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Abstract: Objective: The employment of wearable systems for continuous monitoring of vital signs
is increasing. However, due to substantial susceptibility of conventional bio-signals recorded by
wearable systems to motion artifacts, estimation of the respiratory rate (RR) during physical ac-
tivities is a challenging task. Alternatively, functional Near-Infrared Spectroscopy (fNIRS) can be
used, which has been proven less vulnerable to the subject’s movements. This paper proposes a
fusion-based method for estimating RR during bicycling from fNIRS signals recorded by a wearable
system. Methods: Firstly, five respiratory modulations are extracted, based on amplitude, frequency,
and intensity of the oxygenated hemoglobin concentration (O2Hb) signal. Secondly, the dominant
frequency of each modulation is computed using the fast Fourier transform. Finally, dominant
frequencies of all modulations are fused, based on averaging, to estimate RR. The performance of the
proposed method was validated on 22 young healthy subjects, whose respiratory and fNIRS signals
were simultaneously recorded during a bicycling task, and compared against a zero delay Fourier
domain band-pass filter. Results: The comparison between results obtained by the proposed method
and band-pass filtering indicated the superiority of the former, with a lower mean absolute error
(3.66 vs. 11.06 breaths per minute, p < 0.05). The proposed fusion strategy also outperformed RR
estimations based on the analysis of individual modulation. Significance: This study orients towards
the practical limitations of traditional bio-signals for RR estimation during physical activities.

Keywords: fNIRS; respiratory rate; physical activity; wearable

1. Introduction

The advent of wearable systems for the measuring of vital signs has started a revolution
in non-laborious healthcare and sports science practices [1]. Unarguably, such systems have
provided the possibility of customized continuous monitoring of physiological parameters,
such as heart rate (HR), blood pressure, and respiratory rate (RR), which are of great value
for both clinical and research purposes [2,3].

A majority of wearable systems indirectly estimate the aforementioned parameters
using bio-signals, such as the photoplethysmography (PPG) and electrocardiography
(ECG) [4]. Despite the excellent performance during resting state, wearable systems usually
do not show a satisfactory performance when the subject is engaging in physical activity
[5]. The reason for such failure is the substantial susceptibility of bio-signals to motion
artifacts originating from a subject’s movements, which are inevitable during physical
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activity. Amongst the physiological parameters mentioned, estimation of RR from bio-
signals contaminated with motion artifacts is the most challenging [6].

Alternatively, functional Near-Infrared Spectroscopy (fNIRS) can be employed and
is less sensitive to a subject’s movements. Specifically, fNIRS is an optical brain imaging
technique that quantifies oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin con-
centrations, related to the neural activities in the cerebral cortex. Not only does fNIRS
provide a better spatial resolution than electroencephalography (EEG), it also outperforms
functional magnetic resonance imaging (fMRI) in terms of temporal resolution [7]. More
importantly, compared to other bio-signal monitoring techniques, fNIRS is more motion
tolerant, i.e., the subject’s movements do not necessarily affect the quality of the data [8,9].
Due to its noninvasive and mobile nature, fNIRS also has the advantage of being usable in
outdoor applications [10]. Indeed, the advent of lightweight single sensor fNIRS equipment
has opened new doors for outdoor studies, and, in particular, fitness applications [11–14].

Opportunely, fNIRS is contaminated by non-cerebral interference cited from physio-
logical systemic activities, such as HR, blood pressure, Mayer waves, and respiration [15],
providing the possibility of extraction of complementary physiological parameters. Al-
though the HR estimation from fNIRS measurements has been addressed in several studies,
no research, except for our previous study [16], has yet investigated the possibility of RR
estimation from fNIRS. Respiration is one of the main physiological interferences in fNIRS,
manifesting in its spectrum (∼0.2 to 0.4 Hz) [17,18]. The reason for such contamination is
twofold; changes of the blood flow within the body during inhaling and exhaling, and the
influence of respiratory oscillations on cerebral blood volume and flow [19]. Therefore, it
can be presumed that RR changes are disclosed in the fNIRS signals.

Due to the similar principles of PPG and fNIRS measurements, and, in particular,
O2Hb signal, and considering the fact that cerebral blood volume and flow changes are
proportional to fNIRS output [20], it can be expected that respiratory modulations exhibited
in PPG behave similarly in O2Hb signals. Therefore, we hypothesize that respiration can
influence the O2Hb signal in three aspects; frequency, intensity and amplitude.

