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Summary 

Electroencephalography is a non-invasive technique which is used for recording the 

neurophysiological reactions in the brain. It measures the activity of neurons. This report consists 

of different steps taken for finding that it is possible to control bionic arm with imaginary data of 

motor movement. The electroencephalographic signals were obtained from Physionet biosignal 

database. Feature extraction and its analysis is done for ten subjects. The different features were 

calculated for different segments of the obtained signal. The features extracted were inspired by 

Hjorth parameters and a higher order statistics - kurtosis. The signal processing algorithm for the 

process is explained in the report. The supervised feature classification is implemented using the 

Linear Discriminant Analysis. The obtained accuracy for the classifier was found to be around 60-

70% depending on the electrodes and type of data (real or imaginary). 
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Santrauka 

Šio darbo tikslas - sukurti signalų apdorojimo algoritmą leidžiantį elektroencefalografiniuose 

signaluose atpažinti numanomus motorinius judesius ir paversti juos komandomis siunčiamomis į 

bioninę ranką. Analizuoti elektroencefalografiniai signalai gauti iš Physionet biosignalų duomenų 

bazės. Signalų apdorojimo algoritmą sudaro pirminio apdorojimo, požymių skaičiavimo ir 

klasifikatoriaus dalys. Siekiant algoritmo paprastumo ir greitaveikos pasirinkta požymius įvertinti 

laiko srityje analizuojant signalų variabilumo savybes. Signalų požymių rinkinį sudaro Hjorth‘o 

pasiūlyti parametrai (aktyvumas, mobilumas ir kompleksiškumas) bei ketvirtos eilės statistinis 

parametras – ekscesas. Klasifikavimui naudota tiesinė diskriminantinė analizė. Algoritmas ištirtas 

su signalais užregistruotais atliekant realius ir numanomus motorinius judesius. Gautas 

klasifikavimo tikslumas siekė 60-70 %, priklausomai nuo elektrodų ir duomenų tipo (realus ar 

numanomi). 
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Introduction 

A Brain Computer Interface (BCI), also called as a Brain Machine Interface (BMI), is a system 

which is used as a medium of communication between the human brain and the external world. It 

is comprises of both hardware and software and enables us humans to interact with the 

surroundings. This interaction happens without the involvement of the peripheral nerves and 

muscles. It uses control signals generated from electroencephalographic (EEG) activity. EEG 

mostly measures the currents that are generated during synaptic excitations of the dendrites of 

neurons in the cerebral cortex. A BCI is a non-muscular system which helps in transmitting a 

person’s commands or thoughts to external devices such as computers, speech synthesizers, 

assistive appliances, and neural prosthetics. It is very useful and life changing for individuals with 

severe motor disabilities. An interface like this would improve their life and would, at the same 

time, reduce the cost of intensive care. It is an artificial intelligence system which can understand 

and recognize a particular set of patterns in the EEG signals. The following five consecutive stages 

are the different processes used for pattern recognition: signal acquisition, pre-processing or signal 

enhancement, feature extraction, classification, and the control interface. The signal acquisition 

stage is where the signals from the brain are captured. This stage also performs noise reduction 

and artefact processing. The pre-processing stage prepares the signals in a suitable form for further 

processing. The feature extraction stage recognises discriminative data in the brain signals that 

have been recorded. Once the EEG data is taken, the signal is mapped to a vector containing 

effective and discriminant features from the observed signals. This is known as the feature vector. 

The extraction of information from this data is a very challenging task. Brain signals are mixed 

with other signals. These signals come from a set of brain activities and they overlap in both time 

and space. Moreover, the signal is not usually stationary and may also be distorted by artefacts 

such as electromyography (EMG) or electrooculography (EOG). EMG artefacts correspond to the 

muscle movement obtained during the swallowing action or the movement of the tongue and EOG 

artefacts are the ones obtained during the blinking action of the eye. The feature vector must also 

be of a low dimension, in order to reduce the complexity of the feature extraction stage, but without 

relevant information loss. The classification stage classifies the signals taking the feature vectors 

into account. The choice of good discriminative features is therefore essential to achieve effective 

pattern recognition, in order to decipher the user’s intentions. Finally the control interface stage 

translates the classified signals into meaningful commands for any connected device, such as a 

wheelchair or a computer [1]. The main problem in BCI design is the accuracy of classification 

the EEG signals. At present, no one single method of both feature extraction and classification 

could achieve a one hundred percentage accuracy [2]. Keeping these things in mind it was decided 
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to design a signal processing system suitable for investigation of motor, real and imaginary, tasks 

in artificial limb control. This was set as the aim of this work and in order to achieve this aim, 

certain goals were set. These goals are discussed in the section 1.4. This report discusses all the 

methods and procedures followed in order to achieve this aim. 
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1 Literature review and analysis 

This chapter explains about what a BCI is and how it works. There is also a discussion about 

different parts of brain and where the sensorimotor region is. These details are understood from 

the physiology of the brain. The aim and goals are set with the help of this literature analysis. 

1.1 Brain Computer Interface 

BCI is a challenging application of signal processing, machine learning, and neuroscience [3]. A 

BCI captures different activities from the brain which are associated with real motion, mental tasks 

and external stimuli and in turn enables non-muscular communication and a control channel for 

conveying messages and commands to the external world [4]. A non-invasive BMI uses recordings 

of brain activities such as EEG and magneto encephalogram (MEG). Using EEG is the most 

practical for engineering applications because of the simplicity of the device and high temporal 

resolution [5]. A typical EEG signal is shown in Figure 1. An EEG signal is extremely complex 

and has a lot of cross over frequencies from other parts of the human body. 

 

Figure 1 A typical EEG signal for a single channel 

The BCI systems allows the control of an artificial device based on the features extracted from 

voluntary electric, magnetic, or other physical manifestations of brain activity collected either 

epidurally or subdurally, from the sensorimotor cortex or from the scalp or in invasive 

electrophysiological manner [6]. Figure 2 shows a basic BCI Layout. 
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Figure 2 Basic BCI Layout [6] 

A BCI need not pertain to people with disabilities, it can also be used for accessing areas in an 

industrial environment where it is unsafe for human hands to reach and carry out their work. It can 

be used as an extension of a human limb where it is required. In this case a human can control the 

BCI as he controls his own limb. 

When a movement or a motion is carried out, the potentials are developed in certain parts of the 

brain. These potentials are then recognized by the respective activated electrodes, and the 

respective features are calculated. These potentials developed due to movement is seen in the 

sensorimotor area of the brain as discussed and this is the motor imagery of the brain. 

An important technique for enabling BCIs related with motor imagery (MI-BCI) is efficient 

decoding of signals from the motor cortex area. This decoding will lead to practical biomedical 

applications in rehabilitation and neuro prosthesis. For instance, real and imaginary movements of 

hands and feet invoke a change in the sensorimotor rhythm in different regions of the brain. Hence, 

if we can capture these changes in the rhythm from EEG, in the presence of measurement noise 

and rhythms related to other brain activities, we can classify the EEG signal associated with 

imagination of different motor actions such as hand, arm, or foot movement [5]. 

Non-invasive EEG is a weak signal and it is very easily affected by noises from the electrodes and 

even the supply. This increases the difficulty in feature extraction. The feature extraction methods 

are generally divided into time and frequency methods, parametric modelling and modelling the 

neural firing rate. Time and frequency methods generally contain power spectrum analysis, 

wavelet analysis and common spatial patterns. Power spectrum has been widely used due to its 

easy application and high computational speed. But power spectrum analysis does not provide any 

time domain information [7]. 

Several feature types have been used with EEG-based BCIs. Among them, the most popular are 

logarithmic band power estimates with more or less subject-specific optimization of the frequency 

bands. In this thesis, the features are calculated using a generalization of Hjorth parameters. It is 
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also called as Time Domain Parameters [8]. Another temporal feature called kurtosis, which is a 

higher order statistic, is also calculated. 

The signal processing is done in Matlab [9]. It is a high level technical computing language with 

graphical interface used for intensive mathematical computations. It is designed to be more 

efficient and more accurate than typical programming languages like C++ and Java. It provides 

users with various tools for data analysis and visualization. It is the primary tool used in this thesis 

report for implementation of the feature extraction process using Hjorth parameters and kurtosis. 

The software also provides various toolboxes which can be used for EEG signal processing [10]. 

1.2 Physiology of human brain 

There are three main parts of brain namely, cerebrum, cerebellum, and brainstem: 

 The cerebrum is the largest part of the brain. It is composed of 2 hemispheres, the right 

and left. The different functions like interpretation of touch, vision and hearing, as well as 

speech, reasoning, emotions, learning, and fine control of movement are done by this part 

of the brain. 

