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Abstract

Wearable electronics capable of recording and transmitting biosignals can provide conve-

nient and pervasive health monitoring. A typical EEG recording produces large amount of

data. Conventional compression methods cannot compress date below Nyquist rate, thus

resulting in large amount of data even after compression. This needs large storage and

hence long transmission time. Compressed sensing has proposed solution to this problem

and given a way to compress data below Nyquist rate. In this paper, double temporal spar-

sity based reconstruction algorithm has been applied for the recovery of compressively sam-

pled EEG data. The results are further improved by modifying the double temporal sparsity

based reconstruction algorithm using schattern-p norm along with decorrelation transforma-

tion of EEG data before processing. The proposed modified double temporal sparsity

based reconstruction algorithm out-perform block sparse bayesian learning and Rackness

based compressed sensing algorithms in terms of SNDR and NMSE. Simulation results

further show that the proposed algorithm has better convergence rate and less execution

time.

Introduction

In Brain Computer Interface (BCI), a non-muscular connection between computers and

human is made to assist in conversion of coded brain signals into external commands [25, 32].

EEG based BCI has shown significant importance in recent years for health-care monitoring,

including early detection of seizure, trauma, alzheimer and stroke [29]. Normal EEG signal

contain large number of data that cannot be sampled and transmitted during many real life

scenarios. Epileptic seizure detection of patients require continuous EEG monitoring that may

last upto a number of hours [22]. Saving, processing and transmission of this huge data

requires bulk storage and immense processing power [1]. As an example, multichannel EEG

recording ranges from 24 to several hundred electrodes. With 24 electrodes, if sampled at 200

HZ using 12 bits of resolution, it produces a data of at least 1 GB per day [8]. Compressive
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sensing (CS) theory suggests solution to this problem by taking samples far fewer than the

Nyquist rate along with faithful recovery [38].

Traditional way of compression discards huge amount of data resulting in a lossy compres-

sion. To overcome this issue, signal compression techniques with better sampling patterns

have been developed, which enables to store the same amount of data in more compact form

[24]. Some methods are matched filters, autocorrelation based euclidian distance, bayesian

interface methods, wavelet compression and jpeg 2000 [4]. All these methods need sampling

measurements at Nyquist rate using analog to digital converter (ADC), resulting in computa-

tionally complex data, high processing time, and expensive hardware. In order to mitigate all

these problems, CS provides a promising solution [4]. CS reconstructs from highly under-sam-

pled data, even below the Nyquist rate, discarding the redundant information. This results in a

huge reduction in dimension due to less number of measurements. The basic theory of CS rely

on two necessary conditions, sparsity and incoherence [14].

The main idea behind CS is that, signal can be represented by only few non-zero coeffi-

cients, this is done by using some sparse sensing matrix [11]. For CS, two assumptions are

made. Firstly, either data is itself sparse or sparse in some transform domain. Secondly, the

measurement basis and representation basis are mutually incoherent [9], this results in a com-

pression below the Nyquist rate. As number of measurements are far fewer than original sig-

nal, thus recovering the original signal is an NP-hard problem [23]. Due to non-sparse

representation of EEG in time domain, EEG signal is made sparse by using different basis or

dictionary functions. There have been many publications indicating dictionaries such as sle-

pian basis and Gabor framework [38]. Hesham [19], presented the CS framework for EEG

using dirac sensing matrix, and efficiently reconstructed the EEG signal after compression.

Angshul [10], illustrated CS recovery of EEG using 2-D fourier transform, however [38],

claimed that better reconstruction can be achieved using wavelet domain instead of Gabor

domain. Jun [3], claimed that using daubechies wavelets, the reconstruction accuracy achieved

is better than that of other basis functions.

Compressed sensing

Compressed sensing depend on the hypothesis that the signal x is compressed by Φ 2 RM�N

(sampling or measurement matrix). The sampling model is formulated as,

y ¼ Φxþ ξ ð1Þ

where y 2 RM�1
represent the compressed measurements with M�N, indicating that number

of sampled measurements are far less than the original signal. If x is sparse, then recovery

problem only requires the compressed measurements and sampling matrix, but if not, than

signal x should be sparse (transformed) in representation matrix (dictionary) Ψ 2 RN�P
with

N�P. This can be written as,

x ¼ Ψy ð2Þ

where y 2 RP�1
is sparse. x can be recovered using measurements y, dictionary C, and sam-

pling matrix F. The minimization problem formed is,

min kyk
0

s:t y ¼ ΦΨy ð3Þ

where k.k0 is the ℓ0 norm, i.e it counts the number of non-zero entries. The x is called K-sparse

when number of non-zero entries are vector equal to K. The task of recovering x from mea-

surements y is an under-determined inverse problem, and finding its solution is NP- hard

problem [37], as the sensing matrixC due to large undersampling is ill conditioned. So general
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problem is regularized in order to achieve recovery. Sparsity regularization is comparatively

elementary solution to this problem.

