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ABSTRACT The increasing presence of vehicles on roads necessitates intelligent traffic management solutions 

in areas where video cameras cannot be utilized. Currently, there are limited choices for depersonalized vehicle 

reidentification systems. This paper introduces a system that later will be used for vehicle reidentification. The 

system uses anisotropic magnetoresistive sensors and is based on the hypothesis that each vehicle leaves unique 

magnetic signatures which can be used for comparison and matching. Vehicle location on the road perpendicular 

to sensor array detection methodology is presented in this work. An array of magnetic sensors is installed in 

asphalt across the vehicle's driving direction. The system continuously measures Earth's natural magnetic field 

and detects distortions when vehicles pass a sensors’ array and then logs magnetic signatures.  Useful parameters 

from raw sensor axes are calculated – modules and derivatives. Applying signal-to-noise ratio calculation for 

module derivatives between ambient noise and signal gives important features for neural network input. 

Different types of neural network architectures and output result interpretation techniques are investigated.  

Further, after evaluating network output it is possible to label sensor nodes that are directly beneath the vehicle. 

Experiment results show that implemented algorithm is highly sufficient for valid sensors under the vehicle 

selection. Correct sensor selection is important for further re-identification algorithms. 

INDEX TERMS Magnetic field measurement, magnetic signature, vehicle re-identification, intelligent 

transportation systems 

I. INTRODUCTION 

Road vehicles are an integral part of our daily lives. The need 

for Intelligent transportation systems (ITS) is constantly 

increasing. Intelligent traffic light control, special transport 

priority, accident prevention, and smart parking are 

extensively researched fields [1,2,3,4]. For the ITS system to 

function correctly accurate sensor information is vital. Various 

sensing technologies can be used, such as video cameras, 

inductive loop detectors, radars, infrared sensors, piezoelectric 

sensors, and magnetic sensors. Traffic analysis is important for 

the smooth, safe, and economical operation of traffic. Traffic 

stream parameters provide important information regarding 

traffic flow which helps detect variations. Flow is influenced 

by a driver, vehicle, road condition, and weather. Traffic flow 

parameterization includes vehicle speed, length, occupancy 

time, and vehicle class evaluation. Re-identification can be 

defined as the same specific vehicle repeatedly matching to 

itself.  

Over the past 20 years, the biggest improvements for vehicle 

reidentification were made in video processing fields. Mainly 

video camera-based re-identification can be classified based 

on a vehicle license plate and specific vehicle features 

[5,6,7,8]. However, reidentification using video cameras 

suffer from some drawbacks – periodic maintenance is 

needed, image quality has a high dependence on weather 

conditions, high computational resources, and high cost. 

Private data protection regulation (GPDR) is also important 

because in some cases sensitive information – vehicle license 

plate, driver, and passenger’s faces might be used for illegal 

purposes. Other systems like RFID [9] and GPS [10] require 

additional hardware installation and is more suitable for public 

and commercial transport. A novel solution is to use magnetic 

sensors for vehicle re-identification which are inexpensive, not 

raise any privacy issues. In recent years, magnetic sensing 

techniques have shown promise for vehicle re-identification in 

ITS systems, due to their low cost, low power consumption, 

and potential resistance to environmental interference. By 
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using the magnetic field signature of a vehicle, it is possible to 

track its movement and re-identify it at different points along 

a roadway. 

 
II. RELATED WORK 

Magnetic sensors emerge as a promising technology for 

vehicle reidentification. Hot topics in the research field for 

vehicle presence, speed, length detection, [11,12,13] 

classification to distinctive categories [14] use magnetic 

sensors. Considering the cost of installation, it is possible to 

use a single anisotropic magnetoresistive sensor [15]. The 

authors propose a method for categorical classification (sedan, 

van, truck, bus) using feature vectors from features extracted 

from the magnetic signature of a passing vehicle. Features 

consist of Mel Frequency Cepstral Coefficients (MFCC) and 

energy. Accuracy from 60 % to 93 % is possible to reach. 

