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ABSTRACT
An analytical and computational framework for the derivation of soli-
tary solutions to biological systems describing the cooperation and
competition of species and expressed by the system of Riccati equa-
tions coupled with multiplicative terms is presented in this paper. It
is demonstrated that relationships between these solitary solutions
can be either direct or inverse. Thus, an infinitesimal perturbation of
one population would lead to an infinitesimal change in the other
population – if only both solitary solutions are coupled with the
direct relationship. But, in general, that is not true if solitary solutions
are coupled with the inverse relationship – an infinitesimal pertur-
bation of one population may result into a non-infinitesimal change
in the other population. Necessary and sufficient conditions for the
existence of solitary solutions are derived in the space of the system’s
parameters and initial conditions.
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1. Introduction

Cooperation and competition of species in biological systems described by nonlinear dif-
ferential equations has attracted the attention of researchers since the introduction of the
paradigmatic LotkaVolterramodel at the beginning of the twentieth century [5]. The inter-
est to transient nonlinear effects in competing populations has been also amplified by the
development of mathematical and computational techniques dedicated for the analysis of
solitary waves in the middle of the twentieth century. Many nonlinear models, includ-
ing the Korteweg-de-Vries equation, the nonlinear Schrödinger equation, the sine-Gordon
equation, the Lax equation, have been studied in the context of the existence and the qual-
itative description of solitary solutions in these systems [4,26]. The main objective of this
paper is to demonstrate that the existence of solitary solutions is also possible in a system
of coupled Riccati equations with the multiplicative term.

Coupling of two ordinary differential equations by multiplicative terms is a well-known
technique in mathematical models describing dynamics of biological systems. The mul-
tiplicative coupling term is used to describe the air-borne disease transmission rate (the
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mass action term) in the model of a microparasite in a host population with the Allee
effect [3,12,16].

Two nonlinear partial differential equations coupled with multiplicative terms are also
used to describe the spatio-temporal dynamics of a predator–prey system where the prey
per capita growth rate is subject to the Allee effect [14]. The assumption that per capita
mortality rate of prey and predator is equal and the rate of biomass production must be
consistent with the rate of biomass assimilation helps to simplify the model to a diffusive
predator–prey system coupled with multiplicative terms [13].

The travelling-wave reduction transforms this model into a coupled system of ordinary
differential equations [8]. The (G′/G) expansion method is used to construct analytical
solitary solutions to the coupled equations in [8].

A generalization of the (G′/G) method called the simplest equation method was pre-
sented in [9] and further extended in [1,10]. The simplest equation method is powerful
tool that is used to construct exact solutions (including solitary solutions) to nonlinear
differential equations that is based on the expression of the solution to the given nonlin-
ear differential equation using the simplest nonlinear differential equation [9]. The exact
solitary wave and periodic wave solutions to the Kuramoto–Sivashinsky equation are con-
structed in [9]. The simplest equationmethod has been applied to study pattern formation
processes on the semiconductor surfaces under ion beam bombardment [11]. The exact
solutions to the Painlevé equations are derived using the method in [1].

The modified simplest equation method, presented by Vitanov in [18,19], is a powerful
modification of the simplest equation method that can be used to construct exact solu-
tions to many nonlinear differential equations. The modified simplest equation method
is applied to obtain exact solutions to a family of nonlinear partial differential equations
(PDEs) containing the Kuramoto–Sivashinsky equation, reaction–diffusion equation with
density-dependent diffusion, and the reaction–telegraph equation in [24]. The travelling-
wave solutions to the generalized Rayleigh and Swift-Hohenberg equations are obtained
using the modified simplest equation method in [18]. The Bernoulli and Riccati simplest
equations are used to construct travelling-wave solutions for a class of nonlinear PDEs
with polynomial nonlinearity in [17]. Solitary wave solutions to differential equations
containing both odd and even grade monomials are investigated in [21].

Solitary wave solutions are an often observed physical phenomenon. It has recently
been shown that the dynamical system describing a two-layer immiscible fluid flow sub-
ject to horizontal harmonic vibrations has solitary solutions [2,6]. Solitary solutions of the
Zakharov–Kuznetsov equation used to describe the behaviour of weakly nonlinear ion-
acoustic waves in plasma comprising cold ions and hot isothermal electrons have been
recently considered in [27]. They are also observed in the modelling of dispersive shock
waves [7].

