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Abstract: Multiparametric indices offer a more comprehensive approach to voice quality assessment
by taking into account multiple acoustic parameters. Artificial intelligence technology can be utilized
in healthcare to evaluate data and optimize decision-making processes. Mobile devices provide new
opportunities for remote speech monitoring, allowing the use of basic mobile devices as screening
tools for the early identification and treatment of voice disorders. However, it is necessary to
demonstrate equivalence between mobile device signals and gold standard microphone preamplifiers.
Despite the increased use and availability of technology, there is still a lack of understanding of the
impact of physiological, speech/language, and cultural factors on voice assessment. Challenges to
research include accounting for organic speech-related covariables, such as differences in conversing
voice sound pressure level (SPL) and fundamental frequency (f0), recognizing the link between
sensory and experimental acoustic outcomes, and obtaining a large dataset to understand regular
variation between and within voice-disordered individuals. Our study investigated the use of
cellphones to estimate the Acoustic Voice Quality Index (AVQI) in a typical clinical setting using
a Pareto-optimized approach in the signal processing path. We found that there was a strong
correlation between AVQI results obtained from different smartphones and a studio microphone,
with no significant differences in mean AVQI scores between different smartphones. The diagnostic
accuracy of different smartphones was comparable to that of a professional microphone, with optimal
AVQI cut-off values that can effectively distinguish between normal and pathological voice for each
smartphone used in the study. All devices met the proposed 0.8 AUC threshold and demonstrated an
acceptable Youden index value.

Keywords: AVQI; voice screening; Pareto optimization; voice disorders; dysphonia; voice quality

1. Introduction

A series of voice analysis tools includes many components to evaluate speech functions
and voice quality [1,2]. The quantitative evaluation of voice quality using acoustics is
advocated [3], and two metrics in this sector are the Acoustic Voice Quality Index (AVQI)
and the Acoustic Breathiness Index (ABI) [4]. In the assessment of prolonged phonation
and continual speech, multiparametric indexes enable a more robust acoustic analysis
of voice quality by taking into account more than one acoustic parameter. However,
if continuous speech is included, linguistic discrepancies must be handled [5]. The goal of
Grillo’s research [6] was to evaluate the acoustic metrics of fundamental frequency, standard
deviation, jitter, shimmer, noise-to-harmonic ratio, smoothed cepstral peak prominence
(CPPS), and AVQI evaluated invariably by VoiceEvalU8 or manually by two researchers.
They discovered that the measurements were of good to exceptional reliability. Furthermore,
the human voice is dynamic and evolves over time. The influences of age and sex on
acoustic measurements of voice quality are well-known, yet AVQI remains independent
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of gender [7]. Compared to adults, the AVQI achieved by the pediatric and older adult
groups was shown to be substantially higher. AVQI also exhibited significant age effects.
Adults’ AVQI levels were shown to be more constant than those of children and the elderly.
The AVQI scores of elderly adults and children did not differ substantially [8]. Leyns’
study examined and contrasted the acoustic short-term effects of pitch elevation training
(PET) In transgender women, also focusing on articulation-resonance training (ART), and a
combination of both programs. Xirs discovered that fundamental frequencies rose after
both PET and ART programs, with a greater increase after PET, but that intensity and voice
quality measures did not become altered [9].

Artificial intelligence (AI) approaches can be used to analyze data, reduce computing
time, and optimize decision-making processes and forecasts in a variety of industries,
including healthcare [10]. Advances in mobile device technology provide new possibilities
for remote speech monitoring at home and in clinical settings. A simple mobile device
is transformed into a screening tool for the early detection, monitoring, and treatment of
voice abnormalities. There is, nevertheless, a necessity to demonstrate equivalence be-
tween characteristics generated from mobile device signals and gold-standard microphone
preamplifiers. Acoustic speech qualities from Android phone, tablets, and microphone
preamplifier records were compared in the study of [11]. Compared to conventional PC-
based voice treatment, smartphone voice therapy is less expensive and more flexible for
patients and doctors. According to [12], voice quality and patient satisfaction increased in
both therapies compared to before therapy, showing recovery. Others discovered that AVQI
measures obtained from smartphone microphone voice recordings with experimentally
added ambient noise disclosed an amicable settlement with the results of oral microphone
recordings, implying that smartphone microphone recordings conducted, even with the
existence of acceptable ambient noise, are suitable for estimating AVQI [13]. Pommes
wanted to see how standardized mobile phone recordings transferred across a telecom
channel affected acoustic indicators of speech quality and how voice specialists perceived
it in normophonic speakers [14]. The results reveal that sending a speech signal across a
telephone line causes filtering and noise effects, limiting the use of popular acoustic sound
quality metrics and indexes. The recording type has a considerable influence on both the
AVQI and the ABI. Pitch perturbation (local jitter and periodic standard deviation) and
the harmonics-to-noise ratio from Dejonckere and Lebacq appear to be the most reliable
acoustic metrics. The study on the end-user mobile app “VoiceScreen” also demonstrated
an accurate and robust method for measuring voice quality and the potential to be used
in clinical settings as a sensitive assessment of voice alterations throughout the results of
phonosurgical treatment [15].

Despite the greater use and availability of technology expertise and equipment, the cur-
rent study has revealed a lack of awareness of physiological, speech/language and cultur-
ally influenced aspects. The primary obstacles to this investigation are the following:

1. Standardization and disclosure of acoustic analysis methods;
2. Recognition of the link between sensory and experimental acoustic outcomes;
3. The obligation to account for organic speech-related covariables, such as distinctions

in conversing voice sound pressure level (SPL) and fundamental frequency f0;
4. The requirement for a significant larger dataset to comprehend regular variance

between and within voice-disordered individual people.

The results of the studies mentioned above enabled us to presume the feasibility of
voice recordings captured with different smartphones in an ordinary clinical setting for
the estimation of AVQI. Consequently, the current research was designed to answer the
following questions regarding the possibility of a smartphone-based “VoiceScreen” app for
AVQI estimation:

1. Are the different estimated average AVQI values for smartphones consistent and
comparable?

2. Is the diagnostic accuracy of the estimated AVQIs for different smartphones relevant
to differentiate normal and pathological voices?
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We hypothesize that the use of different smartphones for voice recordings and the
estimation of AVQI in an ordinary clinical environment will be feasible for the quantitative
assessment of voice.

Therefore, the present study aimed to develop the universal platform-based applica-
tion suitable for different smartphones for the estimation of AVQI and evaluate its reliability
in the measurements of AVQI and the normal/pathological differentiation of voices.