 The cerebellum is situated under the cerebrum. Its main use is to coordinate muscle 

movements, maintain posture, and balance. 

 The brainstem is a set of different parts which includes the midbrain, pons, and medulla. 

Apart from performing many automatic functions such as breathing, heart rate, body 

temperature, wake and sleep cycles, digestion, sneezing, coughing, vomiting, and 

swallowing, its main work is to act as a relay centre connecting the cerebrum and 

cerebellum to the spinal cord. 

The above mentioned cerebral hemispheres have distinct fissures/folds. These divide the brain 

into lobes. Each of the hemispheres has 4 lobes: frontal, temporal, parietal, and occipital as 

shown in Figure 3. Each lobe in turn may be divided, once again, into different areas based on 

very specific functions. It’s very important to realize and understand that each lobe of the brain 

does not function alone. There are very complex relationships between the lobes of the brain 

and between the right and left hemispheres. The different lobes with their specific functions 

are mentioned below [11]. 
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Figure 3 Functional Areas of Brain [12] 

The frontal lobe deals with the personality, behaviour, emotions, judgment, planning, problem 

solving, and speech - speaking and writing (Broca’s area). It also deals with the body movement 

(motor strip). This is the main area we are focussing on, in this thesis, as the motor movements 

can be deciphered clearly from the electrodes in this area. The frontal lobe also deals with 

intelligence, concentration, self-awareness. 

The parietal lobe interprets language, words, sense of touch, pain, temperature (sensory strip). It 

also interprets signals from vision, hearing, motor, sensory and memory. Spatial and visual 

perception are also observed in this area. 

The occipital lobe interprets vision (colour, light, movement). The temporal lobe is where a person 

can understand language (Wernicke’s area). This lobe also deals with memory, hearing, 

sequencing and organization 

From Figure 3, we can see that the Motor functions of human body is mainly carried out in the 

areas 3 and 12. Also the muscle responses are recorded in the sensory area 9. This is part of the 

frontal lobe and the parietal lobe. The motor imagery signals will be more profoundly found in 

this area of the human brain. Hence it would be wise to select the electrodes within this area [13]. 

The electrode selection criteria will be discussed in this thesis. 

The laterality of the brain is a huge factor in analysing the signals. There are mainly 2 types of 

laterality when speaking about brain cognitive functions, contralateral and ipsilateral. Contralateral 

pertains to controlling opposite side of the body and ipsilateral refers to control in the same side 

of the body. Usually for a human being the cognitive functions are contralateral, but in cases of 

people who have suffered from stroke, they cannot perform motor action depending on which side 
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of the brain is affected. Hence they need BCI’s which can be controlled using ipsilateral motor 

signals [14]. 

From the above description of the brain anatomy, we can understand that multiple actions 

involving all the parts of human body occurs at different parts of the brain and it overlaps to the 

different regions of the brain. From this we can deduce the complexity of the measured signals. 

Hence to understand these signals and to classify them based on the motion of the limb is a very 

challenging and tedious process. 

1.3 Current research with respect to motor imagery 

Current research aims at identifying voluntary brain activation in patients who are behaviourally 

diagnosed as being unconscious, but are able to perform commands by modulating their brain 

activity patterns. This involves machine learning techniques and feature extraction methods such 

as applied in brain computer interfaces [15]. 

Several EEG studies also confirm the notion that motor imagery can activate primary sensorimotor 

areas [13]. It has been observed that when a subject does a voluntary or an involuntary action, the 

action potentials in the sensorimotor cortex spikes and these spikes are usually observed in the 

frequency band from 7.5 Hz to 31 Hz. 

In another study, a system that allows disabled persons to improve or recover their mobility and 

communication within the surrounding environment was implemented and validated. The system 

is based on a software controller that offers the user a communication interface that is matched 

with the individual’s residual motor abilities [16]. 

The studies for sensorimotor activities are taking place mainly in the Mu rhythm and beta rhythm 

of EEG signals. Mu rhythms are the alpha rhythms in the sensorimotor area. Several studies have 

examined Mu and beta rhythm activity during motor imagery. In the recordings from subdural 

electrodes over sensorimotor cortex, it was found that Mu rhythm desynchronization occurs during 

actual movement but not during thinking about the movement. It has also been found that both 

handling an object and imagining handling it were associated with desynchronization in the 8-12 

Hz band, but the topographies of desynchronization differed. In contrast to that, another study 

reported that slow potentials associated with actual and imagined hand movements had similar 

topographies. Yet another study reported that both imagery and movement produce 

desynchronization in Mu and beta bands over contralateral sensorimotor areas. Thus, the degree 
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of similarity between the patterns of cortical activation associated with actual movement and those 

associated with motor imagery remains uncertain [17]. 

Mu rhythms in the range of 8–12 Hz and beta rhythms in the range of 13–30 Hz both originate in 

the sensorimotor cortex and are displayed when a person is not engaged in processing sensorimotor 

inputs or in producing motor outputs. They are mostly prominent in frontal and parietal locations. 

A voluntary movement results in a circumscribed desynchronization in the Mu and lower beta 

bands. This desynchronization is called event-related desynchronization (ERD). After a voluntary 

movement, the power in the brain rhythms increases. This phenomenon, called event-related 

synchronization (ERS). Gamma rhythm is a high-frequency rhythm in the EEG. Upon the 

occurrence of a movement, the amplitude of gamma rhythm increases. Gamma rhythms are usually 

more prominent in the primary sensory area [18]. 

At present there are a variety of toolboxes which are used to implement the whole processing 

algorithm for EEG signals. Some of these toolboxes are: 

1. EEGLAB 

2. Fieldtrip 

3. BrainVision Analyzer 

4. EEProbe 

5. BioSig 

These toolboxes are available under the GNU General Public Licence. Most of them are used for 

processing continuous and event related EEGs and also provide an interactive graphic user 

interface. They utilize various implementations of pre-processing, feature extraction and 

classification. The user can conveniently select the required process and extract the required signal 

depending on their research. 

In this thesis none of the above tools are used and all the algorithms are self-implemented and 

inbuilt functions in Matlab have also been used. 

1.4 Aim and goals 

The aim of this work is to design a signal processing system suitable for investigation of motor 

real and imaginary tasks in artificial limb control. 
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In order to achieve this aim following goals were set: 

1. Critical analysis of scientific literature in relevant digital signal processing and brain –

computer interface areas. 

2. Development and investigation of EEG pre-processing, feature extraction. 

3. Selecting the minimal set of most effective EEG channels. 

4. Investigation of classification algorithm for motor real and imaginary tasks. 
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2 Signal database 

The signal database is from PhysioNet [19]. It is an open source for different types of biomedical 

signals. The dataset was created and contributed to PhysioNet by the developers of the BCI2000 

instrumentation system, which they used in making these recordings [20]. 

2.1 Signal Acquisition 

The EEGs were recorded from 64 electrodes as per the international 10-10 system. The data are 

provided in EDF+ format (containing 64 EEG channels, each sampled at 160 samples per second, 

and an annotation channel). This set of data were used for this research work. 

The data set consists of over 1500 one- and two-minute EEG recordings, obtained from 109 

volunteers. This database has details pertaining to motor imagery and would be very useful for my 

area of research.  

The 21 electrodes as highlighted in Figure 4 was selected as this region corresponding to the 

sensory motor cortex. This was discussed in section 1.2 

 

Figure 4 10-10 Electrode Placement 

2.2 Experimental protocol 

Subjects performed different motor imagery tasks while 64-channel EEG were recorded using the 

BCI2000 system (Measurement Computing, Inc.; Data Translation, Inc.; National Instruments, 

Inc.). Each subject performed 14 experimental runs: two one-minute baseline runs (one with eyes 

open, one with eyes closed), and three two-minute runs of each of the four following tasks: 
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1.  A target appears on either the left or the right side of the screen. The subject opens and 

closes the corresponding fist until the target disappears. Then the subject relaxes. 

2. A target appears on either the left or the right side of the screen. The subject imagines 

opening and closing the corresponding fist until the target disappears. Then the subject 

relaxes. 

The representation of the trials done is given in the Figure 5. This figure shows the action done by 

the subject on receiving the cue, i.e. when a target comes on the right side of the screen. 

