonomous vehicle. This study offers the Stanley controller approach and an existing 

fuzzy pid for use in tracking UGV routes. [31] This study introduces an existing associative fuzzy pid 

as well as the Stanley controller technique; it will be used for UGV path tracking. The simulation 

results proves that the suggested technique outperforms traditional PID controllers and can follow the 

desired course satisfactorily and also the results show that the suggested control system is capable of 

steering the vehicle along the specified path. The simulation outcomes show that the suggested control 

system can steer the model in the desired direction. 
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Fig 3. Simulink model of basic Stanley controller [30] 

This research provides an existing hybrid fuzzy pid as well as a Stanley controller technique that is 

going to belong to mobile robot route tracking. The simulation results demonstrate that the suggested 

method tracks the target route successfully and outperforms the typical PID controller. 

2. Background And Explanation 

Unmanned ground vehicles (UGVs) have the ability to function autonomously without the assistance 

of a human. Military uses propelled the first UGV generation. Applications for self-propelled UGVS 

have expanded dramatically and exhibit a wide range in recent years. Numerous non-military uses 

have also been discovered, including power line testing, surveillance systems, mine detection, data 

collecting, imaging, security, agriculture, visiting deep ocean research, and scientific space 

exploration, among others. The UGVS can generally handle risky, costly, difficult for humans, or 

distant activities. For these applications, the UGV must autonomously steer clear of numerous hazards 

while navigating. Because of this, orbital planning is regarded as one of the most significant issues 

facing UGVS. In order to get from the beginning point to the destination site while avoiding obstacles 

and maximizing some predetermined parameters, path planning is utilized. [15] The optimum plan is 

chosen based on these performance criteria or measurements, such as reducing time, distance, and 

control effort and total number of nodes found. These types of plan can also be analysed in software 

to require a comparable output. Hence in this paper MATLAB/SIMULINK software is used to figure 

out the basic model of algorithm which helps in autonomous vehicle for optimal and precision path. 

2.1. Path Planning Approach And Its Necessary For Autonomous Vehicle  

Global route planning is the technique that enables a robot to automatically choose the optimum path 

to a destination place utilizing collected sensor data and a priori knowledge. It is crucial for enabling 

autonomy for autonomous ground vehicles, and several different methods are now being used. It is 

crucial to comprehend the many approaches accessible since each one is best used under a certain set 

of conditions. This research looks into the various methods that are already in use, with a focus on 

how they may be used to outdoor sailing. In a typical mobile robot application, the global route 

planner will normally be connected to a local navigation engine. Finding the most efficient path to 

attaining a long-term objective involves careful, thoughtful preparation known as master roadmap 

planning. The local navigation system is in charge of handling small impediments and vehicle 
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stability; they are unrelated to this. A search algorithm is what helps the vehicle to choose path within 

this configuration space proposed previously stated user criteria such as path distance, adversary 

distance, etc. The planning method consists of two basic steps: gathering the pertinent data into an 

effective and appropriate configuration space.[19-24] On mobile robots, three categories of 

configuration spaces have been successful:cell breakdown, possible domains, and mechanisms. Using 

a globe separated into a number of representative regions, such as regular grid cells, the first form of 

representation, called cell separation, then defines the properties of the world for each cell. 

Roughness, height, movement, and other qualities are frequently reflected in the mesh. The path 

planning process may be made more efficient by using more advanced technology, such as 

quadrangular trees, try to divide the environment more effectively than ordinary grids. The route 

technique, which is the second sort of representation, makes an effort to explain the world in terms 

of traveling to and from important locations and the associated costs. Road maps are faster to use 

once developed, but they require far more effort and time to create than subdivision maps. Using 

pathways, probabilistic routes, and quick identification of random trees are two of the most recent 

and intriguing advancements in the field of path design..[26] The potential field is the name given to 

the third representational category. Robots are shown as objects that, like an electron in an electric 

field, are affected by potentials created by external objectives and barriers. This strategy, albeit more 

typically used for local obstacle avoidance in mobile robots, can also help with efficient path 

planning. Once the world representation has been built using one of the three methods above, the 

robot uses a search algorithm to select the best path inside the world. Older, simpler algorithms like 

Depth-First Search and Djikstra's algorithm are still widely used. Heuristics, or informed guesses, are 

now used to speed up the search process due to recent innovations. This category includes the A* 

algorithm, the most widely used search algorithm today. New advancements, like the D* algorithm, 

make an effort to quicken the process in scenarios where the world is only partially known and new 

information is constantly being discovered.  

3. Methods Used In Path Planning Approach 

Unmanned ground vehicles (UGVs) have become increasingly popular in nowadays, due to their 

ability to perform a wide range of tasks in various environments, including military and civilian 

applications. In order to operate effectively, UGVs rely on advanced algorithms that enable them to 

navigate and perform tasks autonomously. However, these algorithms have certain constraints that 

must be taken into consideration when operating in different environments. For instance, UGVs may 

encounter obstacles, such as rough terrain or environmental hazards, that can limit their mobility and 

affect their ability to complete tasks. To overcome these challenges, UGVs often utilize specialized 

software that allows for efficient and accurate navigation, as well as the ability to perform complex 

tasks. Implementing such software has its own set of challenges, including compatibility issues and 

limitations related to processing power and memory. Therefore, it is essential to carefully consider 

the specific software used and its implementation boundaries to ensure optimal performance of UGVs 

in various environments. 

3.1. Probabilistic Route Method (PRM) 

Using a random sample of sites in the environment and linking them to potential pathways, this 

method creates an environment route. This technique is used to create a graphical structure of the 

environment, which can be used to plan efficient routes for the UGV. Probabilistic route method 
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(PRM) is a planning technique used in robotics, computer vision, and other fields.[24] It is a powerful 

tool for direction and motion planning, as it can quickly calculate the optimal route from one point to 

another. PRM works by sampling the environment, creating a graph of potential points to move, and 

then using a pathfinding algorithm to find the most efficient route. PRM is also known for its 

flexibility and scalability. It can easily be adapted to changes in the environment and its ability to 

solve complex problems makes it a great choice for robotics projects. PRM is also relatively easy to 

implement, making it an attractive option for developers. With its efficient pathfinding, scalability, 

and ease of implementation, PRM is an essential tool for anyone looking to solve motion planning 

and pathfinding problems. 

3.2. Random Rapid Probe (RRT) Tree 

The shortest path between two places may be swiftly determined using this approach, which quickly 

creates a tree structure of the environment. The tree grows branches one by one and the branches are 

chosen at random. This technique is especially useful for finding paths in complex environments. 

Random Rapid Exploration Trees (RRT) is a pathfinding algorithm designed to solve motion 

programming problems. It has been used for a variety of robotic tasks, including as motion control 

and navigation. At its core, RRT works by creating a tree of randomly generated points in the 

environment. The shortest route between the two places is then discovered using the optimization 

method. This process is repeated until a path is found. One of the main advantages of the RRT 

algorithm is its efficiency - it is much faster than traditional pathfinding algorithms, which can take 

a long time to find the shortest path. Moreover, he can find his way in complex and realistic 

environments with obstacles and uncertain information. This makes it ideal for use in robotics 

applications where it can be used to quickly and accurately plan robot movements. In short, RRT is 

an efficient and powerful pathfinding algorithm that can be applied to many types of robot tasks.[24] 

3.3. Potential Field Method (PFM) 

This algorithm is used to generate a force field around the UGV, which can be used to guide the 

robot's movements. The force field is generated based on the potential of obstacles and targets in the 

environment. This technique is useful for roads that require avoiding obstacles or achieving a specific 

goal. The Potential Field Method (PFM) is a powerful method used to model the behavior of a system 

under the influence of external forces. It is commonly used in robotics, computer vision, and 

autonomous navigation. PFM models the environment as a set of potential or energy fields, describing 

the interaction between the robot and its environment. Using PFM, the robot can determine the 

optimal path to the desired goal. PFM consists of two parts: field generation phase, in which energy 

fields are calculated, and motion planning phase, in which the robot uses these fields to move from 

current position to desired target. PFM is an effective tool for finding the optimal path because it does 

not require the robot to search for all possible paths, but instead the most desired path. In addition, 

PFM can be used to interpret dynamic obstacles, allowing the robot to avoid them while finding the 

optimal path. In short, the potential field method is an invaluable tool in robotics, computer vision, 

and autonomous navigation, and its potential applications are endless. 