Fewer attempts are made for the same vehicle reidentification 

problem. Using existing inductive loop detectors (ILD) 

infrastructure authors at [16] performed the same vehicle 

matching on the freeway. 31%-45% of incoming traffic was 

matched in a downstream detector.  Using neural networks and 

collected ILD signatures [17] created features for re-

identification based on statistical distance measures – 

Euclidean, Correlation and Lebesgue. Some researchers 

combine ILD with other sensing techniques – for example, 

RFID [18]  

Inductive loop detector registered signature is not very 

informative so sensors registering Earth magnetic field 

distortion are used. Authors at [19] investigated the possibility 

to estimate vehicle location using a magnetic sensor array. The 

array consisted only of two sensors, but mathematics can be 

applied to a larger array. A passing vehicle travels parallel to 

the sensor array – it can be considered as a magnetic dipole 

and generate an ideal dipole magnetic signature. Overall 

accuracy is not mentioned, but it is stated that using a magnetic 

sensor array it is possible to detect vehicle location.  

Problems occur if vehicle location estimation happens 

perpendicular sensor array. For re-identification using 

magnetic sensors single sensor or sensor array might be used. 

Authors at [20] evaluated a custom vehicle re-identification 

system consisting of wireless magnetometers, access points, 

and a camera for ground truth reference. Sensor correlation is 

a popular measure for vehicle similarity evaluation. Section of 

226 m road upstream and downstream vehicle signatures were 

recorded at [21]. Cross-matching vehicle signatures obtained 

by different nodes using a cross correlation coefficient 

identification algorithm achieved high accuracy of 94-96 %. 

This type of experiment should be defined as a classification 

problem and not re-identification because only defined 

categories are studied. Vehicle re-identification attempt can be 

found in [22]. Signatures from 25 different cars were 

collected. Signatures were preprocessed to remove speed 

influence. Using Euclidean distance and dynamic time 

warping (DTW) methods signatures were compared. Authors 

emphasize that lateral vehicle position is very important for re-

identification performance and adding more sensors closer to 

each other might improve accuracy.  

An array of magnetic sensors which is shorter than a vehicle 

was employed to register signatures and using DTW and 

machine learning techniques (k-NN, LMD, Gaussian 

classifier) lateral vehicle position estimation and re-

identification were performed [23]. Results look very 

promising, however, the authors used the same signatures for 

training and evaluation, the database size was small, 

distribution unequal, and all vehicles were from a similar 

category in a controlled environment. There are no 

experiments on how algorithms would perform under new 

unseen data.  

Reviewed methods for reidentification are summarized in 

Table 1. Some key points so far can be defined: 

 current vehicle re-identification is based on video data, 

however, cameras suffer from weather influence, need 

periodic maintenance, do not comply with the privacy 

policy. 

 the available research on magnetic sensors studies vehicle 

parametrization, but there are only a few specific studies 

about vehicle re-identification using magnetic sensors. 

 each vehicle generates a complex magnetic signature that 

depends on the vehicle passing trajectory. 

Since the sensor array needs whole road width coverage it 

needs to be wider than a vehicle. Vehicles do not always travel 

at the same trajectory in the road lane, so every time registered 

signatures will fluctuate. To address this issue vehicle location 

in the lane needs to be known. Some research exists for vehicle 

trajectory estimation again mostly based on video cameras 

[24,25], combining inside vehicle sensor data [26], or based 

on statistical methods [27]. Authors at [28] managed to 

estimate vehicle trajectory using an accelerometer and 

magnetometer combination placed on the side of the road. 

Simulation results looked promising, but actual real-life tests 

concluded that it is not feasible for real-time applications.  

Since sensors are installed at roadside passing passenger 

vehicles magnetic signature looks like an ideal magnetic 

dipole. It is possible to estimate vehicle speed and trajectory 

with a big uncertainty. 
TABLE 1 

ACCURACY FOR CLASSIFICATION AND REIDENTIFICATION USING 

DIFFERENT METHODS AND SENSORS. 

