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Abstract: This study presents a novel approach to parameterize the geometry of a morphing trailing-
edge flap that allows its aerodynamics to be optimized while capturing the expected structural
behavior of the flap. This approach is based on the finite frame element method, whereby the initial
flap surface is defined as a structure with constraints that are similar to those of a morphing flap with
passive skin. The initial shape is modified by placing a series of distributed loads on the surface.
The finite frame element method is modified with rigid rotation corrections to maintain the initial
element length without requiring nonlinear calculations and to achieve accurate surface-length results
by only solving the linear FEM equations twice. The proposed method enables the shape of the
morphing flaps to be rapidly formulated while maintaining the initial upper surface-length and
trailing-edge angle. The constraints are inherently integrated into the algorithm, eliminating the
need for unnecessary feasibility checks during the aerodynamic optimization. By using the proposed
airfoil parameterization method, a case study was conducted by using a genetic algorithm to optimize
the lift-to-drag ratio of the NACA 23012 airfoil flap starting at 0.7c with 10 degrees of deflection.
The optimizer resulted in a structurally feasible morphing flap that achieved a 10% increase in the
lift-to-drag ratio in the optimized angle of attack range.
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1. Introduction

Morphing wing technology has attracted considerable attention in the field of aerospace
engineering due to its ability to increase the flight performance of an aircraft. Implementing
continuous trailing edge morphing in a commercial aircraft can result in a 2.7% reduction
in fuel burn when considering the entire mission envelope [1]. Furthermore, the presence
of a morphing flap on a wing can help reduce the broadband-noise level by up to 11%
compared with a conventional single-slot flap [2]. When investigating the performance
of 2D airfoils, a morphing wing trailing-edge flap can help increase the L/D ratio by up
to 18.7% [3] and provide a higher lift for the same deflection angle. Clearly, morphing
flaps are superior to conventional flap configurations. One of the most important aspects
of developing morphing wings is finding an effective method to parameterize the airfoil
shape to perform an aerodynamic optimization. The parameterization of the airfoil shape
has a considerable impact on the optimization of the results because it needs to accurately
represent the shape of the airfoil [4].

Multiple different methods can be used to describe the shape of an airfoil, such as
B-splines, PARSEC, class, and shape function transformation (CST), and others. These
methods have been thoroughly investigated and compared with each other by several
authors [4–6]. The B-spline has gained popularity in airfoil shape representation due to its
versatility and ease of use. The B-spline is a piecewise polynomial curve represented by a
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set of control points. The curve is defined as a weighted sum of the basis function with the
weighting values of the control points. Airfoil shapes represented with B-splines can be
easily and intuitively modified by changing the location of the control points.

The PARSEC method [7] was specifically developed to generate airfoils, and the
method entails the use of defined geometric airfoil parameters to control the shape. The
airfoil is then described by using a linear combination of shape functions. This method is
intuitive because the used parameters are tied to the physical airfoil geometry.

Currently, the CST method introduced by Kulfan [8] is the most popular method. Its
use produces smooth geometries and provides a high degree of control over the airfoil
geometry, which makes it easier to fine tune the shape to obtain an optimal design. This
method consists of a class and shape function. The class function defines the fundamental
shape of the airfoil with a round leading edge and sharp trailing edge. The shape function
is used to alter the overall geometry of the airfoil. Compared with the PARSEC method, the
CST method can be used to handle more complex shapes and allows for smooth transitions
between different airfoil sections. Several extensions have recently been added to the CST
method, such as in [9] whereby the authors achieved an increase in accuracy and a reduction
in the minimal number of control points. Further developments of the original CST have
not only increased the precision of the CST method but have also caused it to be more
intuitive, as presented in [10,11]. The latter study developed the intuitive CST model further
by enabling section decoupling, which allowed for even more effective parameterization.
Feng [12] suggests adding additional variables from linearized aerodynamic theory. These
methods are widely used in practice to optimize conventional and morphing airfoils.

There are two types of morphing skin: active skin, which allows for extension and com-
pression as well as bending, and passive skin, which can only be bent. Typically, designed
morphing structures have the ability to extend the structure skin, either by using some form
of polymer skin that is flexible and covers the entire structure [13,14], or by having mechan-
ical overlapping skin [15,16]. These studies hold considerable significance in the field due
to the high complexity of fully morphing structure where the shape needs to change signifi-
cantly. These approaches do not require specialized airfoil shape representation methods,
as no accurate skin length control is needed. Unfortunately, morphing-compliant struc-
tures require the skin length to be controlled with addition to the other constraints, where
previously mentioned shape representation methods do not directly provide, and thus they
require additional modifications to their algorithm. Topology optimized morphing struc-
tures are often created with passive skin [17–21]. Therefore, optimizing the aerodynamic
shape of such structures is more complex, as it requires additional feasibility checks.

