
1

KAUNAS UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL AND ELECTRONICS

ENGINEERING

AKSHAY RAGHUNATH AVHAD

INVESTIGATION OF IoT (INTERNET OF THINGS)

APPROACH TO DATA EXCHANGE AND

VISUALIZATION IN MES & ERP INTEGRATION

 KAUNAS, 2016

Supervisor

 Prof. Gintaras Dervinis

2

 KAUNAS UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL AND ELECTRONICS

ENGINEERING

INVESTIGATION OF IoT (INTERNET OF THINGS)

APPROACH TO DATA EXCHANGE AND

VISUALIZATION IN MES & ERP INTEGRATION

Final project for Master degree

621H66001 CONTROL TECHNOLOGIES

Supervisor

 Prof. Gintaras Dervinis

(date)

Reviewer

Prof. Dr. Leonas Balaševičius
(date)

Project made by

Akshay Avhad
(date)

KAUNAS, 2016

3

KAUNAS UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL AND ELECTRONICS ENGINEERING

 Akshay Avhad

621H66001 CONTROL TECHNOLOGIES

INVESTIGATION OF IoT (INTERNET OF THINGS) APPROACH TO DATA

EXCHANGE AND VISUALIZATION IN MES & ERP INTEGRATION

DECLARATION OF ACADEMIC HONESTY

 / /2016

Kaunas

I confirm that a final project by me, Akshay R. Avhad, on the subject "INVESTIGATION OF IoT

(INTERNET OF THINGS) APPROACH TO DATA EXCHANGE AND VISUALIZATION IN

MES & ERP INTEGRATION” is written completely by myself; all provided data and research

results are correct and obtained honestly. None of the parts of this thesis have been plagiarized from

any printed or Internet sources, all direct and indirect quotations from other resources are indicated

in literature references. No monetary amounts not provided for by law have been paid to anyone for

this thesis.

I understand that in case of a resurfaced fact of dishonesty penalties will be applied to me

according to the procedure effective at Kaunas University of Technology.

(name and surname filled in by hand) (signature)

4

Avhad A. Investigation of IoT (Internet of Things) Approach to Data Exchange and

Visualization in context of MES & ERP Integration. M.Sc Control Systems final project / supervisor

Prof. Dr. Gintaras Dervinis; Kaunas University of Technology, faculty of Electrical & Electronics

Engineering, department of Automation.

Kaunas, 2016. XX p.

SUMMARY

This research study presents a methodology to optimize production process for manufacturing

industries. An ethical and technical approach is suggested for information transfer between control

or process layer and top layer business system. System Integration of ERP (Enterprise Resource

planning) and Process layer is achieved through a key element called Manufacturing Execution

system (MES). This article will enlighten upon how the enterprise resource in an overall success of

resource optimization, production, and management.

Integration of MES and ERP is a key to information transfer in context of ISA-95 standards.

Industry 4.0 focus about an implementation of IoT (Internet of Things) in smart manufacturing

practices. In a global enterprise scenario, ERP systems are distributed over the world. ERP systems

do not belong to just single enterprise, it could be a cluster of partner companies comprising of

multiple suppliers and consumers. SaaS (Software as a Service) cloud architecture enables to offer

fully developed application as a service to the client users. Multi-tenant architecture is analyzed to

serve the needs of multi-enterprises scenario. Provider or supplier entity along with consumer client

entity, are considered as tenant model on a company multi user scale. A prototype of such system

was developed with a Grails framework based on java based on servlet API of J2EE and SPRING

framework under the hood. A degree of development to support a described multi-tenant application

has been evaluated in the Grails framework.

Big Data analytics also play a role in visualizations for optimization of the production process. An

example of SYSLAB grid using an open source visualization library “D3.js” based on HTML5 and

JavaScript using connected components algorithm is explained.

Keywords— MES, ERP, System Integration, Business system, ISA 95, Industry 4.0, IoT, J2EE,

SPRING, SYSLAB

5

ACKNOWLEDGEMENT

I would first like to thank my thesis supervisor Prof. Gintaras Dervinis, Head of Department of

Automation at Kaunas University of technology. Prof. Dervinis has always portrayed faith in me

right from topic selection to choosing a path to carry out research flow. He consistently motivated

me to steer in direction which was difficult for me to pursue unless a considerable amount of

freedom had been granted.

I would like to express profound gratitude to Systec & Services GmbH, Karlsruhe, Germany for

inviting me to work on this research topic. Special thanks to Mr Jens Lukas, Director Development,

Systec & Services who always guided me through difficult implementations and concepts; and was

always available whenever I ran into trouble spot or had a question about my research.

Akshay Avhad

6

Table of Contents

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 2

2.1 Enterprise Resource planning ... 2

2.2 ISA model governing control & information system ... 3

2.3 Integrated and Flexible MES based on Agents and SOA .. 5

2.4 Manufacturing Execution Systems for Sustainability .. 6

2.5 Software selection for using manufacturing shop-floor data in MPCS .. 6

2.7 BASIC INTEGRATION MODEL ... 8

3. Industry 4.0 .. 9

3.1 SMART Manufacturing with Internet of Things (IoT) .. 10

3.2 Implementation of Industry 4.0 for Manufacturing .. 13

4. DATA EXCHANGE FRAMEWORK FOR MES & ERP INTEGRATION... 15

4.1 Cloud application ... 15

4.2 MULTITENANCY IN SAAS .. 18

4.3 Application Development .. 23

1.3.1 Grails Framework ... 23

4.3.2 Class loading in J2EE context ... 24

4.3.3 Class loading in context of Web application ... 25

4.3.4 Tenant Specific Class in Grails ... 26

4.3.5 Multi-client tenant architecture ... 27

4.3.6 BASE FRAMEWORK .. 28

4.3.7 Controlling the application flow.. 29

4.3.8 Accessing the Framework Business logic From Tenant specific classes .. 30

4.3.9 Service handling of Tenant Specific classes ... 32

4.3.10 No SQL database Solution .. 33

4.3.10.1 MongoDB NoSQL Solution ... 33

4.3.11 GORM MONGO DB PLUGIN ... 34

4.3.12 Authentication for multi-client Tenancy using Spring Security core plugin 35

4.3.13 MES integration with Quartz Plugin ... 36

4.4 Results & Discussions .. 37

5. BIG DATA AND VISUALIZATIONS ... 39

7

5.1 Graph visualization using D3 ... 40

5.2 JavaScript as development language .. 40

5.3 Static Topology Visualization: ... 40

5.4 Implementation in D3 Library .. 41

5.5 Results .. 46

5.6 Discussion and Future Work .. 47

6. CONCLUSIONS .. 50

7. REFERENCES ... 51

1

1. INTRODUCTION

Demand for manufacturing production has been ever increasing day by day with growing needs of

the exploding population. Food production itself has to grow [1] by 70 % by 2050 than today to

maintain supply need. Food processing industry has to indulge into optimal production to increase

processed food. This is possible with efficiency in supply of raw material to the processing facility

in order to avoid wastage; food industry is most prone to wastages due to inefficiency in value

chain. Pharmaceutical industry for instance has biggest challenge of adopting serialization standards

to overcome counterfeiting in market through exposing vulnerabilities in the supply chain from

provider to consumer companies and eventually to the retail partners. In developing countries like

India, this is an immense challenge in due to lack in economic freedom and lack of regulation with

regards to need of manufacturing of domestic market.

 Manufacturing Industry is a stack with layers consisting shop floor itself comprising of all sub

production units, business executives who regulates the key decision depending on the market need,

and a sandwiched layer which binds the lower factory floor to top enterprise system called as

manufacturing execution system (MES). In context to single enterprise these 3 layers are sufficient

to drive supply chain or value chain. Industries are already into globalization scenario where an

enterprise may have production factory units placed all over the world and the executives operating

through a central location. This makes the supply chain dispersed over the globe, with multiple

providers/suppliers and multiple OEM consumers.

Internet of Things (IoT) has already been seen as driving force in manufacturing for future. The

concept of bringing manufacturing information on internet leads is very important aspect in

implementing smart manufacturing. Industry 4.0 is the term for the combination of smart

manufacturing and IoT. Cloud computing is a hot topic especially in commercial IT applications,

web application are proving efficient in sharing information through cloud servers. Manufacturing

scenario too can incorporated with this technology, which will give an advantage in data exchange

on global scale, transparency in manufacturing practices and modularity. Industry 4.0 talks about

Big Data application in cloud computing and data analytics to form an intelligent manufacturing

environment.

2

2. LITERATURE REVIEW

2.1 Enterprise Resource planning

 Enterprise Resource Planning (ERP) [2] is such an important tool, which helps the company to gain

competitive edge by integrating all business processes and optimizing the resources available.

Companies that implement solutions that take advantage of these accepted standards can more

easily integrate their disparate systems and gain better visibility and coordination between the

enterprise and execution layers. Companies that have successfully integrated the ERP with the shop

floor are realizing faster cycle times, higher throughput, better quality and improved decision

making for a significant competitive advantage. Management needs to know about activity on the

plant floor while manufacturing needs up-to-date information on demand changes to help develop

and optimize their schedules. Information at the ERP gives manufacturers the vantage point to make

the appropriate changes based on what is happening on the plant floor to improve the overall

efficiency of the operation.

Application of ERP has benefitted manufacturing industry in following through:

1. Lower cost in total supply chain: Effective decision making on enterprise level has

benefitted in reducing loss in production.

2. Shorten throughput times

3. Reduce stock to minimum: Reduction piling up stock due to integrated

4. Enlarge product assortment

5. Improve product quality

6. Provide more reliable delivery dates and higher services to consumer

7. Efficiently coordinate global demand, supply and production.

In the fig 2.1 below ERP is the Information top layer in the manufacturing pyramid, MES and

production layer are more in manufacturing context.

Fig 2.1shows manufacturing pyramid [30]

ERP

MES

SHOP FLOOR

3

2.2 ISA model governing control & information system

ISA-88

ISA-88[3] model defines methodology for streamline and efficient production control through a

uniform universal structure. Originally being developed for batch control process later has been

implemented for continuous and discrete processes too. Basically s88 standard improves production

process which is concerned with the layers 0, 1, 2 on manufacturing operational layer.

S88 defines workspace for recipe and equipment. Process engineers have responsibility of running

the recipe while the control engineer has to make sure of the proper equipment operation. S88

defines the role of different sects in production. It provides guidelines for normal operation and

abnormal condition exception handling in most cases comprises larger and critical part of program.

S88 eases and clears the way for communication between vendors and customers.

Need for S88 standard because of following factors:

1. There was a lack of a universal model for batch control.

2. Users had difficulties in communicating their batch processing requirements.

3. Engineers found it very hard to develop integrated solutions with equipment of different

vendors.

4. Engineers and end-users had configuration problems for batch solutions.

2.2.2 ISA 95

The ANSI/ISA-95 [4] standardizes data exchange between MES and ERP business layer and proves

to be efficient model for integration between both the models.

ISA-95 is the international standard for the integration of enterprise and control systems. ISA-95

consists of models and terminology. These can be used to determine which information, has to be

exchanged between systems for sales, finance and logistics and systems for production,

maintenance and quality. This information is structured in UML models, which are the basis for the

development of standard interfaces between ERP and MES systems. The ISA-95 standard can be

used for several purposes, for example as a guide for the definition of user requirements, for the

selection of MES suppliers and as a basis for the development of MES systems and databases. It

standardizes the exchange of information between ERP systems and MES systems.

4

2.2.3 Integration of ISA-95 and ISA-88

From the discussion [5] on scope of influence of SA-88 and SA-95, it is very much clear that level -

0, 1 and 2 are defined with ISA-88. MES and Business layer are governed by the principles of ISA-

95. Integration of MES and ERP is very much dependent on the handshaking of both the models on

functional level as shown in Fig 2.2.

