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Summary
Artefacts in computed tomography images are a relatively common occurrence. These include beam
hardening, motion, ring, noise, metallic and other types of artefacts. Among these, some of the most
common are metallic and metal-induced artefacts like beam hardening and Poisson noise. In this
paper, several models for metal artefact reduction in computed tomography images are examined.
Three models were tested: the artefact disentanglement network, the reused convolutional network,
and a reused convolutional network enhanced with sinogram information. The study showed that the
models performed similarly quantitatively, as indicated by comparable values in metrics such as peak
signal-to-noise ratio and structural similarity index measure. However, in qualitative assessments, it
was determined that the reused convolutional network yielded higher-quality images compared to
the other models.
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Santrauka
Artefaktai kompiuterinėje tomografijoje yra gana dažnas reiškinys. Jų būna įvairių – spindulio
deformacijos, judėjimo, žiedo, triukšmo, metalo ir kiti. Vieni iš dažniausiai pasitaikančių yra
metaliniai ir metalinių objektų sukelti artefaktai. Šiame darbe nagrinėjami trys modeliai skirti metalo
artefaktų šalinimui kompiuterinės tomografijos vaizduose: artefaktų atskyrimo tinklas, pakartotinis
konvoliucinis tinklas ir pakartotinis konvoliucinis tinklas, sustiprintas informacija gauta iš sinogramų.
Tyrimas parodė, kad modeliai kiekybiškai – pagal rodiklius kaip maksimalus signalo triukšmo
santykis ir struktūrinio panašumo indeksas, veikia panašiai. Vis dėlto, kokybiniu vertinimu buvo
nustatyta, kad pakartotinis konvoliucinis tinklas duoda aukštesnės kokybės rezultatus lyginant su
kitais modeliais.
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Introduction
Rapid advancements in deep learning, especially computer vision, have encouraged the adoption of
AI techniques in medical image analysis. The problems solved in this field are varied from pathology
analysis to lesion segmentation to image quality enhancement. Image quality enhancement,
specifically image denoising, is especially important because it influences the quality of the solutions
to the other problems. One of the most common types of noise caused in medical images in general,
and in CT images in particular, is noise induced by metallic implants. This noise tends to obscure
important information in the image, which hinders interpretability and diagnosis, and complicates
other types of AI tasks.
Naturally, the AI techniques applied to these problems primarily fall under supervised learning, i.e.,
they require a large amount of paired data. However, acquiring such datasets in medical contexts can
be difficult. This is especially apparent in medical image denoising, where training with labeled data
would require having two versions of the same image - noisy and clean. Clearly, this is impossible,
so synthetically generated noise-affected images are used as a substitute, which can have a negative
effect on performance when applying models trained on synthetic data to natural image datasets. This
is where unsupervised approaches offer an alternative, as they do not require labels.
Several unsupervised methods have been proposed in recent years specifically for medical image
denoising; however, most of them operate only in the image domain. Advances in supervised
approaches have demonstrated that dual domain methods that combine information present in both
sinogram and image domains offer superior performance. This indicates that the application of dual-
domain information for unsupervised AI methods may be worth studying.
Objective – devise an unsupervised AI architecture that utilizes dual-domain information to remove
artefacts from CT images caused by metallic implants.
Tasks:

– To conduct a review of the relevant literature.
– To generate a CT dataset with synthetic artefacts for model evaluation.
– To study the effects of parallel sinogram information integration technique on model

performance.
– To compare the results of the final model to other state-of-the-art unsupervised models.
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1. Literature Review
1.1. Noise in Medical Imaging
As mentioned in the introduction, artefacts are very common in clinical CT imaging [1]. There are
many different types of CT artefacts, including noise, beam hardening, scatter, motion, ring, and
metal artefacts. Artefacts appear when conditions for an ideal CT image are not met. This could be
due to malfunctioning equipment, patient motion, low radiation dosage, and other factors. For
example, ring artefacts are caused by malfunctioning detectors, while Poisson noise generally appears
due to low photon counts. Examples of both can be seen in figure 1.

Fig. 1. An example of ring artefact and Poisson noise [1]
Metallic implants are the primary source of beam hardening and scatter, which produce dark streaks
with adjacent white streaks, while patient motion is responsible for blurring and double images. An
example can be seen in figure 2.

Fig. 2. An example of metal-induced and motion artefacts [1]
Replicating ideal conditions for a CT scan may not be possible due to factors like metallic implants
inside the patient's body or the usage of low-dose radiation due to concerns for the health of the
patient. This makes artefact reduction a necessary area of study to improve diagnosis and patient
outcomes.
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1.2. Conventional Metal Artefact Reduction
There are a couple of conventional metal artefact reduction techniques that are worth mentioning in
this discussion since they are often used for benchmarking or preliminary preprocessing of model
inputs:

– Linear interpolation (LI).
– Normalized artefact reduction (NMAR).

Both can be classified as projection completion techniques, which involve the interpolation of missing
or corrupt values of images in the projection domain. The simpler approach is linear interpolation,
which is fast and has no parameters but tends to introduce secondary artefacts. That is why it is seldom
used on its own. Instead, it often provides a simple way to obtain an image prior that can be input into
more complex models.
In general, pure interpolation models are not very popular, because they tend to introduce additional
artefacts after image reconstruction [2]. These include blurring around the metal edges and the
formation of streak artefacts due to insufficiently smooth transitions between the interpolated and
real regions. The normalized artefact reduction model (NMAR) [2] attempts to solve these problems
by first normalizing the projection to produce a more homogenous sinogram and only then applying
the interpolation algorithm. A diagram is presented in figure 3.