In our previous research, [16], we showed the possibility of RR estimation from an
O2Hb signal in a resting state. However, the main challenge is to estimate RR when subjects
are performing physical activities. The objective of this paper is, thus, to propose a new
method for estimation of RR from O2Hb signals during a bicycling task. The basis of the
proposed method involves the following: (i) extraction of five respiratory modulations,
based on amplitude, frequency, and intensity of an O2Hb signal, (ii) computation of the
dominant frequency of each modulation, and (iii) application of a mean-based fusion
strategy on the computed dominant frequencies to estimate RR.

2. Proposed Method

The block diagram of the proposed method is shown in Figure 1. As displayed, it
mainly consists of two blocks; pre-processing and RR estimation.
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Figure 1. Block diagram of the proposed method for RR estimation using fNIRS.
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2.1. Pre-Processing

The first step of the proposed method is to find a high quality fNIRS channel for the
analysis. Towards this aim, firstly, the modified Beer–Lambert law is employed to convert
raw optical density signals to O2Hb and HHb changes in concentrations as follows [21]:

∆OD(λ) = ε(λ) · ∆C · L · DPF (1)

where OD, λ, ε, C, L, and DPF stand for optical density, wavelength, absorption coefficient,
concentration, physical path length, and differential path length factors, respectively. Then,
the signal quality index (SQI) algorithm [22] is used, which numerically scores the signals
from 1 (low) to 5 (high) quality. After finding the fNIRS channel with the highest signal
quality, the corresponding O2Hb signal (Figure 2a) is filtered by a wavelet transform
[23] for elimination of possible motion artifacts (Figure 2b). Then, an FIR low-pass filter
with cut-off frequency at 4 Hz is used to remove high frequency noise originating from
non-physiological sources (Figure 2c).

0 10 20
Time (s)

(c)

(b)

(a)

Figure 2. An example on noise reduction from an O2Hb signal: (a) selected O2Hb signal with the SQI;
(b) motion artifact reduction using DWT algorithm; (c) low-pass filtering for high frequency noise
removal.

2.2. RR Estimation from O2Hb
2.2.1. Background

As was already mentioned, the O2Hb signal originating from fNIRS functions on
the same basis as PPG, and, thus, respiratory modulations in PPG can also appear in the
O2Hb signal. It is common knowledge that HR increases during inhalation and decreases
during exhalation, and, thus, given the fact that each cycle of the O2Hb signal is a heart
beat, respiration causes frequency modulation in the O2Hb signal [24]. On the one hand,
increasing and decreasing of the intrathoracic pressure during inhalations and exhalations
leads to a variation in blood volume, known as baseline wander,and, thus, respiration
causes intensity modulation in the O2Hb signal [25]. On the other hand, reduction of the
blood stroke volume during inhalation, because of alternation in intrathoracic pressure,
leads to changes in the O2Hb signal’s strength, causing respiratory amplitude modulation
[26].

2.2.2. Extraction of Respiratory Modulations

In this paper, two frequency and two intensity respiratory modulations were extracted
from the O2Hb signal, along with one amplitude respiratory modulation, for RR estimation.
Regarding the frequency modulations, the following were computed: (i) the distance
between two consecutive peaks and (ii) the distance between troughs and peaks. For the
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intensity modulations, two baseline wanders were formed: (i) based on peaks and (ii) based
on troughs. Regarding the amplitude modulation, the absolute difference between the
magnitude of troughs and peaks were computed.

2.2.3. Trough and Peak Detection

In order to localize peaks and troughs, we used our previous method for trough detec-
tion from the O2Hb signal, wherein the O2Hb signal is first normalized between −1 and 1,
and, then, local minima, with values lower than average of the O2Hb signal, are considered
as potential troughs. Yet, the existence of motion artifacts may lead to a fallacious analysis.
To overcome this issue, the corresponding magnitude of potential troughs were set on a
vector, e.g., z[n], and, then, troughs with a lower value than Mean (z[n]) + 3× std (z[n])
were discarded [16]. Afterwards, the maxima between two consecutive troughs were
considered the peaks.

2.2.4. Processing of the Extracted Modulations

After forming the extracted modulations, up-sampling is an essential step, as the
modulations were formed based on irregular sampling, whereas regularly sampled signals
are often required for the subsequent analysis [27]. To this end, the cubic spline interpolation
method was used, which has already been shown to be promising in PPG studies [28].

