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Abstract: CdTe-CdS layers were formed on polyamide (PA) 6 films with different surface modifica-
tions using the sorption-diffusion method. Part of the samples of the PA films was boiled in distilled
water for 2 h and the other ones were stored in concentrated acetic acid at 20 ◦C for 0.5 h. After
this stage, all the PA 6 films were chalcogenized at 20 ◦C for 1 or 5 h using an acidified 0.1 mol/L
solution of K2TeS4O6. Then, the chalcogenized samples were treated with a 0.1 mol/L solution
of cadmium acetate at 70, 80 or 90 ◦C for 10 min. The elemental and phase composition and the
morphological and optical properties of the obtained films were determined. XRD analysis showed
that cadmium chalcogenide layers consist of four phases: hexagonal CdTe, orthorhombic CdS,
rhombohedral Te and orthorhombic S18. The average crystallite size among the obtained layers
was very similar and was in the range of 36–42 nm. The concentrations of cadmium, sulfur and
tellurium in the layers on PA 6 and the optical properties of the CdTe-CdS layers were dependent
on the method of preparation of the polyamide film, the duration of chalcogenization and the
temperature of the Cd(CH3COO)2 solution.

Keywords: polyamide; potassium telluropentathionate; cadmium sulfide; cadmium telluride

1. Introduction

In today’s world, the need for energy is constantly increasing, but with this growth
comes the negative environmental impact caused by the use of fossil fuels to serve modern
interests. One of the biggest focuses in the modern world is to generate electricity using
renewable energy. Photovoltaic energy is one of the most popular renewable energy sources
due to its economy, reliability and efficiency. Scientists around the world are constantly
trying to discover new materials and ways to produce them so that semiconductors can be
obtained with maximum efficiency and minimum production costs. One such material is
cadmium chalcogenides, namely cadmium telluride and cadmium sulfide, which are capa-
ble of forming heterosystems [1–4]. Both cadmium telluride and cadmium sulfide are group
II-VI compounds with special properties that distinguish them from standard semiconductor
materials. Narrow-gap CdTe and wide-gap CdS semiconductors have bandgaps for solar ab-
sorption which are close to the maximum of the solar spectrum [5]. Cadmium telluride has a
near-optimum bandgap of 1.45 eV and a significant absorption coefficient of 105 cm–1 [6–10],
and cadmium sulfide has an energy bandgap of 2.42 eV [1,11–14]. Among other substances,
CdS serves as a buffer layer in CdTe solar cells because of low resistance and high trans-
mittance [15]. Those solar cells consist of a p-type CdTe/n-type CdS heterojunction, which
develops a high bandgap and, as a result, the device can absorb about 90% of sunlight in
less than 1000 nm of material [8,16,17]. The efficiency of CdTe/CdS solar cells has improved
significantly in recent years and has reached a record-high level (22.1%) [1,6,7,9,18]. Another
important aspect is that these modules have very little environmental impact as they are
recyclable, making this technology one of the most environmentally friendly [19,20]. Due to
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this reason, numerous research on CdTe-CdS thin films has shown that they could be used
in solar cells, and their manufacturing has never been so cheap [21,22].

Both compounds are easy to incorporate into the production of solar cell modules,
are inexpensive and can be produced via both physical and chemical methods without
complex manufacturing processes. Various methods have been used to synthesize thin
films of cadmium chalcogenides, such as physical vapor deposition by thermal evaporation,
close-spaced sublimation, sputtering, metal-organic chemical-vapor deposition, electrodepo-
sition, chemical pyrolysis deposition, successive ionic layer adsorption and reaction (SILAR)
and chemical bath deposition (CBD) [23–35]. Some of these methods do not require high
production costs and make the cost of thin-film solar cell technology more competitive.

The production of thin-layer solar cells on flexible materials such as polymer substrates
offers a number of advantages, such as lighter weight. Therefore, in this study, the semi-
hydrophilic polymer polyamide 6 was used as a substrate. One aim of this work was to
obtain mixed thin layers of cadmium tellurides and cadmium sulfides on the surface of PA
6 films, prepared using various techniques, via a simple sorption-diffusion method, using
potassium telluropentathionate salt as a single-source precursor of tellurium and sulfur at
low temperature. Another aim was to study the elemental and phase composition and the
morphological and optical properties of the obtained layers. To characterize the obtained
layers, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX),
X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and UV-Vis spectroscopy
(UV-Vis) measurements were carried out.

