

Kaunas University of Technology

Faculty of Mathematics and Natural Sciences

Identification of Asset Integrity Issues using Image Based

Data Analysis and Deep Learning Methods

Master’s Final Degree Project

Andrius Ambrutis

Project author

Prof. dr. Mayur Pal

Supervisor

Kaunas, 2023

Kaunas University of Technology

Faculty of Mathematics and Natural Sciences

Identification of Asset Integrity Issues using Image Based

Data Analysis and Deep Learning Methods

Master’s Final Degree Project

Applied Mathematics (6211AX006)

Andrius Ambrutis

Project author

Prof. dr. Mayur Pal

Supervisor

Doc. dr. Mantas Landauskas

Reviewer

Kaunas, 2023

Kaunas University of Technology

Faculty of Mathematics and Natural Sciences

Andrius Ambrutis

Identification of Asset Integrity Issues using Image Based

Data Analysis and Deep Learning Methods

Declaration of academic integrity

I confirm the following:

1. I have prepared the final degree project independently and honestly without any violations of the

copyrights or other rights of others, following the provisions of the Law on Copyrights and Related

Rights of the Republic of Lithuania, the Regulations on the Management and Transfer of Intellectual

Property of Kaunas University of Technology (hereinafter – University) and the ethical requirements

stipulated by the Code of Academic Ethics of the University;

2. All the data and research results provided in the final degree project are correct and obtained

legally; none of the parts of this project are plagiarised from any printed or electronic sources; all the

quotations and references provided in the text of the final degree project are indicated in the list of

references;

3. I have not paid anyone any monetary funds for the final degree project or the parts thereof unless

required by the law;

4. I understand that in the case of any discovery of the fact of dishonesty or violation of any rights of

others, the academic penalties will be imposed on me under the procedure applied at the University;

I will be expelled from the University and my final degree project can be submitted to the Office of

the Ombudsperson for Academic Ethics and Procedures in the examination of a possible violation of

academic ethics.

Andrius Ambrutis

Confirmed electronically

Ambrutis Andrius. Paviršių trūkių identifikavimas, paremtas vaizdų analize ir giliojo mokymosi

metodais. Magistro baigiamasis projektas vadovas prof. dr. Mayur Pal; Kauno technologijos

universitetas, Matematikos ir gamtos mokslų fakultetas.

Studijų kryptis ir sritis (studijų krypčių grupė): Taikomoji matematika (Matematikos mokslai).

Reikšminiai žodžiai: mašininis mokymasis, sąsūkų neuroniniai tinklai, perkeliamasis mokymasis,

duomenų analizė, betono įtrūkimų aptikimas, įtrūkimų ant plytų sienų aptikimas.

Kaunas, 2023. 55 p.

Santrauka

Betono įtrūkimai kelia didelį iššūkį konstrukcijų stabilumui, o kai kuriais atvejais remontas gali

kainuoti brangiai arba net prireikti visiško atstatymo, kad pastatas nesugriūtų. Tačiau laiku aptikus ir

pašalinus žalą galima išvengti daugelio nelaimingų atsitikimų. Deja, aptikti įtrūkimus gali būti

sudėtinga, ypač sunkiai pasiekiamose arba pavojingose vietose.

Atominės elektrinės, povandeniniai vamzdynai ir užtvankos, be kitų įrenginių, reikalauja reguliarių

išorinių ir vidinių konstrukcijų patikrinimų, kurie gali būti brangūs ir sudėtingi. Neseniai buvo

pasiūlyti mašininiu mokymusi pagrįsti metodai turto saugai tikrinti naudojant dronus. Šiame darbe

nagrinėjamas mašininio mokymosi modelių naudojimas betono įtrūkimams aptikti, nes tai gali

supaprastinti procesą ir sumažinti reguliarių patikrinimų išlaidas. Tačiau pastebėjome, kad kai kuriais

atvejais mašininio mokymosi modeliai veikia prasčiau arba gali būti apgauti dėl prastos kokybės

duomenų arba duomenų su dideliu poslinkiu.

Šiame tiriamajame darbe siūlome vaizdo gerinimo metodus, kad pagerintume modelio prognozes.

Manome, kad dėl mūsų siūlomų matematinių ir mašininio mokymosi algoritmų įtrūkimų aptikimas

bus lengvesnis, saugesnis ir ekonomiškesnis atliekant reguliarius patikrinimus.

Ambrutis Andrius. Identification of Asset Integrity Issues using Image Based Data Analysis and Deep

Learning Methods. Master's final project supervisor prof. dr. Mayur Pal; Kaunas University of

Technology, Faculty of Mathematics and Natural Sciences faculty.

Field and fields of study (group of study fields): Applied mathematics (Mathematics).

Keywords: machine learning, convolutional neural networks, transfer learning, data analysis,

concrete cracks detection, cracks detection on brick walls.

Kaunas, 2023. 55 p.

Summary

Concrete cracks pose a significant challenge to the stability of structures, and in some cases, repairs

may be costly or even necessitate complete rebuilding to prevent building collapse. However,

detecting and repairing damage in a timely manner can prevent many accidents. Unfortunately,

detecting cracks can be difficult, particularly in hard-to-reach areas or dangerous locations.

Nuclear power plants, subsea pipelines, and dams, among other facilities, require regular external and

internal structural checks, which can be expensive and challenging. Recently, machine learning based

approaches have been proposed for asset integrity inspections using UAV. This paper explores the

use of machine learning models to detect concrete cracks, which could simplify the process and

reduce the cost of regular check-ups. However, we observed that in some cases machine learning

models underperforms or can be deceived by poor quality data or data with significant displacement.

In this research work, we propose image enhancement techniques to improve model predictions. We

believe that our proposed mathematical and machine learning algorithms will make crack detection

easier, safer, and more cost-effective for regular check-ups.

6

Content

Content ... 6

List of tables ... 7

List of figures ... 8

List of abbreviations and terms .. 9

Introduction ... 10

1. Literature review ... 13

1.1. Reasons for crack forming .. 13

1.2. Classification of crack types ... 14

1.3. Crack detection on concrete surfaces ... 14

1.4. Crack detection on complex surfaces ... 15

1.5. Cracks underwater .. 15

1.5.1. Heat based detection .. 16

1.5.2. Sonar based methods ... 17

1.5.3. Image processing approach ... 18

1.6. Comparing research .. 20

1.7. Summary of key findings ... 22

1.8. Overview .. 22

2. Data ... 24

2.1. Database analyses ... 24

2.2. Data generation using masks .. 27

2.3. Data generation via code .. 28

2.4. Database analysis .. 30

2.5. Pipeline 3D model for data simulation ... 31

3. Methodology ... 34

3.1. Convolutional Neural Networks ... 34

3.2. Transfer learning and how it works .. 35

3.3. Hyperparameter optimization ... 35

3.4. Optional pre-processing .. 36

4. Results ... 39

4.1.1. Results of CNN.. 39

4.1.2. Challenges ... 43

4.1.3. Results of optional pre-processing .. 44

4.1.4. Testing on generated pipeline images ... 47

5. Discussion ... 49

Conclusions .. 50

Bibliography ... 51

Appendix(es) .. 56

1 appendix. Code for model training .. 56

2 appendix. Code for model testing .. 59

3 appendix. Code for model testing with pre-processing ... 60

4 appendix. All with project related data ... 62

7

List of tables

1 table. Comparison of crack detection methods in literature .. 20

2 table. Hyperparameter optimization using experimental designer on 10% of all data 39

3 table. Confusion matrices of 5, 10 and 15 percent of entire database size cases 41

4 table. Model accuracy for different training set sizes .. 41

8

List of figures

1 fig. An example of steel plate with damaged surface, where left side shows thermal image (taken

from [47]) and right side is same picture converted to the grayscale by our study 17

2 fig. An example of cracks captured by sonar (data from [41]) in the right side and same image but

converted to grayscale with colour inversion after that on the left side. ... 18

3 fig. An example of an optical image of underwater crack on the dam surface (taken from [40]) . 19

4 fig. Speed versus accuracy comparison of various neural networks (data taken from [33]) 22

5 fig. Examples of non-crack images in our database ... 25

6 fig. Examples of crack images in our database .. 26

7 fig. Examples of masks used in the research. ... 27

8 fig. Explanation of crack generation process; A – random walking, B – random walking with crack

thickness, C – with direction modification and D – with cracking position adjustment. 29

9 fig. The difference in grayscale values between cracks dataset and non-cracks dataset (analyses was

done on concrete images from kaggle.com [55]) .. 30

10 fig. 3D pipeline model created in Blender .. 31

11 fig. Generated underwater non-crack pipe image ... 31

12 fig. Generated underwater pipe image with a crack on it ... 32

13 fig. Image mapping on 3D cylinder rule where red line shows the y-axis modification on circle

(cylinder view from top) on zy-plane .. 32

14 fig. Effect of parameters for concrete cracks detection (data based on Pal [33]) 36

15 fig. Images show how adding 50 to each RGB channel can change image. 37

16 fig. Training process on 1 percent of dataset .. 40

17 fig. Plot of observed accuracies by our model.. 42

18 fig. Model training time based on amount of data .. 42

19 fig. Misclassified images by model .. 43

20 fig. The effect of lower resolution .. 44

21 fig. Image with noise and same image with most of the noise removed from it 45

22 fig. Pre-processing algorithm effect on crack images .. 45

23 fig. Removing noise from dark pictures ... 46

24 fig. Segmentation of lightly damaged concrete walls... 46

25 fig. Pre-processing tested on brick walls .. 47

26 fig. Model predictions for generated pipeline data (positive stands for crack and negative if crack

was not detected) ... 48

9

List of abbreviations and terms

Abbreviations:

AI - Artificial intelligence;

ANN – Artificial neural networks;

CNN – Convolutional neural networks;

IR – Infrared radiation;

ML – Machine learning;

RGB – Red green and blue;

TL – Transfer learning.

Terms:

Artificial intelligence – a broad field of computer science that focuses on creating intelligent

machines capable of performing tasks that typically require human intelligence such as performing

data classifications, segmentation, and other.

Convolutional neural networks – use specialized layers, such as convolutional layers, pooling

layers, and fully connected layers, to process images, gather features and can be used for classification

and other images related tasks.

Machine learning – a technique when mathematical model is created by making computer to create

model from data.

Transfer learning – a method, which is based on information re-using, instead of training a model

from scratch on a new task, transfer learning allows us to utilize the knowledge learned from previous

tasks, which can significantly speed up training and improve performance, especially when data is

limited.

10

Introduction

The identification and repair of concrete cracks in structures is a critical task as it can prevent costly

repairs or even the collapse of the building. However, cracks can occur in hard-to-reach areas, making

it challenging to detect and repair them. Regular check-ups for structural changes are required in

facilities such as nuclear plants, oil or gas pipelines, and dams, which can be costly and difficult due

to their location or other factors such as radiation. By utilizing drones or other mechanical creations

with automated crack detection algorithms, the complexity and cost of regular check-ups can be

reduced. This could potentially lead to significant benefits in terms of efficiency, cost savings, and

increased safety, assuming the algorithm used has a high level of accuracy in identifying cracks. This

study aims to investigate the feasibility of using machine learning models to detect concrete cracks,

with the potential to simplify the process and reduce the cost of regular check-ups.

Historically cracks and similar structural damage caused mortal disasters. In 1976 the dam started

cracking this allowed water to breakdown the structure and flood the area, report states that 14 people

died and accident caused damage worth around 1 billion dollars [1]. Another accident occurred in

1998, although it is only partially influenced by the cracks (as main reason for the formation of cracks

were shift in the earth), this led to closing mines near the dam and damage was estimated to be close

to 42.5 million dollars [1]. Pipelines are also no exception, according to the media and researches the

Keystone pipeline got 3 splits (potentially caused by ‘fatigue cracks’) in approximately 5 years

[2,3,4,5]. Same sources states that system is harmful to environment, and it is only a matter of time

till new accident will occur. All of this can be prevented from repeating if damage on structures will

be spotted in time and actions to fix effected areas will be made.

Our model has demonstrated high accuracy in identifying cracks on various wall types, including

brick walls, using only an image of the wall. To further automate the process, we propose attaching

a camera to a drone and programming it to follow the crack line to gather more data. Our model is

not affected by the scale of the image or different colours, as it was trained on a diverse range of

images, including those with dark shadows that are difficult for the human eye to interpret. Dataset

also contained data with damaged areas from various angle which allows method to be more

trustworthy in real life situations. Therefore, this method can be used in various environments, such

as underwater or high places like skyscrapers. In addition, our approach is cost-effective compared

to current methods, such as hiring workers or using large networks.

Our model uses a faster convolution neural network, saving computational power and energy, which

in general should reduce the requirement of manpower. Stuart Russell [6], a renowned computer

scientist, has made a thought-provoking statement on the topic of building conscious machines,

stating that "No one has a clue how to build a conscious machine, at all." Although technology has

been created to facilitate human work, it should not replace the role of human beings. It is important

to note that even the most advanced models can be susceptible to errors or manipulations. Therefore,

it is highly recommended to have specialists conduct a re-check to ensure the accuracy of predictions

made by the algorithm and update database so that model can be re-trained over time. However,

studies point out that even fastest neural networks can give accurate predictions.