2. State of the Art Review
2.1. Use of Voice Quality Index Instruments in the Medical Domain

Naturally, the medical domain is the primary field in which impairment and acoustic
measures can be used to accurately assess overall voice quality in numerous medical
pathologies [16] and therapies [17].To reduce the danger of voice problems in those who
rely heavily on their voices, such as teachers, vocal screening is essential from the start
of their professional studies. A dependable and precise screening instrument is required.
AVQI has been shown to distinguish between normal and disordered voices and to be a
therapy outcome measure. The purpose of the study of [18] was to see whether the AVQI
could be used as a screening tool in conjunction with auditory and self-perception of the
voice to differentiate between normal and somewhat inferior voices. Enhelt et al. [19]
sought to assess the accuracy of AVQI and its isolated acoustic measurements to distinguish
voices with varying degrees of deviation in severity of disorder. The results showed that
the AVQI is a reliable instrument for distinguishing between different degrees of vocal
deviation, and that it is more accurate for voices with moderate and severe abnormalities.
When identifying voices with a higher degree of variation, isolated acoustic measurements
perform better. Their other investigation [20] discovered that AVQI had the highest accuracy
at a length tailored. To improve the reliability of voice analysis, a systematic approach
should be followed, along with a specific speech material control that allows comparability
between clinics and voice centers. A combination of acoustic measures with the same
weight is more accurate in distinguishing different degrees of departure but is inconsistent.
In clinical voice practice, outcome measures measuring acoustic voice quality and self-
perceived vocal impairment are often utilized. Earlier studies on the link between acoustic
and self-perceived measures have indicated relatively minor correlations, but it is unclear
whether acoustic measurements connected with voice quality and self-perceived voice
handicap become altered in a comparable way throughout voice therapy. As a result,
the [21] study looked at the association between the degree of change in AVQI and the Voice
Handicap Index (VHI). Voice treatment provided in a community voice clinic to individuals
with various diseases was also shown to be successful, as evaluated by improvements in
VHI and AVQI [22].

During the COVID-19 pandemic, the use of nose-and-mouth cover respiratory pro-
tection masks (RPMs) has become widespread. The effects of wearing RPMs, particularly
on the perception and production of spoken communication, are increasingly emerging
and their impact on medical voice analysis devices is significant [23]. The effects of face
masks on spectral speech acoustics were evaluated in the Keas investigation [24]. Speech
intensity, spectral moments, spectral tilt, and energy in mid-range frequencies were among
the outcome metrics examined at the utterance level. Although the impact magnitude
varied, masks were associated with changes in spectral density characteristics consistent
with a low-pass filtering effect. The center of gravity, spectral diversity (in habitual speech),
and spectral tilt had greater impacts (in all speech styles). KN95 masks outperformed
the surgical masks in terms of speech acoustics. The general pattern of acoustic speech
alterations was consistent between the three speaking styles. Compared to habitual speech,
loud speech followed by clear speech was successful in removing the filtering effects of
masks. In a similar study, Lehnert discovered that wearing COVID-19 protective masks
did not significantly degrade the findings of AVQI or ABI based on a selected sample of
healthy or minimally impaired voices [25].



Appl. Sci. 2023, 13, 5363 4 of 29

According to Parkinson voice research [26], AVQI incorporates acoustics from both
vowel and sentence settings and therefore may be preferred to CPPS (vowel) or CPPS
(sentence). AVQI has been shown to be a reliable multiparametric measure for assessing the
severity of dysphonia, which is often a rare, persistent, and long-term neurological voice
problem caused by excessive or incorrect contraction of the laryngeal muscles. Alternatively,
the Ulosian technique [27] sought to identify irregularities in the voice affected by PD
and build an automated screening tool capable of distinguishing between the voices
of patients with PD and healthy volunteers while also generating a voice quality score.
The classification accuracy was tested using two speech corpora (the Italian PVS and our
own Lithuanian PD voice dataset), and the results were confirmed to be medically adequate.
Gale explored the impact of intensive speech therapy that targets the voice or focuses on
articulation on the quality of the voice as judged by the AVQI in people with Parkinson’s
disease [28]. The results show that voice-focused therapy results in significant gains in
voice quality in this population.

The growing number of validity studies that evaluate the validity of the AVQI requires
a complete synthesis of existing results [29]. AVQI is a contemporary multivariate acoustic
measure of dysphonia that assesses overall voice quality. In [30], a comparison of the two
groups revealed a considerable difference between them. Consequently, AVQI serves as
an excellent diagnostic method for obtaining scores from the dysphonic population and
should be investigated in other voice issues. According to Portalete’s results [31], while the
characteristics detected in the evaluations were similar to those expected from individuals
with dysarthria, it is difficult to establish a differential diagnosis of this disorder based solely
on auditory and physiological criteria. Similarly, the team of Barsties et al. [32] analyzed
two acoustic properties, the cepstral spectral index of dysphonia (CSID) and AVQI, which
have gained popularity as valid and reliable multiparametric indicators in the objective
evaluation of hoarseness due to their inclusion of continuous speech and sustained vowels.
Another multiparametric assessment, ABI, analyzes and detects breathiness mixing during
phonation without being unaffected by other features of dysphonia, such as roughness.
They discovered that CSID, AVQI, and ABI objectively increase the identification of voice
quality problems. Their use is straightforward and their usefulness for physicians is high,
in contrast to their demonstrated validity. The authors also reached the same conclusion in
a similar study on synthetic voice [33].

The purpose of Gomez’s [34] study was to assess the voice in patients with thyroid
pathology using two objective indicators with high diagnostic precision. AVQI was used
to assess general vocal quality, and ABI was used to assess breathiness, both of which
were found to be relevant. Other researchers wanted to use cutting-edge deep learning
research to objectively categorize, extract, and assess substitute voicing following laryngeal
oncosurgery from audio signals [35]. Their technique had the highest true-positive rate of
all of the cutting-edge approaches examined, reaching an acceptable overall accuracy and
demonstrating the practical usage of voice quality devices. In a similar study, ASVI was
found to be a quick and efficient option after laryngeal oncosurgery [36]. Individuals who
have had maxillectomies may have changes in the stomatognathic functions involved in oral
communication. Rehabilitative care should prioritize the restoration of these functions by
surgical flaps, obturator prosthesis, or both. Improvements in intelligibility and resonance
were found in the absence of trans-surgical palatine obturators (TPO) in the vocal evaluation
performed by [37], and minor hypernasality was discovered in only one instance in the
presence of TPO. In a similar study [38], Sluis found no statistical significance in the VHI-10
scores over time compared to AVQI.

AVQI and comparable instruments were also used in other related areas. For exam-
ple, the AVQI was also used to determine the effectiveness of the NHS waterpipe as a
superficial hydration therapy in healthy young women’s voice production. The technique
was determined to be useful by the authors, and the perceived phonatory effort decreased
significantly at the last assessment point [39]. The authors of [40] attempted to assess
the influence of type 1 diabetes mellitus on the voice in pediatric patients using voice
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quality analysis. The study findings revealed that the AVQI value was higher in the patient
group, although not statistically significant. Acoustic measures, such as AVQI and the
maximum phonation time (MPT), were used in the study [41] to predict the degree of
lung involvement in COVID-19 patients. Each participant created a phonetically balanced
sentence with a sustained vowel. In terms of AVQI and MPT, the results demonstrated sub-
stantial disparities between COVID-19 patients and healthy persons. Huttenen’s study [42]
sought to determine the efficacy of a 4-week breathing exercise intervention in patients
with voice complaints. The total scores of AVQI and several of its subcomponents (shimmer
and harmonic-to-noise ratio), as well as the GRBAS scale’s grade, roughness, and strain,
showed dramatically enhanced voice quality. However, neither the kind nor frequency of
vocal symptoms, nor the perceived phonatory effort, changed as a result of the intervention.