3.4. A* Search Algorithm 

By calculating the cost of each node along the way, this method determines the shortest route between 

two places. The algorithm considers the cost of each node, as well as the heuristic cost of achieving 
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the goal. This technique is useful for routes that require achieving a specific goal in the shortest time 

possible. Utilizing this approach, which calculates the price of each node in the network to create the 

shortest distance between two sites, A strong path planner for autonomous ground vehicles is the A* 

search algorithm (UGVs). The best path between two points is determined by combining heuristics 

and weighted values. The algorithm takes into account a variety of factors, such as geography, the 

size of the UGV, and the kind of obstacles it may encounter. In order to choose the most effective 

travel plan, it also considers how long it will take the UGV to get at the goal.[24] The A* algorithm 

is a great tool for UGVs because it not only helps them find the shortest path, but also helps avoid 

obstacles and difficult terrain. The algorithm also enables real-time trajectory planning, allowing 

UGVs to react quickly to changes in their environment. Using the A* search algorithm, UGV can 

find the most efficient path in a given situation. 

3.5. Markov Decision Process (MDP) 

This algorithm is used to model the environment and determine the best action to take at each step. 

The model is created by evaluating the reward associated with each action and the probability that 

that action will lead to the desired state. This technique is useful for paths that require navigating 

through dynamic and uncertain environments. The Markov Decision Process (MDP) is a powerful 

tool used in artificial intelligence and reinforcement learning. It is a set of mathematical methods used 

to model and optimize the decision-making process. In MDP, the agent is presented with a set of 

states, actions, and rewards, and it must decide what action to take to maximize its reward. The agent 

uses its knowledge of the environment to determine the best course of action in each state. He then 

uses this knowledge to move from one state to another, reaping rewards along the way.[24] MDPs 

are useful for decision making in complex environments, as they can help find the best course of 

action in a given situation. They can also be used to optimize decision-making strategies over time. 

CDMs are also valuable to businesses because they can help find the best way to maximize profits 

while minimizing risk. 

3.6. Simulations Using Matlab And Carsim 

The simulations with MATLAB and CarSim are used to verify the validity of the suggested pattern's 

impact. When compared to the previous events, the giving of this document occurs in the following 

manner:  

1. To evaluate if there is a chance of an accident occurring between the UGV and the barrier, a 

judgment rule is provided. 

2. The boss is better at avoiding obstacles in advance since the smooth and logical path has 

previously been quantitatively planned. 

3. The examining behavior control principle is to create fashionable path pursue because path 

pursue restraints are used or rented to take into account fashionable way reconfiguration 

priority for the performing arithmetic difficult that the conventional addition is solved at each 

taste moment. As a consequence, the subsequent boss's computation time is drastically 

decreased. 

4. To unite the control society with two dimensions, the CTMPC was offered and embellished 

in this location document, and the ESO was linked to reject lumped disturbances. 
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Fig 4. Obstacle Avoidance Steering Control Strategy [31] 

CarSim and MATLAB have been integrated to provide the joint imitation outcomes in order to 

confirm the act of the suggested technique in a realistic environment. The dynamic quality has 

become popular in CarSim. The static and vital barrier situations used in MATLAB replication have 

the identical position news of the barriers. The chosen car model is a B-class Hatchback, which is 

consistent with the paper's crucial limit.[34] To distinguish between MATLAB joint imitation and 

CarSim joint imitation, note that the former creates MATLAB while the latter creates CarSim. Cones 

are used in place of obstacles/potholes in static sequences of events because there aren't any in the 

CarSim animator. By setting the control inputs in a manner similar to how one would behave 

themselves, one may explain the control performance of the anticipated technique utilizing CarSim 

emulating current dynamic barrier master plan.[29]  When comparing the use of CarSim and 

MATLAB, it's easy to see how the means of achieving the goal can avoid the movable obstacle in the 

path on which travel happens. The UGV can successfully avoid the active obstruction and maintain 

a distance of 1.6 meters from the governing class, which is sufficient to fulfill the constraint. Control 

inputs are shown, and their curves are extremely similar. This tests the expected strategy's success in 

a more practical master plan. 

3.7. Hardware Implementation For Ugv 

The major goal of the paper is to show how to prepare and follow a plan appropriately by avoiding 

or avoiding impediments during runtime.[35] The SLAM method base UGV will continue to start 

from a fix station in this regard and will eventually become the alluring destination one desires to 

travel to or strive for as set as a guide for one match. 

For example: 

• Raspberry Pi Programmable Logic Controller 

• NOIR Camera for the Raspberry Pi 

• H Bridge IC L293D 
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• Servo Motor (DC) 

• Sensor for ultrasonic waves 

When a recommended match is supported by UGV, it will continue to comprehend a differentiating 

process that is separated into two stages in the life of anything, as shown below:[31] 

Phases A  (planning and mapping) 

Phase B (Path Following Obstacle Avoidance) 

Technically, the following stages might be assumed: 

Each x/y match that your android must go will have its distance financial worth computed. 

Second, transform it into a series of revolutions to bring this distance to a successful end. One grant 

permission in addition to act this, but in the submitted paper, the UGV will learn from the gyrator 

sensor HMC5883L chip how far it should travel at the x-point around which something revolves and 

in contact with the y-point around which something revolves, whereas the UGV will come to a halt 

for fear of an impediment. 

Now that UGV has come to a standstill due to a power outage. The gyro sensor will also assist in 

determining the point around which anything spins on the UGV, allowing it to take a suggested route 

to get to where it wants to go. When the boss determines the angle at which your robot must move in 

order to complete an activity, this happens. [35] A hurdle or stoppage will happen if an ultrasonic 

sensor detects a distance that isn't true for one calculated distance.  The same work can be done again 

by using a geophone and the approach of kurtosis as a talk over with another fashionable both fictional 

and nonfictional review. When your android detects an impediment, turn it 90 degrees right and travel 

a predetermined distance of property's declare 1 beat, and then recalculate the best way. If there are 

no obstacles when you return to moving towards the goal. 

3.8. Software Implememntation In Ugv 

So that it can be ascertained that the sensors have been detected and the position of the Robot moving 

in a circle, this physical information must be delivered as input to the control command promptly. 

a) The path's predetermined state ,the system must be designed from the beginning to go in 

straight, politically extreme lengths or bends to the right and return without hindrances to 

the starting position. 

b) The system must be socially viable in the obstacle-blocked condition (obstacle discovered 

first). In this state of the curve position, it is vital to rely on the relinquishment and assess 

whether there are any barriers that need to be removed.  

c) Obstacles can be found in the abandoned. 

d) Consider if a single or two politically extreme sensors have been discovered. If skilled 

encounter some obstruction, the system must count on properly and make a 

recommendation for rectification in this curve state, it should continue and reform at the 

usual line. 

e) Right-hand obstacle is discovered: The system must exist and call for socially a while until 

either individual or both right-hand sensors are discovered. It must be counted out and 

checked to see if there is any kind of impediment or hint of rectification in this location 
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curve condition. Then it happened will continue to do what is right and reform in a sensible 

manner. 

f) The process exists entirely and the system for doing anything may be noted as the following 

stages for the congregation computer program give instructions of the control border.[35] 

3.9. Methods Of Enhancing The Software To Android 

The execution of an obstacle avoidance strategy for Android entails printing on paper and putting 

together a program using Arduino software. It is a natural tools platform on which a microcontroller 

is installed and which is assembled using the Arduino IDE. Connected arduino and quick sensors 

were used to overcome the obstacle. To determine how far away the robot is from the impediment, 

an ultrasonic sensor is positioned in front, on either side of the structure, and in the middle. Based on 

the quick sensor profit, the robot may determine whether to turn politically to the right or left. A 12V 

rechargeable battery is attached to the driving component.[36] When there is an excessive echo in 

place of an sensor, the length between the barrier and the android may be purposefully chosen. The 

android will refrain or remain away from the obstruction based on the distance parameter (30cm). 