The solitary solutions to differential equations modelling population dynamics can be
constructed using the modified simplest equation method. It is demonstrated in [23] that
the exact nonlinear kink and solitary wave solutions to a model system of partial differen-
tial equations for description of the spatio-temporal dynamics of interacting populations
can be derived. Coupled kinkwaves in a system of two interacting populations inwhich the
reproduction and intensity of interaction depend on their spatial density are constructed
in [22]. Exact travelling-wave solutions to the reaction–diffusion and reaction–telegraph
equations that are used in ecology and population dynamics are obtained in [20]. The
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modified method of the simplest equation is used to solve issues from the dynamics of
interacting populations in [25].

As mentioned previously, the main objective of this paper is to derive necessary and
sufficient conditions for the existence of solitary solutions in the systemofRiccati equations
coupled with the multiplicative terms:

dy
dx

= A0 + A1y + A2y2 + λyz,

dz
dx

= B0 + B1z + B2z2 + μyz,
(1)

whereA2,B2 �= 0. The insight into the structure of solitary solutions to (1) and the relation-
ship between these solutions would be valuable for understanding nonlinear dynamical
processes in biological systems coupled with multiplicative terms and extend the existing
results on the dynamics of coupled population systems obtained by the modified simplest
equation method [20,22,23,25].

This paper is organized as follows. Riccati equation and its generalizations are dis-
cussed in Section 2; systems of Riccati equations and solutions to these systems are derived
in Section 3; direct and inverse relationships between solitary solutions are analysed in
Sections 4 and 5; concluding remarks are given in the final section.

2. The Riccati equation and its general solution

The Riccati equation with constant coefficients reads [15]:

dy
dx

= A0 + A1y + A2y2, (2)

where A0,A1,A2 ∈ C; A2 �= 0.
Riccati equation (2) can be rearranged into the canonical form:

dy
dx

= σ(y − y1)(y − y2). (3)

It is well known [15] that the general solution y = y(x, c, s) to (3) reads:

y(x, c, s) = y2(s − y1) exp(σy1(x − c)) − y1(s − y2) exp(σy2(x − c))
(s − y1) exp(σy1(x − c)) − (s − y2) exp(σy2(x − c))

, (4)

where x is the independent variable; s is the initial value of y at x= c:

y(c, c, s) = s;

σ = A2 and y1 �= y2 are two different roots of the polynomial A2y2 + A1y + A0. Note that
y(x, c, yk) = yk; k=1;2.
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Remark 1: Let the solution of Riccati differential equation (3) be given in the form:

y(x, c, s) = a exp(α(x − c)) − b exp(β(x − c))

â exp(α(x − c)) − b̂ exp(β(x − c))
,

where a, b, â, b̂,α,β ∈ C are the parameters of Riccati equation (3). Then the following
relationships hold true:

s = a − b

â − b̂
,

a
â

= y2,
b

b̂
= y1, σ = âb̂(β − α)

ab̂ − bâ
,

if ab̂ − bâ �= 0, â, b̂ �= 0 and â �= b̂.

3. Systems of Riccati differential equations

In this section we discuss the systems of two uncoupled and coupled Riccati differential
equations and the properties of their solutions.

Let us consider an uncoupled system of two Riccati equations in the canonical form:

dy
dx

= σ1(y − y1)(y − y2);

dz
dx

= σ2(z − z1)(z − z2).
(5)

Wewill assume that parameters of this system y1, y2, z1, z2, σ1, σ2 ∈ C and y1 �= y2, z1 �= z2,
σ1, σ2 �= 0.

Then the solution of the system (5) y = y(x, c, s); z = z(x, c, t) with Cauchy boundary
conditions y(c, c, s) = s; z(c, c, t) = t, where c ∈ C, reads:

y(x, c, s) = y2(s − y1) exp(σ1y1(x − c)) − y1(s − y2) exp(σ1y2(x − c))
(s − y1) exp(σ1y1(x − c)) − (s − y2) exp(σ1y2(x − c))

;

z(x, c, t) = z2(t − z1) exp(σ2z1(x − c)) − z1(t − z2) exp(σ2z2(x − c))
(t − z1) exp(σ2z1(x − c)) − (t − z2) exp(σ2z2(x − c))

, (6)

Note that there is one-to-one correspondence between (5) and (6) in the sense that
from (5) we construct (6) and vice versa, knowing the expressions (6) we can find all
parameters of the system (5).