Fig 2.2 Illustrating integration boundaries for ISA-95 and ISA-88

To move in the direction of integration for MES, the need for specifications of ISA88 and ISA95

model has been compared in following table 2.1

Table 2.1 to evaluate difference between ISA-88 and ISA-95[27]

ISA-88 model / concept

ISA-95 model / concept

Physical model

Equipment Hierarchy model

Control Activity model

Activity model of Production Operations

Management

General, Site, Master & Control Recipes Product Definition Information &

Product Definition

Management

5

Batch Production Records Production Performance Information &

Production Data

Collection & Tracking

2.3 Integrated and Flexible MES based on Agents and SOA

This article [6] introduces integration of MES based on Agency and SOA (Service Oriented

Architecture) along with legacy (old) systems without compromising on interoperability of MES

system.

 Based on task agencies, MES layer can be categorized into 9 different agencies:

Fig 2.3 Illustrating software agents key [28]

Fig 2.4 Shows integration solution using software as an agent [28]

All the Adapter agents are key components in integrated ERP, legacy systems operating as a whole

system. This system provides an instant plug and play function. Efficient integration using an

Adapter Agent is designed to perform the integration of legacy systems with MES. The Web

Service is adopted to realize the communication between agents and the Market Mechanism is

adopted to serve as control for interaction behaviour among agents.

6

2.4 Manufacturing Execution Systems for Sustainability

MES [7] has not been only looking towards conventional production issues but instead developed

towards sustainable production too, and this paper introduces this specifically. The sustainable term

was introduced in 1980 in OECD (Organization for Economic Cooperation and Development). The

idea of this is to maintain production for present at the same time without compromising the needs

of future energy. MES guides production process, initiates it and responds to critical plant activities.

Apart for this MES has also a role in following factors:

1. Accuracy in data;

2. Significant resource management;

3. Information and planning capabilities to reduce waste;

4. Management of raw materials and resources;

Reduction in energy usage and other sustainable goals needs information from production chain in

process to operational control system in order to provide energy integration. Resource utilization

and efficient optimization are key factors in gaining sustainability. Also finding goals on plant

specific, industry specific in reducing waste of valuable raw materials is important aspect.

Sustainability in MES can be achieved by implementing following points:

1. Automation of process lines.

2. Maximizing resource utilization

3. Effective scheduling and eliminating wastage of resources.

4. Use of SCADA (Supervisory Control and Data Acquisition) boosts production efficiency by

6 percentages.

2.5 Software selection for using manufacturing shop-floor data in MPCS

This article [8] about MES confines role basically in Business process and Manufacturing Process,

these two domains will determine the effectiveness and success rate of it. Software selection by far

depends on following criteria:

1. Type of the industry that requires such system like Oil & gas, Food & beverages etc.

2. Global reach of the company in terms of production facilities.

3. Number of users associated with the manufacturing process.

4. Functionality required in the context of manufacturing data and interface.

7

MES implementation has to be carried with software and hardware installation in phase wise

manner or in group. This has to include professionals from different sectors to carry out classified

task along with active involvement of I.T vendor.

Different Vendors can be found in market to carry industry specific MES implementation that

includes technologies from Rockwell Automation, Siemens, Invensys (Wonderware), SAP etc.

Component of MES includes following factors:

1. Resource management.

2. Equipment maintenance/management.

3. Manufacturing Execution/Control.

4. Dynamic Routing.

5. Traceability.

6. MES master data management

Bottlenecks of Implementation of MES:

1. User resistance to changes in manufacturing and execution system

2. Time constraint for training of such huge system

3. Integration of legacy systems, with data source or communication protocol.

MES database system has to work in bidirectional, at one with business level data management

system including SAP, Oracle, Microsoft database (SQL, MS Access etc.) and on the other hand

with the shop floor database devices comprising of historian server, SQL, live servers. Shop floor

data acquisition system is to gather production information from shop floor in order to support

management planning, monitoring, and decision making. Barcode system are early method of

tracking raw material , production data with rectangular bars with numeric or alphanumeric data

associated with unique entity. Radio Frequency Identification (RFID) is a bidirectional

communication with the RFID tag. On the one hand, it gets the stored data in the RFID tag and

sends the received data to the further processing and on the other hand, the reader writes the data

into the RFID tag.

 The objective of this paper was to not find the perfect software vendor for MES application, but

instead design a pathway to efficiently introduce the needs and importance of having such in order

to increase production and sustainability.

8

 2.7 BASIC INTEGRATION MODEL

A basic model with integration of ISA-88 and ISA-95 has been evaluated as shown in fig 2.5 with the

understanding of the literature referred on ERP and MES with application of ISA-95 and ISA-88

respectively.

Fig 2.5 Illustrating integration model in context of manufacturing pyramid

9

3. Industry 4.0

A German government has promoted initiative known as “Industrie 4.0” projected towards smart

manufacturing in future. Industry 4.0 talks about incorporating a paradigm shift in technological

culture in manufacturing industries to about need of efficiency in production for future needs and

also to ease the manufacturing companies develop fragility to reflect change in important policy

making through the political decision making of the state. In short Industry 4.0 talks about industry

to get ready for the needs of upcoming changes required in world in terms of not only technology as

thing but also as efficient practice of that technology. Manufacturing industries faces a lot of

backlash in terms of ever changing policy on global scenario to remain competitive and follow best

ethical standards. [9]

A concept of smart factory where the devices from the production facility would be able to

communicate with each other is desirable. Automation control system like PLC / DCS systems

monitor and regulate these devices currently in Industry 3.0 that is advancement of electronics and

Information Technology for automation. These two driving aspects are needed to be combined well

together to form clusters of well intact technologies. Decision making is one the important scenario

towards making smart or intelligent factories. Intelligent systems have four aspects i.e. sensing or

feedback, learning, decision making and control. Today’s automation has well advanced in terms of

sensory control, and decision making up to a certain level of intelligence or knowledge extracted

from the sensory data. Complex decision making calls for the application of “Big data” analytics

and cloud computation where a huge network of data is available to every corner of the

manufacturing unit that can take decisions without a human intervention. As a result manufacturing

systems are integrated from the production layer to business process layer with horizontal

integration of similar such production facilities.

Features of Industry 4.0: [9]

1. Interoperability: Efficient interaction between the human operators and computer driven

machines also called as cyber physical system.

2. Virtualization: Virtual copy of the manufacturing unit helps in simulating the production

facility through soft sensors that can assist in prediction and models.

3. Decentralization: Discrete decision making throughout the facility to reduce load on specific

unit or Business entities.

4. Real Time Capability: Integration of Business process and MES will help in supplying

important real time information to business process.

5. Service orientation :

10

6. Modularity: Ability to be flexible to bring out modifications in the future expansion or up

gradation.

3.1 SMART Manufacturing with Internet of Things (IoT)

Integrating machines horizontally over the manufacturing process create a huge network that lead to

enormous amount of data over the entire value chain. This data is extracted into information and

eventually into knowledge from the Meta data. In the fig 3.1 showing an extraction of important

related concept on every level, Data is the bulk of all facts and event occurred during and process.

With extraction of relationships among the keys in data, information is generated with such

interlinking the keys from the ocean of data. With efficient extraction from information layer, Meta

information is gathered which eventually helps in gaining knowledge of the process. The uppermost

layer wisdom is the epitome of understanding of the knowledge of the process. This will be able to

achieve through cyber physical systems, one of the important feature of Industry 4.0.

Fig 3.1 Illustrating Data Knowledge Pyramid [10]

IoT in the form of cloud computing and Big data analytics will help manufactures make smarter

decisions and increase efficiencies in production. Concept of Smart manufacturing demands for the

integration of productions units to business entities; such as MES, MRP (Manufacturing Resource

Planning) integration with ERP, SCM (Supply chain management).

11

IoT has several possibilities of improvements within process in manufacturing that includes:

1. Factory Visibility: IoT and Industrial network forms cloud of network from the factory

production floor affiliated to ISA 88 standard to ERP based systems and the partner chain

network. A plant manager could be able to access the production from the sensors and

actuator devices on a thin mobile device that will help him to evaluate proper action in

response. The data cannot just be served to the production domain but also the ERP based

business person through the web browser that can help him access over the World Wide

Web. Rockwell automation has global visualization software tool called Factory Talk

vantage point that helps in reducing downtime and visualizations for hierarchy of factory

people from operators, supervisors and directors with differentiated visualizations templates

available.

Freedom in accessing the real time information and not just confined to a control room or a

dedicated facilities for information sharing will put an ease in control and supervision of the

facility. The more use of mobile technology will result in the reduction in time for the

responsive action execution. The extension of visibility beyond the enterprise level,

suppliers group and third party providers of services, consumers add to the decision making

efficiency in the globalized market scenario. IoT will enable these global entities to be

involved in the direct operation and maintenance with additional services that will create an

entire new paradigm of relationships between manufacturers and suppliers.

2. Automation: Conventional control system is aggregation of PLC/PAC of various small

systems that account for specific control and automation. On a larger scale these controllers

are combined to form a network of distributed control system, but the distributed control

system have a limitation of production unit location and cannot be extend beyond a certain

distance. IoT with help of IP network generate a possibility of connecting these DCS

systems located over distant places over the globe providing connectivity and information

sharing over the partner business networks. As the sensors actuators and other machines are

connected over through IoT, the huge cloud of information can be utilized to automate

workflows for maintenance and optimize production with cyber physical systems.

3. Energy Management: Energy accounts to the huge share of consumable resources in any

production facility, every industry has separate utility section to monitor and control power

12

system to the facility. Modern manufacturing demands for the investment efficiency in the

power consumption. A lot of software’s are available in this context to efficiently manage

power and energy systems through modelling and management tools across the supply

chain. IoT and automation can help in number of ways to reduce wastage and consumption

in HVAC and electrical power. Interconnection of such energy management systems can

help in adjusting the utility to be ready for peak demand through learning from big data. IoT

enabled HVAC systems are capable of incorporating weather information and prediction

tool to assist manufacturing industries in avoid unwanted expenses and plant energy need.

4. Proactive Maintenance: Preventative and conditional monitoring have been widely

accepted but has been in progress from many manufacturers. Cost efficient sensors, wireless

connectivity and visualizations on big data make its cost effective and efficient to retrieve

real time data on monitor the equipment health. Manufacturer can be able to prevent

equipment damages that has certain working operating conditions, for e.g. a sensor that can

work in span of limited temperature range can be prevented from malfunctioning due to

active monitor by a group of operators having access to the information of real time data.

Similarly vibration parameter can be another example causing wear and tear of the

equipment. Loss of such highly valued sensors and devices can put in huge cost deficiency

for any business. OEE (overall equipment effectiveness), is one of the effective tool in

reducing down time of the plant, eventually saving money by reducing production loss and

allowing the company to undertake maintenance as per schedule.

5. Connected Supply Chain: Without a moment to spare assembling isn't another idea,

however IoT, investigation and IP systems will help makers pick up a superior

comprehension of the inventory network data that can be conveyed in real-time. By

interfacing the generation line and adjust of plant gear to suppliers, all gatherings can

comprehend interdependencies, the stream of materials, and assembling process durations.

IoT empowered frameworks can be designed for area following, remote wellbeing checking

of stock, and reporting of parts and items as they travel through the production network,

among numerous different things. IoT frameworks can likewise gather and nourish

conveyance data into an ERP framework; giving cutting-edge data to bookkeeping

capacities for charging. Constant data access will help producers distinguish issues before

they happen, bring down their stock expenses and possibly decrease capital necessities.