Start using the Arduino IDE computer application to create a hidden language system. At this point, 

the android was capable of avoiding immobile obstacles and taking the chance path utilizing the 

chance walk technology. 

3.10. Variuos Types Of Algorithms And Its Comparision 

Merits of the Tangent Bug Algorithm: 

• It seeks to minimize the wandering distance out of worry that the robot will have to travel 

as little as possible to arrive to the desired location or activity. 

Demerits: 

• It occurs as a result of not being able to care for oneself. When the distance between you and 

the obstruction continues to build, it begins to behave like a bug treasure by following the 

edge of the obstacle. 

Method of Creating an Artificial Potential Field 

Merits: 

• There is a straightforward strategy that is simple to apply. 

Demerits: 

• When the robot reaches a position of local minimum, it comes to a halt. 

• It is unable to locate an extract from the document's centre from two spots on either side of 

a split barrier. 

 

 

 

 

 

 



23 

 

Histogram of a Vector Field[23-24] 

• It solves the problem of sensor noise by creating a cold graph that looks like a pie and shows 

the possibility of anything happening due to the proximity of a barrier, notably thin 

management. 

Benefits: 

 • It does not ensure completeness; 

 • It does not allow for the traversal of local minima;  

 • It may be difficult to navigate narrow transitions using this approach. 

Bubble band techniq: 

Advantages: 

 • It outperforms VFH while traveling along a confined path; 

 • It needs less mathematics;  

 • This design is both cost-effective and adaptable to diverse sensors. 

Merits:  

• It does not define smooth functioning  

• It necessitates a taller level way designer  

• It is vulnerable to sensor noise 

4. Heuristic Approach  

The heuristic approach to trajectory planning in unmanned ground vehicles (UGVs) is a viable option 

for navigating complex terrains. This approach uses a predefined set of rules to find the shortest and 

safest route for the UGV, ensuring that it reaches its destination safely and efficiently. The advantage 

of this approach is the speed of the output, as UGV can make decisions quickly and without heavy 

processing.[39] Moreover, the heuristic method is easily adaptable as it can adapt to any terrain or 

situation. However, one of the main disadvantages is the lack of flexibility, as the UGV has to follow 

predefined rules regardless of any changes in the environment. In addition, it may not determine the 

most efficient route because the rules are based on general principles rather than actual terrain data. 

Although the heuristic approach to trajectory planning in the UGV has its pros and cons, it remains a 

viable option for navigating complex terrain. With the right settings, it can be a powerful tool to 

navigate safely and efficiently in any environment. 

4.1. Limitation 

• Doesn’t give optimal result 

• Used for some immediate goals  

• Doesn’t need full complete details of the environment  

EXAMPLE: consider the autonomous UGV in a path of maze, for heuristic approach let’s say the 

vehicle moves around the wall of the maze to reach the goal and finally the UGV reaches the goal , 

if the maze is in square box and the UGV has to move to a certain goal , it keeps on rotating on the 

orbit and yet attains path to goal eventually and not in a n optimal way. Like an automatic vacuum 
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cleaner cleans the house  by avoiding the obstacle but finishes the goal somehow but not in optimal 

path. 

5. Optimal Approach 

Route planning is an important aspect of unmanned ground vehicles (UGVs). It helps UGV determine 

the most efficient and safest route to the destination. As with any technology, this method has 

advantages and disadvantages. One of the benefits of route planning is that it allows the UGV to avoid 

obstacles, save energy, and reach its destination quickly. In addition, it allows the UGV to reach areas 

that may be difficult or dangerous for humans to reach. On the other hand, path planning has some 

disadvantages.[39] This can be time consuming and expensive to do. Additionally, it can be difficult 

to predict the behaviour of other vehicles or obstacles along the way. Ultimately, path planning is an 

essential part of UGV operations and the optimal approach will depend on the specific application. 

By taking advantage of the advantages and minimizing the disadvantages, the UGV can navigate to 

the destination safely and efficiently. 

5.1. Limitation 

• It needs more details about the environment  

• Planning of path achieved through optimization  

• It creates different possible paths and select the best possible way to move towards the 

goal  

To avoid both static and moving impediments, fully autonomous vehicles employ an optimum path 

planning technique. While a road might have both static and dynamic circumstances, choosing the 

best path is necessary for autonomous cars to reach their destination. 

6. Methodologies And Its Mathematical Models 

6.1. Potential Field  

Where m is the vehicle's mass, Iz is the moment of inertia about the vehicle's vertical axis, and Fyf 

and Fyr are the sum of the horizontal forces generated by the front and rear tires, respectively. The 

vehicle's total vertical position, horizontal position, and tilt angle are represented in coordinates as X, 

Y, and. [16] There are rumors that the car has front-wheel steering. The tire's horizontal forces is 

calculated by linear tire model, where f and r represent the front and rear tires' respective horizontal 

slip angles and is the steering angle. Additionally, Cf and Cr represents corresponding cornering 

stiffness ratings for both tires. 

𝑚(𝑢˙ − 𝑣𝑟) = 𝐹𝑥𝑇                         (1) 

𝑚(𝑣˙ + 𝑢𝑟) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟 0                                                                                                              (2) 

𝐼𝑧𝑟˙ = 𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟                                                                                                                        (3) 

𝜃˙ = 𝑟, 

𝑋˙ = 𝑢𝑐𝑜𝑠𝜃 − 𝑣𝑠𝑖𝑛𝜃, 

𝑌˙ = 𝑣𝑐𝑜𝑠𝜃 + 𝑢𝑠𝑖𝑛𝜃, 
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𝐹𝑦𝑓 = 𝐶𝑓𝛼𝑓 = 𝐶𝑓(𝛿 − 𝑣 + 𝑙𝑓𝑟𝑢)                                                                                                (4) 

𝐹𝑦𝑟 = 𝐶𝑟𝛼𝑟 = 𝐶𝑟(−𝑣 − 𝑙𝑟𝑟𝑢)                                                                                                      (5) 

The vehicle linear dynamics can then be obtained by linearizing  4 and 5 equation [10] 

𝑥˙ = 𝐴𝑥 + 𝐵𝑢𝑐                                                                                                                                (6) 

𝑥 = [𝑋𝑢𝑌𝑣𝜃𝑟]𝑇                                                                                                                               (7) 

𝑢𝑐 = [𝐹𝑥𝑇𝛿]𝑇                                                                                                                                 (8) 

where A is the state matrix, B is the input matrix, uc is the input vector, and x is the state vector. The 

predictive trip planning control model does not employ the order-preserving discrete model. A 

potential field is a field that generates to make barriers and targets so that the vehicle may be guided 

to the target while avoiding the impediments. The barrier PF has a maximum value at the obstacle 

way in order to find and repel the vehicle, whereas the target PF has a lower limit at the target to 

attract the nearby vehicle. The aim of the function terms of the path planning controller are tracked 

in this document while the vehicle is driven to its destination. Consequently, the potential field created 

here merely has an unpleasant quality and contains barriers. PF. In order to prevent the vehicle from 

veering off the lane and into other traffic, PF is applied at the lane border (URq). Additionally, two 

more PFs are established for two categories of obstacles: accidents and impassable obstacles like cars 

(UNCi) (UCj). The total of PF: represents a potential field. 