Although, our primary focus is on Space Invariant Artificial Neural Networks (SIANN) commonly

referred to as convolutional neural networks (CNN) and transfer learning (TL). CNNs are a type of

neural network that has proven to be highly effective for tasks involving image and video analysis

11

due to their ability to learn hierarchical representations of input data. Compared to fully connected

networks, called Multilayer perceptrons, which have neurons in one layer connected to all neurons in

the next layer, CNNs have sparse connectivity which helps in reducing the risk of overfitting. To

further prevent overfitting, we can use regularization techniques such as penalizing parameters during

training (such as weight decay) or trimming connectivity (skipped connections, dropout, etc.). Since

CNN is based on matrix multiplication (which in our case are huge matrices as each matrix has to

keep some information about the image) it is commonly used practice to use CNN with TL and this

way make training faster, which in a way also gives better results as model already contains some

information about similar features. Transfer learning is a machine learning technique that can improve

the accuracy and speed of training a model. This technique involves using a pre-trained model that

has already been trained on a large dataset and has learned to recognize common patterns and features.

This pre-trained model is then used as a starting point for a new task, instead of training a model from

scratch. By leveraging the pre-existing knowledge in the pre-trained model, transfer learning can

significantly reduce the time and resources required to train a new model. When using transfer

learning, the pre-trained model is first "frozen," meaning that its weights are fixed, and it is not trained

any further [7,8,9]. Then, the last layers of the model are replaced or modified to suit the new task,

and the model is trained on the new dataset with these modified layers. This allows the model to learn

new patterns and features specific to the new task, while still retaining the general knowledge learned

from the pre-trained model. This approach is particularly useful when the new dataset is small, or the

new task is similar to the original task the pre-trained model was trained on. However, we will explain

this process better in further chapters of this work.

While significant progress has been made in crack detection, many of the current algorithms are

limited to certain conditions. For example, some models may only perform well on images with

specific colour backgrounds (such as white walls), or under static lighting conditions without random

factors like rain or snow. Additionally, to achieve high accuracy in classifying cracks, many studies

rely on heavy and complex networks, which can be computationally expensive and impractical for

real-life scenarios. These limitations can hinder the practical application of these methods,

highlighting the need for more robust and adaptable algorithms for crack detection.

This work aims to address these challenges by utilizing transfer learning and a larger dataset to

develop a more accurate and versatile crack detection model that can be applied in various settings

while trying to make fast but reliable predictions. Our research shows how to comprehensively

analyse the problem of crack detection from multiple perspectives.

Initially, thesis starts by employing a popular approach using simple grayscale images with a crack

database to train and test models. We attempt to improve the performance of existing models by

adjusting parameters and modifying layers for neural networks. Next, we address the challenge of

dealing with images that have a wide range of colours and shaders, which can potentially confuse

pre-trained models as colourful images have different pixel values. To overcome this challenge, our

study explores the possibility of retraining models to accurately identify cracks from coloured images,

which significantly increases the complexity of the task.

To enhance the results of crack detection in more intricate scenarios, our study broadened the image

database by generating additional images through various methods. One of the methods entailed

utilizing cracks as masks to create customized crack shapes and train the model to detect them. This

approach enabled the model to be prepared for the potential challenges that it might encounter during

12

inspections in diverse locations. Another method involved generating random crack-like patterns

through an algorithm that was specifically developed for this purpose. Moreover, this study did not

confine itself to the aforementioned tasks. We also observed the impact of noise on crack detection

and endeavoured to enhance our model predictions by addressing the issue of noise and blurriness in

the image. To accomplish this, we evaluated various techniques, including image resolution

modifications using diverse algorithms and mathematical solutions. The renowned scientist R. May

[10] famously stated, in reference to chaos theory, that "simple mathematical models may exhibit

complex behaviour." In fact, it has been observed that a simple mathematical expression can

effectively distinguish potential crack areas from noise, which in turn can significantly improve the

predictions of the artificial neural network (ANN) model meanwhile complicated methods such as

resolution increasing or decreasing using Convolution Neural Networks (CNN) or other similar

approaches do not give good results.

In conclusion, this study aimed to conduct a testing case on complex structures by creating a pipeline

imitation. In the process exhaustive database of images was created and the experimental designing

approach was used to test for the best parameters. This modelling exercise provided an opportunity

to assess how the developed model would perform at different angles, while also enabling the use of

various images that could be applied to pipeline model structures with different shapes, accurately

imitating actual pipelines like the Nord Stream or other pipelines widely used for gas and oil

transportation. Consequently, this study can lay the foundation for future works, wherein the model

could be updated and refined with pipelines data to enhance its prediction capabilities even further.

Therefore, for this project we raised such goals:

• To create large and well-balanced database of concrete and brick wall images with and

without cracks.

• Implement Transfer Learning (TL) to achieve results comparable with other research works.

• Test model and see if it can be used for various complex environments as it might be required

for future development and applicability of the model.

This research distinguishes itself from other papers in the field through its unique approach to data

generation and the use of a transfer learning-based model to detect cracks on a variety of surfaces,

including concrete and brick walls, chimneys, pipelines, and even painted walls. This approach is

more comprehensive and versatile than previous methods, which have often been limited to detecting

cracks in only one type of surface or material. Additionally, the use of transfer learning allows for the

model to be trained on a smaller dataset, saving time and resources, while still achieving high

accuracy. While it is true that the dataset used in this study is larger than that used in other research

works, the real advantage of transfer learning becomes evident when the model needs to be updated

with a limited amount of data. In such cases, the pre-trained model can be fine-tuned with the limited

data to achieve good results, instead of having to train a new model from scratch with a larger dataset.

This is especially useful in real-world scenarios where acquiring a large dataset can be difficult and

costly.

13

1. Literature review

The topic of crack detection has been extensively studied in the literature, with various mathematical

and machine learning techniques proposed to determine whether images depict damaged structures

or not. However, some of these models are more complex than others, and similar data is often used

in most cases. In this chapter, we will analyse and categorize suggested crack detection algorithms

based on their usage and complexity. It should be noted that no single algorithm can be considered

the best, as some models may perform better on specific data, while others may yield better results in

general.

1.1. Reasons for crack forming

Cracks can occur on buildings and pipelines due to various reasons. Some common causes of cracks

on buildings are settlement, thermal movement, moisture, and overloading. This subchapter will try

to give deeper understanding of those reason with examples and suggestions from various researchers.

Settlement occurs when the soil under the foundation of a building is not properly compacted, leading

to the foundation shifting and causing cracks in the structure. Thermal movement happens when the

temperature of a building fluctuates, causing it to expand or contract, resulting in cracks. Moisture,

such as water damage or leaks, can weaken the structure of a building and make it more susceptible

to cracking. Overloading can also cause cracks, as it puts stress on the building beyond its designed

capacity. In 1989 Buck [11] pointed out that cracks can form due to fatigue as materials can change

their physical properties over time. In 2002 Yakovlev [12] identified several main reasons for crack

formation in concrete structures. These include low concrete strength due to a lack of water for cement

hydration, the absence of shrinkage seams in the floor structure, incorrect reinforcement, and

excessive thickness of the strengthening mineral coating of the concrete floor, which can initiate crack

formation. Ensuring that all previously mentioned problems are solved might reduce the risk of cracks

forming on concrete walls.

Similarly, pipelines can also experience cracks due to various factors. The most common reasons for

pipeline cracking are corrosion, abrasion, and stress. Corrosion occurs when the material of the

pipeline degrades due to environmental factors, such as exposure to chemicals or moisture. Abrasion

can occur when pipelines are exposed to rough surfaces or objects, leading to damage, and eventually

cracking. Stress on pipelines can also cause cracking, as it puts pressure on the material beyond its

intended limit. Multiple studies state that stress corrosion [13,14,15,16] is one of the main factors

leading to cracks formation and eventual splits in pipes, this way expressing that stress and corrosions

often comes together. According to the studies [15,16], cracking is mostly caused by the stress and

corrosion of in effected areas only accelerates the effect. Furthermore, research points out that in oil

and gas industry Hydrogen Induced Cracking (HIC) is one of the main reasons for splits in steel

pipelines [17,18]. This is mainly the case because hydrogen mixtures can easily react with materials

in the pipe and this way damage them over time. However, since our main zone of expertise do not

cover stell alloys and hydrogen reactions we will not go into deeper investigation of how to avoid this

reaction.

In previous chapter we also mentioned that accidents of dams cracking are major problem which can

lead to disasters, in this subchapter we will also analyse few reasons why dams can start to crack.

Zhang (in 2010) suggested that crack in dams can form because of difference in temperature and that

controlling temperature might play key role in preventing dams from being damaged [19]. This is

14

especially true during the construction of the structure. Zhang offers to apply multiple cooling steps

during the construction process and this way to avoid cracks which can form due to temperature

changes. Another cause of crack formations would be ground shifting (due to earthquakes, tectonic

movement, unstable ground foundations) erosion and overloading [1,20,21,22].

Overall, taking into consideration what forces affect the investigated object it can be estimated for

what type of damage model should expect. Understanding the reasons why cracks could form on the

object we can understand which model to chose in order to increase the chance in detecting the crack.

1.2. Classification of crack types

As it was already pointed out before, based on reasons why concrete surface started to crack the shape

of crack can be different, this can directly influence the complexity of classification. While machine

learning methods can overcome this problem, mathematical approaches might face some difficulties.

The type of the crack can also affect the cost and methods to fix it, in this subchapter we will cover

researchers’ insights about crack types and what information it tells us.

In 2018 Sitara [23] stated that crack detection and classification techniques with quantitative analysis

have a huge role in finding the severity of crack and that various quantitative metrics are length, width

and area. Based on features of the crack different methods can be applied in order to detect it. Sitara

splits cracks into three main groups such as the minor cracks, moderate cracks, and severe cracks.

He states that minor cracks are common in underwater dams and bridges. According to Sitara some

on these cracks can be under very small and require methods which can capture breaks smaller than

a pixel. In most cases it is tiny barely visible breaks on concrete surfaces which are rarely curvy but

in majority of cases looks like a simple cut.

Another group of described crack types is moderate cracks, which mostly appear on concrete roads

and dams. Sitara states in his article [23] (referencing Shi [24]) that it is difficult to identify such

cracks unless solar image is used. However, Shi in his article [24] was talking about sonar images

assuming that such cracks can be hard to detect without sonar.

Finally, the last group is severe cracks. These cracks are most dangerous as the can cause the collapse

of structures [25]. Here are many factors which can cause these breaks, a good example can be

earthquakes or overloads (for bridges and buildings).

In addition, Sitara [23] also points out that cracks can be classified by the shape or complexity of it.

Overall, all those groups can be assigned to already described 3 main classes.

1.3. Crack detection on concrete surfaces

In previous subchapter we learned that cracks can be categorised into classes [23].These classes may

have slightly different features but are still highly related. For example, minor cracks may be much

less visible compared to major cracks, but as the scale of the image changes, the differences between

these two groups may become less apparent. The same logic applies to complex and simple cracks,

as every complex crack can be divided into multiple simple cracks on different scales. Crack detection

on concrete walls was well analysed by Lins [26] proposed a crack detection and measurement

algorithm based on a mathematical approach in 2016. The suggested algorithm uses particles to detect

the shape of the crack and simplify the problem, then measures the distance between particles and

15

estimates if the shape is a crack based on the density in the area. However, this technique has an error

range of 7.51% - 8.59%, which makes it less reliable compared to newer machine learning methods.

For example, in 2019, Dung [27] analysed three CNN models by comparing them on open source

concrete cracks dataset of 40 000 images. His research showed that VGG16 model [28] performed

slightly better compared to InceptionV3 [29] and around 3 percent better in comparison to ResNet

[30]. All mentioned models had prediction accuracy of over 96%. Dorafshan tries to challenge neural

networks in 2018 by comparing Deep Convolution Neural Networks (DCNN) with Edge Detector

models (ED) [31]. Results show that in some cases for concrete images dataset ED models can match

the results of DCNN and even obtain accurate map of crack area. However, it is worth noticing that

he had to try multiple algorithms to deal with the noise on each image as even small noisy areas can

be considered as an edge. Yet, in DCNN and ED cases best results with models give around 98%

accuracy of cracks detection. Liu in his paper [32] combined this idea in a way creating a CNN which

tries to extract the mask of the crack from the image. According to him, even the model trained on 57

images can reach 90% prediction accuracy for different complex situations. While in general it is not

hard to increase database for training set of concrete walls, it should be noticed that some inspiration

from his U-Net model can be used to train different type of models on various wall types considering

that some unique images can be hard-to-get. However, research done by our colleges in KTU shows

that while crack detection works well under laboratory conditions it can be heavily effected but

environment in real life scenarios. For example paper by Pal [33] shows that adding shadows to

testing set can make model predictions worse by up to 50%. Research by Pal shows that models

trained on simple datasets are not reliable in real-life situations. Taking this to consideration it is

required to include more complicated (with colours, patterns, shadows, etc.) data to make models

more trustworthy.