2.2. Measurement of the Effects of Vocal Fatigue and Related Impairments

Measurement of the effects of vocal fatigue and related impairments is another well-
established approach. Vocal loading tasks (VLTs) allow researchers to collect acoustic data
and study how a healthy speaker alters their voice in response to obstacles. Such instru-
ments can provide detailed voice information and aid speech pathologists in determining
whether the vocal activity of instructors at work should be regulated or not [43]. There is a
paucity of research on the effect of the talking rate in VLT on acoustic voice characteristics
and vocal fatigue [44]. Vocal effort is widespread and frequently leads to decreased respira-
tory and laryngeal efficiency. However, it is not known whether the respiratory kinematic
and acoustic adaptations used during vocal exertion differ between speakers who express
vocal fatigue and those who do not. Ref. [45] evaluated respiratory kinematics and acoustic
measurements in people with low and high degrees of vocal fatigue while performing a
vocal exertion task. Ref. [46] looked at clinically normal voices with no history of vocal
problems and assessed weariness. The Vocal Fatigue Index (VFI) was used for the subjective
study of vocal loading, while the acoustic and cepstral analysis of voice recordings was
used in both circumstances for objective analysis. The results demonstrated that there was
a substantial difference in VFI scores between the two circumstances. The acoustic and
cepstral properties of the voice also differed significantly between the two circumstances,
a result also confirmed in the study [47]. A similar study [48] was conducted with VFI and
the Borg vocal effort scale. Before, during and after periods of speaking, they objectively
examined fluctuations in relative sound pressure level, frequency response, pitch intensity,
averaged cepstral peak amplitude, and AVQI.

AVQI was also used to evaluate the characteristics, vocal complaints, and habits of
musicians and students of musical theater. Given the mismatch of high vocal requirements
vs. poor vocal education, and hence greater risk for voice issues, choir singers’ voice usage
remains understudied. With mean scores on the Dysphonia Severity Index and AVQI, choir
members demonstrated exceptional voice quality and capabilities [49]. The mean grade
score corresponded to a normal to somewhat aberrant voice quality in terms of auditory
perception. Patient-reported outcome measures revealed significant deviation scores, indi-
cating significant singing voice impairment. Choir singers appear to be particularly prone
to stress, with a high incidence rate. After 15 min of choir singing, the severity index of dys-
phonia improved considerably compared to the control group, although the self-perceived
presence of fatigue and voice complaints increased. In both groups, the fundamental
frequency rose. Dheleeser et al. [50] conducted a study on musical theater actors who had
comparably good objective voice measurements (DSI, AVQI). There has been an upsurge
in the number of VTDs and complaints about the singing voice. The AVQI was used to
identify people who were susceptible to stress, vocal misuse, VTD, and pain symptoms.
The purpose of [51] was to see if the voices of actors and actresses could be cognitively
identified as being more resonant after an intensive Lessac Kinesensic training workshop
and to see if AVQI, ABI, and their acoustic measures could indicate classified voices as
being more resonant. Unfortunately, statistical analysis that compared perceptual and
auditory data for the final samples was not possible. Leyns conducted a similar study and
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discovered that professional actors had stronger vocal abilities than non-professionals [52].
The voice quality of the dancers is inferior to that of the actors. The findings reveal that
one performance has little effect on vocal quality among theater performers and dancers.
Nonetheless, the long-term consequences of performance are still being studied. Similar
research, which used the AVQI to examine 40-minute vocal loading tests that comprised
warm-up, hard singing, and loud reading, found that there were no significant differences
in vocal characteristics between female and male conductors [53]. They discovered that the
volume of the rehearsal room and the duration of the reverberation had no effect on the
characteristics of the acquired voice after vocal loading.

2.3. Language Factors in Voice Quality Analysis

Voice quality metrics have been found to be useful and efficient in the analysis of a
variety of very different spoken languages. The purpose of the [54] study was to confirm
the impact of different cultural origins and languages (Brazil Portuguese and European
Portuguese) on the perception of voice quality. Another goal was to evaluate the relation-
ship between clinical auditory perception assessments and acoustic measures such as AVQI
and ABI, as well as their influence on concurrent validity. They discovered that Brazilian
raters evaluated voice quality as more deviant and that Brazilian voice samples were less
severe (a possible language characteristic). More research is needed to determine whether
there was a task or a sample consequence, as well as whether revisions to the AVQI and
ABI formulations are needed for Brazilian Portuguese. A similar assessment was made
for the Italian speaking population [55]. The auditory perceptual RBH scale (roughness,
breathiness, and hoarseness) and acoustical analysis using AVQI validated dysphonia
in a study of the Polish population using recorded voice [56]. Jakamarar [57] explored
the verification of AVQI in the South Indian population and found it to be superior in
terms of diagnostic precision and internal consistency. Kim et al. sought to validate the
AVQI version 3.01 and ABI as acoustic analysis tools in Korean [58]. They discovered that
AVQI and ABI had good concurrent validity in quantifying the severity of dysphonia with
respect to OS and B in a sample of Korean speakers. A further investigation of the Korean
population found that each measure had a strong discriminative ability to distinguish the
presence or absence of voice difficulties [59]. The findings of this study might be used as
an objective criterion to detect voice disorders. According to [60], the AVQI is a robust
multiparametric measure that can reliably differentiate between subcategories of severity of
perceptual dysphonia with good accuracy in Kannada. Moreover, AVQI has been shown to
be useful in analyzing signals with greater degrees of aperiodicity, such as extreme hoarse
voice quality [7]. The AVQI was lower (better) in samples with a high degree of strain
for Finnish speakers, but the variation was not substantial [61]. Only CPPS distinguished
between modest and large degrees of creak. With normophonic speakers, the AVQI does
not appear to distinguish between low and high levels of creak and strain. Puzzella [62]
investigated the validity (both concurrent and diagnostic) and the test–retest reliability
of AVQI in a Turkish speaking community. The link between AVQI scores and auditory
perception rating of total voice quality was statistically significant. The dysphonic voice
was assigned a necessary threshold by AVQI. Intraclass correlation coefficient values using
a two-way mixed effects model, single-measures type, and absolute agreement definition
demonstrated high test–retest reliability for the AVQI in Turkish. Furthermore, the consider-
able values of concurrent validity and diagnostic accuracy of both versions of AVQI-Persian
were verified, demonstrating that it can distinguish between normal and diseased voices
in Persian speakers [63]. As a conclusion, it is clear that AVQI and similar metrics can be
utilized for language-independent screening or diagnosis.