𝑈 = ∑𝑖𝑈𝑁𝐶𝑖 + ∑𝑗𝑈𝐶𝑗 + ∑𝑞𝑈𝑅𝑞                                                                                                   (9) 

where the ith impenetrable obstruction, the jth passable obstacle, and the qth road marker are 

represented by the I j, and q indices. 

The following functions are a few examples of functions; To mimic additional traffic regulations and 

impediments, utilize other tools. Any PF that is doubly differentiable may be handled using the 

approach that is described. 

6.1.1. Impossible Obstacles 

Some barriers are too large to cross, such as: B. Damage to automobiles, pedestrians, and other 

objects. B. Large items or impediments for vehicles. A hyperbolic function of the distance between 

the vehicle and the obstruction is utilized to produce the potential field induced by the hindrance. As 

the distance to the barrier site gets smaller and nearer to infinity, the function's rate of change increases 

exponentially, making it impossible for the vehicle to get through the barrier. Shulman and others To 

prevent collisions, use SD between the geometry of the obstacle and the vehicle. When there are no 

contact points between features, SD is the shortest distance between them; if there are contact points, 

it is the negative value of the through distance. [16]. When: PF is produced by SD: 

𝑈𝑁𝐶𝑖(𝑋, 𝑌) = 𝑎𝑖/𝑠𝑖(𝑋𝑋𝑠𝑖, 𝑌𝑌𝑠𝑖)𝑏𝑖                                                                                                (10) 

where ai and bi are the parameters governing the PF's strength and form, respectively. The space 

between the vehicle and the obstruction must also be higher in the longitudinal axis than in the 

transverse direction. As a result, SD is normalized using the Xsi and Ysi horizontal and vertical longe 

range from the obstruction, respectively, which are as follows:[10] 
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𝑋𝑠𝑖 = 𝑋0 + 𝑢𝑇0 + 𝛥𝑢2𝑎𝑖/2𝑎𝑛                                                                                                      (11) 

𝑌𝑠𝑖 = 𝑌0 + (𝑢𝑠𝑖𝑛𝜃𝑒 + 𝑢𝑜𝑖𝑠𝑖𝑛𝜃𝑒)𝑇0 + 𝛥𝑣2𝑎𝑖/2𝑎𝑛                                                                      (12) 

 

Fig 5. General Illustration Of The Potential Field [16] 

6.1.2. Waypoint Locations' Potential Use 

The shape of the resultant UGV route depends on the potential function's form. Consider a UGV 

approaching a chosen waypoint as an illustration. The pathways A and B, two other routes to the 

shortcut that may come about as a result of several conceivable functions, are shown. [19] 

 

 

 

 

Fig 6.  Possibility Of Ugv Moving [19] 

The following explanation gives an unlikely procedure that could be used to match the present 

position of the intended waypoint: 

𝑃𝐹_𝑤 (𝜅) = 𝐾_𝑤 (𝜅 − 𝜅_𝑑 )^2;                                                                                                       (13) 
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The function that might be used to match the present scheduled waypoint position is described in the 

following section: [16] 

𝐹_𝑤 = −𝛻_𝜌 𝑃𝐹_𝑤 (𝜅);                                                                                                                   (14) 

𝛻𝜌𝑃𝐹𝑤(𝜅, 𝑣) = 2𝐾𝑤(𝜅 − 𝜅𝑑)                                                                                                             (15) 

7. Fuzzy Logic Controller 

Combining route planning techniques with fuzzy logic has enhanced path planning for autonomous 

ground vehicles (UGV). Fuzzy logic is more flexible and adaptable to a wider range of situations 

because it may be tailored to achieve certain aims and objectives. UGVs may be made to navigate 

environments more precisely and effectively by using fuzzy logic and path planning algorithms, 

taking into consideration factors like topography, obstructions, and traffic. In order to optimize 

efficiency, it may also be utilized to adjust the path planning algorithm's weighting factors based on 

the context and mission goals [24]. 

Path planning and fuzzy logic are used to build paths between starting points and destinations. The 

path is not connected in any way and does not show the robot's motion along the line at any given 

speed or angle. Robots might wander greatly from the intended direction when following a path 

because of velocity and angle discontinuities. In order to address the issues with path planning 

algorithms outlined above, the suggested solution comprises the following advances. 

1. To locate transition pathways, a new pathfinding technique is presented that continually looks 

for forward fuzzy logical order points. 

2. During path planning, variables such as the mobile robot's maximum speed, maximum 

acceleration, and maximum rotation are taken into consideration to offer predetermined speed 

and direction values for the mobile robot at each step, guaranteeing the consistency of the 

robot's rotation angle. 

3. The motion selection is made more flexible and the movement's safety is increased by using 

the fuzzy logic controller to predict future action based on the robot's present condition. To 

more clearly describe the precise operation of the method suggested in this article and 

understand. 
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Fig 7. Fuzzy Logic Controller Scheme[24] 

Therefore, the ideal method for creating the shortest path is Dijkstra's algorithm. The traditional 

Dijkstra approach uses the displacement cost, which is just the Euclidean distance between two 

locations, to quickly determine the cost. The Dijkstra algorithm's cost function is as follows:[24] 

 𝑑𝑖𝑎𝑡𝑎𝑛𝑐𝑒𝐶𝑢𝑠𝑡𝑗𝑢𝑑𝑔𝑒 =  𝑉𝐸𝐷 +  𝑡𝑢𝑟𝑛𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒                                                                          (16) 

                                                                                                        (17) 

𝛥𝜃 𝑡𝑢𝑟𝑛𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒 = 2𝜋𝑟 𝜋                                                                                                              (18) 

𝛥𝜃 = 𝑡𝑎𝑛 − 𝑡𝑎𝑛 , 𝑥 − 𝑥 𝑥 − 𝑥                                                                                                        (19) 

Here, the minimal turning radius of the mobile robot is (r), VED is the Euclidean distance, the search 

point coordinates are (x2, y2), the previous point coordinates are (x0, y0), and the current point 



29 

 

coordinates are (x1, y1). Both cost and distance CostJudge stands for the price of the shooting and 

the overall price, respectively [24]. 

8. Stanley Block Scheme  

The reference trajectory and the vehicle's present location with respect to the global frame are the two 

crucial inputs that the BS controller requires to determine both lateral and heading errors. An array 

of anticipated future vehicle states is added as a third input by the suggested control strategy. To 

establish the needed steady state value of the angular position for each state (row) in the table that 

will be supplied with the controller values basis, the controller should be able to do the computations 

required. The controller is unrestricted and can respond to sudden changes in header angle. [23].  

8.1. Basic Stanley Controller 

The BS controller uses the standard trajectory and the vehicle's present location in relation to the 

global frame as two crucial inputs to determine both lateral and directional errors. The suggested 

control approach adds a third input, a database of potential future states of the vehicle. The controller 

will be able to carry out the necessary calculations to establish the necessary steady state value of the 

angle drive for each state (row) in the table to which the base controller value will be added. As a 

result, the controller is equipped to manage abrupt changes in the trajectory's starting angle (traj). 

𝛿(𝑡) =

{
 
 

 
 𝜑(𝑡) + arctan (

𝑘𝑒(𝑡)

𝑉(𝑡)
)                    |𝜑(𝑡) + arctan (

𝑘𝑒(𝑡)

𝑉(𝑡)
)| <  𝛿(𝑚𝑎𝑥)

𝛿(𝑚𝑎𝑥)                                              𝜑(𝑡) + arctan (
𝑘𝑒(𝑡)

𝑉(𝑡)
) ≥     𝛿(𝑚𝑎𝑥)      

−𝛿(𝑚𝑎𝑥)                                           𝜑(𝑡) + arctan (
𝑘𝑒(𝑡)

𝑉(𝑡)
) ≤  − 𝛿(𝑚𝑎𝑥)   

                                      (20) 

The execution of this control system requires the use of predictive modeling, which predicts future 

means that indicate [Xf, Yf, q] at each time step. The letters Xf, Yf, and q, respectively, stand for the 

entire forward position of the vehicle in both directions and the inclination angle. 