13

3.2 Implementation of Industry 4.0 for Manufacturing

We have seen IoT in manufacturing demands incorporating huge technological aspects and not a

just a handful of them. Laying foundation for implementing IoT in manufacturing calls for at least

four technologies described below.

3.2.1 Network

According to a cisco research only 4 percentages of all the devices on manufacturing world are

connected to a network. [11] Industrial communication network has been a very prominent

technological aspect in automation scenario. Communication is required on lower fieldbus network

for smart devices that generates huge process data, such network are being like Profibus, ASI,

Modbus etc.; also a layer above the sensor actuator i.e. supervision and control demands for

efficient network for PLC, SCADA and DCS. A smart manufacturing calls for a master

communication setup that drives bidirectional data over IP network in order to communicate with

both production and business enterprise systems. An IP network also makes it easy to integrate and

handshake with material suppliers and client customers in order to improve supply chain

interoperability. Wireless network has distinct advantages in ease of operating alarms and

transmission of real time data, but it does also introduce bottle necks especially in case of RF

networks. Manufacturers need to setup a robust network in order to overcome this conventional

constraint.

3.2.2 Security

Industry 4.0 talks of IoT application in smart manufacturing, with implementation of Information

technology also brings the need to step the cyber security paradigm to prevent unwanted

intervention of vital manufacturing data. Smart factories come with smart responsibilities and

security. Plant managers need to ensure the safeguards are embedded in manufacturing solutions

having freedom of IoT that’s includes data security measures like hardware authentication for

authorized users, security for physical locations and secured network access for data to be shared on

the IoT platform. The manufacturing solution should be able to provide with a secured remote

access to manufacturing systems. Security and network infrastructure also subjected to physical

factors like harsh environmental conditions, heat and moisture that are unknown for conventional

networks. Personal identification and authentication framework is required to be equipped to

support “things” on network.

3.2.3 Cloud Software Architecture

IoT is about very different data that we normally use to work with. Thousands of sensors actuators

giving out real time information, such a huge data requires a huge infrastructure or software

14

framework. This software architecture and framework should be able to extract information from

the physical world into real time actuation and control that is implemented on plant floor by

machines and humans. On a larger scale for the software for globalized enterprise scenario or

interconnected supplier chain and partner companies the software should be secured, flexible and

accessed from an established platform.

On demand cloud data exchange that facilitates the need to serve data among MES and ERP

systems in context of ISA-95. Conventional IT application needs high capital investment and lacks

flexibility of serving data on usage and on demand. Pay-as-you-go for manufacturing services and

support during entire application cycle is highly important for the cause of reliable application

framework. Radical improvements in terms of complex data structure and big data of process and

lifecycle management in the application required for Industry 4.0. This will create a demand for a

new ever improving software development that will be driving through huge capital investments.

Exercises inside the project incorporate characterizing ideas, making models and strategies for the

assembling cloud as a complex arranged administration framework, building manufacturing specific

information mining, procedure and streamlining techniques, prototyping chose examples of the

reference design, and in addition creating situations and model demonstrators for assessment and

acceptance of the proposed models.

Fig 3.2 Manufacturing with cloud [9]

3.2.4 Big Data Analytics

While manufacturers have been generating big data for many years, companies have had limited

ability to store, analyse and effectively use all the data that was available. New big data processing

tools are enabling real-time data stream analysis that can provide dramatic improvements in real

time problem solving and cost avoidance. Big data and analytics will be the foundation for areas

such as forecasting, proactive maintenance and automation.

15

4. DATA EXCHANGE FRAMEWORK FOR MES & ERP INTEGRATION

4.1 Cloud application

Cloud computing is a broader term which is used in many application for many upcoming and new

applications; it is more of an application deployment principle rather than a dedicated technology in

the field of web application [12]. Since it is associated with wide variety of services and component

in application framework, a lot of cognitive intelligence is required in deployment of such

application. Such cloud computing services are commonly referred to as Software as Services

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

Cloud application dedicates it role in serving I.T resources to various end users that can be termed

as clients or tenants. A shared of pool of computing resources are enabled for remote clients which

provisioned by a service provider without much of intervention and explicit efforts to serve the

clients [1]. Some specific characteristic can be defined before implementing a cloud application for a

specific scenario and that includes following:

• On demand self-service: Ability to access the application services only on sign in or

specific time slot.

• Broad network access: Ease in accessing those services from a web interface through

various available devices i.e. Laptops, mobiles, PDA etc.

• Resource pooling: A common source of services and infrastructure available for tenants.

• Rapid elasticity: Ability to modify and scale the services and resources for the tenant

specific.

• Measured Services: Provision for the tenants to access only specific services needed that

reduce a payload and cost in client context [12].

4.1.1 Infrastructure as a Service (IaaS)

It is a concept associated with providing computing resources in a virtualized environment [3]. In

common terms the computing infrastructure is offered to a client who can virtually access the

servers, network connections, and bandwidth. The client is made available resources to build its

own IT application. Among the other cloud application types Saas and the Pass, IaaS is concerned

more on resource virtualization and as infrastructure provider for the end user clients [3].

Salient Features of Iaas[13]:

• Enterprise Infrastructure:

• Cloud Hosting

16

• Virtual Data Centres

Benefits of IaaS [13]:

• Scalable resources is achieved which enables client to access and expand the limit of the

usable infrastructure.

• Zero investment in hardware, due to the use of cloud based servers.

• Utility management as the client is made to pay only the resources it has been consuming.

• Infrastructure deployment is free from location constraint as the cloud service provider

manages the centrality of framework deployment.

• Secured data centre through implementation from public and private cloud.

• Complete failure is avoidable through implementation of redundancy configurations

between server and client.

4.1.2 Platform as a Service (PaaS)

In general terms it points to make available platform that serves necessary environment and

services that will allow clients to build their own application over the internet [4]. Features that

can be included in PaaS architecture are Operating System, Server side scripting environment,

Database management System, Server software, Design tools and development etc. [4].

Software development, Web development and Business application are well suited to PaaS

architecture. Paas have its own benefits which could be identified in terms as follows:

• Exemption from investing in infrastructure.

• Development ease for non-professional developers

• Flexible development environment with provision of picking up environment specific

tools.

• Concurrency in development for multiple users to interact in a single framework

environment.

• Data security and isolation for multiple user scenarios with recovery benefits.

In comparison to IaaS this deployment serves architecture and infrastructure both for the web

application development.

4.1.3 Software as a Service (SaaS)

The most commonly known cloud architecture has been in the use for a long time that allows use of

software environment over the internet. These applications were mostly built in single tenant

17

perspective unlike the modern applications in its initial days which had limitations over scalability

and sharing of resources over number of client’s users which in fact is not as economically

benefiting unlike modern applications [14].

Today SaaS efficiently explores the use of Multi-Tenant architecture where centralized software

implementation through single instance. Application is served by a service provider or aggregator

that comprises of the multiple solution providers.

Benefits of Saas [14]

1. Centralized process for upgrade, uptime and security: A central framework running the

application will handle the modification or upgrade for entire customer base with

authorization protocol defined by the framework itself.

2. Reduced time to scalability and integration: Addition of costumer base on runtime is the key

feature of SaaS. Incorporating services and functionalities is also handled in this type of

cloud type.

3. Access software functionality from anywhere : A cloud deployment enables access to

software functionality without any technical orientation, even a lay man is able to use the

application with simple instructions.

4. Pay as per usage: Consumers are charged on basis of services used that are predefined by the

service provider.

Fig 4.1 Illustrating in short detail of different cloud systems [14]

18

4.2 MULTITENANCY IN SAAS

SaaS is targeted towards audience which is a non-technical user, served with a ready to use

application. The application also supports charging on basis of time consumed by the end user. So

SaaS a very logical foundation for implementing a data exchange framework for a multiple

company scenario in MES and ERP integration where customers are users inside the company

itself.

Basic purpose of a web application is to cater its end user, other business entities and internal users

of its own enterprises. Variety of web application is demanded in multi scenario case, for example a

separate instance of web application can be served each user entity or tenant who hires the service

form the cloud framework. Every client or user has its own version of web application in served

which are called as Single Tenant application. [15] Contrary to this, data exchange makes a valid

point to run a same instance with similar data structure to all the client entities, called as Multi-

Tenancy scenario.

A tenant in the data exchange scenario is similar to conventional tenant renting a house. The house

itself is SaaS model (application instance itself) which can accommodate single tenant or multiple

tenants at a time. Single Tenant application is intended for multiple customers, but the instance is

separate for all the users in the framework. While the multi-tenant application serves same instance

for all the clients in the tenant model.

 A multi-tenant application is a single codebase, installed on a centralized cloud server with single

instance supporting all the required services for the application i.e. cache, database, servlets etc. A

common strategy is implemented for all users in application, which relives from implying a

different debugging for different users in case of error logging. All the tenants get updates and fix

immediately after modified application is committed to the source repository. [15]

4.2.1 Architecture

 Tenant is any entity either inside or outside the enterprise, which resides with other tenants without

fear of breaching of data security from other tenants. Tenant entity itself is a multi-client, where a

tenant object represents pool of users from the same tenant domain. Customization and data

persistence is strict for all the users in same tenant model.

Apart from SaaS, multi tenancy can be applied to all the three cloud from i.e. IaaS and PaaS. There

are basic features on which a multitenant application is pivoted upon; in short these specifications

evaluate the efficiency in performance and functionalities. These features includes following

19

i. Costing structure: Service in multi tenancy can be charged on basis of tiered or flat costing.

ii. Resource pool: Multi-tenant application calls for shared pool of resources aggregated with

services for all the tenant and clients within tenant. Client specific services are provided by

the application instance.

iii. Framework maintenance: Maintaining the client list according to the role assigned in the

application, administration of access rights and allotting relevant services is one of the

important aspects in Multitenancy.

iv. Scalability: Ability to manage huge number of clients and their respective services, along

with the dynamic addition of tenant models on the fly opens up new dimension in whole

application scenario; in fact this application is very much in demand for consumer purchase

sell applications.

In context of SaaS, it brings in more advantages in terms of additional features and described as

Data Isolation: In multi-tenant system a single database can be utilized for the entire

application, multiple clients can be associated with a single database with separate schema or

similar schema depending on the customization possible for every tenant.

Following table makes argument whether the single schema or separate schema is appreciated in

this scenario.

FEATURES Separate database Separate schema Same

database/schema

Data customization Highly supported Possible Not possible

Security Offer highest security Possible with

authorization

Lowest security

offered due to shared

environment

Data inter dependency Exclusive data size

for every tenant

Exclusive schema

similar to separate

database

Prone to performance

issue on data schema

sharing

Scalability Merely scalable as

tenant grows data

tables proportionally

increases

Scalability possible as

the schema can be

expanded on the fly

Highly scalable as no

expansion on database

artefacts

Customer on boarding Difficult due to lack

of expansion on the

Moderately possible

due to expansion on

Most appreciated in

practice.

20

fly schema level

Table 4.1 Detailed comparison of all Data level customization [16]

Feature Customization: In [16] dedicated environment there is a service which has a role only to

serve a specific user in that environment. Unlike in multitenant environment a pool of services are

associated with multiple clients or tenants. The mapping between services and clients are many to

many, one to many or one to one depending on the scenario.

Customization includes in various following forms:

i. Data level: Customization on basis of persistence column, possibly addition or

deletion on runtime.

ii. Functional level: Multitenant application is subjected to various users depending on

the role assigned. For example an administrator in the tenant have the maximum

access rights of data customization while the supervisor in the system could be

assigned secondary level in the hierarchy and subsequently with the tenant user.

iii. Process level: Business process can vary from user to user, for e.g. one client may

want material product integrate with context of Tenant entity A i.e. all the data will

be related to a different tenant that consumes the material generated by the source

client in tenant.

iv. Licencing specifications: The application requires customization on allotting licence

depending upon the predefined strategy or cost subjective services.