De Gaspari [22] proposed a modified CST method that involves using an iterative
process to control the skin length and other parameters by using the single-value opti-
mization and curve-fitting technique to achieve the desired wing shape without changing
the surface-skin length. Leal [23] investigated the morphing wing with camber morphing
parameterization, while considering the internal-structure kinematics, and provided a struc-
turally consistent CST formulation with the use of active or passive skin. Although these
methods are accurate, they require the allocation of additional computational resources
and may be difficult to implement.

With this paper, a new approach that is based on the finite beam element method is
presented, which allows to capture the behavior of the physical structure during aerody-
namic optimization, mostly by constraints which are inherently integrated in the structural
algorithm. By incorporating the finite frame element method, the length of the skin can be
effectively preserved, ensuring that the optimized airfoil geometry adheres to the necessary
constraints. This method is based on the linear calculation of finite element beams with a
modification that corrects for the resulting skin-length inaccuracies in linear calculation.
With this method, the main constraints are preimposed on the generated shape through
structural integrity, which eliminates unnecessary feasibility checks. This method requires
linear equations to only be solved twice without the need to iterate; therefore, this method
is not computationally intensive and is suitable for fast optimization problems.
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This paper consists of the following sections: the introduction, shape representation
methodology, FEM modifications, initial shape, case study, and discussions.

2. Shape Representation Methodology

Incorporating the morphing structure behavior of a trailing edge when optimizing
an aerodynamic shape is highly desirable. This allows only feasible shape designs to be
evaluated during optimization without the need for feasibility testing which reduces the
optimization time. One way to accomplish this is to represent the trailing edge structure of
the airfoil as a frame structure and to alter the shape by applying external loads. In this
section, the proposed methodology is described.

An initial shape that represents the arbitrary morphed trailing edge section of the air-
foil with a desired flap deflection yp (Figure 1) must first be defined. The shape is then con-
verted into a structure that is divided into a set of finite frame elements. Because the method
is used to represent flap shapes with a morphing-compliant structure, the modeled structure
must have boundary conditions that are similar to those of the morphing structure.
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yp. The node should only be constrained in the vertical direction and allow for rotation 
and longitudinal motion along the chord to capture the chord length reduction as the 
morphed flap curves. All the mentioned constraints are shown in Figure 1. 

Figure 1a shows continuous structure-morphing flap arrangement. In such an ar-
rangement, the forces applied to the upper surface will have an effect on the lower surface. 
This might not be particularly useful for shape optimization. The coupling between two 
surfaces might reduce the optimizer performance and increase the objective function eval-
uation count to reach the optimal solution. When the applied loads change on the upper 
or lower surface, they globally affect the whole shape, making the optimization sensitive 

Figure 1. Trailing-edge flap optimization setup with defined boundary conditions: (a)—top and
bottom surface are coupled; (b)—top and bottom surface are decoupled (used in analysis).

The upper skin forward section is rigidly connected to the front section of the airfoil,
which imposes a tangential constraint on the rest of the airfoil. The forward section of
the lower surface must have a sliding joint, which is common in this type of compliant
morphing design and represents stretchable skin. To ensure a tangential constraint with
the rest of the airfoil section, the surface must be able to move along the forward airfoil
surface. Finally, the trailing edge node p should be constrained to the desired deflection
position yp. The node should only be constrained in the vertical direction and allow for
rotation and longitudinal motion along the chord to capture the chord length reduction as
the morphed flap curves. All the mentioned constraints are shown in Figure 1.

Figure 1a shows continuous structure-morphing flap arrangement. In such an arrange-
ment, the forces applied to the upper surface will have an effect on the lower surface. This
might not be particularly useful for shape optimization. The coupling between two surfaces
might reduce the optimizer performance and increase the objective function evaluation
count to reach the optimal solution. When the applied loads change on the upper or lower
surface, they globally affect the whole shape, making the optimization sensitive to all the
individual parameters. Therefore, in order to solve the optimization problem, a higher
population number might be needed. The upper and lower surfaces can be decoupled
to obtain the independent behavior of the upper surface (Figure 1b). In such a case, the
calculation is first performed on the top surface, using the constraints mentioned above.
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Then, the resulting translation xp and rotation βp at the trailing-edge node are used as a
boundary condition for the lower surface calculation. This causes the top surface to be
independent, while the bottom surface continues to be affected by the initial displacement
of the trailing-edge node caused by the upper surface displacement. When using both
methods, the trailing-edge angle is largely preserved. The decoupled approach (Figure 1b)
is more preferred when optimizing airfoils flaps because it may converge faster. Therefore,
we employed this approach further.