8.1.1. A Kinetic Bike 

A transport vehicle with four wheels is employed in the control approach. On the driver's front wheel, 

two incremental encoders are mounted to monitor vehicle length speed (V). An absolute encoder 

mounted on the steering column is used to calculate the steering angle. The vehicle prediction model 

is simplified by assuming the no-slip condition, and in light of the past knowledge, it is then reduced 

into a kinetic bicycle model. Steering angle may be calculated using d and L when using an absolute 

encoder.   

𝜃̇ =  𝜔 =
𝑉𝑡𝑎𝑛𝛿

𝐿
                                         (21) 

𝑋̇𝑓 = 𝑉𝑐𝑜𝑠(𝜃 + 𝛿)                                                                                                                           (22) 

𝑌̇𝑓 = 𝑉𝑐𝑜𝑠(𝜃 + 𝛿)                                                                                                                            (23) 

Based on prior information about the vehicle's present condition, the modeling technique is used to 

forecast the state of the vehicle at each time step. d, q, V, Xf, and Yf. Therefore, it is essential to 

acquire a representation of the bicycle's kinematics. The discrete form of the model previously stated 
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is heavily included into the proposed control strategy. The discrete prediction model is used in the 

following equations to determine the vehicle's future state while assuming constant speed and steering 

angle across time. N stands for quantity time step 2 f1, 2, 3,..., g, and [Xf o], [Yf o], and [qo] indicate 

prior knowledge of the vehicle's current condition. 

𝜃(𝑁) = 𝜃(𝑁−1) +
𝑉𝑡𝑎𝑛𝛿

𝐿
∗ ∆                                 (24) 

𝑋𝑓(𝑁) = 𝑋𝑓(𝑁−1) + 𝑉𝑐𝑜𝑠(𝜃 + 𝛿) ∗ ∆                                     (25) 

𝑌𝑓(𝑁) = 𝑌𝑓(𝑁−1) + 𝑉𝑠𝑖𝑛(𝜃 + 𝛿) ∗ ∆                                     (26) 

 [ 𝑋𝐹1, 𝑌𝐹1, 𝜃1, 𝑋𝐹2, 𝑌𝐹2, 𝜃2…… . . 𝑋𝐹𝑁, 𝑌𝐹𝑁, 𝜃𝑁  ]                                              (27) 

(𝑡) = ∑_(𝑙 = 0)^𝑁 𝐾𝑖[√(𝑤&𝑈(𝑡)) + 𝑎𝑟𝑐𝑡𝑎𝑛 ((
𝑘𝑒(𝑡)

𝑉(𝑡)
) 𝑖]                                 (28) 

Several tests were carried out in the simulation on various sorts of movements and speed in order to 

validate the suggested strategy. The experiments, testing, and assessment standards are covered in 

this part. 

8.2. Evaluating Figures 

The suggested new control technique or controller for the side control system is contrasted with the 

BS controller using various actions and speeds. The lateral fault's root mean square (eRMS), which 

measures the gap between the vehicle and the nearest point on the route, is the primary criterion used 

to assess and compare controller performance, Additionally, the heading error's effective value 

(RMS). The stability of the deflection and the RMS of the fluctuation of the deflection are both 

measured by the RMS of the deflection rate (rRMS). 

 

 

Fig 8. Predicted Model Of Stanley Controller [23] 
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Fig 9. Layout Scheme Diagram Of Predictive Stanley Controller [23] 

9. Pid Controller Scheme  

The mechanic's brake and throttle were controlled by servo and DC motors. The throttle and brake 

levers are placed on the same plane for simple control. The PID parameter, which was obtained from 

the DC motor position control, was calibrated using information from an encoder communicated to a 

feedback PID controller. The construction of the position controller design is simple and sturdy. The 

PID will hold the handlebar at the midway position until the steering system receives the command 

to turn left or right. Furthermore, the steering adapts to changes in the direction of travel. [36] 

From Pythagoras, we have 

 𝑥 2 +  𝑦 2 =  𝑙 2                                       (29) 

 𝑑 2 +  𝑦 2 =  𝑟 2                                         (30) 

 𝑎𝑠𝑠𝑢𝑚𝑒, 𝑑 =  𝑟 −  𝑥                                        (31) 

Substituting Equation 3 into Equation 30 yields  

(𝑟 −  𝑥)2 +  𝑦 2 =  𝑟 2 𝑥 2 +  𝑦 2 =  2𝑟𝑥                              (32) 

And substituting Equation 32 into Equation 1 yields [39] 

2𝑟𝑥 =  𝑙 2 𝑟 =  𝑙 2 2𝑥                                               (33) 

The curvature of an arc is given as γ = 1 r  

so we can rewrite Equation  33 

𝑎𝑠 𝛾 =  2𝑥 𝑙 2                               (34) 
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Fig 10. Waypoint Obstacle Avoidance [28] 

This can be seen by showing the formula for curvature in a different way. 

Assume,  sin(θerr) = x l , so for small heading errors θerr ' x l . 

 Substituting this into Equation 6,[28] 

 we get 𝛾 =  2𝜃𝑒𝑟𝑟 𝑙                               (35) 

in this method it is fairly simple to fine-tune the model. The performance problem is resolved by 

adjusting the forward glance distance. The greatest path curvature that may be followed increases as 

the look-ahead distance decreases because the system will follow the path more precisely. The car 

will also draw back into the path harder after disconnecting due to the decreased forward sight. [28] 

 

Fig 11. General Scheme Of Pid [33] 

The proportional term is simply implemented by swapping out the continuous variable with their 

sampled equivalent to realize the feedback:[33] 

𝑃(𝑡𝑘) = 𝐾𝑝𝑒(𝑡𝑘)                     (36) 
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By approximating the integral using the summation shown in equation (2), the integral term is 

obtained: 

𝐼(𝑡𝑘+1) = 𝐼(𝑡𝑘) + 𝐾𝑖𝑇𝑒(𝑡𝑘) + 𝐾𝑇𝑇(𝑢(𝑡𝑘) − 𝑣(𝑡𝑘))                          (37) 

KTT stood in for the anti-windup phrase there. You may write the derivative term D as : 

𝐷(𝑡𝑘) =
𝑇𝑓

𝑇𝑓+𝑇
𝐷(𝑡𝑘−1) −

𝐾𝑑

(𝑇𝑓+𝑇)(𝑦(𝑡𝑘)−𝑦(𝑡𝑘−1))
                       (38) 

𝑣(𝑡𝑘) = 𝑃(𝑡𝑘) + 𝐼(𝑡𝑘) + 𝐷(𝑡𝑘)                          (39) 

𝑢(𝑡𝑘) = 𝑠𝑎𝑡(𝑣, 𝑢𝑙𝑜𝑤, 𝑢ℎ𝑖𝑔ℎ)                      (40) 

9.1. Movement And Direction 

The UGV's present location, as determined by its GPS module, was compared to a database of 

movement positions for automated driving. Following automated driving, the direction of UGV 

movement is determined by calculating the present position with the objective position as in (6) and 

(7). 

where x' and y', respectively, represent the aim's latitude and longitude. If not, x and y stand in for 

the longitude and latitude of the current. Additionally, the coordinate locations of the UGV's present 

location and the designated location at which it will arrive are represented by longitude and latitude 

current and longitude and latitude objective, respectively. This connection was portrayed. The 

direction of the UGV was controlled on the way to the goal by comparing the computed direction and 

heading UGV direction from the digital compass. 

