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Summary 

Prostate cancer is one of the most common type of men cancer all around the world, including 

Lithuania. According to World Health Organization 2020 report, prostate cancer was the 4th most 

common type of cancer and the 2nd between men while by the mortality cases it was the 8th and 5th 

between men. In Lithuania, the prostate cancer is the most common type of cancer and is the 4th by 

the mortality incidences and the 2nd between men. This is why it is important for a healthcare 

professional to distinguish fatal and non-fatal patient’s prostate cancer, this can be done with the help 

of a machine learning model, which we will try to implement in this work using the data collected in 

Kaunas Clinics. For mortality risk estimation 4 machine learning models have been created: logistic 

regression, random forest, XGBoost and neural network. Models were trained for 4 different response 

variables: cancer specific mortality, death from other causes, biochemical recurrence and metastases. 

These models have been trained on randomly sampled training set consisting of 1251 observations, 

models were evaluated on testing set consisting of 313 patients. Dataset have been transformed from 

continuous time to discrete time data. The hyperparameters of models were found with the use of 5-

fold cross validation within training set applying Bayesian optimization method. Optimal models 

were selected for each response variable. We have obtained that random forest model showed the 

best AUC value on testing set comparing to other 3 methods on 3 targets. In case of cancer specific 

mortality, training and testing set average AUC values are respectively 0.951 (SD = 0.037) and 0.928 

(SD = 0.045), death from other causes respectively 0.663 (SD = 0.049) and 0.689 (SD = 0.046), 

biochemical recurrence respectively 0.865 (SD = 0.030) and 0.855 (SD = 0.034). In case of 

metastases, optimal model was found to be XGBoost, training and testing set average AUC values 

respectively 0.997 (SD = 0.005) and 0.927 (SD = 0.035).
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Santrauka 

Prostatos vėžys yra viena dažniausių vyrų vėžio formų pasaulyje, įskaitant ir Lietuvą. Pagal Pasaulio 

Sveikatos Organizacijos 2020 duomenis, prostatos vėžys buvo 4 dažniausią vėžio forma pasaulyje ir 

2 tarp vyrų, o pagal mirtingumo skaičius – 8 pasaulyje ir 5 tarp vyrų. Lietuvoje prostatos vėžys buvo 

dažniausia vėžio forma, 4 pagal bendrus mirtingumo rodiklius ir 2 tarp vyrų. Todėl yra svarbu 

gydytojui laiku atskirti mirtiną ir nemirtiną paciento prostatos vėžį, tą padaryti galima pasitelkus 

mašininio mokymosi modeliu, kuriuos šiame darbe ir bandysime realizuoti panaudodami Kauno 

Klinikose sukauptus duomenis. Mirtingumo rizikos vertinimui sudarėme 4 mašininio mokymosi 

modelius: logistinės regresijos, atsitiktinių miškų, “XGBoost” ir neuroninių tinkle. Modeliai buvo 

sudaryti naudojant 4 skirtingus tikslo kintamuosius: mirtingumui nuo prostatos vėžio, mirtingumui 

nuo kitų priežasčių, biocheminiam pasikartojimui ir metastazei. Šie modeliai buvo apmokyti 

naudojant atsitiktinai atrinktą apmokymo imtį, sudarytos iš 1251 stebinių, o modeliai įvertinti 

naudojant validavimo imtį, sudarytą iš 313 stebinių. Duomenys buvo transformuoti iš nuolatinio laiko 

į diskretinio laiko duomenis. Modelių hyperparametrai rasti naudojant 5 lygių kryžminę validaciją su 

apmokymo duomenimis taikant Bajeso optimizavimo metodą. Atrinkome optimalius modelius 

kiekvieno tikslo kintamojo atveju. Gavome, jog atsitiktinių miškų modelis parodė geriausius 

rezultatus pagal validavimo imties vidutines AUC reikšmes lyginant su kitais 3 metodais trijų tikslo 

kintamųjų atveju. Mirtingumo nuo prostatos vėžio atveju, apmokymo ir validavimo imties vidutinė 

AUC atitinkamai 0.951 (SD = 0.037) ir 0.928 (SD = 0.045), mirtingumo nuo kitų priežasčių 

atitinkamai 0.663 (SD = 0.049) ir 0.689 (SD = 0.046), biocheminio pasikartojimo atitinkamai 0.865 

(SD = 0.030) ir 0.855 (SD = 0.034). Metastazės atveju, optimalus modelis buvo „XGBoost“ metodas, 

apmokymo ir validavimo imties vidutinės AUC atitinkamai 0.997 (SD = 0.005) ir 0.927 (SD = 0.035).
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Introduction 

The research problem and the relevance of the work. According to World Health Organization 

2020 report, prostate cancer was the 4th most common type of cancer and the 2nd between men while 

by the mortality cases it was the 8th and 5th between men [1]. In Lithuania, the problem is even 

worse, as there the prostate cancer is the most common type of cancer and is the 4th by the mortality 

incidences and the 2nd between men. Most commonly, prostate cancer develops slowly, but there can 

be cases when an aggressive type of cancer develops and heavily disturbs men’s health [3]. In the 

Western world, a man has 40% lifetime risk of getting diagnosed with prostate cancer, yet there is 

only 10% risk of becoming symptomatic [4]. Establishing a treatment plan for a patient in time is 

difficult as it is unknown where the diagnosed cancer will develop to a fatal stage or to an indolent 

one that does not have a fatal risk. 

Work objective: To develop mortality risk estimation machine learning models for patients 

diagnosed with prostate cancer. 

Work tasks: 

• Get acquainted with already performed research in the field of prostate cancer. 

• Perform descriptive analysis of the data sample and split the data to train/test datasets. 

• Transform data from continuous time to discrete time data. 

• Find optimal hyperparameters for each machine learning model. 

• Create linear regression, random forest, XGBoost and neural network mortality risk 

estimation machine learning models. 

• Compare the created models. 

Research methods: Scientific literature analysis, data analysis and visualisation using python 

programming language, Bayesian hyperparameter optimization using hyperopt module, linear 

regression, random forest and neural network models using sklearn module, XGBoost model using 

xgboost module. 

Research novelty: Usually, when examining scientific publications, classical method such as either 

Cox or Fine-Gray model are found being used but there is no comparison with other machine learning 

models. Also, the results are presented for one issue – cancer specific mortality, biochemical 

recurrence, etc., but are not compared with each other. 

Work structure: The project consists of three main sections: literature review, research methods and 

research results. The first chapter presents a review of the literature in scientific publications about 

prostate cancer, mortality from it and applied research methods. The second chapter describes 

theoretical information about survival analysis, discrete time modelling, some information about used 

machine learning models, evaluation methods as well as the structure of the research. Finally, the 

third chapter provides information about the research results, examples and interpretations of the 

results, and the comparison of the models. 

Approval of results: The work was presented at the student scientific conference “New Generation 

of Scientists” organized by the Lithuanian Science Council on 2023-04-18 as well as at DAMSS 

2021: 12th conference on data analysis methods for software systems on 2021-12-02. The work was 

also published in the Baltic journal of modern computing by the University of Latvia on 2022-06-16. 
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1. Literature review 

1.1. Prostate cancer 

According to World Health Organization 2020 report, prostate cancer was the 4th most common type 

of cancer and the 2nd between men while by the mortality cases it was the 8th and the 5th between men 

[1]. In Lithuania, prostate cancer is the most common type of cancer by the number of cases, the 4th 

by the mortality incidences and the 2nd among men. Research and analysis has been done on the risk 

of prostate cancer [3], and results show that while most commonly the prostate cancer develops 

slowly, there can be cases when an aggressive cancer develops and heavily disturbs men’s health. In 

the Western world, a man has 40% lifetime risk of being diagnosed with prostate cancer, yet there is 

only a 10% risk of becoming symptomatic [4].  

There are many factors which contributes to prostate cancer risk (genetic, environmental, stochastic 

effects) but they are also largely unknown [5]. Some risk factors [6]: 

• Family history: associated significantly with prostate cancer risk. But could be influenced 

by the detection bias. 

• Hormones: elevated concentrations of testosterone, metabolite, dihydrotestosterone may 

increase the risk over a long period time. But the results are inconsistent. 

• Race: the highest incidence rates for prostate cancer are among African-American men. 

But this could be caused by differences in access to care, decision-making of whether to 

seek medical attention, differences in dietary, genetic differences and etc. 

• Aging and oxidative stress: risk could be increased due to increase in oxidative stress. 

Supportive evidence on this is also limited. 

• Diet: fat consumption (polyunsaturated fat) shows a strong and positive correlation with 

increased risk, while vitamin D deficiency increases risk. Intake of vitamin E decreases 

the risk. 

Several studies also discuss about the importance or significance of stratifying patients into risk 

groups [7] but there are and can be several techniques in stratification logic [8]. 

1.2. Predictive models 

Having patient’s data, in most cases the predictive models give us the probability of an event 

occurring withing a specific time. Sometimes this is not a primary focus of a study and instead, the 

prediction of whether the event will occur or no is more important. An example can also be thought 

of in urologist workday: a decision must be made to either operate a patient with clinically localized 

prostate cancer or no, for such decision, the probability of cancer recurrence is a very important 

decision factor [9]. 

1.2.1. Classical statistical methods 

To research and determine the impact of prostate cancer, researchers usually perform what is called 

survival analysis [3]. To perform such analysis, researchers take advantage of the parametric methods 

which helped to understand better about the patients and how prostate cancer affects men. Using such 

parametric analysis, a study even debunked the idea that the risk of developing prostate cancer was 

higher in African American men than the other races [3]. The cumulative incidence function, 

multivariate logistic regression model can be used to measure the biochemical recurrence, metastasis, 
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cancer specific mortality or overall mortality [7]. Moreover, to predict various outcomes related to 

prostate cancer, nomograms, look-up tables, classification and regression-tree analysis, propensity 

scores or risk-group stratification models are also used in practice [10]. Semi-parametric Cox 

proportional hazards regression is a frequent method in survival analysis between researchers [11-19] 

as well as Fine-Gray competing risk regression [12; 14; 20]. 

1.2.2. Artificial intelligence methods 

Modern life has been already changed by the machine learning (ML) and there is no doubt that 

artificial intelligence (AI) is revolutionizing healthcare where together with ML methodologies, 

complex insights can be gathered about the patients [21-23].  

A machine learning approach differs from traditional approaches by a key distinction that a ML model 

learns from real examples whereas tradition approach is based on set of predefined rules [24]. 

