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A B S T R A C T   

Bottleneck analysis, known as one of the essential lean manufacturing concepts, has been extensively researched 
in the literature. Recently, there has been a move towards using new Industry 4.0-based concepts and tech
nologies in the development of bottleneck analysis. However, the interrelations between bottleneck analysis and 
Industry 4.0 have not been studied thoroughly. The present study addresses this gap and performs a systematic 
literature review on articles available in major scientific databases (i.e., Web of Science and Scopus) to inves
tigate the impact of Industry 4.0 on the advancement of bottleneck analysis in production and manufacturing. 
Bibliometric analysis and content review were performed to extract the quantitative and qualitative data. Results 
revealed that only five out of 15 design principles and five out of eleven technologies of Industry 4.0 were 
addressed previously in developing bottleneck analysis methods. In addition to highlighting the existing gaps in 
the literature and proposing topics for future research, several potential development streams are proposed by 
studying the design principles and technologies of Industry 4.0, which have not been considered in bottleneck 
analysis before.   

1. Introduction 

Manufacturing industries are constantly striving to improve the 
productivity of their processes (Schmenner, 2015). Productivity 
improvement is mainly centered around increasing throughput, which 
can be defined as the pace at which parts pass through a production line 
(Lai et al., 2021). The throughput of a production system is constrained 
by one or more resources, known as “throughput bottleneck(s)” (Possik 
et al., 2021). In production and manufacturing, it is known that bot
tlenecks are responsible for up to 30 % of throughput losses (Alavian 
et al., 2019). Given the impact of bottlenecks on the productivity of 
manufacturing systems, bottleneck analysis (BA) has attracted consid
erable interest among academics and practitioners. 

Theories developed for BA focus on the identification of bottlenecks, 
their elimination, as well as the resolution of their root causes. Ac
cording to Goldratt & Cox (1986), bottlenecks should be identified and 
eliminated cyclically to improve throughput continuously. Nevertheless, 
it is difficult to identify and eliminate bottlenecks in practice, requiring 
practitioners to rely on their experience and intuition when conducting 
BA (Zhang et al., 2021). In order to provide the industry with the 

appropriate tools for BA, researchers have developed analytical and 
discrete event simulation models (Thürer et al., 2021). The limitation of 
analytical and simulation models is that they must be continually 
revised and adjusted to reflect changes happening in the real system (Lai 
et al., 2021). Consequently, maintaining analytical and simulation 
models represents a significant challenge to practitioners. Fortunately, 
the emerging manufacturing digital transformation under Industry 4.0 
appears to offer important implications for addressing challenges asso
ciated with BA. 

The term Industry 4.0, which stands for the fourth industrial revo
lution, originates from the German initiative launched in 2011 to 
empower the manufacturing sector via digitalization (Lasi et al., 2014). 
Hence, Industry 4.0 has been primarily understood as the application of 
the most advanced digital technologies for boosting manufacturing op
erations (Ghobakhloo, 2018). The definition of Industry 4.0 has evolved 
significantly during the past decade. The scope of digital transformation 
under Industry 4.0 nowadays extends beyond the four walls of factories, 
involving the digital transformation of organizations and their value 
network across various industries (Culot et al., 2020). For the 
manufacturing sector, Industry 4.0 entails transformation toward a 
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hyperconnected manufacturing ecosystem involving the seamless inte
gration of production facilities, smart warehouses, suppliers, intra
logistics, and even customers (Ching et al., 2021). Industry 4.0 is a 
technology-driven phenomenon, meaning the smart factories of In
dustry 4.0 rely on integrating disruptive technological innovations such 
as artificial intelligence within the existing production infrastructure, 
operations technologies, and processes (Büchi et al., 2020). The tech
nologies of Industry 4.0 are labeled disruptive as they redefine or 
significantly restructure manufacturing operations (Benitez et al., 
2020). Among other disruptive changes, Industry 4.0 transforms lean 
processes and allows manufacturers to become digitally leaner (Gho
bakhloo and Fathi, 2020). In doing so, Industry 4.0 offers important 
implications for bottleneck analysis, which is one of the continuous 
improvement tools under the lean production philosophy (Tu and 
Zhang, 2022). 

In recent years, data-driven approaches have been developed 
whereby shop floor data is directly used to identify bottlenecks without 
relying on any models (West et al., 2022). Real-time bottleneck analysis 
can be utilized by applying Industry 4.0 (I4.0) technologies, such as 
sensors and advanced communication technologies (Tu et al., 2021). 
This is the most obvious way in which I4.0 has transformed BA. There is, 
however, another way in which I4.0 has influenced BA. I4.0 has enabled 
advanced manufacturing systems to become more flexible and agile by 
implementing cyber-physical systems (Su et al., 2022). This flexibility 
and agility in manufacturing processes are essential to handle fluctua
tions in demand caused by mass customization (Espinoza Pérez et al., 
2022). Nevertheless, as manufacturers become more flexible and agile 
due to the ever-increasing market turbulence, bottleneck dynamics and 
shiftiness increase, making the BA increasingly complex (Zhang et al., 
2021). 

Fig. 1. Identified relationships between I4.0 and BA.  
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In general, BA is influenced by I4.0 in two ways. First, BA becomes 
more complicated in advanced production systems of I4.0 due to more 
flexibility and frequent planned and unplanned changes (Lai et al., 
2021). Second, new capabilities provided by I4.0 will lead to the in
vention of novel BA methods (Subramaniyan et al., 2021). To address 
this controversial role of I4.0, it is crucial to find how BA might change 
with or benefit from the building blocks of I4.0. 

For the purpose of this study, I4.0 and BA are classified into their 
respective building blocks to provide a better understanding of their 
interrelationships (see Fig. 1). According to the literature (e.g., de Paula 
Ferreira et al., 2020; Ghobakhloo et al., 2021), I4.0 is classified into two 
main building blocks, namely “design principles” and “technologies”. 
Alternatively, BA consists of four distinguishable building blocks: 
detection, diagnosis, prediction, and prescription (West et al., 2022). 

The technologies of Industry 4.0 refer to the innovative and disrup
tive technological innovations that drive the digital transformation of 
manufacturing firms under Industry 4.0 (Ching et al., 2021). Although 
these technologies were introduced years ago (the genesis of some In
dustry 4.0 technologies dates back to the third industrial revolution), 
these technologies have become functionally mature and commercially 
viable in the past decade. Previous studies offer diverse classifications of 
Industry 4.0 technologies (Zheng et al., 2021). This study follows the 
most widely accepted classifications for the technological constituents of 
Industry 4.0 (e.g., Frank et al., 2019; Ghobakhloo, 2018; Senna et al., 
2022) and reports the most relevant technologies as the ones listed in 
Fig. 1. Alternatively, the design principles of Industry 4.0 denote the 
techno-functional conditions that allow Industry 4.0 technologies to 
deliver their intended values optimally (Hwang et al., 2017). For 
example, real-time capability principles of Industry 4.0 entails that in 
order for the smart factory to operate appropriate, various smart com
ponents and technologies such as 3D printers, machinery, industrial 
controllers, manufacturing execution systems, enterprise systems, and 
cyber-physical systems should have the ability to communicate with 
each other seamlessly and in real-time, when needed (Ching et al., 
2021). While the literature recognizes a long list of design principles for 
Industry 4.0, this study follows the most frequently acknowledged 
categorization (e.g., Cañas et al., 2021; Ghobakhloo et al., 2021) and 
lists the design principles of Industry 4.0, as shown in Fig. 1. 