Plug and play architecture plays an important breakthrough in achieving all the above discussed

functionalities. [16] To see a development environment where all the modules relevant to the feature

customization are added in runtime in the application flow, discrete software modules with a

dynamic addition to the

Virtual Isolation: Data separation and Feature customization directs towards implying a virtually

exclusive software environment. Environment should reside the entire tenant with a sense of data

security that means every tenant should be able to allot an exclusive virtual partition on the required

dimensions of data isolation and feature customization.

The prerequisites for Data Isolation and Feature customization suggest an execution domain

confinement for every occupant. For e.g., in the event that we need to accomplish "Information

Customization", it implies the POJO class that is utilized to load and spare the information should

21

be characterized diversely for various clients. This is impossible if the same execution environment

is utilized for various occupants, since two variants of the same class can't be stacked into the same

class loader. This additionally suggests the earth in which the code is sent can't be utilized as the

execution environment for each of the occupants. Another execution environment must be made for

each occupant and the right information source and code base must be empowered in the earth.

In java this can be achieved using Non-delegating Class Loaders. A new class loader can be created

for each tenant and the licensed code loaded into the class loader allocated for a tenant. This gives

us an opportunity to

• Deploy code without affecting other tenants in the environment

• Enable features for a single tenant without disturbing other tenants

• Remove functionality by just recreating the class loader for this tenant with the correct

features enabled.

Fig 4.2 represents the aggregated concepts discussed in context to multi tenancy. [16]

22

4.2 Data Exchange Scenario

A data exchange scenario is considered where the material generated in MES system is fetched and

extracted by the cloud application. Every product or material generated in MES during production

is meant to be exposed on the Internet from where the data for the material is distributed among the

tenant entities who are relevant to the material.

The multitenant framework is classified in two distinct paradigm, these are client and base

framework. Clients are part of tenant entity, may be a group of identically authorized users or

hierarchical clusters referred to as admins, supervisors etc. Base framework is core to the

application of multitenancy visible to the entire application from the client and administration

perspective. In detailed description of the entities in data exchange framework is mentioned as

following and in fig 3.2

a) Provider Entity: A tenant entity in the framework, supply the list of the newly

generated materials that are stored in the MES database. Provider generates a unique id

for the material; in short the material fetched from the MES is literally translated in the

context of multiple business entities that are nothing but clients in this case.

b) Base Entity: Constitutes the pivot for the Multi-tenant application, which is within the

scope of the entire application visible to every client side server.

c) Material Entities: Also a client associated with specific tenant in the application.

Basically these are the consumers within the manufacturing unit or users within the

company or users from partner companies who receives the material relevant to them

from provider through the base framework.

Fig 4.3 showing the data exchange scenario

23

4.3 Application Development

In context of industry 4.0, the data to be shared among all the user paradigms of cloud computing is

through internet. A web application is a simplest form of realizing the need of sharing and storing

the data from a remote web browser. Java EE is one of the commonly used platforms to develop

web applications. It is an extended version of Java with strong support for web application

development. A Java web application is accumulation of artefacts such as servlets, Java server

pages, jars. Servlets is a Java class which handles HTTP requests from the client browser and

returns the appropriate response from data model back to HTTP. Java server page is a mix of html

and Java code, basically an interface to the Java environment. JSP and Servlets is core to develop

the prescribed web application to be deployed on cloud platform. [17]

1.3.1 Grails Framework

Following are the features of Grails that are relevant to cloud web application development:

• A Groovy based web application framework that is based on the Java virtual machines

(JVM). A smooth integration of groovy which is dynamic language based on the Java i.e. it

compiles into the java byte code and Java itself is the advantage in commencing a web

application development.

• It provides with the benefit of using huge Java background with already developed libraries

and efficient and fast scripting like groovy.

• Groovy is a dynamic, language for JVM that is less verbose, relieving programmer of

repetitive syntax just like a scripting language one like Python and Ruby.

• It compiles into Java byte code. Meta object programming, groovy is associated with MOP

before executing on byte code on JVM making it dynamic on the fly compatible.

• Core to the framework is Java EE servlet API, which is foundational philosophy in

development web application to grails. Also Grails incorporates the power of Spring

framework, which a famous MVC framework based on JAVA EE giving an ease in

developing a closed cyclic web application.

• Hibernate forms the persistence base with features of ORM (Object Relational

Management).

• Grails also supports a unique feature of plugins which can be added to boost the

functionality of an application through appending a plugin app.

• The Grails application developer community is highly active and ever improving due to the

possibility of easy integration of plugins.

24

Fig 4.4 Illustrating the Grails Stack [18]

4.3.2 Class loading in J2EE context

Grails is a powerful web framework for the Java platform. Java class loading mechanism is utilized

by the grails framework as well. Class loader is an object in memory of JVM that is associated with

loading the Java Class on runtime.

JVM supports a default class loading mechanism that loads a class by predefined class loading

objects during the start-up. To be able to build complex applications custom class loaders are well

suited to be defined. JVM supports a delegation mechanism for class loaders to search for classes

resources. Before loading of any class by a class loader object, it checks if the class has been

already loaded by searching through the cache of the class loader. Every class loader is associated

with a Parent class loader in JVM. Every child class loader or a custom class loader will always

look through the parent class loader for loading the class if the class is not found in the cache of

itself. If not loaded then it delegates the search to the parent class loader for the class or resource

before it can search the class by itself. Even after a failure of parent class loader to load, the class is

loaded by the child itself. A failure in all the cases will result to classnotfound exception by the

class loader object.

As shown in fig 4.5 Bootstrap is the root of the class loading hierarchy in JVM. That means a

Bootstrap will not delegate a search to any other class loader, it self-instantiated during an

application start-up. It is subsequently followed by the system class loaders in the hierarchy as

shown in the fig 4.6. A user defined class loader can be created with defining a specific parent to it

but only at the bottom of the hierarchy.

25

Fig 4.5 Represent a Class loading Hierarchy in JVM [19]

4.3.3 Class loading in context of Web application

Java Enterprise Edition (JAVA EE) is an extension of JAVA for web development. Java class

loading mechanism forms the foundation for the JAVA EE but with an added perspective. Every

J2EE application is packed as EAR (Enterprise Archive); every EAR has its own class loader. WAR

(Web Archive) is a collection of distinct EAR, the class loading hierarchy is clearly visible in fig

4.6

Fig 4.6 Represent a Class loading Hierarchy in J2EE [19]

26

4.3.4 Tenant Specific Class in Grails

In multitenant architecture, the tenant specific class demands for the data security especially with

the other tenant models. For e.g. client in tenant Material A should be prohibited to access the other

tenant classes Material B and Material C. Tenant specific class has a class definition which defines

the schema of data model associated with it. Grails supports both Groovy and Java both which gave

freedom in developing class definition as per convenience.

Tenant classes needed to be equipped with the ability to define definition from an interface that can

be on HTML browser platform. Ability to customize the tenant class also comes with a constraint of

virtual isolation already talked in the principles of SaaS Multitenancy. A tenant entity has to be

secured in the grails framework application.

Grails application has its own class loader as previously described that every EAR application has

its own class loader which is in down line hierarchy to the JVM class loading.

The GrailsApplication API provides information about the artefacts inside the application, the

structure of Domain class, Controller, Services etc. a detailed description will be described in

upcoming sections.

POJO (Plain old Java object) is a normal java object that is not entitled to special role and no

special interface associated with it. Every tenant entity is associated with its specific POJO in

groovy also called POGO. To achieve data customization, every tenant has its own POGO class and

has the ability to upload and save the new class definition.

Using a custom Groovy Class Loader to load tenant class on application start up from a specific

URI in the server environment, groovy class loader loads groovy tenant classes can dynamically

load the class on runtime of application.

 def gcl = new GroovyClassLoader()

Class greetingClass = gcl.parseClass(new File (URI))

This will enables us to

• Deploy code without affecting other tenants in environment. The class loader of one tenant

should not be able to load the other tenant, other tenant class are hidden to that class loader

i.e. it is parallel to class loading parent-child relationship of other class loading mechanism

• With groovy class loading supporting reloading on the fly, the client can upload a updated

definition with the child custom class loader associated with it to only the tenant specific

class.

27

4.3.5 Multi-client tenant architecture

The application to be developed was meant to be designed in a perspective of sharing data among

provider or supplier companies entity with the consumer client companies. Client in the data

exchange framework is an enterprise entity will large number of internal users associated with it.

Hierarchy of users have access to associated tenant architecture, tenant entity is group of users

Tenant is associated with a database model or schema in a database. The same schema is data

source for all the users in the enterprise. Clients in the schema are not promoted to have their own

unique data source either in terms of database or schema. This will only lead to complexity in

operation maintenance of the application and large fragmented data sources.

Data persistence for every client is required; persistence is storing the instantiated objects from the

respective tenant class. Every instance has to be stored in the database with a unique identifier that

will be a key in performing CRUD (Create Read Update Delete) operations. Clients could be

distinctly differentiated from each other on basis of access privileges provided during the runtime.

Role based security access, to simplify the tenant model by assigning specific rights depending on

the hierarchical position of the user client. For e.g. Material “A” tenant could have its own

administrator which is allotted to perform all the activities related to tenant specific task like

manage the data source with all the access for CRUD operations. Normal user in the tenancy will be

subjected to data read and write or a specific task which is not critical in enterprise context.

Fig 4.7 below shows the Tenant enterprise model managed by role allotting service by the

application framework.

Fig 4.7 Service based model to handle tenant level operation [20]

28

4.3.6 BASE FRAMEWORK

Grails has a support for ORM (Object relational mapping), it is process of retrieving objects that are

already persisted into the data source. GORM a grails version of ORM benefits from the dynamic

language of groovy. Unlike other ORM, hibernate, Eclipse Link, GORM is based on convention

over configuration i.e. doesn’t required any XML mapping or added configuration for persistence

and transactional behaviour. [18]

Grails uses Spring MVC to the core that’s lays a foundation for the majority of application flow in

the framework. Inside grails a domain class is under convention of grails-app/domain directory, all

the groovy classes defined under this directory are domain class artefacts. By simple create-domain-

class script, a new domain class is generated on application. Domain class inherits all the

functionalities of GORM and core to any business application.

Base Material is a pivot object in the data exchange framework, which constitutes the dock for the

sharing of dating between provider and client. The data relative to Base Material is visible to all the

tenant and subsequent client in the framework.

Tenant specific classes i.e. Provider Class and Material client need to inherit the Base class to

default access the attributes defined in the data sharing context. Base class as domain class in grails

convention is a super class for all the tenant specific classes. Data exchange of persisted object from

a provider source is served to all the other tenant class in the grails application framework.

Grails uses Spring’s API under the hood also uses the Application context widely known among

Spring developers. Spring IoC which is described later in section is used to load beans, wire them

and make available during the application runtime. These beans are grails artefacts (Domain,

controllers, services etc.). Domain classes are accessed or visible to entire application by spring

bean factory or Application context.

Multiple Base class scenarios possible with ORM support by grails with Hibernate 3 under the hood

stack with possibilities of relationship as following: [18]

i) One to One

ii) One to Many

iii) Many to Many

User Interface for Base class in grails provide with a built in script to generate appropriate views for

the persistent objects. “Generate views” will create all the necessary GSP forms embedded with

functionalities for CRUD operation. [18]

29

4.3.7 Controlling the application flow

Grails uses Spring’s MVC framework that is architect around a DispatcherServlet that delegates the

request to specific handlers. DispatcherServlet is a servlet inheriting HttpServlet class declared in

web.xml and mostly prominent in J2EE. Spring MVC is a request driven controlled around a central

servlet that delegates the respective controller to handle the incoming request.