Previously we have mentioned classical statistical methods, it is worth mentioning that there is no 

simple distinction between a machine learning method and a classical statistical method. While we 

cannot simply distinguish those 2 mentioned approaches, there is a more sophisticated version of 

machine learning methodology – deep learning (DL), which leverages the use of artificial neural 

networks that are able to capture extremely complex relationships and provide accurate predictions 

[21; 24]. Both ML and DL are able to provide useful insights to a researcher and on some occasions 

– outperform classical statistical methods or human physicians but as a result, there is a limitation on 

the usage of such methodologies, ML and especially DL can require an enormous amount of data to 

be trained on in order to give accurate and reliable predictions (Fig. 1) [21; 24]. Having a complex 

model which can find various relationships in data to predict accurately is undeniably important but 

on the flipside, those models (especially DL models) are often uninterpretable and are so called “black 

boxes” (Fig. 1) [21]. 
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We have learned previously that prostate cancer is not such an easy topic and there are many unknown 

factors leading to it. Traditional approaches to identify prostate cancer risk can be limited as they will 

not be able to capture complex relationships between various factors. As a result, AI methods are 

used in prostate cancer outcome prediction [10; 22]. Such prognostic algorithms developed using AI 

methods can help urologists in diagnosis of an aggressive prostate cancer quicker and without fewer 

unnecessary biopsies [21]. 

1.3. The significance of PSA persistence in prostate cancer risk groups 

A study on similar data as ours was done by Milonas D., Venclovas Z., Sasnauskas G. and Ruzgas T. 

on assessing the significance of prostate specific antigen persistence in prostate cancer risk groups on 

long-term oncological outcomes [7]. Authors defined persistent prostate specific antigen (PSA) as 

≥0.1 ng/mL at 4-8 weeks after radical prostatectomy (RP). The patients were also stratified into 3 risk 

groups: low, intermediate and high which was made using preoperative PSA, pathological stage, 

grade group and lymph node status. 

The study reported 10-year cumulative incidences of biochemical recurrence (BCR), metastases 

(MTS), cancer specific mortality (CSM) and overall mortality (OM) using the cumulative incidence 

function with persistent vs. undetectable PSA in different groups (Fig. 2). This chi-square and Mann-

Whitney U test was used to assess the difference in groups. The Kaplan-Meier survival curves were 

used to estimate survival. Multivariate logistic regression model was used to measure the relationship 

between covariates and the incidences by providing hazard ratios. A total of 1225 patients were 

 

Fig. 1. Schematic diagram describing advantages and disadvantages of ML methodologies [23] 
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analysed with median follow-up 103 months and 246 (20.1%) patients had persistent PSA. 226 

(18.4%) overall deaths were recorded where 45 (3.8%) of were cancer related deaths. 383 (31.3%) 

experienced biochemical recurrence and 87 (7.1%) – metastasis. The research reports 10-year 

cumulative incidence of BCR, MTS, CSM and OM – 39.61% (95% CI: 35.95-43.64), 9.70% (95% 

CI: 7.67-12.27), 4.81% (95% CI: 3.49-6.61) and 18.15% (95% CI: 16.04-20.53). Incidence was 

significantly higher with PSA persistence for BCR, MTS, CSM and OM: 27.21% (95% CI: 23.68-

31.28) undetectable PSA vs 88.46% (95% CI: 83.48-93.74) persistent PSA, 4.40% (95% CI: 3.05-

6.35) vs 29.57% (95% CI: 22.41-39.04), 1.92% (95% CI: 1.92-3.05) vs 17.61% (95% CI: 11.70-

26.49) and 15.21% (95% CI: 13.16-17.59) vs 30.92% (95% CI: 25.23-37.89). The PSA persistence 

was detected as significant predictor in multivariate regression analysis for each BCR, MTS, CSM 

and OM with hazard ratios: 4.2 (95% CI: 3.06-5.76, p<0.001), 2.7 (95% CI: 1.44-5.09, p=0.002), 5.5 

(95% CI: 2.08-14.49, p=0.006) and 1.8 (95% CI: 1.13-2.76, p=0.01). 

Authors conclude that PSA persistence is a strong predictor of BCR, MTS, CSM and OM; this 

significance is also observed in different risk groups. But the significance is marginal in low-risk 

group, while it has the biggest impact in the high-risk group. 

1.4. Artificial neural network for prostate cancer risk prediction 

David A. Roffman et al. developed and validated a multi-parameterized artificial neural network 

(ANN) on the basis of personal health information for prostate cancer risk prediction and stratification 

[5]. 

 

Fig. 2. 10-year cumulative incidences of BCR, MTS, CSM and OM [7] 
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The authors did a 70/30% split for training and validation where 1171 patients with prostate cancer 

and 70023 without cancer were selected for training; 501 patients with prostate cancer and 30010 

without – for validation, the split was done randomly. NHIS data set was used to train ANN; features 

included: age, body mass index (BMI), smoking status, emphysema, asthma, diabetes status, history 

of stroke, hypertension, heart disease, race, ethnicity, vigorous exercise habits. Model structure 

consisted of two hidden layers with 12 neurons in each layer (Fig. 3). The inputs were normalized to 

the 0-1 range. The response of such model was individual’s risk for receiving a diagnosis of prostate 

cancer.  

 

Fig. 3. A schematic diagram of ANN [5] 
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A priori risk stratification scenarios were also created for high, medium and low risk (Fig. 4). There, 

blue shading shows high-risk category, yellow – medium-risk and red – high-risk. In such risk 

stratification, high-risk patients could be recommended to undergo screening for prostate cancer, 

whereas medium-risk patients might be recommended based on their personal preference and low-

risk patients would be encouraged not to be screened. The authors selected the thresholds for the 

groups so that only 1% of the noncancer population would be classified as high risk and only 1% of 

the cancer population would be classified as low risk. 

Fig. 4. Cumulative distribution function for the cancer and noncancer population in the validation set [5] 

Sensitivity for prostate cancer prediction was 21.5% (95% CI: 19.2 – 23.9), specificity 91% (95% CI: 

90.8 – 91.2) on training set and for validation set: sensitivity 23.2% (95% CI: 19.5 – 26.9) and 

specificity 89.4% (95% CI: 89 – 89.7). Area under the ROC curve (AUC) values were also reported 

for both training and validation set, respectively: 0.73 (95% CI: 0.71 – 0.75) and 0.72 (95% CI: 0.70 

– 0.75). 

1.5. Development and validation of an interpretable artificial intelligence model to predict 10-

year prostate cancer mortality 

Jean-Emmanuel Bibault et al. presented a gradient-boosted model which predicts 10-year prostate 

cancer mortality with high accuracy [25]. 

Article uses data from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial 

with selected prostate cancer diagnosed patients. A dataset consists of 8776 patients and it was 

randomly split (80/20 ratio) into a training set of 7021 men and a testing set of 1755. In total, 685 

(6.2%) patients have died from prostate cancer during follow-up. These features were used in the 

analysis: 

• Prostate cancer: PSA, T, N, M stage, Gleason score and initial treatment (if performed) 
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• Medical history: Age, height, weight, current smoking status, smoking pack-years, daily 

alcohol consumption, history of prostatitis, nocturia, arthritis, bronchitis, diabetes, 

emphysema, heart attack, hypertension, liver disease, osteoporosis, stroke, elevated 

cholesterol. 

• Physical activity: Activity at least once a month during the last year, physical activity at work 

• Socio-economic status: Family income, education 

• Hormonal status: Hair pattern at age 45, weight gain pattern 

An XGBoost was used to predict prostate cancer 10-year mortality; hyperparameters were selected 

using the training dataset, nested cross-validation and Bayesian optimization technique. Inside 

XGBoost, the class imbalance was compensated with scale_pos_weight hyperparameter (controls the 

balance of positive and negative weights [31]). 

Authors achieved an excellent model accuracy of 0.98 (±0.01) on the test dataset: 

Table 1. Performances of the survival model evaluated with the bootstrap method on the test dataset. 

Metric Result 

Accuracy 0.98 (±0.01) 

Precision 0.80 (±0.1) 

Recall 0.60 (±0.08) 

F1-score 0.66 (±0.07) 

auROC 0.80 (±0.04) 

prAUC 0.54 (±0.07) 

In this paper, Shapley values have been used to interpret the predictions, where a high Shapley value 

would indicate a greater risk of prostate cancer mortality and vice versa for lower values – decreased 

risk of dying. Feature importance was also analysed, the article reports the five features that 

contributed most to model performance: Gleason score, PSA at diagnosis, age, type of initial 

treatment and T stage. Medical features such as alcohol consumption, hormonal status and physical 

activity also found to be significant in making predictions (Fig. 5). In this graph, a colour represents 

the feature’s value, red – high feature value (e.g. age - older), blue – low feature value (e.g. age - 

younger). Higher SHAP value (x-axis) indicates a greater risk of prostate cancer mortality. 
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Fig. 5. The 20 most important features [25] 

Higher Gleason score, PSA levels and age at diagnosis have a higher Shapley value, which means it 

has a greater risk of prostate cancer mortality (Fig. 6 B-D). 
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Fig. 6. Population (B-D) and individual (E,F) level interpretability [25] 

1.6. Predicting high-risk prostate cancer using machine learning methods 

Henry Barlow et al. (2019) aimed to test the machine learning methods for prostate cancer screening 

using various clinical measurements [26]. This research also determined the effect on the model’s 

accuracy for variables such as BMI, race, rate of change and age. The total size of the dataset was 

21171 patients with 1130 prostate cancer diagnosed individuals of whom 190 have been classified as 

high-risk prostate cancer (HRPC) patients. High-risk cancers are cancers where the cancer cells 

spread fast, which leads to a higher possibility of mortality. The definition of such cancers was: 

Gleason score >7, PSA ≥ 20 ng/mL. 

The authors developed two machine learning models: one for testing the presence of cancer and 

another one to test the presence of high-risk cancer. For the first one, the dataset was labelled in such 

way: patients without prostate cancer were labelled negative, while patients with low or high-risk 

prostate cancer were labelled positive. For the second model, patients without prostate cancer or with 

low-risk cancer were labelled negative, while patients with high-risk cancer were labelled positive. 

Data pre-processing techniques have been used. The overall rate of change (ROC) and recent ROC 

were calculated for PSA. Also, the handling of missing values was done, imbalance correction and 

scaling methods were also performed using various different methods. K-neighbours (KN), support 

vector machine (SVM), decision tree (DT), random forest (RF), multi-layer perceptron classifier 

(MLPC), adaptive boosting (ADA) and quadratic discriminant analysis (QD) models have been 

implemented. To evaluate the classifiers, training (75%) and test (25%) datasets have been used with 

holdout and 10-fold cross-validation. Metrics were such: accuracy, AUC, confusion matrices, 
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sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F1 

score. 

After authors reported average accuracy and average AUC using different data imbalance methods, 

SVMSMOTE was chosen as the sampling method. Nine scaling methods were also tested, and 

standard scaling methods were chosen as their AUC and accuracy were acceptable by the authors. 

ADABoost algorithm performed the best for this dataset (Table 2), given that it had the best AUC in 

holdout set and is only 0.002 off the best in cross-validation. Its accuracy in both was also no more 

than 0.076 from the top accuracy. 