The experimental runs were: 

1. Task 1 (open and close left or right fist) 

2. Task 2 (imagine opening and closing left or right fist) 

 

Figure 5 Real hand movement by the subject on seeing the target on the right side of the screen 

Each annotation includes one of three codes (T0, T1, or T2): 

1. T0 corresponds to rest 

2. T1 corresponds to onset of motion (real or imagined) of the left fist. 

3. T2 corresponds to onset of motion (real or imagined) of the right fist. 

The annotation data plays a major role in the signal processing algorithm. This data is used 

explicitly for the feature extraction process and the classification algorithm. If this data is not 

known it would be nearly impossible to do the further steps. 
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The trails conducted in this database gives a specific insight into how motor signals are observed 

while imagining it. So in a way it shows how the motor signals will be generated on sensorimotor 

area of people with disabilities. Hence this database was selected and used for conducting this 

research. 

The data is of 2 minutes and the sampling frequency of the signal is 160 Hz. From this we can see 

that the number of samples are 19200. The tasks were performed for 4.1 seconds and the relaxing 

time for the subject was 4.2 seconds. From this we can see that there were around 30 sets of task 

and relax cycle performed. 
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3 Research Methodology - The signal processing algorithm 

The research methodology used for this work is designing and implementation of a signal 

processing algorithm. This algorithm pre-processes the EEG signal, extracts the features and 

classifies it according to the training data given to the classifier.  

3.1 Overview of algorithm 

In this chapter, we discuss about the different stages of the signal processing and why we use this. 

We discuss about the signal pre-processing, the different extracted features and the different 

classification processes. These processes are implemented in Matlab [9]. It is a software used for 

technical computing which includes the signal processing toolbox. This toolbox is used 

extensively in this section. The signal processing algorithm was designed on the basis of the 

literature analysis. It is a standard procedure followed for all the BCI systems [21]. 

The signal processing algorithm was designed as shown in Figure 6. 

 

Figure 6: EEG signal processing algorithm 

3.2 Pre-processing 

As discussed in multiple research papers, the Mu rhythm and the beta rhythm for the EEG signals 

fall in the range of frequencies 8Hz to 30 Hz [18]. Hence it was decided to filter the signal from 

13 Hz to 31 Hz for the beta rhythm as this is the frequency range where the motor movements are 

recorded. 

It is a common practice to filter the signals when dealing with EEG data. It is done in order to 

temporally smooth them and remove the noise. These noises are considered to be generally found 

at higher frequencies. Many classic studies list in their methods section a cut-off frequency of 40 

Hz or even 30 Hz [22]. Upon doing so, a lot of required data gets filtered out and many features 

get filtered out. Hence in order to get back to the basics and understand the EEG behaviour, a 

normal bandpass filtering of the signal was done. By doing this we have very less expensive pre-

processing, mathematically. 
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The raw signal was passed through a bandpass filter of passband 13-31 Hz [18]. In order to analyse 

the real time data, a causal filter should be used [23]. Hence it was decided to use a Finite Impulse 

Response (FIR) bandpass filter for this process. A low order of 6 and a little higher order of 10 

was set in order to understand the filtered data. The classified results of both these orders were 

found to be varying and different. 

The Mu rhythm which lies in the frequency range 7.5-12 Hz corresponds to the rest state of the 

sensorimotor neurons as discussed in section 1.3. The activity in the beta band correlates to the 

motor activity. The experiments were carried out in the beta rhythm and the observations were 

made in this segment. 

3.3 Feature extraction 

The features that are selected are the statistical descriptors based on the time domain of the EEG. 

Activity, Complexity, and Mobility were derived in 1970 by Bo Hjorth, and are collectively known 

as the Hjorth Parameters [8]. Hjorth parameters were selected as features for many studies 

pertaining to motor imagery. Also a higher order statistical feature, kurtosis was also selected and 

the feature vectors were calculated by using sliding window method for a specific set of windows. 

3.3.1 Hjorth Parameters 

This method is interesting because it represents each time step (or window) using only these three 

attributes and this is done without conventional frequency domain description (such as that of 

Discrete Fourier Transform (DFT)). The signal is measured for successive epochs (or windows) 

of one to several seconds. Two of the attributes are obtained from the first and second time 

derivatives of the amplitude fluctuations in the signal. The first derivative is the rate of change of 

the signal’s amplitude. At peaks and troughs the first derivative is zero. At other points it will be 

positive or negative depending on whether the amplitude is increasing or decreasing with time. 

The steeper the slope of the wave is, the greater the amplitude of the first derivative. The second 

derivative is determined by taking the derivative of the first derivative of the signal. Peaks and 

troughs in the first derivative, which correspond to points of greatest slope in the original signal, 

results in zero amplitude in the second derivative, and so forth [24]. 

1. Activity: The activity parameter represents the signal power, the variance of a time function 

y(t). This can indicate the surface of power spectrum in the frequency domain. 

 

𝐴 = 𝑣𝑎𝑟(𝑦(𝑡)) =  
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

𝑙𝑒𝑛𝑔𝑡ℎ(𝑦(𝑡))
 

(1) 
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where �̅� is the mean. 

2. Mobility: The mobility parameter represents the mean frequency, or the proportion of 

standard deviation of the power spectrum. This is defined as the square root of variance of 

the first derivative of the signal: 

𝑀 =  
√𝐴(

𝑑𝑦
𝑑𝑡

)

𝐴
 

(2) 

where, A is the activity. 

3. Complexity: The Complexity parameter represents the change in frequency. The parameter 

compares the signal's similarity to a pure sine wave, where the value converges to 1 if the 

signal is more similar: 

𝐶 =
𝑀(𝑦(𝑡)

𝑑𝑦
𝑑𝑡

)

𝑀(𝑦(𝑡))
 (3) 

where, M is the mobility. 

There is no clear agreement as to what the measurements of Hjorth features mean in terms of 

mental states. It is common sense to assume that the longer a subject remains focused on a specific 

mental task, the more stable the signal is, and therefore lower the variance of the amplitude 

fluctuation. However, this assumption does not address the possible effects of fatigue, habituation 

and boredom [24]. 

3.3.2 Kurtosis 

There are major methods to extract EEG feature, such as temporal features, spectral features and 

nonlinear features. Few of the temporal features are, mean absolute amplitude, standard variance 

and kurtosis. Here we have selected kurtosis as a feature vector [25]. 

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal distribution 

is 3. Distributions that are more outlier-prone than the normal distribution have kurtosis greater 

than 3; distributions that are less outlier-prone have kurtosis less than 3. Kurtosis is a 4th order 

statistics. 

The kurtosis of a distribution is defined as: 

𝐾 =
𝐸(𝑦 − �̅�)4

𝜎4
 (4) 

where, �̅� is the mean of y, σ is the standard deviation of y, and E (t) represents the expected 

value of the quantity t. 

http://en.wikipedia.org/wiki/Sine_wave
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These parameters are mainly used as features for the classification of motor imagery [6]. The above 

mentioned features were selected as a BCI needs real time computation and the features should 

not take long time to calculate and hence it is preferred to extract the time domain parameters. 

Separate functions were created for implementing these features. As this is a time series function 

a sliding window of 160 samples were created and was incremented by 1 sample till the end of 

signal. But on implementing this sliding window the number of features extracted were in large 

quantities, but as we have discussed if the feature extraction process is not done properly, then the 

classification accuracy reduces drastically. This was one of my observations. 

Hence another sliding window of 672 samples were taken and the number of windows were 

calculated. The calculated value was around 30, which corresponds to the total number of 

annotations of the signal. 

3.4 Classification 

Patterns of brain activity are considered to be dynamic random processes due to physiological and 

technical factors. In terms of the physiology, the patterns undergo a change when the individual 

does not concentrate, due to fatigue, due to disease progression, and during the long process of 

training, as training takes time and becomes boring after following the same routine again and 

again. In technical terms, the patterns undergo change as an effect of noises from the amplifier, 

background noises, and also the change in the electrode impedances. Therefore, time course of the 

generated time series signals (e.g. EEG) should be taken into consideration during the feature 

extraction process. Hence, to use this temporal information, three different approaches have been 

proposed and used: 

1. Concatenation of features from different time segments: extracting features from several 

time segments and concatenating them into a single feature vector. 

2. Combination of classifications at different time segments: it consists in performing the 

feature extraction and classification steps on several time segments and then combining 

the results of the different classifiers. 

3. Dynamic classification: it consists of extracting features from several time segments to 

build a temporal sequence of feature vectors. This sequence can be classified using a 

dynamic classifier [6]. 

For this thesis the first approach was used for calculating the feature vector. The different features 

were extracted according to 2 experimental setups: 
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1. Sliding window of 160 samples incremented by 1 sample, 

2. Sliding window of 672 samples incremented by 656 samples. 

The different types of classifiers used are, linear discriminant classifier, support vector machines, 

neural networks, bayesian classifiers and nearest neighbour classifiers. These are just some of the 

major classifiers used. 