Before computing the dominant frequency of the up-sampled extracted modulations,
it is also necessary to remove non-respiratory fluctuations, e.g., Mayer waves [29], which
can hamper the accurate detection of the corresponding RR frequency [27]. Non-respiratory
fluctuations can have both very low and very high frequency components. Unfortunately,
there is no assent on the ideal frequency range of respiration. Indeed, such a range might
need to be regulated based on the subject’s background, e.g., age [30]. In our previous
study, it was shown that low-frequency components of non-respiratory fluctuations can be
removed by a 3s moving average filter. For the maximum frequency of RR, we adopted a
threshold based on the HR [31] as follows:

FMax = A× HR
60

, (2)

where A is a constant. It is worth mentioning that HR was estimated based on the number
of detected peaks on a 50s window length. The regulation of the constant A is described in
Section 4.

After applying the moving average filter on the up-sampled modulations, the fast
Fourier transform (FFT) algorithm was computed and the dominant frequency in the range
of [0 FMax] considered to be the RR.

2.2.5. Mean-Based Fusion Method for RR Estimation

According to several studies, there is no optimal modulation for RR estimation [32].
For example, it was shown that frequency modulations may not be efficient for elderly
subjects [33]. Therefore, computing the RR based on a fusion strategy, where several
modulations are combined, can be more effective. Here, we used a simple mean fusion
method where the final RR is computed based on the average of computed dominant
frequencies of all modulations.

2.3. Method under Comparison

To the best of our knowledge, there is no direct method to estimate RR from fNIRS. Yet,
some studies tried to portion out respiratory components from fNIRS measurements [19,34].
In this paper, we compared performance of the proposed method to a band-pass filtering
strategy to extract respiratory components from the O2Hb signal. As described in [19], a
zero delay Fourier domain band-pass filter, with cut-off frequencies from 0.2 to 0.6 Hz, was
used. In this paper, after finding the fNIRS channel with the highest signal quality, the
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corresponding O2Hb signal was filtered and the dominant frequency within the range [0.2
to 0.6] Hz considered to be the estimated RR.

2.4. Performance Index

In order to assess the performance of RR estimation using both methods, the absolute
error (AE) between the reference and estimated RRs was computed as follows:

AE = |RRre f − RRest|, (3)

3. Data Collection
3.1. The Experimental Setup

The experimental setup involved an ergometer bike, a wireless single-sensor fNIRS-
system (PortaLite MKII, Artinis Medical Systems B.V., the Netherlands), placed on the
left hemispheres of the prefrontal cortex, and a respiratory chest belt connected to a TMSi
SAGA 32+/64+ amplifier (Twente Medical Systems International B.V., The Netherlands),
with a sampling rate of 4000 Hz (Figure 3a). The fNIRS system was equipped with three
long channels (transmitter–receiver distance up to 41 mm), recording data with nominal
wavelengths of 760 and 850 nm, and a sampling rate of 100 Hz.

(a) (b)

Figure 3. The data recording procedure. The experimental (a): setup and (b): paradigm.

3.2. The Experimental Paradigm for Data Recording

The data recording procedure is displayed in Figure 3b. It comprised of a 60 s resting
period block, followed by two bicycling blocks detached by a 60 s resting period, and
the final resting period block lasting for 60 s. At each bicycling block, subjects bicycled
for 8 min, wherein every minute the resistance of the ergometer increased by 1. In the
first bicycling block, subjects were allowed to regulate their bicycling speed arbitrarily. In
the second bicycling block, the subjects were asked to keep the speed constant around
18–22 km/h. In the whole procedure, subjects were allowed to freely move their heads
and arms.

3.3. Participants

Twenty-two young healthy subjects with varied ethnicity and fitness endurance volun-
teered to take part in the experiment (Table 1). None of the subjects had any psychological
and neurological disorders nor were they under any specific medications in the week of the
experiment. Before starting the experiment, all participants were briefed about the study
and signed a consent letter. A waiver for formal ethical approval was obtained from the
medical ethics committee (CMO Arnhem-Nijmegen) with the ethical code of 2021-8284. All
regulations and guidelines needed by the Declaration of Helsinki were followed. The data
were collected at the premises of Artinis Medical Systems B.V., Elst, The Netherlands.
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Table 1. Characteristics of subjects who participated in the experiment. The BMI stands for the body
mass index.