1.4. Crack detection on complex surfaces

In previous subchapter we already covered most well-known methods for crack detection. However,

in many cases simple algorithms are not enough to perform detection especially on complicated

surfaces such as brick walls, graffities, wall corners. Even changes in lightning can make detection

task much more complicated and trick model into thinking that difference in colours is created by the

crack. Yet, scientists have suggested several methods on how to search for damaged areas on the

surfaces. Work by Hallee [34] suggests that for this task Random Forest would be most fitted

algorithm (expect for neural networks) with an accuracy of over 86% while over methods give around

84% correct predictions on brick walls dataset. However, on dataset made in laboratory CNN was

able to reach around 92% accuracy making it without a question the best performing algorithm in the

paper. Yet, results on real life data were poor with huge drop in accuracy which makes model

predictions questionable. On the other hand, Loverdos and Sarhosis [35] counters this research by

stating that all machine learning architectures are giving similar results (between 95.98% to 96.87%

validation-accuracy) with DLV3+ [36] model statistically showing best predictions. Size of training

dataset could have huge impact to validation accuracy, since in Hallee’s research 598 images were

used form training versus over 2000 pictures used by Loverdos.

1.5. Cracks underwater

Water is perhaps one of the most extensively investigated environments for crack detection,

particularly in the context of oil and gas underwater pipelines. These pipelines require regular

inspections to ensure that fuel is not leaking into the ocean, which can be a costly and risky process.

16

The cost can be high due to the need to hire experienced inspectors, who can earn over $150 000 per

year according to some sources. In many cases, the inspection process can be simplified using modern

technologies and techniques.

Scientists offered multiple methods for detecting damaged areas underwater. Starting from heat

detection [37,38,39,40], followed by sonar and other sound-based methods [24,41,42], and finishing

with simple optical image based algorithms [43,44,45,46]. However, all other mentioned research

works are saving data as pictures (either it would be heat signatures, sound or light trace they all

stored as images) this means that all methods are related to each other and only quality of information

is main aspect to talk about as most researches use similar solutions (convolution neural networks

(CNN), edge detectors and other machine learning (ML) algorithms) to solve this problem. On the

other hand, gathering good quality data can be hard and might require extra modifications.

1.5.1. Heat based detection

In dark and noisy environments (in which case sound can be dispersed) images made using thermal

imaging can be the only option in order to obtain any information about the cracks. In addition, in

some cases heat signature can appear before the crack becomes visible (for example pipes breaking

from the inside). Yang and colleagues [47] explained how heat based crack detection can be applied

in search of cracks on ground and steel surfaces. Their suggested convolutional neural networks give

over 95% accuracy for predicting damaged areas on the ground or steel surface. Amjad [48] suggested

to search for heat signatures of damages areas by using an IR microbolometer which according to the

study costs only around 1% of cost using the other popular thermal detection techniques. Moreover,

they state that this method is capable of detecting cracks which are wider than 1 millimetre. However,

research does not mention how accurate this method is. Zhang [37], in 2021, offered thermal detection

algorithm which according to him can find cracks underwater with high accuracy. The results in his

research show that the monitoring scheme with casing tube can detect the crack position in still water,

moreover, this monitoring scheme can detect both crack position and width in flowing water. This

approach enables to perform crack detection not only in lakes but rivers and seas as well. Zhu

suggested another method [38] in 2020, which is based on numerical simulations. In his work Zhu

takes such parameters as density, specific heat and thermal conductivity into consideration which

allows him and colleagues to track temperature changes on surfaces. Work shows that concrete

surfaces have 2.5 times higher density compared to water. In addition, thermal conductivity is over 2

times higher for concrete surfaces in comparison to water meaning that heat transferring is much

better in dames or pipes compared to environment. This gives tells us that increase in temperature

will be faster noticeable in undamaged areas and that alone carriers a lot of information about cracks.

Moreover, cracks will be filled with water which due to lower thermal conductivity and over 4 times

higher specific heat will have much lower temperature allowing us to notice affected areas in thermal

images. 2021 Cheng [39] continued this work by analysing numerical simulations even farther. Cheng

and colleagues suggested the use of porous casing in a way that casing tubes are displayed all over

the concrete structure and heated. This way cleaner thermal image of the damaged area can be

obtained. He backs this work up by investigating the cooling effects in this system. As we already

mentioned, it was noted that concrete surfaces have much better thermal conductivity making heat

changes in it much faster than in water. Even more, Cheng estimated cooling process with R-squared

value approximately equal to 0.99, which explains almost all estimated data. Any mismatch in cooling

can be indicating possible cracks in the observed objects.

17

For better understanding on how damage on surface looks like in thermal image, this can be seen in

figure 1 which shows thermal image of steel plate. As it can be noticed, the affected areas have huge

gradient changes in colour values (RGB values). However, while it can be seen in grayscale image

as well, but view is not so clear, if we would compare temperature bars, we could see that red, green

and blue in grayscale have same shaders (colours matches) this makes it harder for any model to

detect changes.

Overall, although heat based detection is one of the more expensive crack search techniques, it does

have its advantages considering that in some cases other methods might not be applicable, a good

example of that can be environments with high density which can cover the crack in a way that it is

not possible to obtain clear picture and sound wouldn’t be able to give much information because of

density as well. Taking that to consideration, heat-based detection is one of the more reliable ways to

find cracks on various surfaces and especially underwater or over complicated environments.

1.5.2. Sonar based methods

Sonar based algorithms can avoid some limitations which other methods are facing. For example,

unlike image processing techniques, sonar images analyses do not require light source to obtain data

and results are not influenced by the changes in lightning. Also, this method is cheaper compared to

heat detection methods as it does not require extra preparations and images can be obtained faster.

All images can be done using autonomous underwater vehicle (AUV) as mentioned by Shi [24]. Shi

in his article proposed the crack block tree (BT) algorithm. Idea of this approach is based on minimum

spamming trees. Shi suggest that image can be subdivided into blocks where each block holds some

information about the crack. Using clustering analysis similar features between damaged areas were

obtained and boundary separating non-cracks from cracks were found. Following obtained

similarities between damaged areas the minimum spamming tree was created which tells us how the

crack looks like (estimated). Shi pointed out that using algorithm damaged areas can be found even

if environments are complex and the cracks are tiny. Deep Trekker, company which specializes in

creation of underwater robots, released an article [41] in which they mark that in some cases fuel or

air can flow out of affected areas this way indicating damage. According to them and remotely

operated vehicles (ROVs) can clearly capture these events. They give a demonstration of it providing

images with cracks covered in bubbles filled with air. In 2017 Shi [42] expanded his previous work

1 fig. An example of steel plate with damaged surface, where left side shows thermal image (taken from

[47]) and right side is same picture converted to the grayscale by our study

18

[24] by using the dual-frequency sonar and proposing expansion of his previously suggested method

which is able not just recognise cracks but also to classify them based on type. Shi and colleagues

take image noisiness into consideration which relates it to the earlier analysed article [41] in a way

that noise can be created by crack itself (leaking fuel, air bubbles, etc.) and reduce visibility of the

damaged area. He tries to avoid that by estimating the continuation of the crack and tires to relate it

with other already observed case. A sonar image used on Shi’s work is in figure 2. From figure we

can see that cracks appear in the form of light curves, yet most algorithms consider cracks not to be

light but rather dark. We converted this image to grayscale and after that performed colour inversion,

final output gives an image almost no different from optical images. This allows us to do an

assumption that sonar and optical images can be highly related. However, as we already pointed out,

it can be affected by environmental noise and clear data can be hard to get even if the sonar or image

adjustments are made. This means that methods based on sonar imaging should be trained on images

which do imitate some noise in order to get more realistic predictions.

1.5.3. Image processing approach

The cheapest crack detection approach would be to use simple images made with camera. This is

because anyone can gather data using their phone or other devices which have camera. Therefore,

this is the most widely used and well documented approach. However, in order to obtain good quality

image target has to be well lit as static and good lighting plays key role in making high quality

pictures. A good example of it can be work by Cao who in his paper [43] points out the impact of

light refraction which can give unclear imagines as light travel in air faster than in water and as it

enters different environments it can bent at certain angles directly influenced by the ratio of densities.

Because of earlier mentioned process light can scatter and images can by unclear or light can bend

and slightly affect the scale of cracks. Taking all that to consideration Cao managed to create Fully

convolutional networks (FCN) model which gave 99.4% accuracy for underwater dams and tunnels.

His other suggested model (graph convolutional neural network (GCN)) performed slightly worse

with 94.3% on same dataset.

2 fig. An example of cracks captured by sonar (data from [41]) in the right side and same image but

converted to grayscale with colour inversion after that on the left side.

19

In order to achieve better understanding of what problems researchers have to face in order to detect

cracks correctly we are giving you an example (see figure 3). As we can notice from the figure 3,

crack itself is surrounded by huge environmental noise (corrosion, biological materials, etc.) which

can make detection much harder. Aliff analysed the impact of noise in his work [44]. He performed

crack detection and segmentation task using photos of pipe from different angles. According to the

research, changing angle of the pipe makes some parts of it closer to the camera, naturally, this has

impact on details and quality of the data. Aliff notes that near half of all cases were segmentate with

some noise. Considering that methods are based on image filters (Raspberry Pi and Canny Edge) we

can assume that quality of the image played a big role in overall results, meaning that filters

considered some high-quality noise in the data as cracks (edges detection). In 2022 Qi released a

paper [45] which is highly focused on image processing. Qi stated (by rephrasing Berman [49]) that

underwater images suffer from colour shifts and that most of the shifts appear as a bluish or greenish

tone. To solve that problem, he offered a colour correction pre-processing which removes various

tones and makes data cleaner. Pre-processed images were used for crack detection and segmentation.

For this task Qi created CNN which splits photos to patches and every patch gets label (either it’s a

crack or not). Next patches with same labels get tested if they are located near each other. Qi states

that such model is able to achieve over 93% accuracy for crack detection (classification) on

underwater images dataset. Similar research was done by KTU scientists, paper by Orinaitė [50]

shows that CNN model based on AlexNet, which was trained on dataset which included underwater

concrete cracks with optical effects, can achieve over 99% accuracy. Orinaitė together with

colleagues created unique dataset. She used Blender [51] modelling tool to imitate water effects and

applied them on concrete cracks images. This approach allows to get generate more data cheaply and

can be used to create complicated patterns which can be hard to obtain, as it can be pricey. However,

it must be noticed that if possible, testing should be done on real data instead of generated. Yet, that

is not always the case as in some cases we want to imitate some patterns and test if model can still

keep accurate predictions. In the end, researches by Cao [43] and Orinaitė [50] shows that CNN

models can almost perfectly perform crack detection in underwater environment.

3 fig. An example of an optical image of underwater crack on the dam surface (taken from [40])

20

1.6. Comparing research

In previous subchapters the increase in complexity of classification task was covered, in this

subchapter previously mentioned methods in works from literature will be compared. Comparison

will be done taking origin of data to consideration. It is important to analyse the effect of image size,

data type (complexity, origin, side factors), when model was created, how many images were used to

test it (reliability of results) and most importantly, what was the accuracy of the model or method.

Information about models gathered from various papers and summarized in table 1. Table shows that

complex networks can almost perfectly classify datasets to ‘crack’ and ‘non-crack’ classes for simple

datasets which only contains grayscale concrete images. However, results are much worse for

complicated patterns such as brick walls. As pointed out in paper by Hallee [34] testing on real life

data gave poor classification assuming that data had more variety and CNN model was able to learn

only a small portion of the background information. However, Loverdos [35] shows that increase of

image size and increase of database can highly influence the quality of neural networks raising

classification accuracy up to over 96% meaning that models are able to learn patterns well. These

results support the popular assumption that neural networks with infinite number of neurons can

approximate and recreate any function or behaviour [52,53], however we will talk more about how

and why this is possible in methodology chapter. Considering underwater case, it must be noticed

that models can very well ignore sea colour effects and distinguish cracks from background, assuming

that enough data is provided for model training. This is good because it means that we do not need to

completely remake models for such environments as water and it can be enough just to update model

with more training data from that environment. Such solution might lead to more versatile algorithm

creation as single method might be applied for various cases.