In sparse recovery problem, the expected signal is said to be sparse by representing it with

transformC, to regularize it in transformed domain, ℓ1 norm is used as the substitute for ℓ0

norm. Hence, for EEG reconstruction problem, the sparsity regularization is formulated as [21],

x̂ ¼ arg min
x
ky � ΦΨyk2

F þ l1kyk1 ð4Þ

F represent the basis of sparsifying transform and k.k1 is ℓ1 norm. The minimization of var-

iance of noise is done with fedility term in Eq 4. The regularization term λ1 is added to induce

sparsity on x over basis C, and k:k
2

F represents the Frobenius norm, which can be defined as,

kyk
2

F ¼ Tr½ðyÞðyÞT� ð5Þ

The proposed method is based on double sparsity based framework. The motivation behind

proposed method is to increase the existing reconstruction accuracy of multi-channel EEG sig-

nals using following contributions: First, the multi-channel EEG signal is pre-processed using

zero mean and whitening transform. The total variation matrix exploited in previous work

exhibits redundancy in reconstruction accuracy, so instead of using total variation matrix, pro-

posed algorithm explored the concept of circulant matrix as a sparse sensing matrix. In addi-

tion, the shattern-p norm is used as non-convex surrogate function to exploit the double

sparsity in CS recovery of multi-channel EEG signals. The flow diagram of proposed method

is shown in Fig 1.

Fig 1. Flow diagram of proposed method.

https://doi.org/10.1371/journal.pone.0225397.g001
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The rest of the paper is organized as follows, section III summarize the existing methods

used for the reconstruction of compressively sampled EEG signals. Section IV includes the dis-

cussion and analysis of proposed method on the basis of quantitative analysis, section V gives

the concluding remarks.

Related work

Rackness based compressive sensing

Power consumption during wireless transmission has been focus of many researchers, Nicola

et al. [16] worked on solving the power consumption issue by introducing the rackness based

compressed sensing. Using rackness based CS, good signal reconstruction of EEG signal can

be achieved. Rackness approach is based on assumption that certain signal exhibits non-flat

energy distribution. Using this assumption, there is no need to construct F from randomly

selected i.i.d entries. Instead of constructing randomly, F is tuned statistically which match

with the input signal. This property increases the average energy of y, which ultimately

increases the reconstruction accuracy. To formulate this property, rackness ρ between two sto-

chastic process x and F is defined as,

rðΦ; xÞ ¼ EðΦ;xÞ½jhΦj; xij� ð6Þ

where the static expectation over x and F is represented by E(F,x), with h.i as standard inner

product, Fj is the sensing sequence, and x is the signal instances. Using rackness based

approach, both noise suppression and good signal reconstruction is achieved.

Block sparse bayesian learning

Using field programmable gate array (FPGA), Liu et al. [27] proved that comparing to wavelet

domain, block sparse bayesian learing (BSBL) shows prominent results in terms of power con-

sumption and reconstruction accuracy. Using fast marginalized (FM) likelihood method, fast

implementation of BSBL was developed in which EEG signal is structured into blocks as

shown in Eq (7),

x ¼ ½x1; . . . :; xd1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
xT

1

; . . . : :; x1; . . . :; xdg
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

xTg

� ð7Þ

which represents that x has g blocks, with few non-zero blocks and di is the size of ith block.

The BSBL uses intra-block structure correlation to model the signal x with Gaussian distribu-

tion. The resulting reconstruction is not robust to all methods, as blocking introduces noise,

therefore, regularization is done in order to achieve better results.

Simultaneous co-sparsity and low rank

In a very recent work [2], it was discussed that due to correlation in EEG signals, same sparsity

pattern is adopted after transformation i.e. the values of transform coefficients have values at

same positions leading to row-sparse recovery [2]. This theory was formulated using ℓ2,1 norm

minimization problem.

X̂ ¼ arg min
X
ky � ΦFTXk2

F þ lkXk2;1 ð8Þ

where ℓ2,1 norm is the sum of the rows of ℓ2 norm. In Eq 8, ℓ2 norm gives the dense solution in

selected rows, hence sum of ℓ2 norm promotes selection of very few rows.
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Blind compressed sensing

The theory of CS relies on the assumption that sparsity of the signal is known in some basis.