Table 2. Average accuracy and AUC scores for each machine learning algorithm on PoPC 

 KN SVM QD DT RF MLPC ADA 

Holdout accuracy 0.886 0.899 0.916 0.831 0.831 0.850 0.846 

Holdout auc-score 0.683 0.653 0.577 0.777 0.772 0.791 0.777 

10-fold cross validation 

accuracy 

0.876 

(±0.009) 

0.894 

(±0.013) 

0.916 

(±0.009) 

0.838 

(±0.023) 

0.835 

(±0.024) 

0.845 

(±0.015) 

0.843 

(±0.014) 

10-fold cross validation 

auc 

0.674 

(±0.038) 

0.662 

(±0.049) 

0.575 

(±0.049) 

0.778 

(±0.030) 

0.771 

(±0.024) 

0.771 

(±0.037) 

0.776 

(±0.028) 

To predict high-risk prostate cancer, ADABoost algorithm showed the highest AUC according to 

cross-validation and the third highest according to the holdout set (Table 3). 

Table 3. Average accuracy and AUC score for each machine learning algorithm on PoHRPC 

 KN SVM QD DT RF MLPC ADA 

Holdout accuracy 0.979 0.926 0.930 0.906 0.930 0.905 0.929 

Holdout auc-score 0.551 0.674 0.630 0.687 0.653 0.618 0.664 

10-fold cross validation 

accuracy 

0.979 

(±0.007) 

0.925 

(±0.011) 

0.941 

(±0.011) 

0.927 

(±0.016) 

0.915 

(±0.028) 

0.909 

(±0.030) 

0.894 

(±0.013) 

10-fold cross validation 

auc 

0.576 

(±0.082) 

0.686 

(±0.108) 

0.617 

(±0.098) 

0.669 

(±0.086) 

0.696 

(±0.115) 

0.675 

(±0.114) 

0.711 

(±0.120) 

1.7. Machine learning approach vs. prostate-specific antigen density and prostate-specific 

antigen velocity 

Satoshi Nitta et al. compared several machine learning methods in predicting prostate cancer versus 

the traditional prostate-specific antigen based screening for prostate cancer [27]. The authors start 

with a statement that those traditional approaches are widely performed but the accuracy is 

unsatisfactory. They discuss that artificial neural networks show high AUC values compared with 

PSA alone, ranging from 0.67 to 0.87 depending on the selected variables and the examined 

population. 

A total of 512 patients were analysed who had prostate biopsy, out of those, 193 (37.7%) were 

diagnosed with prostate cancer. The mean PSA level, PSA distribution, PSA density and PSA velocity 

were not significant between patients with and without prostate cancer. The mean prostate volume 

was found to be significant as it was higher in patients with prostate cancer than those without one. 

To predict prostate cancer, age, PSA level (max, min, median, mean and variance), prostate volume, 

white blood cell count and result of biopsy have been used. 
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Three machine learning methods have been constructed by the authors: artificial neural network, 

support vector machine and random forest. Performance of these models were evaluated using ROC 

curve and AUC. 

In predicting prostate cancer on the first biopsy, all three machine learning methods are above the 

PSA level, PSA density and PSA velocity in ROC curve comparison (Fig. 7). Artificial neural 

network had 0.69 AUC value and was superior to the random forest and support vector machine as 

those had 0.64 and 0.63 AUC, respectively. The AUC values of the PSA level, PSA density and PSA 

velocity were 0.53, 0.41 and 0.55, respectively. 

Fig. 7. ROC curve for prediction of prostate cancer on the first therapy [27] 

Prediction of the results of second or more biopsies have also been done. Similar results are again 

received, where all three machine learning methods outperform PSA-based approaches (Fig. 8). AUC 

values of the three machine learning methods are such: ANN – 0.70, RF – 0.68 and SVM – 0.71. 
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Fig. 8. ROC curve for prediction of prostate cancer on the first and second therapy [27] 

1.8. Incorporating artificial intelligence in urology: supervised machine learning algorithms 

demonstrate comparative advantage over nomograms in predicting biochemical recurrence 

after prostatectomy 

Yu Guang Tan et al. published an article with the objective being building a machine learning 

algorithm to predict biochemical recurrence (BCR) after radical prostatectomy (RP) and compare 

with more classical methods [28]. 

1130 patients who underwent RP were analysed; a split of 70/30 ratio was done. Authors chose 3 ML 

algorithms for prediction: Naïve Bayes (NB) classifier, random forest (RF) and support vector 

machine (SVM). Model evaluation metrics have been chosen as accuracy and area under the curve 

(AUC). BCR has been evaluated at 3 periods: short-term of 1 year, intermediate-term of 3 year and 

long-term of 5 year. Next to that, the authors compared these 3 ML models with logistic regression 

and classical nomograms. 

Various patient characteristics have been used in models, those are: age, race (Chinese, Malay, Indian, 

Eurasian, others), BMI, PSA at diagnosis, percentage of cores positive, prostate biopsy grade group, 

tumour locality, prostate volume, largest tumour diameter, extraprostatic extension, seminal vesicle 

invasion, surgical margins, nodal disease, perineural invasion, variant ductal histology, pathological 

grade group. 
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After applying the 3 ML models to the training and validation sets, robust prediction score of 𝐴𝑈𝐶 >

0.83 and accuracies > 0.82 have been found across all three models (Table 4, Table 5, Table 6). 

ML models showed a good consistency of the AUC and retained good prediction scores at 5 years on 

validation set (NB: 0.894, RF: 0.888, SVM: 0.855). The authors conclude that prediction scores 

across all models were homogenous, which represented inter-model validity and the reliability of 

incorporating ML as a tool in general. 

Table 4. 1-year BCR (n = 1130) 

 Training set (790) Validation set (340) 

Model Accuracy AUC (95% CI) Accuracy AUC (95% CI) 

Naïve Bayes 0.894 0.898 (0.850-0.945) 0.894 0.881 (0.814-0.947) 

Random Forest 0.958 0.904 (0.847-0.962) 0.950 0.846 (0.751-0.941) 

SVM 0.946 0.838 (0.728-0949) 0.932 0.835 (0.742-0.927) 

Logistic regression 0.942 0.843 (0.772-0914) 0.926 0.797 (0.724-0.870) 

JHH    0.820 (0.766-0.875) 

CAPSURE    0.706 (0.637-0.775) 

KATTAN    0.815 (0.771-0.859) 

Table 5. 3-year BCR (n = 895) 

 Training set (625) Validation set (270) 

Model Accuracy AUC (95% CI) Accuracy AUC (95% CI) 

Naïve Bayes 0.826 0.863 (0.814-0.911) 0.851 0.876 (0.815-0.936) 

Random Forest 0.869 0.883 (0.849-0.917) 0.888 0.875 (0.825-0.926) 

SVM 0.815 0.833 (0.778-0.889) 0.859 0.850 (0.788-0.912) 

Logistic regression 0.834 0.837 (0.777-0.896) 0.862 0.848 (0.788-0.907) 

JHH    0.757 (0.714-0.800) 

CAPSURE    0.720 (0.676-0.765) 

KATTAN    0.798 (0.765-0.830) 

Table 6. 5-year BCR (n = 698) 

 Training set (488) Validation set (210) 

Model Accuracy AUC (95% CI) Accuracy AUC (95% CI) 

Naïve Bayes 0.823 0.860 (0.825-0.895) 0.829 0.894 (0.849-0.940) 

Random Forest 0.852 0.884 (0.856-0.912) 0.838 0.888 (0.835-0.941) 

SVM 0.817 0.846 (0.806-0.886) 0.810 0.855 (0.800-0.917) 

Logistic regression 0.830 0.847 (0.801-0.893) 0.757 0.862 (0.804-0.919) 

JHH    0.750 (0.706-0.793) 

CAPSURE    0.749 (0.706-0.792) 

KATTAN    0.799 (0.765-0.834) 
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1.9. A comparison of various supervised machine learning techniques for prostate cancer 

prediction 

Research on many machine learning method applications to predict prostate cancer was done by Ebru 

Erdem and Ferhat Bozkurt [29]. The aim of their study was to compare various supervised machine 

learning algorithms such as support vector machines (SVM), random forest (RF), k-nearest neighbour 

(kNN), logistic regression (LR), linear regression (LR), naïve Bayes (NB), linear discriminant 

analysis (LDA), linear classification (LF), multi-layer perceptron (MLP) and deep neural network 

(DNN) to predict prostate cancer. The complete research flow is shown in Fig. 9.  

Fig. 9. Workflow of the study [29] 

The dataset with 100 patients has been used with 8 independent variables: radius, texture, area, 

perimeter, compactness, smoothness, fractal dimension and symmetry. The authors split the dataset 

into training and test sets; samples were randomly selected for training 70% and test 30% data. 

From the results shown in Table 7, it is clear that MLP shows the best performance for this dataset, 

having 95.8% AUC, 97% accuracy and 97% F1-score.  
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Table 7. Performance comparison of the observed machine learning algorithms on prostate cancer dataset 

Name of the algorithm Precision (%) Recall (%) AUC (%) Accuracy (%) F1-Score (%) 

kNN 88 83 83.3 83 86 

SVM 94 89 90.3 90 91 

Logistic Regression 73 92 84.7 83 81 

NB 83 94 86.2 87 88 

RF 95 91 88.5 90 93 

Linear Regression 89 84 87.6 83 86 

LDA 100 81 90.5 87 89 

MLP 95 100 95.8 97 97 

MLP-Regressor 90 90 90.3 90 90 

DNN 89 94 88.9 90 92 

 

1.10. An overview of conducted research 

After reviewing the literature, it is easy to understand the relevance of our research topic – prostate 

cancer, which causes a substantial amount of mortalities and incidences both in Lithuania and around 

the globe. During the review, we have noticed there are many factors, variables or ways how 

researchers analyse and predict mortality from prostate cancer. Not only that, but also the response 

interest can vary from paper to paper, we have found papers analysing biochemical recurrence, 

metastasis, cancer specific mortality, overall mortality and high-risk prostate cancer within various 

time frames. Due to this, we have found that authors struggle to compare their results with other 

works 1-to-1, which is why our work comparison with other papers can also be problematic.  

Similar data has been already analysed by us with classical methods [12]. In that research we used a 

similar amount of data from the same source but with lower number of features, also biochemical 

recurrence and metastasis have not been explored at the time. We used classical models – semi-

parametric Cox proportional hazards regression and Fine-Gray competing risk regression to predict 

cancer specific mortality and death from other causes. The Cox model had 0.771 and 0.675 AUC for 

training and testing datasets respectively, while Fine-Gray model had 0.767 and 0.658 AUC values. 

As we have already seen in our previous work, most of the research on prostate cancer prediction is 

done using either Cox or Fine-Gray model, while other traditional machine learning techniques are 

left out. Implementing traditional machine learning algorithms requires more work as to get 

comparable results to classical methods for survival analysis, researchers must do additional steps, 

such as discrete-time modelling. Some of the reviewed literature already highlights the predictive 

power of machine learning algorithms on this topic. 
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2. Methods 

2.1. Survival Analysis 

Survival analysis lets us analyse time-to-event data where we have data until a specific event occurs 

or we have a duration of time between events. This technique helps estimating survival function and 

hazard function of a population. The main challenge of such data is the presence of unobservable data 

after some time or observations where the event has not yet been experienced [30]. One of the 

important aspects of survival analysis data, which helps with the challenge mentioned previously, is 

censoring [3; 30]. This is crucial as censoring helps define incomplete information when the event 

has not occurred at the time of analysis or the follow-up information was lost. There are three main 

groups of censoring: right – survival time is less than or equal to the true survival time, left – survival 

time is greater than or equal to the true survival time and interval – it is known that an event occurred 

within a specific time interval [30]. In our research, a right censoring has been applied. 