1 table. Comparison of crack detection methods in literature

Method (settings) Accuracy

(%)

Testing

dataset

size

Type Size (pixels) Year Paper

VGG16 99.88 4000 Simple

gray

walls

227 × 227 2019 [27]

InceptionV3 99.78

ResNet 96.95

DCNN (TL) 98 3420 Simple

gray

walls

256 x 256 2018 [31]

DCNN (FT) 97

DCNN (CL) 97

ED (Roberts) 95

ED (Prewitt) 97

ED (Sobel) 97

ED (LoG) 98

ED (Gaussian) 98

ED (Butterworth) 95

SVM 83.6 213 Bricks

dataset

(created

in

laboratory)

512 × 512

scaled down

to

100 x 100

2021 [34]

RF 86.4

GP 84.1

MLP 84.1

NB 82.2

QDA 82.2

21

CNN (A) 90.2

CNN (B) 92.5

CNN (C) 88.7

CNN (A) 61.5 90, but

unknown

if study uses

entire

image

Brick

walls CNN (B) 75.5

CNN (C) 81

U-Net (#6) 96.02 ~700 Brick

walls

224 × 224 2022 [35]

U-Net (#10) 95.98

LinkNet (#1) 96.13

FPN (#3) 96.07

DLV3+ (#3) 96.27

DLV3+ (RMSP,

F1L)

96.72

FCN 99.4 Mentions 66

(out

of 522)

keyframes

with cracks

Underwater

surfaces

32 x 32 2022 [43]

GCN 94.3

AlexNet >99 ~6000 Underwater

surfaces

227 × 227 2022 [50]

Original idea of this work was to make algorithm which would be able to work and give predictions

in real-time. Problem with that is in computation speed of each algorithm. Assuming that we wish to

investigate and find cracks using drone without stopping it, it is required that model would give

predictions fast. Performance and prediction speed evaluation was well documented by Pal [33] who

together with colleges analysed models created with MATLAB [54]. Results of their research are

visualized in figure 4, which shows that in general case AlexNet works faster than other mentioned

machine learning models with SqueezeNet being in second place. Study also shows that AlexNet

gives lower prediction accuracy than other models. However, this can be countered by using paper

written by Orinaitė [50] as an example which proofs that with enough data provided for training set

this network can give almost perfect predictions for identification of cracks on concrete surfaces in

underwater environment. Taking all of this to consideration it is fair to assume that AlexNet is one of

the most suited algorithms for crack detection in real-time.

22

1.7. Summary of key findings

Complex neural networks are capable of classifying simple concrete cracks almost perfectly.

However, increase in complexity of the task by adding different background on which crack appears

reduces accuracy by a lot, this is especially noticeable from the work done by Hallee [34]. Moreover,

it must be noted that cracks on different environments can have different shapes and origin. Therefore,

model which gave good predictions underwater might not work as well as model which works well

on concrete buildings and vice versa.

Another aspect of crack detection is speed, it must be weighted if benefit of classifying crack correctly

is worth the cost it requires to do the prediction. In machine learning case this cost can be evaluated

as classification speed. For example research by Pal [33] shows that AlexNet is fastest model of all

investigated models. However same research shows that AlexNet is also the least accurate with up to

30% difference in accuracies compared to other networks but faster by up to 40 times. However,

research by Orinaitė [50] shows that this CNN can actually give almost perfect predictions (over

99%). This result raises a question if using another model which would cover the remaining <1% (if

possible) is needed if it would take up to 40 times longer to get the results.

1.8. Overview

Considering all in earlier subchapters covered information it is clear that methods for automatic crack

detection can be improved and applied in commercial use in order to reduce the risk and cost of

human labour. For this to happen the fast but accurate algorithm is required. As some researchers

pointed out, fast working algorithms can be improved by training them with more data. For this

reason, it is needed to create a complex database with huge variety of cracks in various environments

4 fig. Speed versus accuracy comparison of various neural networks (data taken from [33])

23

and try to train fastest models with created data. It is highly possible that with huge enough material

provided to networks (such as AlexNet) they can almost perfectly classify images of concrete, brick

walls or even be applied to underwater crack detection. All of this should make it possible for

automatic methods to support humans by reducing the risk and load of their work. Doing so should

also reduce the cost of regular check-ups which in a process can be more regularly and lead to safer

workspace.

24

2. Data

This chapter will cover data gathered and used for model training and testing. Naturally, since study

tried to achieved database with more variety the generation of cracks was performed using multiple

methods. Also, in the end of this chapter we will cover 3d model example for visualizing underwater

pipeline system which can be applied in order to simulate crack detection in various environments.

2.1. Database analyses

Starting about dataset it must be noted that entire database can be splited into a couple of groups. We

have data of greyscale images of concrete cracks and walls without cracks. This set of images was

taken from online library widely used for similar researches [55], also we added some shadow images

provided by Pal [33]. Another half of the data was gathered from various pictures of brick walls, these

images were taken mostly from online websites [56] or captured by ourselves. For all pictures we

applied some modifications; some have noise, others shadows, grafiti, filters and so on. Finally to get

larger dataset cracks were generated. Generation was done in two ways:

• By applying created masks;

• By running algorithm which generates curve on top of the image.

Examples of positive and negative images datasets are in figures 5 and 6. As can be seen in figures,

images are complicated, this should ensure that model would learn various patterns leaving small

edge for errors.

25

5 fig. Examples of non-crack images in our database

26

Both sets are similar in size (36476 crack and 38428 non-crack images). To prevent model from

learning just to predict dark areas as cracks various symbols were added to negative images dataset

this way imitating graffiti and various writings, study believes that it will give more fair data as some

so called ‘cracks’ are painted. At the same time this allows study to use same images only changing

masks which improves model understanding of how crack should change the image as it can train on

various variations of that picture. Using this technique allows model to learn how cracks look like

instead of only predicting if crack can be found in the given image. Theoretically, this method should

be capable of recreating image before crack and in future works might be used for architecture

restoration. However, the task of this study is to predict cracks, therefore this assumption was not

tested.

6 fig. Examples of crack images in our database

27

It must me pointed out that study performed multiple image adjustments in which case some images

were affected by filters (Gaussian blur) and noises (salt and pepper, Gaussian, Poisson, speckle) all

in order to created data with more variety and complexity.

Formula 1 describes gaussian distribution of two-dimensional space in such way:

𝐺(𝑥, 𝑦) =

1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2
(1)

We can normalize Gaussian (formula 2):

𝐺(𝑢, 𝑣) =

1

𝑆
exp (−

𝑢2

2𝜎2
−
𝑣2

2𝜎2
)

(2)

Here v denotes column, 𝑢, 𝑣 ∈ {−𝜔,−𝜔 + 1,… ,𝜔 − 1,𝜔}

S is the normalization constant (formula 3):

𝑆 = ∑ ∑ exp(−

𝑢2

2𝜎2
−
𝑣2

2𝜎2
)

𝜔

𝑣=−𝜔

𝜔

𝑢=−𝜔

(3)

All pixels of the image are recalculated with a Gaussian convolution kernel. The resulting image

looks like the image is blurred; therefore, it is called Gaussian blur.

Let the output image be M, the input image be N, the data in the i-th row and the j-th column are

represented as N(i,j) and M(i,j), then the size is (2𝜔 + 1) × (2𝜔 + 1). This means that we only adjust

pixel value which is in i-th row and j-th column in the image matrix. The calculated result of the

Gaussian kernel with standard deviation σ is (formula 4):

𝑀(𝑖, 𝑗) = ∑ ∑ 𝑁(𝑖 + 𝑢, 𝑗 + 𝑣)𝐺(𝑢, 𝑣)

𝜔

𝑣=−𝜔

𝜔

𝑢=−𝜔

(4)

However, such filtering is very time consuming, and it is not advisable to use it on large images.

2.2. Data generation using masks

7 fig. Examples of masks used in the research.

28

For data generation using masks we created 30 unique crack images like those mentioned in the figure

7. To simplify extraction, crack masks have white colour and its variations to imitate shadows while

non-crack areas are black. Due to black background combining images can be simply done with

summing crack mask (ImgC) and image on which we want to add crack (Img) as show in formula 5.

 𝑐𝑜𝑚𝑏𝐼𝑚𝑔 = 0.3 ∗ 𝐼𝑚𝑔𝐶 + 0.7 ∗ 𝐼𝑚𝑔 (5)

This is simply possible because black background has values of 0 while white areas are closer to

maximum allowed values (based on used encoding it can be close to 1 or close to 255 and so on).

Other cases were tested as well, multiplication gave interesting results in which case, for method to

work colours (black and white) have to be switched making white areas black and vice versa.

However, it was noticed that multiplication had problem with being too sensitive and ignoring

shadows most of the time by making areas with colour-variations still look the same. O the other

hand, sum operation performed much better, this is why it was used instead of alternatives. Weighted

average in formula 5 gave most realistic results (based on authors point of view) that is why 0.3 and

0.7 values were used.

2.3. Data generation via code

Cracks creation with code is much more challenging process which needs to be checked so that

images would have visual crack-like features. In general, the code is created imitation 4 aspects of

the crack:

• Location

• Size

• Thickness

• Variation.

It is no secret that cracks are random patterns-like looking structures. In this work we wanted to make

an algorithm which would give that impression but at the same time would make crack look natural.

This can be achieved with modified random walking. For simplicity we will guide readers over the

process how cracks can be generated on the xy-plane. In image case matrix can be rotated and since

all images which we use in the project are 227 x 227, this method can be applied to any direction

without any problem. Originally, random walk can be described by formula 6, where 𝜀𝑡 is a random

value (usually 1 and -1 are used to imitate change):

 𝑋𝑡 = 𝑋𝑡−1 + 𝜀𝑡 (6)

For this study we will express formula 6 as matrix which changes over time (iteration), that we can

note in formula 7:

{

 𝑋𝑡 = 𝑋𝑡−1 + Ε𝑡 = (
𝑖𝑡
𝑗𝑡
)

𝑗𝑡 = 𝑗𝑡−1 + 1, 0 ≤ 𝑗𝑡 ≪ 227, 𝑗𝑡 ∈ Ν
𝑖𝑡 = 𝑖𝑡−1 + 𝜀𝑡, 0 ≤ 𝑖𝑡 ≤ 227, 𝑖𝑡 ∈ Ν

(7)

For simplicity let us denote 𝑋𝑡 as X(i,j,t) in which case X value will represent location at iteration t,

where i and j mark position in xy-plane. As a result, formula 7 would be truth and it would generate

crack similar to depicted in figure 8 A.

29

In this work an adjustment was made as crack has to have a thickness which would change over time

or iteration (t). This was done by adding extra parameter as shown in formula 8, which will express

how thick crack will be the position t:

 𝑋𝑡 = 𝑋𝑡−1 + Ε𝑡 + Θ𝑡 (8)

Parameter Θ𝑡 only gives information of how many pixels crack should cover in x axis and does not

modify y axis at all, the pattern created by following formula 8 is visualized in figure 8 B. Since all

movement in image can only be done pixelwise this means that thickness will represent the number

of pixels in the row or column in the matrix. This allows us to create crack imitations. However, study

noticed that generated patterns lacked variety and complexity of the natural crack. Taking that to

consideration a suggestion was made to make parameter 𝜀𝑡with values 1 and -1 to work as parameter

which would flip direction to which cracking is happening instead of showing position. Changes were

made and model was generating complicated cracks, but all cracking started from same position. This

rule expressed in formula 9 using the Hadamard product as multiplication result and it is visualized

in figure 8 C.

 𝑋𝑡 = 𝑋0 + Ε𝑡 ∘ Θ𝑡 (9)

In order to make crack to start at other positions in the row we added adjustment parameter Φ𝑡, which

adjusts crack origin in the new row by making random value from previous already covered interval

as noted in formula 10:

{
𝑋𝑡 = Ε𝑡 ∘ Θ𝑡 +Φ𝑡 ∘ (

1
0
)

Φ𝑡 ∈ [𝑋𝑡−2, 𝑋𝑡−1]

(10)

Formula 10 can be simple by explain stating that Φ𝑡, with component for y-axis equal to 0, shows the

location at which cracking starts in xy-plane. This is true because using Hadamard multiplication we

can make 2nd coordinate of Φ𝑡 equal to 0 (like it is done in formula 10), doing so removes Θ𝑡 impact

of y-axis and only allows it affect x-axis. In addition, Ε𝑡 shows the direction of the cracking and Θ𝑡

marks how many pixels in that selected direction crack should cover. Following formula 10 and by

covering all pixels from the denoted interval in every iteration t, we obtain mapping shown in figure

8 D.

8 fig. Explanation of crack generation process; A – random walking, B – random walking with crack

thickness, C – with direction modification and D – with cracking position adjustment.

30

Finally, every covered (by mapping) pixel got low RGB value assigned. Parameter values were

changed for different simulations but in majority of cases RGB values for each crack was under 60

(out of 255) making cracks almost black as every colour channel obtained same value.

It is an open question for discussion if colour assignment in such way is the best option, however,

study wanted to avoid adding colour variation with randomizing and obtained soft shading by

applying soft blurring filters (such as Gaussian) in the end result. In addition, in some cases, crack

generation was repeated multiple times as in real life situations cracks can split into multiple branches.

2.4. Database analysis

Features of dataset can have huge impact of results. Since half of our data is concrete images widely

used by other researchers [55] we decided to investigate the differences between positive (cracks)

and negative (non-cracks) classes. Considering that selected dataset does not include images with

huge variety of colours we can assume that the conversion to grayscale will not affect dataset a lot.