Fig. 3. Diagram of the NMAR method [2]
As you can see in figure 3, the result of the interpolation is denormalized and combined with the
sinogram prior obtained through thresholding. This procedure provides for smoother transitions
between interpolated and real data reducing the incidence of secondary artefacts.
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1.3. Supervised Metal Artefact Reduction
Several supervised deep learning models have been proposed in recent years specifically tailored to
the task of metal artefact reduction. One of the most well-known is the convolutional neural network
based metal artefact reduction (CNNMAR) model [3], which is visualized in figure 4.

Fig. 4. Architecture of the CNNMAR method [3]
Based on Figure 4, you can see that CNNMAR utilizes a triplet of images as inputs into the CNN:

– The original uncorrected image.
– Image corrected using beam hardening correction (BHC).
– Image corrected using linear interpolation.

The inputs are treated as three-channel images. Small patches extracted from the images are input
into the model, with corresponding patches from artefact-free images acting as targets. After training,
the image is segmented into bone, water and air. The result is forward projected (FP) into the sinogram
domain, combined with the original sinogram, and the metal trace to produce the final corrected
sinogram. Then filtered back-projection (FBP) is used to obtain the final image.
Another method that relies on image prior generation and sinogram completion was proposed in [4].
Here the network inputs are fewer – they consist of an LI corrected image and the corresponding
metal-affected image. A prior is generated using the U-Net architecture. Then a residual sinogram is
obtained by subtracting the prior from the LI corrected sinogram. This, together with the metal trace,
acts as an input into the sinogram correction net, which is a pyramid U-Net.
Wang et al. [5] have proposed a dual-domain MAR method that uses two residual U-Nets to process
sinograms and images reconstructed from them. The sinogram processing network takes the residual
obtained from subtracting an LI corrected sinogram from the original, as well as the metal trace that
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is retrieved from the image through thresholding. The output is added to the LI corrected sinogram
and projected into the image domain, where it is further processed by the image processing network.
Another example of a sequentially connected dual-domain approach was presented in [6]. Here the
sinogram preprocessing model is a generative adversarial network (GAN) with inputs consisting of
LI corrected sinograms. The outputs of the network are projected into the image domain and then
further refined with the help of a partial convolution U-Net that uses binary metal masks to exclude
pixels belonging to the metal regions from the convolution operation.
The paradigm of sequentially connected dual-domain networks is well-established at this point.
However, questions arise on whether all of the information available in both domains is exploited
with this approach. That is whyWang et al. [7] have proposed a dual-domain parallel network (IDOL-
net). A visual is displayed in figure 5.

Fig. 5. Architecture of the IDOL-net [7]
As you can see in figure 5, the model consists of a disentanglement and a refinement module. The
disentanglement module separates the image from the metal artefacts in both domains, producing
two outputs that are further processed in the refinement module. The refinement module consists of
two sets of four residual U-Nets that run in parallel. The output of each network is projected into the
other domain and concatenated. The final outputs are fused to produce the restored image.
Although most of the recently proposed supervised architectures leverage dual-domain information
to obtain gains in performance, this does not imply that single-domain models are obsolete. A pure
sinogram domain correction model has been proposed by Zhu et al. [8] as recently as this year. Here,
the input sinogram is input into a U-Net that separates the metal trace. It is then preprocessed with LI
and subtracted from the original sinogram to obtain a residual. The residual is enhanced with the help
of another U-Net and added to the metal trace. The result is projected into the image domain with
FBP and fused with the LI-corrected image.
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1.4. Unsupervised Metal Artefact Reduction
While the primary area of research for metal artefact reduction involves supervised models, there has
been some progress with unsupervised models as well. One of the first such attempts was the artefact
disentanglement network (ADN) proposed by Liu et al. [9]. It uses two pairs of generators and
discriminators to achieve unsupervised learning for unpaired sets of images. An illustration is
presented in figure 6.

