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Abstract: This study investigates the possibility of utilising bottom slag (BS) waste from landfills,
and a carbonation process advantageous for the use of artificial aggregates (AAs) in printed three-
dimensional (3D) concrete composites. In general, the main idea of granulated aggregates is to
reduce the amount of CO2 emissions of printed 3D concrete objects (wall). AAs are made from
construction materials, both granulated and carbonated. Granules are made from a combination of
binder (ordinary Portland cement (OPC), hydrated lime, burnt shale ash (BSA)) and waste material
(BS). BS is a waste material left over after the municipal waste burning process in cogeneration
power plants. Whole printed 3D concrete composite manufacturing consists of: granulating artificial
aggregate, aggregate hardening and sieving (adaptive granulometer), carbonation of AA, mixing
3D concrete, and 3D printing. The granulating and printing processes were analysed for hardening
processes, strength results, workability parameters, and physical and mechanical properties. Printings
with no granules (reference 3D printed concrete) were compared to 3D printed concretes with 25% and
50% of their natural aggregate replaced with carbonated AA. The results showed that, theoretically,
the carbonation process could help to react approximately 126 kg/m3 CO2 from 1 m3 of granules.

Keywords: bottom slag; burnt fly ash; 3D printing; CO2 reduction; artificial aggregate

1. Introduction

The conversion of waste (municipal solid waste (MSW)) to energy in cogeneration
power plants has grown over recent decades. About 500 cogeneration power plants are
already operating around the world [1–5]. Burning waste is a better solution, because
1 ton of waste produces 1 ton of CO2, contrary to landfill waste that produces methane
after anaerobic decomposition of the biodegradable portion of the waste, which, as an
equivalent, produces 1.38 tons of CO2 [6,7]. Furthermore, after the cogeneration process
of burning MSW, residual material is left behind—BS. BS is the residue originating in the
grate furnace of a municipal solid waste incinerator (MSWI). Remaining incombustible,
residues represent 5–10% by volume of MSW streams [8].

Above all, the carbonation method (in a climate chamber), or CO2 curing, is founded
on the basis of obtaining denser carbonate, which not only improves the physical and
mechanical properties of cement-based materials, but also has the ability to utilize and store
CO2 safely in AAs, and permanently in whole 3D printed objects, without the carbonation of
large construction projects [9,10]. Accelerated carbonation is applied directly to the matrix,
which could positively affect carbonation of the granules. CO2 capturing technology
already exists, and has potential for lowering energy consumption, which could have an
advantage in a sustainable circular economy [9,11–13].

Many researchers are searching for a way to reduce OPC usage and minimize CO2
emissions during OPC production. For example, 1 kg of OPC produces 0.9–1.0 kg CO2.
Carbonation is one of the ways to reduce CO2 emissions without minimizing the amount
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of OPC used in 3D printed concrete. This technology is simpler when only small materials,
such as AAs, are carbonized, instead of the entire printed object. In the building industry,
experiments were conducted in the printing of small objects (bench, footbridge, and deco-
rative walls) and small-scale buildings (one floor or shelters), which have the possibility
to be carbonated after printing. However, for objects with massive dimensions (two-story
buildings, or taller than 9 or 200 m), there is little possibility for additional carbonation
after printing [14–17].

When investigating the properties of 3D printed concrete, the rheology, extrudability,
flowability, and buildability become the main factors [18]. All of these mentioned parame-
ters were tested with the various materials used in 3D printing composites (superplasticizer,
viscosity modifying agents, defoaming agents, accelerators) [19].

2. Materials and Methods
2.1. Binder Materials

This study investigated two different objects: handmade AAs (granules), and 3D
printed composites (3DPCs). Both of them were made with the same binder materials. The
main binder material was OPC CEM I 42.5 R from the local manufacturer AB “Akmenės
cementas” (Lithuania, Naujoji Akmenė). Another binder material was hydrated lime (HL)
(calcium hydroxide), class CL 90-S from “Lhoist Bukowa Sp. z o. o.” (Poland, Bukowa).
As a secondary product from oil shale power plants, burnt oil shale ash (CON BS) from
“Enefit Power AS” (Estonia, Auvere) was used in granules and 3D printed composites. The
burnt ash chemical composition shows that it also has CaO, which could be carbonated in
natural conditions and in a CO2 chamber.

From an ecological aspect, AA production used 0–5 mm particle diameter BS from
UAB “Kauno kogeneracinė jėgainė” (Kaunas cogeneration power plant) (Lithuania). Slag
consists of mostly unreactive material (only 20.14% of CaO), and is more like an inert
material. For the purpose of obtaining initial strength before carbonation, binders were
added to all of the granule composites, as mentioned previously (OPC, HL, CON BS). All
of the binder chemical compositions and densities are mentioned in Table 1. In general,
bottom slag is mainly composed of noncombustible materials such as stone, glass, ceramic,
sand, and metal. Lateral elements were refined after the incineration process, before storage
in landfills, by a special magnetic sieving system. Figure 1 shows an SEM image of BS at
one hundred times magnification.