As presented in Fig. 1, the interrelationship between BA and I4.0 
could be studied from two points of view: first, the effect of the design 
principles of I4.0 on BA, and second, the modern capabilities provided 
by I4.0 technological constituents to improve and design new methods 
for BA. 

A large number of papers have studied I4.0, and there is also a vast 
literature focused on BA. However, the intersection of I4.0 and BA has 
not been rigorously studied. This paper contributes to the literature on 
BA in two ways. First, the study identifies I4.0 design principles and 
technologies previously considered in the BA background. Second, the 
study provides insights into how BA could benefit from I4.0 in the 
future. The contributions of the paper are persuaded by conducting a 
systemic literature review and answering the following three research 
questions: Which I4.0 design principles have already been considered in 
BA? Which I4.0 technologies have already been considered in BA? How 
will I4.0 shape the future of BA? 

The remainder of this paper is organized as follows: Section 2 pro
vides a background on BA. Section 3 describes the research methodology 
used to review the literature. Section 4 presents a bibliometric analysis. 
Section 5 describes the I4.0 design principles and technologies employed 
in BA. Section 6 discusses the first two research questions and answers 
them. Section 7 is devoted to answering the third research question by 
describing opportunities for future developments. Finally, Section 8 
provides the conclusion of the study. 

2. BA background 

The BA can be viewed and discussed from different perspectives. This 

section provides a brief description of the steps involved in BA and the 
challenges involved in performing BA. 

2.1. BA steps 

BA is divided into detection, diagnosis, prediction, and prescription 
(West et al., 2022), briefly explained in the following paragraphs. 

Bottleneck detection or identification methods are employed to locate 
the bottleneck(s) of a system. There are numerous bottleneck detection 
methods in the literature. Several studies, including research conducted 
by Lai et al. (2021), Subramaniyan, Skoogh, Gopalakrishnan, & Hanna, 
2016, Subramaniyan, Skoogh, Gopalakrishnan, Salomonsson, et al., 
2016, and Fang et al. (2020), classified bottleneck detection methods 
into three main groups, namely analytical, simulation-based, and data- 
driven approaches. 

Bottleneck diagnosis is performed to find and prioritize the root causes 
of bottlenecks. According to the literature, process variabilities (e.g., 
stochastic arrival times, setup times, processing times, and unplanned 
stops) and their resulting disturbances during the production process are 
responsible for bottlenecks (Wang et al., 2016). These disturbances are 
divided into two types: dominant disturbances causing immediate sus
pension of the production process; and recessive disturbances causing 
gradual deterioration of the production process (Fang et al., 2020). 
Although the latter does not directly affect production, they significantly 
decrease throughput in the long run. 

Bottleneck prediction methods help decision-makers become aware of 
future bottlenecks based on historical data. Bottleneck prediction 
methods generally assume the availability of shop floor data and ma
chine logs and are mainly built using simulation modeling in combina
tion with predictive analytics (Li et al., 2011; Tang et al., 2018), network 
analysis (Lai et al., 2018; Zhang et al., 2021; Zhu et al., 2019), or neural 
networks (Huang et al., 2019). 

Bottleneck prescription is performed to prescribe a set of recommen
dations, based on results generated during descriptive and prescriptive 
analytics for future improvement (Lepenioti et al., 2020). To the best of 
our knowledge, only one research study on bottleneck prescription was 
published by Subramaniyan et al. (2019). However, bottleneck pre
scription is an up-and-coming research area and needs further investi
gation in the future (West et al., 2022). 

2.2. BA in practice 

There are a number of complexities involved in BA that makes it a 
challenging task for both researchers and practitioners alike. The first 
challenge for doing a BA, specifically in real-world problems, is the fact 
that there are several different interpretations and definitions of bot
tlenecks. Second, bottlenecks have a variety of root causes, which makes 
it difficult to identify the main reason for bottlenecks. The third chal
lenge relates to the dynamic behavior of bottlenecks in a production 
line. In Sections 2.3.1–2.3.3, these challenges are elaborated. 

2.2.1. Bottleneck definition 
Determining the definition of bottleneck is a preliminary step to BA. 

Generally, the bottleneck is defined as the resource limiting the pro
duction capacity. However, the definition of bottleneck is still a 
controversial issue on which there is no consensus among researchers. 
Tang et al. (2018) categorized different bottleneck definitions into four 
groups: 1) resource with the highest work in process, 2) resource with 
slowest processing rate, 3) resource with the highest effect on the sys
tem’s main performance indicator, usually throughput, and 4) resource 
with the capacity lower than demand. Each of these definitions has 
proven useful and captures certain aspects of production systems, such 
as throughput, quality, cost, and market demand. However, the results 
of the analysis may differ depending on which definition is utilized. As 
an example, the machine that is considered the bottleneck depends on 
the definition applied. This confusion affects the first step of BA, i.e., 
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bottleneck detection. As a result, it is critical for researchers to identify 
which definition they are referring to when performing a BA. 

2.2.2. Bottleneck Root-Causes 
The second challenge of BA centers on identifying the root causes of 

bottlenecks. This challenge affects the diagnosis step in BA. Research on 
bottleneck diagnosis focuses on both identifying the causes of bottle
necks in a manufacturing system and determining the order in which 
those causes should be addressed (West et al., 2022). Generally, sto
chastic disruptions that occur during a pre-scheduled production plan 
cause bottlenecks. According to Fang et al. (2020), there are two cate
gories of production line disturbances: dominant disturbances, which 
result in an immediate suspension of production, and recessive distur
bances, which cause production to deteriorate gradually. Even though 
the latter does not directly affect production, they substantially impact 
throughput (Wang et al., 2018). Studying sources of possible process 
variabilities leads to finding the root causes of bottlenecks. However, a 
large number of process variabilities (e.g., stochastic arrival times, setup 
times, and processing times, as well as unplanned stops) results in an 
exponential growth of the number of different root causes found for a 
bottleneck. Thus, preparing an action plan to remove the bottlenecks is 
difficult. 