 

Problem type Sensors Methods 
Accuracy 

% 

Re-identification[16] ILD Euclidean, 

correlation, 
Lebesgue 

31-45 

Re-identification[18] ILD+RFID  99 

Classification[21] Magnetic MFCC, 

energy 

60-93 

Classification[22] Magnetic Corelation 94-96 

Re-identification[23] Magnetic Euclidean, DTW 96 

 

As seen from available research currently there are only a few 

trials for systems that can anonymously repeatedly match 
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passing vehicles. A hypothesis exists that it is possible to 

perform re-identification for specific passing vehicles based 

only on a magnetic signature. Since the road is wider than 

vehicles and vehicle drive patterns will be different every time 

for correct re-identification only sensors which are directly 

under the vehicle are useful for data analysis. After 

determining which sensors are under the vehicle, collected 

signatures later can be used for vehicle reidentification.  

In this paper, we propose a magnetic sensor array system and 

method for vehicle location on road estimation. This system 

later will be used for vehicle re-identification purposes. 

In the third section sensor array and central hub for high 

sample rate, and data logging are described. In the fourth 

section algorithm for data preprocessing and valid sensors 

selection is presented. Two vehicle record comparison for 

reidentification is beyond the scope of this paper and will be 

presented in future works. 

III. METHODS AND MATERIALS 

A special system was developed for real-world traffic  

surveillance. The system sensors array consists of 13 

LIS3MDL tri-axis anisotropic magnetoresistive sensors 

equally spaced at 20 cm distance sampled with individual 

microcontrollers and connected using FD-CAN bus. 

Individual sensor nodes are placed inside an aluminum frame 

and epoxy is used for insulation. The sensor sampling 

frequency is 1 kHz, and since each sensor samples the x, y, 

and z axes, 2 bytes of data are collected every 1 ms, resulting 

in a significant amount of data that needs to be managed. Since 

the maximum achievable data rate using the classic CAN 2.0 

protocol is 1 Mbps is too slow for this application CAN-FD 

was selected. The transmission baud rate was set to 3 Mbps to 

achieve a longer distance. Practical experiments showed that 

at 4 Mbps 25 m is the maximum distance, and at 3 Mbps 40 m 

is the maximum distance. To simplify data transmission and 

enable sampling  

at precisely exact time system structure consists of individual 

nodes for every sensor and central hub as shown in figure 1. 

Individual sensor nodes send data to a hub and the collected 

vehicle signature is transmitted to the server using Ethernet. 

Hubs can be chained in parallel using a master hub and slave 

hub so even more nodes can be connected. The master hub 

activates the video camera after deciding that vehicle is 

present in a detection zone. The camera has an internal license 

plate recognition module so getting ground truth data becomes 

easier for recorded vehicles. Hub microcontroller runs a real-

time operating system (RTOS). The program structure is 

shown in Figure 2. All data for magnetic sensor processing is 

held in structure. Raw magnetic data is preprocessed using an 

adaptive threshold algorithm [29] to remove earth magnetic 

offset and temperature influence. Every sensor has its own 

individual structure. Raw data values read from the CAN bus 

are put into the corresponding structure as a new value. Once 

all of the sensor's new values are acknowledged, the 

corresponding offsets are subtracted. Upon power-up, the 

offset values are updated using the current measured values. . 

Later offsets are continuously updated in detrend function. 

This function calculates the sensor module All sensor module 

amplitudes are checked against a defined threshold. If any 

sensor amplitude surpasses the threshold internal counters and 

flags are reset and timeout counters start. New values are 

periodically updated and checked if amplitude drops below the 

threshold for all sensors. If the timeout is reached it is treated 

as an anomaly, offset values are updated using current cycle 

values, and a reset flag is asserted for other blocks to know that 

magnetic data is corrupted. All other times when amplitudes 

are below the threshold offsets are updated using a moving 

average with a 20-point time window to smooth data.  