Table 1. Chemical compositions and density of used binders.

Material SiO2
(%)

Al2O3
(%)

Fe2O3
(%)

CaO
(%)

MgO
(%)

SO3
(%)

Na2O
(%)

K2O
(%)

TiO2
(%)

Mn2O3
(%)

P2O5
(%)

Cl
(%)

CO2
(%)

Density
kg/m3

Bottom slag (BS) 46.11 7.66 9.46 20.14 2.65 3.71 3.01 1.27 1.17 0.14 2.11 0.89 - 2500–2600

Burnt fly ash (BFA) 27 7 4–5 45–51 4–5 9 0.15 3–4 - - - 0.47 - 2700–2900

Portland cement
CEM I 42.5 R (OPC) 18–20 4–5 3–4 62–65 3–4 3.3 0.1 1–1.5 - - - - - 2750–3200

Hydrated lime (HL) - - - 94–96 0.3–0.4 0.05–0.10 - - - - - - 0.5–4.0 2240

In Figure 2, the chemical elements in BS are analysed. Including the fact that MSW
is highly varied, BS chemical elements could also be diverse. This research only shows
the possibility of using previously analysed BS samples, and there is no guarantee that
other BS samples will have the same composition of chemical elements. In a situation
like this, we engage the hypothesis that the carbonation of calcium oxide and calcium
carbonate could lock the BS elements, and homogenize the granule properties in 3D
printed concrete.
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Figure 2. EDS spectrum analysis of BS.

2.2. Aggregate and Additives

Without the previously mentioned binder materials, 3DPC consists of other aggregates
and additives. The main natural aggregate used in the composites was sand from the
UAB “Rizgonys” (Lithuania, Rizgonys) quarry, which was dried and sieved into particle
sizes ranging from 0 to 2 mm. To control the setting and hardening time of the 3DPC,
an accelerator—calcium formate from “Mudanjian Fenga Chemicals Imp. & Exp. Corp”
(China, Mudanjiang), was added. Another additive to regulate expansion was Denka, from
“Neuvendis SPA” (Italy, Milan). As a dry plasticizer in composites, Peramin was used,
which is a sulfonated melamine polymer, from “Imerys S.A.” (France, Fos-sur-Mer). To
achieve a hydrophobic effect and adhesion between layers, the hydrophobic dispersive
polymer powder Vinnapas, from “Wacker Chemie AG” (Germany, Burghausen), was used.
For reinforcement and reduction of cracks, polypropylene fiber (3 mm length) “Belgian
fibers manufacturing” (Belgium, Kortrijk) was added.

2.3. Test Methods
2.3.1. Granulation

Each year, landfills around the world accumulate millions of tons of BS. One solutions
to eliminate BS could be its usage as a supplementary cementitious material in concrete
mixtures [20]. BS from landfills could be used, when crushed, ground, or sieved (e.g.,
0–2 mm; < 2.36 mm) [21,22]. Likewise, scientists from China suggested using BS as a
replacement for recycled fine aggregate in mortar, which gives positive but debatable



Materials 2023, 16, 4045 4 of 22

results [23]. Similarly, some natural aggregates in green concrete could be replaced by
MSWI BS manufactured lightweight coarse aggregates. In another specially treated method,
with dry and wet treatment processes, granulated BS could replace up to 100% of the natural
gravel in concrete, be used for road base layers, or be used as a secondary aggregate in
asphalt applications [24]. Lightweight aggregate made from BS could be made in single-step
or double-step pelletization processes, in diameters of 4.75–9.5 mm, 9.5–16 mm, 5–10 mm,
6–12 mm, 8–16 mm, 2–8 mm, 0–4 mm, 0–19 mm, and 2–16 mm [21,22,24–28]. In this system,
AA was made with a mechanical process using the agitation granulation method. This
cold bonding process occurs when moisturized materials are rotating in a disk granulator,
without an external compacting force (Figure 3). The quality of these granules depends
on the amount of fine particles in the dry materials portion. A sufficient amount of fine
material particles could ensure good granule formation (Figure 4).

Materials 2023, 16, x FOR PEER REVIEW 4 of 22 
 

 

2.3. Test Methods 
2.3.1. Granulation 

Each year, landfills around the world accumulate millions of tons of BS. One solu-
tions to eliminate BS could be its usage as a supplementary cementitious material in con-
crete mixtures [20]. BS from landfills could be used, when crushed, ground, or sieved (e.g., 
0–2 mm; < 2.36 mm) [21,22]. Likewise, scientists from China suggested using BS as a re-
placement for recycled fine aggregate in mortar, which gives positive but debatable re-
sults [23]. Similarly, some natural aggregates in green concrete could be replaced by 
MSWI BS manufactured lightweight coarse aggregates. In another specially treated 
method, with dry and wet treatment processes, granulated BS could replace up to 100% 
of the natural gravel in concrete, be used for road base layers, or be used as a secondary 
aggregate in asphalt applications [24]. Lightweight aggregate made from BS could be 
made in single-step or double-step pelletization processes, in diameters of 4.75–9.5 mm, 
9.5–16 mm, 5–10 mm, 6–12 mm, 8–16 mm, 2–8 mm, 0–4 mm, 0–19 mm, and 2–16 mm 
[21,22,24–28]. In this system, AA was made with a mechanical process using the agitation 
granulation method. This cold bonding process occurs when moisturized materials are 
rotating in a disk granulator, without an external compacting force (Figure 3). The quality 
of these granules depends on the amount of fine particles in the dry materials portion. A 
sufficient amount of fine material particles could ensure good granule formation (Figure 
4).  