2. Materials and Methods
2.1. Materials

Tellurous acid (98% purity), acetic acid (99%), hydrochloric acid (35–38%), potassium
acetate (99% purity), and sodium thiosulfate pentahydrate (99.5% purity) were acquired
from Labochema.com. Cadmium acetate dihydrate with a purity of 99.99% was purchased
from Sigma–Aldrich (Sigma-Aldrich Chemie GmbH, Munich, Germany). Polyamide (PA)
6 film of 500 µm thickness with a density of 1.13 g/cm3 was obtained from Ensinger GmbH
(Ensinger GmbH, Nufringen, Germany).

2.2. Synthesis of Cadmium Sulfide—Cadmium Telluride Layers

Before the experiments, PA films 15 mm× 70 mm in size were boiled in distilled water
for 120 min (sample group S1) or kept in concentrated acetic acid at 20 ◦C for 30 min
(sample group S2). Then, they were dried using a filter paper and kept in a desiccator over
anhydrous CaCl2. Potassium telluropentathionate salt (K2TeS4O6·1.5H2O) was prepared
and chemically analyzed according to a published method [36]. Firstly, PA 6 films were
chalcogenized for 1 h (S1-1, S2-1) or 5 h (S1-5, S2-5) at 20 ◦C using a continuously stirred
acidified (0.2 mol/L HCl) 0.1 mol/L solution of K2TeS4O6. At the second stage, samples of
chalcogenized PA were treated with a 0.1 mol/dm3 solution of cadmium acetate for 10 min
at temperatures of 70 ◦C (S1-1-70, S1-5-70, S2-1-70, S2-5-70), 80 ◦C (S1-1-80, S1-5-80, S2-1-80,
S2-5-80) or 90 ◦C (S1-1-90, S1-5-90, S2-1-90, S2-5-90). The preparation of PA 6 films and the
synthesis of cadmium sulfide-cadmium telluride layers are shown in Figure 1.

2.3. SEM/EDX Characterization

The morphology was examined using a Quanta 200 FEG (FEI CompantTM, Eindhoven,
The Netherlands) scanning electron microscopy (SEM) equipped. A secondary electron
signal was used for imaging. Energy dispersion spectroscopy (EDS) imaging was performed
using a QUANTAX EDS system with a Bruker XFlash® 4030 detector and ESPRIT software
(Bruker AXS Microanalysis GmbH, Berlin, Germany).
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Figure 1. Schematic diagram of the preparation of films and the synthesis of cadmium sulfide–
cadmium telluride layers.

2.4. XRD Characterization

After preparation, all samples were analyzed via XRD on the Bruker D8 Advance diffrac-
tometer (Bruker AXS, Karlsruhe, Germany). This test determined the structural characterization
of the obtained materials. PA 6 films were scanned over the range 2θ = 3–70◦ at a scanning
speed of 1◦ min–1 using a coupled two theta/theta scan type. The diffractometer was sup-
plied together with the software package DIFFRAC.SUITE. (Diffract. EVA. v. 4.5, Bruker
AXS, Karlsruhe, Germany). X-ray diffraction data were analyzed using the software package
Crystallographica Search Match v.2.1 and X-ray diffractograms were processed using Microsoft
Office Excel.

2.5. Elemental Composition

The total amount of cadmium, tellurium and sulfur in the layers of the cadmium
chalcogenides was determined via atomic absorption spectroscopy (AAS) using the OP-
TIMA 8000 ICP-Optical Emission Spectrometer (PerkinElmer, Waltham, MA, USA). The
solution for analysis was prepared by dissolving pieces of the samples with a weight
of 0.02–0.05 g in 5 mL of concentrated nitric acid. The resulting solution was boiled for
30 min in a water bath. During this process, irreversible destruction of the PA occurred
and nitrogen oxides were removed. After boiling, the solution was diluted to the required
volume and used for analysis.

2.6. UV-Vis Spectroscopy

UV-Vis spectra were recorded on a SpectronicR GenesysTM 8 UV-Vis spectrophotome-
ter (Spectronic instruments, Runcorn, UK) with compensation of the absorption of PA 6 in
the range of 200–800 nm.

3. Results and Discussion
3.1. SEM/EDX Analysis

CdS-CdTe layers formed on the surface of PA 6 can be micro- or nano-derivatives;
therefore, SEM analysis was used to study their formation and uniformity. Figures 2–4
show the results of the surface morphology of the samples.



Crystals 2023, 13, 730 4 of 13

Figure 2. SEM images of chalcogenized PA 6 treated with cadmium acetate at 70 ◦C. Magnifica-
tion 10,000×.

Figure 3. SEM images of chalcogenized PA 6 treated with cadmium acetate at 80 ◦C. Magnifica-
tion 10,000×.
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Figure 4. SEM images of chalcogenized PA 6 treated with cadmium acetate at 90 ◦C. Magnifica-
tion 10,000×.