The initial flap shape is modified by adjusting a set of discrete, equally spaced, dis-
tributed loads, denoted as qn, that are applied to the flap surface, where ql1 . . . n is for lower
surface and qu1 . . . n for top surface. These loads are treated as variables in the optimization
problem and vary from −1 to 1 N/m. To achieve the desired shape alteration, the stiffness
of the structure must be adjusted accordingly so that the shape boundaries can be obtained.
Shape behaviors can be defined by the maximum structural deflection when the maximum
load of all the variables is applied. A straight homogeneous cantilever beam with a sup-
ported end (Figure 2) will closely approximate the structural behavior of the top surface of
the morphing flap, which have the same length L between the supports. The application
of a continuously distributed load of q = 1 N/m on the surface represents the maximum
loading and allows to calculate the normalized stiffness value for a defined maximum total
deflection ymax. The approximated analytical expression for the normalized stiffness is
then defined:

EIn =
2L4

369ymax
(1)
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Due to the possible curvature of the initial airfoil shape, the approximation may not be
highly accurate. The normalized bending stiffness can also be iteratively determined on the
curved airfoil structure before starting the optimization. Thus, more accurate maximum
deformation boundaries can be achieved. However, the authors think that such a determi-
nation is unnecessary in most cases unless strict shape optimization bounds are needed.

The AEn value of axial stiffness is arbitrary as it does not contribute to the final shape
because there is no axial loading. During the modified FEM calculation, an additional
artificial force is introduced to correct the length of the element at large deformations.
Therefore, it is necessary to include the axial-stiffness values to ensure accurate results.
More details are described in the next chapter.

After the deformed structure is obtained, the node coordinates are joined with the rigid
airfoil section coordinates, so that the aerodynamic calculation on a new airfoil can be performed.

The summary of the described method for formulating the airfoil trailing edge shape
in a context of airfoil optimization can be represented by the algorithm shown in Figure 3.

The algorithm begins by initializing the initial shape which will eventually be morphed
into the final geometry. This initial shape can be arbitrary or defined numerically. The
implementation of the initial shape is described in Section 4. Based on the defined initial
structure dimensions, the normalized stiffness parameters are calculated. Then the structure
is discretized to finite elements and boundary conditions are applied. As a means of
optimization, loading values are introduced to control the shape, which are generated
by the optimizer. At this stage, the optimization loop starts. After structural evaluation,
new morphed shape coordinates are determined which are joined with the coordinates of
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the rigid section of the airfoil to form the complete airfoil coordinate set. After that, the
aerodynamic performance can be evaluated. The optimizer iterates through multiple cycles
until it converges on a solution.
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3. FEM Modifications

The airfoil section geometry can be effectively modeled with existing FEM algorithms
without requiring additional modifications. However, to accurately represent the geom-
etry at large deformations, a computationally-intensive nonlinear solver must be used.
Although direct structural modeling might be used in fluid structure interaction studies,
when examining behavior in between structure and the flow, it is rarely utilized in direct
aerodynamic optimization when representing airfoil shapes due to large computational
cost. Using a linear FEM method is more efficient and more suitable for such a purpose.
However, using a fully linear calculation is not feasible in shape representation, as it results
in a deformed shape at high deformations as the physical element size changes. We propose
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a modification of the finite element algorithm for planar frames that corrects the results of
the initial linear calculations with the necessary corrections required to maintain the initial
element length while keeping the computation time short.

Frame element analysis is a method that is commonly used to represent planar struc-
tures when conducting a linear structural analysis. With this method, the properties of a
beam and truss are combined according to the superposition principle. Whereas a truss
only deforms in the axial direction, the main cause of planar shape distortions comes from
the beam element. The beam element only allows for transverse deflection and neglects any
resulting axial displacement, which thus artificially expands the element. To represent the
beam deflection behavior, the Euler–Bernoulli method is often used. The Euler–Bernoulli
equation shows the relationship between the beam’s deflection and the applied loads. The
differential equation for a beam with constant rigidity is written as [24]:

EI
d4w
dx4 = q(x) (2)

where w is the deflection, q(x) is the distributed load along the beam, and EI is the bending
stiffness.

The assumption of Bernoulli’s equation is that the section plane remains perpendicular
to the normal axis. In a linear formulation, the deformations are assumed to be small
enough to allow for small angle approximations. Therefore, the beam deflection angle θ

can be approximated:

θ(x) ≈ dw
dx

(3)

This results in the further approximation that the cosine of θ is approximately equal
to one and that no variations in length along the local element x-axis exist, whereas the
element deflects in the transverse direction and artificially expands the element. Although
this assumption is well regarded in structural calculations, when deformations are small,
such assumptions are not valid when expecting larger deformations, as it results in structure
distortion and poor accuracy.

When avoiding the utilization of computationally expensive nonlinear calculations,
nonphysical considerations can be applied if the geometrical deformation accuracy is not
critical. These considerations assume that the beam has a rigid rotation and maintains its
physical length after deflection. By knowing the element deflection, the difference between
the initial and deformed element length can be calculated and later corrected.