Fig. 6. Architecture of the ADN [8]
As you can see in figure 6, the model produces five outputs. Two of them – 𝑥𝑎 and 𝑦𝑎 are used to
compute the adversarial losses. One discriminator is trained to differentiate images from sets 𝑥 and
𝑦 and another from sets 𝑥𝑎 and 𝑦𝑎. The rest of the outputs are used to compute the other components
of the loss i.e. the artefact consistency loss, reconstruction loss, and self-reduction loss, which are all
necessary to ensure that the model preserves correct image information. The total loss is determined
by the weighted sum of the components, which means that optimal weights have to be determined
during training as well. The model exhibits some sensitivity to these parameters, with different
datasets requiring different values. Typically, the weight assigned to the adversarial losses is 1, while
the other losses share a single weight parameter.
The performance of the ADN rivals that of other state-of-the-art supervised and unsupervised
methods; however, its architecture is complex, and the resulting model is difficult to train. That is
why Zhao et al. [10] have introduced a simplified architecture that does well to preserve model
performance. The model structure is presented in figure 7.
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Fig. 7. Architecture of the reused convolutional network [10]
As you can see in figure 7, the model consists of a single generator and two discriminators while
producing only two outputs. The structure of the loss remains the same as ADN, though. In general,
any supervised setup could be transformed into an unsupervised one with this approach. However, as
mentioned before, a substantial overhead is incurred due to additional losses that are required to
regularize the outputs.
Another mechanism that is sometimes used to boost the performance of generative approaches is
attention. Attention mechanisms allow the model to focus on specific parts of the input data. They
accomplish this by assigning varying weights to different input elements based on their relevance to
the task. Two instances of attention utilization are demonstrated in recent studies. In [11], a U-net
architecture incorporated attention modules within skip connections to serve as a generator. In [12],
a transformer was employed to encode the content information of sinograms. Both approaches exhibit
comparable performance to other state-of-the-art methods.
Although most of the unsupervised approaches are single domain, there are a few exceptions. For
example the unpaired dual-domain network (U-DuDoNET) [13] utilizes sinogram completion to
segment metal artefacts within the image. The obtained result is then projected into the image domain
and subtracted from the original noisy image. Further post-processing is applied to achieve the final
denoised output.
Although most of the focus in recent years has shifted to deep learning, Zhu et al. [14] have eschewed
this and devised a completely analytical physics-based model that does not rely on deep learning. The
model inputs consist of a single uncorrected sinogram, which is processed in three ways:

– The sinogram is projected into the image domain, where the metal trace is extracted and then
projected back into the sinogram domain.

– The sinogram is corrected via the NMAR method.
– The sinogram is corrected using the physics model devised by the authors.

All three results are then fused to produce the final output, which is later projected into the image
domain and post-processed to obtain the restored image. The performance of this model is comparable
to that of other state-of-the-art methods.
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1.5. Unsupervised Artefact Reduction
Numerous unsupervised denoising techniques exist that, while not explicitly developed for reducing
metal artefacts, effectively handle certain forms of unstructured noise, such as Poisson and Gaussian.
Consequently, these methods can be incorporated into pipelines for reducing metal artefacts. Some
of them are discussed in this chapter.
The Deep Image Prior (DIP) [15] architecture uses untrained deep convolutional neural networks
(CNN) to recover clean images from noisy ones. In this approach, a random noise image acts as the
model input, while the image to be denoised is set as the target for training. The original image without
noise is reconstructed in the course of optimizing model weights. Additionally, the quality of the
image is improved by applying smoothing on the outcomes of the final iterations as well as averaging
the solutions over multiple different random inputs. This method does quite well in removing
Gaussian noise but is otherwise ineffective. However, it is noteworthy because it serves as a basis for
several other more advanced models.
The DeepRED [16] method is a modification of the DIP that merges DIP with Regularization by
Denoising (RED). The DeepRED refines the initial estimates provided by either Block Matching 3D
(BM3D) [17] or Non-local Means NLM [18] with DIP. This fusion of models has been shown to
outperform both RED and DIP individually. Nevertheless, its area of application remains primarily
limited to dealing with unstructured noise.
The Deep Decoder (DD) [19] is another extension of the DIP that incorporates several simplifications
of the underlying CNN structure to improve performance. A visualization is presented in figure 8.

Fig. 8. Architecture of the Deep Decoder [19]
As you can see in figure 8, a random input is upscaled several times through the network. This is
achieved by applying pixel-wise linear combinations across channels (sometimes referred to as 1x1
convolutions), channel-wise normalization, upsampling, and ReLU in each layer. It has been shown
to make the Deep Decoder more robust to overfitting and choice of hyperparameters compared to the
Deep Image Prior.
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Noise2Noise (N2N) [20] is another denoising technique that does not rely on clean targets for
training. It leverages the fact that different noisy versions of the same clean image share common
underlying information. This technique is not tied to any specific model architecture, rather, it is an
approach where the inputs and the outputs of the model are two corrupted versions of the same image.
The authors conducted tests with BM3D as well as DIP and demonstrated that the performance of
these models with N2N is comparable to conventional methods. However, this approach has
limitations as obtaining pairs of noisy images with similar content in practice may be difficult.
A modification of the N2N called Noise2Void (N2V) [21] attempts to mitigate the limitations of
N2N. This technique, in contrast to N2N, can be applied to problems where neither noisy image pairs
nor clean target data are available. This is accomplished by deriving both input and target data from
a single noisy image. The process is visualized in figure 9.