The survival function itself gives a probability that an individual (or a group) will survive past a 

certain point in time. The hazard function measures the risk of an event occurrence at time t. These 

functions are estimated from the observed data, and popular methods are used for that such as semi-

parametric Cox proportional hazard regression [11-19], Fine-Gray competing risk regression [12; 14; 

20]. 

The survival function is defined as: 

𝑆(𝑡) = Pr(𝑇 > 𝑡) = 1 − 𝐹(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑡

  ( 1 ) 

Where, T – continuous random variable with probability density function f(t) and cumulative 

distribution function 𝐹(𝑡) =  Pr(𝑇 ≤ 𝑡). 

The survival function monotonically decreases with t and the initial value is 1 at t = 0, which means 

that at the start of the study, all 100% observations are alive and no events occurred. Such survival 

function will give a probability that an individual (or group) is alive at t. An example of  

𝑆(𝑡), 𝑓(𝑡) and 𝐹(𝑡) is presented in Fig. 10.  
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Fig. 10. Example of survival function, probability density function and cumulative distribution function 

Another commonly used function is the hazard function which represents the likelihood of the event 

occurring at t time knowing that no event has yet occurred up to t. The hazard function is defined as: 

𝜆(𝑡) = lim
𝑑𝑡→0

Pr (𝑡 < 𝑇 ≤ 𝑡 + 𝑑𝑡|𝑇 > 𝑡)

𝑑𝑡
=

𝑓(𝑡)

𝑆(𝑡)
= −

𝑑

𝑑𝑡
log 𝑆(𝑡).  ( 2 ) 

2.2. Discrete-time modelling 

Survival prediction models are built on top of data, which is time-to-event data. This data either has 

a time indicator of event occurrence or the last follow-up. In survival analysis, a discrete-time 

modelling is a technique used for data analysis when event (e.g. death, illness, failure) occurs at 

different discrete time periods instead of continuously during a period [2]. This type of modelling is 

especially useful when the time between events is unequal or when it is a challenge to determine exact 

time of event occurrence. When building a survival prediction model, specific models have to be used 

which were built for time-to-event data and have certain assumptions inside them. This is not the case 

for discrete-time modelling where any ML classifier can be applied. One of the main discrete-time 

modelling advantages are time dependant variable inclusion, those variables can change over time 

and can be associated with the target variable. This violates continuous-time models where the 

assumption is made that the covariate effect is constant during a time period. 

Discrete-time data can be easily obtained from continuous-time data. For each person in a dataset (in 

the case of patient data), follow-up time can be split into a set of pre-defined time intervals and for 
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such discrete time interval, an event indicator is set. Having such data, any ML classifier can be 

applied as then the binary outcome is experiencing an event within a specific time interval. 

Suppose we have a continuous-time survival data, where one record holds one individual’s time to 

an event (or latest follow up time), we divide the time into J intervals (𝑡0, 𝑡1], (𝑡1, 𝑡2], … , (𝑡𝐽−1, 𝑡𝐽], 

where 𝑡0 = 0. Patient’s hazard in interval 𝐴𝑗 = (𝑡𝑗−1, 𝑡𝑗], having covariates 𝑋𝑖, can be expressed as 

the conditional probability: 

𝜆𝑖𝑗(𝑋𝑖) = Pr(𝑇𝑖 ∈ 𝐴𝑗|𝑇𝑖 > 𝑡𝑗−1, 𝑋𝑖) = Pr (𝑡𝑗−1 < 𝑇𝑖 ≤ 𝑡𝑗|𝑇𝑖 > 𝑡𝑗−1, 𝑋𝑖)  ( 3 ) 

And the discrete probability function: 

𝑓𝑖𝑗 = Pr(𝑇𝑖 ∈ 𝐴𝑗|𝑋𝑖) = 𝑆(𝑡𝑗−1|𝑋𝑖) − 𝑆(𝑡𝑗|𝑋𝑖)  ( 4 ) 

Survival probability in discrete-time can be obtained in a similar manner as in continuous-time. The 

probability to survive past time t can be obtained as the product of the conditional survival 

probabilities for all time intervals up to and including (𝑡𝐽−1, 𝑡𝐽], such that 𝑡𝑗 ≤ 𝑡: 

𝑆𝑖(𝑡|𝑋𝑖) = Pr(𝑇𝑖 > 𝑡|𝑋𝑖) = ∏ (1 − 𝜆𝑖𝑗(𝑋𝑖))

𝑗:𝑡𝑗≤𝑡

  ( 5 ) 

2.3. Prediction models 

2.3.1. Logistic regression 

Logistic regression is one of the many statistical methods used for classification task. It is used to 

predict binary outcome probability, e.g. a probability that an email is spam or no, a probability that 

patient is sick from a certain illness or not. 

In logistic regression, a relationship between a dependant variable (outcome variable) and one or 

several independent variables is modelled with the use of the logistic function. It’s a type of sigmoid 

function which accepts any input and outputs a value between 0 and 1, and interpretable as a 

probability. 

Logistic regression goal is to find optimal independent variable coefficients (weights) so that the 

predicted outcome probability is close to the observed results. It is done by optimizing the loss 

function, e.g. log loss, which measures difference between predicted probabilities and observed 

results. 

The logistic function is defined as: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
  ( 6 ) 

Where x is the function input. 

For example, if x is a very large value (either positive or negative), logistic function output will be 

respectively close to 1 or 0. If x is 0, the output will be 0.5. 

Logistic regression model is defined as follows: 
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𝑃(𝑦|𝑥) = 𝑓(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛)  ( 7 ) 

Where P(y|x) is a probability that observation with covariates 𝑥1, 𝑥2, … , 𝑥𝑛 belongs to class y, 

𝑤0, 𝑤1, … , 𝑤𝑛 are weight (or coefficients), f(x) is a logistic function. 

2.3.2. Random forest 

Random forest is a type of supervised machine learning methods which can be used in binary outcome 

classification prediction. Random forest is composed of many decision trees. An individual decision 

tree is similar to a scheme of tree structure, and this decision tree is used to make predictions based 

on a set of covariates. Each tree’s internal node means a solution based on one of the attribute values, 

each leaf note means a prediction. To predict an observation, the tree goes from root node to the leaf 

node, following the rules of each internal node. 

In a random forest, each decision tree prediction is combined to obtain the final outcome. This 

combination can be made in several ways, one of the simplest ways – using the majority rule of trees. 

For example, if a random forest is used in binary classification and 60% of trees predict that an 

observation falls into class 0 while 40% of trees predict class 1, random forest prediction will be that 

observation belongs to class 0. 

The random forest training process covers many decision tree creations using various training data 

and function subsets. It is done repeating such process: 

1. Take a random subset of training data. 

2. Train a decision tree using sampled training data. 

3. Repeat this process to obtain many decision trees. 

The idea behind such flow is that each decision tree will make slightly different predictions due to 

the randomness of data and attributes it was trained on, and the combination of all tree predictions 

will be more accurate than any individual tree. 

The following formula shows a general random forest model structure for binary classification: 

�̂� = arg max
𝑘∈0,1

1

𝑇
∑[𝑦�̂� = 𝑘]

𝑇

𝑡=1

  ( 8 ) 

Where �̂� is the final random forest prediction, 𝑇 is the number of decision trees in a forest, 𝑦�̂� – 

prediction of t-th decision tree, 𝑘 ∈ 0,1 are class values. 

The term [𝑦�̂� = 𝑘] is equal to 1 if 𝑦�̂� = 𝑘 and 0 otherwise. Formula calculates how many times, on 

average, each class is predicted by different trees, and the final predicted class is selected as the one 

having the highest average. 

2.3.3. XGBooost 

XGBoost (eXtreme Gradient Boosting) is a type of gradient boosting algorithm which can be used in 

classification tasks [31]. Gradient boosting is a supervised learning method covering training a set of 
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models to make a prediction when each model is being trained to fix earlier model’s mistakes. 

XGBoost individual models are decision trees. 

XGBoost takes advantage of boosting strategy, where trees are built sequentially in such a way that 

a new tree aims to reduce the errors of the previous one. It can be explained in a few simple steps: 

• Initial model 𝐹0 is defined to predict response y.  

• A new model ℎ1 is fit for the residuals 𝑦 − 𝐹0. 

• The boosted version of the 𝐹0 model is then created - 𝐹1, this model is now a combination of 

the initial model 𝐹0 and ℎ1. Since ℎ1 is fit on the residuals of 𝐹0, the error of 𝐹1 will be lower 

than 𝐹0. 

𝐹1(𝑥) = 𝐹0(𝑥) + ℎ1(𝑥)  ( 9 ) 

This process can go on for m iterations to improve the model and minimize the residuals as 

much as possible: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + ℎ𝑚(𝑥)  ( 10 ) 

Here x is our covariates. 

XGBoost model training process is done by repeating such steps: 

1. Train a decision tree using current training data. 

2. Measure loss function gradient with respect to decision tree prediction. 

3. Update training data with the addition of a negative gradient value to the decision tree 

predictions. This is done to increase the weight of observations which have been falsely 

predicted by the decision tree. 

4. Repeat this process to obtain many trained decision trees. 

2.3.4. Neural Networks 

Neural networks or multi-layer perceptron is a supervised learning algorithm with the goal of learning 

such functions from training data: 

𝑓(∙): 𝑅𝑛 → 𝑅𝑜  ( 11 ) 

Where n – input dimension count, o – output dimension count. 

Having covariates 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 and target y, neural networks can learn non-linear function 

approximator for classification or regression task. This is different from logistic regression in such a 

way that there can be one or more non-linear layers between the input and output layer, called hidden 

layers. Fig. 11 shows single layer perceptron and Fig. 12 gives an example of a neural network with 

one hidden layer. 
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Fig. 11. Perceptron 

Fig. 12. Neural network example with one hidden layer 

In these figures, the most left layer is an input layer consisting of neurons {𝑥1, 𝑥2, … , 𝑥𝑛} (covariate 

values). Each neuron in the hidden layer transforms values from the previous layer with linear 

summation: 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛, after which non-linear activation function 𝑔(∙): 𝑅 → 𝑅 is 

used, for example, a hyperbolic tangent function. The last layer is the output layer which transforms 

values into outputs (predictions). 
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2.4. Evaluation method 

2.4.1. Receiver operating characteristic curve 

An receiver operating characteristic (ROC) curve is a type of graph which shows the performance of 

the classifier at all classification thresholds [32]. It is commonly used both in medical decision making 

and machine learning research [32]. This graph measures true positive rate (TPR) and false positive 

rate (FPR) which are defined as: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  ( 12 ) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
  ( 13 ) 

Where TP – true positives (correctly predicted the positive class), FN – false negatives (incorrectly 

predicted the negative class), FP – false positives (incorrectly predicted the positive class), TN – true 

negatives (correctly predicted the negative class). 