2.2.3. Bottleneck shiftiness 
The third challenge is associated with the dynamic nature of bot

tlenecks, referred to as “bottleneck shiftiness”. As a result of bottleneck 
shiftiness, it becomes more difficult to predict when and where bottle
necks will occur (Rocha & Lopes, 2022). The reason is that the methods 
used for predicting bottlenecks in a production line are mainly based on 
historical data on the system’s behavior. If there is a fundamental 
change in the production plan, product sequence, or system configura
tion, the predictions may not be realistic enough to apply to real-world 
systems. Furthermore, bottleneck shiftiness makes it difficult for re
searchers to formulate definite recommendations or prescriptions for 
practitioners (Tu et al., 2021). However, BA will not be able to meet its 
ultimate goal and unleash its full potential unless it provides pre
scriptions that can be applied to real-world situations (Thürer et al., 
2021). 

3. Research methodology 

The present study followed the PRISMA protocol (PRISMA 2021) to 
conduct the systematic literature review, which involves the following 
steps: (i) defining the research questions, (ii) determining the sources of 
information, (iii) clarifying the search strategy, (iv) describing eligibility 
criteria, (v) data extraction, and (vi) discussion. 

3.1. Research questions 

Considering that the industry is moving at an ever-growing speed 
towards the implementation of I4.0, the following research questions are 
developed to clarify the relationship and interconnection between BA 
and I4.0. 

RQ1: Which I4.0 design principles have already been considered in 
BA? 
RQ2: Which I4.0 technologies have already been considered in BA? 
RQ3: How will I4.0 shape the future of BA? 

3.2. Sources of information and search methodology 

The papers were searched in two major scientific peer-reviewed 
databases, Scopus and Web of Science. The search string is composed 
of three parts. As shown in Fig. 2, these three parts of the search string 
are linked using the “And” operator to be searched simultaneously. In 
the first part of the search string, “bottleneck” was included to search the 
“title” of the articles. Since the word “bottleneck” is a general keyword 
that appears in many different fields of study, the “manufactur*” and 
“product*” keywords were included to be searched in the “title, abstract, 
and keyword” fields as the second part of the search string. 

Since the scope of this paper was BA in the context of I4.0, the 
keywords included in the third part of the search string were chosen to 
cover the related concepts, technologies, and aspects of I4.0, which were 
searched in the “title, abstract, and keyword” fields. As shown in Fig. 2 
and Fig. 3, two different search strings were developed to distinguish 
between the design principles and technologies of I4.0. This was 
necessary to draw clear lines while analyzing I4.0 and BA relationships. 
The keywords relevant to the design principles of I4.0 are vertical 
integration, horizontal integration, interoperability, real-time capa
bility, decentralization, smart factory, smart product, flexibility, agility, 
virtualization, modularity, product personalization, service orientation, 
corporate social responsibility, and autonomy. The keywords related to 
I4.0 technologies are Internet of Things (IoT), Cyber-physical Systems 
(CPS), Cloud Computing, Robotics, Augmented Reality (AR), Digital 
Twin, Industrial Internet of Things (IIoT), Artificial Intelligence (AI), 
Virtual Reality (VR), Additive Manufacturing (3D printing), and Block
chain. “Industry 4.0” and “digitalization” were added to the third part of 
the search string to find papers that have directly mentioned I4.0 or its 
equivalent term “digitalization.” The study did not apply any time limit 
to the systemic search of databases while acknowledging that the In
dustry 4.0 phenomenon was publicized in 2011. While it is true that the 
technologies and principles listed above have matured and commer
cialized since 2011, their diffusion and limited industrial applications 
date back to the 1980s (Ghobakhloo et al., 2021). 

Fig. 2. Structure of search string.  
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3.3. Eligibility criteria 

The criteria for paper inclusion and exclusion are listed in Table 1. 
Papers not written in English were excluded according to the first 
exclusion criteria. According to the second exclusion criteria, papers 
appearing in search results with keywords in the title and abstract but 
without sufficient relevance to the subject of the study in the full text 

were excluded. 

3.4. Screening and paper selection 

The resulting search strings and the number of papers found are 
shown in Fig. 3. Of 194 papers found in the search, 22 were duplicates 
and thus removed from the study. 12 papers that were not written in 

Fig. 3. The process of paper selection using PRISMA.  
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English were also removed. Out of the remaining 160 papers, 89 more 
papers were excluded in the ‘title and abstract’ scanning step as most of 
them studied subjects other than production or manufacturing. In the 
next step, the full text of 71 remaining papers was studied, out of which 
36 papers were excluded as they did not include the design principles or 
technologies of I4.0 in the full text. 

3.5. Snowball search 

The term snowballing refers to the process of identifying additional 
papers using the reference list or citations of a paper (Wohlin et al., 
2022). After screening and finding the relevant papers, a snowball 
search, was performed to find related studies not discovered in the first 
search. This resulted in the finding of two new relevant papers. Finally, 
34 papers were included in the systematic literature review. The 
exclusion and inclusion criteria are shown in Table 1. The paper selec
tion process is also presented in Fig. 3. 

4. Bibliometric analysis 

The frequency of papers published each year is depicted in Fig. 4. As 
shown in Fig. 4, the papers which used I4.0 design principles and 
technologies to identify, diagnose, or predict bottlenecks in a production 
or manufacturing system were first published in 2004, even before the 
term “Industry 4.0” was introduced in 2011. This reveals the importance 
of dividing “Industry 4.0” into its building blocks while conducting this 
study. Some of the I4.0 building blocks, including real-time capability 
and visualization, were employed in BA before they were categorized 
under the umbrella term of I4.0. According to Fig. 4, a growing trend in 
the number of papers that developed an I4.0-based method for BA is 

evident, with most being published from 2019 to 2021. 
Fig. 5 shows a connection map generated using VOSviewer software 

to analyze the co-occurrence of keywords and main focus areas in BA. 
There are three major sections in Fig. 5: sections (a), (b), and(c). For 
clarity, section (c) is divided into three subsections, namely, (c-1) to (c- 
3). As evident in the map, there is a shift between central subjects and 
keywords in the papers published between 2004 and 2021. Based on this 
data, subjects such as productivity, throughput, line balancing, and 
reliability through techniques like scheduling and resource manage
ment, using analytical models and optimization methods, were more 
discussed from 2004 to 2012 (Fig. 5 (a)). Then, a shift from analytical 
models to simulation can be seen in Fig. 5, from 2013 to 2015 (Fig. 5 
(b)). From 2016 to 2018, the emergence of a new set of keywords was 
discovered, including digitalization, learning factory, data-driven, 
bottleneck prediction, maintenance, and quality control (Fig. 5 (c)). 