Figure 4 shows a simplified drawing of a beam element with length Le after defor-
mation in the local coordinate system. The figure only shows element rotation along the
first node, used as a reference. As can be seen, no change in the length in the local x-axis
occurred after the element deformation; therefore, the actual element length was stretched
by δ and the total element length increased. To incorporate the adjustments, the projected
reduction in the local x-axis due to rigid rotation needs to be determined. When the trans-
verse deflection value ve is known and is maintained, the projected element shortening in
the local x axis can be determined:

∆e= Le −
√

L2
e − v2

e (4)

As can be seen in Figure 4, the deflection angle θ’e is different from the one determined
initially θe.

Here, using frame elements offers the benefit of having an additional independent
degree of freedom, which can be used to impose the corrections as a means of axial force.
This axial force Fadd.e needs to shorten the beam element when deflection occurs so that
the beam end node aligns with the rightly rotated beam node location; this preserves the
displacement value, which is obtained after the initial calculation. By knowing ∆e distance
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and the axial stiffness of the beam element, the correcting axial force is calculated using the
following equation:

Fadd.e =
∆eEAn

Le
(5)
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This approach requires at least two linear FEM calculations. During the second
iteration, the additional force is added to the initial beam boundary conditions, and the
calculations are re-evaluated. The resulting node location will now be in line with the
rigidity rotated beam, and the initial element length will be preserved.

This approach is feasible when the structure is not highly constrained and has some
possibility of movement. However, when the beam is fully constrained at both ends, the
beam length may not be accurately calculated.

The described method can be easily incorporated into a traditional frame calculation
routine, similar to the one explained in reference [25]. The frame element has six degrees of
freedom, as shown in Figure 5. The element displacement vector de is formulated in the
following manner:

de =
[
ue1 ve1 θe1 ue2 ve2 θe2

]T (6)

where ue1,ue2 are the longitudinal displacement of the element node, ve1,ve2 are the trans-
verse displacement, and θe1,θe2 are the rotation of the node.
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The element stiffness matrix ke is defined in the same way as in the mentioned
reference, except that it required normalized bending EIn, and axial stiffness EAn.

ke =



EAn
Le

0 0 −EAn
Le

0 0
0 12 EIn

L3
e

6 EIn
L2

e
0 −12 EIn

L3
e

6 EIn
L2

e

0 6 EIn
L2

e
4 EIn

Le
0 −6 EIn

L2
e

2 EIn
Le

−EAn
Le

0 0 EAn
Le

0 0
0 −12 EIn

L3
e

−6 EIn
L2

e
0 12 EIn

L3
e

−6 EIn
L2

e

0 6 EIn
L2

e
2 EIn

Le
0 −6 EIn

L2
e

4 EIn
Le


(7)

During the initial calculation, the force vector only contains values from the distributed
loading qe.i that were transferred from the shape control variables to the corresponding
elements, which are necessary to alter the airfoil shape:

fe =
[
0 qe.iLe

2
qe.iL

2
e

12 0 qe.iLe
2 − qe.iL

2
e

12

]T
(8)

Before assembling the full structural matrix, coordinate transformations are per-formed
for each element. Once the global matrix is assembled, the boundary conditions are applied
by removing the corresponding rows and columns from the stiffness matrix and force vector.
The following form of linear equations is solved to obtain the deformation vector:

KD = F (9)

where K is the global stiffness matrix, D is displacement vector and F is the force vector.
After determining the initial nodal displacements of each element, the system is prepared

for the second iteration by calculating the total transverse deflection for every element:

ve2 − ve1= ve (10)

The additional correcting force for each element can be calculated using Equation (5).
The calculated forces exerted on all the elements are applied on both element nodes and are
directed in the opposite direction toward the element center along the local x-axis. Thus,
this only axially affects the element. Then, during the second calculation, the element force
vector becomes:

fe =
[
Fadd.e

qe.iLe
2

qe.iL
2
e

12 −Fadd.e
qe.iLe

2 − qe.iL
2
e

12

]T
(11)

During the second calculation, the stiffness matrix does not need to be reassembled,
and its initial form can be used. Once again, solving Equation (9) with the new force vector
provides corrected nodal displacements, where the initial length of the beam element is
consistent with the rigid rotation and the initial length of the elements are unchanged.

In summary, the described FEM modification made to maintain the initial element
length can be represented by the calculation sequence algorithm presented in Figure 6.

Although this method can be used to effectively preserve the initial length of the
structure after deformations, errors can still occur when using it. Some errors arise from
the discretization and from the described model itself. The elements from the discretization
error, representing a curved shape, will quickly become negligible if a reasonable number
of elements are used.