The 3 terms described are the 3 possible sources of classification errors which are inherent: 

1. Noise: represents the irreducible noise within the system; 

2. Bias: represents a systematic error which is the divergence between the estimated mapping 

(i.e. the estimated class label) and the best mapping (i.e. the true class label). This term 

depends strongly on the classification method that has been chosen to obtain f (linear, 

quadratic). 

3. Variance: reflects the sensitivity to the used training set T. 

Linear Classifiers have a high bias but low variance. In this study we are trying to implement two 

linear classifiers: 

1. Linear Discriminant classifier, 

2. Support Vector Machine. 

3.4.1 Linear discriminant classifier 

Linear discriminant analysis (LDA) classifier is used because it is one of the most effective linear 

classification methods for BCI and because it is also used by BCI2000 software on the testing 

paradigm. 

The basic idea for implementation of LDA is simple. A linear function of attributes is computed 

for each identified class. The class function with the highest score represents the predicted class 

[26]. LDA has low complexity. They are classified under stable classifiers as small variations in 

the training set do not considerably affect their performance. LDA has been successfully used in 

many motor imagery based BCIs. Its computational requirement is very low and it is simple to 

use. This classifier generally provides good results. 

The idea of LDA is to find a weight vector w so that two projected clusters c1 and c2 of N1 and 

N2 training feature vectors x1 and x2 on w can be well separated from each other by hyperplanes 

while keeping small variance of each cluster. 
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In the case of multiclass separation problem, several hyperplanes are used. The strategy generally 

used in this case is the one versus the rest which separate each class from all the others. This 

technique is suitable for the on-line BCIs because it has a very low computational requirement. It 

is simple to use and generally provides good results. 

The main drawback of LDA is its linearity that can provide poor results on complex nonlinear 

EEG data [6]. 

LDA was implemented in Matlab using the fitcdiscr( ) function. The syntax of the function is: 

obj = fitcdiscr(x,y) 

x - Predictor Values 

y - Classification values 

3.4.2 Support Vector Machine 

Support Vector Machines (SVM) are supervised learning models with associated learning 

algorithms that analyse data used for classification and regression analysis. Given a set of training 

examples, each marked for belonging to one of two categories, an SVM training algorithm builds 

a model that assigns new examples into one category or the other, making it a non-probabilistic 

binary linear classifier. An SVM model is a representation of the examples as points in space, 

mapped so that the examples of the separate categories are divided by a clear gap that is as wide 

as possible. New examples are then mapped into that same space and predicted to belong to a 

category based on which side of the gap they fall on. 

Support vector machines were originally designed for binary classification. The main idea of this 

approach is to construct a hyperplane in order to separate two classes (ci ∈ {–1, 1} or ci ∈ {0, 1}) 

so that the margin (the distance between the hyperplane and the nearest point(s) of each classes) 

is maximal and with minimal error. 

For implementing SVM, there is an inbuilt tool in Matlab called the “classification learner”. This 

tool can be put to good use for classification. This tool learns an algorithm by itself depending on 

the given input, i.e. the predictor values and the classification values  

3.4.3 Classification performance measures 

For understanding the classification results clearly, some classification performance measures 

have to be calculated. The different classification performance measures usually used are accuracy, 

sensitivity, specificity, precision, recall, f1 score and gmean. All of these are statistical descriptors 



  

29 
 

which are calculated using the positive and negative classification calculated. With that data we 

can calculate the true positives and the true negatives. 

The accuracy is calculated using the formula 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑝 + 𝑇𝑛)

𝑁
 

(5) 

Where Tp is the true positive, Tn is the true negative and N total number of segments. 

The Specificity also known as the true negative rate measures the correctly identified proportion 

of negatives. It is calculated using the formula 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑛

𝑛
 

(5) 

Where Tn is the true negative and n is the length if negatives 
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4 Results 

Different results were observed according to the set goals. The dataset was taken and bandpass 

filtered as mentioned in section 3.1. This constitutes the signal pre-processing. Then the features 

were extracted and then classified using the LDA classifier. These results are not efficient but 

promising as a very mild pre-processing is done. The accuracy of the classification is found to be 

around 60-65% which is dependent on the type of features extracted and the channels taken into 

consideration. 

4.1 Pre-processing results 

A normal bandpass filtering is done as discussed previously. The filter used was FIR bandpass 

filter. The order selected was 6 and 10. This was done in order to observe how the classifier reacts 

to the different levels of filtering. The filtering was done in the frequency band 13-31 Hz. The 

filtered data was plotted (see Figure 7) for the 21 selected channels as we discussed in section 2.1 

 

Figure 7 Illustration of original EEG data (a) and filtered EEG data, order 6 (b) for 21 channels 
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Figure 8 Illustration of original EEG data (a) and filtered EEG data, order 10 (b) for 21 channels  

As seen in Figure 8, it is clear that on using a higher order filter, most of the noise gets filtered and 

there is a significant change from the original signal. But on doing so, there is a huge probability 

of losing valuable data. On using this filter order, the classification accuracy is observed to be 

lesser which is discussed in Table 1. 

In-spite of the filtering, the EEG data looks complex due to the high complexity and dimensionality 

of the EEG signals. There seems to be no much difference in the signals as a simple bandpass filter 

was used for the pre-processing of the data. Hence we have a statistically less expensive computed 

data and it can be effectively used for real time signal processing and feature extraction and the 

further processing will be simpler and faster, not efficient but faster. 

4.2 Feature extraction results 

The different features were extracted according to 2 experimental setups: 

1. Sliding window of 160 samples incremented by 1 sample(see Figure 9) 

2. Sliding window of 672 samples incremented by 656 samples(see Figure 10) 
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Figure 9 Illustration of extracted features for real motor movement of 1 subject – C3 and C4 

channel: filtered signal (a), activity feature (b), mobility feature (c), complexity feature (d), 

annotation data 0-rest, 1-left, 2-right. 

From Figure 9 it can be seen that the calculated features are of the same length of the total signal, 

i.e. it has same number of features as that of the signal. To be specific, 20000 features were 

extracted for activity, mobility, complexity and kurtosis. Hence the feature vector becomes very 

huge. As it was discussed in the section 3.3, one has to be careful while extracting the features as 

it may lead to over fitting the classifier and hence unexpected errors may be encountered. Even in 

this case it is the same. And this observation is seen in the next section. The classification accuracy 

for this particular setup reduces drastically. 

It is very difficult to represent these extracted features in scatter plot as there are lot of features. 

Hence it is difficult to analyse these features in terms of simple plots. Due to the size of these 

extracted features, it takes a lot of time to compute the feature vector. So it is not advisable to use 

this for a real time BCI. 

The above experiment helped in analysing the feature extraction procedure in-depth and helped 

me figure out the new algorithm in which only 30 features are extracted. 
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Figure 10 Scatter plots of extracted features for real motor movement of 1 subject – C3 channel: 

activity feature vs mobility feature (a), activity feature vs complexity feature (b), activity feature 

vs kurtosis feature (c) annotation data 0-rest, 1-left, 2-right 

In Figure 10, individual features extracted using the second setup is plotted. Here the data looks 

much simpler and instead of the huge 20000 features in the previous setup, here we have just 30 

features for each of the 4 feature vectors. This corresponds to the 30 windows used for extracting 

the features. This brings about a huge change in the size of the data and as it is seen in the next 

section, this setup gives us a better classification accuracy than that of the previous setup. 

4.3 Classification results 

In this work, the main aim was to prove that it is possible to control bionic arm with imaginary 

data of motor movement. In order to achieve and understand this aim 2 types of experiments were 

conducted and their accuracy of classification was observed for both the sliding windows: 
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1. Training and testing with real data, 

2. Training and testing with imaginary data. 

Both these steps were done for the data received after the feature extraction process. 

4.3.1 LDA classifier 

The LDA classifier was used in order to classify the extracted features and output was observed. 

The test were done on 21 electrodes and in the plots electrodes are in the order: 

'Fc5' 'Fc3' 'Fc1' 'Fcz' 'Fc2' 'Fc4' 'Fc6' 'C5' 'C3' 'C1' 'Cz' 'C2' 'C4'

 'C6' 'Cp5' 'Cp3' 'Cp1' 'Cpz' 'Cp2' 'Cp4' 'Cp6' 

Classification accuracy is calculated using the formula mentioned in section 3.4. It is one of the 

statistical descriptors which is used for a better understanding of the classified features. It shows 

the relation between the actual and the predicted classes, hence we can find out how well the 

applied algorithm is effective. 