We give two definitions.

Definition 3.1: We say that there is direct relationship between functions (6) if there exists
such constants α ∈ C \ {0} and β ∈ C such that for all x and c equality holds:

z(x, c,αs + β) = αy(x, c, s) + β . (7)

Definition 3.2: We say that there is inverse relationship between functions (6) if there exists
such constant γ ∈ C \ {0} such that for all x and c equality holds:

z
(
x, c,

γ

s

)
y(x, c, s) = γ . (8)
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Let us denote

α := z2 − z1
y2 − y1

, β := y2z1 − y1z2
y2 − y1

, (9)

Theorem 3.3: Let parameters of the system (5) be

σ1 = σ(z2 − z1), σ2 = σ(y2 − y1), σ ∈ C \ {0}, (10)

then

zk = αyk + β , k = 1, 2; (11)

and the solution (6) of the system (5) satisfies (7), i.e. there exists a direct relationship between
functions y and z when t = αs + β.

Proof: Relationships (11) we get directly from (9). The correctness of (7) we obtain by
using transformations:

z(x, c, t) = z2(t − z1) exp(σ (y2 − y1)z1(x − c)) − z1(t − z2) exp(σ (y2 − y1)z2(x − c))
(t − z1) exp(σ (y2 − y1)z1(x − c)) − (t − z2) exp(σ (y2 − y1)z2(x − c))

=
(αy2 + β)(αs + β − αy1 − β) exp(σ (y2 − y1)(αy1 + β)(x − c))

−(αy1 + β)(αs + β − αy2 − β) exp(σ (y2 − y1)(αy2 + β)(x − c))
(αs + β − αy1 − β) exp(σ (y2 − y1)(αy1 + β)(x − c))

−(αs + β − αy2 − β) exp(σ (y2 − y1)(αy2 + β)(x − c))

=
(αy2 + β)(s − y1) exp(σ (y2 − y1)αy1(x − c))

−(αy1 + β)(s − y2) exp(σ (y2 − y1)αy2(x − c))
(s − y1) exp(σ (y2 − y1)αy1(x − c)) − (s − y2) exp(σ (y2 − y1)αy2(x − c))

= α
y2(s− y1) exp(σ (y2 − y1)αy1(x− c))− y1(s− y2) exp(σ (y2 − y1)αy2(x− c))
(s− y1) exp(σ (y2 − y1)αy1(x − c))− (s − y2) exp(σ (y2 − y1)αy2(x − c))

+ β

= α
y2(s − y1) exp(σ (z2 − z1)y1(x − c)) − y1(s − y2) exp(σ (z2 − z1)y2(x − c))

(s − y1) exp(σ (z2 − z1)y1(x − c)) − (s − y2) exp(σ (z2 − z1)y2(x − c))

+ β = αy(x, c, s) + β .

�

Theorem 3.4: Let parameters of the system (5) be

σ1 = σ

y1
, σ2 = − σ

z2
, σ ∈ C \ {0}, (12)

and

y1z1 = y2z2 = γ , γ ∈ C \ {0}. (13)

Then the solution (6) of the system (5) satisfies (8), that is, there exists an inverse relationship
between functions y and z when ts = γ .
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Proof: Using relationships (12) and (13) the equality (8) can be obtained after some
transformations:

z(x, c, γ
s ) =

γ
y2

(
γ
s − γ

y1

)
exp

(
− σ

z2
γ
y1 (x − c)

)
− γ

y1

(
γ
s − γ

y2

)
exp

(
− σ

z2 z2 (x − c)
)

(
γ
s − γ

y1

)
exp

(
− σ

z2
γ
y1 (x − c)

)
−

(
γ
s − γ

y2

)
exp

(
− σ

z2 z2(x − c)
)

= γ
(y1 − s) exp

(
−σ

y2
y1 (x − c)

)
− (y2 − s) exp(−σ(x − c))

y2(y1 − s) exp
(
−σ

y2
y1 (x − c)

)
− y1(y2 − s) exp(−σ(x − c))

= γ
(y1 − s) exp(−σ1y2(x − c)) − (y2 − s) exp(−σ1y1(x − c))

y2(y1 − s) exp(−σ1y2(x − c)) − y1(y2 − s) exp(−σ1y1(x − c))

= γ
(y1 − s) exp(σ1y1(x − c)) − (y2 − s) exp(σ1y2(x − c))

y2(y1 − s) exp(σ1y1(x − c)) − y1(y2 − s) exp(σ1y2(x − c))
= γ

y(x, c, s)
.