In the SEM images shown in Figure 2, it can be seen that the surface of the samples is
somewhat rough and uneven. Only the surface of the S2-5-70 sample has areas of a lighter
color, which can be identified as crystallites of the formed compounds. When comparing the
images of samples S2-1-70 and S2-5-70, which were chalcogenized for different durations
but treated with a cadmium acetate solution at the same temperature, it can be observed
that more crystals formed on PA films chalcogenized for a longer time (5 h).

The micrographs in Figure 3 show that larger and irregularly shaped dendrites and
pinholes formed on the surface of the samples, and separate crystallites and their agglomer-
ates are also visible. Compositional variations are observed in SEM images of the obtained
layers due to the longer chalcogenization time, and the surfaces of samples S1-5-80 and
S2-5-80 are smoother.

The micrographs in Figure 4 show compact and smooth polycrystalline surfaces
of the obtained layers on PA 6 films. It can be seen that the layers consist of densely
packed grains when chalcogenized PA is treated with Cd(CH3COO)2 at 90 ◦C. Comparing
samples S1 and S2, it can be seen that the layers on PA 6 films kept in acetic acid are more
even, and more crystallites are observed on them than on the films that were boiled in
distilled water. It can be stated that the crystallites and their agglomerates are often seen in
SEM images and are not regular in shape, forming larger formations.

Table 1 shows the elemental composition of the layers formed on the surface of
samples S1 and S2. The data obtained show that with an increase in the duration of
chalcogenization and an increase in the temperature of the cadmium acetate solution, the
number of cadmium and sulfur atoms in samples from group S1 decreases, while the
amount of tellurium increases. It is possible that with a longer time of chalcogenization
and a higher temperature of the Cd(CH3COO)2, more cadmium telluride or tellurium
was formed.
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Table 1. The elemental composition by EDX analysis.

Sample No
Elements

Cd at. % S at. % Te at. %

S1-1-70 52.9 ± 0.1 36.4 ± 0.0 10.7 ± 0.1

S1-5-70 42.1 ± 0.3 26.2 ± 0.1 31.7 ± 0.3

S1-1-80 50.1 ± 0.2 21.9 ± 0.1 28.0 ± 0.2

S1-5-80 38.2 ± 0.6 17.2 ± 0.1 44.6 ± 0.9

S1-1-90 28.0 ± 0.5 17.4 ± 0.1 54.6 ± 1.2

S1-5-90 31.7 ± 0.6 16.0 ± 0.1 52.3 ± 1.1

S2-1-70 25.8 ± 0.1 74.1 ± 0.0 0.1 ± 0.0

S2-5-70 34.2 ± 0.5 16.8 ± 0.1 49.0 ± 1.0

S2-1-80 21.5 ± 0.1 77.2 ± 0.1 1.3 ± 0.0

S2-5-80 35.9 ± 0.6 17.4 ± 0.6 46.7 ± 1.0

S2-1-90 19.6 ± 0.1 80.1 ± 0.1 0.3 ± 0.0

S2-5-90 18.4 ± 0.2 29.4 ± 0.1 52.2 ± 0.5

As the chalcogenization time of the S2 samples increases, the percentage of tellurium
increases and the percentage of sulfur in the layers decreases, but the change in the percent-
age of cadmium is not constant. It can be assumed that the amounts of tellurium and sulfur
are different in these samples. In samples S2-1-70, S2-1-80 and S2-1-90, a large amount of
sulfur and a small amount of tellurium are observed. The results obtained show that sulfur
could be elemental or be part of the CdS compound, with the formation of a very small
amount of CdTe.

Comparing the different surface preparation of the samples, it was found that in
S1 samples, the percentage of Te atoms, S atoms and Cd atoms constantly increases or
decreases depending on the conditions of the experiment. The change in the number of
elements in S2 samples is unequal. Additionally, it can be seen that there is a significantly
higher amount of sulfur in the samples chalcogenized for one hour, and a bigger amount of
tellurium in the samples chalcogenized for five hours. This can be explained by stating that
these films were treated with concentrated acetic acid; therefore, the absorbed TeS4O6

2− ions
decomposed more quickly to form elemental tellurium.

3.2. XRD Analysis

The structural characteristics of the obtained layers were studied by XRD analysis.
The phase composition of the layers was determined by comparing their X-ray diffraction
patterns with those of known cadmium chalcogenides. The intensity of the polyamide peaks
at θ < 13◦ is several times higher than the intensity of the peaks of cadmium chalcogenides,
so the region 2θ ≥ 25◦ was studied in more detail.