The Blind Compress Sensing (BCS) [17], avoid this assumption by using both CS and dictio-

nary learning. BCS estimates the sparse signal as well as the sparsifying dictionary from the

data. The assumption that data is sparse in learned dictionary, i.e. X = DJ where J are the sparse

coefficients and D is the unknown dictionary (to be estimated) [17].

X̂ ¼ min
D;J
ky � ADJk2

F þ l1kDk
2

F þ l2kvecðJÞk1 ð9Þ

In BCS [17, 35], both signal estimation and dictionary proceeds simultaneously.

Double temporal sparsity based reconstruction

Using double temporal sparsity reconstruction (DTSR), better reconstruction can be achieved

with acceleration in time. Priya [28] proposed DTSR for sparse signal recovery of fMRI data

with prominent results. In this work we have sued a modified form of DTSR along with some

pre-processing for sparse recovery of EEG signal.

The DTSR algorithm uses total variation based algorithm and imposes two ℓ1 norm con-

straints. First constraint is applied on transformed domain of temporal data and other is

imposed on the consecutive difference of same data. The cost function of Eq 4 can be written

as,

x̂ ¼ arg min
x
ky � ΦFyk2

F þ l1kΨxk1

þl2

XT

t¼2

jxt � xt� 1j

ð10Þ

where λ1, λ2 are positive regularization terms, F is the 2-D Fourier transform while the third

term shows the consecutive difference of columns of data. The matrix formulation of a Eq 10

can be shown as

x̂ ¼ arg min
x
ky � ΦFyk2

F þ l1kΨxk
1

þl2kxDk
1

ð11Þ

where D shows the consecutive difference on the successive columns of x, known as total vari-

ation temporal sparsity shown as

D ¼

� 1 1 0 : : 0 0

0 � 1 1 0 : : 0

0 0 � 1 1 : : :

0 0 : : : : :

: : : : : : 0

0 : : : 0 � 1 1

0 0 : 0 0 0 � 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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Proposed method

In this section, alternating direction multiplier method (ADMM) is modified on the basis of

desired EEG signal recovery problem using DTSR. In the pre-processing of signal x, first of all

signal is made zero mean and then it is made white by making each column of signal un-corre-

lated to each other. The unit variance and zero mean can be expressed in mathematical terms

as,

M ¼
x � m
s

ð12Þ

where μ is the mean, and σ is the variance of EEG signal x, this is done in fashion that each

value of x is subtracted form mean of individual columns of x, and divided by σ resulting

EEG signal with zero mean. This zero mean EEG data is made white by using optimal whiten-

ing method [30]. The reason behind this step is that close channel in multichannel EEG signal

exhibits strong correlation, removing this correlation by making the columns of EEG signal

orthogonal to each other results in less search time in optimal sparse signal recovery. This

can be shown in Fig 2, where zero-mean and white data becomes stable in less number of iter-

ation than original algorithm. The whitening of zero-mean signal can be shown mathemati-

cally as

Z ¼ ðz1; . . . ; zdÞ
T
¼WM ð13Þ

where d is the dimension of zero-mean vector, W is the d×d whitening matrix. Whitening in

general terms can be viewed as [30],

Z ¼ V � 1=2M ð14Þ

where V is the variance, V ¼ diagðs2
1
; . . . ; s2

dÞ, such that, varðmiÞ ¼ s
2
i . The whitening trans-

form should follow, WSWT = I and thus W(SWTW) = W, which is only achieved if W satisfy

the constraint

WTW ¼ S� 1 ð15Þ

Using Mahalanobis whitening method [30], the whitening transform employed in this

work is

WZCA ¼ S� 1=2 ð16Þ

The difference between zero-mean and whitened data can be seen by number of iterations

in Fig 2. Instead of using total variation matrix D used in Eq 11, in this paper we explored

the idea of using circulant matrix [13]. For CS, the binary measurement matrices are formed

using parity check matrix of array coding. A parity matrix H(r,q) is the identity matrix of

dimension r×q and (i,j)-th circulant permutation matrix P(i−1)(j−1) with q as odd prime and r

as positive integer, such that 1�r�q [36]. The i-th row circulant matrix is formed by cyclic

Sparsity based reconstruction of EEG signals
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Fig 2. MSE vs iterations. A: Original vs proposed method. B: Comparison with related methods.

https://doi.org/10.1371/journal.pone.0225397.g002
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shift of (i+1)-th or (i-1)-th row by one term. This can be shown as,

Hðr; qÞ ¼

I I : : I

I P : : Pq� 1

: : : :