3. Materials and Methods
3.1. Materials

The study comprised 134 adult participants, with 58 men and 77 women, who were
evaluated in the Department of Otolaryngology of the Lithuanian University of Health
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Sciences, Kaunas, Lithuania. The mean age of the participants was 42.9 (SD 15.26) years.
The pathological voice subgroup, which included 86 patients (42 men and 44 women), had
a mean age of 50.8 years (SD 14.3) and presented with a variety of laryngeal diseases and
associated voice impairments, such as benign and malignant mass lesions of the vocal folds
and unilateral paralysis of the vocal fold. Diagnosis was based on clinical examination,
including patient complaints and history, voice assessment and video laryngostroboscopy
(VLS) using an XION Endo-STROB DX device (XION GmbH, Berlin, Germany) 70° rigid
endoscope and/or direct microlaryngoscopy. Five experienced physicians–laryngologists
performed the auditory–perceptual evaluations of voice samples. For the purpose of
this study, only the evaluation of dysphonia’s grade (G) was used from the GRBAS scale
(grade, breathiness, roughness, asthenia, and strain). The voice samples were rated into
four ordinal severity classes of G on the scale from 0 to 3 points, where 0 = normal voice,
1—mild, 2—moderate, and 3—severe dysphonia [64]. A severity distribution is displayed
in Figure 1.

Figure 1. Severity distribution of the patients involved.

The normal voice subgroup consisted of 49 healthy volunteers, 16 men and 33 women,
with a mean age of 31.69 (SD 9.89) years. To qualify as vocally healthy, participants were
required to have no actual voice complaints, no history of chronic laryngeal diseases or
voice disorders, and to self-report their voice as normal. The voices of the participants
were evaluated as normal by otolaryngologists specialized in the field of voice, as there
were no pathological alterations in the larynx. Demographic data for the study group and
diagnoses for the pathological voice subgroup are presented in Table 1.

Voice samples representing five different smartphones were used, namely the iPhone
12 Pro, iPhone 13 Pro Max, Xiaomi Redmi Note 5, iPhone 12 Mini, and Samsung Galaxy
S10+. The following processing conditions were applied: smartphones were placed ap-
proximately 30.0 cm away from the mouth, at a 90◦ angle to the mouth, and had internal
microphones (bottom) (see Figure 2). The devices were selected from a range of commercial
prices. The background noise level averaged 29.61 dB SPL and the signal-to-noise ratio
(SNR) was approximately 38.11 dB compared to the voiced recordings, indicating that
the environment was suitable for both voice recordings and the extraction of acoustic
parameters. The AKG microphone was placed 10.0 cm from the mouth at a comfortable
(approximately 90°) microphone-to-mouth angle.
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Figure 2. The experimental setup of five different smartphone devices modeled in this study (iPhone
SE, iPhone PRO MAX 13, Huawei P50 pro, Samsung S22 Ultra, and OnePlus 9 PRO).

Table 1. Demographic data of the study group.

Diagnosis Total Age (mean) Age (SD)

Normal voice 49 31.69 9.89
Vocal fold nodules 6 42.67 10.86
Vocal fold polyp 21 40.95 12.98
Vocal fold cyst 3 42.67 12.58

Vocal fold cancer 11 65.09 7.71
Vocal fold polypoid hyperplasia 12 53.25 8.07

Vocal fold keratosis 4 56.25 2.63
Vocal fold papilloma 7 41.71 13.67

Unilateral vocal fold paralysis 6 40.83 12.77
Bilateral vocal fold paralysis 4 52.75 12.61

Chronic hyperplastic laryngitis 6 55.67 9.63
Dysphonia 1 22 .

GERD 2 57 15.56
Parkinson’s disease 2 71.5 9.19

A phonetically balanced Lithuanian sentence “Turėjo senelė žilą oželį” (“Old granny
had a billy goat”) was the main utterance used to compare the recordings. The relative
frequencies of the phonemes in the sentence are as close as possible to the distribution
of speech sounds used in Lithuanian. The examples of spectral analysis results of voice
samples are given in Figure 3.
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Figure 3. Spectral analysis results of a normal voice (class 0) and voice with severe dysphonia.

3.2. Calculating Required Voice Characteristics

To conduct the clinical research, we built a universal-platform-based version of the
“VoiceScreen” software for use with both iOS and Android operating systems, using our
Pareto optimized technique. The AVQI and its characteristics are calculated on the server;
hence, computationally expensive sound processing is not reliant on the computing capa-
bilities of the user device and may run on any Android or iOS device with a manufacturer-
supported version of each respective operating system. The provided smartphone (either
iOS or Android) records sound waves obtained while pronouncing given sentences aloud
in the first stage. Sound waves are preprocessed in real time. The goal is to remove pauses
from the sound waves and to guarantee that only the minimum quantity of sound is avail-
able for further processing. Then, that preprocessed sound wave is sent to the server for
further analysis. The server runs a Linux operating system and operates our proprietary
software to calculate the required characteristics necessary to evaluate the voice. Finally,
the AVQI index and related data are sent back to the phone and displayed to the user.
Figure 4 shows the structure of the system, while Figure 5 illustrates the operation sequence.

The server-side system performs numerous operations. First, the cepstral peak promi-
nence (CPPS) is calculated (see Figure 6).

Our approach outlines a series of algorithms used to assess impaired voice quality
using acoustic measures. The first algorithm resamples and applies pre-emphasis to
the sound, then calculates the power cepstrogram. The second algorithm calculates the
harmonicity using the cross-correlation technique, while the third algorithm calculates
the shimmer, which measures cycle-to-cycle variations in vocal amplitude. The fourth
algorithm calculates the long-term average spectrum (LTAS) of the sound waveform.
Finally, the AVQI values are calculated, using multiple acoustic measures of voice quality
through Pareto optimization. This technique identifies the optimal trade-off between
multiple conflicting objectives to find the best solution to improve overall vocal quality
while minimizing breathiness, roughness, and strain.

In Algorithm 1, we first resample the sound to twice the value of the maximum
frequency and apply pre-emphasis to the resampled sound. Then, for each analysis window,
we apply a Gaussian window, calculate the spectrum, transform it into a PowerCepstrum
and store the values in the corresponding vertical slice of the PowerCepstrogram matrix.
The algorithm returns the resulting PowerCepstrogram. The PowerCepstrogram is a
representation of the power spectrum of a signal in the cepstral domain. The algorithm
takes as input a sound signal, a pitch floor, a time step, a maximum frequency, and a
pre-emphasis coefficient. The output of the algorithm is the PowerCepstrogram.
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Figure 4. Structure of the system and flow of the operations.
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Figure 5. Sequence diagram of operations performed in our approach.



Appl. Sci. 2023, 13, 5363 12 of 29

Figure 6. Calculation of the CPPS.

Algorithm 1 PowerCepstogram algorithm.