Lowering the classification threshold will result in more classified observations as positives, 

increasing both FP and TP. A typical ROC curve graph looks like this: 

Fig. 13. Example of ROC curve 

There are several points in this graph that represent a very specific type of model’s performance. The 

point (0, 0) represents a model which never gives a positive classification, this means it outputs no 

false positive errors but also no true positives. The opposite is (1, 1) point. The point (0, 1) shows a 

perfect classification while 𝑦 = 𝑥 diagonal line shows a model as good as a random guess [32]. 
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2.4.2. Area under the ROC curve 

Area under the ROC curve (AUC) measures the entire two-dimensional area underneath the entire 

ROC curve, which is also sometimes called as c-statistic or concordance index [2]. This reduces the 

ROC performance to a single scalar value. AUC lets us measure the performance of the model across 

all possible classifier thresholds. AUC ranges from 0 to 1, with 0 representing a model whose 

predictions are 100% false, while 1 represents a model whose predictions are 100%. Any real model 

should have AUC above the 0.5, as 0.5 represents a model no better than a random guess. The AUC 

of a classifier is equals to a probability that the classification model will rank a random positive 

observation higher than random negative observation [32]. This metric is scale-free as it measures 

how the predictions are ranked and not their absolute values. It is also classification-threshold-free as 

it measures the quality of the model’s predictions not only with a single threshold. 

2.5. Structure of the research 

2.5.1. Research Flow 

Research begins with data preparation: relevant column selection, removing rows with missing 

values, creating “death_from_other_causes” and “patient_id” column. A random 80/20% stratified 

split based on overall mortality of patients is made to obtain training and testing data. Testing data is 

not used throughout any step of the model training, evaluation or hyperparameter optimization, this 

subset of data is only used to evaluate the final model (see Fig. 14). 

Fig. 14. Complete research flow 

2.5.2. Hyperparameter optimization 

For each machine learning model (logistic regression, random forest, XGBoost, neural network) and 

each response variable (cancer specific mortality, death from other causes, biochemical recurrence, 

metastasis) a hyperparameter optimization based on Bayesian optimization was performed, which 

uses the results from the previous iteration for hyperparameter value sampling improvement [3; 33]. 

A complete flow of this approach is presented in Fig. 15. 
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Fig. 15. Hyperparameter optimization 

One important part to mention is the evaluation process inside the Bayesian optimization. Unlike 

most built-in packages for machine learning, which evaluates the model performance on discrete-

time data by default, we developed an evaluation strategy to measure the performance of the model 

on continues-time data. This way, the optimization process minimised the loss function, which was a 

negative of average validation AUC. 

2.5.3. Evaluation of the models 

Each developed model is evaluated the same way for every response variable. Once the appropriate 

model’s hyperparameters are selected, training of the model is performed with different amount of 

data. Models are trained using a subset of continuous-time training data having ≤ 24, ≤  36, … , ≤

 216 observed survival data, this lets us obtain models for short, medium and long-term prognosis. 

Each model is then validated on predicted 6, 12, 18, 24 … month risks using subsets of training and 

testing data. All of the AUC values obtained throughout the evaluation are then averaged to obtain 

single metric, which will be compared across different models and architectures. This flow is shown 

in Fig. 16. 
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Fig. 16. Flow of model evaluation 

2.6. Software 

This work makes use of many various statistical methods, machine learning models and pre-

processing techniques. For this reason, a python (version: 3.10.4) programming language is used 

within Visual Studio Code (version: 1.76.2) integrated development environment. The project used 

version control using Git and Github, whole project can be accessed on 

https://github.com/vytautas9/prostate-cancer-mortality.  

 

https://github.com/vytautas9/prostate-cancer-mortality
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3. Results 

3.1. Data 

The descriptive characteristics of patients are presented in Table 17. The median age of patients was 

64 years with minimum of 40 and maximum of 87 years. Median PSA level is 6.4 (IQR 4.8 – 9.7). 

Out of all 1564 prostate cancer diagnosed patients, 264 (16.9%) patients have died, out of those, 50 

(3.2%) died from prostate cancer and 214 (13.7%) from other causes. The median follow-up after RP 

was 104 months (IQR 65 – 159). 460 (29.4%) of men also experienced biochemical recurrence and 

99 (6.3%) experienced metastases. 

3.2. Data split 

A random 80/20% stratified split of the data was made to obtain train and test datasets. Stratification 

is performed on overall mortality feature to have a similar proportion of mortalities across datasets. 

The testing dataset was only used to evaluate the final machine learning models as seen in Fig. 14. 

Descriptive characteristics of patients split across train and test datasets are presented in Table 18. 

The split is stratified on overall mortality feature, that is what we see as well in the characteristics, 

where the training dataset consist of 211 (16.9%) mortalities and test dataset has 53 (16.9%) 

mortalities. Worth mentioning that the training set has 42 (3.4%) cancer specific mortalities with a 

median follow-up 104 months (IQR 64 – 159), while the testing set – has 8 (2.6%) mortalities with a 

median follow-up of 106 months (IQR 70 – 163). 

3.3. Hyperparameter optimization 

As mentioned in Hyperparameter optimization subsection, hyperparameter optimization was done for 

each response variable and machine learning method, based on Bayesian optimization. A sample of 

experiments is presented in Table 20 with some experiments removed due to very low accuracy or 

similar accuracy to other experiments. 

Various hyperparameters have been considered in optimization process, such as: 

• Random forest: criterion (entropy, gini), the maximum depth of the tree (uniformly 

between 5 and 20), the number of features to consider for split (root square, log2, number 

of features), the minimum number of samples required for a leaf node (uniformly between 

0 and 0.5), the minimum number of samples require to split (uniformly between 0 and 1), 

the number of trees (uniformly between 100 and 500) 

• XGBoost: the subsample ratio of columns for tree (uniformly between 0.5 and 1), gamma 

(uniformly between 0 and 1), learning rate (uniformly between 0 and 0.2), the maximum 

depth of the tree (uniformly between 2 and 20), the minimum sum of instance weight 

needed for child (uniformly between 1 and 10), the number of trees (uniformly between 

100 and 1000), subsample ratio of the training instance (uniformly between 0.5 and 1), L1 

regularization term (uniformly between 0 and 0.1), L2 regularization term (uniformly 

between 0 and 10), balance of positive and negative weights (uniformly between 0 and 1) 

• Neural network: hidden layer size (with uniformly between 25 and 100, 8, 16, 32, 64, 128, 

(8, 8), (16, 16), (32, 16), (32, 32), (16, 8), (128, 64, 32, 16), (32, 16, 16)), alpha 

(logarithmic normally distributed with 𝑚𝑢 =  𝑙𝑜𝑔(10−4) and 𝑠𝑖𝑔𝑚𝑎 =  1), activation 

function (logistic sigmoid, hyperbolic tan, rectified linear unit function (relu)), learning 

rate schedule for weight updates (constant, adaptive), solver for weight optimization 
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(stochastic gradient descent, adam, limited-memory Broyden-Fletcher-Goldfarb-Shanno 

(lbfgs)) 

Other hyperparameters are set as default by the used method library. Optimal hyperparameters for 

each ML model and response variable: 

• Biochemical recurrence 

o Random Forest: criterion (gini), the maximum depth of the tree (19), the number 

of features to consider for split (number of features), the minimum number of 

samples required for a leaf node (0.000055), the minimum number of samples 

require to split (0.32), the number of trees (240) 

o XGBoost: the subsample ratio of columns for tree (0.2), gamma (0.1), learning rate 

(0.1), the maximum depth of the tree (4), the minimum sum of instance weight 

needed for child (3), the number of trees (500), subsample ratio of the training 

instance (0.2), L1 regularization term (0.001), L2 regularization term (1), balance 

of positive and negative weights (0.7) 

o Neural network: hidden layer size (34), alpha (0.0058), activation function 

(logistic sigmoid), solver for weight optimization (adam) 

• Cancer specific mortality 

o Random Forest: criterion (entropy), the maximum depth of the tree (3), the number 

of features to consider for split (0.1), the minimum number of samples required 

for a leaf node (1), the minimum number of samples require to split (2), the number 

of trees (400) 

o XGBoost: the subsample ratio of columns for tree (0.2), gamma (0.1), learning rate 

(0.1), the maximum depth of the tree (4), the minimum sum of instance weight 

needed for child (3), the number of trees (500), subsample ratio of the training 

instance (0.2), L1 regularization term (0.001), L2 regularization term (1), balance 

of positive and negative weights (0.7) 

o Neural network: hidden layer size (32), alpha (0.0002), activation function 

(hyperbolic tan), solver for weight optimization (adam) 

• Death from other causes 

o Random Forest: criterion (entropy), the maximum depth of the tree (16), the 

number of features to consider for split (number of features), the minimum number 

of samples required for a leaf node (0.05), the minimum number of samples require 

to split (0.59), the number of trees (378) 

o XGBoost: the subsample ratio of columns for tree (0.2), gamma (0.1), learning rate 

(0.1), the maximum depth of the tree (4), the minimum sum of instance weight 

needed for child (3), the number of trees (500), subsample ratio of the training 

instance (0.2), L1 regularization term (0.001), L2 regularization term (1), balance 

of positive and negative weights (0.7) 

o Neural network: hidden layer size (70), alpha (0.00026), activation function (relu), 

solver for weight optimization (adam) 

• Metastasis 

o Random Forest: criterion (entropy), the maximum depth of the tree (3), the number 

of features to consider for split (0.1), the minimum number of samples required 

for a leaf node (1), the minimum number of samples require to split (2), the number 

of trees (400) 
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o XGBoost: the subsample ratio of columns for tree (0.55), gamma (0.05), learning 

rate (0.15), the maximum depth of the tree (13), the minimum sum of instance 

weight needed for child (2), the number of trees (535), subsample ratio of the 

training instance (0.65), L1 regularization term (0.01), L2 regularization term 

(0.76), balance of positive and negative weights (0.91) 

o Neural network: hidden layer size (8, 8), alpha (0.026), activation function (relu), 

solver for weight optimization (lbfgs) 

3.4. Discrete time modelling example 

3.4.1. Dataset transformation 

We can visualise and describe discrete time modelling with our data to better understand the 

workflow. As from Table 18, we know that we have 1251 patients in a training set, if we would 

train a model on ≤ 200 months data, we would firstly need to transform the data into discrete-time 

data. As mentioned in the Discrete-time modelling section, we divide the survival time into J 

intervals (𝑡0, 𝑡1], (𝑡1, 𝑡2], . . . , (𝑡𝐽−1, 𝑡𝐽], where 𝑡0 = 0. Doing such transformation, it explodes our 

dataset from 1251 rows (1 row per patient) to 134666 rows (multiple rows per patient) and also we 

add 2 features to the dataset: discrete survival time indicator and discrete event indicator. 