Taking into account the errors caused by the proposed method, for a straight beam
with boundary conditions as shown in Figure 2, the total sum of all element lengths after
deformation is accurately preserved up to an element rotation of almost 90 degrees. However,
if the investigated beam has curvature, the structure is somewhat more constrained and
additional errors may occur. Such errors arise due to axial constraints at both beam ends.
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However, when this method is employed for airfoil optimization, the resulting length
error is negligible. For example, when examining the top surface of an airfoil flap, as shown
in Figure 1, the error in the sum of all the element lengths after deformation does not exceed
5 × 10−7%, with maximum deflections corresponding to 1/10th of the surface length. Such
a deformation is usually larger than that used during a typical flap optimization.

4. Initial Shape

This method requires an initial shape representing the structure to serve as the basis
for optimization. All the initial constraints, such as the surface length and trailing-edge
angle, must be respected at the specified deflection of the flap optimization. For a compliant
morphing trailing edge, the top surface is passive and its length does not change during
morphing. However, the bottom-surface length does change and the amount will depend
on the final geometry. Although the initial structure can be arbitrarily defined, having a
consistent method to define it is convenient.

For this purpose, a structural calculation to obtain the shape can be used by using the
fully nonlinear calculation or the modified finite-element method described above. The
undeformed trailing-edge section must be defined as a structure and divided into a set of
finite elements. Following the earlier description, boundary conditions similar to those
encountered on the compliant trailing edge with morphing must be applied to the structure,
as shown in Figure 7. To impose deflection on a morphing flap, a prescribed deflection is
applied to the trailing-edge node. No other forces are applied to the calculation. Then, the
finite element equations are solved, and the deformed shape is determined. Because the
stiffness values are constant along the structure, the deformed structure results in a smooth
curve that strongly resembles a morphed flap.

The length of the upper surface of the flap is unchanged, whereas the lower surface
shifts along the slider joint. This results in a reduction in the lower-surface length, as
would be expected with such a morphing structure. To present the final initial structure,
an additional adjustment is made. As the surface moves toward the leading edge, the
constrained nodes move together. Therefore, the structure at the starting position of the flap
may also shift in the y direction. This shift is usually minor and can be ignored. However,
to achieve a smooth transition with an unmorphed airfoil section, an additional adjustment
can be made. To perform the necessary adjustment, the bottom surface is trimmed at the
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sliding-joint location, excluding the excess curve. Then, the new boundary conditions are
applied with the top surface fully constrained at the starting point and supported only at
the trailing edge, whereas the bottom leading portion remains unconstrained. Finally, the
defined displacement is applied to the end of the curve, which corresponds to the desired
displacement in the y direction. The resulting shape can then be used as the initial structure
for optimization described in the paper.
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at the trailing edge.

5. Case Study

The objective of this case study was to demonstrate the effectiveness of the proposed
shape representation method. For this purpose, a MATLAB program was developed. To
demonstrate the results, NACA 23012 was chosen for evaluation. The optimization process
was carried out on the trailing edge section of the airfoil, starting from the chord-wise
location of 0.7 and extending to the end of the trailing edge. The vertical displacement
of the trailing edge of the flap was fixed and set to 0.05c, which corresponded to a flap
deflection angle of approximately 10 degrees.

For the shape representation, the entire surface of the flap was discretized into 61
frame elements. As described in Section 2, the control points were defined as equally spaced
distributed loads of a constant magnitude. A total of eight control points were defined to
change the shape. The four control points were designated for the upper surface and the
remaining four were designated for the lower surface. To approximate the design space,
the bending stiffness was calculated using the expected deflection of ymax = 0.03, which
was defined as the surface bounds for the analysis. The resulting bending stiffness value
corresponded to EIn = 1.5 × 10−3. The optimization bounds were defined by the deflection
values for both positive and negative ymax values. Figure 8 shows the total design space for
the upper and lower surfaces.
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The aerodynamic performance was evaluated using the XFOIL software [26], a robust
aerodynamic airfoil solver that is frequently used in airfoil optimization. Flap optimization
was performed at a Reynolds number of 500,000. For each shape, a series of seven angles
of attack between 0 and 6 degrees were evaluated. A larger number of angles of attack
were investigated to determine the aerodynamic performance under a wide range of
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conditions and to avoid localized optimization solutions that could result in bumps in the
optimized shape [27].

To achieve the best aerodynamic performance, the objective function guiding the
optimization was defined as the sum of the lift-to-drag coefficients obtained from all the
evaluated angles of attack:

maximize
n

∑
i=1

Cl.i
Cd.i

(12)

Due to the highly nonlinear nature of airfoil optimization and the existence of multiple
possible solutions, the genetic algorithm is commonly chosen. Therefore, the optimization
process in this case study was performed by using the integrated genetic algorithm in
MATLAB [28], with a population size of 200 individuals. The optimization was completed
after 50 generations and resulted in the best flap shape.