�

Corollary 3.5: Let parameters of the system (5) satisfy (12) and (13) and σ �= 0. Then the
following equality holds true:

y1(z2 − z1) = z2(y1 − y2), (14)

Moreover, if

α := − γ

y1y2
, β := γ

(
1
y1

+ 1
y2

)
, (15)

then (7) holds true for all values of x and s when t = αs + β.

Proof: (14) follows directly from (12) and (13). (15) and (9) yield (11). Thus (7) holds
when (16) holds true. �

In other words, the inverse relationship (8) and the direct relationship (7) hold true
simultaneously if and only if (12), (13) and Cauchy initial conditions

t = γ

(
1
y1

+ 1
y2

− 1
y1y2

s
)
, (16)

hold true.

Remark 2: Note that in general case the direct relationship doesn’t imply the inverse
relationship. Furthermore, there exist other relationships between solutions (6) of the
system (5). We will not discuss other types of relationships since they don’t describe phe-
nomenons of coexistence of several dynamical systems, which can be expressed by solitary
solutions (6).
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Let us consider the coupled system of two Riccati equations:

dy
dx

= a0 + a1y + a2y2 + λyz,

dz
dx

= b0 + b1z + b2z2 + μyz.
(17)

Assume that a0, a1, a2, λ, b0, b1, b2, μ ∈ C and a2, b2, λ,μ �= 0. Suppose that func-
tions y = y(x, c, s) and z = z(x, c, t) with Cauchy boundary conditions y(c, c, s) = s and
z(c, c, t) = t is the solution of the system (17).

The following theorem holds true.

Theorem 3.6: The system (17) has a solution y = y(x, c, s), z = z(x, c, t) expressed in soli-
tary form (6) if and only if there is direct or inverse relationship between functions y
and z.

Proof: Necessity. Suppose that solutions y = y(x, c, s), z = z(x, c, t) of the system (17) are
expressed in the form (6). Then those functions at the same time are the solution of an
uncoupled system of Riccati equations, which can be written in this general form:

dy
dx

= A0 + A1y + A2y2,

dz
dx

= B0 + B1z + B2z2,
(18)

where A0,A1,A2,B0,B1,B2 ∈ C and A2,B2 �= 0.
Then from (17) and (18) for all x, s, t the following equalities hold true for functions

y = y(x, c, s), z = z(x, c, t):

A0 + A1y + A2y2 = a0 + a1y + a2y2 + λyz,

B0 + B1z + B2z2 = b0 + b1z + b2z2 + μyz.
(19)

or

z = A0 − a0
λy

+ A1 − a1
λ

+ A2 − a2
λ

y,

y = B0 − b0
μz

+ B1 − b1
μ

+ B2 − b2
μ

z.
(20)

Since both (19) and (20) must be true at the same time then we have two exclusive cases:
Case 1:

z = A1 − a1
λ

+ A2 − a2
λ

y,

y = B1 − b1
μ

+ B2 − b2
μ

z,
(21)

whenA0 = a0,B0 = b0, (A2 − a2)/λ = μ/(B2 − b2) = α and (A1 − a1)/λ = −(B1 − b1)/
(B2 − b2) = β , that is, functions y = y(x, c, s), z = z(x, c, t)have the direct relationship (7).
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Case 2:

z = A0 − a0
λy

,

y = B0 − b0
μz

,
(22)

whenA1 = a1,A2 = a2,B1 = b1,B2 = b2, (A0 − a0)/λ = (B0 − b0)/μ = γ , that is, func-
tions y = y(x, c, s), z = z(x, c, t) have the inverse relationship (8).

We note that other relationships between functions y = y(x, c, s), z = z(x, c, t), which
satisfy identities (19) and (20) do not exist. This proves the necessity part of the theorem.