Fig. 9. Blind-spot creation scheme: a) Noisy image b) Input patch c) Target patch [21]
Based on figure 9, you can see that a blind-spot is created in the input patch by the replacing the centre
pixel with a random one within the patch. The original unmodified patch acts a target, but the loss is
calculated only for the blind-spot pixels. This teaches the model to estimate the centre pixel given the
information in the surrounding pixels. N2V shows slightly lower performance in comparison to other
approaches such as N2N. However, this is to be expected because N2V has access to less information
during model training.
Another method that utilizes patches of the same noisy image for training is Noise2Self (N2S) [22].
It treats the patches within the same noisy image as independent instances of the same patch. The
objective is to minimize the difference between the model’s output and the original noisy patch. Just
like N2N, N2S can be implemented with any type of underlying architecture.When applied to training
neural networks, this technique has demonstrated superior performance compared to traditional
unsupervised methods like NLM and BM3D, while achieving similar performance to N2N.
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1.6. Overview
In summary, I covered a range of techniques for reducing metal artefacts, encompassing both
supervised and unsupervised approaches. While supervised approaches are definitely powerful, their
reliance on labeled data limits their applicability. Synthetic datasets are often used as substitutes, but
they present their own challenges. Since it is difficult to create synthetic datasets that encompass the
full spectrum of metal artefacts, the performance of supervised models on synthetic data may not
translate well to real-world scenarios. This is where unsupervised methods offer advantages.
Despite substantial research into unsupervised techniques, there are still gaps to be addressed. One
of which is exploiting dual domain information in a parallel fashion. While sequential approaches
exist for exploiting sinogram information to address secondary artefacts, I could not find any that
leverage this information in a parallel manner. Considering that supervised methods utilizing dual
domain information have shown improved performance on average, studying unsupervised models
that follow the same paradigm is a worthwhile pursuit.
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2. Methods
This section introduces the dataset utilized for modelling purposes, along with an architecture
specifically designed for metal artefact reduction. The implementation details of this architecture are
provided together with details for ADN and RCNN, which were used as baseline models for
comparison. The theory of Radon transforms and their role in medical imaging is briefly discussed
as well.
2.1. Dataset
As mentioned before, there are two primary types of metal-induced artefacts [1]:

– Beam hardening – dark streaks with adjacent light streaks produced between two objects like
bone or metal.

– Poisson noise – random, thin, bright and dark streaks strewn across an image.
Several examples of both are presented in figure 10.

Fig. 10. Examples of metal induced artefacts
For experiments, a dataset of CT images was provided by the Kaunas University of Technology
(Department of Applied Physics). The dataset consists of CT image data for three patients. The
images are mostly unaffected by artefacts; however, patient three possesses a dental implant, which
affects 77 slices. These were put aside for qualitative evaluation. A few examples are given in figure
11.

Fig. 11. Examples of naturally occurring artefacts
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For the rest, I generate the metallic artefacts myself using the artefact synthesis code provided by the
authors of [3]. The code uses metal masks to synthesize different types of metal artefacts. Thirty-six
masks are used to produce the training set, while another six are reserved for the test set.
Since the generated dataset is too large for training, I randomly chose 10000 images from the first
patient of the dataset for training, another 1000 from the second for validation, and 5000 from the
third one for testing.
Model performance is evaluated with two metrics – peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM). Distributions of these metrics are presented in figure 12.

a) b)
Fig. 12. Distribution of: a) PSNR b) SSIM

The base average values of PSNR and SSIM are 12.95 dB and 0.53. The higher these metrics, the
better the model performance. So anything above the baselines is an improvement. The PSNR is
calculated in the following way [23]:

𝑃𝑆𝑁𝑅 𝐼,𝐽 = 10 log10
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸(𝐼,𝐽)
(1)

where 𝐼,𝐽 are two images and 𝑀𝐴𝑋𝐼 is the maximum intensity of pixels in the image 𝐼, while MSE is
the mean squared error calculated between pixels of the two images. The SSIM is computed by
applying a sliding window, where patches of the images x and y are compared [23]:

𝑆𝑆𝐼𝑀 𝑥,𝑦 =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

𝜇2
𝑥 + 𝜇2

𝑦 + 𝑐1 𝜎2
𝑥 + 𝜎2

𝑦 + 𝑐2

(2)

where 𝜇 is the pixel sample mean, 𝜎 is the variance, and 𝜎𝑥𝑦 is the covariance of 𝑥 and 𝑦. Additionally
𝑐1 and 𝑐2 are constants used to stabilize the denominator.
While both metrics capture image quality information, there are differences in how they relate to
human perception. Since mean squared error (MSE) is part of the formula for PSNR, it exhibits a bias
towards blurry images. On the other hand, SSIM takes into account structural information such as
edges and textures, which provides a closer approximation to human perception, but it does a poorer
job of estimating actual noise in the image. That is why both of these metrics are necessary to get a
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complete picture of model performance. However, no metric is a perfect substitute for human
perception, so qualitative evaluation is important as well.
Ideally, I would like to evaluate models strictly on natural images, but the lack of labels enables
qualitative comparisons only. On the other hand, synthetic images allow the evaluation of a metric
but may not accurately indicate performance in a real-life scenario. So I use both types of data to get
a more accurate representation of model behaviour.
2.2. Artefact Disentanglement Network
As previously mentioned, the ADN architecture comprises multiple components, namely encoders,
generators, and discriminators. Each of these components consists of blocks depicted in figure 13.

Fig. 13. Components of the ADN: a) Residual block b) Downsampling block c) Upsampling block d) Final
block e) Merging block [9]

Furthermore, the artefact generator incorporates artefact code from the artefact encoder to produce
artefact-affected images in a distinct manner. This process, referred to as artefact pyramid decoding
(APD) in the paper, is illustrated in Figure 14.