The optimized shape is compared with the conventional flap in Figure 9. As can be
seen, the flap shapes differed from each other. In particular, the optimized shape had a
more pronounced curvature and a retracted trailing edge. This retraction was considerably
smaller in the conventional flap because the trailing edge followed the arc as it was rotated
along the flap hinge. In contrast, when the morphing flap was deflected, the length of
the upper surface was maintained, and the trailing edge was retracted even more. This
retraction increased as the surface curvature increased. Additionally, the algorithm kept
the trailing edge angle similar to the one in the initial structure, even without imposing
additional constraints.
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When comparing the aerodynamic performance of the conventional and optimized
flaps (Figure 10), the results showed an increase in the lift-to-drag ratio of about eight
points (10%) in the optimized angle-of-attack range and significantly more at lower angles.
Performance improvement at off-design angles of attack (mainly negative angles) can
be primarily attributed to the increased smoothness of the morphing flap, particularly
the elimination of sudden jump in curvature present in a conventional flap at the hinge
mitigates possible flow separation.

The optimized flap had a smaller drag at the same lift coefficients. The highest
performance increase was observed at small angles of attack, whereas at higher angles of
attack the performance was almost the same. The optimized flap also increased the lift
capability by increasing the maximum lift by 4.9%. A similar increase was observed at all
angles of attack. These improvements demonstrate the advantage that can be achieved
with a morphing flap, and they confirm the ability to use the proposed method to achieve
much better performance. Additionally, the observed performance improvements align
closely with the findings reported by other researchers [3,29,30].

It should be emphasized that the possible improvement due to the implementation of
morphing flaps strongly depends on the initial airfoil, Reynolds number, and deflection
angle. The presented case study is only one possible result, showing a great potential for
morphing flap technology.
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6. Discussion and Future Possibilities

The presented method is an efficient and intuitive method for representing the morph-
ing trailing edge for aerodynamic optimization. Defining the surface morphing boundaries
via maximum structural deflection is intuitive for the designer; doing this helps to de-
fine and link the morphing capabilities between the actual morphing structure and the
flap-shape optimization.

The key advantage of the described shape representation method is the ability to
maintain the initial length of the upper flap surface without needing to iterate. However,
the true length of the surface will be affected by a discretization error which can be reduced
by increasing the number of elements until the point of negligible error, which is in the
scope of morphing the structure-morphing capabilities.

The second advantage of this method is the possibility to stiffen the structure in par-
ticular locations to maintain certain initial airfoil features. For example, stiffening the
trailing-edge element or adding a cross-sectional member that joins the upper and lower
skins can help maintain the trailing-edge angle through the optimization. This implemen-
tation does not increase the computational cost and helps to mitigate the possibility of
generating a nonfeasible shape, which might waste calculation time.

The presented method could be extended in several ways to achieve specific results.
For this work, the trailing-edge deflection was considered fixed. This is useful when
optimizing the flap performance at a specific deflection angle. In some cases, the angle
might not be known prior to optimization; therefore, the optimization should be set up in
such a way that the flap deflection is added as one of the optimization variables. For such
an optimization, the initial shape would have to be defined at every optimization run, thus
increasing the computational cost. Such optimization might benefit from implementing
multi-objective optimization strategies, where multiple conflicting objectives need to be
assessed. A similar strategy is described in [31,32] where researchers use NSGA-II solver to
obtain pareto front results. The optimization process can be configured to target specific
objectives, such as maximizing the lift-to-drag ratio versus the change in lift for multiple
designs. By focusing on these performance metrics, the algorithm can effectively evaluate
and compare different airfoil shapes and configurations, ultimately identifying the most
aerodynamically efficient designs that meet the desired criteria.

In future research we will investigate the addition of deflection angle as an additional
variable and the application of multi-objective optimization techniques. Furthermore,
extending the algorithm’s implementation to the leading edge will be explored. These
investigations will contribute to a more comprehensive understanding of aerodynamic
shape optimization and expand the potential applications of the proposed method.
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7. Conclusions

In conclusion, this study demonstrates a novel method for optimizing the aerodynamic
shape of the morphing flaps used for compliant morphing structures. The modified finite
element method, which incorporated rigid rotation corrections, provides a computationally
efficient means of representing airfoil shapes through structural modeling. By incorporat-
ing this method into the optimization process, it enables the development of morphing
trailing edges while adhering to predefined complaint structure constraints. The effective-
ness of adhering to the constraints in the proposed method ensures that the optimized
airfoil shape not only achieves improved aerodynamic performance but also maintains the
necessary structural integrity and complies with design limitations. In addition to observed
improvement in aerodynamic performance demonstrated in the case study, it highlights
the potential of this method to be used as a tool for optimizing the shape of morphing flaps.