Car_detect function block takes input arguments detrended 

sensor values and resets flag. This block outputs 2 flags for the 

next blocks. Direction flag to decide if a vehicle is going 

forward or backward and Car_valid to signal that vehicle is 

currently present in the detection area. If the reset flag is 

asserted all internal variables are reset. Function constantly 

monitors two predefined sensors from all structures called 

“speed sensors” which are in the middle of the array. If any 

sensor amplitude goes beyond the predefined threshold, then 

a timeout for hysteresis is started (Figure 3).  

 

FIGURE 1. Magnetic signature logging system structure 

 

FIGURE 2. Main hub thread synchronization. 
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During this time both sensors’ amplitudes need to become 

higher than the second threshold. If both sensors successfully 

pass hysteresis, then the detection algorithm is started and the 

Car_valid flag is asserted. In the same cycle car, the direction 

decision logic is started. Both “speed sensors” continuously 

sum module values. After 20 cycles (ms) these sums are 

compared and one with higher corresponds to which direction 

the vehicle appeared. Car_valid signal is asserted until both 

sensors module amplitudes drop below the first threshold and 

fixed additional time passes for signature tail recording.  

The collector function also takes input detrended magnetic 

sensor values and status flags. While the Car_valid flag is set 

to false function is continuously updating prebuffer. Prebuffer 

is fixed for 100 records for every sensor. Buffer is circular and 

then Car_valid flag is asserted prebuffer is copied to the first 

data segment from latest records to newest. The collector 

constantly appends data records while the Car_valid flag is 

set. After the Car_valid flag is set to false or the maximum 

recording length is reached transmit flag is set to true and the 

data structure is sent to the server using a TCP connection. If 

during data collection Detrend function issued a reset signal 

because of a detected anomaly all collected data is discarded. 

The sensor unit and vehicle axle relation are shown in Figure 

4 below. Twelve sensors are equally spaced at a 20 cm 

distance. Thirteen sensor is used for direction detection and 

speed estimation is parallel to a middle sensor at the same 

 
FIGURE 3. Hub signature collection process structure. 

 

FIGURE 4. Sensor mechanical structure and relation to vehicle 

axle. 

 
FIGURE 5. Earth magnetic field distortion then tire passes over magnetic sensors. X axis is oriented in North: a-sensor1; b-sensor2; c-sensor3; 
d-sensor4. 
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distance. The sensor is buried in asphalt at a depth of 8 cm 

across the road. 

The usual passenger vehicle width is up to 2 meters. Since the 

sensor array length is 2.20 m any sensor combination can be 

beneath the vehicle. Vehicle tire width can be from 15.5 cm to 

30.5 cm, so wheels may go directly over the sensing element. 

From [30] it is noticed that wheels greatly distort the registered 

signature. For vehicle reidentification purposes, only sensors 

that are between wheels give useful information. Sensors that 

are outside wheels usually register a vehicle as an ideal 

magnetic dipole, so it doesn’t give useful information for 

reidentification. 

Modern passenger vehicle tires have come to long 

development and have a complex structure. Tires can be 

divided into two categories radial and diagonal. Currently, 

most tires used are radial type, because of benefits-improved 

driving comfort, little heat generated, and lower fuel 

consumption. Diagonal-type tires were standard before radial 

tires were introduced. The tire consists of three main layers 

tread, casing, and tire bead. These layers are subdivided into 

smaller groups. The tire tread layer has strong steel cords to 

provide rigidity. Instead of steel polyester or nylon can be 

used. Mainly diagonal tires can have carcass layers made from 

nylon cord. These tires are still popular off-road because they 

are lighter than radials [31].  

Since most tires have steel components inside, they distort 

Earth's magnetic field as a simple magnetic dipole. In Figure 

5 radial summer tire 205 55 R16 without rim is rolled over four 

magnetic sensors spaced equally in a square box with 

distances of 20 cm between them and magnetic distortion is 

registered. Registered tire magnetic signal amplitude is quite 

large – 50 µT in some cases it might be equal to or surpass the 

overall vehicle magnetic signature. It is important for vehicle 

parameters (speed, length) calculation applications and also 

for re-identification applications because vehicle signatures 

distort useful signatures if the vehicle wheel passes directly 

over the sensor.  