 

Fig 12. Direction Of X And Y [29] 

After getting the direction, if the direction difference is more than 5 degrees, the direction will change 

to left or right. This depends on the turning radius of his UGV moving forward. This process proceeds 

according to the scheme.[29] 
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A GPS position database was collected from the UGV's GPS module at a total of 6 locations on the 

straight test track and 17 locations on the rectangular test track. The position between points on the 

line is 10 meters and the total length is 60 meters. Each position of the rectangular track is 5 meters 

long and the total track is 85 meters. Experiments were conducted under clear skies to ensure optimal 

performance of the GPS device.. GPS location data for straight and rectangular routes. During testing, 

the current GPS position and steering commands were captured by the development program every 

second. 

 

Fig 13. The Process Algorithm [29] 

10. Simulink Model For Combining Algorithm 

The steering angle is the control variable of the controller that follows the path, designed to achieve 

the accuracy and speed of the redrawn path. Two types of obstacles in this work are static and 

dynamic. When an autonomous ground vehicle decision-making system detects the presence of a 

static obstacle, an ideal path reconfiguration technique based on direct sequencing will be used to 

construct direct obstacle course. In the presence of dynamic impediments, Remote Horizon Control 

is employed for instantaneous path improvement. A second state observer is used to estimate the 
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group error in the tracking controller, which is developed using continuous time predictive modeling 

techniques. This increases the tracking controller's resilience. Benefits include quick trip tracking and 

cheaper online calculation. Effectiveness of two different control techniques for high-performance 

brushless DC motors [17]. While the second system uses model reference adaptive control (MRAC) 

with a PID compensator, the first system uses a self-regulating fuzzy PID controller. The control 

algorithm's goal is to keep the rotor's revolutions within a constant and exact range that corresponds 

to the intended reference speed. For various speed/time tracks, this objective may be attained without 

the influence of load noise or parameter modifications. The simulation results presented demonstrate 

that the following control method performs better.[42]   

 

Fig 14. Basic Idea Of Fuzzy Logic Control Structure [26] 

Rhythm can change based on the situation and need. DC motors are unable to regulate their speed. A 

dependable controller is needed to control a DC motor's speed. The proportional fuzzy logic 

derivative controller (FLC-PID) manages the speed of the DC motor. Mathematical models have been 

created for the mechanical and electrical parts of a DC motor circuit. For the PID controller's gain 

settings, Ziegler-Nichols was employed. FLC controllers employ the 33 member function rules in the 

MATLAB/Fuzzy Simulink toolbox. Real hardware is used to mimic and test the effectiveness of a 

fuzzy logic PID controller that controls the speed of a DC motor. We put DC motors fitted with FLC 

PID controllers, FLC controllers, and DC motors to the test and compared how quickly they 

responded. MATLAB/Simulink software is used to develop a fuzzy logic PID controller simulation 

for a DC motor. Simulation and a hardware interface will be used to gather the output value. [37]  
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Fig 15. Output fluctuation of 4v voltage [37] 

The Calspan tire model is used to combine 14 degrees of freedom (14-DOF) car model with analytical 

tyre dynamics. Utilizing an instrumented experimental car and driver input from pedal, the entire 

vehicle model was experimentally validated. A number of transient handling tests, including testing 

for abrupt acceleration and abrupt braking, were conducted. With abrupt braking and throttling 

motion induced, the test result and modelling performance are compared. The outcomes of the model 

validation demonstrate that there is little difference in the trends between the experimental data and 

simulation findings . An adaptive PID control solution was used on the approved whole vehicle model 

to reduce unwanted longitudinal vehicle oscillations during forceful braking and throttle motions. The 

output determines that under various conditions, The vehicle's dynamic performance may be greatly 

enhanced by the suggested control structure during hard braking and fast acceleration. [44]  

While manoeuvring, none of the car's tires ever lost contact point with the ground; it was always 

planted. The 4-degree tilt angle especially in the suspension system toward the vertical axis is ignored 

(cos4 = 0.998 1). While Calspan model captures the lateral and longitudinal tire behaviour, the 

vertical tire behaviour is modelled as a linear spring without dampening. The effect of driving inertia 

is not considered when modeling a constant-ratio steering system.[19] Using a 7 DOF system, the 

driving pattern is shown. It consists of a body block formed of springs and four corner-connected 

springless blocks. While non-suspended things tend to oscillate vertically in relation to suspended 

objects, the latter may be lifted, thrown, and rolled freely. Elastic components and dampers with 

varying viscosity serve as the representation for the suspension between the spring block and the 

springless block. Simulated tires are simple linear springs without any wetness. To keep things 

simple, all roll inclines and pitches are regarded as small. [33-36] A similar approach was employed 

by Ikanega et al. (2000).[28] It considers the three degrees of freedom—horizontal, vertical, and 

deflection of the vehicle body—as well as the rotation of each wheel inside a single degree of 

freedom. In the automobile driving model, cars are supposed to be going down a level road. Along 

the longitudinal z axis, the horizontal y axis, and the longitudinal x axis, the vehicle experiences 

deflection oscillations. Longitudinal and transverse accelerations, represented by the letters ax and 

ay, and longitudinal and transverse velocities, represented by the letters vx and vy, respectively, can 

be used to describe motion in the horizontal plane. The purpose of the article is to explain how a 
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model automobile behaves while considering its level of freedom, stability, and control. It is crucial 

to remember that, although if the model used in the paper is the default, it may be adjusted to fit any 

kind of car. The paper explores the idea in moderate depth while providing a thorough review of 

vehicle modeling in practice.[33]  

 

Fig 16. 14DOF Vehicle [38] 

In order to understand the purpose of the blocks utilized in the software, the MATLAB/SIMULINK 

software website is consulted to simulate the model blocks. This article provides examples that can 

be used as a reference for implementing the algorithmic approach discussed. In order to implement 

algorithm combination in a SIMULINK model, inputs and constraints need to be established and a 

scenario must be created to achieve real-time results. The block sets and constraints used are typically 

default, with minimal adjustments made to guide the model towards integrating all three algorithms 

and generating a single output. The main concept of the model is designed to be easily 

comprehensible, providing a simple way to understand the desired outcome of the model. By 

combining these algorithms and creating a scenario that accurately reflects real-world conditions, the 

SIMULINK model can effectively simulate and predict the behavior of a system, leading to valuable 

insights and optimizations. 

11. Concept Explanation 

A new pathfinding technique for locating transition paths is presented through the combination of a 

fuzzy logic controller with a Pid controller and a Stanley controller. 

Fuzzy, Pid, and Stanley controllers together may create a powerful control architecture that can be 

balanced and modified to satisfy various requirements. It is possible to create a comprehensive control 

framework capable of exactly simulating and anticipating the behavior of a framework by integrating 

these three computations and changing the inputs or imperatives accordingly. These controllers 

function by using fuzzy speech to enter inaccurate or ambiguous information. Fuzzy controllers are 

implemented in Simulink using a collection of programmable components that speak to input and 

output variables, affiliation rules, and capacities that define the fuzzy framework.  
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Fig 17. Flow Chart Of The Model 

The whole part is divided in 3 parts for easy understanding : 

11.1. Fuzzy-Pid  

The output of the fuzzy controller can be an actual value that corresponds to the system control flag, 

but the input to it typically consists of inaccurate or problematic sensor data or other guesses.  Based 

on the discrepancy between the preset point and the actual measured value of the controlled method 

variable, the PID controller modifies the control flag using the input circle.The controller subtracts 

the setpoint from the method variable and outputs the result in order to calculate the error estimate 

and value. After that, several sets of relative, integral, and derivative (PID) control actions are applied 

to the error flag.  

 

Fig 18. Fuzzy-Pid Control Block 

The fuzzy controller and PID combination discovered in Simulink is a useful way to drive 

autonomous vehicles. These algorithms are integrated to create a velocity profile. Fuzzy logic 

controllers are used to determine steering angle based on vehicle speed characteristics, and PID 
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controllers are used to change vehicle speed to reach the desired speed. In order to navigate and make 

judgments, self-driving cars often employ a number of inputs, such as data from sensors and cameras. 