The analysis showed that chalcogenide layers consist of four phases: hexagonal CdTe
(JCPDS: 80-89), orthorhombic CdS (JCPDS: 47-1179), rhombohedral tellurium (JCPDS:
23-1000) and orthorhombic sulfur (JCPDS: 72-409).

Values of the interplanar spacing (d) of those phases are given in Table 2. Based on the
data in this table, it can be said that the peaks of CdS, elemental sulfur and tellurium or
CdTe and S18 are at a very similar location and they can overlie each other.
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Table 2. Comparison of observed interplanar spacings (d) with standard JCPDS data.

Observed
Data

CdTe (•) CdS (NNN) S18 (�) Te (�)

JCPDS: 80-89 JCPDS: 47-1179 JCPDS: 72-409 JCPDS: 23-1000

d (Å) d (Å) hkl d (Å) hkl d (Å) hkl d (Å) hkl

3.1209 3.1260 2 1 4
4 1 2 3.1251 1 2 2 3.1100 0 1 2

1.8711 1.8702 2 0 0 1.8698 0 1 4

From the data in Figures 5–7, it can be seen that the peaks of the phases are more
intense in the samples that were chalcogenized for 5 h and treated with cadmium acetate
solution at higher temperatures. Sulfur and tellurium are found in samples kept longer in a
solution of potassium telluropentathionate and treated with the Cd(CH3COO)2 solution at
a higher temperature, so it can be concluded that only part of the TeS4O6

2− ions react with
Cd2+ ions (Equation (1)), while the other part of the ions decompose (Equations (2) and (3)):

2TeS4O6
2−

(aq) + 5Cd2+
(aq) + 8H2O(l) → 2CdTe(s) + 3CdS(s) + 5SO4

2−
(aq) + 16H+

(aq) (1)

TeS4O6
2−

(aq) → S4O6
2−

(aq) + Te(s) (2)

S4O6
2−

(aq) → SO4
2−

(aq) + SO2(g) +2S(s) (3)

Figure 5. X-ray diffractograms of chalcogenized PA 6 treated with cadmium acetate at 70 ◦C.
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Figure 6. X-ray diffractograms of chalcogenized PA 6 treated with cadmium acetate at 80 ◦C.

Figure 7. X-ray diffractograms of chalcogenized PA 6 treated with cadmium acetate at 90 ◦C.

The XRD graph analysis was applied to calculate crystallite size in the obtained layers
on PA 6. As shown in Figures 5–7, there is only one intensive peak and one non-intensive
peak. The crystallite size was calculated using Scherrer’s Formula (4):

Dhkl =
k · λ

Bhkl·cosθ
(4)

where k is constant (k = 0.94), λ is the X-ray wavelength (1.54056 × 10–10 m), θ is the
diffraction angle, and Bhkl is the full width at half maximum (FWHM) of the peak.

From the data presented in Table 3, it can be seen that in the samples boiled in
distilled water (S1), the size of the crystallites increases consistently with the increase
of the chalcogenization time and the temperature of the cadmium acetate solution. The
largest crystallites are found in samples chalcogenized for 5 h and kept in Cd(CH3COO)2
solutions at higher temperatures. Meanwhile, in the samples modified in acetic acid (S2),
the crystallite size variation is not consistent. The smallest crystallites are found in the
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samples treated with a cadmium acetate solution at 80 ◦C, and the largest crystallites are
found in the sample chalcogenized for 1 h in a potassium telluropentathionate salt solution
and treated with a cadmium acetate solution at 90 ◦C. In summary, samples S1 and S2 have
a very similar average size of crystalline particles in the obtained layers on the surface of
PA 6 films.

Table 3. Average size of crystallites.

Sample No Average Crystallite Size, nm Sample No Average Crystallite Size, nm

S1-1-70 37.8 ± 1.8 S2-1-70 38.2 ± 1.9

S1-5-70 36.5 ± 0.7 S2-5-70 39.7 ± 3.5

S1-1-80 37.9 ± 1.7 S2-1-80 36.4 ± 0.9

S1-5-80 40.1 ± 2.3 S2-5-80 37.6 ± 2.6

S1-1-90 39.0 ± 2.9 S2-1-90 42.0 ± 3.1

S1-5-90 40.1 ± 3.4 S2-5-90 37.5 ± 2.8

3.3. AAS Analysis

The quantitative analysis of the obtained layers on PA 6 film was performed by atomic
absorption spectroscopy.