The disk granulator has the following parameters: disk diameter (D)—500 mm, disk 
height (H)—100 mm, inclination angle (α)—45°, revolution speed (n)—35 rounds/min, 
load size—1.4 kg. 

 
Figure 3. Disk granulator scheme and photo [29]. 

  

Figure 4. Schematic diagram of AA formation in the granulation process [25]. 

For this research, three different designs of artificial aggregate were developed. After 
granulation, fresh granules were spread in a thin layer on a horizontal surface for natural 
drying, at 20 ± 2 °C and 50 ± 5% relative humidity, for 2 days. After drying, granules were 
fractionated through a 4 mm wire mesh sieve to a 0–4 mm fraction. Larger fraction gran-
ules (< 4 mm, about 20% of the whole volume) were not used in other tests. Sieved gran-
ules were tested for particle size determination. Specifically, the granule diameter was 

Figure 3. Disk granulator scheme and photo [29].

Materials 2023, 16, x FOR PEER REVIEW 4 of 22 
 

 

2.3. Test Methods 
2.3.1. Granulation 

Each year, landfills around the world accumulate millions of tons of BS. One solu-
tions to eliminate BS could be its usage as a supplementary cementitious material in con-
crete mixtures [20]. BS from landfills could be used, when crushed, ground, or sieved (e.g., 
0–2 mm; < 2.36 mm) [21,22]. Likewise, scientists from China suggested using BS as a re-
placement for recycled fine aggregate in mortar, which gives positive but debatable re-
sults [23]. Similarly, some natural aggregates in green concrete could be replaced by 
MSWI BS manufactured lightweight coarse aggregates. In another specially treated 
method, with dry and wet treatment processes, granulated BS could replace up to 100% 
of the natural gravel in concrete, be used for road base layers, or be used as a secondary 
aggregate in asphalt applications [24]. Lightweight aggregate made from BS could be 
made in single-step or double-step pelletization processes, in diameters of 4.75–9.5 mm, 
9.5–16 mm, 5–10 mm, 6–12 mm, 8–16 mm, 2–8 mm, 0–4 mm, 0–19 mm, and 2–16 mm 
[21,22,24–28]. In this system, AA was made with a mechanical process using the agitation 
granulation method. This cold bonding process occurs when moisturized materials are 
rotating in a disk granulator, without an external compacting force (Figure 3). The quality 
of these granules depends on the amount of fine particles in the dry materials portion. A 
sufficient amount of fine material particles could ensure good granule formation (Figure 
4).  

The disk granulator has the following parameters: disk diameter (D)—500 mm, disk 
height (H)—100 mm, inclination angle (α)—45°, revolution speed (n)—35 rounds/min, 
load size—1.4 kg. 

 
Figure 3. Disk granulator scheme and photo [29]. 

  

Figure 4. Schematic diagram of AA formation in the granulation process [25]. 

For this research, three different designs of artificial aggregate were developed. After 
granulation, fresh granules were spread in a thin layer on a horizontal surface for natural 
drying, at 20 ± 2 °C and 50 ± 5% relative humidity, for 2 days. After drying, granules were 
fractionated through a 4 mm wire mesh sieve to a 0–4 mm fraction. Larger fraction gran-
ules (< 4 mm, about 20% of the whole volume) were not used in other tests. Sieved gran-
ules were tested for particle size determination. Specifically, the granule diameter was 

Figure 4. Schematic diagram of AA formation in the granulation process [25].

The disk granulator has the following parameters: disk diameter (D)—500 mm, disk
height (H)—100 mm, inclination angle (α)—45◦, revolution speed (n)—35 rounds/min,
load size—1.4 kg.

For this research, three different designs of artificial aggregate were developed. After
granulation, fresh granules were spread in a thin layer on a horizontal surface for natural
drying, at 20 ± 2 ◦C and 50 ± 5% relative humidity, for 2 days. After drying, granules were
fractionated through a 4 mm wire mesh sieve to a 0–4 mm fraction. Larger fraction granules
(< 4 mm, about 20% of the whole volume) were not used in other tests. Sieved granules
were tested for particle size determination. Specifically, the granule diameter was chosen
after comparison with the natural aggregate diameter in reference 3D printed concrete, and
also after consideration of the 3D printing laboratory equipment and the purpose of the
printed object.