: : : :

: : :

I Pr� 1 : : Pðr� 1Þðq� 1Þ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

P ¼

0 1 0 : : : 0

0 0 1 : : : 0

: : : : :

: : : : :

: : : : :

0 0 0 : : : 1

1 0 0 : : : 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
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3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

After making these changes in the cost function of DTSR, the modified version of algorithm

can be rewritten as,

ẑ ¼ arg min
z
ky � ΦFzk2

F þ l1kΨzk1

þ l2kzHk1

ð17Þ

Instead of using frobenious norm, which is basically square root of the sum of the absolute

squares defined in Eq 11, we have used the schattern-p norm. Schattern-p norm has been suc-

cessfully used for sparse synthesis model and shows accurate results [3, 7, 18, 33]. Eq 17 can be

re-written as

ẑ ¼ arg min
z
ky � ΦFzkpSp þ l1kΨzk

1

þ l2kzHk
1

ð18Þ

where k:k
p
Sp

is the schattern-p norm and it is the sum of all singular values σ of data z upto

value p, for matrix T 2 Hm and p2[1,+1], k:k
p
Sp

is defined as,

kTk
p
≔ ðj

X

i

siðTÞj
p
Þ

1=p
ð19Þ

whereHm is monotone Hilbert space, and σ is the singular values of T in non-increasing order

such that σ1(T)� σ2(T). . ..

To solve Eq 18, optimized solution is obtained using ADMM [6].
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Optimization algorithm

Strained optimization problem in recent literature [20, 26, 34]. The ADMM ease the solution

by breaking down the original cost function into several objective function, that are compara-

tively easy to solve.

Following [28], two auxiliary matrices P 2 RM�N and Q 2 RM�N are introduced in Eq 18 as

ẑ ¼ arg min
z
ky � ΦFzkpSp þ l1kPk1

þ l2kQk1

s:t P ¼ Ψz; Q ¼ zH
ð20Þ

By adding these new constraints for each of auxiliary matrices, the objective function

formed is

ẑ ¼ arg min
z
ky � ΦFzkpSp þ l1kPk1

þ l2kQk1

þ
Z1

2
kP � Ψz � B1k

2

F þ
Z2

2
kQ � zH � B2k

2

F

ð21Þ

where B1, B2 are lagrange multipliers to satisfy the equality auxiliary and original matrices, and

η1, η1 are penalty parameters.

ADMM updates variables P, Q and z alternatively in the above lagrange function. By keep-

ing the other two variables fixed, one variable is minimized in each iteration. Thus, the above

function can be decomposed into three sub-problems, with new objective function as,

A1 : arg min
P
l1kPk1

þ
Z1

2
kP � Ψzj� 1 � Bj� 1

1 k
2

F ð22Þ

A2 : arg min
Q
l2kQk1 þ

Z2

2
kQ � zj� 1H � Bj� 1

2 k
2

F ð23Þ

A3 : arg min
z
kY � ΦFzkpSp þ

Z1

2
kPj � Ψz � Bj� 1

1 k
2

F

þ
Z2

2
kQj � zH � Bj� 1

2 k
2

F

ð24Þ

where j is the number of iterations, A1 and A2 subproblems minimize objective function over

P and Q respectively with fixed z. Similarly, A3 minimizes z keeping P and Q fixed. Subprob-

lems A1, A2 and A3 are solved iteratively by updating the lagrange multipliers B1 and B2.

A1 and A2 subproblems. Subproblems A1 and A2 are ℓ1 minimization problem, for gen-

eral ℓ1 minimization problem as

min
U
akUk1 þ

b

2
kU � Vk2

F ð25Þ

the solution is [28],

U ¼ SoftðV; 2
a

b
WÞ ð26Þ

where W is unitary matrix and U;V 2 RM�N
with α, β> 0. V in Eq 25 is initial approximate of
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U. Hence for j iteration, the solution for subproblem A1 is

Pj ¼ SoftððΨzj� 1 þ Bj� 1

1 Þ; 2
l1

Z1

WÞ ð27Þ

For j iteration P is computed for subproblem A1. Similarly Q is computed for subproblem

A2 using zj−1 and Bj� 1

2 as

Qj ¼ Softððzj� 1Hþ Bj� 1

2 Þ; 2
l2

Z2

WÞ ð28Þ

A3 subproblem. Subproblem A3 is quadratic, to solve it conjugate gradient algorithm is

used [12, 15]. In this paper, line search conjugate gradient algorithm is used [28]. This algo-

rithm is iterative in which descent direction is selected on the minimization of function. Fur-

ther, step size is determined by using line search method. For general quadratic equations, line

search conjugate gradient algorithm gives the finite convergence.