Fig. 14. Artefact Pyramid Decoding [9]
As you can see in figure 14, the outputs of the artefact encoder layers are directly integrated into the
upsampling process of the generator.
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As mentioned before, the total loss of the model consists of five components – two adversarial losses
as well as the reconstruction loss, self-reduction loss and artefact consistency loss. Formally, the
adversarial losses can be written down as:

ℒ = 𝐸 log 𝐷 𝑦 + 𝐸 1 − log 𝐷 𝑥

ℒ = 𝐸 log 𝐷 𝑥𝑎 + 𝐸 1 − log 𝐷 𝑦𝑎
(3)

here 𝑦 is the artefact-free input, 𝑥𝑎 is the artefact-affected input, 𝑥 is the artefact-free output and 𝑦𝑎 is
the artefact-affected output. The adversarial losses ensure that the generators produce realistic
outputs.
The reconstruction loss is calculated in the following way:

ℒ𝑟𝑒𝑐 = 𝐸 𝑥𝑎 − 𝑥𝑎
1 + 𝐸 𝑦 − 𝑦

1
(4)

here 𝑥𝑎 is the reconstructed artefact-affected input and 𝑦 is the output of the artefact-free generator.
The reconstruction loss guarantees that no information is lost during the process of encoding and
decoding the image while also preventing the introduction of any additional artefacts.
The self-reduction loss is calculated as:

ℒ𝑠𝑒𝑙𝑓 = 𝐸 𝑦 − 𝑦
1

(5)
here 𝑦 is the output produced from 𝑦 when artefacts are added and then removed from the image. The
loss serves to improve artefact reduction.
The calculation of the artefact consistency loss is defined as follows:

ℒ𝑎𝑟𝑡 = 𝐸 (𝑥𝑎 − 𝑥) − (𝑦𝑎 − 𝑦)
1

(6)
It ensures that the model does not introduce additional artefacts by observing that the difference
between 𝑥𝑎 and 𝑥 should be similar to the difference between 𝑦𝑎 and 𝑦, as they are affected by the
same artefact.
2.3. Reused Convolutional Neural Network
The precise implementation details of the RCNN are a lot sparser compared to ADN, so I chose the
components as I saw fit. The encoders and decoders, as well as discriminators were reused from
ADN. The generator is a standard U-net implemented based on the original paper [24].
The total loss consists of the same components as ADN, with adversarial loss calculated in the same
exact way. However, other losses are calculated slightly differently. The reconstruction loss is defined
as [10]:

ℒ𝑟𝑒𝑐 = 𝐸 𝑥1 + 𝑎1 − 𝑥𝑎
1

+𝐸 𝑥2 + 𝑎2 − 𝑥𝑎
1
+𝐸 𝑦1 − 𝑦

1
+𝐸 𝑦2 − 𝑦

1
(7)

here 𝑥𝑎 is the artefact affected input, while 𝑥1 is the corresponding cleaned output and 𝑥2 and 𝑎2 areoutputs of the second pass through the network, 𝑦 is the artefact-free input and 𝑦1, 𝑦2 are the resultsof the first and second pass through the network respectively. As you can see, the main difference
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here is that the artefact image in RCNN is constructed explicitly by combining clean outputs with the
segmented artefact information.
The artefact consistency loss is evaluated as the 𝐿1 difference between the two artefact segmentation
passes:

ℒ𝑎𝑟𝑡 = 𝐸 𝑎1 − 𝑎2 1
(8)

And the self-reduction loss is calculated as the 𝐿1 difference between the cleaned output 𝑥1 and the
output of the second pass through the network 𝑥2:

ℒ𝑠𝑒𝑙𝑓 = 𝐸 𝑥1 − 𝑥2 1 (9)
2.4. Radon Transform
The core premise of this paper is that the performance of existing unsupervised models can be
improved by incorporating sinogram information. A sinogram is a visualization of X-ray intensity
losses captured by a CT scanner [25]. An example is presented in figure 15.

Fig. 15. Shepp-Logan phantom and the corresponding sinogram [25]
A CT scanner does not measure these intensities directly. Instead, it captures the initial intensity at
the source and the final intensity once the beam has traversed the object. A pass from a single direction
is not enough to reconstruct the image, so the orientation of the source and detector is changed to gain
additional information about a slice. The concept is visualized in figure 16.

Fig. 16. The underlying principle of a CT scanner [25]
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Each point in the sinogram corresponds to an intensity difference at a particular distance and angle.
The vertical axis represents the distance of the beams from the origin, and the horizontal axis is the
angle at which the slice is measured. Moreover, a pixel value of zero corresponds to no change in
intensity, while 255 means that the beam was completely absorbed. On its own, the sinogram lacks
interpretability and must be first transformed into an image for interpretation.
As mentioned before, each beam is parametrized by two values – the distance from the origin 𝑡 and
the angle of the measurement 𝜃. Given these parameters, a transformation from an image into a
sinogram is defined as:

𝑅𝑓 𝑡,𝜃 =
∞

−∞
𝑓(𝑥(𝑠),𝑦(𝑠))𝑑𝑠 (10)

where 𝑡∈𝑅2 and𝜃∈(0,2𝜋]. This transformation is known as the Radon transform. It provides themeans
to calculate the total density of a function f along a given line. This is illustrated in figure 17.