The incoming URI request is handled by the DispatcherServlet, right set of controllers are evaluated

for that purpose and views in of GSP (groovy server pages), analogous to JSP with groovy support.

The following sequence event occurred during generating a view is visualized in fig 4.8 below

1. After a HTTP request, DispatcherServlet, consults to handler mapping to call the relevant

controller to request received.

2. The Controller takes the request and calls the appropriate service methods based on used

GET or POST method. The service method will set model data based on defined business

logic and returns view name to the DispatcherServlet. Controller holds business logic, that is

defined for the respective incoming request and manipulate the domain (Model) class

returning the view URL to the dispatcher servlet.

3. The DispatcherServlet will take assistance from ViewResolver to pick up the characterized

view for the solicitation.

4. Once the view is finalized, the dispatcher servlet passes the domain model to the view that

will be rendered on the front end browser.

Fig4.8 Illustrates Dispatcher Servlet integration with internal application [16]

30

4.3.8 Accessing the Framework Business logic From Tenant specific classes

We saw domain classes are well equipped with all the functionalities in web application

development in from creating a new definition, assigning a controller that incorporate methods to

handle URI within the application and creating standard set of views in respect to CRUD operation.

Creating a domain class fully that is equipped with user interface and database persistence fulfilled

most of the requirement for a Base Material class.

To realize similar functionalities for Tenant specific classes is the next objective to perform. As

discussed earlier they are not visible under the grails convention that means they do not have any

special identification nor do they not enjoy the default data persistence and user interface under the

grails frame. Tenant classes are simple POGO class. To start with development of Tenant sub

architecture, it is important to understand about the Spring IoC (Inversion of Control).

Spring IOC also known as Dependency Injection, is a process of passing the objects required by

dependent resources or class. Normally a class depending upon some object of other class calls the

external resource by itself and the dependency is active only when the dependent object instantiate

or reference it. But the contrary method where an external container handles the dependency objects

is known as IoC.

Grails uses Spring IoC to the core in the application flow. In spring, the items that frame the

foundation of your application and that are overseen by the Spring IoC holder are called beans. A

bean is an item that is instantiated, collected, and generally overseen by a Spring IoC compartment.

Something else, a bean is basically one of numerous items in your application. Beans, and the

conditions among them, are reflected in the arrangement metadata utilized by a holder. As clearly

seen in fig 4.9

Fig 4.9 Shows Spring IoC interaction [21]

31

Several artefacts that are created in grails application are created as spring beans and specially

services which allows the most control. The spring container core to spring framework in grails is

managing these beans throughout the lifecycle from creation of that bean to its destruction. Every

bean is visible from entire application scope i.e. controller can inject services by simply defining the

service name in the controller context.

In the fig. below, services as singletons (instantiated once during start up) are embed in the

controller action; whenever a controller method is invoked the method invokes a method form

service class. Services offer a simple, maintainable, and testable way of encapsulating reusable

business logic. Services can participate in transactions, be injected almost anywhere in your

application, and are easy to develop. It’s time to abstract your Post operations into a PostService

that you can access from anywhere in your application. Controller is free most of complexions due

to lot of code inside making it dedicated to redirect and interactions with HTTP request and

response.

Fig 4.10 shows use of service in encapsulating business logic. [18]

Base Material class as a Domain artefact is handled well by the grails framework; domain is bean

on application context which can be injected into other grails artefacts like controller, services etc.

and also wire together with other bean objects with Dependency Injection (DI). Data persistence is

easy to implement for the Base class with transactions and CRUD default methods.

In fig 4.11 shows bellows illustrates the wiring together of controller, service classes by the Spring

IoC container used by Grails.

32

Fig 4.11 Shows IoC in Grails application [21]

With transactions a series of methods related to database actions are aggregated into single unit.

Transactions make sure the database related operations are either executed completely or aborted in

case of partial execution. Transaction management is a critical part of and RDBMS oriented web

applications to make sure data integrity and consistent information. Concept of transactions has

following properties: [19]

1. Atomicity : Single unit operation for data persistence

2. Consistency: This represents the consistency of the referential integrity of the database,

unique primary keys in tables etc.

3. Isolation: There may be many transactions processing with the same data set at the same

time, each transaction should be isolated from others to prevent data corruption.

4. Durability: Once a transaction has completed, the results of this transaction have to be

made permanent and cannot be erased from the database due to system failure.

4.3.9 Service handling of Tenant Specific classes

Tenant specific classes are hidden under the grails convention. If the tenant specific classes are

setup as domain objects, data persistence and transactions would be effectively placed. To expose

the tenant class on grails application disqualify the objective of data isolation among different

tenant clients. Virtual execution environment is one of the important factors in developing

multitenant application.

Remember the Parent-Child class loading mechanism in Java. Child class loader is able to access

the class loaded by its associated Parent loader. Tenant class as POGO class loaded by custom class

loader, able to access the grails artefacts especially service classes that handles the request for the

URI handler. Service singleton could invoke method implementing the insert, read update for the

tenant entity using the Java API for relevant database.

33

4.3.10 No SQL database Solution

NoSQL has becoming increasingly popular among application of big Data with huge data volumes

and variety. Relational database (RDBMS) is simple and easy to work with good support n tools for

monitoring and backup. RDBMS does not possess the flexibility, agility, scalability required for the

multitenancy architecture. Data customization is an important aspect in tenant specific where tenant

admin has the access to modify the class definition.

RDBMS server process reflects single point of failure; the entire database server will be shut down

in case of abrupt crash or up gradation or modification. The multitenant is a distributed architecture

with multiple enterprises having stake in it. In case of failure at central database location, entire data

source stakes are risk bring down the entire business operations of all the suppliers and material

clients associated with it.

RDBMS are based on schema model which constitutes for its consistency and performance. Tenant

customization requires frequent modification of data definition which in turn calls for a refactoring

the schema in database.

Multitenant application is a scalable architecture, grows horizontally as the tenant model are

expanded on the fly during runtime. Single node RDBM will never serve the functionality of

horizontal expansion with limited resources in server like RAM, CPU, storage disk etc.

4.3.10.1 MongoDB NoSQL Solution

NoSQL MongoDB provides following features over the shortcomings of RDMS in multitenancy:

1. Flexible Data Model [22]: NoSQL effectively overcome the issue of relational database

dynamic schema. MongoDB supports a document, graph, key-value, flexible data model

with possibility of dynamic change in schema without shutdown of database server.

2. Elastic Scalability [22]: NoSQL database are built on focus with horizontal scalability with a

built in relationship support. Application stores objects in a schema free structure, non-

hierarchical structure to incorporate large files of data blocks.

3. High Performance [22]: NoSQL database for instance MongoDB are developed to provide

efficient performance, in case of both the performance characteristic of throughput and

response time to query.

34

4.3.11 GORM MONGO DB PLUGIN

With Plugins in Grails it is possible to extend functionality of the application just like appending a

project which is been previously created to the existing one. The plugins can be downloaded from

the grails repository.

MongoDB is a balance between key-value stores known for latency and scalability, and

conventional RDBMS providing rich queries and specific functionalities. Features supported by

GORM MongoDB Plugin mentioned following GORM [23]:

1. Simple persistence: MongoDB plugin allows GORM (domain class) to CRUD basic

operations with database schema.

2. Dynamic finders: A dynamic finder resembles a static method conjuring, yet the strategies

themselves don't really exist in any structure at the code level. Rather, a technique is auto-

mystically produced utilizing code blend at runtime, in light of the properties of a given

class.

3. Named Queries: Similar to Hibernate named query, where key finder is any name, just like

alias name. It facilitates the programmer by avoiding writing complex queries in the code.

4. Inheritance: Inheritance mapping possible with table per hierarchy, table per concrete class,

table per superclass.

5. Embedded Types

6. Query by example

Using the MongoDB Java driver directly makes possible access to lower level API. Tenant specific

classes are possible to persist to MongoDB data source with the Java driver directly. Tenant specific

classes can be persisted getting hold of mongo instance (com.mongodb.Mongo), implemented

inside the tenant specific service. Remember as previously explained Grails Service are possible to

be injected in POGO Tenant classes through Spring IoC integration.

35

4.3.12 Authentication for multi-client Tenancy using Spring Security core plugin

Spring Security core plugin embeds Spring security into grails application. This plugin provides an

easy, simplified implementation in applying authentication and security to grails application. Spring

security in itself is a powerful customizable authentication and access control framework. [22]

Spring security provides aggressive security to the grails application; on request to the

DispatcherServlet URI responded by the controller is initially blocked unless there is authentication

matching or the logged in user matches the annotations on the controller method that redirects to the

requested URI. That means the URI is blocked unless there is request mapping even if the rule

allows the access. [24]

Plugin uses @Secured annotation to secure the controller actions which are methods or closures.

Default authorization is used by plugin to configure specific roles to specific action on the controller.

@Secured(value=["hasRole('ROLE_ADMIN')"], httpMethod='POST')

def someMethod() { ... }

Role based hierarchy has been an important point in enabling a tenant model which a domain with

sub clients differentiated according to the access rights i.e. admin, supervisor, normal user. Role

hierarchy class generated by Spring security core plugin allows explicit configuration for the setting

up the hierarchy in grails application. This facilitates the user with highest priority for e.g. admin to

inherit all the access rights allotted to the lower priority authenticated users. This relieves the

programmer of setting up additional security implementation explicitly.

Spring security incorporate following features in grails application: [25]

1. Authorization and authentication supported both by the plugin

2. Integration with servlet API, easy to implement in controller servlet in grails simplifying the

controller action secured access control.

3. Protection against malicious attacks like [25] session fixation (hacking a valid user session),

clickjacking (injecting malicious links under legitimate links), cross site request forgery

(overriding unknown commands for client).

36

4.3.13 MES integration with Quartz Plugin

The main purpose of the multitenant application development is to create an integration scenario

between material supplier integrator and partner consumer client. The source of material data which

supplier provides is shared across the cloud platform through a reliable Base material which is core

to the application. MES is hub of all the material especially the finished goods within the supplier

enterprise. The other end of application is multi enterprise ERP systems.

Provider tenant class holds the task to integrate with its MES system, data source in specific. The

grails framework needs to control or invoke method from the tenant specific classes from provider

tenant. The data objects reflecting material details from MES are supposed to be updated in the

Base Material with the list of data items attributes defined by the provider tenant class definition.

Provider tenant class definition requires a data hook, a method or a closure defined under the tenant

class enlist the parameters to be retrieved from MES external data source. A periodic or event

triggered method to successfully poll data from MES database can be adopted. In this case a

periodic polling of data from external database is achieved using Quartz plugin in grails.

Tenant class encloses a public static method that can be executed from the Grails framework after

the tenant class loaded by the custom class loader. The tenant class is able to execute a service class

using grails servlet context which is similar to application context but on Web container level. The

service class calls a Job artefact created using Quartz plugin.

Quartz plugin [26] allows grails application to schedule task by a periodic interval or cron expression

(string representing time-date) to execute them. An actual implementation of data hook between

tenant classes and Grails Base framework through “class TestJob” using a periodic trigger that

executes a public static interface from a hidden tenant class every 5 seconds.

class TestJob {

 def providerService

 static triggers = {

 simple name: 'mySimpleTrigger', startDelay: 5000, repeatInterval: 10000

 }

 def group = "MyGroup"

 def description = "Example job with Simple Trigger"

 def execute(){

 print "Job run!"