Require: sound, pitch_ f loor, time_step, max_ f req, pre_emphasis_ f rom
Ensure: PowerCepstrogram

1: function POWERCEPSTROGRAM(sound, pitch_ f loor, time_step, max_ f req,
pre_emphasis_ f rom)

2: sound← RESAMPLE(sound, 2×max_ f req)
3: PRE-EMPHASIZE(sound, pre_emphasis_ f rom)
4: window_length← 3

pitch_ f loor
5: window← Gaussian window with length window_length
6: f rame_length← length of window
7: hop_length← time_step× 2×max_ f req
8: num_ f rames← b length of sound− f rame_length

hop_length c
9: power_cepstrogram← empty matrix with dimensions (b max_ f req

pitch_ f loor c, num_ f rames)
10: for i← 1 to num_ f rames do
11: start← (i− 1)× hop_length + 1
12: end← start + f rame_length− 1
13: f rame← sound[start : end]× window
14: spectrum← SPECTRUM( f rame)
15: power_spectrum← |spectrum|2
16: power_cepstrum← POWERCEPSTRUM(power_spectrum)
17: power_cepstrogram[:, i]← values from power_cepstrum up to b max_ f req

pitch_ f loor c
18: end for
19: return power_cepstrogram
20: end function

The second step is to perform pitch analysis and calculate harmonicity (see Figure 7
and Algorithm 2).
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Algorithm 2 shows an implementation of the pitch analysis method that uses the
cross-correlation technique to determine the pitch of a sound signal. The input parameters
are the sound signal, the time step, the pitch floor and ceiling, as well as various thresholds
and costs that affect the pitch analysis. The algorithm returns a pitch object that contains
the pitch measurements and other pitch-related information.

The formant calculation algorithm is presented in Algorithm 3. This algorithm is a
partial implementation of a function called “getFormantMean” that calculates the average
value of a specified formant for a given time range. The function takes four arguments:
“formantNum” specifies which formant to calculate the mean for, “fromTime” and “toTime”
specify the time range to consider, and “units” specifies the units of the time range.

Algorithm 4 presents an algorithm to calculate harmonicity using Praat’s harmonicity
object. This algorithm takes a Praat sound object, a start and end time for the analysis, a time
step, a silence threshold, and the number of periods per analysis window. It first creates a
Praat harmonicity object from the input sound, with the given time step, silence threshold,
and periods per window. It then selects the portion of the harmonicity object corresponding
to the specified time range and returns the mean value of the selected portion. Aproach is
explained in the Algorithm 4.

Algorithm 2 Pitch analysis based on the cross-correlation method.

1: function PITCHANALYSIS(sound, timeStep, pitchFloor, useGaussianWindow,
pitchCeiling, silenceThreshold, voicingThreshold, octaveCost, octaveJumpCost,
voicedUnvoicedCost)

2: resampledSound← Resample(sound, 2× pitchCeiling)
3: preEmphasizedSound← PreEmphasize(resampledSound, pitchFloor)
4: windowLength← 1/pitchFloor
5: if timeStep = 0 then
6: timeStep← 0.25/pitchFloor
7: end if
8: if useGaussianWindow = True then
9: windowLength← 2× windowLength

10: end if
11: pitch← CreateEmptyPitch()
12: pitch← SetTimeStep(pitch, timeStep)
13: pitch← SetPitchFloor(pitch, pitchFloor)
14: pitch← SetSilenceThreshold(pitch, silenceThreshold)
15: pitch← SetVoicingThreshold(pitch, voicingThreshold)
16: pitch← SetCeiling(pitch, pitchCeiling)
17: pitch← SetOctaveCost(pitch, octaveCost)
18: pitch← SetOctaveJumpCost(pitch, octaveJumpCost× 0.01/timeStep)
19: pitch← SetVoicedUnvoicedCost(pitch, voicedUnvoicedCost× 0.01/timeStep)
20: for f rame in preEmphasizedSound with interval of timeStep do
21: f rameLength← the length of the analysis window
22: window← CreateWindow( f rameLength, useGaussianWindow)
23: autocorrelation← Autocorrelate( f rame× window)
24: candidates← ExtractCandidates(autocorrelation, pitchFloor, pitchCeiling)
25: bestCandidate← FindBestCandidate(candidates, voicingThreshold)
26: pitch← AddPitchMeasurement(pitch, f rame, bestCandidate)
27: end for
28: pitch← PostProcessPitch(pitch)
29: return pitch
30: end function
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Figure 7. Pitch analysis and harmonicity calculation.

Algorithm 3 Formant calculation.

1: function GETFORMANTMEAN( f ormantNum, f romTime, toTime, units)
2: f ormantObj← selected Formant object
3: mean← 0
4: count← 0
5: for i← 1 to n do
6: time← time at index i of formantObj
7: if time < f romTime or time > toTime then
8: continue
9: end if

10: end for
11: f ormantVal ← formant value at index i, formant number f ormantNum of forman-

tObj
12: end function
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Algorithm 4 Harmonicity calculation.

1: function CALCULATEHARMONICITY(sound, f rom_time, to_time, timestep,
silence_threshold, periods_per_window)

2: harmonicity ← TOHARMONICITY(sound, timestep, silence_threshold,
periods_perwindow)

3: SELECT(harmonicity, f rom_time, to_time)
4: return GET_MEAN (harmonicity)
5: end function

The third step is to calculate the shimmer (see Figure 8 and Algorithm 5).
This algorithm calculates two measures of shimmer, which is a measure of cycle-

to-cycle variations in vocal amplitude. The input is a sound waveform, a point process
representing glottal closures, and the start and end times in seconds. The output is the
shimmer local value and the shimmer dB value.

Algorithm 5 Shimmer calculation.

Require: soundWav, the sound waveform
Require: pointProcess, the point process representing glottal closures
Require: startTime, the start time in seconds
Require: endTime, the end time in seconds
Ensure: shimmerLocal, the shimmer local value
Ensure: shimmerDB, the shimmer dB value

1: Extract a pitch contour from the sound using the Sound: To Pitch. . . command with the
following settings:

2: - pitch floor: 75 Hz
3: - pitch ceiling: 600 Hz
4: - time step: 0.01 s
5: - range of analysis: startTime to endTime
6: Convert the pitch contour to a point process using the Pitch: To PointProcess command

with the following settings:
7: - silences: unvoiced
8: - voicing threshold: 0.45
9: Initialize a list to store the amplitude differences

10: for each period in the point process do
11: Get the start and end times of the period
12: Calculate the amplitude difference between the two points in the waveform that

correspond to the start and end times
13: Append the absolute value of the amplitude difference to the list
14: end for
15: Calculate the average amplitude difference and the average amplitude:
16: - Calculate the mean of the amplitude difference list and store it as amplitudeDi f f Avg
17: - Calculate the mean of the absolute values of the waveform and store it as

amplitudeAvg
18: Calculate the shimmer local value:
19: - Divide amplitudeDi f f Avg by amplitudeAvg and multiply by 100
20: - Store the result as shimmerLocal
21: Calculate the shimmer dB value:
22: - Calculate the base-10 logarithm of each amplitude difference value in the list and store

the result as a new list
23: - Calculate the mean of the new list and multiply by 20
24: - Store the result as shimmerDB
25: Return shimmerLocal and shimmerDB
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Figure 8. Calculation of the shimmer values.

In the fourth step, we need to calculate the long-term average spectrum (LTAS) (see
Figure 9).

The algorithm to calculate the LTAS (long-term average spectrum) is presented in
Algorithm 6. This algorithm calculates the LTAS of a given sound waveform and computes
the slope and tilt parameters. The LTAS is a smoothed version of the spectrum of the sound
waveform, calculated over a long period of time, typically several seconds.

Algorithm 6 LTAS calculation.