Between 2019 and 2021, a newer generation of keywords has been 
used in the literature. This set of keywords mainly connects the bottle
neck to I4.0. Around the lower right corner of Fig. 5 (c-1), we can find a 
cluster that is formed using deep learning, sustainability, digital trans
formation, AI, and machine learning, which are connected to keywords 
related to BA and I4.0 technologies like smart manufacturing or CPS. 
Another cluster of keywords in the upper right corner (Fig. 5 (c-2)) 
connects keywords like cloud manufacturing and computer-aided 
manufacturing to BA through predictive analytics and quality control. 
This shows that a growing trend through the use of capabilities provided 
by I4.0 has been forming in the literature of BA in recent years. The most 
recent set of keywords, located at the right end of Fig. 5 (c-3), is related 
to bottleneck prediction, which is an emerging field in BA. 

5. Review results and findings 

For the classification of the reviewed papers, related segments of the 
papers were coded using MaxQda software. Then the codes were merged 
and categorized to reach insightful classifications. Since the papers 
published in the BA field are diverse and many different methods were 
used to address this problem, using an unstructured coding system to 
extract related content and categorize them could help researchers get a 
more comprehensive view of the literature. The reviewed papers were 
categorized based on the BA types addressed in each paper using the 
coding system. As a result, four categories appeared; 1) bottleneck 
detection, 2) bottleneck diagnosis, 3) bottleneck prediction, and 4) pa
pers with bottleneck-based scheduling, sequencing, or dispatching. 

Table 1 
The exclusion and inclusion criteria.  

Criteria Description 

Exclusion  1. The body of the paper is not written in English  
2. Search keywords show up merely in the abstract or title, and the 

paper is not related to BA or I4.0. 
Inclusion  1. The article is formally published in open access or subscription-based 

peer-reviewed resources  
2. A scientific resource of any acknowledged categories (e.g., original 

research, review, letter, case study, book chapter)  
3. The main subject of the article is focused on BA  
4. I4.0 design principles or technologies are mentioned in the article  

1 1 

2 

1 

2 

3 

1 

3 

1 

3 

4 

5 

7 

0

1

2

3

4

5

6

7

8
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Fig. 4. Frequency of studies published on the I4.0-based method for BA.  
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Fig. 6 shows the papers in each category. The frequency of papers in 
each category, from 2004 to 2021, is depicted in Fig. 7. It is worth 
mentioning that papers by Wedel et al. (2015), Huang et al. (2019), Jia 
et al. (2021), and Subramaniyan, Skoogh, Salomonsson, Bangalore, & 
Bokrantz (2018) belong to more than one category. Therefore, the total 
number of records in Fig. 6 and Fig. 7 is more than the number of papers 
selected for systematic literature review. As shown in Fig. 7, 20 papers 
addressed bottleneck detection, nine papers focused on scheduling, 
sequencing, or dispatching tasks to improve throughput, four papers 
addressed bottleneck prediction, and four papers dealt with bottleneck 
diagnosis. 

Based on the extracted codes, papers were also categorized by (1) 
design principles of I4.0 employed in BA, (2) technologies of I4.0 
employed in BA, (3) modeling approaches, and (4) objectives. Using 
Maxqda lexicographic search, design principles of I4.0 were searched 
one by one in papers included in the study to ensure that these terms 
were really addressed and not just mentioned. This process was repeated 
while studying the I4.0 technologies in BA. The resulting content anal
ysis findings are provided in Section 5.1 and Section 5.2 separately. 
Modeling approaches and objectives addressed are presented in Sections 
5.3 and 5.4, respectively. 

5.1. BA and design principles of I4.0 

In this section, the design principles of I4.0, which were considered 
in BA, are explained. According to the data presented in Table 2, six out 
of 15 I4.0 design principles were considered by authors while per
forming BA in a production system. These principles are explained in 
more detail in Sections 5.1.1–5.1.6. 

5.1.1. Real-Time capability 
Based on the data presented in Table 2, real-time capability has been 

applied to BA since 2007. Recently, the emergence of technologies that 
provide real-time data from the shop floor highlighted the importance of 
BA in real-time, both from theoretical and practical points of view 
(Zhang et al., 2021). Fig. 8 illustrates the frequency of the keyword 
“real-time” in BA. As depicted in Fig. 8, a rising trend toward developing 

models with real-time capability is evident in BA literature. While a 
yearly comparison might not provide a coherent conclusion, the rising 
trend since 2015 shows a solid interest in using the real-time capability 
in BA that emerged with the popularity of I4.0 worldwide. This trend 
becomes more evident when knowing that the use of the keyword “real- 
time” in BA literature in 2016 alone (43 times) is almost the same as the 
sum of all years from 2007 to 2015 (49 times). Moreover, the use of this 
keyword in 2021 (97 times) is more than the sum of its past three years 
from 2018 to 2020 (86 times). 

A bottleneck moves from one machine to another in real-world 
production systems, and for that reason, it is called a dynamic or shift
ing bottleneck (Roser et al., 2021). Therefore, methods developed to 
detect, diagnose, or predict the bottleneck of a production system must 
be able to mitigate the challenge of dynamic bottlenecks by receiving 
real-time data and producing results in real-time (Llopis et al., 2021). 

It is also essential to distinguish between real-time capability and 
data-driven methods in BA. There are several data-driven approaches for 
BA that cannot work in real-time (Subramaniyan et al., 2021). These 
methods are not qualified to be included in applicable approaches for 
I4.0 since they lack real-time capability. 

5.1.2. Flexibility 
According to data provided in Table 2, BA in flexible manufacturing 

was the focus of three studies, Yan et al. (2010), Jia et al. (2021), and Tu 
et al. (2021). However, due to the emergence of I4.0, the investigation of 
BA methods in flexible manufacturing systems is essential. This is 
because, in a flexible manufacturing system, the traditional assumption 
of steady-state and long production runs of a single variant is no longer 
valid (Jia et al., 2021; Tu et al., 2021). 

Jia et al. (2021) developed a mathematical model considering the 
completion time bottleneck to manage the real-time performance of a 
manufacturing line with closed Bernoulli machines and finite buffers. 
Based on the definition, a manufacturing line with the parts transferred 
between machines using transporters (e.g., AVGs) is called a closed line. 
Scholars used the concept of completion time bottleneck for systems 
with finite production runs. The analysis revealed that the bottleneck 
retrieved as a steady-state production bottleneck was sometimes 

Fig. 5. Network and relationships between keywords generated by VOSviewer.  
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different from the real bottleneck of the system with infinite production 
runs, depending on other factors like the length of the production line 
(number of machines) and the time duration of the production. 

Tu et al. (2021) have also reported the problems arising from sticking 
to the steady-state assumption and believed that the solutions presented 
in the literature have been mostly static rather than dynamic. The au
thors argued that possible improvements to bottleneck stations might be 
applied dynamically during a single production run. For example, a 
strategy that is not unusual in the case of engine production companies is 
that different types of engines are introduced into the system in a short 
period. As a result, different stations might turn into a bottleneck for 
different engines. In this situation, several operators are allocated to the 
stations with the highest workload, and if the bottleneck place changes 
during production, workers can be reallocated to different stations (Tu 
et al., 2019). This type of resource is not handled while using steady- 
state assumptions. 