2.3.2. Carbonation

The carbonation process occurs in materials or composites which have sufficient
amounts of calcium hydroxide or calcium oxide, which is required for the reaction of these
two compounds with CO2 [30]:

Ca(OH)2+CO2→CaCO3+H2O (1)
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CaO+CO2→CaCO3 (2)

More importantly, after carbon dioxide treatment in a climate chamber, granules have
more calcium carbonate, as a result of this fact, granules have increased strength. The
carbonation process could also affect the water absorption parameters of granules.

In this research, a complex climate chamber carbonation technology, without pressure,
was used. The scheme is shown in Figure 5. Throughout the entire carbonation process,
the climate chamber was set at 20 ± 2 ◦C, 70 ± 5% relative humidity, and 20 ± 3% CO2
concentration. As other scientists claim, curing temperatures ranging between 20 and
80 ◦C yield little difference in compressive strength [31]. Other external investigations have
proven that a relative humidity of 50–65% is optimal for carbonation reactions, because
a higher or lower percentage of humidity could slow down the carbonation reactions.
That is why most of the carbonations, including this research, have curing conditions of
20% CO2 concentration with 70% relative humidity. This is the average range of humidity
and temperature where the carbonation of aggregate (or another concrete element) reaches
the innermost depth [20,32].

Materials 2023, 16, x FOR PEER REVIEW 5 of 22 
 

 

chosen after comparison with the natural aggregate diameter in reference 3D printed con-
crete, and also after consideration of the 3D printing laboratory equipment and the pur-
pose of the printed object. 

2.3.2. Carbonation 
The carbonation process occurs in materials or composites which have sufficient 

amounts of calcium hydroxide or calcium oxide, which is required for the reaction of these 
two compounds with CO2 [30]: 

Ca(OH)2+CO2→CaCO3+H2O (1)

CaO+CO2→CaCO3 (2)

More importantly, after carbon dioxide treatment in a climate chamber, granules 
have more calcium carbonate, as a result of this fact, granules have increased strength. 
The carbonation process could also affect the water absorption parameters of granules. 

In this research, a complex climate chamber carbonation technology, without pres-
sure, was used. The scheme is shown in Figure 5. Throughout the entire carbonation pro-
cess, the climate chamber was set at 20 ± 2 °C, 70 ± 5% relative humidity, and 20 ± 3% CO2 
concentration. As other scientists claim, curing temperatures ranging between 20 and 80 
°C yield little difference in compressive strength [31]. Other external investigations have 
proven that a relative humidity of 50–65% is optimal for carbonation reactions, because a 
higher or lower percentage of humidity could slow down the carbonation reactions. That 
is why most of the carbonations, including this research, have curing conditions of 20% 
CO2 concentration with 70% relative humidity. This is the average range of humidity and 
temperature where the carbonation of aggregate (or another concrete element) reaches the 
innermost depth [20,32]. 

 
Figure 5. Carbonization chamber scheme [33]. 

The titration method was used for the additional calculation of reacted lime. One g 
of ground granules, AA2, was poured into 150 mL of distilled water and dissolved, and 3 
drops of 1% phenolphthalein indicator solution were added. A pink color showed that the 
solution contained soluble alkali materials at a pH greater than 10. Later, HCl (acid of salt) 
was titrated until calcium hydroxide reacted, and the solution became transparent. The 
amount of calcium oxide in the solution was calculated based on the amount of added 
acid of salt: 𝐴 = ((𝑉⋅𝑇𝐶𝑎𝑂)/m)⋅100 (3)

V—1N HCl amount used for titration; 𝑇𝐶𝑎𝑂—1N HCl acid titre, expressed CaO amount, (2.804 g/mol); 
m—ground granules mass, g. 
Uncarbonated granules have 177 kg of CaO per 1 m3 of bulk granules. After 1 day of 

carbonation in the climate chamber, the amount of CaO in the granules was reduced to 

Figure 5. Carbonization chamber scheme [33].

The titration method was used for the additional calculation of reacted lime. One g
of ground granules, AA2, was poured into 150 mL of distilled water and dissolved, and
3 drops of 1% phenolphthalein indicator solution were added. A pink color showed that
the solution contained soluble alkali materials at a pH greater than 10. Later, HCl (acid of
salt) was titrated until calcium hydroxide reacted, and the solution became transparent.
The amount of calcium oxide in the solution was calculated based on the amount of added
acid of salt:

A = ((V·TCaO)/m)·100 (3)

V—1N HCl amount used for titration;
TCaO—1N HCl acid titre, expressed CaO amount, (2.804 g/mol);
m—ground granules mass, g.
Uncarbonated granules have 177 kg of CaO per 1 m3 of bulk granules. After 1 day

of carbonation in the climate chamber, the amount of CaO in the granules was reduced
to 118.7 kg per 1 m3 of bulk granules. After 3 days of carbonation, the amount of CaO
was reduced to 6.2 kg per 1 m3 of bulk granules. These results show that the longer the
carbonation process extends, the more CaO reacts and forms CaCO3.