Require: soundWav: the sound waveform
Ensure: slope_dB: the slope in dB and tilt: the tilt parameter

1: ltas← call(soundWav, “To Ltas. . .”, 1) . Convert sound waveform to Ltas
2: for i← 0 to N − 1 do . Calculate power in each band
3: s_i← call(ltas, “Get frequency”, i)
4: re_si← call(ltas, “Get real”, i)
5: im_si← call(ltas, “Get imaginary”, i)
6: bi ← 2((re_si)2 + (im_si)2)/4.0 · 10−10 . Calculate band power
7: end for
8: slope_dB← call(ltas, “Get slope. . .”, 0, 1000, 1000, 10000, “energy”) . Calculate slope
9: ltas_trendline_db← call(ltas, “Compute trend line”, 1, 10000) . Compute trendline

10: tilt← call(ltas_trendline_db, “Get slope”, 0, 1000, 1000, 10000, “energy”) . Calculate
tilt parameter

11: return slope_dB, tilt
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Figure 9. Calculation of the LTAS values.

Finally, we calculate the AVQI values (see Figure 10) given several acoustic measures
of voice quality. The calculation algorithm is given in Algorithm 7. The Pareto optimization
of AVQI scores is given in Algorithm 8.

Figure 10. Calculation of the AVQI values.
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Algorithm 7 AVQI calculation.

Require: cpps, hnr, ShPerc, shdB, LtasSlope, LtasTreadTilt
Ensure: AVQI

1: function CALCULATEAVQI(cpps, hnr, ShPerc, shdB, LtasSlope, LtasTreadTilt)
2: AVQI ← ((3.295− (0.111× cpps)− (0.073× hnr)− (0.213× ShPerc) + (2.789×

shdB)−
(0.032× LtasSlope) + (0.077× LtasTreadTilt))× 2.208) + 1.797

3: return AVQI
4: end function

Algorithm 8 Pareto optimization of AVQI scores.

1: Define the relevant voice quality parameters and define AVQI score as the objective to
be optimized.

2: Select a set of candidate solutions that represent different combinations of the voice
quality parameters.

3: Calculate the AVQI scores for each candidate solution using a combination of objective
and subjective methods.

4: Plot the candidate solutions on a Pareto front to visualize the trade-off between the
objectives.

5: Identify the Pareto optimal solutions on the Pareto front using visual inspection, clus-
tering, or optimization algorithms, such as NSGA-II.

6: Select the Pareto optimal solution that best meets the specific needs and preferences of
the AVQI assessment, considering factors such as clinical relevance, patient preference,
and ease of implementation.

7: Evaluate the performance of the AVQI algorithm using validation data and feedback
from clinicians and patients.

8: Fine-tune the AVQI algorithm and the Pareto optimization parameters based on the
validation results and feedback.

Pareto Optimized Assessment of Impaired Voice

Pareto optimization is a technique used to identify the optimal trade-off between
multiple conflicting objectives.

Let X be the set of candidate solutions, where each solution x ∈ X is a vector of n
characteristics of voice quality, such as overall voice quality, strain, and pitch. Let f (x) =
( f1(x), f2(x), . . . , fm(x)) be a vector of m objective functions that measure the performance
of x in each characteristic. The Pareto front is defined as the set of nondominated solutions,
i.e., those solutions that cannot be improved in any objective without worsening at least
one other objective. Formally, a solution x1 dominates another solution x2 if and only
if f1(x1) ≤ f1(x2), f2(x1) ≤ f2(x2) and fm(x1) ≤ fm(x2) and there exists at least one
objective function f j such that f j(x1) < f j(x2). The Pareto front is the set of all non-
dominated solutions, i.e., P = {x ∈ X|∀x′ ∈ X, x′ is not dominated by x}. The Pareto
optimal solution is any solution x∗ ∈ P that maximizes the trade-off between the objectives,
i.e., ∀x ∈ P, f (x∗) ≤ f (x), where ≤ denotes Pareto dominance.

In the context of the evaluation of impaired voice by AVQI recorded on the smartphone,
Pareto optimization is used to find the best trade-off between different parameters that
affect overall vocal quality, such as breathiness, roughness, strain, and pitch. The first
step in Pareto optimization is to define the objectives or criteria that need to be optimized.
In the case of the AVQI assessment, the objective could be to maximize overall vocal quality
while minimizing breathiness, roughness, and strain. Pitch could be considered a separate
objective, depending on the specific voice impairment being assessed. The next step is to
generate a set of candidate solutions that represent different combinations of objectives.
This is done by varying the weights or importance assigned to each objective in the AVQI
algorithm. For example, increasing the weight of the overall vocal quality objective would
result in a higher score for samples with better overall quality, while decreasing the weight
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of the breathiness objective would result in a lower score for samples with more breathiness.
Once the candidate solutions are generated, Pareto optimization techniques are used to
identify the optimal trade-off between the objectives as follows.

Step 1: Calculate the AVQI scores for each candidate solution based on the relevant
parameters.

To calculate the AVQI score, we need to first define the relevant parameters that
affect voice quality. These could include measures of pitch, loudness, jitter, shimmer,
harmonics-to-noise ratio, and other relevant acoustic and perceptual measures. Once the
parameters are defined, we can use a combination of objective and subjective methods to
calculate the AVQI score. Objective methods use signal processing and machine learning
techniques to analyze the acoustic properties of the voice signal and extract relevant features.
These features are then combined using a mathematical model to calculate the AVQI score.
Examples of objective methods include Praat software, which measures various voice
parameters, and the glottal inverse filtering (GIF) method, which estimates the glottal
source waveform from the speech signal. Subjective methods use human listeners to rate
the quality of the voice based on perceptual criteria, such as clarity, naturalness, and overall
acceptability. These ratings are then combined using statistical methods to calculate the
AVQI score. Examples of subjective methods include the consensus auditory–perceptual
evaluation of voice (CAPE-V), which uses a standardized rating scale to evaluate various
aspects of voice quality.

Step 2: Plot the candidate solutions on a Pareto front to visualize the trade-off between
the objectives.

To plot the candidate solutions on a Pareto front, we first need to define the objective
functions that we want to optimize. For example, we may want to maximize the clarity
of the voice while minimizing the jitter and shimmer. We can then calculate the objective
values for each candidate solution and plot them on a 2D or 3D graph, where each axis
represents an objective function. The Pareto front is the set of candidate solutions that
cannot be improved in one objective without sacrificing another objective.

Step 3: Identify the Pareto optimal solutions on the Pareto front that cannot be im-
proved in one objective without sacrificing another objective.

To identify the Pareto optimal solutions, we can use a variety of techniques, such
as visual inspection, clustering, or optimization algorithms. Visual inspection involves
manually examining the Pareto front and selecting the solutions that best meet the specific
needs and preferences of the AVQI assessment. Clustering involves grouping similar
solutions together and selecting the representative solutions from each cluster. Optimization
algorithms, such as the NSGA-II (non-dominated sorting genetic Algorithm 2) can be used
to automatically identify the Pareto optimal solutions.

Step 4: Select the Pareto optimal solution that best meets the specific needs and
preferences of the AVQI assessment.

To select the Pareto optimal solution that best meets the specific needs and preferences
of the AVQI assessment, we need to consider factors, such as clinical relevance, patient
preference, and ease of implementation. We may also want to consult with clinicians and
patients to get their feedback and ensure that the selected solution is acceptable and feasible.