Fig. 17. The Radon transform
The function f in the context of medical imaging is the attenuation coefficient 𝐴(𝑥). It shows the size
of photon absorption per millimetre of a medium at a distance from the origin 𝑥. To reconstruct an
image from a sinogram, we need a way to calculate 𝐴(𝑥), which requires computing an inverse of the
Radon transform. For this purpose, the central slice theorem plays a key role. It relates the two-
dimensional Fourier transform to the one-dimensional Fourier transform of the Radon transform:

𝐹2𝑓 𝑆 cos 𝜃,𝑆 sin 𝜃 = 𝐹(𝑅𝑓)(𝑆,𝜃) (11)
where 𝑆∈𝑅 and𝜃 = [0,2𝜋). Sincewe know the definition of the inverse of the two-dimensional Fourier
transform, we can compute the original function as:

𝑓 𝑥,𝑦 = 𝐹−1
2 𝐹2𝑓 𝑥,𝑦 = 1

4𝜋2

∞

−∞

∞

−∞
𝐹2𝑓 𝑋,𝑌 𝑒𝑖(𝑥𝑋+𝑦𝑌)𝑑𝑥𝑑𝑦 (12)

where 𝑋,𝑌∈𝑅2. For the Radon transform, this formula can be rewritten as:
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𝑓 𝑥,𝑦 = 1
2 𝐵(𝐹−1[ 𝑆 𝐹(𝑅𝑓)(𝑆,𝜃)])(𝑥,𝑦)

𝐵ℎ 𝑥,𝑦 = 1
𝜋

𝜋

0
ℎ(𝑥 cos 𝜃 + 𝑦 sin 𝜃,𝜃)𝑑𝜃

𝑆 = 𝑑𝑒𝑡
𝜕𝑋
𝜕𝑆

𝜕𝑋
𝜕𝜃

𝜕𝑌
𝜕𝑆

𝜕𝑌
𝜕𝜃

(13)

where the operator 𝐵 is called a back-projection and |𝑆| is called a filter. That is why the method is
referred to as filtered back projection (FBP).
The aforementioned formulas are defined for continuous sets; however, in practice, the amount of
available data is finite. Therefore, discrete versions of the functions are needed to compute the
attenuation coefficients.
Suppose measurements are taken at 𝑃 different angles 𝜃 and that for each angle there are 2∙𝑀 + 1
beams spaced a distance 𝑑 apart. Then the specific values of 𝜃 and 𝑡 can be defined as:

𝜃𝑘 = 𝑘𝜋
𝑃 : 0 ≤ 𝑘 ≤ 𝑃 − 1

𝑡𝑗 = 𝑗 ∙ 𝑑: − 𝑀 ≤ 𝑗 ≤ 𝑀

(14)

This is enough to define a particular line 𝑙𝑡𝑗,𝜃𝑘. The discrete back-projection formula can then be
defined as:

𝐵𝐷ℎ 𝑥,𝑦 = 1
𝑁

𝑁−1

𝑘=0
ℎ 𝑥 cos 𝑘𝜋

𝑁 + 𝑦 sin 𝑘𝜋
𝑁 , 𝑘𝜋

𝑁
(15)

where 𝑁 is the periodicity of the function. As you can see, the formula requires summing over various
points in the Cartesian plane, but the locations of the beams were defined in a space parametrized by
𝜃 and 𝑡. This creates a discrepancy, so the missing data points have to be interpolated. The function
to be interpolated is the argument of the back-projection, which in discrete space is defined as:

𝑓 𝑥,𝑦 = (𝐹𝐷
−1𝑆) ∗ (𝑅𝐷𝑓)(𝑗𝑑,𝑘𝜋/𝑁) (15)

where 𝐹𝐷 and 𝑅𝐷 are the discrete versions of Fourier and Radon transforms and ∗ denotes the
convolution operation. Since the particulars of the interpolating function are not relevant, we can
simply denote it as 𝐼. The discrete filtered back-projection can then be defined as:

𝑓 𝑥𝑚,𝑦𝑛 ≈ 1
2 𝐵𝐷 𝐹𝐷

−1𝑆 ∗ 𝑅𝐷𝑓 𝑗𝑑, 𝑘𝜋
𝑁 ≈ 1

2 𝐵𝐷𝐼(𝑥𝑚 ,𝑦𝑛) (16)
The final equation addresses the discrete nature of data and fixes issues that arise due to that with
interpolation.
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2.5. Hounsfield Scale
As mentioned in the previous section, each material has a different attenuation coefficient associated
with it. Attenuation coefficients associated with metals are very high compared to typical human
tissue or bone, which makes metallic objects easy to distinguish. Typically tissue densities in images
are expressed through the Hounsfield unit scale (HU) [26]. The relationships between Hounsfield
units and the attenuation coefficients measured by a CT scanner can be expressed as:

𝐻𝑈 = 𝑝∙𝑚 + 𝑏 (17)
where 𝑝 is the pixel value, 𝑚 is the intercept, and 𝑏 is the offset. The intercept and the offset are
parameters of the CT scanner and their values are usually equal to 1 and -1024 respectively.
The Hounsfield scale is a standard CT measurement scale that varies for different tissues. The
densities of water and air correspond to 0 HU -1000 HU, respectively. Less dense structures like soft
tissue will have values closer to zero, e.g., 0 to +100. Denser structures like bone will have values of
1000 to 2000 HU. Metals are even denser, with values greater than 2000 HU. Different metals have
different densities and so different HU values. These values for some metals are presented in table 1
[27].
Table 1: HU values for various metals