Using this method, it was established that the concentrations of cadmium, sulfur, and
tellurium in the layers on PA 6 (Table 4) depend on the method of the preparation of the
polyamide film, the duration of chalcogenization, and the temperature of the Cd(CH3COO)2
solution. The results show that with the increase of chalcogenization time, the concentration
of sulfur and tellurium increases, and it means that more TeS4O6

2− ions are sorbed-diffused
into PA 6. Increasing the temperature of the cadmium acetate solution has a positive effect
leading to higher concentrations of all elements. It can be seen that the concentration of
elements is slightly higher in the S2 samples treated with concentrated acetic acid.

Table 4. The concentrations of cadmium, sulfur and tellurium in the obtained layers.

Sample No
Elements

Sample No
Elements

Cd, µg/g S, µg/g Te, µg/g Cd, µg/g S, µg/g Te, µg/g

S1-1-70 2.65 41.54 5.20 S2-1-70 5.78 44.92 8.70

S1-5-70 5.94 45.54 18.41 S2-5-70 11.87 69.99 11.37

S1-1-80 8.03 42.41 9.34 S2-1-80 7.81 43.73 10.54

S1-5-80 11.50 53.85 24.37 S2-5-80 31.28 107.24 77.26

S1-1-90 5.09 38.56 6.51 S2-1-90 10.99 59.53 23.57

S1-5-90 8.12 51.38 19.52 S2-5-90 26.93 105.09 62.11

3.4. UV-Vis Spectroscopy

The optical absorbance studies of the obtained cadmium telluride-cadmium sulfide
layers on the PA 6 substrate were carried out in the wavelength range of 200–800 nm,
and the absorption spectra are illustrated in Figures 8 and 9. The results show that the
absorbance depends on the preparation of the PA film, the duration of chalcogenization
and the temperature of the cadmium acetate solution.
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Figure 8. UV-Vis absorption spectra of the samples S1.

Figure 9. UV-Vis absorption spectra of the samples S2.

Absorbance is high in the near-ultraviolet and visible regions of the solar spectrum,
and has been found to decrease with wavelength from 400 to 800 nm and then become
constant near the infrared region. Samples S1 demonstrate higher absorbance until 400 nm
and then decrease; a similar trend is observed for samples S2 until 500 nm. A longer
time of chalcogenization and a higher temperature of the cadmium salt solution increases
the absorption intensity of the CdTe-CdSe layers. According to the literature [37], optical
properties are strongly influenced by structural changes; for example, absorption decreases
due to a decrease in the size of the crystallites. However, in our case, the crystallite size
varied in a narrow range (36–42 nm) and did not affect the absorption. From Figures 8 and 9,
it can be seen that polyamide films chalcogenized for a longer time and kept in a cadmium
acetate solution at a temperature of 80 and 90 ◦C have the highest absorption intensities.
AAS analysis showed the highest concentrations of cadmium, sulfur and tellurium in
samples S1-5-80, S1-5-90, S2-5-80 and S2-5-90, so it can be assumed that a higher content
of cadmium telluride and cadmium sulfide in the layers increases light absorption. When
comparing the surface preparation of PA 6, S2 samples have peak intensity values that
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are almost twice as high as the S1 samples. It was found in this study that the S2 samples
kept in concentrated acetic acid have a higher content of cadmium and tellurium, and their
surface is more uniform compared to the samples boiled in distilled water.

4. Conclusions

Scanning electron microscopy of the obtained layers on polyamide 6 showed that the
samples boiled in distilled water have a rough surface, while the surface of the samples
kept in acetic acid is more uniform and more irregularly shaped crystallites and their
agglomerates are visible. The analysis of electronic dispersion spectroscopy established
that the obtained layers consist of cadmium, tellurium and sulfur. Comparing different
preparations of the surface of the polyamide, it was found that the amount of tellurium,
sulfur and cadmium increases or decreases depending on the conditions of the experiment.
X-ray diffraction analysis revealed that the phase composition of the obtained layers is
similar; the layers are formed from phases of hexagonal cadmium telluride, orthorhombic
cadmium sulfide, rhombohedral tellurium and orthorhombic sulfur, with a similar average
size of their crystalline particles. Analysis of atomic absorption spectroscopy showed that
the concentrations of cadmium, sulfur and tellurium in the layers on polyamide 6 depend
on the method of preparation of the polyamide film, the duration of chalcogenization
and the temperature of the cadmium acetate solution, and that the concentrations of the
elements are slightly higher in the samples first treated with concentrated acetic acid. The
results of UV-Vis spectroscopy show that the most intense absorption peaks are generated
by samples kept in concentrated acetic acid, chalcogenized in a solution of potassium
telluropentathionate for 5 h and treated with a solution of cadmium acetate at 80 and 90 ◦C.
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