We can take the example of a patient who has not died from prostate cancer. Such an example can 

be a patient 66 years old with the latest follow-up time of 132 months. For such patient, a dataset 

will be generated: 

Table 8. Discrete-time non-event patient data example 

Survival months Cancer specific 

mortality 

Discrete 

survival time 

Discrete cancer specific 

mortality indicator 

132 No 1 No 

132 No 2 No 

… … … … 

132 No 131 No 

132 No 132 No 

We are training a model on ≤ 200 months of data, and because this patient has a follow-up time of 

132 months, there will be 132 rows created for each discrete month timestamp. At each discrete 

time, an indicator for cancer specific mortality is also created. A different example of a non-event 

patient with follow-up time longer than 200 months. A patient is 62 years old with follow-up time 

of 211 months. For such patient, a dataset will be generated: 

Table 9. Discrete time non-event patient data with longer follow-up time example 

Survival months Cancer specific 

mortality 

Discrete 

survival time 

Discrete cancer specific 

mortality indicator 

211 No 1 No 

211 No 2 No 

… … … … 

211 No 199 No 

211 No 199 No 
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Because our training range is lower than this patient’s follow-up time, the data will be clipped, and 

in such a dataset, only 200 rows (for each discrete month) will be generated. 

The two above examples are of non-event patients, meaning those patients have not been reported 

dead due to prostate cancer. We can take the example of patients who have died from prostate 

cancer. For example, a patient 63 years old who died from prostate cancer and has a follow-up time 

of 25 months. For such patient, a dataset will be generated: 

Table 10. Discrete time event patient data example 

Survival months Cancer specific 

mortality 

Discrete 

survival time 

Discrete cancer specific 

mortality indicator 

25 Yes 1 No 

25 Yes 2 No 

… … … … 

25 Yes 24 No 

25 Yes 25 Yes 

In this case, we can see that the last row is the time when patient death has been reported, an event 

indicator for this discrete timestamp will be made. Another example would be with a patient who 

has died due to prostate cancer, but the follow-up time is above our training range: 

Table 11. Discrete time event patient data with longer follow-up time example 

Survival months Cancer specific 

mortality 

Discrete 

survival time 

Discrete cancer specific 

mortality indicator 

203 Yes 1 No 

203 Yes 2 No 

… … … … 

203 Yes 199 No 

203 Yes 200 No 

Even though we know that this person died from prostate cancer, when building a model with ≤

200 months data, this person would be considered as censored patient who have not yet 

experienced death (up to 200th month). 

3.4.2. Evaluating model 

After training a model on discrete-time data and before evaluating the model, the data must be 

transformed in a slightly different way. As shown in Table 8 and Table 10, when follow-up time is 

shorter than the model’s training range, we will only have rows up to patient’s follow-up time. To 

evaluate the model, we need to extend this data. For example, a patient 68 years old who died from 

prostate cancer and has a follow-up time of 39 months. To evaluate a model on such patient, the 

individual’s data will transformed in such a way:  
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Table 12. Discrete time event patient data with cumulative indicator 

Survival months Cancer specific 

mortality 

Discrete 

survival time 

Discrete cancer specific 

mortality indicator 

Cumulative cancer specific 

mortality indicator 

39 Yes 1 No No 

… … … … … 

39 Yes 37 No No 

39 Yes 38 No No 

39 Yes 39 Yes Yes 

39 Yes 40 - Yes 

39 Yes 41 - Yes 

… … … … … 

39 Yes 200 - Yes 

Because this person has a follow-up of 39 months and a cancer specific death, the discrete indicator 

cannot be used for evaluation and a cumulative indicator is created, which marks the event time and 

onwards as event times. For the same patient, we can use our model to predict the mortality 

probability: 

Table 13. Discrete time event patient data with discrete mortality probabilities 

Survival months Cancer 

specific 

mortality 

Discrete 

survival time 

Discrete cancer 

specific 

mortality 

indicator 

Cumulative 

cancer specific 

mortality 

indicator 

Discrete 

mortality 

probability 

39 Yes 1 No No 0.000594 

… … … … … … 

39 Yes 37 No No 0.000886 

39 Yes 38 No No 0.000896 

39 Yes 39 Yes Yes 0.000906 

39 Yes 40 - Yes 0.000916 

39 Yes 41 - Yes 0.000926 

… … … … … … 

39 Yes 200 - Yes 0.005388 

What the ML model predicted is the probability of a patient to experience cancer specific mortality 

at the specific month after diagnosis. Out of this probability, a cumulative hazard can be calculated:  
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Table 14. Discrete time event patient data with cumulative hazard 

Discrete 

survival time 

Discrete cancer 

specific 

mortality 

indicator 

Cumulative 

cancer specific 

mortality 

indicator 

Discrete 

mortality 

probability 

Negative log 

probability 

Cumulative 

hazard 

1 No No 0.000594 -0.000595 0.000594 

… … … … … … 

37 No No 0.000886 -0.000887  0.026691 

38 No No 0.000896 -0.000896 0.027563 

39 Yes Yes 0.000906 -0.000907 0.028444 

40 - Yes 0.000916 -0.000917  0.029335 

41 - Yes 0.000926 -0.000927  0.030234 

… … … … … … 

200 - Yes 0.005388 -0.005403 0.353876 

where 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑙𝑜𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = log𝑒 (1 − 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) and 

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 = 1 − 𝑒𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡′𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 log 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

3.4.3. Visualising patient’s mortality 

Once a dataset has been transformed into discrete-time data and cumulative hazards have been 

calculated, we can visualise the mortality for each patient. A model has been trained on ≤ 216 months 

data using a random forest algorithm for cancer specific mortality with optimal hyperparameters 

mentioned in Hyperparameter optimization section. 

The patient’s cumulative hazard is shown in Fig. 17, the x-axis shows the number of months after 

diagnosis (shown in years as well at the top of the chart), the y-axis shows cumulative probability of 

cancer specific mortality, and the hazard is shown for the whole 216 months period, the red line shows 

the moment a patient experienced cancer specific mortality. The hazard always starts as 0 at 𝑡0 and, 

in this individual’s case, reaches 0.21 probability on the follow-up month (20th). If a person would 

have survived past 20th months, the model predicts a steeper increase in probability after a follow-up 

timestamp, increasing the probability to 0.73 at 5th year, 0.95 at 10th year and 0.99 at 18th year after 

diagnosis.   
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Fig. 17. Patient‘s 177 cumulative hazard from training set 

The change in steeper cumulative hazard slope can be seen in discrete mortality probability figure 

shown in Fig. 18. This graph shows the same data, except the y-axis shows the discrete mortality 

probability instead of cumulative one. At 𝑡1 the mortality probability is 0.01 and increases to 0.024 

at 𝑡20, after the follow-up, the increased instant mortality probability either stays or increases, 

reaching 0.033 at 𝑡216. 

Fig. 18. Patient‘s 177 discrete mortality probability from training set 

A different trend is modelled for another person in Fig. 19, where at follow-up time 𝑡96 the risk 

reached 0.033 (at this time, the individual died due to prostate cancer), increased to 0.065 at 15th year 

and 0.099 at 18th year. The instant mortality probability can be seen in Fig. 27. 
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Fig. 19. Patient‘s 312 cumulative hazard from training set 

There can also be cases where a patient has not yet died from prostate cancer, but the model predicts 

a high probability. Such case can be seen in Fig. 20, where the cumulative hazard is 0.33 at follow-

up time 𝑡31 and increases in a similar manner as the 177th patient seen in Fig. 17. The mortality 

probability increases to 0.67 in the 5th year, 0.92 in the 15th year and 0.99 in the 18th year. Discrete 

mortality probabilities can be seen in Fig. 28. 

Fig. 20. Patient‘s 185 cumulative hazard from testing set 

3.5. Comparison of models 

Using optimal hyperparameters for each ML algorithm and response variable, average training and 

testing set AUC values have been reported in Table 15 alongside with average standard deviations. 
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In the case of cancer specific mortality, the optimal model was found to be a random forest having 

0.951 (SD = 0.037) training AUC and 0.928 (SD = 0.045) testing AUC as well as having the lowest 

standard deviation. While logistic regression showed 2nd best results on training set with 0.935 AUC 

(SD = 0.038), it was the worst out of 4 on the testing set, having 0.890 AUC (SD = 0.058). Predicting 

death from other causes seemed much harder, where the training AUC ranged from 0.663 to 0.722 

and testing AUC from 0.637 to 0.689. While the XGBoost model was found to be optimal on training 

set, the optimal model is random forest as it performed better on the testing set. All 4 models 

performed quite the same predicting biochemical recurrence, where the training AUC ranged from 

0.859 to 0.897 and testing AUC from 0.840 to 0.855. The optimal model is random forest having 

training AUC 0.865 (SD = 0.030) and testing AUC 0.855 (SD = 0.034) followed very closely by 

neural network with training AUC 0.865 (SD = 0.034) and testing AUC 0.850 (SD = 0.040). The 

XGBoost showed almost perfect AUC for the training set in predicting metastasis, having 0.997 AUC 

(SD = 0.005), yet it shows overfitting as testing set AUC decreased down to 0.927 (SD = 0.035) while 

still having the highest testing AUC out of 4 models but having the highest standard deviation as well. 

The other model which performed well is random forest once again with training set AUC 0.933 (SD 

= 0.038) and testing AUC 0.921 (SD = 0.028). 

Table 15. Optimal models and their AUC metrics 

Model Avg. train AUC Avg. train AUC SD Avg. test AUC Avg. test AUC SD 

Cancer specific mortality 

Logistic regression 0.935 0.038 0.890 0.058 

Random Forest 0.951 0.037 0.928 0.045 

XGBoost 0.919 0.051 0.896 0.053 

Neural network 0.903 0.079 0.902 0.092 

Death from other causes 

Logistic regression 0.699 0.046 0.637 0.087 

Random Forest 0.663 0.049 0.689 0.046 

XGBoost 0.722 0.070 0.659 0.066 

Neural network 0.670 0.060 0.654 0.078 

Biochemical recurrence 

Logistic regression 0.859 0.031 0.840 0.038 

Random Forest 0.865 0.030 0.855 0.034 

XGBoost 0.897 0.025 0.841 0.039 

Neural network 0.865 0.034 0.850 0.040 

Metastasis 

Logistic regression 0.926 0.041 0.907 0.027 

Random Forest 0.933 0.038 0.921 0.028 

XGBoost 0.997 0.005 0.927 0.035 

Neural network 0.920 0.042 0.903 0.030 

Comparison across models can also be made considering different prediction periods. This can be 

seen for training set and cancer specific mortality in Fig. 21, here, x-axis shows a prediction horizon 

in months (lower graph side) and years (upper), y-axis shows average AUC. As in Table 15, random 

forest model is optimal, having 0.996 AUC for 2 year prediction horizon, 0.988 for 5 years, 0.909 for 
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10 years and 0.885 for 18 years. It is also clear from the graph that neural network model struggles 

more predicting short-term risk than other 3 models, having 0.922 AUC for 2 year prediction. 