Author Contributions: Conceptualization, M.L.; methodology, M.L.; software, M.L.; validation,
M.L.; formal analysis, M.L.; investigation, M.L.; resources, M.L. and V.L.; data curation, M.L. and
V.L.; writing—original draft preparation, M.L. and V.L.; writing—review and editing, M.L. and V.L.;
visualization, M.L.; supervision, M.L. and V.L.; project administration, M.L. and V.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fujiwara, G.E.; Nguyen, N.T.; Livne, E.; Bragg, M.B. Aerostructural Design Optimization of a Flexible Wing Aircraft with

Continuous Morphing Trailing Edge. In Proceedings of the 2018 Multidisciplinary Analysis and Optimization Conference,
Atlanta, GA, USA, 25–29 June 2018. [CrossRef]

2. Watkins, J.; Bouferrouk, A. The Effects of a Morphed Trailing-Edge Flap on the Aeroacoustic and Aerodynamic Performance of a
30P30N Aerofoil. Acoustics 2022, 4, 248–267. [CrossRef]

3. Majid, T.; Jo, B.W. Comparative Aerodynamic Performance Analysis of Camber Morphing and Conventional Airfoils. Appl. Sci.
2021, 11, 10663. [CrossRef]

4. Masters, D.; Taylor, N.J.; Rendall, T.; Allen, C.; Poole, D. Geometric Comparison of Aerofoil Shape Parameterization Methods.
AIAA J. 2017, 55, 1575–1589. [CrossRef]

5. Sripawadkul, V.; Padulo, M.; Guenov, M. A Comparison of Airfoil Shape Parameterization Techniques for Early Design
Optimization. In Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Fort Worth,
TX, USA, 13–15 September 2010. [CrossRef]

6. Hoyos, J.; Jímenez, J.H.; Echavarría, C.; Alvarado, J.P. Airfoil Shape Optimization: Comparative Study of Meta-heuristic
Algorithms, Airfoil Parameterization Methods and Reynolds Number Impact. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1154, 012016.
[CrossRef]

7. Sobieczky, H. Parametric Airfoils and Wings. In Recent Development of Aerodynamic Design Methodologies; Notes on Numerical
Fluid Mechanics (NNFM); Fujii, K., Dulikravich, G.S., Eds.; Vieweg + Teubner Verlag: Cham, Switzerland, 1999; Volume 65.
[CrossRef]

8. Kulfan, B.M. Universal Parametric Geometry Representation Method. J. Aircr. 2008, 45, 142–158. [CrossRef]
9. He, W.; Liu, X. Improved aerofoil parameterisation based on class/shape function transformation. Aeronaut. J. 2019, 123, 310–339.

[CrossRef]
10. Zhu, F.; Qin, N. Intuitive Class/Shape Function Parameterization for Airfoils. AIAA J. 2014, 52, 17–25. [CrossRef]
11. Christie, R.; Robinson, M.; Tejero, F.; MacManus, D.G. The use of hybrid intuitive class shape transformation curves in aerody-

namic design. Aerosp. Sci. Technol. 2019, 95, 105473. [CrossRef]
12. Deng, F.; Xue, C.; Qin, N. Parameterizing Airfoil Shape Using Aerodynamic Performance Parameters. AIAA J. 2022, 60, 4399–4412.

[CrossRef]
13. Ahmad, D.; Ajaj, R.M. A Multiaxial Fracture of Ecoflex Skin with Different Shore Hardness for Morphing Wing Application.

Polymers 2023, 15, 1526. [CrossRef]

https://doi.org/10.2514/6.2018-3571
https://doi.org/10.3390/acoustics4010015
https://doi.org/10.3390/app112210663
https://doi.org/10.2514/1.J054943
https://doi.org/10.2514/6.2010-9050
https://doi.org/10.1088/1757-899X/1154/1/012016
https://doi.org/10.1007/978-3-322-89952-1_4
https://doi.org/10.2514/1.29958
https://doi.org/10.1017/aer.2018.165
https://doi.org/10.2514/1.J052610
https://doi.org/10.1016/j.ast.2019.105473
https://doi.org/10.2514/1.J061464
https://doi.org/10.3390/polym15061526


Mathematics 2023, 11, 1986 14 of 14

14. Bishay, P.L.; Kok, J.S.; Ferrusquilla, L.J.; Espinoza, B.M.; Heness, A.; Buendia, A.; Zadoorian, S.; Lacson, P.; Ortiz, J.D.; Basilio, R.;
et al. Design and Analysis of MataMorph-3: A Fully Morphing UAV with Camber-Morphing Wings and Tail Stabilizers. Aerospace
2022, 9, 382. [CrossRef]

15. Mahid, N.M.; Woods, B.K.S. Initial exploration of a compliance-based morphing fairing concept for hinged aerodynamic surfaces.
Aerosp. Sci. Technol. 2023, 136, 108244. [CrossRef]