The mean accuracies for all the 21 channels of all the 10 subjects is shown in the Table 1. From 

this table we can see that order 6 of the FIR bandpass filter gives better accuracy than that of order 

10. Hence it was decided to use order 6 filter for all the calculations. 

Accuracy was calculated for a single subject (subject 1) for both the experimental setups 

mentioned in the feature extraction process. Upon comparison it was found that the second 

experimental setup had better accuracy than that of the first. Hence from this particular comparison 

it was decided to go forward and do the detailed calculations with the second experimental setup 

where a sliding window of 4.2 seconds was moved by 4.1 seconds. The mean accuracy for the first 

setup was found to be close to 50% and for the second setup was found to be close to 60%. The 

Figure 11 shown below, shows the comparison of both setups for a single subject. 
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Table 1 Mean for 21 channels of 10 subjects-both real and imaginary – FIR order 6 and 10 

  Order 6 Order 10 

  Real Imaginary Real Imaginary 

Channel Mean Mean Mean Mean 

Fc5 57.33 64.67 59.33 61.33 

Fc3 54.67 60.00 54.00 57.33 

Fc1 56.67 58.67 56.00 56.67 

Fcz 59.33 57.33 60.00 59.33 

Fc2 62 58.67 60.00 55.33 

Fc4 60.67 60.00 56.67 56.67 

Fc6 61.33 61.33 54.00 61.33 

C5 58 59.33 56.67 58.67 

C3 61.33 60.00 54.67 57.33 

C1 60.67 60.00 52.67 59.33 

Cz 58 56.67 55.33 60.67 

C2 56.67 60.00 58.67 58.00 

C4 56.67 58.00 54.67 56.00 

C6 55.33 56.67 52.67 58.00 

Cp5 57.33 60.00 56.00 57.33 

Cp3 60 59.33 61.33 57.33 

Cp1 60 58.00 56.67 58.00 

Cpz 60 60.67 60.00 59.33 

Cp2 60 58.67 55.33 57.33 

Cp4 58.67 57.33 59.33 56.67 

Cp6 57.33 58.67 56.00 60.00 
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Figure 11 Comparison of accuracy for 21 electrodes according to the feature extraction setups: 

blue (sliding window size 160 samples), red (sliding window size 672 samples),  

Next the classification accuracy for 2 subjects were plotted and observed. This was done in order 

to understand the trend and how effective the classifier is. From the Figure 12 we can see that the 

imaginary data shows close to 90% efficiency in one of the electrodes and some other electrodes 

show close to 80% which is a very good classification value and for the real data the accuracy for 

most of the electrodes is from 60-70%. 
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Figure 12 Classification accuracy of 2 subjects for 21 electrodes, real motion (a), imagined 

motion (b) 
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Table 2 Mean and standard deviation for 21 channels of 10 subjects-both real and imaginary 

 Real Imaginary 

Channel Mean S.D Mean S.D 

Fc5 57,33 8,43 64,67 8,34 

Fc3 54,67 5,26 60,00 9,94 

Fc1 56,67 5,67 58,67 9,32 

Fcz 59,33 11,1 57,33 7,83 

Fc2 62 9,45 58,67 6,13 

Fc4 60,67 9,14 60,00 8,89 

Fc6 61,33 6,13 61,33 7,57 

C5 58 7,73 59,33 7,34 

C3 61,33 4,22 60,00 6,29 

C1 60,67 6,63 60,00 6,29 

Cz 58 5,49 56,67 9,03 

C2 56,67 8,46 60,00 13,33 

C4 56,67 11 58,00 6,32 

C6 55,33 7,06 56,67 6,48 

Cp5 57,33 7,83 60,00 8,31 

Cp3 60 9,43 59,33 7,98 

Cp1 60 7,7 58,00 7,06 

Cpz 60 4,44 60,67 9,14 

Cp2 60 9,94 58,67 9,84 

Cp4 58,67 9,84 57,33 10,04 

Cp6 57,33 9 58,67 5,26 

 

Table 3 Accuracies of the 10 subjects with the mean of all the 21 electrodes. 

 Accuracy 

Subjects Real Imaginary 

1 57.46 59.68 

2 57.14 63.81 

3 58.09 64.13 

4 59.36 57.14 

5 61.26 59.05 

6 60.95 54.60 

7 62.54 61.90 

8 53.01 55.87 

9 63.81 59.68 

10 53.01 56.51 

 

Based on the accuracies of the individual subjects for real data, the highest accuracy of 

classification is observed in the 9th subject whereas the 8th and the 10th subject show the least 
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classification accuracy. In accordance with this data, the mean accuracy of all the 10 subjects 

were plotted with the accuracy of the 9th subject in Figure 13 

 

Figure 13 Mean classification accuracy and its standard deviation for real data of subject 9 and 

subject 8 

It can be observed from the above figure that the subject 9 gives us accuracy over 80 % in some 

channels which is a very promising result for such a simple algorithm. We can also see that all the 

subjects have their lowest accuracy as 46.67% in some channels. This also shows that most of the 

electrodes of this subject have the highest accuracy close to the standard deviation. Hence we can 

assume that the trial of the subject 9 was more successful than that of subject 8 which has very less 

classification accuracy. 

Next on the basis of the accuracies of the individual subjects for imaginary data, the highest 

accuracy of classification is observed in the 3rd subject whereas the 9th subject shows the least 

classification accuracy. In accordance with this data, the standard deviation of the mentioned 2 

subjects were plotted and observed in Figure 14. 
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Figure 14 Mean classification accuracy and its standard deviation for imaginary data of 2 

subjects 

The accuracy for some of the channels of the imaginary data is around 80% for subject 3 and the 

lowest you can see is around 40% for subject 6. But then it is not bad for such a simple algorithm. 

In general, the imaginary data classifies better than the real data. 

The lower accuracy we see for is single channel is not bad classification but just the lack of data 

in that particular electrode. In simple terms, when that particular movement happens or the 

imagination of the movement happens, the neurons in that area are not fired as extensively as other 

areas. 

The classifier was also run with the 160 samples window of feature extraction. This was done only 

for one subject as the feature vectors generated are very huge and they are time consuming to 

execute. Hence it is not viable for a real time BCI system. 
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Figure 15 Illustration of predicted data from the LDA classifier for 2 channels Fc6 and Cp5. 

annotation data 0-rest, 1-left, 2-right 

For the classification purpose the features were divided into 2. The 2 minute signal was divided 

into 1 minute each and the first half of the features were used to train the classifier and the second 

half were used for testing the classifier. Upon testing the results were found to be as shown in 

Figure 15. These 2 channels were selected to display as they have classified the respective 

annotation data, i.e. Fc6 corresponds to left hand (1) and Cp5 corresponds to right hand (2). Even 

though the classification is happening, the accuracy is very less. This is due to the factor that the 

feature vector has high resolution. The features were calculated for 1 second window. Hence the 

classifier classifies the rest state in between the left hand and right hand motor movement. 

4.3.2 SVM classifier 

The SVM classifier was tried in order to do a comparison study to LDA classifier. It was 

implemented using the classification learner tool in Matlab. For classifying using in the SVM 

classifier, the feature vector is loaded into the tool. The predictors and the responses are selected. 

Once that is done then the linear SVM classifier is run and the data is classified. But on 

implementing this classifier the rest states were being correctly classified and the left and right 

data were not classified as expected. This observation is shown in the Figure 16. 
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Figure 16 Scatted plot after classifying using SVM classifier 

The features as shown in the scatter plot is the plot between activity and mobility. These are the 2 

Hjorth parameters as discussed in section 3.3.1.  

4.4 Selection of optimal EEG channels 

21 channels in the sensorimotor cortex were selected as discusses in section 1.1. The data in these 

channels were observed to understand what would be the optimum channels. This was in order to 

generalize the channel selection to a fewer channels. But this is not a valid generalization as 

different subjects have different areas of the sensorimotor cortex activated. Many researches have 

been done on this front only to a fewer success. But even then there was an attempt made to analyse 

the optimum channels. 
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Figure 17 Mean accuracy and standard deviation for 10 subjects 

The Table 2 shows the mean and standard deviation (SD) of accuracies of each channel for the 10 

subjects for both real and imaginary data. The same data is plotted in Figure 17. From this we can 

see that the smallest standard deviation for the real data is in the C3 electrode and hence we can 

assume that this electrode classifies more consistently than the other electrodes. And for the 

imaginary data the electrode Cp6 seems to be more consistent over the set of 10 subjects. For the 

assumptions made, the laterality of the brain is not taken into consideration and if the sample size 

is increased the results may vary. 
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5 Conclusions and future work 

Critical literature analysis showed that the signal processing and the machine learning for a BCI is 

very challenging. It helped to conclude that none of the researches have been able to create efficient 

BCI’s. It also helped to understand that the EEG signals are very complex and multi-dimensional 

with crossing over of frequencies from different processes of human body. Hence any work done 

on this front need not produce any valid results. 