Non-validity of steady-state assumption in manufacturing systems is 
significant while discussing how some I4.0 principles might result in 
dramatic changes to traditional definitions of bottleneck in a 

manufacturing system. In the following years, mass customization will 
replace mass production. However, the quality of this change might 
differ from industry to industry (Espinoza Pérez et al., 2022). Therefore, 
it is necessary to re-assess the assumption of steady-state while devel
oping BA methods, specifically in terms of bottleneck definition. 

5.1.3. Virtualization 
Virtualization provides decision-makers with a powerful tool to 

make complex decisions in a manufacturing system. Using virtualiza
tion, one can see the results of decisions before they are implemented by 
analyzing different scenarios. Thus, virtualization helps managers 
reduce the costs and time required for improving a manufacturing sys
tem, leading to better production management and control (Martins 
et al., 2019). One of the applications of virtualization in a manufacturing 
system is BA. Zhou et al. (2004) proposed a method based on virtual 
manufacturing technologies to diagnose bottlenecks of a production 
system. The authors used a simulation model combined with a dynamic 
3D visualization graphical tool to detect and diagnose bottlenecks 
rapidly. Zhou et al. (2006) generalized their proposed method as a three- 

Fig. 6. Code-Subcode-Segment diagram for the classification of papers using unstructured coding.  
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step framework, with the steps being visual modeling, simulation, and 
diagnosis study. Although Zhou et al. (2004) and Zhou et al. (2006) 
employed virtualization for BA, their method does not work in real-time. 
Zhang et al. (2007) used virtualization to assess dynamic bottleneck 
dispatching policies. The authors compared the performance of their 
proposed dynamic dispatching rules with static dispatching rules for 
bottleneck management in a virtually simulated semiconductor fab with 
a capacity of 30 thousand wafers per month. Zhang et al. (2007) also 

pointed out that integration of the virtual dispatching method with the 
manufacturing execution system (MES) could be used for scheduling. 

Hofmann et al. (2019) employed virtualization in an AR-based so
lution to detect bottlenecks of a production system. Using this method, 
one can bring a regular smart device, including a smart tablet, smart
watch, or smartphone, to the shop floor and see the required key per
formance indicators (KPIs) on each machine. This method became viable 
through the high computing power available in recent years to perform 

0

2

4

6

8

10

12

2004 2006 2007 2008 2009 2010 2012 2015 2016 2018 2019 2020 2021

Bottlnecek based scheuling, sequencing, or dispatching
Bottleneck Prediction
Bottleneck Diagnosis
Bottleneck Detection

Fig. 7. Frequency of papers in bottleneck detection, bottleneck diagnosis, bottleneck prediction and bottleneck-based scheduling, sequencing, or dispatching.  

Table 2 
I4.0 design principles in BA.  

Author Real-time 
capability 

Virtualization Flexibility Smart Manufacturing Decentralization Agility 

Zhou et al. (2004)  ✓     
Zhou et al. (2006)  ✓     
Zhang et al. (2007) ✓ ✓     
Li et al. (2007) ✓      
Wang et al. (2008) ✓      
Li et al. (2009) ✓      
Hoshino et al. (2010) ✓    ✓  
Yan et al. (2010)   ✓    
Langer et al. (2010) ✓      
Betterton & Silver (2012) ✓      
Wedel et al. (2015) ✓      
Chang et al. (2016) ✓      
Subramaniyan, Skoogh, Gopalakrishnan, & Hanna (2016) ✓      
Subramaniyan, Skoogh, Gopalakrishnan, Salomonsson, et al. (2016) ✓      
Lei & Li (2017) ✓      
Li, (2018) ✓      
Subramaniyan, Skoogh, Salomonsson, Bangalore, & Bokrantz (2018) ✓      
Subramaniyan, Skoogh, Salomonsson, Bangalore, Gopalakrishnan, et al. (2018) ✓      
Hofmann et al. (2019) ✓ ✓     
Huang et al. (2019) ✓   ✓   
Uludaǧ et al. (2019) ✓      
Tu et al. (2019) ✓      
Cayo & Onal (2020) ✓      
Subramaniyan et al. (2020a) ✓      
Subramaniyan et al. (2020b) ✓      
Fang et al. (2020) ✓      
Gao et al. (2020)      ✓ 
Hao & Lin (2021) ✓      
Zhang et al. (2021) ✓      
Lai et al. (2021) ✓   ✓   
Tu et al. (2021) ✓  ✓    
Llopis et al. (2021) ✓      
Roser et al. (2021) ✓      
Jia et al. (2021) ✓  ✓     

Frequency 30 4 3 2 1 1  
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image processing and receive real-time data from each machine on the 
shop floor and send the required data to devices through the internet. 
Although virtualization seems to be of great value for BA purposes in a 
real manufacturing system, a few papers in bottleneck literature used 
this method. 

5.1.4. Smart manufacturing 
BA in a smart manufacturing environment uses real-time data pro

vided by CPS to detect and predict bottlenecks in real-time and provide 
prescriptions. Huang et al. (2019) developed a bottleneck-based pro
active task-dispatching method in a smart factory. The authors devel
oped an IoT-based tool combined with a radio frequency identification 
(RFID) framework to gather the required data from the manufacturing 
line in real-time. The required structure for data gathering was designed 
based on the RFID cuboid proposed by Zhang et al. (2015). After pre
paring the data, a bottleneck prediction method was designed, which 
combines deep neural networks and time series and can propose dis
patching rules considering future bottlenecks. This model was verified 
with a simplified model from a real case study. Li et al. (2007) proposed 
a real-time bottleneck detection method by extending the use of the 
“turning point” method to smart manufacturing systems with complex 
structures. These structures include closed-loop, parallel, and rework- 
loop manufacturing systems. Their method proved to be successful in 
terms of increasing overall equipment effectiveness after a one-year pilot 
study. 

5.1.5. Decentralization 
Decentralization is the process of giving authority to manufacturing 

elements for making decisions considering the situation instead of 
following fixed predefined rules (Brettel et al., 2014). Decentralization 
was employed by Hoshino et al. (2010) to overcome the bottleneck of a 
robotic batch manufacturing system. In this system, there were two 
types of robots, 1) material handling robots (MHR) and 2) material 
processing robots (MPR). In the manufacturing system studied by 
Hoshino et al. (2010), a bottleneck in one of the processes led to 
congestion in MHRs. To solve this problem, a behavior control method 
was developed in which MHRs were equipped with controllers to get the 
required data about the position of other robots. Using this control 
method, MHRs keep their distance from other robots to avoid 
congestion. 