Sufficiency. Assume that functions y = y(x, c, s), z = z(x, c, t) have the direct relation-
ship (7). Then we can write the system of two Riccati equations in canonical form:

dy
dx

= σ(z2 − z1)(y − y1)(y − y2) + λ(yz − αy2 − βy),

dz
dx

= σ(y2 − y1)(z − z1)(z − z2) + μ

(
yz − 1

α
z2 + β

α
z
)
,

(23)

from which we get the coupled system of two Riccati equations (17) in general form.
Similarly, let functions y = y(x, c, s), z = z(x, c, t)have the inverse relationship (8). Then

we have such system of two Riccati equations in canonical form:

dy
dx

= σ

y1
(y − y1)(y − y2) + λ(yz − γ ),

dz
dx

= −σ2

z2
(z − z1)(z − z2) + μ(yz − γ ),

(24)

from which we also get the coupled system of two Riccati equations (17) in general form.
This proves the sufficiency part. �

4. Direct relationship

Let (7) hold true. Then the second differential equation of the system (17) yields:

α
dy
dx

= b0 + b1(αy + β) + b2(αy + β)2 + μ(αy2 + βy). (25)

Elementary transformations reduce (25) into the form:

dy
dx

= 1
α

(b0 + b1β + b2β2) + 1
α

(b1α + 2b2αβ + βμ − αβλ)y

+ (b2α + μ − αλ)y2 + λyz. (26)

Then, necessary and sufficient conditions for (26) to coincide with the first differential
equation of the system (17) read:

b0 + b1β + b2β2 = a0α;

b1α + 2b2αβ + βμ − αβλ = a1α;

b2α + μ − αλ = a2,
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or, equivalently,

α = a2 − μ

b2 − λ
; β = (a1 − b1)(a2 − μ)

b2(a2 − μ) + a2(b2 − λ)
. (27)

Thus, the relationship (7) holds true if and only if:

a0α = b0 + b1β + b2β2, (28)

when a2 − μ, b2 − λ, b2(a2 − μ) + a2(b2 − λ) �= 0. If a2 − μ = 0, b2 − λ = 0 or
b2(a2 − μ) + a2(b2 − λ) = 0 then it would be either a degenerate case discussed below
or it would be a nonexistent case of solitary solutions. For this reason here and below we
assume that those expressions are not zeros and won’t discuss this anymore.

Corollary 4.1: The equality (28) can be written in a symmetrical form.

Proof: Let us denoteM = 1 − μ/a2, L = 1 − λ/b2. Then the equality (28) is equivalent to

LM(b1 − a1)(Ma1 + Lb1) − (M + L)2(Lb0b2 − Ma0a2) = 0. (29)

�

The system (17) can be rearranged into the direct canonical form (the algorithm for the
identification of parameters σ1, σ2, y1, y2, z1, z2 is given below):

dy
dx

= σ1(y − y1)(y − y2) + λ(yz − αy2 − βy);

dz
dx

= σ2(z − z1)(z − z2) + μ

(
yz − 1

α
z2 + β

α
z
)
.

(30)

Since yz − αy2 − βy = yz − (1/α)z2 + (β/α)z = 0 for all c and t = αs + β , the first
differential equation of the system (17) and the relationship (7) yield the differen-
tial equation (1/α)(dz/dx) = σ1((1/α)z − β/α − y1)((1/α)z − β/α − y2), which can be
rearranged into the form:

dz
dx

= 1
α

σ1(z − (αy1 + β))(z − (αy2 + β)) + μ

(
yz − 1

α
z2 + β

α
z
)
. (31)

The second differential equation of (30) must coincide with (31). Thus, α =
(z2 − z1)/(y2 − y1); β = (y2z1 − y1z2)/(y2 − y1); σ1/σ2 = (z2 − z1)/(y2 − y1), where
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z2 �= z1 and y2 �= y1. Let us introduce new parameter σ :

σ1 := σ(z2 − z1); σ2 := σ(y2 − y1); σ �= 0.

Then, (17) reads:

dy
dx

= σ(z2 − z1)(y2 − (y1 + y2)y + y1y2) + λ(yz − αy2 − βy),

dz
dx

= σ(y2 − y1)(z2 − (z1 + z2)z + z1z2) + μ

(
yz − 1

α
z2 + β

α
z
)
.