The signal pre-processing done in this thesis is very basic and hence the accuracy of the 

classifications is affected adversely. But this had to be done as this is a design for a real time BCI. 

Hence mathematical calculations have to be reduced. This is the same reason for the selection of 

Hjorth parameters and kurtosis as the features. They are the time domain parameters and 

manipulation of the variance of the signal. 

The signals were acquired from physionet and the pre-processing was done using a FIR bandpass 

filter of 6th order and 10th order. The filtered signal of the 6th order bandpass filter was found to 

give more accuracy after classification. The feature extraction procedure was implemented 

successfully and the output was observed. Activity, Mobility, Complexity and Kurtosis were the 

extracted features. These features were extracted as they represent the time domain parameters and 

are very fast to compute. Hence it is very beneficial for real-time BCIs.  

The signal was classified using LDA which is a linear classifier. By using LDA classifier, it was 

observed that the output accuracy of classification was observed in the range of 60 to 70% 

depending on the electrode selected, the mean values and standard deviations were plotted 

successfully. 

A lot of research in this area have come to the conclusion that adding irrelevant features have the 

possibility of degrading the performance of classifiers. The same goes with the case if the number 

of training samples is small/large relative to the number of features. These problems can be 

avoided by selecting relevant features (i.e., feature selection) or extracting new features containing 

maximal information about the class label from the original ones. This difference was observed on 

adding the different sliding windows for feature extraction. It helped in reducing the losses during 

classification. Hence the feature extracting process has to be done with care. 

The electrode selection criteria depends on the brain physiology. This is the reason why the 21 

electrodes in the sensorimotor area were selected. Sensorimotor area of the brain is where all the 
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movement related potentials are generated. Narrowing down the electrodes is impossible as 

different region of the sensorimotor cortex is activated for different individuals. 

The laterality of the brain plays a huge role in the analysis of the data. The left hand motion is 

measured clearly in the right side of the brain and vice versa. But as we analyse the data in depth, 

we should be able to detect a part of the left hand movement on the left side of the brain. This 

particular area in EEG signal analysis is just budding and can help a lot of people affected by 

stroke. 

The future work on this thematic can be related to the modification of the training samples and the 

testing samples for the classifier. It can be done by increasing and decreasing the feature samples. 

This should be done as there is a lot of rest pattern apart from the right and the left hand motion in 

the database selected. Hence more data is classified as rest. So if this can be figured out then the 

classification accuracy can be increased by a huge margin. At present the classification accuracy 

for the sliding window of 160 samples comes around 50%-55% which is neither good nor efficient. 

But this accuracy is only because of the high resolution of extracted features. The second sliding 

window of 672 samples gives a better accuracy of around 60-70% depending on the electrodes. 

Finally it can be concluded from the experiment that the imaginary data does not require any prior 

training with the real data. This was observed when the imaginary data was classified and gave a 

better classification accuracy than the real data. It means that if a person with a missing limb is 

made to think that he has a limb and is able to move it, then it would generate the motor imagery 

pertaining to the imagined motion in the sensorimotor area of the brain.  
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Annexe - Matlab Code 
clc; 
close all; 
clear all; 

  
%% 
% READ Multiple User data 

  
%nk='C:\Users\User\Documents\Aravind 

Prasad_Thesis\Dropbox\Magistrantura_AravindPrasad\Thesis\Physionet\Real_Imagi

narySignals\'; 
nk='C:\Users\Unni\Dropbox\Magistrantura_AravindPrasad\Thesis\Physionet\Real_I

maginarySignals\'; 

  
%S001 
[dr1,hr1] = ReadEDF([nk,'S001R03.edf']);%Task 1 (open and close left or right 

fist) 
[di1,hi1] = ReadEDF([nk,'S001R04.edf']);%Task 2 (imagine opening and closing 

left or right fist) 
%S002 
[dr2,hr2] = ReadEDF([nk,'S002R03.edf']);%Task 1 (open and close left or right 

fist) 
[di2,hi2] = ReadEDF([nk,'S002R04.edf']);%Task 2 (imagine opening and closing 

left or right fist) 
%S003 
[dr3,hr3] = ReadEDF([nk,'S003R03.edf']);%Task 1 (open and close left or right 

fist) 
[di3,hi3] = ReadEDF([nk,'S003R04.edf']);%Task 2 (imagine opening and closing 

left or right fist) 
%S004 
[dr4,hr4] = ReadEDF([nk,'S004R03.edf']);%Task 1 (open and close left or right 

fist) 
[di4,hi4] = ReadEDF([nk,'S004R04.edf']);%Task 2 (imagine opening and closing 

left or right fist) 
%S005 
[dr5,hr5] = ReadEDF([nk,'S005R03.edf']);%Task 1 (open and close left or right 

fist) 
[di5,hi5] = ReadEDF([nk,'S005R04.edf']);%Task 2 (imagine opening and closing 

left or right fist) 
%S006 
[dr6,hr6] = ReadEDF([nk,'S006R03.edf']);%Task 1 (open and close left or right 

fist) 
[di6,hi6] = ReadEDF([nk,'S006R04.edf']);%Task 2 (imagine opening and closing 

left or right fist) 
%S007 
[dr7,hr7] = ReadEDF([nk,'S007R03.edf']);%Task 1 (open and close left or right 

fist) 
[di7,hi7] = ReadEDF([nk,'S007R04.edf']);%Task 2 (imagine opening and closing 

left or right fist) 
%S008 
[dr8,hr8] = ReadEDF([nk,'S008R03.edf']);%Task 1 (open and close left or right 

fist) 
[di8,hi8] = ReadEDF([nk,'S008R04.edf']);%Task 2 (imagine opening and closing 

left or right fist) 
%S009 
[dr9,hr9] = ReadEDF([nk,'S009R03.edf']);%Task 1 (open and close left or right 

fist) 
[di9,hi9] = ReadEDF([nk,'S009R04.edf']);%Task 2 (imagine opening and closing 

left or right fist) 
%S0010 
[dr10,hr10] = ReadEDF([nk,'S010R03.edf']);%Task 1 (open and close left or 

right fist) 
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[di10,hi10] = ReadEDF([nk,'S010R04.edf']);%Task 2 (imagine opening and 

closing left or right fist) 

  

  

  
%% 
% Filtering the Signal 

  
[filtsig_dr1]=channeldata( dr1 ); 
[filtsig_di1]=channeldata( di1 ); 

  
[filtsig_dr2]=channeldata( dr2 ); 
[filtsig_di2]=channeldata( di2 ); 

  
[filtsig_dr3]=channeldata( dr3 ); 
[filtsig_di3]=channeldata( di3 ); 

  
[filtsig_dr4]=channeldata( dr4 ); 
[filtsig_di4]=channeldata( di4 ); 

  
[filtsig_dr5]=channeldata( dr5 ); 
[filtsig_di5]=channeldata( di5 ); 

  
[filtsig_dr6]=channeldata( dr6 ); 
[filtsig_di6]=channeldata( di6 ); 

  
[filtsig_dr7]=channeldata( dr7 ); 
[filtsig_di7]=channeldata( di7 ); 

  
[filtsig_dr8]=channeldata( dr8 ); 
[filtsig_di8]=channeldata( di8 ); 

  
[filtsig_dr9]=channeldata( dr9 ); 
[filtsig_di9]=channeldata( di9 ); 

  
[filtsig_dr10]=channeldata( dr10 ); 
[filtsig_di10]=channeldata( di10 ); 

  
%% 
win_width=672; 
slideincr = 656; 
% win_number = ((length(data{1,1})-win_width)/slideincr); 
win_number = 30; 

  
[ A_dr1,M_dr1,C_dr1,K_dr1,amck_dr1 ]=feat( 

win_number,win_width,filtsig_dr1,hr1.labels(1:21) ); 
[ A_di1,M_di1,C_di1,K_di1,amck_di1 ]=feat( 

win_number,win_width,filtsig_di1,hi1.labels(1:21) ); 

  
[ A_dr2,M_dr2,C_dr2,K_dr2,amck_dr2 ]=feat( 

win_number,win_width,filtsig_dr2,hr2.labels(1:21) ); 
[ A_di2,M_di2,C_di2,K_di2,amck_di2 ]=feat( 

win_number,win_width,filtsig_di2,hi2.labels(1:21) ); 