5.1.6. Agility 
One of the design principles of I4.0 is agility in manufacturing. The 

main goal of the agile paradigm is to understand market behavior and 
respond to customer needs quickly. Therefore, the agile manufacturing 
system aims to decrease the response time of the system to satisfy market 
demand (Mathiyazhagan et al., 2021). Gao et al. (2020) studied the agile 
design of a manufacturing system using a bottleneck-based method to 
design the topology of the production line. One of the most important 
aspects of agile design in a manufacturing system is finding a near- 
optimal solution for buffer allocation problems in a reasonable 
amount of time. In their study, Gao et al. (2020) used variable 

neighborhood searches to reach a solution with low computational time 
and high quality. Using this method, different bottleneck-based topol
ogies of the production line were evaluated to reach a near-optimal 
design. 

5.2. I4.0 technologies in BA 

In this section, I4.0 technologies used in BA are reviewed and 
explained. According to the data presented in Table 3, only five out of 11 
I4.0 technologies were considered while performing BA in a production 
system. 

5.2.1. IoT in BA 
IoT devices of a smart factory, which are divided into two categories 

of sensors and data transmission systems, provide the possibility of 
interconnection between machines and other resources on the shop 
floor. Using these interconnections, each resource of a smart factory can 
adapt itself to the the-real time changes on the shop floor to prevent 
bottlenecks (Wang et al., 2018). Recently, IoT-based bottleneck pre
diction methods were studied by Huang et al. (2019) and Fang et al. 
(2020). 
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Fig. 8. Frequency of “real-time” keyword in BA literature.  

Table 3 
Technologies of I4.0 used in BA.  

Author Internet 
of things 
(IoT) 

Cloud Augmented 
reality (AR) 

Cyber- 
physical 
Systems 
(CPS) 

Artificial 
Intelligence 
(AI) 

Lei & Li (2017)     ✓ 
Hofmann et al. 

(2019   
✓   

Tu et al. (2019)      
Uludaǧ et al. 

(2019)    
✓  

Huang et al. 
(2019) 

✓     

Cayo & Onal 
(2020)      

Subramaniyan 
et al. (2020a)     

✓ 

Fang et al. 
(2020) 

✓     

Gao et al. 
(2020)      

Hao & Lin 
(2021)     

✓ 

Tu et al. (2021)      
Zhang et al. 

(2021)  
✓    

Hao & Lin 
(2021)  

✓    

Subramaniyan 
et al. (2021)     

✓   

2 2 1 1 4  
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Huang et al. (2019) implemented IoT technologies, including sensors 
RFID and WI-FI, as the first step of a BA method for a smart factory. The 
role of IoT was to provide real-time data from the shop floor. Using data 
provided by IoT, a deep neural network (DNN) combined with time 
series was employed to predict the bottlenecks in real-time. This method 
was tested on a valve manufacturing company and successfully 
improved system throughput. Fang et al. (2020) used the data provided 
by IoT systems of a large-scale job-shop for machining parts of an aero- 
engine in China. The real-time data was fed to a Parallel gated recurrent 
unit (P-GRUs) network in which the data of the present bottlenecks were 
analyzed to predict future bottlenecks. 

5.2.2. Cloud manufacturing in BA 
Cloud manufacturing is one of the technologies utilized to predict 

bottlenecks in a manufacturing system. Zhang et al. (2021) combined a 
series of traditional with state-of-the-art technologies to provide a real- 
time bottleneck detection tool. These authors employed simulation to 
model processes and dispatching rules. Since real-time BA is highly 
sensitive to the amount of data available from the manufacturing sys
tem, a cloud-based service was established to provide real-time data. 
The data were fed to a simulation model to schedule production based 
on bottleneck machines using dynamic programming and fuzzy method. 

Lai et al. (2021) used cloud-based bottleneck detection based on the 
“turning point” method in an automotive smart manufacturing system. 
A cloud-based solution was developed to detect bottlenecks and visu
alize results. To this aim, the daily records of the manufacturing shop 
were stored in the cloud using an algorithm developed in Python, and 
the resulting predicted bottlenecks were sent to frontline experts using 
the internet. This program runs in the background continuously on the 
data stored in the cloud. When new data arrive, the feature extraction 
algorithm and bottleneck detection run results update in the cloud. The 
one-year pilot use of this method resulted in a 30 percent improvement 
in Overall Equipment Effectiveness (OEE). 

5.2.3. AR in BA 
Hofmann et al. (2019) used AR and real-time data to propose an 

augmented go-and-see approach. “GO & See” is one of the bottleneck 
detection techniques developed under lean manufacturing. Using this 
method, one can walk through the production line and draw applicable 
conclusions about the production flow. AR is one of the technologies 
rooted in I4.0 that could significantly help this lean-based bottleneck 
detection approach. However, the lack of real-time data processing 
power while using added reality has imposed limitations on growing 
such methods. With higher processing power, such technologies are 
nowadays turning into reality. Hofmann et al. (2019) proposed some 
KPIs to detect bottlenecks with AR. Based on the bring-your-own-device 
principle and image processing techniques, an application was devel
oped to detect the cycle time and work in process (WIP) of the pro
duction line. This application was developed by Apple ARKit and 
employed RFID tags on entities to detect each machine’s cycle time 
(leaving time - enter time) and buffer level (exiting parts of a station - 
entries to the next station). Using these data together with real-time KPI 
values for each station, root causes of the bottlenecks could be easily 
determined. The results revealed that the use of the Augmented “GO & 
See” method by line managers led to significantly better performance 
than the traditional version. Augmented “GO & See” is classified as level 
3 in ACATECH Industry 4.0 maturity model (Zeller et al., 2018). 

5.2.4. CPS in BA 
The role of CPS in resolving the bottleneck problem by decreasing 

the cycle time and increasing resource utilization rates of a train wagon 
manufacturing system was studied by Uludaǧ et al. (2019). These au
thors did not implement the CPS in a real manufacturing system; how
ever, they developed a simulation model to compare the performance of 
the manufacturing system with and without CPS. The main bottleneck of 
this manufacturing system occurred between welding and cutting shops. 

Uludaǧ et al. (2019) examined the effect of resource sharing, which 
became feasible using CPS. They found that CPS implementation can be 
a solution for mitigating the bottleneck. 

5.2.5. AI in BA 
Technologies that are usually categorized under the umbrella term 

AI are big-data analytics, machine learning (supervised learning, unsu
pervised learning, semi-supervised learning, and reinforcement 
learning), neural networks, pattern recognition, decision support sys
tems, language processing techniques (text mining and speech recog
nition), and computer vision (Zhang & Lu, 2021). Among these, big- 
data, machine learning, neural networks, and text mining were used 
by scholars to analyze production bottlenecks. Applications of AI in BA 
are briefly explained in the following paragraphs.  

• Big-data technologies come to play when real-time data from the 
shop floor are gathered, stored, and interpreted. Big-data technolo
gies mainly prepare data infrastructure and guarantee the smooth 
flow of large amounts of data generated from machine logs (Zhang 
et al., 2021). These data will later be fed to other AI-based BA tools, 
including machine learning algorithms or neural networks, for 
further analysis.  