Fig. 21. Average training AUC across different prediction periods for cancer specific mortality 

Using testing set, random forest was both optimal when AUCs are average across and as well as 

looking into different prediction horizons (Table 15, Fig. 22). Random forest had 0.924 AUC for 2.5 

years prediction, 0.971 for 5 years, 0.943 for 10 years and 0.883 for 18 years. It is worth mentioning 

that prediction horizon only start from 2.5 years as testing set only has first cancer specific mortality 

at 2.5 years mark. In testing set, the last cancer specific mortality was reported at 11.5 years mark and 

up to 18 years there is no mortalities reported (Table 19). 
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Fig. 22. Average testing AUC across different prediction periods for cancer specific mortality 

ML models can also be compared when predicting single patient’s mortality. We used optimal models 

for cancer specific mortality and an example for that is presented in Fig. 23 with 67 years old patient 

who has died from prostate cancer at 77th month mark. As we saw above, all 4 models predict cancer 

specific mortality well, in terms of AUC, but there is a difference in what risk ML models do predict. 

From the graph it is clear that for this patient, neural network predicts much lower risk than other 3 

models. At 5 year mark, random forest predicts 0.20 risk, XGBoost and linear regression – both 0.09 

while neural network – only 0.02. At 10 year mark, random forest predicted risk increases to 0.38, 

XGBoost to 0.24, linear regression – 0.25 and neural network 0.05. While all 3 models predict a 

different risk, all those risks can be used for prediction depending on different thresholds, the similar 

AUC values indicates that. 
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Fig. 23. Patient‘s 25 cumulative hazard from testing set across different models 

Looking into discrete mortality probability graph presented in Fig. 24, it is visible, that logistic 

regression stands out from the 4 models. While random forest, neural network and XGBoost methods 

do estimate a non-monotonic function, which can either increase or decrease, logistic regression 

estimates monotonically increasing discrete mortality probability function. Logistic regression 

estimates start with 0.001 discrete probability and monotonically increases up to 0.014. It is also 

noticeable that XGBoost and neural network estimates slightly increased mortality risk during and 

around the follow-up month and after that it slightly decreases. Random forest on the other hand does 

not show any risk increase during the follow-up month. 
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Another example of the same patient analysed in Fig. 20 is presented in Fig. 25. In this case, the 

patient did not yet die from prostate cancer but as we can see, the modelled risks are high. At follow-

up mark (31st month) random forest predicts 0.33 risk, linear regression – 0.14 while XGBoost and 

neural network – 0.04 and 0.02 respectively. 

 

Fig. 24. Patient‘s 25 discrete mortality probability from testing set across different models 
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Fig. 25. Patient‘s 185 cumulative hazard from testing set across different models 

The discrete mortality probability graph presented in Fig. 26, shows a similar trend for logistic 

regression as in Fig. 24. Logistic regression estimates start with 0.004 discrete probability and 

monotonically increases up to 0.05.  
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3.6. Comparison with classical models 

As mentioned in the An overview of conducted research section, a similar analysis has been already 

done on similar data using classical models – semi-parametric Cox proportional hazards regression 

and Fine-Gray competing risk regression [12]. Two analysis and the models cannot be directly 

compared, only the high-level overview can be done. The mentioned paper had a dataset of 2410 and 

we had 1564 patients, the train/test split was performed differently, and the number of features were 

also different. In our current research, all features from the previous paper were also used (this time 

we did not had patient with unknown surgical margin status) with some additional ones, such as 

PLND01, persistent PSA, clinical stage, biopsy and pathologic Gleason scores, biopsy Gleason grade 

group and risk groups. The AUC values of these models for cancer specific mortality are shown in 

Table 16. 

Table 16. AUC values of classical models 

Model Train AUC Test AUC 

Cox 0.771 0.675 

Fine-Gray 0.767 0.658 

 

Fig. 26. Patient‘s 185 discrete mortality probability from testing set across different models 
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The classical models achieved AUC testing values of 0.675 and 0.658, respectively with Cox and 

Fine-Gray models. In our current research, we have been able to achieve 0.928 testing AUC with 

random forest model. 
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Conclusions 

1. After reviewing prostate cancer incidence and mortality rates across the globe, we have learned 

that it is a serious issue as based on 2020 report, prostate cancer was the 4th most common type 

of cancer across the world and 2nd between men. In Lithuania it is the most common type of 

cancer, 4th by mortality incidences and 2nd between men. 

2. After hyperparameter optimization we have been able to find optimal hyperparameters for each 

machine learning method and for each response variable. The parameters vary depending on the 

response variable we use. 

3. We have successfully implemented discrete time modelling and custom loss function. 

4. After calculating cumulative hazards and discrete mortality probabilities on individual level, we 

have been able to measure the patient’s risk not only during the follow-up but also the short-, mid-

, and long-term risk after diagnosis. Discrete mortality probabilities gave us insights at what point 

the discrete risks are increasing. 

5. The optimal models have been trained for each response variable. Random forest algorithm 

returned the highest testing AUC values when modelling cancer specific mortality, death from 

other causes and biochemical recurrence, respectively the AUC values are: 0.928, 0.689 and 

0.855. XGBoost method modelled metastasis with the highest testing AUC – 0.927 but showed 

overfitting symptoms. 

6. We have been able to compare the machine learning models on a single individual level and saw 

that the predicted risks differ between the models. 

7. Doing a high-level comparison of our research to the research we did previously with classical 

models – we saw that our models predict risks much more accurately, the optimal AUC testing 

value from classical methods was 0.675 with Cox model while our optimal AUC was 0.928 with 

random forest. 
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Appendices 

Appendix 1. Descriptive tables 

Table 17. Descriptive characteristics of 1564 prostate cancer patients. 
 

  (N=1564) 

Patient‘s age  

Median  

Min - Max 

64.0 

40.0 - 87.0 

Prostate specific antigen (PSA), ng/Ml 

Median 

Quantile 25% – 75% 

6.4 

4.8 - 9.7 

PLND01 [7], n (%) 

0, lymph node status 0 and 1 962 (61.5%) 

1, lymph node status untreated 602 (38.5%) 

Persistent PSA [7], n (%) 

0, undetectable PSA < 0.1 ng/mL 1285 (82.2%) 

1, persistent PSA ≥ 0.1 ng/mL at the first measurement 4-8 weeks after RP 279 (17.8%) 

Clinical stage (cT), n (%) 

1 434 (27.7%) 

2 911 (58.2%) 

3 219 (14.0%) 

Pathologic stage (pT), n (%) 

0, initial stage, cancer is not detectable by tomography 999 (63.9%) 

1, cancer is developing in the prostate area 427 (27.3%) 

2, cancer has spread outside the prostate area 138 (8.8%) 

Lymph node status (LN), n (%) 

0, pN0, clean 535 (34.2%) 

1, pN1, damaged by cancer 67 (4.3%) 

2, pNx, untreated 962 (61.5%) 

Surgical margin status (SM), n (%) 

0, clean 1052 (67.3%) 

1, damaged by cancer 512 (32.7%) 

Biopsy gleason score (GS) 

Mean (standard deviation) 6.5 (0.7) 

Biopsy gleason grade group, n (%) 

1, biopsy GS (<=6) 894 (57.2%) 

2, biopsy GS (3+4) 479 (30.6%) 

3, biopsy GS (4+3) 75 (4.8%) 

4, biopsy GS (=8) 79 (5.1%) 

5, biopsy GS (>=9) 37 (2.4%) 

Pathologic gleason score (GS) 
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Mean (standard deviation) 6.9 (0.8) 

Pathologic gleason grade group, n (%) 

1, pathologic GS (<=6) 429 (27.4%) 

2, pathologic GS (3+4) 788 (50.4%) 

3, pathologic GS (4+3) 165 (10.5%) 

4, pathologic GS (=8) 84 (5.4%) 

5, pathologic GS (>=9) 98 (6.3%) 

Risk group [7], n (%) 

0, low, pT2, GG1, PSA<10 ng/mL, Nx, pN0 337 (21.5%) 

1, intermediate, pT3a, GG2-3, PSA 10-20 ng/mL, Nx, pN0 926 (59.2%) 

2, high, pT3b, GG4-5, PSA>20 ng/mL, pN1 301 (19.2%) 

Overall mortality (OM), n (%) 

0, no 1300 (83.1%) 

1, yes 264 (16.9%) 

Cancer specific mortality (CSM), n (%) 

0, no 1514 (96.8%) 

1, yes 50 (3.2%) 

Death from other causes (DOC), n (%) 

0, no 1350 (86.3%) 

1, yes 214 (13.7%) 

Survival time (months) 

Median 

Quantile 25% – 75% 

104.0 

65.0 - 159.0 

Biochemical recurrence (BCR), n (%) 

defined as PSA > 0.2 ng/mL at two consecutive measurements [7]. 

0, no 1104 (70.6%) 

1, yes 460 (29.4%) 

Survival time (months) (BCR) 

Median 

Quantile 25% – 75% 

41.5 

14.0 - 85.0 

Metastasis (MTS), n (%) 

0, no 1465 (93.7%) 

1, yes 99 (6.3%) 

Survival time (months) (MTS) 

defined as skeletal or visceral lesions confirmed by a bone scar, computed tomography or 

magnetic resonance imaging [7]. 

Median 

Quantile 25% – 75% 

62.0 

26.8 - 119.2 

 

Table 18. Descriptive characteristics of 1564 prostate cancer patients across train/test split. 
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  Train 

(N=1251) 

Test 

(N=313) 

Patient‘s age    

Median  

Min - Max 

64.0 

40.0 - 78.0 

63.0 

45.0 - 87.0 

Prostate specific antigen (PSA), ng/Ml   

Median 

Quantile 25% – 75% 

6.5 

4.8 - 9.7 

6.2 

4.8 - 9.3 

PLND01 [7], n (%)   

0, lymph node status 0 and 1 766 (61.2%) 196 (62.6%) 

1, lymph node status untreated 485 (38.8%) 117 (37.4%) 

Persistent PSA [7], n (%)   

0, undetectable PSA < 0.1 ng/mL 1041 (83.2%) 244 (78.0%) 

1, persistent PSA ≥ 0.1 ng/mL at the first measurement 4-8 weeks after RP 210 (16.8%) 69 (22.0%) 

Clinical stage (cT), n (%)   

1 347 (27.7%) 87 (27.8%) 

2 729 (58.3%) 182 (58.1%) 

3 175 (14.0%) 44 (14.1%) 

Pathologic stage (pT), n (%)   

0, initial stage, cancer is not detectable by tomography 796 (63.6%) 203 (64.9%) 

1, cancer is developing in the prostate area 348 (27.8%) 79 (25.2%) 

2, cancer has spread outside the prostate area 107 (8.6%) 31 (9.9%) 

Lymph node status (LN), n (%)   

0, pN0, clean 430 (34.4%) 105 (33.5%) 

1, pN1, damaged by cancer 55 (4.4%) 12 (3.8%) 

2, pNx, untreated 766 (61.2%) 196 (62.6%) 

Surgical margin status (SM), n (%)   

0, clean 847 (67.7%) 205 (65.5%) 

1, damaged by cancer 404 (32.3%) 108 (34.5%) 

Biopsy gleason score (GS)   

Mean (standard deviation) 6.5 (0.7) 6.5 (0.8) 