 //println providerService.providergbvar

 if(providerService.providergbvar){

 Scheduled.updateables.every { entry ->

 entry.key."$entry.value"()

 println Scheduled.toupdate

 }

37

4.4 Results & Discussions

The research study was conducted on the Grails platform to evaluate the possibility of developing

multitenant SaaS architecture with core principles of following:

1. Data sharing and Exchange.

2. Integration with external environment.

3. Tenant security model.

4. Data persistence of Base and tenant classes.

5. Tenant security.

This multi tenancy proposed in scenario of data exchange framework in context of Industry 4.0 to

serve data received from MES system on a global enterprise level through internet. This enterprise

is partner clients that share material generated by Supplier enterprise. Enterprise or tenants

visualized as tenants in the multitenant cloud application. The enterprise application was developed

to figure out the possibilities of creating such architecture and not to create a ready to deploy cloud

application. All the objectives were tested in a development mode of Groovy/Grails Tool Suite on

grails version 2.5.4. An integration model in this context is illustrated in the fig 4.12.

Single Instance shared over internet: Grails is shipped with a tomcat plugin used to host

application during development process. Quick hosting of application by grails on server with

application name in suffix to server, application can be run in browser will URL as

“http://localhost:8080/multitenant_app”. A level 2 of SaaS model was realized with this

implementation; single instance serving all the users in the application reduces the load due to

excess strain on resources of server like memory, processor, RAM (Random access memory) etc.

Tenant data security: Unlike the conventional multi-tenant applications, where the data security is

more or less limited to secured data source access on tenant level, this application follows a

different path i.e. preventing CRUD operations for other tenants through class Java loading

mechanism. Secured class loading mechanism is implemented for every tenant using a separate

class loader. Custom class loader hidden in grails convention model, an object of the loaded class

only accessed to the logged in user.

Data Sharing through Base framework: Spring integration in grails enables use of Application

Context which serves parent class loaders to child tenant specific class loaders. Services are easily

injected and accessed simply by defining an object in other classes, even by the tenant classes.

Tenant customization: Update of class definition possible due to reloading of Groovy class

loaders. Persistence for tenant class’s does not needs major refactoring compared to SQL

persistence, MongoDB proved to be flexible enough for simple POGO.

38

Secured authentication: Grails plugin really promotes faster application development with just

complimenting the existing application with added features developed in other plugin projects. As

in case of Spring Security core plugin, only added explicit configuration was role based “Secured”

MMu

Fig 4.12 Represents connected technologies in multi-tenancy using Grails

 Limitations in current development and Future work

1. Customizable Front end for each client in Tenant model.

2. Scalable client entity, ability to dynamically add users during the runtime process with least

possible explicit configurations required.

3. The result of this study serves only as a foundation of understanding how a multitenant

system can be implemented in grails, which is a tool for gaining wider insight into

multitenancy application of integration MES and ERP.

4. A lot of efforts require to generalize this design on cloud platform

Controller

MongoDB Database

DA

Service Quartz

Base Material Domain Classes for

Data Transfer

Authentication by Spring

Security

admin

user

user

admin

 MongoDB Plugin

Provider Tenant

MES System

Consumer

Tenant ERP

GRAILS

MES Database

MVC FRAMEWORK

39

5. BIG DATA AND VISUALIZATIONS

Digitalization in manufacturing already has a huge stake as key for monitoring, control and

performance evaluation. Digital factories amount to huge data from sensors and other devices, data

generated from cyber physical systems. To efficiently use this data information has to be extracted

from the huge amount of data. With the help of analytics and visualizations tool the data will be

useful in key decision making in manufacturing production. We have simply research on

developing visualization for an electric grid using modern HTML based open source tools.

This methodology on visualizations presents the result of an application of graph theory on

topology visualization and identification of electrical grid. Electrical grid is connected network

comprising of electrical equipment to make electrical power available to the distributed loads or

consumption devices that are placed over specific locations.

The objectives of the experiment were to apply principles of graph in representing the electrical grid

network. Electrical grid gives an overview of all the physical connections of buses, breakers and

loads, basically these are the elements which are to be considered while applying the principles.

The grid is considered as supergraph of a connected subgraph which is important aspect in

identifying the connected topologies. The fragmented topologies are the status of the grid for a

particular time instance. The idea to work on represent electrical grid with a simplified structure

was considered in a context to avoid complexity in viewing the standard grid. Electrical Grid is a

collection of multiple electrical devices that have a physical connection across them routing the

electrical power transfer from generation point to consumption. This made quite interesting to start

working on a representation that will efficiently describe the physical connections as well as reduce

the complexity of those connections.

 Grid is aggregation of multiple small networks or fragmented networks depending on the active

status of the electrical components. Displaying complete grid may have fall short of the objective in

ease of monitoring the grid. The island of small networks within grid was given equal attention as in

case of the complete grid representation. These smaller networks would be seen as instrumental in

studying the connected topologies of the grid. The reduced representation may facilitate the ease in

monitoring with relation based between the power generation and consumption devices across the

grid.

40

5.1 Graph visualization using D3

Basically a JavaScript library with inclusive of HTML, CSS features to bring out variety of visual

attributes with data driven approach to the SYSLAB grid data. Reusability of code was the main

attraction towards adopting this library and which also helped in ease of development.

D3 had a variety of applications on representing data on different layouts like Force, Tree,

Hierarchical, Packs etc. Force Layout was selected in this application and most suitable to

application of undirected graph visualization. A two dimensional representation of the nodes and

edges with all the nodes exerting negative charge on each other , eventually forming a spread out

layout . This spread out format leads to reduce in congestion of edges, thus forming a less

overlapped graph for the SYSLAB grid network.

Given a practical approach towards identifying Topology for the SYSLAB grid, the solution was

intuitively pointed towards the application for the Graph. The elements in the SYSLAB network are

nothing but the breakers, Buses, and loads. These elements have physical linkages in an actual grid

i.e. Buses- Breakers or Breakers- Lines are possible combination for the visual representation for

complete grid.

5.2 JavaScript as development language

A simple scripting language which is easily supported on client end was the first idea to go with this

development. JavaScript supports numerous graphics Library which was the key factor in initiating

with the application development. Also its simple front end incorporation with HTML-5 based web

pages that supports almost most of cross platform OS.

5.3 Static Topology Visualization:

Static grid View was assumed as exact replica of the electrical topologies that constitutes the

SYSLAB grid. The visualization was simple to figure out from the SYSLAB architecture. D3.js

supported a number of layouts and as well as custom layouts that gave a freedom in creating a

custom SVG representation

The static grid visualization was commenced with redrawing a sample electrical topology as shown

in Fig 5.1 D3 did allow variety of method to be implemented using various SVG and CSS style, but

the development was quite

Instead a layout already existing from the D3 recommended templates was adopted. There was need

to restructure the elements for that layout in terms on Breakers, Buses and Loads.

41

To initiate with pragmatic application it was necessary to have sample electrical topology which

represented as building block for the actual SYSLAB network grid, which is illustrated in Fig.5.1

Fig.5.1 Test electrical topology for static visualization

5.4 Implementation in D3 Library

a. Data collection

The development of application had to be initiated with extracting the breaker status information

from the available dump file. These breaker statuses were modified to identify the status of

respective loads and lines connected to it. All the breaker status and abstract status of buses and

loads were to be properly place in an array of input data that will feed the visualization input for the

subsequent graph visualization.

Read CSV dump file using d3.text API: Reads the SYSLAB dump file in CSV format and returns the

string in form of array of text. The array of text simplified the operations on specific strings with just

mentioning the row and column of the specific part in whole text. It also made easier to extract respective

data for particular header. As the SYSLAB dump files contained information of breakers, and other electrical

specifications current, power, voltage etc. out of which only relevant information required was breakers.

Timestamp recognition: The data required for the complete topology was not comprised only in the single

document instead it was dispersed over the multiple files. Also the timestamp identification from each file

was never to be exactly the same as the argument specified in the Input Box may in case not exactly the one

present in file. Closest Timestamp recognition: Formation of an array of Timestamp prior to find the closest

value holds the key in this algorithm.

 For (i in array) { var m = Math.abs(num-array[i]);

 if(m<minDiff){

 minDiff=m;

42

 ans=array[i];}}

All the files are read asynchronously with every application of D3.Text function. The files

depending on the size take certain amount of time to be read and stored in form of array of text. On

the reading of final file, an aggregated array is computed which contains breaker status from all the

section of SYSLAB grid network for the closest Timestamp.

Determine status of bus, breaker and load: Buses are always active element in the graph, i.e.

they are the power source for the network or subgraph. Lines are specifically active depending on

the breaker which connects them to the Bus and similarly does the status of loads. A final array of

active elements is computed with only the unique no. of the respective node specified

b. Static Topology Visualization

A standard representation for all the nodes and links present in the SYSLAB architecture are

considered in this case. This is in fact a static layout with all the static position of breakers, buses,

lines and loads. The data for all the nodes and Links are sourced from a static file which holds a

JSON object of Nodes and Links respectively.

 {"nodes": [

 {"name":"Bus-1-1172","group":0,"type":1,"pos":10,"x":40,"y":140,"fixed": true},

 {"name":"Bus-2-1172","group":1,"type":1,"pos":50,"x":440,"y":140,"fixed": true}

],

 "Links": [

 {"name":"Link1","source":2,"target":3,"width":20},

 {"name":"Link2","source":2,"target":4,"width":20}]}

Node Element with following attributes:

1. Name: Static name for every object that matches the name in the Dump files

2. Group: Unique number for every node i.e. also an identifier for a node

3. Type: Breakers (-2), Buses (-1), Lines (-3), Loads (-4) category numbers for colour

identification.

4. X: static x coordinate; Y: static y coordinates for the node.

5. Fixed: Boolean property whether the node is clamped or not.

Link Element with following attributes:

1. Source: Group no for source Node.

2. Target: Group no. for target node.

43

A directed force layout was applied to this method with the JSON object holding the key data for all

the respective nodes and the links connecting between the nodes. Since as per the method

Undirected graph satisfied the objective of the application, directed information of links i.e. in terms

of Source and Target accounted as mere Union of nodes rather than direction of link.

Force directed Layout: It is a graph drawing algorithm that places a nodes and edges in two

dimensional planes. D3 Force layout uses a quad tree approach towards drawing graph. Application

of quad tree comprises recursive placement of nodes and edges using Barnes-Hut approximation.

Barnes-Hut simulation is approximation algorithm performed on n number of elements having order

O (n log n).

Algorithm:

1. Algorithm Force(Graph);

2. Place vertices of G in random locations;

3. Repeat M times calculate the force on each vertex;

4. Move the vertex (force on vertex) draw graph.

c. Connected Component Algorithm

The heart of the application i.e. Subgraph enumeration is achieved using the application of Connected

Component Algorithm. This Algorithm significantly distinguished into two sections:

1. Searching the connected Tree or spanning tree.

2. Identifying each tree or subgraph with unique serial no.

Data Structure for Search Algorithm: Unlike the data structure which was in form of list of

objects to determine the nodes and links in the graph. One similar to it was not suitable to apply a

search algorithm i.e. Breadth First Search or Depth First Search.

A reduced version of the Adjacency matrix Data structure, it forms an efficient representation of the

subgraph and at the same can be subjected to DFS search algorithm recursively.

E.g. Table 5.1 shows adjacency Matrix [27]

Vertex No. 1 2 3 4

1 1 1 1 1

2 1 0 0 0

3 0 1 0 1

4 0 1 1 0

44

Adjacency List for corresponding Matrix in Table 5.1:

1:2, 3, 4

2:1

3:2, 4

4:2, 3

Adjacency List needs to be evaluated for the list of all the active nodes. For an Undirected graph

representation the Adjacency List for any Vertex I should contains Vertex J connected to it with and

edge and at the same time Vertex J will have Vertex I in adjacency List of it. Input Data array

which contains the active node elements will be the feeder input to the algorithm, from the offline

status of the links between all the static nodes. From the Adjacency list mentioned above, to

implement the same in the application needed algorithmic operation on every active node. Every

node has adjacency list element in data structure that was filled with the connected nodes on

increasing sequence of Input array of active nodes.