However, it will simplify analyses process for us. Study computed distribution of grayscale values

for both classes, each group contained 20 000 images, this allowed us to ensure that data is well

balanced. Finally, in order to find the boundary separating positive and negative classes we subtracted

obtained histograms. Result of the positive class distribution and negative class distribution

subtraction is shown in the figure 9.

For figure 9 we can see that images belonging to positive class have more low grayscale values (more

pixels have values <170) and vice versa. This allows us to raise a hypothesis that if pixel is darker

than 170 (low grayscale value) it is more likely to be a crack.

9 fig. The difference in grayscale values between cracks dataset and non-cracks dataset (analyses was done

on concrete images from kaggle.com [55])

31

2.5. Pipeline 3D model for data simulation

In order to be able to test model, as well as to make more complicated data with the intend to update

CNN in future works, study created 3D pipeline system model (see figure 10). This allows us to

gather huge variety of complicated images which might be costly to make. However, for this work

we only generated few images with the idea to test how CNN predictions would look like.

As can be seen in figure 10, the pipeline can have any shape and length. In addition, user is allowed

to select different environments and backgrounds, this makes it possible for generating any type if

crack in any environment (underwater, underground, on land, etc.) with the intend to simulate

situations in which data might be hard to access. Moreover, Blender is based on rendering images

using camera nodes (its simply in software item which shows which area and with what options

engine should render), this allows us to select what we want to generate in every frame. Since engine

is supporting python programming language it is possible to imitate drone movement which can be

useful in future work.

As it is not hard to get pipeline images on land, we decided to make task a bit harder and generate

data with underwater environment. All image rendering was done in Blender cycle rendering engine,

which is free 3D modelling and texturing software. Generated images using this method are visualized

in figures 11 and 12. In this case figure 11 depicts underwater pipe without crack and vice versa for

figure 12.

10 fig. 3D pipeline model created in Blender

11 fig. Generated underwater non-crack pipe image

32

Mapping of image is visualized in figure 13. While x coordinates are not affected by mapping, y

coordinates have to be transformed. Transformation can be done by considering the expression of

unit circle (see formula 11).

{𝑥
2 + 𝑦2 = 𝑟2

𝑟 = 1

(11)

From this we can express the transformation function by denoting transformation result of y

coordinate as 𝑦∗ in which case transformation result can be written by formula 12.

 𝑦∗ = √𝑟2 − 𝑦2 (12)

However, we are talking about image transformation in 3-dimensional space. In our case

transformation does not modify xy-axis itself but describes a rule how y axis can be visualized in z

axis (𝑧 = 𝑦∗). Therefore, the image transformation function 𝐹(𝑥, 𝑦) wraps picture on cylinder and

converts 2D image to 3D view based on rule (see formula 13):

 𝐹(𝑥, 𝑦) → (𝑥, 𝑦, √𝑟2 − 𝑦2) (13)

12 fig. Generated underwater pipe image with a crack on it

13 fig. Image mapping on 3D cylinder rule where red line shows the y-axis modification on circle (cylinder

view from top) on zy-plane

33

The mapping rule which we explained right now works for cylinder shapes in case cylinder is rotated

mapping would change based on the rotation function used in engine. Same logic applies for pipe

bending, if bending is performed mapping can be adjusted based on curve which describes the shave

of the pipeline. Since too many combinations are possible, we will not derive mapping rule for

modified system. In addition, since Blender handles it automatically, it is enough for us to know

formula 13.

34

3. Methodology

Selection of correct method is the main part of good model creation. In this chapter we will go over

the process why specific methods were selected, how they work and how exactly they can be applied

in order to create model which is capable to perform crack detection with high accuracy.

3.1. Convolutional Neural Networks

Convolution Neural Networks (CNN) are a type of neural network that is commonly used in image

and video recognition, analyses and encoding tasks. They are created in such a way that CNN can

automatically learn and extract features from images by analysing the patterns. Usually, main

parameter describing the pixel is its colour value.

Convolution Neural Networks is a structure of Convolution, Pooling and Fully connected hidden

layers combined together in order to learn features of images or matrixes in general and repeat those

features or predict classes based on information which network was able to extract. In a convolutional

layer, the network applies a set of learnable filters to the input image to extract features such as edges,

corners, and shapes. The output of the convolutional layer is passed through a non-linear activation

function, such as the ReLU (Rectified Linear Unit), to introduce non-linearity in the model. The

structure of fully connected layers can be expressed with formulas 14, 15 and 16:

 𝑌𝑘−1𝑊𝑘 = 𝑤𝑘,0𝑦𝑘−1,0 + 𝑤𝑘,1𝑦𝑘−1,1 +⋯+𝑤𝑘,𝑛𝑦𝑘−1,𝑛 (14)

 𝑌𝑘 = 𝑎𝑐𝑡𝐹(𝑌𝑘−1𝑊𝑘 + 𝐵𝑘) (15)

 𝐵𝑘 = (𝑏0, . . , 𝑏𝑘−1) (16)

As stated by Khedgaonkar, the convolutional layer is considered an essential block of the CNN. It is

necessary to understand that the layers’ parameters and channel are comprised of a set of learnable

neurons. These neurons have a small receptive field. In the feed forward process, every individual

channel goes over the dimensions of the input, thus calculating the dot product from the filter (kernel)

pixels and the input pixels. The result of this calculation is a two-dimensional feature map (matrix)

[57].

The idea of pooling layer is that we use various filters to reduce dimension of previous layer, this way

trying to create smaller size feature map or its compressed variant. It is needed in order to train faster

model as well as to create model for more general case as some feature might only be found in large

scale images and not give much information. With pooling layer, we take only key information with

each image is bringing this way model is less effected by noise and is almost sure that most of the

images in the class will share same features. Pooling layers reduce the dimensionality of the feature

maps by down sampling the image, which helps in reducing the computation and making the model

less prone to overfitting. The most common pooling method is the MaxPooling, which selects the

maximum value from a pool of adjacent values in the feature map.

Finally, the fully connected layers take the output from the convolutional and pooling layers and use

them to classify the input image into the desired categories. The fully connected layers use standard

neural network techniques, such as backpropagation and gradient descent, to learn the weights of the

model and minimize the loss function during training.

Overall, CNNs are very powerful and widely used for various computer vision tasks such as image

classification, object detection, and segmentation. They have achieved state-of-the-art performance

35

in many benchmarks and competitions and are widely used in industry and academia. This being said,

CNNs are one of the most often used methods for crack detection (at least based on literature sources

which we analysed).

3.2. Transfer learning and how it works

Transfer learning (TL) on the other hand, is a technic first mentioned in 1976 by Bozinovski and

Fulgos [58]. TL methodology states that patterns from one model can be applied to train another

similar model. This training is more effective as it requires less time and training data to learn new

patterns while it is also showing accurate results if feature maps are similar. Transfer learning, as we

slightly mentioned in the beginning, is a machine learning technique where knowledge learned from

one network is applied to simplify the training of another network with data which have similar

features. It involves taking a pre-trained model that has been trained on a large dataset and using it as

the starting point for a new model trained on a smaller dataset for a different task.

In TL, the pre-trained model's learned features are transferred to the new model, and only the last few

layers are fine-tuned on the new dataset. This is done because the initial layers of a pre-trained model

capture low-level features, such as edges and textures, which are likely to be relevant to the new task

as well. By using Transfer learning, the new model can be trained with a smaller dataset, leading to

faster training times and better generalization performance. Additionally, the pre-trained model can

act as a form of regularization, preventing overfitting on the new dataset. TL has been successfully

applied to a wide range of machine learning tasks, including image classification, object detection,

natural language processing, and speech recognition. It is particularly useful in cases where the new

dataset is small or lacks diversity, or when computational resources are limited.

Pan and Weis [59,60] explained TL with a wonderful real-life example of musicians. According to

them we can imagine TL thinking about two people who want to learn to play the piano. One person

has no previous experience playing instruments, and the other person has extensive music knowledge

through playing the guitar. The person who already knows how to play the guitar will be able to learn

the piano in a more efficient manner by transferring previously learned music knowledge to the task

of learning how to play the piano.

3.3. Hyperparameter optimization

We finished last subchapter with an example of musician. Yet, no matter how good pianist person is,

he will never be able to play well if song itself is not good. In machine learning hyperparameters can

most likely be compared with notes. We can select any parameter and model will surely going to

work. Person can play any notes and he will make a song, but will it song good? In order to create

good model, one has to select optimal parameters. One of the simplest way to find optimal parameters

is by using MATLAB’s Experimental Manager [61]. This toolbox allows user to set his entire

experimental design and try various case by running them and showing all main statistics about each

case. A good example of this can be work by Pal [33] who used it to find best options for concrete

cracks detection (part of which we took into account in our work as well). His research shows (see

figure 14) that network and learning rate have the largest effect on the accuracy of models.

36

In our work we also use Experimental Manager toolbox to find best parameters out of all tested cases.

It must be noticed that this does not ensure global best values as we have limited resources and cannot

test all cases. However, the effect of each parameter was tested and described detail, which should

give good understanding which combinations might give most optimal options.

3.4. Optional pre-processing

Following the analysis of the data this study made a conclusion that predictions can be improved by

adjusting data furthermore. However, we suggest that this method should be optional as it might not

work for all data. As it was already mentioned, our data analysis shows that images with crack often

have more darker pixels while vice versa applies for non-crack images. The difference in histograms

is shown in figure 9 (back in data analysis chapter). Following this we ran a test and results shows

that our networks predict single colour images as cracks if the value of colour is under 120, this is

simply because majority of images with cracks had average close to that value.

We also believed that improving quality of images can fix the issue with misclassification. This can

be done in multiple ways. Yet our study tried to do it using Super Resolution (SR) method based on

CNN as suggested by Kim [62]. However, our research into this shows that improving quality of

image using convolution neural networks which would add more details to pictures is not a good

approach as extra details makes model to classify images as cracks in majority of cases. We believed

that this is the case because of noise which method is creating on image as well, however, removing

noise with networks using similar technics as autoencoding didn’t help in solving the problem. For

this reason, we decided to take different approach and apply mathematical solution in order to

improve predictions of our main neural network.

Assuming that naturally cracks are always variations of dark colours (black, gray etc.) and never

white, red, green, or blue (unless it is under some lighting) we wrote a program which would change

image colour in comparison with average colour of that image. In general, wall and crack should have

huge difference in colours and while cracks are dark, normal wall most likely will be lighter, meaning

14 fig. Effect of parameters for concrete cracks detection (data based on Pal [33])

37

anything above average value will not be crack. As we already mentioned, this might not be always

the case as we can be looking at black wall or crack can be under unique colour lighting (sunrise,

neon lights and similar). Yet, in most cases this rule would work. By allowing person to manually

select this option (as users most likely will know the environment in which data was taken) we can

avoid this problem and highly improve predictions. Therefore, to be able to use this method data

should fit few criteria:

• Cracks must have some darkish shader, which means that cracks cannot be white, red etc.

• Environment cannot be darker than crack.

Method is based on few phases, first, we measure RGB values of all 3 colours. After that we check if

difference between maximum and minimum values are greater than 50 (this value was taken

experimentally by trying multiple values and making sure that cracks would not get into that range).

We also tested that in most cases shaders have 10 to 30 in terms of difference between values of

colour channels. As we earlier mentioned, the crack is almost always will be a shade of black or gray

and will almost never have sub-colour (reddish, greenish, blueish, etc.). Figure 15 shows the

combinations of 50 value for RGB colours. By this idea we state that if pixel has difference in colour

channels larger than 50 it is not a crack (it can be noise, maybe even can be part of the wall, it doesn’t

really matter as long as this is not a crack) so what we do is that we take same image just in grayscale

format and give that image pixels high colour values (for this research we decided to use 199 as value

to give as it is higher than 120 (edge at which models split cracks and non-cracks as well as biggest

difference between cracks and non-cracks histograms based on figure 9. For simplicity the rule of

how colour adjustment should be made can be written by formula 17.

If {

max(𝑅, 𝐺, 𝐵) − min (𝑅, 𝐺, 𝐵) > 50, 𝑣𝑎𝑙𝑢𝑒 = 199

max(𝑅, 𝐺, 𝐵) − min (𝑅, 𝐺, 𝐵) ≤ 50, 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒

(17)

15 fig. Images show how adding 50 to each RGB channel can change image.

38

This colour removing method is needed because in some cases when neural network converts RGB

images to grayscale images some pixels will have dark shaders and model will consider them to be

cracks even if in the reality it used to be just a noise the shader of red, blue, or green.

Next step is a bit more complicated, as we want to remove noise, we try to imitate segmentation. We

already talked that in most cases cracks are darker than non-crack areas and average can be good way

to determine the that. Yet, if we analyse image without cracks average will not work that well as half

of pixels will be slightly under average value, for this in this work we tested that multiplying mean

value by 0.8 and using it as border to split non-crack area from unclear area is best solution. Also,

since method consider values under 120 as cracks, we want to give this area a solid colour which

would be equal or over 120. In order not to separate image in terms of contrast too much we suggest

using mean value of histogram (if it is higher than 120) or 120 itself (if mean is under 120) and make

all pixels’ values based on formula 18.