In this paper method for elimination of signatures that are 

directly affected by the wheel is presented. The main goal is 

to select signatures from sensors under the vehicle undistorted 

by wheels and suspension elements. 

 
IV. VEHICLE OCCUPANCY DETECTION METHOD 
 

Using a magnetic sensor array vehicle magnetic signatures can 

be recorded. Example of recorded vehicle picture and 

magnetic signature modules in Figure 6. Signal module 

amplitudes for sensors 2,3,10,11 are a few times larger than 

the average maximum. Also, some signatures have low 

amplitudes and the shape is not informative – sensors 1-12. 

Sensor 1 also was near the wheel. It is noticeable that wheel 

and tire influence mainly appears as a sharp peak in amplitude 

for 1 or two sensors. If there is no influence, then overlapping 

signature values look consistent. Based on this information it 

is possible to develop an algorithm for discarding sensors that 

are registering wheel-distorted signatures.  

Useful sensors which are directly under the vehicle are 

selected considering constraints applied by sensors that are in 

contact with the wheel. If a wheel doesn’t distort the magnetic 

signature, then the center of the vehicle and length is 

approximated.  

In the best-case scenario if two same-model vehicles pass the 

sensor array in the same trajectory same sensor sequence will 

be selected for both records. If a vehicle is towing a trailer, the 

trailer's magnetic signature will distort Earth’s magnetic field 

similar to the vehicle. In the trailer largest distortion occurs 

near the wheels, with unique distortion under a trailer, and 

smaller distortion in the outside area. 

 

A. FEATURE CALCULATION 

The method for sensing the vehicle on top of the sensor was 

developed using a derivative of the module. First for all 

registered modules 𝑀𝑛,𝑡 , 𝑛 ∈  [1, . . ,12] derivatives 𝐷𝑛(𝑡) =
𝑀𝑛
̇ (𝑡) are calculated. Derivatives give vital information about 

signature ascents and descents. For sensors that are in contact 

with the wheel derivative will be higher compared to the 

nominal, and for outlier sensors, the derivative will be at noise 

levels. After calculating derivatives signal to noise ratios 

(SNR) for every sensor are calculated with reference ambient 

noise using the formula: 

𝑆𝑁𝑅𝑛 =
(∑𝐷𝑛,𝑡)

2

(∑𝑁𝑡)
2 , (1) 

 

FIGURE 6. Registered magnetic signatures for passing vehicle. In 

dashed line signatures distorted by wheel. 
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where 𝐷𝑛,𝑡is sensor module derivative, 𝑁𝑡 ambient Gaussian 

noise. Calculated ratios are scaled by amplitude and  

𝑆𝑁𝑅𝑛 =
𝑆𝑁𝑅𝑛

max(𝑆𝑁𝑅)
, (2) 

so, it results in 12-element vectors ranging from 0 to 1.  

Several distinctive pattern possibilities of calculated 

normalized SNR are possible:  both car wheels can be 

identified, a single wheel can be identified, and the wheel 

doesn’t distort signatures (figure 7). Usually, the wheel 

doesn’t appear in the signature if the tire doesn’t have steel 

elements, and is demagnetized during driving, car body frame 

signature has a higher amplitude than a tire. Using SNR 

patterns, it is possible to decide which sensors are directly 

under the vehicle. 

Shapes can vary slightly so it is difficult to make a correct 

decision using hard-coded rules. Trials to define specific 

thresholds failed quickly. Sensor selection definition can be  

tailored to a single car model mainly if a different vehicle 

appears sensor selection becomes unpredictable. The better 

way is to use machine learning techniques to solve this 

problem as a regression problem or as a classification problem. 

If a regression algorithm is used, then input values are mapped 

to output values. Using classification all available categories 

are defined and input values are translated into the 

corresponding category. The usage of defined categories 

removes uncertainty if gaps between valid sensors should 

occur. However, using regression output values ranging from 

 
FIGURE 7. Examples of possible SNR patterns for signature 
derivatives. .Red color indicates selected valid sensors, blue 
indicates outliers. A-both wheels visible, b-one wheel visible, c,d- 

wheels not visible. 