(32)

Now, (32) and (17) yield the algorithm for the determination of the unknown parame-
ters:

σ(z2 − z1) = a2b2 − λμ

b2 − λ
; σ(y2 − y1) = a2b2 − λμ

a2 − μ
;

y1 + y2 = (a1 + λβ)(b2 − λ)

λμ − a2b2
; y1y2 = a0(b2 − λ)

a2b2 − λμ
;

z1 + z2 = b1(a2 − μ) − μ(b2 − λ)β

λμ − a2b2
; z1z2 = b0(a2 − μ)

a2b2 − λμ
.

(33)

Example 1: Let us consider the system of coupled Riccati equations:

dy
dx

= −4 − 11
3
y + 4

3
y2 + yz,

dz
dx

= 9 − 29
2
z + 9

2
z2 − yz.

(34)

System’s parameters are: a0 = −4; a1 = − 11
3 ; a2 = 4

3 ; λ = 1; b0 = 9; b1 = − 29
2 ; b2 =

9
2 ; μ = −1. Then, according to (27) α = 2

3 and β = 5
3 . The constraint (28) holds true:

b2β2 + b1β + b0 = a0α = − 8
3 . Thus, (34) can be rearranged into the basic canonical

form. Now, according to (33), y1 + y2 = 1 and y1y2 = −2 (thus y1 = −1; y2 = 2). Anal-
ogously, z1 + z2 = 4; z1z2 = 3 what yields z1 = 1; z2 = 3. Also, σ1 = σ(z2 − z1) = 2;
σ2 = σ(y2 − y1) = 3. Thus, the basic canonical form reads:

dy
dx

= 2(y + 1)(y − 2) +
(
yz − 2

3
y2 − 5

3
y
)
,

dz
dx

= 3(z − 1)(z − 3) −
(
yz − 3

2
z2 + 5

2
z
)
.

Finally, the solution to (34) takes the solitary form

y(x, c, s) = 2(s + 1) exp(−2(x − c)) + (s − 2) exp(4(x − c))
(s + 1) exp(−2(x − c)) − (s − 2) exp(4(x − c))

,

z(x, c, t) = 3(t − 1) exp(3(x − c)) − (t − 3) exp(9(x − c))
(t − 1) exp(3(x − c)) − (t − 3) exp(9(x − c))

,
(35)

if and only if the following relationship among initial conditions holds true:

t = 2
3 s + 5

3 . (36)
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Figure 1. Numerical solutions to the system of coupled Riccati equations (34) at c = 0; sk = −1 +
3(arctan(0.5k)/arctan(10)); tk = 2

3 sk + 5
3 ; k = 0, 1, 2, . . . , 20.

The system of ordinary nonlinear differential equations (34) is integrated using numer-
ical techniques; results are illustrated in Figure 1. Solutions to the coupled system of Riccati
equations coincide with analytical solutions described by (35) because the constraint (19)
is kept in force: sk = −1 + 3(arctan(0.5k)/arctan(10)); tk = 2

3 sk + 5
3 ; k = 0, 1, 2, . . . , 20.

Note that y(x, 0, 2) = 2; z(x, 0, 3) = 3 at s=2; t=3 and y(x, 0,−1) = −1; z(x, 0, 1) = 1 at
s=−1; t=1.

The solution to (34) cannot be described by (35) if the relationship between initial
conditions (36) does not hold. This fact is illustrated in Figure 2. Thick solid lines rep-
resent the solution at c=0; s=1.9 and t=1 (the constraint (36) does not hold true). It
can be observed that limx→∞

(
y(x,0,1.9)
z(x,0,1)

)
= ( −1

1
)
, but the transient process is much more

complex than described by (35) – note the local minimum of z(x, 0, 1) at around x=0.2.
Dashed lines represent the solitary solution at c=0; s=1.9 and t = 21415 in Figure 2 (the
constraint (36) does hold then).

The validity of results can be double-checked by the following computational exper-
iment. We will construct approximate numerical solutions to (34) at c=0; sk = −1 +
0.015k; tl = 1 + 0.01l; k, l = 0, 1, . . . , 200 using constant step forward marching tech-
niques. Let us denote approximate solution ỹ(jh); z̃(jh); j = 0, 1, 2, . . . where h is the step
size. The exact analytical solution (35) is defined on the parameter line (36) in the phase
space of initial conditions. But we release the constraint (36) and assume that the solu-
tion (35) is valid throughout the plane of initial conditions. Using RK2 method we travel
100 steps (h=0.1) from starting point x= c with the preselected pair of initial values y= s
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Figure 2. Solutions to the system of coupled Riccati equations (34) cannot be described by (35) if the
constraint (36) is not in force. Thick solid lines represent the non-solitary solution at c= 0; s= 1.9 and
t= 1. Dashed lines represent the solitary solution at c= 0; s= 1.9 and t = 2 14

15 .