16. Kölbl, M.; Ermanni, P. Structural design and analysis of an anisotropic, bi-axially morphing skin concept. Aerosp. Sci. Technol.
2022, 120, 107292. [CrossRef]

17. Zhang, Y.; Ge, W.; Zhang, Z.; Mo, X.; Zhang, Y. Design of compliant mechanism-based variable camber morphing wing with
nonlinear large deformation. Int. J. Adv. Robot. Syst. 2019, 16. [CrossRef]

18. Taguchi, K.; Fukunishi, K.; Takazawa, S.; Sunada, Y.; Imamura, T.; Rinoie, K.; Yokozeki, T. Experimental Study about the Deformation
and Aerodynamic Characteristics of the Passive Morphing Airfoil. Trans. Jpn. Soc. Aeronaut. Space Sci. 2020, 63, 18–23. [CrossRef]

19. Zhang, Z.; Song, C.; Yang, C.; Cavalieri, V.; De Gaspari, A.; Ricci, S. Combining Density-based Approach and Optimization
Refinement in the Design of Morphing Airfoil Structures. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA,
6–10 January 2020. [CrossRef]

20. Jia, S.; Zhang, Z.; Zhang, H.; Song, C.; Yang, C. Wind Tunnel Tests of 3D-Printed Variable Camber Morphing Wing. Aerospace
2022, 9, 699. [CrossRef]

21. Mkhoyan, T.; Thakrar, N.R.; De Breuker, R.; Sodja, J. Morphing wing design using integrated and distributed trailing edge
morphing. Smart Mater. Struct. 2022, 31, 125025. [CrossRef]

22. Zhang, Z.; De Gaspari, A.; Ricci, S.; Song, C.; Yang, C. Gradient-Based Aerodynamic Optimization of an Airfoil with Morphing
Leading and Trailing Edges. Appl. Sci. 2021, 11, 1929. [CrossRef]

23. Leal, P.B.C.; Hartl, D.J. Structurally Consistent Class/Shape Transformation Equations for Morphing Airfoils. J. Aircr. 2019, 56, 505–516.
[CrossRef]

24. Da Silva, V.D. Mechanics and Strength of Materials; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–529.
25. Liu, G.R.; Quek, S.S. The Finite Element Method: A Practical Course, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–433.

[CrossRef]
26. Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1–12.
27. Drela, M. Pros & Cons of Airfoil Optimization. Front. Comput. Fluid Dyn. 1998, 1998, 363–381. [CrossRef]
28. The MathWorks, Inc. Global Optimization Toolbox User’s Guide R2022b; The MathWorks, Inc.: Natick, MA, USA, 2022;

ISBN 252.2277014.
29. Kumar, T.R.S.; Venugopal, S.; Ramakrishnananda, B.; Vijay, S. Aerodynamic Performance Estimation of Camber Morphing

Airfoils for Small Unmanned Aerial Vehicle. J. Aerosp. Technol. Manag. 2020, 12, e1420. [CrossRef]
30. Bashir, M.; Longtin-Martel, S.; Botez, R.; Wong, T. Aerodynamic Design Optimization of a Morphing Leading Edge and Trailing

Edge Airfoil–Application on the UAS-S45. Appl. Sci. 2021, 11, 1664. [CrossRef]
31. Sheikh, H.M.; Lee, S.; Wang, J.; Marcus, P.S. Airfoil Optimization Using Design-by-Morphing. arXiv 2022, arXiv:2207.11448.

[CrossRef]
32. Talebitooti, R.; Gohari, H.; Zarastvand, M. Multi objective optimization of sound transmission across laminated composite cylindrical

shell lined with porous core investigating Non-dominated Sorting Genetic Algorithm. Aerosp. Sci. Technol. 2017, 69, 269–280.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/aerospace9070382
https://doi.org/10.1016/j.ast.2023.108244
https://doi.org/10.1016/j.ast.2021.107292
https://doi.org/10.1177/1729881419886740
https://doi.org/10.2322/tjsass.63.18
https://doi.org/10.2514/6.2020-1546
https://doi.org/10.3390/aerospace9110699
https://doi.org/10.1088/1361-665X/aca18b
https://doi.org/10.3390/app11041929
https://doi.org/10.2514/1.C035025
https://doi.org/10.1016/C2012-0-00779-X
https://doi.org/10.1142/9789812815774_0019
https://doi.org/10.5028/jatm.v12.1094
https://doi.org/10.3390/app11041664
https://doi.org/10.48550/arxiv.2207.11448
https://doi.org/10.1016/j.ast.2017.06.008

	Introduction 
	Shape Representation Methodology 
	FEM Modifications 
	Initial Shape 
	Case Study 
	Discussion and Future Possibilities 
	Conclusions 
	References