 

 

FIGURE 8. Feed-forward network predictions for regression task 

then 𝒊𝒏𝒑𝒖𝒕[𝟏. . 𝟏𝟐] = 𝟏 using different activation functions for 
hidden layer (HL) and output layer (OL). a-HL: ReLU (Rectified 
linear unit), OL:softmax, b-HL:sigmoid, OL:selu (scaled 
exponential linear unit), c-HL:selu, OL:softplus. 

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3278986

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017  

0 to 1, an additional threshold needs to be applied. Rounding 

values at the point of 0.5 show promising results, however, 

gaps occur, and not the full range is covered.  

 

B. MACHINE LEARNING FOR REGRESSION PROBLEM 

500 records of passing vehicles were labeled with valid 

sensors to use according to SNR. These records were used for 

fitting problem solving – a set of numeric inputs mapped to a 

set of numeric outputs. Two-layer feed-forward network with 

12 inputs, 12 outputs, and one hidden layer with 12 nodes was 

tested.  

Different activation functions were considered. For 

visualization of network behavior, all inputs were set to 1. It is 

expected for a network to produce output as an inverted 

parabola which is centered at sensor number 6. A few 

examples of outputs for networks using different activation 

functions for the hidden layer and output layer are shown in 

Figure 8. 

Visualizing network behavior using different activation 

functions shows that the output function has a higher influence 

than hidden layer activation. Using softmax in the output layer 

gives only a single peak, sometimes a smaller amplitude than 

0.5. The Softsign function in the output layer pushes all output 

values close to 1. The sigmoid output function pattern 

reassembles the sinus function. Softplus output activation 

function pattern varies from sinus to inverted parabola patterns 

depending on the hidden layer function. Scaled exponential 

linear unit and linear unit (selu and elu) functions were best fit 

for parabola after real data test selu for hidden layer and 

softplus for output layer were selected. The network structure 

is shown in Figure 9. For training 70% of samples were 

selected and for testing 30% . The network is trained using 350 

observations using the Adam optimizer. 

Since network output values vary from 0 to 1 they are rounded, 

and values equal to 1 are considered valid sensors. If the 

predicted value is below 0.5 gaps in sequence may occur as  

shown in Figure 10. To overcome this issue rounded values 

are processed into a sequence. The first and last valid sensors 

are found and the range is selected accordingly. In this way, 

gaps are filled. 

An example of network validation performance is shown in 

Figure 10. One vertical stripe corresponds to one passing car 

sensor selection evaluation. Sensor numbers are in vertical 

axes. Yellow squares indicate sensors selected by the 

algorithm. If in selected sensor sequence occur discarded 

sensor is treated as a gap and promoted to the approved sensor. 

A recursive neural network (RNN) was trained using the same 

training dataset and compared to ANN. The RNN can easily 

map sequences to sequences whenever the alignment between 

the inputs and outputs is known ahead of time. Identically 

RNN with 12 input layers, 12 output layers, and 12 hidden 

layers was trained. This network structure is more complex 

compared to a simple neural network, however, major 

performance improvements were not noticed. 

 

C. MACHINE LEARNING FOR CLASSIFICATION 

PROBLEM 

 

Another approach is to use ANN feed-forward network 

configured for classification problems. In this case, the SNR 

sequence is a direct input to a network, but an output 

corresponds not to valid sensor numbers, but to the coded 

category. A list of available sensor combinations is created. It 

has different valid sensors count – from 3 to 7 and different 

locations. Each list entry is interpreted as a coded category. 

For network training, valid sensor targets first are encoded to 

a category and then trained. To get the prediction result, the 

predicted output category also is decoded as a valid sensor 

sequence according to the table. The benefit of this method is 

that all available variants are defined, so there are no gaps and 

uncertainty in prediction. Network training and usage 

structure are in Figure 11. 

Network configuration consists of 12 input nodes, 100 hidden 

nodes with sigmoid activation function, 26 output neurons 

with softmax activation function, and 41 output for the 

corresponding category. The network is trained using scaled 

conjugate gradient backpropagation.  