2.3.3. Tests for Artificial Aggregate

After the granulation process, granules were tested, according to the adapted lightweight
aggregate bulk crushing resistance test, to determine aggregate crushing strength. The test
was performed partially according to the EN 13055-1 standard [34], to compare the obtained
parameters with those of other researchers [11]. Granules were poured into a cylinder and
vibrated for 5–10 s. The cylinder was filled to the upper line, if needed, after vibration. Then,
the piston was put on top of the granules. The entire testing apparatus was built into a
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hydraulic press (Figure 6). The aggregate strength was fixed when the piston, on top of the
granules, moved down to the marked boundary [34–36].
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Then, the artificial aggregate particle density was measured, to define the artificial
aggregate type. The 10 most rounded artificial aggregate granules were selected, and dried
until constant weight in a laboratory heating oven at 105 ± 1 ◦C. After drying, each granule
was covered with thin layer of wax and weighed with hydrostatic scales. Formula (4) was
used for the calculation of particle density [37].

ρd =
m

mp −mpv −
mp−m

ρp

(4)

ρp—density of paraffin, 930 kg/m3;
m—granule mass, kg;
mpv—granule mass covered with paraffin in water, kg;
mp— granule mass covered with paraffin, kg.
A scanning electron microscope (SEM), Hitachi S-3400N, and energy dispersive spec-

trum (EDS) methods were used for the microscopic structure analysis of artificial aggregate
and printed 3D elements.

The moisture content in granules was measured according to the EN 1097-5 stan-
dard [38]. First, a sample of granulated AA was weighed (m1). Then, the sample was
put into a thermal oven (Memmert) and dried for 24 h at 65 ◦C. After drying, the sample
of granules was taken out and immediately weighed (m). The moisture content of the
ready-made granules was calculated using Formula (5) [38].

Wm = (
m1 −m

m
)·100 (5)

To measure water absorption, artificial aggregate was immersed into a water container
until the mass was constant. The test portion was removed from the water, immediately
dried using an absorbent cloth, and immediately weighed (M1). Then, the test portion was
oven dried at 110 ± 5 ◦C until it reached constant mass (M3) [39]. The calculation was
performed using Formula (6).

Wcm =
M1 −M3

M3
·100 (6)

2.3.4. Tests for Fresh State Composition

The consistency of freshly mixed composite was measured according to the flow table test
in the EN 1015-3 standard (Figure 7a) [40]. After this test, the bulk density was measured in a
1 L bowl according to the EN 1015-6 standard (Figure 7b) [41]. Then, a device for measuring
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air content was attached to the same bowl according to the EN 1015-7 standard (Figure 7c) [42].
Lastly, after testing the properties of the fresh mix, prisms (4 × 4 × 16 cm) were formed for
strength measurement.
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measuring device (c).

2.3.5. Three-Dimensional Printer

Three-dimensional printing was carried out using a custom-made gantry-type printer,
developed within Riga Technical University (RTU), for printing building materials, such as
concrete. The printer has an aluminium frame with dimensions of 2000 × 1000 × 1200 (h)
mm, allowing for maximum model dimensions of 1500 × 1000 × 1000 mm, and a hopper
volume of up to 30 L. Control of the printer was achieved using open-source Repetier-
Firmware, while slicing was performed using Simplify3D 5.0 software by Simplify 3D Ltd.
in the U.S.A. For creating the 3D models, Solidworks 3D CAD design software was used.
The printer head nozzle has a diameter of 20 mm, a layer width ranging from 35 to 45 mm,
and a layer height of 10 mm. The printer construction is shown in Figure 8 [43].
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2.3.6. Three-Dimensional Printing and Curing

In the printing laboratory, the temperature during the entire mixing, printing, and curing
process was maintained at 18–20 ◦C, with a relative air humidity of 30 ± 5% as measured
by a hydrometer. A portable mixer, Rubimix-9 by Rubi UK LTD, was used for mixing at an
average speed of 780 RPM. First, all dry composite materials were weighed and mixed before
the printing process. Next, the prepared dry composites were poured into a mixing tub and
mixed again with mixer for 10–15 s to ensure homogeneity. Then, tap water (at a temperature
of 9–10 ◦C) was poured into the composite mixture and stirred for 100–120 s. A portion of
the mixture was taken for testing of the fresh mortar properties and prism formation in the
moulds, while the remaining composite was poured into the printer’s hopper and extruded
through the printer head and nozzle until a homogenous mass of concrete started to flow.
Elements of 160 × 160 × 200 (h) mm and 160 × 160 × 120 (h) mm were printed at a speed of
100 mm/s. All printed objects were kept under the same conditions as during the printing
process for 28 days (Figures 9 and 10). Afterward, the printed elements were cut into pieces
using a concrete angle grinder for testing of the mechanical properties.
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Different water contents in the composites affected their printability. In an experimen-
tal approach, water was added to the 3D printing mixes to obtain a mixture that could be
printed under the same printer conditions and parameters. It was observed that increased
water content in the composites was due to the larger mass granules that replaced the sand,
and the different water absorption properties of the granules.