If {
𝑣𝑎𝑙𝑢𝑒 ≥ 𝑚𝑒𝑎𝑛 × 0.8, 𝑣𝑎𝑙𝑢𝑒 = max (𝑚𝑒𝑎𝑛, 120)

𝑣𝑎𝑙𝑢𝑒 < 𝑚𝑒𝑎𝑛 × 0.8, 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒

(18)

Following this rule will make most of the image to have single value colour and neural network will

only needs to evaluate area which is not single value. However, to avoid creating fake gradient of

colour values we also used weak Gaussian filter on output image which would merge zones together

but would not affect image quality a lot.

39

4. Results

We ran our modification of the AlexNet model on different size datasets (for code example see

appendix 1). First tries with around 1130 images brick walls dataset gave over 60% accuracy rate.

However, all images used in set were complicated. We noticed that testing those images with model

trained just on concrete walls gives around 60% accuracy as well, but most of the images were

classified as cracks meaning that model does not separate colours from cracks well. However, we

observed that combining datasets improves predictions drastically. This can be explained by assuming

the fact that overall, in majority of cases cracks on brick walls still have same features as concrete

cracks. On the other hand, in order to ensure that model wouldn’t overlearn or wouldn’t predict single

class we had to keep balance between cracks and non-cracks data. Also, same rule would apply to

brick walls as due to complexity of images bricks are more reminding cracks, so we need good amount

of data to avoid that.

4.1.1. Results of CNN

To investigate the effect of parameters hyperparameters optimization was performed using

experimental designer toolbox in MATLAB. For each trial 10% of database was used for model

training (around 7500 images). This gave very good results even for low amount of data reaching

over 98% accuracy in three cases. Investigation shows that using low learning rate highly improves

prediction accuracy. Our research noticed that best performance was obtained with ‘sgdm’ optimizer.

It can be noticed as well that turning off verbose can slightly improve classification. However, the

effect of verbose parameter is not very high. We observed that validation frequency of [3, 7] iterations

give best results. Yet, this can be very dependable on what data was taken for training. Notable results

are written down in table 2. From this table we should point out that although model accuracy is high

in some cases, but it can have higher validation loss compared to model which has lower accuracy.

Validation loss shows how well model can separate two classes; therefore, high loss value means that

CNN is mis-classifying part of the images with huge error. Large errors can be a problem if we try to

predict cracks on unseen database which have some unique features.

2 table. Hyperparameter optimization using experimental designer on 10% of all data

Trial Learning

rate

Optimizer Validation

frequency

Verbose Validation

accuracy (%)

Validation

loss

20 0.0001 sgdm 5 False 98.1703 0.0542

8 0.0001 sgdm 3 False 98.0101 0.0614

56 0.0001 sgdm 3 True 98.0073 0.0504

32 0.0001 sgdm 7 False 97.9328 0.0598

68 0.0001 sgdm 5 True 97.8316 0.0647

16 0.0001 adam 5 False 97.5196 0.0853

24 0.0001 rmsprop 5 False 97.4170 0.1191

12 0.0001 rmsprop 3 False 96.9926 0.1453

36 0.0001 rmsprop 7 False 96.7706 0.4430

52 0.0001 adam 3 True 96.5303 0.0985

44 0.0001 sgdm 9 False 96.4052 0.0864

28 0.0001 adam 7 False 96.3082 0.1459

40

72 0.0001 rmsprop 5 True 96.2956 0.1235

48 0.0001 rmsprop 9 False 96.1382 0.2149

40 0.0001 adam 9 False 95.9189 0.1056

64 0.0001 adam 5 True 95.6590 0.1803

4 0.0001 adam 3 False 95.5395 0.1603

60 0.0001 rmsprop 3 True 94.4574 0.4630

73 0.1 adam 7 True 51.5051 248850.3125

1 0.1 adam 3 False 51.3027 1816.7488

It was observed that learning rate gave biggest effect to predictions accuracy. Yet, this was only tested

on 10% of entire database. As it was mentioned before, to reach our goal, large database with around

75000 images (similar sizes for each class) was created. Next the effect of database size was

investigated. The training was performed on 1% of this dataset and results reached over 94% while

predicting mixed data (brick walls and concrete walls). The training process is visualized in the figure

below (figure 16). Since 2 of 3 best performed trials had validation frequency equal to 3, we decided

to use it in this investigation as well same as turning off verbose option.

It can be noticed (see figure 16) that starting from around 150th iteration prediction loss and accuracy

measures almost stabilized. This shows that most of the information about model training can be

covered within first 150 iterations and remaining iterations do not give significant information to

model. However, they do increase classification accuracy, therefore, since study did not notice

anything what would show possible overlearning these options were not changed.

16 fig. Training process on 1 percent of dataset

41

It must be pointed that increasing training data from 1 percent up to 5 percent (out of ~75 000 images)

increased predictions accuracy from 94.9% up to over 98% but difference in accuracy between 5%

and 10% of database size is only minimal. It shows that most of the data share same features and only

small fraction of database are complicated cases. We tried to confirm our assumption by analysing

confusion matrices (see table 3) and indeed, it can be noticed that models trained on 5% and 10% of

entire data have highly noticeable change in mis-predicting cracks as 5% model is more likely to

classify crack as not crack and vice versa for 10% model. Increasing training set size to 15% gives

predictions in between. This shows that CNN is searching for optimal boundary conditions of how to

separate two classes and increasing data seems to be part of the solution.

3 table. Confusion matrices of 5, 10 and 15 percent of entire database size cases

% of database Predictions

5% Negative Positive

Negative 36209 297

Positive 1590 33062

10% Negative Positive

Negative 33550 1034

Positive 286 32542

15% Negative Positive

Negative 31892 771

Positive 345 30660

From table 4 we can see that increasing training database size from 10 to 40 percent only gives 0.82%

accuracy. Yet, while this value looks low, but we wish to note that it was validated on thousands of

images meaning that even part of percent can show that dozens of cracks were detected correctly.

This is very important seeking to ensure that model can be used for crack detection in high-risk areas

such as nuclear plants, dams etc. Moreover, accuracy equal to 98.82% shows that this research can

match top 5 models analysed in this work (from literature).

4 table. Model accuracy for different training set sizes

Training database percent Model accuracy

1% 94.9%

5% 97.3%

10% 98.0%

15% 98.2%

20% 98.5%

30% 98.63%

40% 98.82%

Taking growth of accuracy compared to increase in size of training dataset into account (see figure

17), it is very likely that increasing training dataset even more would improve predictions. However,

as we can notice this increase is not high and other factors such as time it takes to re-train model or

overlearning should be considered.

42

Since we already checked possible accuracy, it is only natural to estimate how long the training

would take with increase of training dataset (just reminding that full database size is ~75 000

images). All expected changes in model training time versus database size expressed as percent

(from ~75 000) is plotted in figure 18. It can be noticed that change in training time is not linear. It

was observed that 2nd order polynomial function is able to explain training time based on dataset

size with R-squared equal to 0.9963. On the other hand, these results are only approximate as on

another computer we observed that training speed was from 3.36 to 3.38 times slower than the

values visualized in figure 18.

Next, testing on completely unseen data gathered from internet was done (for code example see

appendix 2). Structure of testing set:

17 fig. Plot of observed accuracies by our model

18 fig. Model training time based on amount of data

95,00%

95,50%

96,00%

96,50%

97,00%

97,50%

98,00%

98,50%

99,00%

99,50%

100,00%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

P
re

d
ic

ti
o

n
s

ac
cu

ra
cy

Percent of full database size used for trainning

Accuracy Positive class Negative class

166

312

454

557

684

809

y = -3528.7x2 + 3379.5x + 12.245
R² = 0.9963

0

100

200

300

400

500

600

700

800

900

0% 10% 20% 30% 40% 50%

Tr
ai

n
in

g
ti

m
e

(m
in

u
te

s)

Percent of full database size used in trainning

Model training time

Nonlinear estimation

43

• 25 concrete crack images

• 25 concrete non-crack images

• 25 brick wall images without cracks

• 25 brick wall images with cracks

We observed that our model gave 82% accuracy on this dataset by making some errors with brick

walls. However, adding gaussian blur with sigma equal to 0.3 raised predictions up to 99%. This

shows that our model is still can be highly influenced by noise and some kind of pre-processing

approach is needed to obtain more reliable predictions.

In addition, model was tested in real-time by connecting it with camera. Walking across the room and

filming walls with and without cracks proves to give satisfying results. This shows that model can be

used for real-time detection. Yet, it must be pointed out that fast camera movement over areas covered

by shadows can give unstable predictions but as soon as camera stops to move model gives clear

results.

4.1.2. Challenges

As mentioned earlier in this work model faced some challenges. Figure 19 shows the misclassification

cases which our model made. Although expanding training set improved predictions and solved some

issues, but main challenges remain. One on the most important problem is that model predictions are

highly affected by noise. From figure 19 we can see that images with noise can easily be predicted as

cracks.

19 fig. Misclassified images by model

44

Another problem which we which to point out is that dark images can be labelled as not cracks.

Although, we must mention that this issue is mostly noticed for generated cracks as we did not have

a not of dark surfaces with real cracks. Also, this is mostly true if image contains a lot of noise.

Since our database had a lot of low-quality pictures, we tried to test the effect of resolution increase

and decrease techniques. It was noticed that resolution increasing using CNN can make model to

predict more images as cracks. Again, we believe that it is related with creation of extra details (noise).

Alternative was tested as well, and resolution was reduced (see figure 20). We observed that reducing

resolution can make predictions better in some cases as it is reducing the impact of noise in CNN

computations. However, this does not give much better results as in some cases it becomes harder to

recognize a crack if decrease is very high. Yet, using weak blur filters or just zooming out picture can

lead to balanced predicting. Wherefore, we point out that that models should always be tested on

similar environment and devices before using them on actual detection.

4.1.3. Results of optional pre-processing

Prediction results applying our created pre-processing\masking technique (code example is in

appendix 3) are given in figures bellow.

20 fig. The effect of lower resolution

45

Figure 21 shows that our created algorythm removed all noise only keeping a small part of concrete

wall left. It must be pointed out that this fixes prediction problems which our created model had in

the first place.

Main problem of data pre-processing is how to make algorithm not to remove any important

information. In our case most important information which we have is the area of the crack (or

suspected crack). From figure 22 we can see that only damaged area is left uncovered by the mask.

This is good because model give prediction just from suspected area and in future works might be

retrained to work faster by ignoring other parts of the image.

21 fig. Image with noise and same image with most of the noise removed from it

22 fig. Pre-processing algorithm effect on crack images

46

 Dark images were another problem which our network was facing. Since model had trouble

performing detectiong on dark noisy walls a solution was to those wall much lighter (see figure 23)

if they are not suspected to contain a crack. In addition, areas which are suspected would would still

keep the original colours. This is posible as cracks and walls still keep different colour variations.

However, although this technique worked well for our tested cases, it cannot be stated for sure if it

should be used on dark surfaces as change in colours might be weak in some situations and this study

did not have enough data of dark images without generated cracks to fully test it. This shows that

more reasearch for it is needed.

23 fig. Removing noise from dark pictures

24 fig. Segmentation of lightly damaged concrete walls

47

Problem with every wall which we observed is that at some point any area will have some kind of

damage. In many cases this damaged areas do not indicate cracks but can be the features of materials

from which those walls are made. A good example of the can be rock walls which would have gaps.

Yet, while performing segmentation or noise removal, we do not want to cover such areas as model

should decide if it is cracked area or not. One of such cases is visualized in figure 24. It shows some

lightly damaged wall but we do not think that it can be classified as crack just yet.

On the other hand, this project contained brick walls as well and algorithm had to be tested on the

also (see figure 25). However, although it can improve production of our model in some cases, but

we do not recommend it to be used on brick walls as more detail research for that is needed. This is

simply because noise removal method is based on picture separation into two main areas (potential

crack and non-crack). Using it on surfaces which have clear repeating texture might not be appropriate

as it can remove part of patterns which can make predictions more complicated in some cases

(especially if surface is highly affected by shadows).

To conclude this subchapter, for almost all tested images this technic gave good results except very

dark images. However, we did not have non-generated dark pictures contaning cracks, this is why we

cannot without a doubt say that this method can or cannot be used on black walls. Yet, results with

generated crack images shows that this method is not recomended to be applied on dark (black) walls

as well as we believe that it should not be used on brick walls. On the other hand results on simple

concrete walls shows that this technique improves pretictions by a lot as all tested concrete walls were

classified well (except dark).

4.1.4. Testing on generated pipeline images

Pipeline system was a way to check if model would be able to identify cracks in slightly different

environment. At the same time, we wanted to make system which would be able to generate cracks

in situations for which gathering data would be too expensive. Underwater crack image (use in article

[50]) was applied to our pipeline system and two pictures were generated. In addition, the model for

25 fig. Pre-processing tested on brick walls

48

both pictures give correct predictions (see figure 26). Yet, this does not mean that model can do it

without mistakes as for that we would need to generate more data, but it is enough to state that our

created model is capable of crack identification underwater as well. Wherefore further development

can be made by training it with more generated data in future works.