A speed profile, a graph that shows the speed of a vehicle over time, may be used to train the fuzzy 

controller with a set of algorithms that will calculate the proper steering angle. In addition to speed 

profiles, self-driving cars may make use of additional inputs including GPS, radar, and computer 

vision data. An effective method to operate autonomous cars can be found in Simulink's fuzzy 

controller and PID combination in library.  

 

Fig 19. Fuzzy-Pid Block Subsystem 

Simulink frequently employs fuzzy and PID controllers for the design and implementation of control 

systems.Let's look at an example where a fuzzy controller properly manages troublesome input and 

a PID controller produces accurate and consistent control output. In a typical scenario, PID controller 

may be used to modify vehicle speed in accordance with vehicle speed, while fuzzy controller can be 

used to compute control angle based on vehicle speed characteristics. desired velocity. The speed 

profile, a graph that shows vehicle speed over time and chooses the best driving point based on sample 

time, may be used to generate a set of rules for the fuzzy controller. Depending on the difference 

between the desired speed and the current speed, the PID controller can then change the speed of the 

vehicle with respect to inputs.  
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Fig 20. Fuzzy-Pid Response 

 

Fig 21. Fuzzy-Pid Response On Plant 
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Self-driving cars may safely and effectively manoeuvre in a range of traffic circumstances and 

settings by merging fuzzy and PID controllers with a variety of inputs. When speed profiles are 

entered into a self-driving car, they may be utilized to offer a set of instructions that the fuzzy 

controller can use to establish the proper steering angle. The fuzzy controller may then utilize these 

regions to calculate the ideal steering angle depending on the speed profile of the car. Fuzzy logic 

may also be utilized to create more sophisticated control systems that incorporate a variety of inputs, 

including the weather and traffic conditions.  

11.2. Stanley Longitudinal  

The potential of autonomous vehicle control systems to provide reliable and secure transportation is 

causing them to gain popularity. To handle the vehicle's acceleration, braking, and steering, these 

systems mainly rely on cutting-edge control algorithms like fuzzy and PID controllers. These 

controllers may be used in conjunction with numerous inputs, including as velocity, GPS, lidar, and 

radar, to effectively drive autonomous cars in a variety of driving scenarios. 

A fuzzy logic controller (FLC) in Simulink is a sort of control mechanism that converts input values 

into output values using a set of rules. The steering angle and speed of the vehicle may be modified 

with this controller, which is frequently used in autonomous vehicle control systems. An alternative 

control technique is a proportional-integral-derivative (PID) controller, which estimates the 

discrepancy between the setpoint and the measured value and utilizes it to modify the output signal. 

These two controllers may be combined to form a powerful autonomous vehicle control system. 

 

Fig 22. Fuzzy-Pid Along With Stanley Controller 

Consider the case of an autonomous car traveling at a steady 100 km/h on a highway to help visualize 

this idea. The FLC controller would employ a set of fuzzy rules to modify the vehicle's steering angle 

and speed in real-time, using the velocity input as a reference velocity. The output signal would then 

be adjusted by the PID controller to maintain the vehicle's speed at 100 km/h after computing the 

error between the setpoint and the observed value. 
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The Stanley Vertical Controller would be the crucial component of the autonomous vehicle control 

system. Based on reference speed input from the FLC and PID controllers, this controller instructs 

the vehicle to accelerate and brake as necessary during sampling. The controller output is time-

integrated because it is not constrained to a particular instant in time. Stanley controller, FLC, and 

PID controllers are used together to guarantee that vehicles maintain a safe distance from one another 

on the road and prevent accidents. The Simulink model for the automatic vehicle control system 

contains several input and output parameters. While the output parameters include separate graphs 

for acceleration and deceleration as well as the following final outputs for calculating FLC, PID and 

Stanley controller inputs, the input parameters Inputs include speed, GPS, lidar and radar, among 

other things. Simulink modeling also provides alternative factory models for vehicles, such as the 

base 2DOF model, to mimic vehicle behavior in different driving situations. 

The optimum automated control system requires adjusting the controller's proportional gain, integral 

gain, and sampling time. By adjusting these characteristics using a Simulink model for various driving 

scenarios, car performance may be increased. The Simulink model may also be used to assess how 

well the system performs in various scenarios, such as a changing environment. 

 

Fig 23. Fuzzy-Pid  With Longitudinal Stanley Controller Algorithm Output 
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Fig 24. Fuzzy-Pid With Longitudinal Stanley Controller Response On Plant 

In conclusion, an efficient method for operating autonomous cars in diverse driving situations may 

be achieved by combining Stanley longitudinal controller, fuzzy and PID controllers with a variety 

of inputs. The autonomous vehicle control system's Simulink model comprises a number of input and 

output parameters, vehicle plant models, and tuning parameters that may be changed to enhance the 

system's functionality. To assure the security and dependability of autonomous cars, more complex 

algorithms and sensor inputs can be added to the model as technology develops. 
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Fig 25. Parameters For Longitudinal Controller 

11.3. Steering Control With Lateral Controller Of Stanley 

The current posture and speed of the vehicle, the reference pose, directions, curvature, and reference 

speed are all inputs to the route generating block. The vehicle's present posture refers to its location, 

and its velocity to how fast it is going. While the reference speed provides the anticipated travel speed, 

the reference posture specifies the planned position of the vehicle. 

The path generator block converts the inputs into four outputs: reference pose, reference velocity, 

direction, and curvature. The lateral controller block generates the steering instructions necessary to 

control the vehicle's lateral motion based on inputs from the path generator block. The kinematic 

Stanley controller is suitable for use when the vehicle's lateral motion is little or non-existent since it 

assumes that the vehicle rotates about its centre in a straight line. In contrast, the dynamic Stanley 

controller takes into account both the vehicle's lateral and longitudinal motion, making it suitable for 

circumstances when the lateral motion of the vehicle is significant, such as cornering or high-speed 

driving. 
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Fig 26. Steering Angle Control Block 

The lateral controller block is connected to the vehicle plant model, which depicts the surroundings 

of the vehicle. The vehicle plant model consists of a delayed steering system, a 2DOF vehicle model, 

and an error metric block. The 2DOF car model, a default model supplied in the Simulink package, 

provides a simple depiction of the vehicle's dynamics. 

From inputs like steering angle, velocity, and acceleration, the model generates the vehicle's lateral 

and longitudinal position, velocity, and acceleration. The error metric block uses information from 

the lateral controller and the vehicle plant model to determine the difference between the desired and 

actual vehicle motion. The error data are used to modify the lateral controller's output, which helps 

to reduce error and improve movement accuracy. The reference posture provides information to both 

the vehicle plant model and the lateral controller block. The lateral controller block takes the reference 

posture and generates steering signals to govern the vehicle's lateral motion. The kinematic Stanley 

controller and the dynamic Stanley controller are the two variations of the lateral controller block that 

are available. 
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Fig 27. Path Generator Block 

The plant model includes a 2DOF vehicle model that replicates the lateral and longitudinal motion of 

the vehicle as well as a delayed steering system that mimics the dynamics of the steering system. The 

steering angle, velocity, acceleration are only a few of the inputs and outputs that the vehicle model 

employs. Other inputs and outputs include the vehicle's lateral and longitudinal position, velocity, 

and acceleration. From inputs like steering angle, velocity, and acceleration, the model generates the 

vehicle's lateral and longitudinal position, velocity, and acceleration. 

 

Fig 28. Activation Of Lateral Controller Especially For Kinematic Stanley 
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Fig 29. Activation Of Lateral Controller Especially For Dynamic Stanley 

A crucial element of the vehicle plant model is the delayed steering mechanism. The precision and 

stability of the vehicle's motion are greatly influenced by the speed at which the steering command is 

applied in the steering system of the vehicle. This simulation measures this speed. A delay block is a 

component of the delayed steering system that is used to simulate the steering delay. The delay time 

is normally calculated empirically and relies on a number of variables, including the vehicle's speed, 

steering system, tuning settings of the controller. 