Step 5: Fine-tune the AVQI algorithm and the Pareto optimization parameters based
on the validation results and feedback from clinicians and patients

To fine-tune the AVQI algorithm and the Pareto optimization parameters, we need
to evaluate the performance of the algorithm using validation data and feedback from
clinicians and patients. We can use metrics such as accuracy, sensitivity, specificity, and AUC
(area under the roc curve) to assess the performance of the AVQI algorithm. We can also ask
clinicians and patients to rate the quality of the voice for a subset of the validation data and
compare the ratings with the AVQI scores. Based on the validation results and feedback.
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4. Results
AVQI Evaluation Outcomes

First, we used two statistical measures to assess the agreement and reliability of the
data collected through individual smartphone AVQI evaluations and inter smartphone
AVQI measurements. Cronbach’s alpha was used as a statistical measure to assess the
internal consistency or reliability of AVQI. It ranges from 0 to 1, where 0 indicates no
internal consistency or reliability, and 1 indicates perfect internal consistency or reliability.
The Cronbach’s alpha for individual smartphone AVQI evaluations was calculated to be
0.99, which is an excellent agreement.

Next, we calculated the intraclass correlation coefficient (ICC), which is a statistical
measure used to assess the reliability or consistency of the measurements taken by different
raters or methods, in our case, different smartphones. It ranges from 0 to 1, where 0
indicates that there is no reliability or consistency, and 1 indicates perfect reliability or
consistency. Therefore, the ICC was used to assess the reliability of the intersmartphone
AVQI measurements, and we determined the average ICC to be 0.9115, which is an excellent
result. The range of ICC values from 0.8885 to 0.9316 suggests that the measurements taken
by different smartphones are consistent and reliable throughout the range.

Table 2 displays the mean AVQI scores obtained from various smartphones and a
studio microphone.

Table 2. Comparison of the mean results of the AVQI obtained with different smartphones and
studio microphones.

Microphone n Mean AVQI Std. Deviation F p

AKG Perception 220 134 3.412 1.823 9.03 <0.001
iPhone SE 3.238 1.798

iPhone PRO MAX 13 3.016 1.735
Huawei P50 pro 3.581 1.977

Samsung S22 Ultra 4.407 2.014
OnePlus 9 PRO 3.736 1.817

We also performed a one-way ANOVA test to determine whether there are statistically
significant differences between the means of three or more independent groups. In our
case, a one-way ANOVA was performed to compare the mean AVQI scores obtained from
different smartphones. The results of the analysis (presented in Table 2) indicate that
there were significant differences in mean AVQI scores between different smartphones
(F = 9.035; p ≤ 0.001). Therefore, pairwise comparisons were conducted to determine
which smartphones differed significantly from each other. The results of the pairwise
comparisons (pairwise analysis) revealed that there were significant differences between
AKG Perception 220 (studio microphone) and Samsung S22 Ultra (p < 0.001).

We also explored the differences in mean AVQI scores (ranged from 0.17 to 0.99 points)
when comparing different smartphones. These indicate that some smartphones performed
better than others in terms of producing accurate and high-quality sound recordings.

Table 3 reports that there was a nearly perfect direct linear correlation between the
AVQI results obtained from both the studio microphone and different smartphones. This
means that the AVQI scores obtained from different smartphones were highly correlated
with the AVQI scores obtained from the studio microphone. Pearson’s correlation coeffi-
cients ranged from 0.976 to 0.99, which is a strong positive correlation.
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Table 3. Correlations of AVQI scores obtained with a studio microphone and different smartphones.

Microphones Criterion iPhone SE iPhone Pro Max 13 Huawei P50
Pro

Samsung
S22 Ultra

OnePlus 9
PRO

AKG
Perception

220
r 0.9937 0.9904 0.9764 0.9777 0.9895

p 0.001 0.001 0.001 0.001 0.001
n 134 134 134 134 134

For analysis, the Bland–Altman plot, often known as the difference plot, is used as a
visual way to contrast two measuring methods [65]. The ratios (or disparities, as an alter-
native) between the two procedures are shown. For all devices compared to the reference
microphone, bias and critical difference were computed, and the relevant Bland–Altman
graphs are shown in Figure 11.

Figure 11. Bland–Altman plot for comparison of AVQI scores obtained from each smartphone device
and the reference microphone.

The bias’s 95% confidence interval was used. If 0 was omitted from the confidence
interval, the bias was considered substantial. To compare the means of the recorded samples
from the reference microphone with the means from the five cellphones, we utilized Bland–
Altman analysis. Both an absolute number and a percentage of the complete range of the
relevant parameter, as determined by the reference microphone, are used to express the
amount of the important difference (random error). The results show the crucial difference
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calculated from studio microphone measurements as a percentage of the parameter’s total
range and in absolute numbers. For the combined male and female samples, bias and
critical difference were computed. In order to determine if gender has any impact on
overall bias and crucial difference, the Bland–Altman plots display data points designated
by gender. The 95% confidence interval was used in significance testing for bias values,
as was previously noted. The correlation between AVQI results obtained from studio using
AKG Perception 220 microphone and different smartphones with a 95% confidence interval
is illustrated in Figure 12.

Figure 12. Scatterplot illustrating the correlation between AVQI results obtained from studio using
AKG Perception 220 microphone and different smartphones with a 95% confidence interval.

The experimental evaluation continued with the analysis of receiver operating char-
acteristic (ROC) curves using AVQI to determine the diagnostic accuracy of different
smartphones compared to a professional microphone (see Figure 13). ROC curves are
representations of the relationship between the sensitivity and specificity of a diagnostic
test at various cutoff points. They were used to evaluate the performance of diagnostic
tests and to determine the optimal cutoff scores for diagnostic accuracy to compare the
diagnostic accuracy of different smartphones with a professional microphone.

The diagnostic accuracy of different smartphones was comparable to that of a pro-
fessional microphone. This suggests that smartphones were able to distinguish between
normal and pathological voices with accuracy similar to that of a professional microphone.

To determine the optimal cutoff scores for diagnostic precision, the ROC curves
obtained from the studio microphone and different smartphones were visually inspected
according to the general interpretation guidelines [66]. This allowed one to identify the
best balance between sensitivity and specificity for each smartphone, and the cutoff score
was determined accordingly.
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Figure 13. ROC curves illustrating the diagnostic accuracy of studio and different smartphone
microphones in discriminating normal/pathological voice.

Furthermore, the AUC statistics analysis demonstrated that AVQI had a high level of
precision in distinguishing between normal and pathological voices, as evidenced by the
suggested AUC = 0.7 threshold. The findings of the ROC statistical analysis are provided
in Table 4.

We also analyzed the area under the curve (AUC) statistics to determine the accuracy
of AVQI in distinguishing between normal and pathological voices. This statistical measure
was used to evaluate the performance of a diagnostic test. It represents the ability of the
test to correctly classify individuals into normal and pathological categories. An AUC
of 0.5 indicates that the test is no better than random guessing, whereas an AUC of 1.0
indicates perfect classification. A good level of accuracy was achieved, which means that
AVQI was able to correctly classify individuals into normal and pathological categories
with a high degree of accuracy (the suggested threshold for high precision was an AUC
of 0.7, which means that if the AUC value of AVQI was equal to or greater than 0.7, it
could be considered a highly accurate diagnostic test to distinguish between normal and
pathological voices).