More information about the results and how to access model for personal testing can be found online

on Mendeley.com (see appendix 4). To motivate further development of the model, our study made

this data publicly available and fully reproduceable.

26 fig. Model predictions for generated pipeline data (positive stands for crack and negative if crack was not

detected)

49

5. Discussion

In this work we were able to create model which shows high accuracy for predicting cracks on

concrete and brick walls. Yet, some problems remain which require more detail investigations. For

example, our model can be tricked by noise or dark images. This means that while model shows good

results in general, it can still be unstable in specific cases. We already suggested a noise removal

method which might fix some of the issues, but this method requires more testing on dark surfaces as

well as brick walls. Yet, we believe that expanding dataset with more similar cases (we mean images

like misclassified pictures) and retraining model might solve it in the future works.

To further improve the accuracy of this model and to ensure that model would work well in the future

we created Discord sever and connected it with our created model which is written in MATLAB

programming language. Anyone who wishes to contribute to the project is free to visit discord server

and test model by asking bot on server to check if image shows crack (a correct answer should be

added after command as well), after that server bot will ask model to evaluate image and will show

its prediction. In addition, this way we automatically gathering more information and obtain labelled

pictures on which model can be updated periodically. This way study tried to achieve model

applicability as well as move toward lifetime learning approach. This method can be useful as it

removes the need to constantly search for better algorithms as it allows researchers to work together

in creating universal algorithm for crack detection. This was inspired by nowadays AI approaches as

chatbots become more and more popular in everyday life and while chatbots let users to send feedback

about quality of the result we, in our work, allow users to send the true value which should be

predicted in a way obtaining feedback before prediction. This feedback is not influencing result of

model but helps to evaluate model accuracy and create dataset for periodical updates.

50

Conclusions

After finishing this project, we can make such conclusions:

1. Large and complicated database containing cracks on concrete and brick walls was created. It

is the largest dataset compared to what was found in literature.

2. Model for the automated crack detection on our created database was developed, this was

done using convolution neural networks or more specifically, it is based on AlexNet with

transfer learning approach.

3. Model shows high accuracy (over 98%) which is as good as top 5 models in the literature.

4. Experimental design approach was used to find the most suitable parameters for high

accuracy. The approach could also be used for proxy model generation.

5. Some challenges remain, related to false positive and false negative which required pre-

processing of images. The methodology is presented as an option approach that can adjust

model mispredictions which were caused by the noise in the image.

6. Finally, a simple 3D pipeline system for data generation was created and model has been

tested on few generated underwater images, all of which it predicted correctly. Additional

work is needed to make the pipeline crack detection system more robust.

Although we did create large database with variety of cracks and we obtain high accuracy, it cannot

be taken for granted and stated that our created method it better or worse, we only say that our

modification of AlexNet is able to predict cracks on images similar to those which we used in this

project with over 98% accuracy. For other datasets and other challenging onshore and offshore

environments further testing is needed.

51

Bibliography

1. SimScience. Cracking Dams: Scenarios, a. Online. [viewed 2023-04-28]. Available from:

<https://sethna.lassp.cornell.edu/SimScience/cracks/advanced/failures.html>.

2. FOX, Matthew R. and Adrienne V. LAMM. Keystone Pipeline Rupture Investigation. In Journal of

Failure Analysis and Prevention. 2021. Vol. 21, no. 3, p. 738–746.

3. HARRIGAN, R. TransCanada’s Keystone XL Pipeline: Politics, Environmental Harm & Eminent

Domain Abuse. Available from: <https://scholarworks.law.ubalt.edu/cgi/viewcontent.cgi?article=

1010&context=ubjld>.

4. SAINATO, M. Keystone pipeline raises concerns after third major spill in five years. In The Guardian

[online]. 2022. [viewed 2023-04-28]. Available from: <https://www.theguardian.com/environment/

2022/dec/21/oil-spills-keystone-pipeline-seem-worse-kansas>.

5. BRECHER, J. and SMITH, B. Online. 2011. Available from: <https://www.labor4sustainability.org/

articles/pipeline-climate-disaster-the-keystone-xl-pipeline-and-labor/>. [viewed 2023-04-28].

6. PRADO, G.M.D. Intelligent robots don’t need to be conscious to turn against us. In Business Insider

[online]. [viewed 2023-04-27]. Available from: <https://www.businessinsider.com/artificial-

intelligence-machine-consciousness-expert-stuart-russell-future-ai-2015-7>.

7. CHEN, Y.; TONG, Z.; ZHENG, Y.; SAMUELSON, H. and NORFORD, L. Transfer learning with

deep neural networks for model predictive control of HVAC and natural ventilation in smart

buildings. In Journal of Cleaner Production. 2020. Vol. 254, p. 119866.

8. HOULSBY, Neil; Andrei GIURGIU; Stanislaw JASTRZEBSKI; Bruna MORRONE; Quentin De

LAROUSSILHE et al. Parameter-Efficient Transfer Learning for NLP. In Proceedings of the 36th

International Conference on Machine Learning [online]. [s.l.]: PMLR, 2019. p. 2790–2799. [viewed

2023-04-30]. Available from: <https://proceedings.mlr.press/v97/houlsby19a.html>.

9. NOWAK, Sebastian; Narine MESROPYAN; Anton FARON; Wolfgang BLOCK; Martin REUTER

et al. Detection of liver cirrhosis in standard T2-weighted MRI using deep transfer learning. In

European Radiology. 2021. Vol. 31, no. 11, p. 8807–8815.

10. MAY, R.M. Simple mathematical models with very complicated dynamics. In Nature. 1976.

Vol. 261, no. 5560, p. 459–467.

11. BUCK, O. Crack Formation and Propagation. In MRS Bulletin. 1989. Vol. 14, no. 8, p. 16–17.

12. YAKOVLEV, Grigory and Nikolai KHOKHRIAKOV. CRACK FORMATION IN VACUUM

CONCRETE. Online. Available from: <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&

source=web&cd=&ved=2ahUKEwigt9Ht0frAhUTrYsKHVBYChAQFnoECBcQAQ&url=https%3

A%2F%2Fjournals.vilniustech.lt%2Findex.php%2FJCEM%2Farticle%2Fdownload%2F9109%2F7

950&usg=AOvVaw298LKzlS_WSZL24Liv93m4 >.

13. CHARLES, E. A. and R. N. PARKINS. Generation of Stress Corrosion Cracking Environments at

Pipeline Surfaces. In Corrosion. 1995. Vol. 51, no. 7, p. 518–527.

14. CHEN, W. 30 - Modeling and prediction of stress corrosion cracking of pipeline steels. In EL-

SHERIK, A.M.Sud. Trends in Oil and Gas Corrosion Research and Technologies [online]. Boston:

Woodhead Publishing, 2017. p. 707–748. ISBN 978-0-08-101105-8. [viewed 2023-04-29].

Available from: <https://www.sciencedirect.com/science/article/pii/B9780081011058000309>.

15. FANG, B. Y.; A. ATRENS; J. Q. WANG; E. H. HAN; Z. Y. ZHU et al. Review of stress corrosion

cracking of pipeline steels in “low” and “high” pH solutions. In Journal of Materials Science. 2003.

Vol. 38, no. 1, p. 127–132.

52

16. VAN BOVEN, G.; W. CHEN and R. ROGGE. The role of residual stress in neutral pH stress

corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence. In Acta Materialia .

2007. Vol. 55, no. 1, p. 29–42.

17. GHOSH, Goutam; Paul ROSTRON; Rajnish GARG and Ashoutosh PANDAY. Hydrogen induced

cracking of pipeline and pressure vessel steels: A review. In Engineering Fracture Mechanics. 2018.

Vol. 199, p. 609–618.

18. XUE, H.B. and CHENG, Y.F. Characterization of inclusions of X80 pipeline steel and its correlation

with hydrogen-induced cracking. In Corrosion Science. 2011. Vol. 53, no. 4, p. 1201–1208. .

19. ZHANG, G; Y. LIU. P. YANG; Y. BAI and X. MA. Analysis on the causes of crack formation and

the methods of temperature control and crack prevention during construction of super-high arch dams.

In Shuili Fadian Xuebao/Journal of Hydroelectric Engineering. 2010. Vol. 29, p. 45–51.

20. BHATTACHARJEE, S. S. and P. LÉGER. Seismic cracking and energy dissipation in concrete

gravity dams. In Earthquake Engineering & Structural Dynamics. 1993. Vol. 22, no. 11, p. 991–

1007.

21. PAN, Jianwen; Chuhan ZHANG; Yanjie XU and Feng JIN. A comparative study of the different

procedures for seismic cracking analysis of concrete dams. In Soil Dynamics and Earthquake

Engineering. 2011. Vol. 31, no. 11, p. 1594–1606.

22. SHERARD, J.L. EMBANKMENT DAM CRACKING. In Publication of: Wiley (John) and Sons,

Incorporated [Online]. no. 0. Available from: <https://trid.trb.org/view/40458>. [viewed 2023-04-

29].

23. SHEERIN SITARA, N. M; KAVITHA, S. and G. RAGHURAMAN. Review and Analysis of Crack

Detection and Classification Techniques based on Crack Types. In International Journal of Applied

Engineering Research . 2021. Vol. 13, no. 8, p. 6056.

24. SHI, Pengfei; Xinnan FAN and Gengren WANG. A novel underwater dam crack detection algorithm

based on sonar images. In 2015 5th International Conference on Computer Sciences and Automation

Engineering (ICCSAE 2015) [online]. [s.l.]: Atlantis Press, 2016. p. 452–456. [viewed 2023-04-25].

Available from: <https://www.atlantis-press.com/proceedings/iccsae-15/25848197>.

25. WANG, T.T. Characterizing crack patterns on tunnel linings associated with shear deformation

induced by instability of neighboring slopes. In Engineering Geology. 2010. Vol. 115, no. 1, p. 80–

95.

26. LINS, Romulo Gonçalves and Sidney N. Automatic Crack Detection and Measurement Based on

Image Analysis. In IEEE Transactions on Instrumentation and Measurement. 2016. Vol. 65, no. 3,

p. 583–590.

27. DUNG, Cao Vu. and Le Duc ANH. Autonomous concrete crack detection using deep fully

convolutional neural network. In Automation in Construction. 2019. Vol. 99, p. 52–58.

28. SIMONYAN, Karen. and Andrew ZISSERMAN. Very Deep Convolutional Networks for Large-

Scale Image Recognition. Online. [s.l.]: arXiv, 2015. arXiv:1409.1556 [cs]. [viewed 2023-01-15].

Available from: <http://arxiv.org/abs/1409.1556>.

29. SZEGEDY, Christian; Vincent VANHOUCKE; Sergey IOFFE; Jonathon SHLENS and Zbigniew

WOJNA. Rethinking the Inception Architecture for Computer Vision. Online.[s.l.]: arXiv, 2015.

arXiv:1512.00567 [cs]. [viewed 2023-04-15]. Available from: <http://arxiv.org/abs/

1512.00567>.

53

30. HE, Kaiming; Xiangyu ZHANG; Shaoqing REN and Jian SUN. Deep Residual Learning for Image

Recognition. Online.[s.l.]: arXiv, 2015. arXiv:1512.03385 [cs]. [viewed 2023-01-15]. Available

from: <http://arxiv.org/abs/1512.03385>.

31. DORAFSHAN, Sattar; Robert THOMAS and Marc MAGUIRE. Comparison of Deep Convolutional

Neural Networks and Edge Detectors for Image-Based Crack Detection in Concrete. In Construction

and Building Materials. 2018. Vol. 186, p. 1–56.

32. LIU, Jingwei; Xu YANG; Stephen LAU; Xin WANG; Sang LUO et al. Automated pavement crack

detection and segmentation based on two-step convolutional neural network. In Computer-Aided

Civil and Infrastructure Engineering. 2020. Vol. 35, no. 11, p. 1291–1305.

33. PAL, Mayur; Paulius PALEVIČIUS; Mantas LANDAUSKAS; Ugnė ORINAITĖ; Inga

TIMOFEJEVA et al. An Overview of Challenges Associated with Automatic Detection of Concrete

Cracks in the Presence of Shadows. In Applied Sciences. 2021. Vol. 11, no. 23, p. 11396.

34. HALLEE, Mitchell J.; Rebecca K. NAPOLITANO; Wesley F. REINHART and Branko GLISIC.

Crack Detection in Images of Masonry Using CNNs. In Sensors. 2021. Vol. 21, no. 14, p. 4929.

35. LOVERDOS, D. and SARHOSIS, V. Automatic image-based brick segmentation and crack detection

of masonry walls using machine learning. In Automation in Construction. 2022. Vol. 140, p. 104389.

36. DU, Shouji; Shihong DU; Bo LIU and Xiuyuan ZHANG. Incorporating DeepLabv3+ and object-

based image analysis for semantic segmentation of very high resolution remote sensing images. In

International Journal of Digital Earth . 2021. Vol. 14, no. 3, p. 357–378.