Subject BMI Age Blood Pressure
Status Sex

1 23.4 37 Hypotension Female
2 22.6 37 Hypotension Male
3 20.4 24 Normotension Male
4 18.6 33 Normotension Female
5 25.6 22 Normotension Male
6 19.3 22 Normotension Male
7 19.8 26 Normotension Male
8 21.4 31 Hypotension Female
9 24.2 27 Hypotension Female
10 22.3 24 Normotension Female
11 26.8 24 Normotension Male
12 25.4 32 Normotension Female
13 23.8 22 Normotension Male
14 26.2 28 Normotension Male
15 23.4 23 Normotension Male
16 21.8 22 Normotension Male
17 26.7 24 Normotension Female
18 22.9 22 Normotension Female
19 20.8 25 Normotension Female
20 21.5 24 Normotension Female
21 26.4 24 Normotension Male
22 24.6 33 Normotension Female

4. Results

In this section, the experimental results obtained from the proposed method and
the method under comparison are described. Before starting the analysis, the respiratory
reference signals were manually inspected and trials with an unreliable RR were rejected.
After the manual inspection, the data associated with subject 21 were completely discarded.
It should be noted that after discarding unreliable respiratory signals, 418 trails with a
length of 50 s were used for the analysis.

4.1. Regulation of RR Maximum Frequency

The only parameter of the proposed method that was required to be tuned was the
constant A, which regulated the RR maximum frequency based on HR. For this purpose,
78 trials, having 50 s lengths, from five subjects were randomly selected and values from
0.2 to 0.4 with a step size of 0.05 were investigated. To find the best fit, the lowest mean AE
between the reference and estimated RR was considered (Figure 4). Although there was no
significant difference between the obtained results by A = 0.3 and A = 0.35, we considered
A = 0.3 to be the best fit, due to its having the lowest mean AE.



Sensors 2023, 23, 3632 8 of 13

A=0.2 A=0.25 A=0.3 A=0.35 A=0.4
0

2

4

6

8

10

12

A
E

 (
br

ea
th

s 
pe

r 
m

in
ut

e)

Figure 4. Tuning the constant A for determination of RR maximum frequency, based on lowest mean
AE obtained from 78 randomly selected trials. The AE is shown in terms of mean and standard
deviations.

4.2. The Performance of Proposed Method

Figure 5 shows an example of the O2Hb signal and its corresponding modulations,
followed by the frequency spectrum of each modulation. It should be noted that the
reference RR was 0.32 Hz.

O2Hb

RIM I

RIM II

RFM I

RFM II

0 25 50

Time (s)

RAM

0 0.2 0.4 0.6 0.8 1

Frequency (Hz)

0 25 50

Time (s)

Respiratory

RRMax frequency

Figure 5. An example of the O2Hb signal and its corresponding respiratory signal, as well as its
extracted respiratory modulations and spectra.
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Table 2 displays the mean AE between the reference and estimated RRs for each subject,
indicating the superiority of the fusion-based strategy over the individual modulation for
the majority of the subjects.

Table 2. The mean AE between reference and estimated RRs (BPM) for each subject with individual
and fusion features. The lowest mean AE is in bold.

Subject RAM RFM I RFM II RIM I RMI II Fusion

1 1.45 1.30 1.46 2.17 2.23 1.05
2 8.54 8.72 6.30 7.79 7.17 6.17
3 4.85 3.72 6.91 6.27 6.9 3.83
4 5.62 4.01 3.27 4.95 5.23 3.08
5 3.29 2.53 2.75 2.53 3.25 1.35
6 6.48 7.78 8.50 7.60 7.77 5.35
7 6.51 6.76 5.15 5.49 7.02 5.11
8 3.09 3.25 4.91 5.66 3.89 3.75
9 5.96 3.99 10.96 9.16 8.07 5.10

10 8.66 5.38 5.18 7.47 7.68 5.00
11 5.98 4.31 6.21 6.93 5.43 4.31
12 5.47 3.61 5.01 5.05 3.9 2.81
13 4.97 3.09 6.09 6.47 5.31 3.35
14 7.62 6.82 5.63 3.98 3.92 4.99
15 5.87 7.30 5.62 3.38 5.86 3.98
16 5.73 3.67 2.88 2.54 3.00 2.00
17 2.87 3.56 5.84 8.36 6.98 3.61
18 5.34 4.07 2.40 3.73 3.84 3.13
19 4.73 4.03 7.26 6.98 5.09 3.47
20 3.71 3.69 6.85 8.59 5.31 3.67
21 2.72 2.82 4.87 4.36 3.60 2.75

When comparing the performance of each individual modulation with the fusion-
based strategy on all trials (Figure 6), the latter showed a lower mean AE (3.66) against those
obtained from RAM (5.14), RFM I (4.45), RFM II (5.32), RIM I (5.61), and RIM II (5.22) BPM.
According to the conducted t-test analysis, regarding the individual modulation, there was
a significant difference between the AE of RFM I and others (p < 0.05). Notably, there was
also a significant difference between the fusion-based strategy and RFM I (p < 0.05).