Type of Metal HU
Aluminum 2100
Copper 14000
Steel 20000
Gold 30000
Titanium and stainless steel implants are the most prevalent, but other metals can appear too
especially in forensic applications. However, it is crucial to note that these values can vary based on
the particular CT scanner and imaging parameters used.
To underline different structures in the image, a technique called windowing is used. First, the values
of the image are clamped to:

max = 𝑐 + 𝑤
2

min = 𝑐 − 𝑤
2

(18)

where 𝑤 is the width of the window and 𝑐 is the centre of the window, often also referred to as a level.
This means that any values below the minimum are set to the minimum, and any values above the
maximum are set to that maximum. How different windows highlight different tissues within an
image is illustrated in figure 18.
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Fig. 18. Influence of windowing on perception
For the image on the left, a window centred around 50 with window width of 350 is used, while for
the image on the right, a centre of -600 and a width of 1400 is used. As you can see, lung tissue is
much clearer in the second image.
2.6. Proposed Modification
The architecture proposed in this paper is similar to ADN and RCNN; however, unlike ADN and
RCNN it integrates sinogram domain information with image domain information to boost
performance. This is achieved by executing two versions of RCNN simultaneously in parallel – one
for sinograms and the other for corresponding images. The concept for a generic module is illustrated
in Figure 19.

Fig. 19. An illustration of processing image and sinogram information in parallel
Figure 19 depicts the process where the module outputs are projected into the opposite domain.
Images are projected with forward projection (FP), and sinograms are projected using FBP. The
results are added up with the outputs of the corresponding image or sinogram model. At the very end,
the outputs are combined to produce the final image.



27

3. Results
In this section, the results for each model are presented. Since the dataset and training split have
already been described in section 2.1, this information is not repeated here.
3.1. Artefact Disentanglement Network
ADN [2.2] was trained with the standard hyperparameters described in [9] except for the loss weights.
As per the paper, the weight for the adversarial losses was kept constant at 1, while the other losses
shared a weight parameter. Three values for the weight parameter were tested by training the model
for five epochs. The results are presented in figure 20.

a) b)

c) d)
Fig. 20. Results of parameter tuning for ADN: a) Training PSRN b) Validation PSNR c) Training SSIM d)

Validation SSIM
As you can see in figure 20, the model with a weight set to 10 stands out as an outlier in terms of
performance. On the other hand, the PSNR values for the other two weights appear to be similar,
although the SSIM for the model with weight value of 1 is lower. This suggests that it might introduce
a greater degree of image blur and potentially struggle to preserve edge information. In order to
investigate this further, a comparison of model outputs is provided in Figure 21.
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a) b) c) d)
Fig. 21. ADN outputs for different weight parameters: a) Original image b) 1 c) 10 d) 20

Based on figure 21, you can tell that the initial assessment was correct, and setting the weight to 1
does not preserve enough structural information in the image. On the other hand, there does not seem
to be a huge qualitative difference between weights 10 and 20, so to decide between them, we can
look at their loss progressions. They are presented in figure 22.

Fig. 22: ADN losses for different weights
As you can see in figure 22, the loss for the model with weight 20 behaves the most desirably because
it decreases consistently. The actual values of the losses do not matter in this plot since the losses
themselves are not normalized, so losses for models with larger weight parameters will be naturally
higher. Based on what was discussed, the weight value of 20 seems to be the correct choice.
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Next, to better understand overall performance of the model, the histograms for PSNR and SSIM are
looked at. These are presented in figure 23.

a) b)
Fig. 23. Distribution of: a) PSNR b) SSIM for ADN

Based on figure 23, you can see that the model performance is not entirely consistent. There seems
to be a at least a small subset of images that the model performs relatively poorly on. To understand
why that is, some examples of ADN outputs with PSNR lower than 25 and SSIM lower than 0.5 are
presented in figure 24.

Fig. 24. Examples of poor ADN outputs
As you can see in figure 24, even in the worst case scenario the model has no issues dealing with
beam hardening artefacts. However, in some cases, the model struggles to completely mitigate
Poisson noise, resulting in residual smearing near the metallic implant area. Nonetheless, the model
accurately reconstructs the structural details of the images without excessive loss of edge information.
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3.2. Reused Convolutional Neural Network
For RCNN [2.3], same as ADN, three values for the weight parameter were tested by training the
model for five epochs. The results are visualized in figure 25.

a) b)

c) d)
Fig. 25. Results of parameter tuning for RCNN: a) Training PSRN b) Validation PSNR c) Training SSIM

d) Validation SSIM
As you can see in figure 25, the model performs best, in contrast to ADN, for smaller weight values,
with optimal performance achieved for the weight value of 1. The performance for weight 1, however
is quite close to performance for weight 10, with weight 20 being the obvious underperformer. To
further examine the differences between these models, we can compare their results qualitatively.
The outputs of these models are presented in figure 26.
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a) b) c) d)
Fig. 26. RCNN outputs for different weight parameters: a) Original image b) 1 c) 10 d) 20

Figure 26 support previous findings with images for the weight value of 1 being the most clear. On
the other hand, weights 10 and 20 fail to even reconstruct the images properly. The losses for different
weights are presented in figure 28.

Fig. 27. RCNN losses for different weights
As you can see in figure 27, the difference between loss progressions for weights 10 and 20 is small.
The decrease for weight 1 is the most consistent increasing only in the final epoch, so it is unsurprising
that it has the best performance.
As before, to better understand performance of the model, the histograms for PSNR and SSIM are
examined. These are presented in figure 28.
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a) b)
Fig. 28. Distribution of: a) PSNR b) SSIM for RCNN

Based on figure 28, you can see that the metric distributions for RCNN are very similar to those of
ADN, e.g., there are several images for which the model exhibits poor performance. These are
examined in figure 29.