2.3.7. Tests for Printed Objects

After mixing the 3D printing composites with water, part of the mixture was formed
into prisms (moulded) according to the EN 1015-11 standard [44]. Following the mentioned
standards, the prisms were cured under laboratory conditions at 20 ± 2 ◦C and 30 ± 5% rel-
ative air humidity for 28 days. Another part of the mixture was poured into the printer’s
hopper and used to print objects. After 28 days of curing under the same laboratory conditions
(20± 2 ◦C, 30± 5% relative air humidity), the printed elements were cut with a concrete angle
grinder and, along with the prisms, were measured for flexural and compressive strength with
a compression and bending testing machine (“ratio TEC”). Descriptions of the measurement
method are in Figure 11 [45].
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3. Results
3.1. Artificial Aggregate Test Results

After the analysis of AA test properties, and other research, granule binder materials
were selected, as shown in Table 2. These compositions resulted in handmade AA—
granules for 3D printing. Figure 12a shows ready-made granule particles.
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Table 2. Artificial aggregate composition design.

Materials
Artificial Aggregate Name and Amount of Materials (kg/m3)

AA1 AA2 AA3

Bottom slag waste 1211.4 1148.5 1201.0

Portland cement CEM I 42,5 R 484.6 - 12.1

Calcium hydroxide - 459.4 -

Burnt shale ash - - 360.3

Water 363.4 344.5 360.3
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Figure 12. AA granules before sieving (a) and after sieving with a 4 mm sieve (b).

After first sieving through a 4 mm sieve (Figure 12b), all AA configurations were
sieved again, to compare the particle size distribution between aggregates. Approximately
10–15% of the artificial aggregate was not used in 3D printing after sieving, because
the particles were larger than 4 mm in diameter. That unused portion could be used
in other elements of concrete (printed object). Table 3 shows the percentage of sieved
residual portions after particle size determination. From the results, it can be seen that the
percentage of portions from 2.8 mm to 1.0 mm sieves are very similar when comparing all
three samples.

Table 3. Particle size determination of sieved AA.

AA Name
Sieve Mesh Diameter, mm and Residue in %

4.0 2.8 2.0 1.0 0.5 0.25 0.0

AA1 2.0 43.6 21.5 23.0 5.4 1.3 2.6

AA2 1.6 32.1 31.1 29.6 4.4 0.6 0.6

AA3 3.5 46.0 23.5 18.9 4.8 1.7 1.6

Sand 0–2 0.0 0.0 3.2 37.7 33.8 3.6 1.7

AA was poured and weighed in a 1 L bowl, only by gravitation. Table 4 shows the
measured AA bulk densities before and after the carbonation process. From the results,
it can be seen that not all AA compositions obtained a positive density after carbonation.
Still, AA2 and AA3 show promising results.
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Table 4. Sieved granules, average bulk densities.

Bulk Density, kg/m3
Artificial Aggregate Name

AA1 AA2 AA3

Noncarbonated granules 1100 1025 1020

Carbonated granules 950 1035 1035

The moisture content of the granules was measured according to the EN 1097-5 stan-
dard [38], and the results are shown in Figure 13.
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Figure 13. Determination of the aggregate water content after oven drying.

As Figure 13 shows, the carbonated granules mostly have reduced water content, as is
expected. This also shows that the granules in AA1 and AA3 have more open pores for
water evaporation in the drying process.

The artificial aggregate water absorption measurement results are displayed in Figure 14.
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Figure 14. AA water absorption results.

The test results show that different amounts of granules demand different amounts of
water (Figure 14). From both Figures 13 and 14, it can be noticed that AA2 granules have a
larger water immersion potential.
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Table 5 shows the sieved (0–4 mm) AA density difference between carbonated and
uncarbonated particles. From the density measurement results, it can be seen that the
carbonated aggregates have diversity, because not all aggregate compositions display the
same correlation of results. The AA1 composition reveals that, after carbonation, the
combination of BS and Portland cement does not form denser elements. On the contrary,
the AA2 and AA3 compositions showed apparently different results. Compared with the
initial density, the density after carbonation increases about 14% in the AA2 composition,
and about 10% in the AA3 composition.

Table 5. AA measured particle density.

Density kg/m3
Artificial Aggregate Name

AA1 AA2 AA3

Not carbonated 1550 1460 1460

Carbonated 1500 1670 1610

Comparing the AA crushing strength results in Table 6, it can be seen that granules
with a calcium hydroxide binder have a smaller increase in strength than granules with
burnt fly ash and Portland cement as a binder. This could be because of different amounts
of reactive magnesium oxide in the binders, which, after hydration, absorb CO2 and
form stable hydrated magnesium carbonates that densify the microstructure and gain
strength [27,30].

Table 6. AA crushing strength test results.