37. ZHANG, Chanqing; Jiang CHEN; Ying LUO; Feng XIONG and Anming XU. Crack width

identification for underwater concrete structures using temperature tracer method. In Measurement

Science and Technology. 2021. Vol. 32, no. 12, p. 125107.

38. ZHU, Yuxuan; Jiang CHEN; Yuanyuan ZHANG; Feng XIONG; Fengfei HE et al. Temperature tracer

method for crack detection in underwater concrete structures. In Structural Control and Health

Monitoring. 2020. Vol. 27, no. 9, p. e2595.

39. CHEN, Jiang; Feng XIONG; Yuxuan ZHU and Huiqun YAN. A crack detection method for

underwater concrete structures using sensing-heating system with porous casing. In Measurement.

2021. Vol. 168, p. 108332.

40. CHEN, Dong; Ben HUANG and Fei KANG. A Review of Detection Technologies for Underwater

Cracks on Concrete Dam Surfaces. In Applied Sciences. 2023. Vol. 13, no. 6, p. 3564.

41. Deep Trekker. Online. [viewed 2023-04-25]. Available from: <https://www.unmannedsystemstechno

logy.com/feature/case-study-underwater-tunnel-inspection-using-sonar-technology/>.

42. SHI, P; FAN, X; NI, J.; Z. KHAN and M. LI. Underwater dam crack classification based on the fusion

of images obtained from dual-frequency sonar. Online. [viewed 2023-04-25]. Available from:

<https://bio-protocol.org/exchange/minidetail?id=2089935&type=30>.

43. CAO, W. and LI, J. Detecting large-scale underwater cracks based on remote operated vehicle and

graph convolutional neural network. In Frontiers of Structural and Civil Engineering. 2022. Vol. 16,

no. 11, p. 1378–1396. .

44. ALIFF, Mohd; Nur Farah HANISAH. Development of Underwater Pipe Crack Detection System for

Low-Cost Underwater Vehicle using Raspberry Pi and Canny Edge Detection Method. In

International Journal of Advanced Computer Science and Applications [online]. 2022. Vol. 13,

no. 11. Available from: <http://thesai.org/Publications/ViewPaper?Volume=13&Issue=11&Code=

IJACSA&SerialNo=52>.[viewed 2023-04-26].

54

45. QI, ZhiLong; Donghai LIU; Jinyue ZHANG and Junjie CHEN. Micro-concrete crack detection of

underwater structures based on convolutional neural network. In Machine Vision and Applications

[online]. 2022. Vol. 33, no. 5. [viewed 2023-04-26]. Available from:<https://doi.org/10.1007/s00138

-022-01327-5>.

46. SHI, Jiajun; Wenjie YIN; Yipai DU and John FOLKESSON. Automated Underwater Pipeline

Damage Detection using Neural Nets. 2019.

47. YANG, Jun; Wei WANG; Guang LIN; Qing LI; Yeqing SUN et al. Infrared Thermal Imaging-Based

Crack Detection Using Deep Learning. In IEEE Access. 2019. Vol. 7, p. 182060–182077.

48. AMJAD, K.; LAMBERT, P.; MIDDLETON, C. A.; GREENE, R. J. and E. A. PATTERSON A

thermal emissions-based real-time monitoring system for in situ detection of fatigue cracks. Online.

Available from: <https://royalsocietypublishing.org/doi/epdf/10.1098/rspa.2021.0796>. [viewed

2023-05-02].

49. BERMAN, D.; TREIBITZ, T. and S. AVIDAN. Diving into Haze-Lines: Color Restoration of

Underwater Images. Online. Available from: < http://www.bmva.org/bmvc/2017/papers/paper044/

paper044.pdf >.

50. ORINAITĖ, Ugnė; Paulius PALEVIČIUS; Mayur PAL and Minvydas RAGULSKIS. A deep

learning-based approach for automatic detection of concrete cracks below the waterline. In

Vibroengineering PROCEDIA. 2022. Vol. 44, p. 142–148.

51. BRITO, A. Blender 3D. Online. [viewed 2023-05-16]. Accessed from: <https://s3.novatec.com.br/

capitulos/capitulo-9788575222805.pdf>.

52. LESHNO, Moshe; Vladimir Ya. LIN; Allan PINKUS and Shimon SCHOCKEN. Multilayer

feedforward networks with a nonpolynomial activation function can approximate any function. In

Neural Networks. 1993. Vol. 6, no. 6, p. 861–867.

53. HAGAN, M.T. and DEMUTH, H.B. Neural networks for control. In Proceedings of the 1999

American Control Conference (Cat. No. 99CH36251). 1999. p. 1642–1656 t. 3.

54. MathWorks - Makers of MATLAB and Simulink. Online. [viewed 2023-04-30]. Accessed from:

<https://www.mathworks.com/>.

55. ÖZGENEL, Ç.F. and GÖNENÇ SORGUÇ, A. Performance Comparison of Pretrained Convolutional

Neural Networks on Crack Detection in Buildings. Surface Crack Detection. ISARC 2018, Berlin. In

[online]. 2018. [viewed 2023-04-30]. Available from: <https://www.kaggle.com/datasets/arunrk7/

surface-crack-detection>.

56. Pexels. Brick Wall Cracks Photos, Download The BEST Free Brick Wall Cracks Stock Photos & HD

Images. Online. Available from: <https://www.pexels.com/search/brick%20wall%20cracks/>.

[viewed 2023-04-30].

57. KHEDGAONKAR, Roshni. Kavita SINGH. and Mukesh RAGHUWANSHI. Chapter 10 - Local

plastic surgery-based face recognition using convolutional neural networks. In N, P. and other. Sud.

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics [online].

[s.l.]: Academic Press, 2021. p. 215–246. ISBN 978-0-12-821633-0. [viewed 2023-01-15]. Available

from: <https://www.sciencedirect.com/science/article/pii/B9780128216330000015>.

58. BOZINOVSKI, S. and FULGOSI, A. The influence of pattern similarity and transfer learning upon

the training of a base perceptron B2. In Symposium Informatica. Croatia, 1976.

59. PAN, S.J. and YANG, Q. A Survey on Transfer Learning. In IEEE Transactions on Knowledge and

Data Engineering. 2010. Vol. 22, no. 10, p. 1345–1359.

55

60. WEISS, Karl; Taghi M. KHOSHGOFTAAR and DingDing WANG. A survey of transfer learning.

In Journal of Big Data. 2016. Vol. 3, no. 1, p. 9.

61. Matlab. Design and run experiments to train and compare deep learning networks - MATLAB.

Online. Available from: <https://www.mathworks.com/help/deeplearning/ref/experimentmanager-

app.html>. [viewed 2023-05-15].

62. KIM, Jiwon; Jung Kwon LEE and Kyoung Mu LEE. Accurate Image Super-Resolution Using Very

Deep Convolutional Networks. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) . 2016. p. 1646–1654.

56

Appendix(es)

1 appendix. Code for model training

%Script for main program

clear;clc;close all

load('netTransfer_alexnet_shadow_images.mat')

%imds =

imageDatastore('C:\Users\Mayur\Documents\Apps\Andrius\Images','IncludeSubfolders',true,

'LabelSource','foldernames');

imds =

imageDatastore('C:\Users\Mayur\Documents\Apps\Andrius\JPGGen','IncludeSubfolders',true,

'LabelSource','foldernames');

numExample=9;

idx = randperm(numel(imds.Files),numExample);

for i=1:numExample

 I=readimage(imds,idx(i));

 %I_tile{i}=insertText(I,[1,1],string(imds.Labels(idx(i))),'FontSize',20);

end

% use imtile function to tile out the example images

% I_tile = imtile(I_tile);

% figure;imshow(I_tile);title('examples of the dataset')

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.70,'randomized');

numTrainImages = numel(imdsTrain.Labels);

%net = squeezenet;

net = alexnet;

netName = 'alexnet';

%netName = 'squeezenet';

%CANNOT USE squeezenet in my matlab 2022 version.

%net = googlenet();

%netName = 'googlenet';

analyzeNetwork(net);

% The first layer, the image input layer,

% requires input images of size 227-by-227-by-3, where 3 is the number

% of color channels.

net.Layers(1)

inputSize = net.Layers(1).InputSize;

layersTransfer = net.Layers(1:end-3);

57

numClasses = numel(categories(imdsTrain.Labels))

layers = [

 layersTransfer

 fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)

 softmaxLayer

 classificationLayer];

% layers(1:110) = freezeWeights(layers(1:110));

% lgraph = createLgraphUsingConnections(layers,connections);

pixelRange = [-30 30];

imageAugmenter = imageDataAugmenter(...

 'RandXReflection',true, ...

 'RandXTranslation',pixelRange, ...

 'RandYTranslation',pixelRange);

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...

 'DataAugmentation',imageAugmenter,'ColorPreprocessing','gray2rgb');

augimdsValidation =

augmentedImageDatastore(inputSize(1:2),imdsValidation,'ColorPreprocessing','gray2rgb');

% augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);

% Train Network

options = trainingOptions('sgdm', ...

 'MiniBatchSize',10, ...

 'MaxEpochs',4, ...

 'InitialLearnRate',1e-4, ...

 'ValidationData',augimdsValidation, ...

 'ValidationFrequency',3, ...

 'ValidationPatience',Inf, ...

 'Verbose',false ,...

 'Plots','training-progress');

% The network is trained on GPU if available. It is specified by 'ExecutionEnvironment',"auto" as

above.

netTransfer = trainNetwork(augimdsTrain,layers,options);

% Classify test Images to calculate the classification accuracy

[YPred,scores] = classify(netTransfer,augimdsValidation);

YValidation = imdsValidation.Labels;

accuracy = mean(YPred == YValidation)

M = confusionmat(YValidation,YPred);

58

confusionchart(M,["Negative","Positive"])

acc = sum(diag(M)) / sum(M,'all');

title(sprintf("Accuracy: %g",acc));

%filename = 'MastersNetwork6.mat';

filename = 'BrickwallsCheck.mat';

save(filename)

59

2 appendix. Code for model testing

%clear

%load("MastersNetwork6.mat", "netTransfer");

%load('netTransfer_alexnet_shadow_images.mat', 'netTransfer');

s = 0;

imagefiles = dir('C:/Users/98and/OneDrive/Desktop/Studijos/JPGGen/Positive/*');

nfiles = length(imagefiles);

for i = 3:nfiles

 %Im =

imread(strcat('C:/Users/98and/OneDrive/Desktop/Studijos/Magistras/modified/positive/',int2str(i),'.

png'));

 Im =

imread(strcat('C:/Users/98and/OneDrive/Desktop/Studijos/JPGGen/Positive/',imagefiles(i).name));

 pic = imresize(Im, [227, 227]);

 %pic = imresize(Im, [227, 227]);

 %New = imgaussfilt(pic,0.3);

 %pic = New;

 pic(:,:,2) = pic(:,:,1);

 pic(:,:,3) = pic(:,:,1);

 pred = classify(net, pic);

 if pred == 'Negative'

 i

 s = s +1;

 end

end

s/(nfiles-2)

60

3 appendix. Code for model testing with pre-processing

function [result] = KTUnet(I)

 load("C:\Users\98and\OneDrive\Desktop\Darbas\KTU\DiscordBot\MastersNetwork6.mat",

"netTransfer");

 Im = imread(strcat('Images\',int2str(I),'.png'));

 pic = imresize(Im, [227, 227]);

 [si, sj, ~] = size(pic);

 GI = rgb2gray(pic);

 EI = GI;

 for i = 1:si

 for j = 1:sj

 RGBmax = max(pic(i, j, :));

 RGBmin = min(pic(i, j, :));

 if (RGBmax - RGBmin) > 50

 % It is noise or color

 EI(i, j, 1) = 199;

 end

 end

 end

 vid = mean2(EI);

 minGI = min(min(GI));

 maxGI = max(max(GI));

 Vmin = vid/minGI;

 Vmax = maxGI/vid;

 if double(Vmin) - double(Vmax) >= 1

 %it will have a crack

 for i = 1:si

 for j = 1:sj

 if EI(i, j, 1) > vid*0.8

 % It is noise or color

 EI(i, j, 1) = max(vid,120);

 end

 end

 end

 else

 for i = 1:si

 for j = 1:sj

 EI(i, j, 1) = max(vid,120);

61

 end

 end

 end

 New = imgaussfilt(EI,1);

 pic = New;

 pic(:,:,2) = New(:,:,1);

 pic(:,:,3) = New(:,:,1);

 pred = classify(netTransfer, pic);

 if pred == 'Positive'

 result = 1;

 else

 result = 0;

 end

end

62

4 appendix. All with project related data

All data such as database, models, testing cases and other information can be found on Mendeley.com.

Please note that datasets are part of this thesis, for more information search for:

Ambrutis, A.; Pal, M. (2023). Gathered and generated database for crack detection on concrete and

brick walls. Mendeley Data. V1. Available from: <doi: 10.17632/vr37ss8xm6.1>.