• Machine learning algorithms used in BA were employed for two 
purposes: extracting features of bottleneck machines using machine 
log data (Subramaniyan et al. 2020b) and classifying machines into 
bottlenecks and non-bottlenecks (Lei & Li 2017). 

• Neural networks were used in both bottleneck detection and pre
diction. Huang et al. (2019) used a deep neural network (DNN) 
combined with a time-series to predict the bottlenecks of the pro
duction system. Fang et al. (2020) developed a Parallel gated 
recurrent units (P-GRUs) network to detect shifting bottlenecks and 
corresponding correlations between present bottlenecks to predict 
future ones.  

• Text mining was used by Hao & Lin (2021) to detect bottlenecks in a 
three-phase scheduling procedure. The text mining algorithm, 
namely the N-gram modeling approach, which is a simple but 
powerful text mining algorithm, was used in the second phase. Using 
this approach, the machine logs data were analyzed to find resources 
that were prone to turn into bottlenecks in the near future. 

More detailed information about AI methods in BA could be found in 
the study by Subramaniyan et al. (2021). However, the use of text 
mining in detecting bottlenecks (Hao & Lin 2021), which was not 
reviewed in Subramaniyan et al. (2021), was identified in the present 
study as one of the interesting AI applications in BA. 

6. Discussion 

This section discusses the design principles and technologies used for 
BA and answers the first and section research questions. 

I4.0 design principles in BA: The first research question of this study is 
to investigate the intersection between I4.0 design principles and BA. 
Fig. 9, generated based on the conducted literature review, presents the 
network of relationships between I4.0 and the building blocks of BA. In 
Fig. 9, the line thickness drawn between boxes is proportional to the 
number of related papers. Lines that do not have text demonstrate the 
relationships with one study. The heat maps for I4.0 design principles 
and BA as well as I4.0 technologies and BA are presented in Fig. 10(a) 
and Fig. 10(b), respectively. 

According to Fig. 9, among I4.0 design principles, real-time appli
cability, decentralization, smart manufacturing, flexibility (flexible 
manufacturing), agility, and virtualization were previously considered 
in BA. 

Based on the data presented in Fig. 9, the strongest relationship was 
identified between real-time capability and bottleneck detection, with 
18 papers. Real-time bottleneck detection has gained importance since 
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the dynamic nature of the throughput bottleneck became apparent in the 
literature. Thereafter, related terms including dynamic bottleneck, 
moving bottleneck, and short-term bottleneck appeared in the produc
tion engineering literature. The focus of seven papers was on developing 
bottleneck-based planning methods. In bottleneck-based planning of a 
production line, the bottleneck machine is prioritized in resource allo
cation to prevent the bottleneck from starvation (Huang et al., 2019). 
Since the bottleneck changes continuously in the production line, 
detecting real-time bottlenecks and providing dynamic plans are critical 
to improving productivity (Cayo & Onal, 2020). This could be why all 
bottleneck-based planning methods were equipped with the ability to 
detect bottlenecks in real-time. In the case of bottleneck prediction 

methods, including real-time capability is not optional. This is because if 
a prediction is supposed to be used in a real production facility, the 
required calculations must be performed in real-time and updated based 
on changes happening continuously in the production system (Zhang 
et al., 2021). 

Flexibility also seems to be significant, apart from real-time capa
bility, which is the strongest linking chain between I4.0 and BA. The 
importance of flexibility comes from its effect on bottleneck definition. 
In a highly flexible manufacturing system with short production runs, 
the underlying assumptions of steady-state will no longer be valid, and 
this causes a severe challenge to BA methods in terms of bottleneck 
definition. Although researchers have recently studied this issue (e.g., 

Fig. 9. Network of relationships between I4.0 and BA.  
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Jia et al., 2021; Tu et al., 2021), it needs further investigation. 
Moreover, access to real-time data from the shop floor coupled with 

recent advancements in processing power has resulted in novel visual 
and virtual BA methods (Hofmann et al., 2019). Virtualization is new to 
BA and was employed once by Hofmann et al. (2019). However, based 
on its practical applications in a production line, there is a high potential 
for developing solutions that can analyze the bottlenecks of a real pro
duction system and provide the results visually. Developing real-time BA 
solutions equipped with a visual interface is achievable by implementing 
new technologies, including blockchain and cloud (Akter et al., 2022). 

BA was studied in the smart manufacturing context along with real- 
time capability, flexibility, and virtualization (Huang et al., 2019; Lai 
et al., 2021). Smart manufacturing systems provide interesting features 
regarding real-time capability in BA. IoT-Based technologies and sen
sors, RFID, and cloud manufacturing provide real-time data from the 
shop floor. However, a smart manufacturing system has more noticeable 
aspects, including self-learning (Yan et al., 2010), self-organization, and 

self-adaptivity (Estrada-Jimenez et al., 2021), which could be utilized to 
develop auto-corrective systems to mitigate and prevent bottlenecks in 
production facilities. 

Decentralization and agility are other design principles of I4.0 
studied in BA. BA is complicated in a decentralized manufacturing 
environment because independent decision-making units make the de
cision. Therefore, the design of decision-making processes might lead to 
logical bottlenecks in such systems (Grassi et al., 2020). 

Agility was also studied in BA through the bottleneck-based topology 
design of a manufacturing system (Gao et al., 2020). Agile 
manufacturing’s main objective is increasing flexibility through 
manufacturing configuration and production volume (Sharifi & Zhang, 
2001), both of which cause new bottlenecks in the system. Hence, more 
research is required to provide practical insights for developing BA 
methods in decentralized or agile manufacturing systems. Since flexi
bility and agility are tied to the physical configuration of the system, BA 
in reconfigurable manufacturing systems also needs to be studied. 

As shown in Fig. 9, some of the design principles of I4.0, namely 
horizontal and vertical integration, smart product, agility, personaliza
tion, service orientation, corporate social responsibility, and autonomy, 
are not considered or mentioned in BA. There could be two reasons for 
this. The first is that some design principles might not be considered 
relevant, e.g., smart product or service orientation. The second reason is 
that some other principles are inherent in BA, for instance, corporate 
social responsibility. Mitigating bottlenecks and improving production 
throughput results in more efficient use of existing production facilities. 
As a result, managing production bottlenecks contributes to fewer 
environmental problems, which coincide with corporate social re
sponsibilities. This might introduce another potential area of research to 
investigate the role and importance of BA in sustainable manufacturing 
(Grassi et al., 2020). 