Figure 3. The distribution of ε(s, t) for the system of coupled Riccati equations (34) at c= 0; sk = −1 +
0.015k; tl = 1 + 0.01l; k, l = 0, 1, . . . , 200.

and z= t and compute differences between the approximate numerical solution and the
exact solution (35). Adding absolute differences for 100 steps produces an error estimate:

ε(sk, tl) =
100∑
j=1

(|ỹ(jh) − y(jh, 0, sk)| + |z̃(jh) − y(jh, 0, tl)|). (37)

The distribution of ε(s, t) is shown in Figure 3; numerical values of ε(s, t) higher than 1
are truncated to 1 in order to make the figure more comprehensive. It is clear that errors
are almost equal to zero on the line 3t=2s+5.
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5. Inverse relationship

Suppose that the solution to (17) satisfies condition (8). Then, the second differential
equation of the system (17) yields:

dy
dx

= −(b2 + λ)γ − b1y −
(
b0
γ

+ μ

)
y2 + λyz. (38)

Necessary and sufficient conditions for (38) to coincide with the first differential
equation of the system (17) read: −(b2 + λ)γ = a0; −b1 = a1; −(b0/γ + μ) = a2. Then,
necessary and sufficient conditions for the condition (8) to hold true reads:

b1 = −a1; b0(b2 + λ) = a0(a2 + μ). (39)

The parameter γ can be determined from the equality:

γ = − a0
b2 + λ

= − b0
a2 + μ

.

Then, (17) can be rearranged into the inverse canonical form:

dy
dx

= σ1(y − y1)(y − y2) + λ(yz − γ ),

dz
dx

= σ2(z − z1)(z − z2) + μ(yz − γ ).
(40)

Since the equality yz = γ holds for all x, c, s and t, the first differential equation of the
system (40) and the equality (8) yield:

dz
dx

= −σ1

γ
(γ 2 − (y1 + y2)γ z + y1y2z2), (41)

which can be rearranged into the following form:

dz
dx

= −σ1y1y2
γ

(
z2 −

(
γ

y1
+ γ

y2

)
z + γ

y1
γ

y2

)
+ μ(yz − γ ). (42)

The second equation of the system (40) is equivalent to (42). Therefore,

σ2 = −σ1y1y2
γ

; z1 = γ

y1
; z2 = γ

y2
.

Finally, the algorithm for the determination of unknown parameters σ1, y1 and y2 reads:

σ1 = a2; y1y2 = −γ
b2
a2

; y1 + y2 = −a1
a2

. (43)

Then, the solution to (40) reads:

y(x, c, s) = y2(s − y1) exp(σ1y1(x − c)) − y1(s − y2) exp(σ1y2(x − c))
(s − y1) exp(σ1y1(x − c)) − (s − y2) exp(σ1y2(x − c))

;

z(x, c, t) = z2(t − z1) exp(σ2z1(x − c)) − z1(t − z2) exp(σ2z2(x − c))
(t − z1) exp(σ2z1(x − c)) − (t − z2) exp(σ2z2(x − c))

,

if and only if t = γ /s. Note that this is the same solution as (6) except it has the constraint
t = γ /s.
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Example 2: Let us consider the system:

dy
dx

= 2 − 6y + 2y2 + yz,

dz
dx

= −2 + 6z − 2z2 − yz.
(44)

System’s parameters are: a0 = 2; a1 = −6; a2 = 2; λ = 1; b0 = −2; b1 = 6; b2 = −2;
μ = −1. Conditions (39) hold true and thus this system can be rearranged into the inverse
form. Thus, γ = 2; y1 = 1; y2 = 2; z1 = 2; z2 = 1, σ1 = 2, σ2 = −2. Then the inverse
canonical form of (44) reads:

dy
dx

= 2(y − 1)(y − 2) + yz − 2,

dz
dx

= −2(z − 2)(z − 1) − (yz − 2).
(45)