JavaScript code to form an adjacency list:

list_of_nodes[pairs[i][0]].adjList.push(list_of_nodes[pairs[i][1]])

list_of_nodes[pairs[i][1]].adjList.push(list_of_nodes[pairs[i][0]]);

Recursive DFS with Connected Component search algorithm: The aim of this algorithm is to

compute all the cluster of connected subgraph is part of the static topology. These connected

topologies will have information of nodes that connected and a subgraph number that will be an

identifier for the connected fragmented network.

 In implementation context, this algorithm was divided in to two parts searching and numbering the

executed loop. The adjacency list is input to this execution process which will sequentially scan all

the nodes present in the list. The output is a List data structure of all the identified nodes, marked

with subgraph number consisting of all the nodes belonging to that subgraph. An adjacency List of

the entire marked element is computed as an input data to the subgraph visualization.

Algorithm for Connected Components:
[28]

1. Search for the unvisited node index.

2. Mark the node as visited.

3. Follow the next node in adjacency list of the previously marked node.

4. If the node is unmarked repeat step 2 else follow step3.

45

5. If all the nodes in a adjacency list are marked visited increase the graph no. counter and

repeat step1 until are the nodes are marked visited.

Pseudo code:

InputData = [] // Array of active elements extracted from dump files

SourceArray = [array of source node]

TargetArray = [array of target nodes]

Create adjacencyList from Pairs

foreach (elements in InputData[i])

{AdjacencyList(sourceArray [i]) = AdjacencyList(targetArray [i])

};

CC_No = 1;

DFS (node);

check node [InputData[i]];

mark InputData[i] = visited;

check next node form adjacencyList

If

(nextnode = = unvisited ;)

Then DFS (nextnode)

else

CC_No++;

Create adjacencyList for each (InputData[i]== visited);Visualize subgraph;

d. Subgraph Visualization from CC Algorithm

A very similar approach from Static Graph, this visualization is only concern with the active

elements which were identified from Connected Component algorithm. The subgraph is displayed

over as island of connected trees. The data structure for the algorithmic subgraph view is also

similar to the Static visualization. The union pair is extracted from the same JavaScript Object with

the both the node shall present in the applied algorithm’s list of nodes.

In addition to this, the topologies are concerned only with the connection to the Nodes. Therefore,

the inclusion of Breakers does not count in this implementation. The code that’s filters out node

with string including characters “BRK” enlisted below.

nodes.filter(function(d) {

var name = d.name;

46

if (name.indexOf("BRK") > -1){ {return 0} }

Else {return 1 ;}

5.5 Results

The application was tested on a browser that supported HTML-5 webpages. Two separate webpages

were deployed to obtain result of stated objectives i.e. the Visualization of static topology and

Visualization of algorithmic connected topologies.

 The individual webpages were provisioned with input box to enter a Timestamp that will be an

argument for the reading the data from dump files. The output visuals were needed to be refreshed

with a new entry in timestamp argument box.

5.4.1 Static Graph Visualization

Coming on to the static visualization the Force directed layout presented sanity in visualizing the

graph. The colouring of the active nodes and link between active nodes clearly gives a good

institutive idea on how the topologies are formed and the active loads in the network. For a specific

time instance the application retrieved all the breaker status successfully, buses are considered

“always active” nodes and loads status was derived from active status of respective breakers.

In Fig. 5.2 as shown, with a differentiated clamping to particular nodes, in this case for Buses and

Loads, provide with logical understanding of an electrical grid. With Loads placed outwards and the

Buses Inwards gives a less congestive view. It illustrates an intuitive visual in understanding the

grid status for a specific time instance.

Fig 5.2 Complete SYSLAB Grid – Static topology Visualization.

47

5.4.2 Algorithmic version of Graph (Subgraph Visualization)

 The connected topologies were displayed only with Buses and Loads that describes the

consumption aspect of the grid. The adjacency list output of all the identified formed the data

structure input to the subgraph visualization .The subgraph achieved was identified with a unique

serial number for number of such subgraph. The final result obtained was fragmented topologies as

loosely connected buses and loads of floating small graphs. As in Fig. 7.2, clearly illustrates the

island of subgraph which can also be considered as fragment of complete Syslab topology obtained

in Fig 5.3

Fig 5.3 Algorithmic view of connected components

In Fig. 5.3 above, a cluster of connected topologies resulted from the Connected Component

Algorithm, a simplified visualization from the static topology that is concerned with only

representing Buses (power source) and consumption load devices.

5.6 Discussion and Future Work

The main objective in this application was to imply ideas of graph theory to electrical grid network,

which were accomplished in a certain predetermined phases. The whole application development

was divided into four phases of development that included reading the data file, creating a static

topology, application of CC algorithm and visualizing the subgraph.

48

1. Database for Links and Nodes

Data source for the information of nodes and all the present linkages between all the nodes were

manually were stored in Static file in JSON format. For every modification in a Syslab grid

network, addition and deletion of the new buses, breakers or loads needs a manual entry to this

static file.

Dynamic or online entry to this process could facilitate the user experience in contrast to going

offline for every small change in the network.

2. D3 Library for Data and Visualization

 A very straight application of force layout on visualizing the graph with nodes and edges is clearly

seen in this application. Nodes from the JSON object were created as SVG element in HTML

webpage with every tick function execution, i.e. with every tick event the nodes were evaluated

with attributes predefined and the link defining the connections between nodes computed with the

length depending on the placement of the nodes. Nodes were placed arbitrary on defined SVG

canvas, so the link distance is not a static property for all the links. Negative charge of high value (-

300) and large link length gave a good separation between the nodes which also provides clear

vision in understanding the network.

 Variable attribute for every link would have provided a breakthrough in achieving most of

visualization objectives. Clamping of nodes approach was adopted instead, but that too had

limitations avoiding crossing links. Aligning Buses nodes inwards gave a visual understanding of

placement of the power source and loads on the extreme right or left of respective buses gives tree

architecture.

As the name suggest all the data and visualization aspects in application development were

accomplished using API supported by the library.

3. DFS search in CC algorithm

 Depth first search method proved successful in enumerating all the nodes (including buses,

breakers and loads) with the recursive search method. The algorithm had a fast process time for

finite number of nodes in this scenario for Syslab grid. The subgraph achieved was identified with a

unique serial number. Which in future a Map structure or hash Map data structure can hold all the

unique topologies generated in past. It will be a catalyst in understanding of the particular grid

network; blackouts and grid failure can be figured out with the aid of such study and information.

49

 For a highly huge number of nodes, the recursive algorithm might not be a preferable solution. In

this case use of Stack might be efficient with a numerous Pop and Push operations, which in

contrast also increase the processing time for whole network.

4. Future improvements

The current development can be improved with following additions in the project:

1. The current application can further extended to display auxiliary electrical information

of the particular grid. Voltage, Current, Kwh, Kvah, frequency etc. data can be

incorporated in a detailed view for grid.

2. Optimization of grid would be good way to extend this application, where the grid status

would be able to learn from the topologies occurred in past. A best possible solution to

connect a distant load in the grid would be computed by using machine learning

algorithm.

3. Control of the grid is an effective application on scale on automatizing the grid circuit.

Being able to communicate efficiently with the control mechanism will certainly add to

autonomous system development.

4. Application in Energy Management system (EMS) where the electrical connections are

presented as Single Line Diagram and monitored for optimization of the present

electrical architecture. This visualization shall reduce the stress on monitoring of

unwanted electrical equipment and assist in Supervisory control system.

50

6. CONCLUSIONS

The main focus in the application design was to foresee the opportunities offered by the Grails

application and not to develop a ready to deploy web application.

• This research study was based on developing a test web application that could be deployed

on a Web container or a Servlet container.

• A multi-tenant application is proposed in integration of MES and ERP with a view of

incorporating IoT technology.

• MES database with product list generated by provider enterprise able to be exposed over a

cloud platform that can be accessed by the ERP applications of partner clients through

Grails framework.

• Tenant entities that are provider MES and client ERP have an access to the service

embedded with Grails application development for data persistence and data customization

on schema level.

• Class loading mechanism of Java/Groovy is the pivot of tenant security through secured

class loading mechanism complimented by Spring Security plugin.

• Grails artefacts (controllers, service, domain etc.) were easy to build through a standard

script that manages required configurations on servlet built up; simply placing the

appropriate artefacts over the relevant folder marked the identity for the artefacts enabling

faster development of the web application.

• Scaffolding of the controllers relieved us from need of building simple user interface

explicitly for the GORM domain controller i.e. Base Material in our case.

• In the Visualization context of IoT approach manufacturing data and business systems we

have put forward a flexible substitute for conventional HMI system that are limited to

vicinity of manufacturing facility.

• With the help of modern open source library it is possible to build an interface to supervise

SYSLAB grid. Real time and historical information in form of graph of nodes and links

possible to publish on web application using JavaScript bas D3 library and accessed through

modern HTML5 supported browsers.

• D3 supports variety of visualization algorithm apart from “Force-Directed” one used in the

method described here that can be useful in building various KPI (Key Performance

Indicators); which can be important factor in Big Data analytics for Industry 4.0.

51

7. REFERENCES

[1] ""FAO - News Article: 2050: A Third More Mouths To Feed". Fao.org. N.p., 2016.

[2] John, Yongjean and Ki-Heung Yim. "A Study On An Environment Of ERP Introduction".

IEEE 6 (2001): 84 - 89 vol.6.

[3] Van der Linden, Dirk. How To Apply ANSI/ISA S88 (America) Or IEC 61512 (Europe). 1st

ed. Hageschool Antwerpen. Print.

[4] Theron, John. ISA-95: A Foundation Model For Business Intelligence For Manufacturing.

1st ed. incuity, 2008.

[5] Scholten, Bianca. "Integrating ISA-88 and ISA-95". Isa.org. N.p., 2016.

[6] Fu, Ruixue et al. "Research On Integrated And Flexible MES Based On Agency And SOA".

2008 International Symposiums on Information Processing (2016): n. pag. Print.

[7] Soplop, Jeffrey et al. "Manufacturing Execution Systems For Sustainability: Extending The

Scope Of MES To Achieve Energy Efficiency And Sustainability Goals". 2009 4th IEEE

Conference on Industrial Electronics and Applications (2009): n. pag.

[8] MOHAJERI NARAGHI, ASHKAN. Software Selection For Using Manufacturing Shop-

Floor Data In MPCS. Gothenburg, Sweden: CHALMERS UNIVERSITY OF

TECHNOLOGY, 2011. Print.

[9] European Parliament's Committee on Industry, Research and Energy (ITRE),. Industry 4.0.

Brussels: N.p., 2016. Print.

[10] "The DIKW Pyramid". The Answer is 42. On Data, Information and Knowledge. N.p., 2015.

[11] Namboodri, Chet. "Making Smarter Manufacturing and Iot A Reality Today". blogs@Cisco

- Cisco Blogs. N.p., 2016.

[12] "Understanding the Cloud Computing Stack: Saas, Paas, Iaas". Support.rackspace.com.

N.p., 2016.

[13] "What Is Iaas?". Interoute. N.p., 2016.

[14] "I Dream Of Iot/Chapter 4: Iot And Cloud Computing - Wikibooks, Open Books For An

Open World". En.wikibooks.org. N.p., 2016.