Artificial Aggregate Name

Fmax—kN AA1 AA2 AA3

Not carbonated 7.95 10.05 4.95

Carbonated 13.9 18.4 12.8

Escalation, % +74.8 +83.1 +158.6

The crushing strength was increased, and in one instance was even more than 150%.
This could be because of calcium oxide minerals reacting with CO2, which form calcium
carbonate crystals to improve the strength of the granules. Including this fact, carbonated
aggregate could have an adverse effect on the carbonization resistance of 3D printed
concrete elements. There could be a higher possibility of the corrosion of steel bars. In 3D
printed concrete construction, steel reinforcements are infrequently used, which is why the
carbonization level could be excluded from evaluation. Artificial aggregate could absorb
even more CO2, and is a great possibility for reducing carbon emissions [32].

After analysis of all the artificial aggregate test results, it was decided to print 3D
concrete elements only with the granules showing the most promising results, AA2 and
AA3. Further analysis will utilize the previously mentioned carbonated granules. For the
chosen AAs, microscopic analysis was performed with an SEM to identify what could be
expected to happen after printing, e.g., adhesion of the cement paste with the AA. Figure 15
shows SEM images of the granules selected for 3D printing; carbonated and uncarbonated
AA granules were split open to analyze the aggregate structure, porosity, and uniformity.
All granules EDS analysis were given in Table 7, for comparison of elements inside and
only on surface.
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Table 7. EDS analysis of split granule and granule surface.

Element

2, Uncar-
bonated

2,
Carbonated

2, Uncarbonated,
Split

2, Carbonated,
Split

3,
Uncarbonated

3,
Carbonated

3, Uncarbonated,
Split

3, Carbonated,
Split

At%

C 3.42 7.42 2.35 5.97 3.43 9.81 7.69 2.33

O 64.25 65.21 60.4 61.93 48.12 60.97 59.40 57.50

Fe 0.57 0.49 0.6 0.72 1.02 0.65 0.84 0.46

Ti 0.18 - 0.51 0.63 0.43 - 0.59 -

Ca 22.28 19.73 21.89 15.23 26.66 20.71 9.78 8.23

K 0.07 0.10 0.31 0.84 1.80 0.77 1.80 4.04

Cl 0.21 0.06 0.41 0.61 0.77 0.41 0.52 0.23

S 0.74 0.91 2.4 1.13 3.45 1.02 0.22 -

P - - 0.11 0.35 0.17 - 0.46 -

Si 5.89 4.47 6.52 5.43 6.56 3.10 10.93 20.23

Al 1.71 1.04 1.94 3.49 6.33 1.46 3.23 3.28

Mg 0.29 0.22 0.65 2.19 0.96 0.77 1.59 0.69

Na 0.40 0.30 0.65 1.5 0.29 0.34 2.94 3.01

Ba - - 1.28 - - - - -

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

When comparing carbonated and uncarbonated granules (AA2), EDS analysis showed
that the carbon and oxygen content increased after the carbonation process.

A high-resolution powder X-ray diffractometer (XRD) was used to measure the carbon-
ate content in the AAs. The results in Figures 16 and 17 show that the main components in
the AAs are quartz and calcite, which means that in the AAs, a reaction with CO2 happens
after carbonation.
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Figure 16. XRD pattern of AA2 (Q—quartz; P—portlandite; CACH—calcium aluminate carbonate
hydrate; CSH—calcium aluminate hydrate).
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Figure 17. XRD pattern of AA3 (Q—quartz; C—calcite; T—calcium magnesium aluminum oxide
silicate; M—alite).

3.2. Three-Dimensional Printing Compositions

Etalon composition was mixed with 25% carbonated and uncarbonated granules, after
that formed prisms and tested strengths. Table 8 shows the results, which demonstrate the
advantage of carbonation, not only for granules, but also for increasing the composite’s
strength when granules are in it. These results reflect the fact that when CO2 reacts with
calcium hydroxide, calcium carbonate is formed, which increases hardness and decreases
porosity [46].

Table 8. Granule strength results in etalon composite.

Composite Name Carbonated Granules Flexural Strength, MPa Compressive Strength, MPa

LV2 Not 5.30 40.80

LV2 Yes 5.90 44.40

LV3 Not 6.20 43.30

LV3 Yes 5.80 44.40

Table 9 shows information about the 3D printed concrete compositions. All mate-
rials were weighed by mass. The additives in 3D concrete composites are: accelerator,
superplasticizer, polypropylene fiber, shrinkage reducing additive, and dispersible pow-
der. Compositions LV2 and LV3 have 25% of their natural aggregate replaced with AA.
Composition LV4 has 50% AA replacement.
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Table 9. Three-dimensional printing composite design.

Materials
Composite Name and Materials Amount in %

LV1 LV2 LV3 LV4

Portland cement CEM I 42,5 R 30.0 30.0 30.0 30.0

Sand 0–2 mm 55.0 41.0 41.0 27.5

Calcium hydroxide 2.0 2.0 2.0 2.0

Burnt shale ash 9.0 9.0 9.0 9.0

Additives 4.0 4.0 4.0 4.0

Carbonated granules AA2 - 14.0 - -

Carbonated granules AA3 - - 14.0 27.5

3.3. Results after 3D Printing

In Table 9 mentioned 3D printing composites were mixed with water, and measured
fresh state parameters (Table 10). For the same composites after 28 days of hardening were
measured flexural and compressive strength parameters (Table 11).