I4.0 technologies in BA: The second research question of this study 
addressed the intersection of I4.0 technologies and BA. According to 
Fig. 9, amongst I4.0 technologies, IoT, CPS, cloud manufacturing, AR, 
and AI were previously used in BA. The main applications of I4.0 
technologies in BA are categorized as follows: (1) providing real-time 
data through the implementation of IoT (Fang et al., 2020; Huang 
et al., 2019; Wang et al., 2018), cloud manufacturing (Lai et al., 2021; 
Zhang et al., 2021), and CPS (Uludaǧ et al., 2019); (2) visualization and 
virtualization (Hofmann et al., 2019), (3) data-driven and AI methods 
instead of analytical and simulation methods (reviewed by Sub
ramaniyan et al. (2021)). Including I4.0 technologies in BA dates back to 
2018, indicating that the work in this area of research has begun 
recently. Thus, both academics and practitioners have a long way to go 
to fulfill the potential of BA using state-of-the-art technologies. 

7. Opportunities for future developments 

The third research question of the present study concerned the future 
of the BA methods regarding I4.0 design principles and technologies. To 
find a proper answer to this question, the design principles and tech
nologies that were not employed in BA and their potential applications 
are discussed here. Amongst the design principles, vertical and hori
zontal integration might significantly influence the definition of BA. The 
realization of vertical integration, defined as the integration of intra- 
company systems (Alcácer & Cruz-Machado, 2019), might lead to BA 
methods that take all departments involved in production (e.g., human 
resource management, financial management, IT management, sales 
department, and procurement) into account while defining the bottle
neck of the system. The horizontal integration might also have a sig
nificant effect on BA. Information sharing between different levels of a 
value chain in real-time (Brettel et al., 2014) will lead to BA methods for 
the whole value chain, i.e., supply and distribution, as well as produc
tion. Some researchers have pinpointed that the main bottlenecks were 
shifted to the logistics and distribution sides (Nchanji et al., 2021). Thus, 
it is expected that the realization of horizontal integration would push 

(a) I4.0 design principles versus BA.

(b) I4.0 technologies versus BA. 

Fig. 10. Heat maps of I4.0 design principles and technologies versus BA.  
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BA towards more holistic BA methods by defining a bottleneck index 
similar to the approach used in the study by Tang et al. (2018). 

In addition to horizontal integration, product personalization was 
among the design principles not addressed directly in BA (Fig. 9). 
Personalization of industrial products can be considered the main 
characteristic of customer demand in the era of I4.0 (Wang et al., 2017). 
The more customized products and their specifications are, the more 
agility and flexibility will be required in the production process to fulfill 
ever-changing customer demands in a reasonable amount of time. As 
such, it can be concluded that personalization will increase the need for 
agility and flexibility in production, resulting in a higher degree of 
shiftiness and greater challenges for BA. 

Amongst I4.0 technologies not previously mentioned in BA, virtual 
reality and digital twins seem to have the potential for further investi
gation. The use of virtual reality resulted in solutions like the 
Augmented Go & See method presented in the study by Hofmann et al. 
(2019). Using a VR headset might obviate the need to bring a smart
phone, smartwatch, tablet, or laptop to the production line by providing 
engineers and practitioners with a real-time virtual version of the 
manufacturing system. VR-based technology combined with real-time 
BA equipped with self-adaptive systems of smart manufacturing will 
bring about highly flexible and efficient solutions. The digital twin also 
has the potential to improve BA methods. A digital twin consists of a 
simulation model fed by real-time data (Lugaresi & Matta, 2021), 
holding a substantial potential to contribute to bottleneck diagnosis and 
prediction. Training an AI to the real-time simulation model can be a 
powerful tool in bottleneck prescription. 

As discussed in this section, the potential methods for BA were 
proposed by studying I4.0 technologies that have not been considered in 
BA previously. However, the literature on BA still lacks a structured and 
step-by-step methodology to deal with the advanced technologies of 
I4.0, highlighting the need to develop a BA framework compatible with 
I4.0. 

8. Conclusion 

This study conducted a systematic literature review using the 
PRISMA method to investigate the intersection of BA and I4.0. In this 
study, probable I4.0 effects on underlying assumptions and methods of 
BA were investigated and highlighted to provide theoretical and prac
tical insights into developing novel technology-driven BA methods. The 
results of the research provide practitioners with insights into the ad
vancements and opportunities of existing BA methods to improve 
manufacturing productivity. This study may also be useful for re
searchers in establishing future research opportunities using I4.0 tech
nologies to develop novel approaches for BA. 

The results of the systematic literature review revealed that some of 
the design principles of I4.0, such as real-time applicability, decentral
ization, smart manufacturing, flexibility, virtualization, and agility, 
have been previously studied in the literature of BA. It has also been 
found that real-time capability was the main characteristic of most BA 
methods. The strongest relationship was found between real-time 
capability and the bottleneck detection block of BA. Overall, the sys
tematic review identified a growing trend toward considering I4.0 
design principles in the BA context. It has also been noticed that some 
I4.0 technologies have already been employed in BA, including IoT, 
cloud, AR, CPS, and AI. These technologies were mainly used to compile 
and analyze real-time data from the manufacturing shop floor. The 
literature review also showed that I4.0 technologies application in BA is 
a young and growing field. Finally, the ways I4.0 might revolutionize the 
BA were discussed. 

Based on the results of this study, following future directions could 
be suggested, some of which would concentrate on theoretical aspects of 
BA, while others would be more practical in approach. The proposed 
future research directions include developing: 1) vertically integrated 
BA methods that can detect and mitigate bottlenecks not just at the 

operational level but in other functions of a manufacturing company, 2) 
horizontally integrated BA methods to detect and mitigate bottlenecks 
not just inside the manufacturing plant but in other levels of a supply 
chain, i.e., supply, logistics, and reverse logistics 3) digital twins-based 
BA methods, 4) VR-based real-time BA methods, 5) methods compat
ible with high-mix/low-volume production systems, and 6) a general 
framework for BA that incorporates the principles and techniques of 
I4.0. The results of this study indicate that BA has the potential to 
enhance manufacturing performance and productivity, while I.40 takes 
this potential to its fullest extent. In the same way, I4.0 may significantly 
contribute to other domains experiencing bottlenecks, such as agricul
ture, health care, and service industries. 
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Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review 
on Technologies for Manufacturing Systems. Engineering Science and Technology, an 
International Journal, 22(3), 899–919. 

Benitez, G. B., Ayala, N. F., & Frank, A. G. (2020). Industry 4.0 innovation ecosystems: 
An evolutionary perspective on value cocreation. International Journal of Production 
Economics, 228, Article 107735. 

Betterton, C. E., & Silver, S. J. (2012). Detecting bottlenecks in serial production lines – a 
focus on interdeparture time variance. International Journal of Production Research, 
50(15), 4158–4174. 

Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How Virtualization, 
Decentralization and Network Building Change the Manufacturing Landscape: An 
Industry 4.0 Perspective. International Journal of Information and Communication 
Engineering, 8(1), 37–44. 

Büchi, G., Cugno, M., & Castagnoli, R. (2020). Smart factory performance and Industry 
4.0. Technological Forecasting and Social Change, 150, Article 119790. 
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