Through the use of ROC analysis (see Table 4), we determined that there are optimal
AVQI cut-off values that can effectively distinguish between normal and pathological voices
for each smartphone used in the study. Furthermore, all of these devices met the proposed
0.7 AUC threshold and demonstrated an acceptable Youden index value. These results
indicate that AVQI is a reliable tool for distinguishing between normal and pathological
voice, be it using a smartphone or professional recording equipment.
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Table 4. The findings of the ROC statistical analysis.

AVQI AUC Cut-Off Sensitivity (%) Specificity (%) Youden-Index J F-Score

AKG Perception 220 0.731 4.7 82.9 73.1 0.560 0.777
IPHONE SE 0.735 4.4 82.9 63.6 0.465 0.719

IPHONE PRO MAX 13 0.732 4.3 83.7 63.6 0.473 0.722
Huawei P50 pro 0.721 4.6 78.0 63.6 0.416 0.701

Samsung S22 Ultra 0.710 5.8 82.1 63.6 0.457 0.716
OnePlus 9 PRO 0.725 5.0 82.1 63.6 0.457 0.716

Third, a pairwise comparison of the significance of the differences between the AUCs
revealed in the present study is presented in Table 5. We used DeLong’s test [67] for
two correlated ROC curves, which allows us to statistically compare the AUCs of two
dependent ROC curves. This test takes into account the correlation between the ROC
curves and provides a more accurate comparison of the AUCs. DeLong’s test confirmed
that there were no statistically significant differences between the AUCs obtained from
AVQI measurements obtained from the studio microphone and different smartphones. This
means that the ability of AVQI to distinguish between normal and pathological voices
was comparable between the studio microphone and different smartphones. The largest
difference observed between the AUCs obtained from the studio microphone and different
smartphones was only 0.025. This means that the difference in the ability of AVQI to
distinguish between normal and pathological voices between the studio microphone and
different smartphones was very small.

Table 5. A pairwise comparison of the significance of differences between AUCs was revealed in the
present study.

Phone AKG
Perception 220 iPhone SE iPhone PRO

MAX 13
Huawei P50

Pro
Samsung S22

Ultra
OnePlus 9

PRO

AKG Perception 220 - 0.6176 0.9319 0.4851 0.4534 0.5938
iPhone SE 0.6176 - 0.6991 0.1995 0.2888 0.2478

iPhone PRO MAX 13 0.9319 0.6991 - 0.4851 0.4869 0.6649
Huawei P50 pro 0.4851 0.1995 0.4851 - 0.5978 0.7618

Samsung S22 Ultra 0.4534 0.2888 0.4869 0.5978 - 0.4128
OnePlus 9 PRO 0.5938 0.2478 0.6649 0.7618 0.4128 -

To summarize, across the statistical analysis of the study results, the data demonstrated
almost identical and compatible results of AVQI performance between studio microphones
and different smartphones. However, it is important to note that differences in the phone
operating conditions, microphones within each smartphone series, and version of the
operating system software may cause variations in acoustic voice quality measurements
between recording systems. Therefore, it is advisable to use the “VoiceScreen” app with
caution if tests are being performed using multiple devices. For reliable voice screening
purposes, it is recommended to perform AVQI measurements using the same device,
preferably with repeated measurements. These considerations should also be taken into
account when comparing data from acoustic voice analysis between different recording
systems, such as different smartphones or other mobile communication devices, and when
using them for diagnostic purposes or monitoring voice treatment results.

5. Discussion and Conclusions

The VoiceScreen algorithm was created for clinical research and can be used on both
iOS and Android devices. The AVQI and its characteristics are computed on the server,
and the sound waves collected from the provided smartphone are preprocessed to remove
pauses and excess sound before being sent to the server for analysis. The evaluation results
were found to be reproducible on different smartphone platforms with no statistical differ-
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ences. Furthermore, there was a nearly perfect direct linear correlation between the AVQI
results obtained from the studio microphone and different smartphones, as the individual
smartphone AVQI evaluations demonstrated excellent agreement as indicated by a Cron-
bach alpha of 0.99. Similarly, the inter-smartphone AVQI measurements showed excellent
reliability with an average intra-class correlation coefficient (ICC) of 0.9115 (ranging from
0.8885 to 0.9316). The results of the one-way ANOVA analysis did not reveal significant
differences in mean AVQI scores between different smartphones, indicating that the results
of the AVQI evaluation are reproducible on different smartphone platforms. Similarly,
Pearson’s correlation coefficients ranged from 0.976 to 0.99, indicating a nearly perfect
direct linear correlation between AVQI results obtained from both the studio microphone
and different smartphones. Additionally, based on the analysis of ROC curves using AVQI,
it was determined that the diagnostic accuracy of different smartphones was compara-
ble to that of a professional microphone. We determined that there are optimal AVQI
cut-off values that can effectively distinguish between normal and pathological voices for
each smartphone used in the study. Furthermore, all devices met the proposed 0.7 AUC
threshold and demonstrated an acceptable Youden index value.

These results confirmed compatible results of the diagnostic accuracy of AVQI in
differentiating normal versus pathological voices when using voice recordings from studio
microphones and different smartphones, and our approach was found to be a reliable tool
for distinguishing between normal and pathological voices, regardless of the device used,
with no statistically significant differences between the voice impairment measurements
obtained from different devices.

A substantial device effect was detected in a comparable study [68] for low versus
high spectral ratio (L/H Ratio) (dB) in both vowel and phrase contexts, as well as for the
cepstral spectral index of dysphonia (CSID) in the sentence context. It was discovered
that independent of context, the device had a little influence on CPP (dB). The recording
distance had a small-to-moderate influence on measurements of CPP and CSID but had no
effect on the L/H ratio. The setting was found to have a considerable influence on all three
measures, with the exception of the L/H ratio in the vowel context. The range of voice
characteristics contained in the voice sample corpus was captured by all devices evaluated.
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Abbreviations
The following abbreviations are used in this manuscript:

SPL sound pressure level
f0 fundamental frequency
AVQO Acoustic Voice Quality Index
ABI Acoustic Breathiness Index
CPPS smoothed cepstral peak prominence
PET pitch elevation training
ART articulation-resonance training
VHI Voice Handicap Index
RPM respiratory protection masks
KN95 variant of respiratory protection masks
CSID cepstral spectral index of dysphonia
TPO trans-surgical palatine obturators
VHI-10 Voice Handicap Index 10
MPT maximum phonation time
RBH roughness, breathiness, hoarseness scale
SD standard deviation
SNR signal-to-noise ratio
GRBAS grade, roughness, breathiness, asthenia, strain scale
iOS Apple smartphone operating system
HNR harmonicity
LTAS long-term average spectrum
ANOVA analysis of variance
ROC receiver operating curve
AUC area under the ROC curve
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