  
[ A_dr3,M_dr3,C_dr3,K_dr3,amck_dr3 ]=feat( 

win_number,win_width,filtsig_dr3,hr3.labels(1:21) ); 
[ A_di3,M_di3,C_di3,K_di3,amck_di3 ]=feat( 

win_number,win_width,filtsig_di3,hi3.labels(1:21) ); 
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[ A_dr4,M_dr4,C_dr4,K_dr4,amck_dr4 ]=feat( 

win_number,win_width,filtsig_dr4,hr4.labels(1:21) ); 
[ A_di4,M_di4,C_di4,K_di4,amck_di4 ]=feat( 

win_number,win_width,filtsig_di4,hi4.labels(1:21) ); 

  
[ A_dr5,M_dr5,C_dr5,K_dr5,amck_dr5 ]=feat( 

win_number,win_width,filtsig_dr5,hr5.labels(1:21) ); 
[ A_di5,M_di5,C_di5,K_di5,amck_di5 ]=feat( 

win_number,win_width,filtsig_di5,hi5.labels(1:21) ); 

  
[ A_dr6,M_dr6,C_dr6,K_dr6,amck_dr6 ]=feat( 

win_number,win_width,filtsig_dr6,hr6.labels(1:21) ); 
[ A_di6,M_di6,C_di6,K_di6,amck_di6 ]=feat( 

win_number,win_width,filtsig_di6,hi6.labels(1:21) ); 

  
[ A_dr7,M_dr7,C_dr7,K_dr7,amck_dr7 ]=feat( 

win_number,win_width,filtsig_dr7,hr7.labels(1:21) ); 
[ A_di7,M_di7,C_di7,K_di7,amck_di7 ]=feat( 

win_number,win_width,filtsig_di7,hi7.labels(1:21) ); 

  
[ A_dr8,M_dr8,C_dr8,K_dr8,amck_dr8 ]=feat( 

win_number,win_width,filtsig_dr8,hr8.labels(1:21) ); 
[ A_di8,M_di8,C_di8,K_di8,amck_di8 ]=feat( 

win_number,win_width,filtsig_di8,hi8.labels(1:21) ); 

  
[ A_dr9,M_dr9,C_dr9,K_dr9,amck_dr9 ]=feat( 

win_number,win_width,filtsig_dr9,hr9.labels(1:21) ); 
[ A_di9,M_di9,C_di9,K_di9,amck_di9 ]=feat( 

win_number,win_width,filtsig_di9,hi9.labels(1:21) ); 

  
[ A_dr10,M_dr10,C_dr10,K_dr10,amck_dr10 ]=feat( 

win_number,win_width,filtsig_dr10,hr10.labels(1:21) ); 
[ A_di10,M_di10,C_di10,K_di10,amck_di10 ]=feat( 

win_number,win_width,filtsig_di10,hi10.labels(1:21) ); 

  
%% 

  
% Annotation data calculation 

  
[anno_hr1]=annotation(hr1); 
[anno_hi1]=annotation(hi1); 

  
[anno_hr2]=annotation(hr2); 
[anno_hi2]=annotation(hi2); 

  
[anno_hr3]=annotation(hr3); 
[anno_hi3]=annotation(hi3); 

  
[anno_hr4]=annotation(hr4); 
[anno_hi4]=annotation(hi4); 

  
[anno_hr5]=annotation(hr5); 
[anno_hi5]=annotation(hi5); 

  
[anno_hr6]=annotation(hr6); 
[anno_hi6]=annotation(hi6); 

  
[anno_hr7]=annotation(hr7); 
[anno_hi7]=annotation(hi7); 
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[anno_hr8]=annotation(hr8); 
[anno_hi8]=annotation(hi8); 

  
[anno_hr9]=annotation(hr9); 
[anno_hi9]=annotation(hi9); 

  
[anno_hr10]=annotation(hr10); 
[anno_hi10]=annotation(hi10); 

  
%% 
% Classification using LDA 

  
[lda_dr1,predicted_dr1,Resub_dr1,Pred_dr1,stat_dr1]=newldaclassification(amck

_dr1,anno_hr1,hr1); 
[lda_di1,predicted_di1,Resub_di1,Pred_di1,stat_di1]=newldaclassification(amck

_di1,anno_hi1,hi1); 

  
[lda_dr2,predicted_dr2,Resub_dr2,Pred_dr2,stat_dr2]=newldaclassification(amck

_dr2,anno_hr2,hr2); 
[lda_di2,predicted_di2,Resub_di2,Pred_di2,stat_di2]=newldaclassification(amck

_di2,anno_hi2,hi2); 

  
[lda_dr3,predicted_dr3,Resub_dr3,Pred_dr3,stat_dr3]=newldaclassification(amck

_dr3,anno_hr3,hr3); 
[lda_di3,predicted_di3,Resub_di3,Pred_di3,stat_di3]=newldaclassification(amck

_di3,anno_hi3,hi3); 

  
[lda_dr4,predicted_dr4,Resub_dr4,Pred_dr4,stat_dr4]=newldaclassification(amck

_dr4,anno_hr4,hr4); 
[lda_di4,predicted_di4,Resub_di4,Pred_di4,stat_di4]=newldaclassification(amck

_di4,anno_hi4,hi4); 

  
[lda_dr5,predicted_dr5,Resub_dr5,Pred_dr5,stat_dr5]=newldaclassification(amck

_dr5,anno_hr5,hr5); 
[lda_di5,predicted_di5,Resub_di5,Pred_di5,stat_di5]=newldaclassification(amck

_di5,anno_hi5,hi5); 

  
[lda_dr6,predicted_dr6,Resub_dr6,Pred_dr6,stat_dr6]=newldaclassification(amck

_dr6,anno_hr6,hr6); 
[lda_di6,predicted_di6,Resub_di6,Pred_di6,stat_di6]=newldaclassification(amck

_di6,anno_hi6,hi6); 

  
[lda_dr7,predicted_dr7,Resub_dr7,Pred_dr7,stat_dr7]=newldaclassification(amck

_dr7,anno_hr7,hr7); 
[lda_di7,predicted_di7,Resub_di7,Pred_di7,stat_di7]=newldaclassification(amck

_di7,anno_hi7,hi7); 

  
[lda_dr8,predicted_dr8,Resub_dr8,Pred_dr8,stat_dr8]=newldaclassification(amck

_dr8,anno_hr8,hr8); 
[lda_di8,predicted_di8,Resub_di8,Pred_di8,stat_di8]=newldaclassification(amck

_di8,anno_hi8,hi8); 

  
[lda_dr9,predicted_dr9,Resub_dr9,Pred_dr9,stat_dr9]=newldaclassification(amck

_dr9,anno_hr9,hr9); 
[lda_di9,predicted_di9,Resub_di9,Pred_di9,stat_di9]=newldaclassification(amck

_di9,anno_hi9,hi9); 

  
[lda_dr10,predicted_dr10,Resub_dr10,Pred_dr10,stat_dr10]=newldaclassification

(amck_dr10,anno_hr10,hr10); 
[lda_di10,predicted_di10,Resub_di10,Pred_di10,stat_di10]=newldaclassification

(amck_di10,anno_hi10,hi10); 
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ldaclassification function 

function [ lda,testx,predicted_data,R_details,P_details ] = 

ldaclassification( features,freq_used,annot_v,label,t ) 
%UNTITLED This function uses the lda classifier and trains it using the 

training data and predicts the output of the test data. 
%   Detailed explanation goes here 

  
train_annot_v=annot_v(1:10000); 
test_annot_v=annot_v(10001:20000); 
time1=t(1:10000); 
time2=t(10001:20000); 
label1=label'; 

  
%For 21 channels 

  
for i=1:21 

     

  
%     x=[features{1,i}{1,1}]; % Acivity 
%     x=[features{1,i}{1,2}];% Mobility 
%     x=[features{1,i}{1,3}];% Complexity 
%     x=[features{1,i}{1,4}];% Kurtosis 
%     x=[features{1,i}{1,1};features{1,i}{1,2}]; 
%     x=[features{1,i}{1,1};features{1,i}{1,2};features{1,i}{1,3}]; 
        

x=[features{1,i}{1,1};features{1,i}{1,2};features{1,i}{1,3};features{1,i}{1,4

}]; 
    annotation_labels=train_annot_v'; 
    trainx=x(:,1:10000); 
    testx=x(:,10001:20000); 
    y=trainx'; 

  
%     [lda]=fitcdiscr(y,annotation_labels); 
    [lda(i)]={fitcdiscr(y,annotation_labels)}; 

     
    predicted_data(i)={predict(lda{1,i},testx')}; 