Updating lagrange multiplier. In the last step lagrange multiplier is updated iteratively.

Lagrange multiplier helps in achieving the convergence in subsequent iteration. The pseudo

algorithm of proposed method is shown in Algorithm 1. The convergence is achieved by com-

paring convergence of objective function with threshold or with maximum number of itera-

tions achieved.

Algorithm 1 Proposed Algorithm

1) INPUT: λ1, λ2, B0

1
, B0

2
, Z0, j = 1

2) while Convergence do not met do
3) Solve P for subproblem A1 using 27
4) Solve Q for subproblem A2 using 28
5) Solve Z for subproblem A3 using 24
6) Updating lagrange multipliers
Bj

1 ¼ Bj� 1

1 þ cXj � Pj

Bj
2 ¼ Bj� 1

2 þ Xj H � Qj

7) j = j+1
8) end while
8) OUTPUT: Reconstructed signal Ẑ

Results and discussion

EEG dataset

The publicly available EEG dataset [5] is used for the purpose of sparse signal recovery of

multi-channel EEG signal. This commonly used EEG dataset contain 32 channel EEG signal

of length 30720 data points, with each signal of channel contain 80 epochs and 384 points.

For compression of each epoch, sensing matrix Φ 2 R192�384
is used as sparse circulant

matrix and Ψ 2 R384�384 is used as Fourier domain sparsifying matrix formed by calculating

the Fourier transform of z along each row. To recover EEG signal, ADMM algorithm is

used [6].

Quantitative analysis

This section includes the results of the proposed modified DTSR method in comparison with

few of the existing CS-based EEG signal reconstruction techniques. For the purpose of recon-

struction quality measurement, normalized mean square error (NMSE), mean square error

(MSE) and signal to noise distortion ratio (SNDR) are used.
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For reference EEG signal x and its reconstructed version x̂, the NMSE is computed as

NMSE ¼
kx � x̂k2

2

kxk2

ð29Þ

where k.k2 represent the ℓ2-norm. Similarly SNDR is calculated as

SNDR ¼ 10 log 10

kx̂k2

2

kx̂ � xk2

2

ð30Þ

MSE can be calculated as

MSE ¼
XL

l¼1

kx̂ � xk2

F

LNC
ð31Þ

where x and x̂ are the reference and reconstructed EEG signals, C is the number of EEG chan-

nels, N is the length of epoch, and L is the number of experiments.

Reconstructed NMSE (average), MSE (average), band SNDR (average) for all 32 channel

EEG signal is presented in Table 1. The compression rate of 25%(4:1), and 50%(2:1) is used for

evaluation. The MSE of multi-channel EEG signal is shown in Fig 2. The proposed method

gives best results in less number of iteration than other existing algorithms. Multi channel

EEG signal along with its reconstructed versions with different algorithms are shown in Fig 3.

EEG multi channel data used in this analysis consists of 32 channels, 384 time series and 80

epochs represented by 32×384×80. The results shown in Fig 3 and Table 1 indicates that the

proposed algorithm outperforms in terms of accuracy and execution time as compared to

other state of the art algorithms.

Conclusion

In this work compressively sampled EEG data is recovered using DTSR algorithm. Conven-

tional DTSR algorithm which was originally designed for fMRI data is tailored for application

to EEG sparse recovery by making three main contributions. As a first step pre-processing is

done by making the EEG data zero mean and unit variance. Second step is to formulate circu-

lant matrix instead of total variation matrix for limiting the search space for fast convergence

of the algorithm. Finally it is shown that instead of frobenius norm, using shattern-p norm

yields better reconstruction accuracy. The proposed modified DTSR algorithm outperforms

conventional DTSR as well as other state of the art CS recovery techniques in terms of NMSE

and SNDR.

Table 1. Quantitative measures for sparse signal recovery of EEG signals.

Authors CR MSE NMSE SNDR(db)

Zhilin et al. [25] 2:1 0.1452 0.118±0.047 16.23

4:1 0.2804 0.89±0.05 17.86

Fabio et al. [31] 2:1 0.1960 0.116±0.046 16.45

4:1 0.3920 0.85±0.08 18.29

Priya et al. [28] 2:1 0.0108 0.076±0.005 23.62

4:1 0.0216 0.157±0.015 19.25

Proposed 2:1 0.0024 0.053±0.011 24.63

4:1 0.0063 0.105±0.014 21.76

https://doi.org/10.1371/journal.pone.0225397.t001
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