0 5 10 15 20 25

AE (BPM)

RAM
RFM I
RFM II
RIM I
RIM II
Fusion

Figure 6. The overall performance of each individual feature and fusion-based strategy in terms of AE.
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4.3. Comparison with the Band-Pass Filtering Method

To compare the performance of both methods, a Bland–Altman plot was used, which
evaluates the agreement between two quantitative measurements by displaying their
difference as a function of their average. Figure 7 shows the Bland–Altman plot of the AE
values obtained by the proposed method and the method based on band-pass filtering, as
used in [19] for all trials. As displayed, the proposed method outperformed the band-pass
filtering with a lower average of the differences (3.66 vs. 11.06 BPM, p < 0.05).
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Figure 7. The Bland−Altman plots for: (a) the proposed method and (b) band−pass filtering [19].

5. Discussion

The objective of this paper was to propose a robust RR estimation method during
bicycling using fNIRS signals recorded by portable equipment. This study, by taking
advantage of the lower vulnerability of fNIRS to a subject’s movements, was oriented
towards highlighting the practical limitations of the current state-of-the-art studies for
RR estimation during physical activity. The proposed method provides an extra measure,
i.e., RR, that can be used alongside brain activity analysis. Genuinely, RR estimation from
fNIRS can synergize the cerebral activity analysis in applications, such as stress assessment
and mental workload, where RR changes are important indicators [35,36].

5.1. The Significance of Proposed Fusion Strategy

According to the literature, the performance of each extracted respiratory modulation
for RR estimation depends on several factors, such as age, gender, body position, and
health status [27]. Thus, a fusion-based estimation, i.e., one employing multiple respiratory
modulations, can lead to a more robust RR estimation. In this paper, a fusion-based
strategy was provided with an average of five respiratory modulations, based on the
amplitude, intensity and frequency of an O2Hb signal, over a 50 s window. The comparison
between the individual and fusion-based RR estimations confirmed such robustness as the
15 subjects showed lower mean AE (Table 2). Furthermore, the comparison also confirmed
that the performance of an individual modulation may not be generalized for the whole
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population, as each modulation performed differently for different subjects. In terms
of overall performance over all te trials, the fusion-based strategy outperformed each
individual modulation with a lower mean of AE.

5.2. Comparison with State-of-the-Art

Except for our previous study, that estimated RR from an O2Hb signal in a resting
state, there is no research estimating RR from fNIRS. Yet, a few studies have tried to portion
out the respiratory components from fNIRS measurements. For instance, a multimodal
extension of the general linear model using a temporal embedded canonical correlation
method was employed to regress out respiratory components from fNIRS [34]. Firstly,
the mentioned study required a reference respiratory signal to be recorded concurrently.
Secondly, employing a general linear model usually requires a large number of fNIRS
channels, which increases the complexity of wearable instrumentation. In contrast, we used
a single sensor fNIRS system placed on the prefrontal cortex, which reduces the complexity
of wearable instrumentation. Furthermore, the prefrontal cortex is a hairless area, and,
therefore, provides the user with more comfort.

In other research, a zero delay Fourier domain band-pass filter, with cut-off frequencies
from 0.2 to 0.6 Hz, was applied to the O2Hb signal to separate respiratory components
from the cerebral brain activity [19]. The comparison between performance of the proposed
method and band-pass filtering method (Figure 7) indicates the superiority of our proposed
method, as a lower mean of difference between the reference and estimated RRs was
obtained (3.66 vs. 11.06 BPM). The reason for such a high error could be the fact that the
suggested bandwidth also includes other non-respiratory components, such as cerebral
and cardiac activities.