The solution to (45) reads

y(x, c, s) = 2(s − 1) exp(2(x − c)) − (s − 2) exp(4(x − c))
(s − 1) exp(2(x − c)) − (s − 2) exp(4(x − c))

,

z(x, c, t) = (t − 2) exp(−4(x − c)) − 2(t − 1) exp(−2(x − c))
(t − 2) exp(−4(x − c)) − (t − 1) exp(−2(x − c))

,
(46)

if and only if

t = 2
s
. (47)

Note that z(x, c, 2/s) = 2/y(x, c, s). The inverse relationship between y and z can be seen
in Figure 4. The validity of results can be double-checked by the following computa-
tional experiment. We will construct approximate numerical solutions to (44) at c=0;
sk = 1 + 0.005k; tl = 1 + 0.005l; k, l = 0, 1, . . . , 200 using constant step forward march-
ing techniques. Let us denote approximate solution ỹ(jh); z̃(jh); j = 0, 1, 2, . . . where h is
the step size. The exact analytical solution (46) is defined on the parameter line (47). But
we release the constraint (47) and assume that the solution (46) is valid throughout the
plane of initial conditions. Using RK2 method we travel 100 steps (h=0.1) from starting
point x= cwith the preselected pair of initial values y= s and z= t and compute differences
between the approximate numerical solution and the exact solution (46). Adding absolute
differences for 100 steps produces an error estimate ε(s, t) (37). The distribution of ε(s, t)
is shown in Figure 5; numerical values of ε(s, t) higher than 5 are truncated to 5 in order
to make the figure more comprehensive. It is clear that errors are almost equal to zero on
the curve t = 2/s.

Note that direct relationship also exists in Example 2 (according toCorollary 3.5). Equal-
ity (27) yields α = −1 and β = 3 (condition (28) holds true then). Equalities (33) yield
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Figure 4. Numerical solutions to the system of coupled Riccati equations (44) at c = 0; sk = 1 + k/20;
tk = 2/sk ; k = 0, 1, . . . , 20.

Figure 5. The distribution of ε(s, t) for the system of coupled Riccati equations (44) in the inverse
canonical form at c= 0; sk = 1 + 0.005k; tl = 1 + 0.005l; k, l = 0, 1, . . . , 200.

y1 = 1; y2 = 2; z1 = 2; z2 = 1. Then the canonical form reads:

dy
dx

= (y − 1)(y − 2) + (yz + y2 − 3y),

dz
dx

= −(z − 2)(z − 1) − (yz + z2 − 3z),

and solitary solutions are:

y(x, c, s) = 2(s − 1) exp(x − c) − (s − 2) exp(x − c)
(s − 1) exp(x − c) − (s − 2) exp(x − c)

,

z(x, c, t) = (t − 2) exp(−2(x − c)) − 2(t − 1) exp(−(x − c))
(t − 2) exp(−2(x − c)) − (t − 1) exp(−(x − c))

,
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Direct relationship

z(x, c, t) + y(x, c, t) = 3,

exists between these solitary solutions when initial conditions do satisfy the constraint
t+s=3.

6. Concluding remarks

The main objective of this paper is to present an analytical and computational framework
for the derivation of solitary solutions to the system of Riccati equations coupled with
multiplicative terms. It is shown that solitary solutions can exist in the space of system’s
parameters and initial conditions. Moreover, these solitary solutions can be oriented in a
direct or an inverse relationship – necessary and sufficient conditions for this orientation
are derived in the explicit form (Equalities (28) and (39)).

The existence of direct and inverse relationships between solitary solutions implies other
important properties of the coupled system of Riccati equations. As mentioned inSection
1, the coupled system of Riccati equations with multiplicative terms can be used for the
description of the dynamics of biological systems where y(x) and z(x) describe two com-
peting populations. Thus, an infinitesimal perturbation of one population would lead to
an infinitesimal change in the other population – if only both solitary solutions are cou-
pled with the direct relationship. But, in general, that is not true if solitary solutions are
coupled with the inverse relationship – an infinitesimal perturbation of one population
may result into a non-infinitesimal change in the other population. And though we do not
try to speculate regarding the biological interpretation of such effects (such interpretations
would be a definite objective of the future work), such consequences are interesting from
purely theoretical point of view.
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