[15] Tuley, John. "Introduction To Designing Multi-Tenant Web Applications - Quick Left".

Quick Left. N.p., 2013.

[16] Application, Architecting and +Raji Sankar. "Architecting A Multi-Tenant Application".

Java Code Geeks. N.p., 2016.

[17] "Introduction to Java Web Development - Tutorial". Vogella.com. N.p., 2016.

[18] Ledbrook, Peter and Glen Smith. Grails In Action. Shelter Island, NY: Manning Pub., 2014.

Print.

52

[19] "Class Loading In Java/J2EE". Learn how to learn.... N.p., 2010.

[20] Namboodri, Chet. "Making Smarter Manufacturing and Iot A Reality Today". blogs@Cisco

- Cisco Blogs.

[21] "Spring MVC Framework Tutorial". www.tutorialspoint.com.

[22] Top 5 Considerations When Evaluating Nosql Databases. 1st ed. mongoDB, 2015.

[23] "GORM for Mongodb 5.0.6.RELEASE". Gorm.grails.org.

[24] "Grails Spring Security Core Plugin". Grails-plugins.github.io.

[25] "Spring Security". Projects.spring.io.

[26] "2 Scheduling Basics 1.0.2". Grails-plugins.github.io.

[27] Bob Bockholt and Paul E. Black, "adjacency-list representation", in Dictionary of

Algorithms and Data Structures [online], Vreda Pieterse and Paul E. Black, eds. 14 August

2008

[28] Eppstein, David. "ICS 161: Design And Analysis Of Algorithms". 2015. Lecture.

53

APPENDIX

 List of abbreviations

The following table describes the significance of various abbreviations and acronyms used

throughout the thesis.

Abbreviation Meaning

MES Manufacturing Execution System

ERP Enterprise Resource planning

IoT Internet of Things

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

GORM Grails Object Relationship Management

CRUD Create Read Update and Delete

HTML Hyper Text Markup Language

RDBMS Relational Database Management System

SQL Structured Query Language

CC Connected Components

DFS Depth First Search

JSON JavaScript Object Notation

ISA Internal Society of Automation

54

List of Figures

Fig.1 Static topology of SYSLAB network

55

Fig. 2 Connected component algorithmic view of SYSLAB network

56

Development Code

Pseudo code implementation of CC algorithm using DFS search

InputData = [] // Array of active elements extracted from dump files

SourceArray = [array of source node]

TargetArray = [array of target nodes]

Create adjacencyList from Pairs

foreach (elements in InputData[i])

{AdjacencyList(sourceArray [i]) = AdjacencyList(targetArray [i])

};

CC_No = 1;

DFS (node);

check node [InputData[i]];

mark InputData[i] = visited;

check next node form adjacencyList

If

(nextnode = = unvisited ;)

Then DFS (nextnode)

else

CC_No++;

Create adjacencyList for each (InputData[i]== visited);Visualize

subgraph;

57

Base Material Domain Class

package com.app

import org.bson.types.ObjectId

class Material {

 String matNr

 String matName

 String b1

 String b2

 static constraints = {

 }

 static mapping = {

 table 'material'

 id column: '_id', generator: 'assigned', name : 'matNr', type : 'String'

 //id composite : ['_id','matNr']

 }

 }

Base Material controller

package com.app

import grails.plugin.springsecurity.annotation.Secured

import static org.springframework.http.HttpStatus.*

import grails.transaction.Transactional

 @Transactional(readOnly = true)

@Secured('ROLE_FRAMEWORK_USER')

class MaterialController {

 static allowedMethods = [save: "POST", update: "PUT", delete: "DELETE"]

 def index(Integer max) {

 params.max = Math.min(max ?: 10, 100)

 respond Material.list(params), model:[materialInstanceCount: Material.count()]

 }

 def show(Material materialInstance) {

 respond materialInstance

 }

 def create() {

 respond new Material(params)

58

 }

 @Transactional

 def save(Material materialInstance) {

 if (materialInstance == null) {

 notFound()

 return

 }

 if (materialInstance.hasErrors()) {

 respond materialInstance.errors, view:'create'

 return

 }

 //materialInstance.save flush:true

 materialInstance.insert() //(failOnError: true)

 request.withFormat {

 form multipartForm {

 flash.message = message(code: 'default.created.message', args: [message(code: 'material.label',

default: 'Material'), materialInstance.matNr])

 redirect(url: "http://localhost:8080/multitenancy/material/index")

 }

 '*' { respond materialInstance, [status: CREATED] }

 }

 }

 def edit(Material materialInstance) {

 respond materialInstance

 }

 @Transactional

 def update(Material materialInstance) {

 if (materialInstance == null) {

 notFound()

 return

 }

 if (materialInstance.hasErrors()) {

 respond materialInstance.errors, view:'edit'

59

 return

 }

 materialInstance.save flush:true

 request.withFormat {

 form multipartForm {

 flash.message = message(code: 'default.updated.message', args: [message(code: 'Material.label',

default: 'Material'), materialInstance.id])

 redirect materialInstance

 }

 '*'{ respond materialInstance, [status: OK] }

 }

 }

 @Transactional

 def delete(Material materialInstance) {

 if (materialInstance == null) {

 notFound()

 return

 }

 materialInstance.delete flush:true

 request.withFormat {

 form multipartForm {

 flash.message = message(code: 'default.deleted.message', args: [message(code: 'Material.label',

default: 'Material'), materialInstance.id])

 redirect action:"index", method:"GET"

 }

 '*'{ render status: NO_CONTENT }

 }

 }

 protected void notFound() {

 request.withFormat {

 form multipartForm {

60

 flash.message = message(code: 'default.not.found.message', args: [message(code: 'material.label',

default: 'Material'), params.id])

 redirect action: "index", method: "GET"

 }

 '*'{ render status: NOT_FOUND }

 }

 }

def savefrmprovider(){

 def newNO = params.matnr

 [matnr: newNO]

 // redirect action : "create", params : [matNr : newNO, matName : "null", provider_code :

"null", manufacturer : "null"]

 def baseInstance = new Material(matNr : newNO, matName : "null", provider_code : "null",

manufacturer : "null")

 baseInstance.insert()

 render 'saved' }

 }

Tenant Specific class definition

package com.tenant2

import org.codehaus.groovy.grails.web.context.ServletContextHolder

import org.codehaus.groovy.grails.web.servlet.GrailsApplicationAttributes

import groovy.json.*

import groovy.lang.Delegate

class ExtendedMaterial {

// @Delegate Base newbase = new Base()

String matNr

//String tenant1name

//int tenant1ID

//String matNames

//String nparam

//String newmat2

static int i = 0

61

String additionalInformation1;

 def printclient(tenant1ID){

 println "Client code printed from tenant1 $tenant1ID"

 }

 public static update() {

 def context =

ServletContextHolder.servletContext.getAttribute(GrailsApplicationAttributes.APPLICATIO

N_CONTEXT)

 def providerService = context.providerService

 ExtendedMaterial x = new ExtendedMaterial();

 x.matNr = String.valueOf(i)

 x.additionalInformation1 = "addn attr: " +String.valueOf(i)

 println 'additional matNr5: ' +x.matNr

 i++

 // Datasource for MongoDB

 def json = JsonOutput.toJson([Materialno : x.matNr , addnattr :

x.additionalInformation1])

 def matno = x.matNr

 providerService.mongoTfr(json, matno) } }

Service Handling of Tenant specific class

package multitenancy

import base.Scheduled;

class TestJob {

 def providerService

 static triggers = {

 simple name: 'mySimpleTrigger', startDelay: 5000, repeatInterval: 10000

 }

 def group = "MyGroup"

62

 def description = "Example job with Simple Trigger"

 def execute(){

 print "Job run!"

 //println providerService.providergbvar

 if(providerService.providergbvar){

 Scheduled.updateables.every { entry ->

 entry.key."$entry.value"()

 println Scheduled.toupdate }

 } }}

 Service Class for Tenant

package com.app

import org.springframework.web.context.support.WebApplicationContextUtils

import java.util.concurrent.*

import javax.annotation.*

import grails.transaction.Transactional

import auxillary.ClassBuilder

import groovy.lang.Closure;

import groovy.lang.GroovyClassLoader;

import auxillary.StreamPrinter

import com.mongodb.Mongo

import com.mongodb.MongoClient

import com.mongodb.client.MongoCollection

import com.mongodb.util.JSON

import com.mongodb.DBCollection

63

@Transactional

class ProviderService {

 Class providerClass

 ClassLoader parent = Thread.currentThread().getContextClassLoader()

 def gcl = new GroovyClassLoader(parent)

 def gcl2 = new GroovyClassLoader()

 def gcl3 = new GroovyClassLoader()

 def url = new File("C:/Users/ara/Documents/workspace-ggts-

3.6.4.RELEASE/multitenancy/mdefinition/tenantdef").toURI().toURL()

 ExecutorService executor = Executors.newSingleThreadExecutor()

 def TestJob

 def providergbvar

 def baseService

 static scope = "singleton"

 def runscript(def filepath){

 println filepath

 def builder = new ClassBuilder(gcl3)

 def binding = new Binding()

 binding.setVariable("builder", builder);

def engine = new GroovyScriptEngine("c:", this.class.classLoader)

 engine.run(filepath, binding)

 println gcl3.getLoadedClasses() }

def fileM(){

 executor.execute{

 String fChanged

64

 def appPath = System.getenv('GRAILS_APP')

 appPath = new File(appPath).absolutePath

 def binding = new Binding(fdiff : fChanged)

 def engine = new GroovyScriptEngine(appPath)

 engine.run("scripts/dirfil.groovy", binding)

 }

 }

@PreDestroy

void shutdown() {

 executor.shutdownNow()

}

def loadclass(){

//providerService.loadclass()

 def ClassLoader parent = Thread.currentThread().getContextClassLoader()

 gcl.clearCache()

 providerClass = gcl.parseClass(new File

("C:/Users/ara/Documents/workspace-ggts-

3.6.4.RELEASE/multitenancy/mdefinition/tenantdef/provider_admin.groovy"))

 base.Scheduled.addScheduable(providerClass, "update")

 //gcl.addURL(url)

 // gcl.loadClass("C:/Users/ara/Documents/workspace-ggts-

3.6.4.RELEASE/multitenancy/mdefinition/tenantdef/provider.groovy")

 println 'Provider class reloaded'

 println gcl.getLoadedClasses()

 println "class loaded in gcl: "+gcl.getLoadedClasses()

 println "tenant class object: "+providerClass

65

 def f = providerClass.newInstance()

 println f.metaClass.respondsTo(f,"update") ? "Exists: MethodExists()" : "Not

Exists: noMethodExists()";

 if (f.metaClass.respondsTo(f,"update")){ providergbvar = true }

 else {providergbvar = false}

 }

def recompile(){

def clsname = gcl.recompile(url,providerClass.getName(), providerClass)

println clsname

gcl.getLoadedClasses()

 println 'class recompiled'

 }

def instantiate(){

 def pvrInstance = providerClass.newInstance()

 pvrInstance.matnr = '31'

 pvrInstance.matNames = 'provider 31'

 pvrInstance.newmat1 = 'new attr'

 pvrInstance.additionalInformation5 = 'addn atr'

 println pvrInstance.matNames

 println pvrInstance.additionalInformation5

 println pvrInstance.newmat1

 }

def mongoTfr(def json, def matId) {

66

 MongoClient mongoClient = new MongoClient()

 def db = mongoClient.getDatabase("foo")

 MongoCollection collection = db.getCollection("provider")

 collection.insert(JSON.parse(json))

 println 'tfrd to mongodb'

 baseService.save(matId)

}

def test(){

 println 'service called frm POGO'

 }

}