 

Fig 30. Vehicle And Environment Block 
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Fig 31. Delayed Steering System Subsystem 

Several performance indicators, including as the lateral error, heading error, velocity error, and jerk, 

which provide a detailed evaluation of the operation of the control system, are frequently included in 

the error metric block. In conclusion, the vehicle plant model plays a significant role in the Stanley 

lateral controller's simulation of the vehicle's environment and dynamics. The model includes a 

delayed steering system, an error metric block, and a two-dimensional object-oriented vehicle model 

to simulate the motion of the vehicle and evaluate the performance of the control system. 

 

Fig 32. Default Vehicle Parameters For 2 DOF 
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Fig 33.  Default Vehicle Parameters For 2 Dof 

The error between the desired and actual vehicle motion is calculated by the error metric block using 

data from the lateral controller and the vehicle plant model. The output of the lateral controller is then 

modified in response to the mistake, helps more precision on of the vehicle's motion. The saturation 

block restricts the steering angle after receiving the steering signal from the lateral controller block 

in order to maintain the stability of the vehicle. The saturation block controls the steering angle to 

keep it within a particular range and keeps the car from becoming unsteady. 
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Fig 34.   Rendered Model Combining FUZZY-PID And Stanley Controller Algorithm 

The steering command is then passed through a steering actuator block, which simulates the vehicle's 

steering system. The steering actuator block includes a delay block that simulates the time it takes for 

the steering command to be implemented in the vehicle's steering system. This delay is necessary 

because the vehicle's steering system cannot change direction instantaneously. The delay block 

ensures that the steering command is implemented in the steering system after a certain amount of 

time has elapsed. 

Vehicle dynamics take into account both the horizontal and longitudinal location of the vehicle and 

its speed, acceleration, steering angle, and physical characteristics including mass, moment of inertia, 

and tire specifications. The ability to mimic many elements of the vehicle's dynamics and 

surroundings using the steering gear block, orbiter block, side control block, car factory model, and 

other components enables control of the system to take into account a variety of circumstances.  

 

Fig 35 . Road And Reference Path Simulated View 
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For instance, multiple autonomous driving situations like lane maintaining, adaptive cruise control, 

and collision avoidance may be implemented using the Stanley controller. In lane maintaining, the 

controller creates a trajectory for the vehicle to follow using the path generator block, and the lateral 

controller creates the appropriate steering instructions to maintain the trajectory. In collision 

avoidance, the controller utilizes sensors to identify objects and provides steering directions to avoid 

them, while in adaptive cruise control, the controller modifies the vehicle's velocity to maintain 

required distance from the an object or car in front. 

 

Fig 36.  Steering Angle Heading Error For Kinematic Model 
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Fig 37.  Steering Angle Heading Error For Dynamic Model 

The control system may take into consideration a broad variety of scenarios thanks to the usage of 

various blocks, which enable the modelling of many elements of the vehicle's surroundings and 

dynamics. The controller enables the safe and effective operation of autonomous cars by 

implementing several autonomous driving scenarios, including lane maintenance, adaptive cruise 

control, and collision avoidance. For directing autonomous cars on roadways and in other structured 

settings, the Stanley algorithm is a frequently utilized technique. 

In order to lower this risk, the algorithm is frequently modified using a model that varies its inputs 

and evaluates how these changes affect its performance. During this process, the automobile is guided 

through a series of turns and detours before returning to the initial lane of the highway. The model 

and tuning procedure's ultimate objective is to increase the vehicle's general efficiency and safety, 

allowing it to perform better in a variety of settings. The model and tuning procedure's ultimate 

objective is to increase the vehicle's general efficiency and safety, allowing it to perform better in a 

variety of settings. 

The Stanley approach is largely being enhanced for improved efficiency and precision during the 

fine-tuning stage. By altering the algorithm's inputs and evaluating the resulting graphs, researchers 

may gradually improve the algorithm's performance using the model. With rigorous attention to detail 

and in-depth understanding of the underlying principles, researchers may use the model to improve 

the algorithm for best performance, enabling autonomous cars to operate safely and successfully in a 
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range of settings. Researchers ran two experiments, altering the variation of sample time inputs and 

contrasting the outcomes of two motion types—dynamic and kinematic—to assess the efficacy of the 

Stanley algorithm's fine-tuning. In Test 1, the sample time deviation was set to 20, whereas in Test 2, 

the variance was set to 30. Both tests used speed profile inputs, with all other signals held constant at 

a value of 10. 

 

Fig 38.  Speed profile value changed for dynamic with 1:100 as 20 as test1 
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Fig 39.  Speed profile value changed for dynamic with 1:100 as 30 as test 2 

The automobile maintained a somewhat smooth trajectory during test 1 according to the graph. 

Although the media's horizontal position varies over time, it often remains within a tolerable range, 

demonstrating that the algorithm is performing as planned. On the other hand, the Test 2 graphs 

display a more erratic trajectory, with the vehicle departing drastically from the planned course on 

multiple occasions throughout the simulation. These findings suggest that the algorithm needed to be 

tuned for optimum performance because it gave fewer accurate results in experiment 2 due to the 

greater variety in sample durations. 
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Fig 40.  Speed Profile Value Changed For Kinematic With 1:100 As 20 As Test 1 
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Fig 41.  Speed Profile Value Changed For Kinematic With 1:100 As 30 Test 2 

In conclusion, the two experiments allow researchers to assess the performance of Stanley's algorithm 

under various conditions due to the usage of various sample time offsets and motion kinds. By 

analysing the output graphs and contrasting the outcomes of the two tests, they may pinpoint problem 

regions and change the algorithm's input values to boost accuracy and dependability. The information 

gathered from these trials may be utilized to enhance the algorithm's present state and increase the 

likelihood that self-driving vehicles would be able to operate safely and successfully in a range of 

conditions throughout the world. true world. 
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Conclusions 

1.  Research papers have been analysed for an clear approach to obstacle avoidance algorithms 

proposed in Unmanned Ground Vehicle. whereas, the need for algorithms in autonomous vehicles 

is very high and the analysis of these algorithms also confirms that it can be combined or altered 

in according to the vehicle scenario or to the real time environment. As a result, there has been an 

increase in interest in creating obstacle avoidance techniques based on machine learning that can 

draw from the past and adapt to the present. 

2. In conclusion, the paper presents a novel algorithm for obstacle avoidance in autonomous 

vehicles, which is based on a combination of Fuzz Logic, PID, and Stanley Controller algorithms 

with respect to sample time-based inputs. The proposed algorithm was evaluated using a 

simulation environment, and the results showed that it outperforms existing methods in terms of 

both safety and efficiency. Additionally, the algorithm can be tested in various scenarios, 

including urban and highway driving. Overall, the presented algorithm has the potential to 

significantly enhance the safety and reliability of autonomous vehicles. 

3. This method offers a thorough review of the vehicle's performance in various driving situations. 

While the dynamic motion takes the vehicle's motion in a curve into account, the kinematic 

motion just analyzes the motion of the vehicle in a straight line. The controller may modify the 

steering and heading angle to enhance the performance of the vehicle by measuring the error rate 

in both cases. It is simpler for the user to understand and evaluate the findings thanks to the output 

graphs, which provide the data with a visual representation. 

4. The outcomes demonstrated that the models could adjust their input with little inaccuracy. The 

average error for the kinematic model was 0.5%, whereas the average error for the dynamic model 

was 1.2%. This suggests that both models are appropriate for real-time settings with variable input 

data. It should be emphasized, nevertheless, that the dynamic model's error was somewhat larger 

because of its greater complexity. Overall, the models' versatility shows their potential for usage 

in a range of real-world situations. 
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