 

 
FIGURE 10. Gaps appearing in predicted results. 

 

FIGURE 9. ANN network architecture for regression problem 
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C. METHOD FOR ACCURACY EVALUATION 

Selected valid sensors are important for later research – re-

identification. Algorithms for sensor selection are not perfect, 

so errors occur. Training data for algorithms are prepared 

intuitively – different observers might include/discard 

different edge sensors. To measure how good the network is 

in choosing the correct sensors there is no need for 100 % true 

positive detection. It is assumed that the deviation of 1 sensor 

to either side is acceptable. Evaluation is made as follows – 

labeled reference and the predicted result are multiplied 

together (logical AND operation). This multiplication result is 

summed: 

𝑠1 = ∑(𝑟𝑒𝑓 ∙ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡) . (3) 

𝑟𝑒𝑓 is an array of ground truth values, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is array for 

predicted sensor selection. 𝑟𝑒𝑓, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ∈ [0,1]  

Another sum is made for reference values only -  

𝑠2 = ∑ 𝑟𝑒𝑓 . (4) 

Two sums difference (s2 – s1) gives how many sensors are 

chosen incorrectly. Percentages of using different algorithms 

with the same training data for each case are given in Table 1. 

Different observation datasets were used for network 

comparison. Training and testing datasets don’t overlap.  

Observation datasets were random and included various 

vehicle types and travel directories. Values in the table 

indicated the percentage of cars for which assigned sensors 

were valid while selecting either side 0-2 sensors. The network 

predicts sensors as observer labeled means 0 sensors are 

missed, 1 missed sensor means algorithm selected 1 sensor 

more compared to observer, 2 and more means overall 

algorithm selected sensors might be shifted. Recursive neural 

network performance was worst. Traditional ANN in both 

modes’ performance was similar, however, ANN 

classification tends to have more missed sensors compared to 

ANN regression.  
TABLE 2 

PERCENTAGES OF CORRECTLY SELECTED AND MISSED VALID SENSORS FOR 

DIFFERENT OBSERVATIONS 

Observations Missed 

ANN 

regression
, 

% 

RNN  

regression
,  

% 

ANN   

classification,  
% 

100 0 81 36.6 75.5 

1 18.8 48.8 17.7 
2 0 14.4 5.5 

>2 0 0 1.1 

200 0 85 39.4 78.8 
1 14.4 47.7 16.1 

2 0.5 11.66 3.9 

>2 0 1.11 1.1 

400 0 61 14 62 

1 22 41 21 

2 11 29 9 
>2 4 13 7 

V. CONCLUSIONS 

Currently, only a few attempts exist for vehicle re-

identification using magnetic sensors. To have high-quality 

signals for analysis vehicle's position on the road must be 

known. Signatures which are registered not directly under the 

vehicle might be not informative, and sensors that have close 

contact with tires can distort the magnetic signal.  

A high data rate magnetic signature sampling system was 

developed and tested in real-time conditions. An algorithm for 

valid sensor selection was developed and presented. After 

evaluating the sensor selection method with different vehicles 

some conclusions can be drawn: 

• The same vehicle model leaves the same SNR pattern. 

• Two distinct patterns exist when wheels can be easily 

separated and then wheels don’t appear in the signature.  

• Hard-coded rules for valid sensor selection can become too 

complicated so the machine learning method is preferable.  

 

FIGURE 11. ANN network architecture for regression problem.  
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• There is no need for 100% observer labeled and algorithm-

predicted values to match. 

• Using an advanced algorithm, it might be possible to 

distinguish two each other passing vehicles in the same 

lane.  

• Overall accuracy achieved with the ANN regression 

algorithm is calculated using averages for different data 

subsets and calculating mean while taking into account 

only 0 or 1 missed sensor. Calculated accuracy is 94 % 

which is suitable for good sensor separation.  

• The regression method performed 3 % better compared to 

the classification method.  

• For future works signatures collected by this system will 

be used to develop a method for same-vehicle re-

identification. 
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