Fig. 29. Examples of poor RCNN outputs
As you can see in figure 29, the deficiencies in RCNN images are much more subtle compared to
ADN. While the RCNN model successfully eliminates beam hardening artefacts, some remnants of
Poisson noise remain. Furthermore, certain reconstructed features within the images exhibit blurred
edges, lacking the desired level of sharpness.
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3.3. Radon Enhanced Reused Convolutional Neural Net
Since this model [2.6] is a variation of RCNN, and RCNN performed best for the value of 1, it was
tested only on that value for direct comparison. The plots for training and validation PSNR and SSIM
are presented in figure 30.

a) b)
Fig. 30. Training results for Radon enhanced RCNN: a) PSNR b) SSIM

As you can see in figure 30, both PSNR and SSIM show fairly consistent improvements with peak
values of 31 and 30 PSNR of training and validation sets, while SSIM for the validation set reaches
0.9 and SSIM for the training set ends up being 0.84. The model is examined from a qualitative
perspective in figure 31.

Fig. 31. Radon RCNN outputs
Based on figure 31, you can see that this model has no problems dealing with Poisson noise and beam
hardening artefacts, however, in some images e.g. top right, vestiges of the metallic implants remain.
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a) b)
Fig. 32. Distribution of: a) PSNR b) SSIM for Radon RCNN

As you can see in figure 32, the plots are nearly identical to those of RCNN. Some examples of low
quality outputs are presented in figure 33.

Fig. 33. Examples of poor Radon RCNN outputs
Based on figure 33, you can see that Radon RCNN faces difficulties in completely eliminating
Poisson noise, and although it successfully removes beam hardening artefacts, there are instances
where residual traces of metallic implants remain visible.
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3.4. Overview
Finally, all three methods were compared on the test set. The results are presented in table 2.
Table 2: Test results

Model PSNR SSIM
ADN 31.9455 0.9152
RCNN 31.8814 0.9105
Radon RCNN 31.0629 0.8952
As you can see in table 2, all three models have comparable performance, with ADN slightly
outperforming the rest. However, when quantitative measurements are this close, qualitative factors
are a better way to compare model performance. Figure 34 displays the synthetic data based
performance comparison.

a) b) c) d)
Fig. 34. Model performance on synthetic image data: a) Original image b) ADN c) RCNN d) Radon

RCNN
Based on figure 34, you can see that the outputs of RCNN contain less noise and have slightly sharper
features on average.
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To assess model performance on real world data, their outputs for naturally noisy images of the
dataset are compared in figure 35.

a) b) c) d)
Fig. 35. Model performance on natural image data: a) Original image b) ADN c) RCNN d) Radon RCNN

As you can see in figure 35, the performance of the models on synthetic images does not extrapolate
well to natural images. Among the models, RCNN consistently demonstrates the best performance.
In the case of the first image, ADN struggles to completely eliminate Poisson noise and beam
hardening artefacts, resulting in excessive blurring of the image. Radon RCNN, on the other hand,
successfully removes all artefacts but introduces an additional ring-like artefact in the centre while
also causing some tissues to smear together. RCNN stands out by not only effectively removing all
noise but also preserving the details of the image. However, there is still some additional smearing of
the surrounding tissues.
For the second image, none of the three models fully remove the beam hardening artefacts.
Nevertheless, ADN produces the highest quality reconstruction for the image, while Radon RCNN
once again introduces an additional ring-like artefact in the centre.
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3.5. Limitations and Recommendations
To effectively denoise natural images using models trained on synthetic data, it is necessary to employ
large-scale models trained over numerous iterations. For instance, in the ADN paper, the model was
trained on a dataset of 350,000 images for 50 epochs. Unfortunately, replicating such extensive
training is not feasible in this context, which may account for the relatively lower quality results
observed with natural images. To conduct a comprehensive comparison and study of real-world
applications, training larger models would be essential.
Moreover, the full potential of unsupervised models remains unexplored in this study due to the
limited availability of data. One notable advantage of unsupervised models is their ability to be trained
on natural images. Intuitively, the quality of a model relies on the quality of the dataset it is trained
on. Therefore, it would be worthwhile to explore the possibility of training purely on natural image
data, thereby leveraging the potential of unsupervised models to their fullest extent.
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Conclusions
1. A comprehensive review of the literature on artefact reduction was conducted, which allowed me

to understand the current trends and shape the focus of research in this paper.
2. A synthetic CT dataset was successfully generated, which allowed quantitative model evaluation.
3. The incorporation of sinogram information into the RCNN model did not yield a performance

improvement, with the constructed model having the lowest PSNR and SSIM out of the three
tested models. Furthermore, it was found that the modified model introduced additional secondary
artefacts when applied to natural images. I can conclude that, at least in this case, combining
sinogram and image domain information in the proposed fashion is ineffective.

4. ADN achieved the highest quantitative metrics, with a PSNR of 31.9455 dB and an SSIM of
0.9152. RCNN followed closely behind with a PSNR of 31.8814 dB and an SSIM of 0.8995. On
the other hand, Radon RCNN performed the poorest among the models, lagging behind RCNN
by 0.8185 in terms of PSNR and 0.0153 in terms of SSIM. However, qualitatively, RCNN
demonstrated superior performance compared to the other models. It generated outputs with
reduced noise while preserving a larger amount of the original feature information.
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