     
%     figure(); 
%     plot(time2,predicted_data,'r',time2,test_annot_v','k'); 
%     ylim([0,2.5]); 
%     legend('Predicted Value','Original annotation'); 
%     title({'Predicted value for Channel',label1{i},freq_used}); 
%     xlabel('time (s)'); 
%     ylabel('annotation'); 

  
%%%%%% Resubstitution error and details 
    resuberror(i) = {resubLoss(lda{1,i})}; 
    R(i)={confusionmat(lda{1,i}.Y,resubPredict(lda{1,i}))}; 
%%%%%% Prediction error and details 
    L(i) = {loss(lda{1,i},testx',test_annot_v')}; 
    T(i)={confusionmat(lda{1,i}.Y,predicted_data{1,i})}; 

label=header.labels(1:21); 
train_annot=annot(1:15); 
annotation_labels=train_annot'; 
test_annot=annot(16:30); 
cp = classperf(annotation_labels); 
for i=1:21 
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    x=[amck{1,i}{1,1};amck{1,i}{1,2};amck{1,i}{1,3};amck{1,i}{1,4}]; 

     
    trainx=x(:,1:15); 
    testx=x(:,16:30); 
    y=trainx';  

     
    [lda(i)]={fitcdiscr(y,annotation_labels)}; 

     
    predicted_data(i)={resubPredict(lda{1,i})}; 
%     predicted_data(i)={predict(lda{1,i},testx')}; 

     
    %%%%%% Resubstitution error and details 
    resuberror(i) = {resubLoss(lda{1,i})}; 
    R(i)={confusionmat(lda{1,i}.Y,resubPredict(lda{1,i}))}; 
%%%%%% Prediction error and details 
    L(i) = {loss(lda{1,i},testx',test_annot')}; 
    T(i)={confusionmat(lda{1,i}.Y,predicted_data{1,i})}; 

     
    stat_values(i)={Evaluate(annotation_labels,predicted_data{1,i})}; 
%     classperf(cp,predicted_data{1,i},annotation_labels) ; 

 

     

  
end 
lda=[lda;label']; 
R_details=[resuberror;R;label']; 
P_details=[L;T;label']; 
% R=[R;label']; 
end 

Feature function 

% function [ asig1,msig1,csig1,kurt1,amck ] = feat( 

win_number,win_width,filtsig,label,samp ) 
function [ asig1,msig1,csig1,kurt1,amck ] = feat( 

win_number,win_width,filtsig,label ) 
%feat 
%Summary of this function 
%This function calculates the different Hjorth Parameter features 
% This function in turn calls the other functions Activity, Mobility, 
% Complexity and Kurtosis 
for j=1:21 
    asig=0; 
    msig=0; 
    csig=0; 
    kurt=0; 
    for i=1:win_number 
        frame = filtsig{1,j}(i:i+win_width); 
        [asig(i)]=activity(frame); 
        [msig(i)]=mobility(frame); 
        [csig(i)]=complexity(frame); 
        [kurt(i)] = kurtosis(frame); 
    end 
%     asig=[asig,zeros(1,samp)]; 
%     msig=[msig,zeros(1,samp)]; 
%     csig=[csig,zeros(1,samp)]; 
%     kurt=[kurt,zeros(1,samp)]; 
    amck{j}={asig,msig,csig,kurt}; 
    [asig1(j)]={asig}; 
    [msig1(j)]={msig}; 
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    [csig1(j)]={csig}; 
    [kurt1(j)]={kurt}; 
end 

  
asig1=[asig1;label']; 
msig1=[msig1;label']; 
csig1=[csig1;label']; 
kurt1=[kurt1;label']; 
amck=[amck;label']; 
end 

  

Channeldata Function 

function 

[Fc5,Fc3,Fc1,Fcz,Fc2,Fc4,Fc6,C5,C3,C1,Cz,C2,C4,C6,Cp5,Cp3,Cp1,Cpz,Cp2,Cp4,Cp6

]=channeldata( data ) 

%UNTITLED Summary of this function goes here 

%   Detailed explanation goes here 

Fc5=data{1,1}; 

Fc3=data{1,2}; 

Fc1=data{1,3}; 

Fcz=data{1,4}; 

Fc2=data{1,5}; 

Fc4=data{1,6}; 

Fc6=data{1,7}; 

  

C5=data{1,8}; 

C3=data{1,9}; 

C1=data{1,10}; 

Cz=data{1,11}; 

C2=data{1,12}; 

C4=data{1,13}; 

C6=data{1,14}; 

  

Cp5=data{1,15}; 

Cp3=data{1,16}; 

Cp1=data{1,17}; 

Cpz=data{1,18}; 

Cp2=data{1,19}; 

Cp4=data{1,20}; 

Cp6=data{1,21}; 

  

% Filtering the signal 

  
Fs = 160;           % Sampling Frequency 
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fn = Fs/2;          % Nyquist Frequency 
start = 13;        % Start Frequency 
stop = 31;          % Stop Frequency 
% waveletFunction = 'db8';  
% [Gamma,Beta,Alpha,Theta,Delta]=getBandfromeeg(Fc5,waveletFunction); 
W1 = start/fn; 
W2 = stop/fn; 
Wn=[W1 W2]; 
b=fir1(6,Wn,'bandpass'); 

  
Fc5f=filter(b,1,Fc5); 
Fc6f=filter(b,1,Fc6); 
Fc3f=filter(b,1,Fc3); 
Fc4f=filter(b,1,Fc4); 
Fc1f=filter(b,1,Fc1); 
Fc2f=filter(b,1,Fc2); 
Fczf=filter(b,1,Fcz); 

  
C5f=filter(b,1,C5)'; 
C6f=filter(b,1,C6)'; 
C3f=filter(b,1,C3)'; 
C4f=filter(b,1,C4)'; 
C1f=filter(b,1,C1)'; 
C2f=filter(b,1,C2)'; 
Czf=filter(b,1,Cz); 

  
Cp5f=filter(b,1,Cp5)'; 
Cp6f=filter(b,1,Cp6)'; 
Cp3f=filter(b,1,Cp3)'; 
Cp4f=filter(b,1,Cp4)'; 
Cp1f=filter(b,1,Cp1)'; 
Cp2f=filter(b,1,Cp2)'; 
Cpzf=filter(b,1,Cpz); 

  
filtsig={Fc5f,Fc3f,Fc1f,Fczf,Fc2f,Fc4f,Fc6f,C5f,C3f,C1f,Czf,C2f,C4f,C6f,Cp5f,

Cp3f,Cp1f,Cpzf,Cp2f,Cp4f,Cp6f}; 

  
end 
end 

Activity Function 

function [ act ] = activity( x ) 

%This function calculates the activity of the windowed EEG function 

%   This function basically calculates the varience of the signal 

act=var(x); 

end 

Mobility Function 

function [ mob ] = mobility( x ) 

 

d=diff(x); 

mob=sqrt((activity(d))/(activity(x))); 
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end 

Complexity Function 

function [ comp ] = complexity( x ) 

d=diff(x); 

comp=(mobility(d)/mobility(x)); 

end  

SVMclassifier Function 

function [trainedClassifier, validationAccuracy] = 

trainsvmClassifier(datasetTable) 
% Convert input to table 
datasetTable = table(datasetTable); 
datasetTable.Properties.VariableNames = {'column'}; 
% Split matrices in the input table into vectors 
datasetTable.column_1 = datasetTable.column(:,1); 
datasetTable.column_2 = datasetTable.column(:,2); 
datasetTable.column_3 = datasetTable.column(:,3); 
datasetTable.column_4 = datasetTable.column(:,4); 
datasetTable.column_5 = datasetTable.column(:,5); 
datasetTable.column = []; 
% Extract predictors and response 
predictorNames = {'column_1', 'column_2', 'column_3', 'column_4'}; 
predictors = datasetTable(:,predictorNames); 
predictors = table2array(varfun(@double, predictors)); 
response = datasetTable.column_5; 
% Train a classifier 
template = templateSVM('KernelFunction', 'linear', 'PolynomialOrder', [], 

'KernelScale', 'auto', 'BoxConstraint', 1, 'Standardize', 1); 
trainedClassifier = fitcecoc(predictors, response, 'Learners', template, 

'Coding', 'onevsone', 'PredictorNames', {'column_1' 'column_2' 'column_3' 

'column_4'}, 'ResponseName', 'column_5', 'ClassNames', [0 1 2]); 

  
% Perform cross-validation 
partitionedModel = crossval(trainedClassifier, 'KFold', 5); 

  
% Compute validation accuracy 
validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 

'ClassifError'); 

  
%% Uncomment this section to compute validation predictions and scores: 
% % Compute validation predictions and scores 
% [validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 

 

 