Table 10. Fresh 3D printing composite parameters.

Composite
Number

Water Amount,
L/kg

Consistency/
Flow, cm

Bulk Density,
kg/m3 Air Content, %

LV1 0.145 16.4 2100 7.2

LV2 0.150 16.1 2050 7.6

LV3 0.154 17.5 2090 6.8

LV4 0.164 17.3 2010 6.8

Table 11. Strength measurement results.

Composite
Number

Printed and Cut Elements Hand-Made Prisms 40*40*160 mm

Perpendicularly Longitudinal
Flexural

Strength MPa
Compressive
Strength MPa

Density after
28 DaysFlexural

Strength MPa
Compressive
Strength MPa

Flexural
Strength MPa

Compressive
Strength MPa

LV1 5.2 14.5 6.6 6.9 7.9 56.9 2080

LV2 4.3 13.1 5.0 5.3 6.8 56.3 2050

LV3 5.0 14.0 6.9 7.5 7.4 49.3 1950

LV4 2.7 5.7 3.1 4.5 6.3 40.5 1940

Figure 18 shows cross-sections of the printed and cut concrete elements, how perfectly
the layers are connected to each other, and how the AA is distributed throughout the layers
and the entire structure.

Prisms (4 × 4 × 16 cm) were formed from all four 3D printing composites. The prisms
were cured for 7 days at 20 ± 2 ◦C and 90 ± 5% relative humidity. Immediately after
splitting the prisms open, the carbonation test was performed according to the LST EN
14630 standard. All prisms were sprayed with a thin layer of 1% phenolphthalein reagent
(diluted in 30% ethanol and 70% distilled water). Carbonated areas can be seen in Figure 19.
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Figure 19 shows the carbonation test results of 3D printed concrete composites with
carbonated and uncarbonated granules. Clear areas show carbonated places, and colored
areas show uncarbonated places. Inside the prisms, the AA appears purple only in the
places where the aggregate was not carbonated, or alkaline. Areas with carbonated granules
show no color, which means it is carbonated.

SEM images of the printed object crosscuts have been analysed to investigate the
microstructure of the printed elements, and especially the connection zone between the
cement paste and aggregates. Figure 20b shows the natural aggregate (NA) connection
zone with the cement matrix. It can be seen that the NA surface is smoother than the
granule, and almost no cement matrix is attached to the surface. The connection zone in
Figure 20a shows a crack.
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Figure 20. Microscopic (SEM) images of printed objects: (a) cement matrix connection zone between
NA and printed object; (b) NA position in crosscut.

Figure 21b shows the interface between carbonated AA and the cement matrix. In this
image, the connection zone looks bonded. From the split printed object, c and d were found
in places where AA was bonded, but hard to notice. As noted in the images, the interface
between the granule and cement matrix is more solid than with the natural aggregate. The
reduced strength of 3D printed composites could be because natural aggregate has greater
particle strength. The rough surface of the AA is seen in image f, which could be because of
residue of the cement hydration products. This increases the bonding strength between the
artificial aggregate and the cement matrix. From image e, it can be seen that the connection
zone between the AA and cement paste is very small, and probably exists only because of
the splitting force used after the flexural strength measurement.
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4. Conclusions

• The granulator-made artificial aggregate, after measurement, was determined as a fine-
grained, porous, lightweight aggregate (natural sand particle density approximately
2650 kg/m3, AA—1610–1670 kg/m3).

• The tested carbonated granules showed the advantage of the carbonation process.
When comparing carbonated and uncarbonated granules, in reference to 3D printed
concrete compositions, it was noticed that compression strength was increased from
3 to 9%.

• Granules with a calcium hydroxide binder showed inferior strength results compared
to granules with OPC and BSA as a binder. Lateral granules have better water absorp-
tion properties and lower moisture content, but granules with a calcium hydroxide
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binder have greater particle density and aggregate crushing strength compared with
AA made only with OPC as a binder.

• AA granules made with MSW BS were first carbonated in a climate chamber (without
pressure), and then added to 3D printing concrete composite for printing. This method
shows that the whole printed object could have lower CO2 emissions because of AA
usage, and there is no need to carbonize the entire object.

• Theoretically calculating, carbonated granule (AA2) usage could reduce (sequester)
about 126 kg of CO2 from 1 m3 of granules, and form CaCO3.

• Three-dimensional printing composites containing carbonated granules, after replac-
ing 25% of mass volume natural aggregate with AA, reduces compressive strength
results by 1–13%. After 50% natural aggregate replacement with AA, compressive
strength results were reduced by almost 29%. Despite this fact, the strength results
still maintain a safe margin for construction element stability, and still correspond to
the technical requirements for private house buildings.
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