5.3. Directions for Future Work

Although the results obtained by the proposed method are promising, there are some
issues that should be addressed in future work. Firstly, performance of the proposed
method was only investigated on young healthy subjects. It is important to consider a
broader range of subjects (e.g., the elderly) to further assess the robustness of the proposed
method. Furthermore, it may also be important to consider different characteristics of
subjects, e.g., race, skin color, and BMI in developing an RR estimation algorithm. In
particular, the employed maximum respiratory frequency (Fmax) might require further
adjustment for a different cohort. Secondly, although the data were recorded during
physical activity and the subjects were allowed to freely move their bodies throughout
the experiment, performance of the proposed method should be further validated on
data where the subjects are performing more intense exercise, e.g., squatting, with more
movements. Lastly, employing a smart fusion strategy, such as [37], may also further
improve the performance of the proposed method. However, we did not find enormous
differences amongst the estimated RRs from individual modulations (Table 2).

6. Conclusions

This paper presented a fusion-based strategy for RR estimation during a bicycling task
from O2Hb signals originating from fNIRS measurements. For this purpose, five respiratory
modulations were extracted from an O2Hb signal and, then, the RR was estimated, based
on the average of dominant frequencies of each modulation. The comparison between the
obtained results from the proposed method and band-pass filtering showed the superiority
of the proposed method with a lower mean of AE (3.66 vs. 11.03 BPM). The importance
of this study was that it addressed RR estimation during physical activity, and, by taking
advantage of the motion tolerance quality of fNIRS, was oriented towards overcoming the
practical limitations of traditional bio-signals, i.e., vulnerability to the subject’s movements.
Furthermore, the proposed method derives an extra parameter from fNIRS signals, i.e., RR,
which can be used alongside brain activity analysis.



Sensors 2023, 23, 3632 12 of 13

Author Contributions: Conceptualization, M.S., N.H., J.M.H., M.F.-W., J.C. and W.N.J.M.C., method-
ology, M.S. and N.H.; validation, M.S., N.H. and J.M.H.; formal analysis, M.S. and N.H.; investigation,
M.S. and N.H.; resources, M.S. and J.M.H.; data curation, M.S.; writing—original draft preparation,
M.S.; writing—review and editing, J.M.H., M.F.-W., J.C. and W.N.J.M.C.; visualization, M.S.; supervi-
sion, J.M.H., J.C. and W.N.J.M.C.; project administration, J.M.H., M.F.-W. and W.N.J.M.C.; funding
acquisition, J.M.H., M.F.-W., J.C. and W.N.J.M.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the European Regional Development Fund, https://doi.
org/10.13039/501100008530 (PROJ-01003) and the Horizon 2020 Framework Programme, https:
//doi.org/10.13039/100010661 (No. 813234, No. 813843).

Institutional Review Board Statement: A waiver for formal ethical approval was obtained from the
medical ethics committee (CMO Arnhem-Nijmegen) with the ethical code of 2021-8284.

Informed Consent Statement: Before starting the experiment, all subjects were informed about the
experiment and signed the consent form. All methods were performed based on guidelines and
regulations required by the Declaration of Helsinki.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, [science@artinis.com], upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Y.; Miao, F.; An, Q.; Liu, Z.; Chen, C.; Li, Y. Wearable Multimodal Vital Sign Monitoring Sensor With Fully Integrated

Analog Front End. IEEE Sens. J. 2022, 22, 13462–13471. [CrossRef]
2. De Fazio, R.; Mastronardi, V.M.; De Vittorio, M.; Visconti, P. Wearable Sensors and Smart Devices to Monitor Rehabilitation

Parameters and Sports Performance: An Overview. Sensors 2023, 23, 1856. [CrossRef] [PubMed]
3. Moshawrab, M.; Adda, M.; Bouzouane, A.; Ibrahim, H.; Raad, A. Smart Wearables for the Detection of Cardiovascular Diseases:

A Systematic Literature Review. Sensors 2023, 23, 828. [CrossRef]
4. Rathore, K.S.; Vijayarangan, P.S.P.S.; Sivaprakasam, M. A Multifunctional Network with Uncertainty Estimation and Attention-

Based Knowledge Distillation to Address Practical Challenges in Respiration Rate Estimation. Sensors 2023, 23, 1599. [CrossRef]
[PubMed]

5. Lanatà, A.; Scilingo, E.P.; Nardini, E.; Loriga, G.; Paradiso, R.; De-Rossi, D. Comparative Evaluation of Susceptibility to Motion
Artifact in Different Wearable Systems for Monitoring Respiratory Rate. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 378–386.
[CrossRef]

6. Alam, R.; Peden, D.B.; Lach, J.C. Wearable Respiration Monitoring: Interpretable Inference With Context and Sensor Biomarkers.
IEEE J. Biomed. Health Inform. 2021, 25, 1938–1948. [CrossRef]
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