Biopsy gleason grade group, n (%)   

1, biopsy GS (<=6) 710 (56.8%) 184 (58.8%) 

2, biopsy GS (3+4) 390 (31.2%) 89 (28.4%) 

3, biopsy GS (4+3) 57 (4.6%) 18 (5.8%) 

4, biopsy GS (=8) 67 (5.4%) 12 (3.8%) 

5, biopsy GS (>=9) 27 (2.2%) 10 (3.2%) 

Pathologic gleason score (GS)   

Mean (standard deviation) 6.9 (0.8) 6.9 (0.8) 

Pathologic gleason grade group, n (%)   

1, pathologic GS (<=6) 332 (26.5%) 97 (31.0%) 
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2, pathologic GS (3+4) 638 (51.0%) 150 (47.9%) 

3, pathologic GS (4+3) 136 (10.9%) 29 (9.3%) 

4, pathologic GS (=8) 67 (5.4%) 17 (5.4%) 

5, pathologic GS (>=9) 78 (6.2%) 20 (6.4%) 

Risk group [7], n (%)   

0, low, pT2, GG1, PSA<10 ng/mL, Nx, pN0 261 (20.9%) 76 (24.3%) 

1, intermediate, pT3a, GG2-3, PSA 10-20 ng/mL, Nx, pN0 749 (59.9%) 177 (56.5%) 

2, high, pT3b, GG4-5, PSA>20 ng/mL, pN1 241 (19.3%) 60 (19.2%) 

Overall mortality (OM), n (%)   

0, no 1040 (83.1%) 260 (83.1%) 

1, yes 211 (16.9%) 53 (16.9%) 

Cancer specific mortality (CSM), n (%)   

0, no 1209 (96.6%) 305 (97.4%) 

1, yes 42 (3.4%) 8 (2.6%) 

Death from other causes (DOC), n (%)   

0, no 1082 (86.5%) 268 (85.6%) 

1, yes 169 (13.5%) 45 (14.4%) 

Survival time (months)   

Median 

Quantile 25% – 75% 

104.0 

64.0 - 159.0 

106.0 

70.0 - 163.0 

Biochemical recurrence (BCR), n (%) 

defined as PSA > 0.2 ng/mL at two consecutive measurements [7]. 

  

0, no 894 (71.5%) 210 (67.1%) 

1, yes 357 (28.5%) 103 (32.9%) 

Survival time (months) (BCR)   

Median 

Quantile 25% – 75% 

40.0 

15.0 - 84.0 

45.0 

12.0 - 91.0 

Metastasis (MTS), n (%)   

0, no 1171 (93.6%) 294 (93.9%) 

1, yes 80 (6.4%) 19 (6.1%) 

Survival time (months) (MTS) 

defined as skeletal or visceral lesions confirmed by a bone scar, computed 

tomography or magnetic resonance imaging [7]. 

  

Median 

Quantile 25% – 75% 

61.0 

26.0 - 117.0 

72.0 

31.0 - 122.0 

 

 

 

 

Table 19. Cumulative sum of events across different survival times in training/testing sets 
 

Biochemical 

recurrence 

Cancer specific 

mortality 

Death from other 

causes 

Metastasis 
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Month Train Test Train Test Train Test Train Test 

6 127 40 

  

2 2 4 

 

12 170 53 

  

4 3 10 

 

18 199 58 1 

 

8 5 18 2 

24 223 63 3 

 

10 7 23 3 

30 240 68 6 1 13 8 27 4 

36 257 72 7 1 20 11 29 7 

42 268 75 11 1 24 12 29 8 

48 279 82 13 1 27 12 32 9 

54 284 83 13 1 34 12 34 10 

60 296 88 14 3 38 15 36 13 

66 304 89 16 3 46 18 42 15 

72 312 91 17 3 58 20 44 15 

78 319 92 22 4 65 21 46 15 

84 327 92 26 4 74 22 49 15 

90 330 93 27 4 78 25 52 15 

96 336 94 29 5 88 27 55 15 

102 339 95 30 5 95 31 56 15 

108 344 95 33 6 99 33 56 15 

114 346 96 34 6 108 35 60 16 

120 349 97 35 6 116 37 62 16 

126 351 97 36 7 120 40 64 17 

132 352 99 37 7 124 42 65 17 

138 352 99 38 8 132 43 68 17 

144 354 99 38 8 136 43 69 17 

150 354 101 39 8 140 44 70 17 

156 355 101 39 8 148 44 72 17 

162 356 102 39 8 152 44 72 18 

168 357 103 39 8 154 44 75 18 

174 357 103 39 8 159 45 75 18 

180 357 103 39 8 162 45 75 19 

186 357 103 39 8 167 45 76 19 

192 357 103 39 8 169 45 78 19 

198 357 103 41 8 169 45 79 19 

204 357 103 42 8 169 45 79 19 

210 357 103 42 8 169 45 80 19 

216 357 103 42 8 169 45 80 19 

Total 357 103 42 8 169 45 80 19 

 

 

Appendix 2. Parameter hyperparameter optimization table 
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Table 20. Hyperparameter optimization experiments 
 

Avg. train AUC Avg. test AUC Rank per 

model 

Rank per response 

variable 

Biochemical recurrence 

Logistic regression 

Experiment 001 0.859 (0.031) 0.840 (0.038) 1 10 

Neural network 

Experiment 001 0.865 (0.034) 0.850 (0.040) 1 4 

Experiment 002 0.867 (0.034) 0.846 (0.039) 2 6 

Experiment 004 0.859 (0.037) 0.846 (0.041) 3 7 

Experiment 003 0.859 (0.037) 0.846 (0.041) 4 8 

Experiment 005 0.859 (0.039) 0.839 (0.044) 5 11 

Random forest 

Experiment 005 0.865 (0.030) 0.855 (0.034) 1 1 

Experiment 006 0.867 (0.031) 0.852 (0.034) 2 2 

Experiment 007 0.867 (0.032) 0.850 (0.037) 3 3 

Experiment 008 0.863 (0.033) 0.848 (0.038) 4 5 

Experiment 002 0.823 (0.028) 0.801 (0.034) 5 13 

Experiment 003 0.823 (0.028) 0.801 (0.034) 6 14 

Experiment 004 0.812 (0.029) 0.778 (0.035) 7 15 

Experiment 001 0.780 (0.010) 0.764 (0.021) 8 16 

XGBoost 

Experiment 002 0.897 (0.025) 0.841 (0.039) 1 9 

Experiment 001 0.990 (0.010) 0.807 (0.048) 2 12 

Cancer specific mortality 

Logistic regression 

Experiment 001 0.935 (0.038) 0.890 (0.058) 1 10 

Neural network 

Experiment 004 0.903 (0.079) 0.902 (0.092) 1 5 

Experiment 005 0.915 (0.069) 0.901 (0.087) 2 7 

Experiment 007 0.934 (0.045) 0.887 (0.055) 3 12 

Experiment 003 0.920 (0.085) 0.883 (0.077) 4 13 

Experiment 006 0.787 (0.106) 0.735 (0.219) 5 16 

Experiment 001 0.457 (0.222) 0.462 (0.253) 6 17 

Experiment 002 0.416 (0.238) 0.442 (0.249) 7 18 

Random forest 

Experiment 005 0.951 (0.037) 0.928 (0.045) 1 1 

Experiment 001 0.939 (0.035) 0.923 (0.050) 2 2 

Experiment 006 0.939 (0.037) 0.919 (0.067) 3 3 

Experiment 007 0.965 (0.028) 0.910 (0.050) 4 4 

Experiment 003 0.944 (0.035) 0.901 (0.052) 5 6 
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Experiment 008 0.961 (0.030) 0.898 (0.049) 6 8 

Experiment 004 0.942 (0.037) 0.887 (0.055) 7 11 

Experiment 002 0.946 (0.029) 0.873 (0.070) 8 14 

XGBoost 

Experiment 002 0.919 (0.051) 0.896 (0.053) 1 9 

Experiment 001 0.999 (0.001) 0.853 (0.069) 2 15 

Death from other causes 

Logistic regression 

Experiment 001 0.699 (0.046) 0.637 (0.087) 1 10 

Neural network 

Experiment 003 0.670 (0.060) 0.654 (0.078) 1 8 

Experiment 002 0.628 (0.071) 0.628 (0.094) 2 11 

Experiment 001 0.712 (0.102) 0.614 (0.080) 3 12 

Random forest 

Experiment 003 0.663 (0.049) 0.689 (0.046) 1 1 

Experiment 002 0.663 (0.049) 0.689 (0.046) 2 2 

Experiment 004 0.663 (0.048) 0.689 (0.045) 3 3 

Experiment 005 0.802 (0.095) 0.686 (0.041) 4 4 

Experiment 006 0.805 (0.084) 0.678 (0.045) 5 5 

Experiment 008 0.737 (0.076) 0.661 (0.043) 6 6 

Experiment 007 0.791 (0.078) 0.641 (0.077) 7 9 

Experiment 001 0.500 (0.000) 0.500 (0.000) 8 14 

XGBoost 

Experiment 002 0.722 (0.070) 0.659 (0.066) 1 7 

Experiment 001 1.000 (0.001) 0.584 (0.092) 2 13 

Metastasis 

Logistic regression 

Experiment 001 0.926 (0.041) 0.907 (0.027) 1 7 

Neural network 

Experiment 002 0.920 (0.042) 0.903 (0.030) 1 8 

Experiment 001 0.921 (0.051) 0.902 (0.031) 2 11 

Experiment 003 0.504 (0.113) 0.494 (0.136) 3 14 

Random forest 

Experiment 005 0.933 (0.038) 0.921 (0.028) 1 3 

Experiment 007 0.943 (0.037) 0.919 (0.028) 2 4 

Experiment 006 0.927 (0.038) 0.912 (0.035) 3 5 

Experiment 008 0.939 (0.042) 0.912 (0.030) 4 6 

Experiment 002 0.909 (0.043) 0.902 (0.022) 5 9 

Experiment 003 0.909 (0.043) 0.902 (0.022) 6 10 

Experiment 004 0.910 (0.044) 0.900 (0.020) 7 12 

Experiment 001 0.904 (0.044) 0.889 (0.022) 8 13 
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XGBoost 

Experiment 001 0.997 (0.005) 0.927 (0.035) 1 1 

Experiment 002 0.926 (0.033) 0.921 (0.024) 2 2 

Appendix 3. Patient mortality figures 

Fig. 27. Patient‘s 312 discrete mortality probability from training set 
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Fig. 28. Patient‘s 185 discrete mortality probability from testing set 
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Appendix 4. Graphs for model comparison 

Fig. 29. Average training AUC across different prediction periods for deaths from other causes 
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Fig. 30. Average testing AUC across different prediction periods for deaths from other causes 
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Fig. 31. Average training AUC across different prediction periods for biochemical recurrence 
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Fig. 32. Average testing AUC across different prediction periods for biochemical recurrence 

 



71 

Fig. 33. Average training AUC across different prediction periods for metastasis 
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Fig. 34. Average testing AUC across different prediction periods for metastasis 

 


